WO2022014105A1 - Laser processing device and laser processing method - Google Patents

Laser processing device and laser processing method Download PDF

Info

Publication number
WO2022014105A1
WO2022014105A1 PCT/JP2021/013399 JP2021013399W WO2022014105A1 WO 2022014105 A1 WO2022014105 A1 WO 2022014105A1 JP 2021013399 W JP2021013399 W JP 2021013399W WO 2022014105 A1 WO2022014105 A1 WO 2022014105A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
processing
laser
condensing
line
Prior art date
Application number
PCT/JP2021/013399
Other languages
French (fr)
Japanese (ja)
Inventor
剛志 坂本
いく 佐野
銀治 杉浦
Original Assignee
浜松ホトニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浜松ホトニクス株式会社 filed Critical 浜松ホトニクス株式会社
Priority to JP2022536134A priority Critical patent/JPWO2022014105A1/ja
Priority to KR1020237000694A priority patent/KR20230037547A/en
Priority to CN202180061227.5A priority patent/CN116075389A/en
Publication of WO2022014105A1 publication Critical patent/WO2022014105A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/067Dividing the beam into multiple beams, e.g. multifocusing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/073Shaping the laser spot
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/50Working by transmitting the laser beam through or within the workpiece
    • B23K26/53Working by transmitting the laser beam through or within the workpiece for modifying or reforming the material inside the workpiece, e.g. for producing break initiation cracks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting

Definitions

  • One aspect of the present disclosure relates to a laser processing apparatus and a laser processing method.
  • Patent Document 1 describes a laser processing device including a holding mechanism for holding a work and a laser irradiation mechanism for irradiating a work held by the holding mechanism with a laser beam.
  • a laser irradiation mechanism having a condenser lens is fixed to the base, and the movement of the work along the direction perpendicular to the optical axis of the condenser lens is performed by the holding mechanism. Will be implemented.
  • a trimming process for removing an outer edge portion thereof from a semiconductor wafer as an unnecessary portion may be performed. That is, in order to remove the outer edge portion of the object from the object, the focusing point of the laser light is relatively moved along the line extending in an annular shape inside the outer edge of the object, so as to be along the line. May form modified regions.
  • the object when the crack is extended from the modified region from the incident surface side of the laser beam of the object to the opposite surface during the trimming process, the object is used. There is a demand to extend the crack diagonally so as to be inclined with respect to the thickness direction, instead of extending the crack in the vertical direction along the thickness direction. This means that, for example, when a crack is stretched along the thickness direction, it leads to another member (for example, a wafer bonded to the object) arranged directly under the object along the thickness direction. This is to suppress it.
  • the processing progress direction which is the direction of relative movement of the condensing point, according to the crystal structure of the object.
  • one aspect of the present disclosure is to provide a laser processing apparatus capable of setting a processing progress direction more appropriately according to the crystal structure of an object, and a laser processing method.
  • the present inventor obtained the following findings by proceeding with diligent research in order to solve the above problems. That is, when the crack is formed diagonally so as to be inclined with respect to the thickness direction, and the object has a crystal structure, the appropriate processing progress direction differs between one region and another region. There are cases. Therefore, it is possible to set a more appropriate machining progress direction by switching the order of the machining progress directions instead of setting the machining progress directions to the same direction in all the regions.
  • One aspect of the present disclosure is based on such findings. To switch the order of the machining progress direction, for example, when machining along an annular line, the machining progress direction is set to counterclockwise (for example, forward direction) or clockwise (for example, reverse direction). Or to switch.
  • the laser processing apparatus is a laser processing apparatus for irradiating an object having a crystal structure with laser light to form a modified region, and is a support for supporting the object.
  • a control unit for controlling the irradiation unit is provided, and the object has an annular shape including an arc-shaped first region and an arc-shaped second region when viewed from the Z direction intersecting the incident surface of the laser beam.
  • the line is set, the irradiation unit has a molding unit for molding the laser beam, and the control unit controls the irradiation unit and the moving unit along the first region of the line.
  • the control unit controls the irradiation unit and the moving unit along the first region of the line.
  • a second processing process of forming a modified region along the object and forming an oblique crack extending from the modified region toward the opposite surface is executed, and in the first processing process and the second processing process, The control unit switches the order of the processing progress direction, which is the moving direction of the condensing region, between the first processing process and the second processing process.
  • the laser processing method is a laser processing method for irradiating an object having a crystal structure with laser light to form a modified region, and is a laser processing method for forming a modified region of the line set on the object.
  • a modified region is formed on the object along the first region, and the laser light of the object is incident from the modified region.
  • the object is provided with a second processing step of forming a modified region in the object along the second region and forming an oblique crack extending from the modified region toward the opposite surface.
  • the annular line including the arc-shaped first region and the arc-shaped second region when viewed from the Z direction is set, and in the first processing step and the second processing step, the moving direction of the condensing region. The order of the processing progress is switched between the first processing process and the second processing process.
  • the object has a crystal structure.
  • first processing process, first processing step when a modified region is formed on the object along the first region of the line that relatively moves the focused region of the laser beam (first processing process, first processing step), and the case where the modification region is formed.
  • second processing process, second processing step the modified region is directed toward the opposite surface opposite to the incident surface of the object.
  • a diagonal crack extending diagonally with respect to the Z direction (direction intersecting the incident surface) is formed. Therefore, as shown in the above findings, by switching the order of the processing progress direction between the first processing process (first region) and the second processing process (second region), it is possible to obtain more depending on the crystal structure of the object.
  • the machining progress direction can be set appropriately.
  • the object includes the first portion and the second portion arranged in order from the opposite surface side along the Z direction, and the control unit refers to the first portion with respect to the first portion.
  • the first machining process and the second machining process are executed while switching the order of the machining progress directions, and another machining process different from the first machining process and the second machining process is executed for the second part to perform another machining.
  • the control unit controls the irradiation unit and the moving unit to move the condensing region relative to the line while making the order and reverse of the processing progress direction the same throughout the line, thereby targeting along the line.
  • the object may be formed with a modified region and cracks extending from the modified region along the Z direction.
  • the laser machining is performed with the same direction in the machining progress direction over the entire line. Therefore, even in the second portion, the time required for accelerating / decelerating the relative movement of the condensing region of the laser beam is reduced as compared with the case where the order of the processing progress direction is switched between the first region and the second region of the line.
  • the control unit controls the molding unit so that the condensing region has a longitudinal direction when viewed from the Z direction, and the collection thereof.
  • the laser beam may be formed so that the longitudinal direction of the optical region is along the processing progress direction.
  • the relationship between the longitudinal direction of the condensing region and the machining progress direction is changed between the machining of the first region and the machining of the second region of the line. Since it is not necessary to mold the laser beam as described above, the processing of the control unit is simplified.
  • the object includes a joining region joined to another member, and in the first machining process and the second machining process, the control unit is directed from the incident surface to the opposite surface.
  • an oblique crack may be formed that is inclined from a position inside the joint region toward the outer edge of the joint region. In this case, when a part of the object is removed from the object with the diagonal crack as a boundary and the remaining part of the object remains, the remaining part of the object is outside beyond the joint region with other members of the object. It is avoided to extend to.
  • the present inventor obtained the following findings by proceeding with further research based on the above findings. That is, in order to remove the outer edge portion of the object from the object, the focusing point of the laser light is relatively moved along the line extending in a ring shape inside the outer edge of the object, so as to be along the line. When the modified region is formed (trimming is performed), the quality of the trimmed surface of the object formed by removing the outer edge portion may deteriorate depending on the location. That is, according to the knowledge of the present inventor, there is a demand that diagonal cracks can be formed while suppressing deterioration of the quality of the trim surface of the object from which the outer edge portion has been removed.
  • the present inventor has obtained the following further findings regarding the suppression of quality deterioration of the trim surface. That is, first, the object has a (100) plane as a main plane, and has a first crystal orientation orthogonal to one (110) plane and a second crystal orientation orthogonal to another (110) plane. If, it is inclined with respect to the processing progress direction so that the angle between the first crystal orientation and the second crystal orientation and the processing progress direction (direction of relative movement of the condensing point) is closer to one of them.
  • the beam shape into a beam shape, deterioration of the quality of the outer surface can be suppressed (see, for example, Patent Document 2 above).
  • the beam shape when a crack extending from the modified region is pulled in the first crystal orientation, for example, the beam shape may be elongated and the longitudinal direction thereof may be oriented in the machining progress direction. Instead, it is tilted so as to approach the second crystal orientation opposite to the first crystal orientation side with respect to the processing progress direction.
  • the crack extension force due to the elongated beam shape acts to cancel out the crack extension force due to the crystal orientation (crystal axis), so that the crack grows accurately along the processing progress direction. It is considered to be.
  • the beam shape is made long and the direction in the longitudinal direction thereof is not changed to the direction in the processing progress direction. It is tilted so as to approach the first crystal orientation opposite to the second crystal orientation side with respect to the traveling direction.
  • the crack extension force due to the elongated beam shape acts to cancel the crack extension force due to the crystal orientation, and the crack grows accurately along the processing progress direction.
  • the deterioration of the quality of the trim surface is suppressed.
  • the object is the first plane orthogonal to the (100) plane, one (110) plane, another (110) plane, and one (110) plane. It has a crystal structure including one crystal orientation and a second crystal orientation orthogonal to another (110) plane, and is supported by a support portion so that the (100) plane is an incident plane.
  • the control unit controls the molding unit so that the condensing region has a longitudinal direction when viewed from the Z direction, and the longitudinal direction of the condensing region is the first crystal orientation.
  • the laser beam may be formed so that the angle between the second crystal orientation and the processing progress direction, which is the movement direction of the condensing region, is larger and the second crystal direction is inclined with respect to the processing progress direction. .. In this case, as shown in the above findings, quality deterioration of the trim surface is suppressed.
  • the present inventor has further researched based on the above findings, and even when the longitudinal direction of the beam shape is set as described above based on the processing progress direction and the crystal structure, the beam shape is formed. It was found that there is room for further suppression of quality deterioration of the trimmed surface depending on the relationship between the longitudinal orientation of the trimmer and the tilting direction of the diagonal crack. That is, when the longitudinal direction of the beam shape and the inclination direction of the oblique crack are on the same side with respect to the machining progress direction, the quality of the trim surface is relatively good, while the longitudinal direction of the beam shape. When the direction of the sloping crack and the inclination direction of the oblique crack are opposite to each other with respect to the machining progress direction, the quality of the trimmed surface may not be relatively good.
  • the longitudinal orientation of the beam shape with respect to the machining progress direction depends on the crystal structure of the object (that is, as described above, the machining progress direction and the first crystal orientation and the second crystal orientation. Since it is determined by the magnitude relation of the angle of, the degree of freedom of change is small. Therefore, in order to make the relationship between the longitudinal direction of the beam shape and the inclination direction of the oblique cracks a combination that can obtain relatively good quality, the order of the machining progress direction should be changed to the crystal structure of the region to be machined. It is effective to switch as described above accordingly. That is, if the processing progress direction is appropriately set according to the crystal structure of the object as described above, it is possible to further suppress the deterioration of the quality of the trimmed surface.
  • the following inventions have been made based on the above findings.
  • the control unit controls the moving unit so that the direction of inclination in the longitudinal direction is different when viewed from the Z direction.
  • the order of the machining progress direction may be switched between the first machining process and the second machining process so that the diagonal crack extends on the same side as the machining progress direction.
  • the direction of inclination in the longitudinal direction of the condensing region with respect to the processing progress direction and the side on which the oblique crack extends are the same side.
  • the relationship between the longitudinal direction of the condensing region and the inclination direction of the oblique crack is a combination that can obtain relatively good quality, and the deterioration of quality is suppressed. In this way, it is possible to form diagonal cracks while suppressing deterioration of the quality of the trim surface of the object.
  • the control unit moves the condensing region relative to the first region of the line without switching the processing progress direction.
  • a modified region is formed in the object along the second region, and a second Z processing process for forming a crack extending in the Z direction from the modified region is executed.
  • the control unit controls the molding unit so that the condensing region has a longitudinal direction when viewed from the Z direction, and the longitudinal direction is the first.
  • the laser beam is formed so that the angle between the crystal orientation and the second crystal orientation, which is the moving direction of the condensing region, is larger than the machining progress direction and is inclined with respect to the machining progress direction. May be good.
  • the longitudinal direction of the condensing region is set in the first region and the second region according to the machining progress direction, and the order of the machining progress directions is reversed in the first region and the second region. Compared with the case of switching, the time required for accelerating / decelerating the relative movement of the condensing region of the laser beam is reduced.
  • the present inventor has further researched based on the above findings, and even when the direction of the beam shape in the longitudinal direction is set as described above based on the processing progress direction and the crystal structure, the crystal structure It was found that there is room for further suppression of quality deterioration of the trimmed surface in a specific area in. That is, the object is on the (100) plane, one (110) plane, another (110) plane, the first crystal orientation orthogonal to the one (110) plane, and another (110) plane.
  • the point where the line that relatively moves the condensing region of the laser beam and the second crystal orientation are orthogonal to each other is set to 0 °, and the line and the first crystal orientation are defined as 0 °.
  • the point where is orthogonal is 90 ° and the point between 0 ° and 90 ° in the line is 45 °
  • the longitudinal direction of the beam shape is along the machining progress direction in the region near 45 °. If so, the quality of the trimmed surface will be better.
  • the line has a point where the second crystal orientation and the line are orthogonal to each other at 0 ° and a point where the first crystal orientation and the line are orthogonal to each other at 90 °.
  • the control unit relatively moves the light-collecting region along the third region of the line by controlling the irradiation unit and the moving unit.
  • a third processing process is executed in which a modified region is formed in the object along the third region and diagonal cracks extending from the modified region toward the opposite surface are formed.
  • the control unit performs the third processing process.
  • the control unit controls the moving unit to reverse the order of the processing progress direction of the condensing region in the first processing process and the second processing process. It may be the same as the forward / reverse direction of the machining progress direction in one of the processes executed continuously with the third machining process. In this case, it is possible to shorten the time required for acceleration and deceleration for relative movement of the condensing region and suppress tact reduction.
  • the control unit controls the moving unit so that the direction of inclination in the longitudinal direction when viewed from the Z direction is processed.
  • the order of the machining progress direction may be switched between the first machining process and the second machining process so that the diagonal crack extends on the same side as the traveling direction.
  • the direction of inclination in the longitudinal direction of the condensing region with respect to the processing progress direction and the side on which the oblique crack extends are the same side.
  • the relationship between the longitudinal direction of the condensing region and the inclination direction of the oblique crack is a combination that can obtain relatively good quality, and the deterioration of quality is suppressed. In this way, it is possible to form diagonal cracks while suppressing deterioration of the quality of the trim surface of the object.
  • the control unit collects light along the line while setting the position of the condensing region in the Z direction to the first Z position.
  • the first reforming region as a reforming region and the first forming process for forming cracks extending from the first reforming region on the object, and the position of the condensing region in the Z direction are determined.
  • a crack extending from the second modified region and the second modified region as the modified region by relatively moving the condensing region along the line while setting the second Z position on the incident surface side of the first Z position.
  • the control unit sets the position of the condensing region in the Y direction intersecting the machining progress direction and the Z direction to the first Y position, and the second forming process is executed.
  • the control unit sets the position of the light-collecting region in the Y direction to the second Y position shifted from the first Y position, and by controlling the molding unit, in the YZ plane including the Y direction and the Z direction.
  • the molding unit includes a spatial light modulator for molding laser light by modulating the laser light according to a modulation pattern
  • the irradiation unit includes a spatial light modulator.
  • the control unit controls the modulation pattern displayed on the spatial optical modulator to change the shape of the condensing region.
  • the laser light may be formed by modulating the laser light so as to have an inclined shape. In this case, the laser beam can be easily formed by using the spatial light modulator.
  • the modulation pattern includes a coma aberration pattern for imparting coma aberration to the laser light
  • the control unit is used for coma aberration due to the coma aberration pattern.
  • the first pattern control for making the shape of the condensing region an inclined shape may be performed.
  • the shape of the condensing region in the YZ plane is formed in an arc shape.
  • the shape of the condensing region is inclined in the shift direction on the incident surface side from the center of the condensing region, and is opposite to the shift direction on the side opposite to the incident surface from the center of the condensing region. Is tilted to. Even in this case, it is possible to form an oblique crack that is inclined in the shift direction.
  • the modulation pattern includes a spherical aberration correction pattern for correcting the spherical aberration of the laser light
  • the control unit is the incident pupil surface of the condenser lens.
  • the control unit causes the spatial light modulator to display a modulation pattern that is asymmetric with respect to the axis along the processing progress direction, thereby displaying a condensing region.
  • the third pattern control for making the shape of the slanted shape may be performed. According to the findings of the present inventor, in this case, the entire shape of the condensing region in the YZ plane can be tilted in the shift direction. Even in this case, it is possible to form an oblique crack that is inclined in the shift direction.
  • the modulation pattern is an ellipse having the shape of the condensing region in the XY plane including the X direction and the Y direction intersecting the Y direction and the Z direction as the longitudinal direction in the X direction.
  • the control unit displays the modulation pattern on the spatial light modulator so that the intensity of the elliptical pattern is asymmetric with respect to the axis along the X direction.
  • the fourth pattern control for making the shape of the condensing region an inclined shape may be performed. According to the findings of the present inventor, even in this case, the shape of the condensing region in the YZ plane can be formed in an arc shape, and an oblique crack inclined in the shift direction can be formed.
  • the control unit in the second forming process, in the second forming process, forms a modulation pattern for forming a plurality of focusing points of laser light arranged along the shift direction in the YZ plane. May be displayed on the spatial light modulator to control the fifth pattern in order to make the shape of the condensing region including a plurality of condensing points an inclined shape. According to the knowledge of the present inventor, it is possible to form an oblique crack inclined in the shift direction in this case as well.
  • the point where the second crystal orientation and the line are orthogonal is set to 0 °
  • the point where the first crystal orientation and the line are orthogonal is set to 90 °
  • the line is set.
  • the region may include a region from 0 ° to 45 °
  • the second region may include a region from 45 ° to 90 °.
  • FIG. 1 is a schematic diagram showing a configuration of a laser processing apparatus according to an embodiment.
  • FIG. 2 is a schematic diagram showing the configuration of the laser irradiation unit shown in.
  • FIG. 3 is a diagram showing the 4f lens unit shown in FIG.
  • FIG. 4 is a diagram showing the spatial light modulator shown in FIG.
  • FIG. 5 is a cross-sectional view of an object for explaining the findings of oblique crack formation.
  • FIG. 6 is a cross-sectional view of an object for explaining the findings of oblique crack formation.
  • FIG. 7 is a diagram showing the beam shape of the focused region of the laser beam.
  • FIG. 8 is a diagram showing the offset of the modulation pattern.
  • FIG. 9 is a cross-sectional photograph showing a state in which diagonal cracks are formed.
  • FIG. 10 is a schematic plan view of the object.
  • FIG. 11 is a cross-sectional photograph showing a state in which diagonal cracks are formed.
  • FIG. 12 is a cross-sectional photograph showing a state in which diagonal cracks are formed.
  • FIG. 13 is a diagram showing an example of a modulation pattern.
  • FIG. 14 is a diagram showing the intensity distribution of the condenser lens on the entrance pupil surface and the beam shape of the condenser region.
  • FIG. 15 is a diagram showing observation results of the beam shape of the condensing region and the intensity distribution of the condensing region.
  • FIG. 16 is a diagram showing an example of a modulation pattern.
  • FIG. 17 is a diagram showing another example of an asymmetric modulation pattern.
  • FIG. 18 is a diagram showing the intensity distribution of the condenser lens on the entrance pupil surface and the beam shape of the condenser region.
  • FIG. 19 is a diagram showing an example of a modulation pattern and the formation of a condensing region.
  • FIG. 20 is a diagram showing an object to be processed.
  • FIG. 21 is a diagram showing an object to be processed.
  • FIG. 22 is a schematic diagram showing the beam shape of the condensing region.
  • FIG. 23 is a schematic diagram showing the beam shape of the condensing region.
  • FIG. 24 is a diagram showing one step of the trimming process.
  • FIG. 25 is a diagram showing one step of the trimming process.
  • FIG. 26 is a diagram showing one step of the trimming process.
  • FIG. 27 is a diagram showing one step of the trimming process.
  • FIG. 25 is a diagram showing one step of the trimming process.
  • FIG. 28 is a diagram showing one step of the trimming process.
  • FIG. 29 is a diagram showing one step of the trimming process.
  • FIG. 30 is a diagram showing an object of laser machining according to an embodiment.
  • FIG. 31 is a cross-sectional view of the object shown in FIG.
  • FIG. 32 is a plan view of the object shown in FIG.
  • FIG. 33 is a cross-sectional photograph showing the processing result.
  • FIG. 34 is a cross-sectional photograph showing the processing result.
  • FIG. 35 is a schematic diagram for explaining a processing test.
  • FIG. 36 is a schematic view showing the relationship between the machining progress direction, the beam shape, and the oblique crack in the machining test.
  • FIG. 37 is a table showing the results of the machining tests shown in FIGS. 35 and 36.
  • FIG. 38 is a table showing the results of the processing test.
  • FIG. 39 is a cross-sectional photograph showing the result of the processing test.
  • FIG. 40 is a diagram showing one step of laser processing according to one embodiment.
  • FIG. 41 is a diagram showing one step of laser processing according to one embodiment.
  • FIG. 42 is a diagram showing one step of laser processing according to one embodiment.
  • FIG. 43 is a diagram showing one step of laser processing according to one embodiment.
  • FIG. 44 is a diagram showing one step of laser processing according to one embodiment.
  • FIG. 45 is a diagram showing one step of laser processing according to one embodiment.
  • FIG. 46 is a diagram showing one step of laser processing according to one embodiment.
  • FIG. 47 is a diagram showing one step of laser processing according to one embodiment.
  • FIG. 48 is a diagram showing an object of laser machining according to an embodiment.
  • FIG. 49 is a table showing the results of the processing test.
  • FIG. 50 is a table showing the results of the processing test.
  • FIG. 51 is a diagram showing an object according to the present embodiment.
  • FIG. 52 is a diagram showing a beam shape when processing the third region.
  • FIG. 53 is a table showing the processing results in the beam shape shown in FIG. 52.
  • FIG. 54 is a diagram for explaining the laser machining according to the third embodiment.
  • FIG. 55 is a diagram for explaining the laser machining according to the fourth embodiment.
  • each figure may show a Cartesian coordinate system defined by the X-axis, the Y-axis, and the Z-axis.
  • FIG. 1 is a schematic diagram showing a configuration of a laser processing apparatus according to an embodiment.
  • the laser processing apparatus 1 includes a stage (support portion) 2, an irradiation unit 3, moving units 4 and 5, and a control unit 6.
  • the laser processing device 1 is a device for forming a modified region 12 on the object 11 by irradiating the object 11 with the laser beam L.
  • the stage 2 supports the object 11 by holding the film attached to the object 11, for example.
  • the stage 2 can rotate about an axis parallel to the Z direction as a rotation axis.
  • the stage 2 may be movable along each of the X direction and the Y direction.
  • the X direction and the Y direction are the first horizontal direction and the second horizontal direction intersecting (orthogonal) with each other, and the Z direction is the vertical direction.
  • the irradiation unit 3 condenses the laser beam L having transparency to the object 11 and irradiates the object 11.
  • the laser beam L is particularly absorbed in the portion of the laser beam L corresponding to the focused region C (for example, the central Ca described later).
  • a modified region 12 is formed inside the object 11.
  • the condensing region C is a region within a predetermined range from the position where the beam intensity of the laser beam L is highest or the position of the center of gravity of the beam intensity.
  • the modified region 12 is a region whose density, refractive index, mechanical strength, and other physical properties are different from those of the surrounding non-modified region.
  • the modified region 12 includes, for example, a melt processing region, a crack region, a dielectric breakdown region, a refractive index change region, and the like.
  • the modified region 12 may be formed so that a crack extends from the modified region 12 to the incident side of the laser beam L and the opposite side thereof. Such modified regions 12 and cracks are utilized, for example, for cutting the object 11.
  • a plurality of modified spots 12s are 1 along the X direction. Formed to line up.
  • One modified spot 12s is formed by irradiation with one pulse of laser light L.
  • the modified region 12 in one row is a set of a plurality of modified spots 12s arranged in one row. Adjacent modified spots 12s may be connected to each other or separated from each other depending on the relative moving speed of the condensing region C with respect to the object 11 and the repetition frequency of the laser beam L.
  • the moving unit 4 moves the first moving unit 41 that moves the stage 2 in one direction in the plane that intersects (orthogonally) in the Z direction, and moves the stage 2 in another direction in the plane that intersects (orthogonally) in the Z direction.
  • the second moving unit 42 and the like are included.
  • the first moving unit 41 moves the stage 2 along the X direction
  • the second moving unit 42 moves the stage 2 along the Y direction.
  • the moving unit 4 rotates the stage 2 with an axis parallel to the Z direction as a rotation axis.
  • the moving unit 5 supports the irradiation unit 3.
  • the moving unit 5 moves the irradiation unit 3 along the X direction, the Y direction, and the Z direction.
  • the condensing region C is relatively moved with respect to the object 11. That is, the moving units 4 and 5 move at least one of the stage 2 and the irradiation unit 3 in order to move the condensing region C of the laser beam L relative to the object 11.
  • the control unit 6 controls the operations of the stage 2, the irradiation unit 3, and the moving units 4 and 5.
  • the control unit 6 has a processing unit, a storage unit, and an input receiving unit (not shown).
  • the processing unit is configured as a computer device including a processor, a memory, a storage, a communication device, and the like.
  • the processor executes software (program) read into the memory or the like, and controls reading and writing of data in the memory and storage, and communication by the communication device.
  • the storage unit is, for example, a hard disk or the like, and stores various data.
  • the input receiving unit is an interface unit that displays various information and accepts input of various information from the user.
  • the input reception unit constitutes a GUI (Graphical User Interface).
  • FIG. 2 is a schematic diagram showing the configuration of the irradiation unit shown in FIG. FIG. 2 shows a virtual line A indicating a laser machining schedule.
  • the irradiation unit 3 includes a light source 31, a spatial light modulator (molding unit) 7, a condenser lens 33, and a 4f lens unit 34.
  • the light source 31 outputs the laser beam L by, for example, a pulse oscillation method.
  • the irradiation unit 3 does not have a light source 31, and may be configured to introduce the laser beam L from the outside of the irradiation unit 3.
  • the spatial light modulator 7 modulates the laser beam L output from the light source 31.
  • the condenser lens 33 condenses the laser beam L modulated by the spatial light modulator 7 and output from the spatial light modulator 7 toward the object 11.
  • the 4f lens unit 34 has a pair of lenses 34A and 34B arranged on the optical path of the laser beam L from the spatial light modulator 7 to the condenser lens 33.
  • the pair of lenses 34A and 34B constitute a bilateral telecentric optical system in which the modulation surface 7a of the spatial light modulator 7 and the entrance pupil surface (pupil surface) 33a of the condenser lens 33 are in an imaging relationship.
  • the image of the laser beam L on the modulation surface 7a of the spatial light modulator 7 (the image of the laser beam L modulated by the spatial light modulator 7) is transferred to the incident pupil surface 33a of the condenser lens 33 ( Image).
  • Fs in the figure indicates a Fourier plane.
  • the spatial light modulator 7 is a spatial light modulator (SLM: Spatial Light Modulator) of a reflective liquid crystal (LCOS: Liquid Crystal on Silicon).
  • SLM Spatial Light Modulator
  • LCOS Liquid Crystal on Silicon
  • the drive circuit layer 72, the pixel electrode layer 73, the reflective film 74, the alignment film 75, the liquid crystal layer 76, the alignment film 77, the transparent conductive film 78, and the transparent substrate 79 are arranged in this order on the semiconductor substrate 71. It is configured by being laminated with.
  • the semiconductor substrate 71 is, for example, a silicon substrate.
  • the drive circuit layer 72 constitutes an active matrix circuit on the semiconductor substrate 71.
  • the pixel electrode layer 73 includes a plurality of pixel electrodes 73a arranged in a matrix along the surface of the semiconductor substrate 71. Each pixel electrode 73a is made of a metal material such as aluminum. A voltage is applied to each pixel electrode 73a by the drive circuit layer 72.
  • the reflective film 74 is, for example, a dielectric multilayer film.
  • the alignment film 75 is provided on the surface of the liquid crystal layer 76 on the reflective film 74 side, and the alignment film 77 is provided on the surface of the liquid crystal layer 76 opposite to the reflective film 74.
  • Each of the alignment films 75, 77 is formed of, for example, a polymer material such as polyimide, and the contact surface of each of the alignment films 75, 77 with the liquid crystal layer 76 is subjected to, for example, a rubbing treatment.
  • the alignment films 75 and 77 arrange the liquid crystal molecules 76a contained in the liquid crystal layer 76 in a certain direction.
  • the transparent conductive film 78 is provided on the surface of the transparent substrate 79 on the alignment film 77 side, and faces the pixel electrode layer 73 with the liquid crystal layer 76 and the like interposed therebetween.
  • the transparent substrate 79 is, for example, a glass substrate.
  • the transparent conductive film 78 is formed of a light-transmitting and conductive material such as ITO. The transparent substrate 79 and the transparent conductive film 78 transmit the laser beam L.
  • the spatial light modulator 7 when a signal indicating a modulation pattern is input from the control unit 6 to the drive circuit layer 72, a voltage corresponding to the signal is applied to each pixel electrode 73a, and each of them. An electric field is formed between the pixel electrode 73a and the transparent conductive film 78. When the electric field is formed, in the liquid crystal layer 76, the arrangement direction of the liquid crystal molecules 76a changes in each region corresponding to each pixel electrode 73a, and the refractive index changes in each region corresponding to each pixel electrode 73a. This state is the state in which the modulation pattern is displayed on the liquid crystal layer 76.
  • the modulation pattern is for modulating the laser beam L.
  • the laser beam L is incident on the liquid crystal layer 76 from the outside via the transparent substrate 79 and the transparent conductive film 78, and is reflected by the reflective film 74 to be reflected on the liquid crystal layer.
  • the laser beam L is modulated according to the modulation pattern displayed on the liquid crystal layer 76.
  • the modulation of the laser beam L for example, the modulation of the intensity, amplitude, phase, polarization, etc. of the laser beam L
  • the modulation surface 7a shown in FIG. 3 is, for example, a liquid crystal layer 76.
  • the laser beam L output from the light source 31 is incident on the condenser lens 33 via the spatial light modulator 7 and the 4f lens unit 34, and is condensed in the object 11 by the condenser lens 33.
  • the control unit 6 controls the moving units 4 and 5 to move the condensing region C relative to the object 11, thereby causing the modified region 12 and the crack along the moving direction of the condensing region C. Will be formed.
  • the direction of relative movement (machining progress direction) of the light collecting region C at this time is defined as the X direction.
  • the direction that intersects (orthogonally) the first surface 11a, which is the incident surface of the laser beam L on the object 11, is defined as the Z direction.
  • the direction that intersects (orthogonally) the X direction and the Z direction is defined as the Y direction.
  • the X direction and the Y direction are directions along the first surface 11a.
  • the Z direction may be defined as the optical axis of the condenser lens 33 and the optical axis of the laser beam L focused toward the object 11 via the condenser lens 33.
  • the modified regions 12a and 12b are formed as the modified regions 12.
  • the crack 13a extending from the modified region 12a and the crack 13b extending from the modified region 12b are connected to form a crack 13 extending diagonally along the line RA.
  • the condensing region C1 is formed while the first surface 11a of the object 11 is used as the incident surface of the laser beam L.
  • the condensing region C2 is formed while the first surface 11a is the incident surface of the laser beam L.
  • the condensing region C2 is shifted from the condensing region C1 by a distance Sz in the Z direction, and is also shifted from the condensing region C1 in the Y direction by a distance Sy.
  • the distance Sz and the distance Sy correspond to the slope of the line RA as an example.
  • the beam shape of the condensing region C (at least the condensing region C2) in the YZ plane S is at least.
  • the shape is inclined so as to be inclined in the shift direction (here, the negative side in the Y direction) with respect to the Z direction on the first surface 11a side of the center Ca of the light collection region C.
  • the first surface 11a side of the central Ca is inclined to the negative side in the Y direction with respect to the Z direction, and the side opposite to the first surface 11a of the central Ca is also inclined in the Z direction. It has an arc shape that inclines to the negative side in the Y direction.
  • the beam shape of the condensing region C in the YZ plane S is the intensity distribution of the laser beam L in the condensing region C in the YZ plane S.
  • At least two condensing regions C1 and C2 are shifted in the Y direction, and at least the beam shape of the condensing region C2 (here, both the condensing regions C1 and C2) is made an inclined shape.
  • (a) of 9 it is possible to form a crack 13 extending diagonally.
  • the condensing regions C1 and C2 may be formed at the same time by branching the laser beam L to form the modified region 12 and the crack 13 (the modified region 12 and the crack 13 may be formed ().
  • the modified region 12b and the crack 13b may be formed by forming the light-collecting region C2 (single-pass processing). ).
  • the light-collecting region C is a region within a predetermined range from the central Ca (for example, a range of ⁇ 25 ⁇ m from the central Ca in the Z direction).
  • the central Ca is the position where the beam intensity is highest or the position of the center of gravity of the beam intensity.
  • the position of the center of gravity of the beam intensity is on the optical axis of the laser beam L in a state where the modulation pattern for shifting the optical axis of the laser beam L, such as a modulation pattern for branching the laser beam L, is not performed.
  • the position where the center of gravity of the beam intensity is located is the position where the center of gravity of the beam intensity is located.
  • the position where the beam intensity is highest and the center of gravity of the beam intensity can be obtained as follows. That is, the laser beam L is irradiated to the object 11 in a state where the output of the laser beam L is lowered to the extent that the modified region 12 is not formed on the object 11 (below the processing threshold value). At the same time, the reflected light of the laser beam L from the surface of the object 11 opposite to the incident surface of the laser beam L (here, the second surface 11b) is transferred to a plurality of positions F1 to the Z direction shown in FIG. 15, for example. The F7 is imaged with a camera. As a result, the position and the center of gravity where the beam intensity is highest can be obtained based on the obtained image.
  • the modified region 12 is formed in the vicinity of the central Ca.
  • the spatial light modulator 7 has a distortion correction pattern for correcting the distortion of the wavefront, a grating pattern for branching the laser beam, a slit pattern, an astigmatism pattern, a coma aberration pattern, and the like.
  • Various patterns such as spherical aberration correction patterns are displayed (patterns in which these are superimposed are displayed). Of these, as shown in FIG. 8, the beam shape of the condensing region C can be adjusted by offsetting the spherical aberration correction pattern Ps.
  • the center Pc of the spherical aberration correction pattern Ps is offset to the negative side in the Y direction by the offset amount Oy1 with respect to the center Lc (of the beam spot) of the laser beam L. ..
  • the modulation surface 7a is transferred to the entrance pupil surface 33a of the condenser lens 33 by the 4f lens unit 34. Therefore, the offset on the modulation plane 7a is the offset to the positive side in the Y direction on the entrance pupil plane 33a.
  • the center Pc of the spherical aberration correction pattern Ps is the positive side in the Y direction from the center Lc of the laser beam L and the center of the entrance pupil surface 33a (here, it coincides with the center Lc).
  • the offset amount Oy2 is offset to.
  • the beam shape of the condensing region C of the laser beam L is deformed into an arc-shaped inclined shape as shown in FIG. 7.
  • the beam shape of the condensing region C may be an inclined shape by including the coma aberration pattern for imparting coma aberration to the laser beam L in the modulation pattern of the spatial light modulator 7.
  • the coma aberration pattern a pattern corresponding to the 9th term (Y component of the third-order coma aberration) of the Zernike polynomial, in which coma aberration occurs in the Y direction, can be used.
  • FIG. 10 is a schematic plan view of the object.
  • the object 11 is a silicon wafer (t775 ⁇ m, ⁇ 100>, 1 ⁇ ⁇ cm), and a notch 11d is formed.
  • FIG. 11 (b) a third machining example adjusted to 30 ° is shown in FIG.
  • FIG. 12 (b) a fourth machining example matched to a 45 ° (100) plane is shown in FIG. 12 (b). Shown in.
  • the angle ⁇ of the line RA in the YZ plane S from the Y direction is 71 °.
  • the condensing region C1 is relatively moved in the X direction as the first pass to form the modified region 12a and the crack 13a, and then the condensing region C2 is relatively moved in the X direction as the second pass.
  • the single pass processing is performed to form the modified region 12b and the crack 13b.
  • the processing conditions for the first pass and the second pass were as follows.
  • the CP below indicates the strength of the light collection correction
  • the coma (LBA offset Y) indicates the amount of offset of the spherical aberration correction pattern Ps in the Y direction in pixel units of the spatial light modulator 7. It is a thing.
  • the crack 13 could be formed along the line RA inclined at 71 ° with respect to the Y direction. That is, the desired line does not depend on the influence of the (110) plane, the (111) plane, the (100) plane, etc., which are the main cleavage planes of the object 11, that is, regardless of the crystal structure of the object 11.
  • a crack 13 extending diagonally along the RA could be formed.
  • the control of the beam shape for forming the crack 13 extending diagonally in this way is not limited to the above example.
  • the laser beam L is modulated by the modulation pattern PG1 that is asymmetric with respect to the axis Ax along the X direction, which is the processing progress direction, and the beam shape of the condensing region C is inclined. May be.
  • the modulation pattern PG1 includes the grating pattern Ga on the negative side in the Y direction with respect to the axis Ax along the X direction passing through the center Lc of the beam spot of the laser beam L in the Y direction, and is on the positive side in the Y direction with respect to the axis Ax. Includes a non-modulation region Ba.
  • the modulation pattern PG1 includes the grating pattern Ga only on the positive side in the Y direction with respect to the axis Ax.
  • FIG. 13B shows the modulation pattern PG1 of FIG. 13A inverted so as to correspond to the entrance pupil surface 33a of the condenser lens 33.
  • FIG. 14A shows the intensity distribution of the laser beam L on the entrance pupil surface 33a of the condenser lens 33.
  • the portion of the laser beam L incident on the spatial light modulator 7 that is modulated by the grating pattern Ga is the condenser lens 33. No longer incident on the incident pupil surface 33a.
  • the beam shape of the condensing region C in the YZ plane S is made to be an inclined shape in which the entire beam shape is inclined in one direction with respect to the Z direction. Can be done.
  • the beam shape of the condensing region C is inclined to the negative side in the Y direction with respect to the Z direction on the first surface 11a side of the center Ca of the condensing region C, and the condensing region. On the side opposite to the first surface 11a from the center Ca of C, it is inclined to the positive side in the Y direction with respect to the Z direction.
  • FIG. 15 (b) shows the intensity distribution of the laser beam L in the XY plane at each position F1 to F7 in the Z direction shown in FIG. 15 (a), and is actually observed by a camera. The result. Even when the beam shape of the condensing region C is controlled in this way, the crack 13 extending diagonally can be formed as in the above example.
  • the modulation pattern PG2 includes an unmodulated region Ba and a grating pattern Ga arranged in order away from the axis Ax on the negative side in the Y direction with respect to the axis Ax, and a non-modulated region on the positive side in the Y direction with respect to the axis Ax. Including Ba. That is, the modulation pattern PG2 includes the grating pattern Ga in a part of the region on the negative side in the Y direction with respect to the axis Ax.
  • the modulation pattern PG3 includes an unmodulated region Ba and a grating pattern Ga arranged in order away from the axis Ax on the negative side in the Y direction from the axis AX, and also on the positive side in the Y direction from the axis Ax. It includes an unmodulated region Ba and a grating pattern Ga sequentially arranged in a direction away from the axis Ax.
  • the ratios of the non-modulation region Ba and the grating pattern Ga are different between the positive side in the Y direction and the negative side in the Y direction with respect to the axis Ax (relatively unmodulation on the negative side in the Y direction). (By narrowing the region Ba), it is asymmetric with respect to the axis Ax.
  • the modulation pattern PG4 includes the grating pattern Ga in a part of the region on the negative side in the Y direction with respect to the axis Ax.
  • a region where the grating pattern Ga is provided is also a part in the X direction. That is, the modulation pattern PG4 includes the non-modulation region Ba, the grating pattern Ga, and the non-modulation region Ba arranged in order in the X direction in the region on the negative side in the Y direction with respect to the axis Ax.
  • the grating pattern Ga is arranged in a region including an axis Ay along the Y direction passing through the center Lc of the beam spot of the laser beam L in the X direction.
  • the beam shape of the condensing region C shall be an inclined shape that is inclined to the negative side in the Y direction with respect to the Z direction at least on the first surface 11a side of the central Ca. Can be done. That is, in order to control the beam shape of the focusing region C so as to be inclined to the negative side in the Y direction with respect to the Z direction at least on the first surface 11a side of the center Ca, the modulation patterns PG1 to PG4 are used. Alternatively, not limited to the modulation patterns PG1 to PG4, an asymmetric modulation pattern including the grating pattern Ga can be used.
  • FIG. 17 is a diagram showing another example of an asymmetric modulation pattern.
  • the modulation pattern PE includes the elliptical pattern Ew on the negative side in the Y direction with respect to the axis Ax and the elliptical pattern Es on the positive side in the Y direction with respect to the axis Ax.
  • FIG. 17B shows the modulation pattern PE of FIG. 17A inverted so as to correspond to the entrance pupil surface 33a of the condenser lens 33.
  • the elliptical patterns Ew and Es both have an elliptical shape in which the beam shape of the condensing region C on the XY plane including the X direction and the Y direction is the longitudinal direction in the X direction. It is a pattern for.
  • the modulation intensity is different between the elliptical pattern Ew and the elliptical pattern Es. More specifically, the intensity of the modulation by the elliptical pattern Es is made larger than the intensity of the modulation by the elliptical pattern Ew.
  • the condensing region Cs formed by the laser beam L modulated by the elliptical pattern Es has an elliptical shape longer in the X direction than the condensing region Cw formed by the laser beam L modulated by the elliptical pattern Ew.
  • the elliptical pattern Es which is relatively strong on the negative side in the Y direction with respect to the axis Ax, is arranged.
  • the beam shape of the condensing region C in the YZ plane S can be changed in the Z direction on the first plane 11a side of the central Ca.
  • the shape can be inclined so as to be inclined to the negative side in the Y direction.
  • the beam shape of the condensing region C in the YZ plane S is inclined to the negative side in the Y direction with respect to the Z direction even on the side opposite to the first plane 11a from the central Ca. It becomes arcuate as a whole.
  • each figure of FIG. 18B shows the intensity distribution of the laser beam L in the XY plane at each position H1 to F8 in the Z direction shown in FIG. 18A, and is actually observed by a camera. The result.
  • the modulation pattern for making the beam shape of the condensing region C an inclined shape is not limited to the above asymmetric pattern.
  • a modulation pattern as shown in FIG. 19, condensing point CIs are formed at a plurality of positions in the YZ plane S, and the entire plurality of condensing point CIs (multiple condensing points) are formed.
  • a pattern for modulating the laser beam L so as to form a focused region C having an inclined shape (including CI) can be mentioned.
  • such a modulation pattern can be formed based on the axicon lens pattern. When such a modulation pattern is used, the modified region 12 itself can be formed obliquely in the YZ plane S.
  • the oblique crack 13 can be formed accurately according to the desired inclination.
  • the length of the crack 13 tends to be shorter than that of the other examples described above. Therefore, desired processing can be performed by properly using various modulation patterns according to the requirements.
  • the focusing point CI is, for example, a point where unmodulated laser light is focused.
  • at least two modified regions 12a and 12b in the YZ plane S are shifted in the Y direction and the Z direction, and a condensing region in the YZ plane S.
  • the beam shape of C By making the beam shape of C an inclined shape, it is possible to form a crack 13 extending diagonally so as to be inclined in the Y direction with respect to the Z direction.
  • the trimming process is a process for removing an unnecessary portion in the object 11.
  • the trimming process includes a laser processing method for forming a modified region 12 on the object 11 by aligning the condensing region with the object 11 and irradiating the object 11 with laser light L.
  • the object 11 includes, for example, a semiconductor wafer formed in a disk shape.
  • the object is not particularly limited, and may be formed of various materials or may have various shapes.
  • a functional element (not shown) is formed on the second surface 11b of the object 11.
  • the functional element is, for example, a light receiving element such as a photodiode, a light emitting element such as a laser diode, a circuit element such as a memory, or the like.
  • the effective domain R and the removal region E are set in the object 11.
  • the effective domain R is a portion corresponding to the semiconductor device to be acquired.
  • the effective domain R here is a disk-shaped portion including a central portion when the object 11 is viewed from the thickness direction.
  • the removal region E is a region outside the effective region R in the object 11.
  • the removal region E is an outer edge portion of the object 11 other than the effective region R.
  • the removal region E here is an annular portion surrounding the effective region R.
  • the removal region E includes a peripheral portion (bevel portion of the outer edge) when the object 11 is viewed from the thickness direction.
  • the effective region R and the removal region E can be set in the control unit 6.
  • the effective area R and the removal area E may have coordinates specified.
  • Stage 2 is a support portion on which the object 11 is placed.
  • the first surface 11a of the object 11 is on the upper side of the laser beam incident surface side (the second surface 11b is on the lower side of the stage 2 side). 11 is placed.
  • the stage 2 has a rotation axis Cx provided at the center thereof.
  • the rotation axis Cx is an axis extending along the Z direction.
  • the stage 2 can rotate about the rotation axis Cx.
  • the stage 2 is rotationally driven by the driving force of a known driving device such as a motor.
  • the irradiation unit 3 irradiates the object 11 placed on the stage 2 with the laser beam L along the Z direction to form a modified region inside the object 11.
  • the irradiation unit 3 is attached to the moving unit 5.
  • the irradiation unit 3 can move linearly in the Z direction by the driving force of a known driving device such as a motor.
  • the irradiation unit 3 can move linearly in the X direction and the Y direction by the driving force of a known driving device such as a motor.
  • the irradiation unit 3 includes a spatial light modulator 7.
  • the spatial light modulator 7 also refers to the shape of the condensing region C in the plane perpendicular to the optical axis of the laser beam L (that is, the shape of the condensing region C when viewed from the Z direction) (hereinafter, also referred to as “beam shape”). ) Is formed.
  • the spatial light modulator 7 can shape the laser beam L so that the beam shape when viewed from the Z direction has a longitudinal direction. For example, the spatial light modulator 7 shapes the beam shape into an elliptical shape by displaying a modulation pattern in which the beam shape is an elliptical shape.
  • the beam shape is not limited to an elliptical shape, and may be a long shape.
  • the beam shape may be a flat circular shape, an oval shape, or a track shape.
  • the beam shape may be a long triangular shape, a rectangular shape, or a polygonal shape.
  • the modulation pattern of the spatial light modulator 7 that realizes such a beam shape may include at least one of a slit pattern and an astigmatic pattern.
  • the shape of the condensing region C on the most upstream side in the optical path of the laser beam L among the plurality of condensing regions C is the present implementation. It is a beam shape of the form (same for other laser beams).
  • the longitudinal direction here is the major axis direction of the elliptical shape related to the beam shape, and is also referred to as the elliptical major axis direction.
  • the beam shape is not limited to the shape of the condensing point, and may be a shape near the condensing point, in short, it may be a part of the condensing region C.
  • the beam shape has the longitudinal direction NH in the region on the laser beam incident surface side near the condensing point.
  • the distribution has a strong intensity in the longitudinal direction NH. The direction in which the beam intensity is strong coincides with the longitudinal direction NH.
  • the beam shape is on the laser beam incident surface side. It has a longitudinal NH0 perpendicular to the longitudinal NH of the region (see (a) in FIG. 22).
  • the distribution In the beam intensity distribution in the plane of the beam shape of FIG. 22 (c) (in the plane at the position in the Z direction on the opposite side of the laser beam incident surface near the condensing point), the distribution has a strong intensity in the longitudinal direction NH0. The direction in which the beam intensity is strong coincides with the longitudinal direction NH0.
  • the condensing region C is located in the region between the laser beam incident surface side and the opposite surface side in the vicinity of the condensing point. It has no longitudinal direction and is circular.
  • the condensing region C targeted by the present embodiment includes a region on the laser beam incident surface side in the vicinity of the condensing point, and is targeted by the present embodiment.
  • the beam shape is the beam shape shown in FIG. 22 (a).
  • the position of the focused region C having the beam shape shown in FIG. 22 (a) can be controlled as desired. For example, it can be controlled to have the beam shape shown in FIG. 22 (a) in the region on the opposite surface side of the laser beam incident surface near the condensing point. Further, for example, it can be controlled to have the beam shape shown in FIG. 22 (a) in the region between the laser beam incident surface side and the opposite surface side in the vicinity of the condensing point.
  • the position of a part of the condensing region C is not particularly limited, and may be any position between the laser beam incident surface of the object 11 and the opposite surface thereof.
  • the beam shape has longitudinal NH.
  • the distribution has a strong intensity in the longitudinal direction NH.
  • the direction in which the beam intensity is strong coincides with the longitudinal direction NH.
  • the beam shape is the region on the laser beam incident surface side.
  • the beam intensity distribution in the plane of the beam shape of FIG. 23 (c) in the plane at the position in the Z direction on the opposite side of the laser beam incident surface near the condensing point, the distribution has a strong intensity in the longitudinal direction NH.
  • the direction in which the beam intensity is strong coincides with the longitudinal direction NH.
  • the beam shape is NH in the longitudinal direction of the region on the laser beam incident surface side (see FIG. 23 (a)).
  • ) Has a longitudinal direction NH0 perpendicular to).
  • the distribution has a strong intensity in the longitudinal direction NH0, and the direction in which the beam intensity is strong. Consistent with NH0 in the longitudinal direction.
  • the beam shape other than the focusing point has a longitudinal direction
  • the beam shape other than the focusing point is the beam shape targeted by the present embodiment. .. That is, a part of the focusing region C targeted by the present embodiment includes a region on the laser beam incident surface side near the focusing point, and the beam shape targeted by the present embodiment is shown in FIG. 23 (a). It is a beam shape shown in.
  • the control unit 6 controls the rotation of the stage 2, the irradiation of the laser beam L from the irradiation unit 3, the beam shape, and the movement of the condensing region C.
  • the control unit 6 can execute various controls based on the rotation information (hereinafter, also referred to as “ ⁇ information”) regarding the rotation amount of the stage 2.
  • the ⁇ information may be acquired from the driving amount of the driving device that rotates the stage 2, or may be acquired by a separate sensor or the like.
  • ⁇ information can be obtained by various known methods.
  • the ⁇ information here includes a rotation angle based on the state when the object 11 is located at the position in the 0 ° direction.
  • the control unit 6 in the irradiation unit 3 based on the ⁇ information in a state where the condensing region C is positioned along the line A (periphery of the effective region R) in the object 11 while rotating the stage 2.
  • the peripheral treatment for forming the modified region along the peripheral edge of the effective region R is executed.
  • the control unit 6 irradiates the removal region E with the laser beam L without rotating the stage 2, and moves the condensing region C of the laser beam L to form a modified region in the removal region E. Execute the removal process.
  • the control unit 6 rotates the stage 2 and laser light from the irradiation unit 3 so that the pitch of the plurality of modification spots included in the modification region (interval between the modification spots adjacent to the processing progress direction) is constant. At least one of the irradiation of L and the movement of the condensing region C is controlled.
  • the control unit 6 acquires the reference position (position in the 0 ° direction) in the rotation direction of the object 11 and the diameter of the object 11 from the captured image of the camera for alignment (not shown).
  • the control unit 6 controls the movement of the irradiation unit 3 so that the irradiation unit 3 can move along the X direction to the rotation axis Cx of the stage 2.
  • the object 11 is placed on the stage 2 so that the first surface 11a is the incident surface of the laser beam L.
  • the second surface 11b side on which the functional element is mounted in the object 11 is protected by adhering a support substrate or a tape material.
  • the control unit 6 executes peripheral processing. Specifically, as shown in FIG. 24A, the condensing region C is positioned along the peripheral edge of the effective region R in the object 11 while rotating the stage 2 at a constant speed. In this state, the start and stop of the irradiation of the laser beam L in the irradiation unit 3 are controlled based on the ⁇ information. As a result, as shown in (b) of FIG. 24 and (c) of FIG. 24, the modified region 12 is formed along the line A (periphery of the effective region R). The modified region 12 formed contains the modified spot and cracks extending from the modified spot.
  • the control unit 6 executes the removal process. Specifically, as shown in FIG. 25 (a), the laser beam L is irradiated in the removal region E without rotating the stage 2, and the irradiation unit 3 is moved along the X direction. The condensing region C of the laser beam L moves relative to the object 11 in the X direction. After rotating the stage 2 by 90 °, the laser beam L is irradiated in the removal region E, the irradiation unit 3 is moved along the X direction, and the condensing region C of the laser beam L is directed with respect to the object 11. It moves relative to the X direction.
  • the modified region 12 is formed along the line extending so as to divide the removal region E into four equal parts when viewed from the Z direction.
  • the modified region 12 formed contains the modified spot and cracks extending from the modified spot.
  • the crack may reach at least one of the first surface 11a and the second surface 11b, or may not reach at least one of the first surface 11a and the second surface 11b.
  • the removal region E is removed with the modified region 12 as a boundary, for example, by using a jig or air.
  • the semiconductor device 11K is formed from the object 11.
  • the peeled surface 11c of the semiconductor device 11K is subjected to finish grinding or polishing with an abrasive material KM such as a grindstone.
  • an abrasive material KM such as a grindstone.
  • the object 11 has a plate shape.
  • the object 11 has a (100) plane, one (110) plane, another (110) plane, a first crystal orientation K1 orthogonal to one (110) plane, and another (110) plane. It has a crystal structure including a second crystal orientation K2 that is orthogonal to each other.
  • the first surface 11a of the object 11 is the (100) surface.
  • the object 11 is supported by the stage 2 so that the (100) plane (that is, the first plane 11a) is the incident plane of the laser beam L.
  • the object 11 is, for example, a silicon wafer made of silicon.
  • the (110) plane is a cleavage plane.
  • the first crystal orientation K1 and the second crystal orientation K2 are cleavage directions, that is, directions in which cracks are most likely to extend in the object 11.
  • the first crystal orientation K1 and the second crystal orientation K2 are orthogonal to each other.
  • the object 11 is provided with an alignment target 11n.
  • the alignment target 11n has a certain relationship in the ⁇ direction (rotational direction around the rotation axis Cx of the stage 2) with respect to the position of the object 11 in the 0 ° direction.
  • the position in the 0 ° direction is the position of the reference object 11 in the ⁇ direction.
  • the alignment target 11n is a notch formed at the outer edge portion.
  • the alignment target 11n is not particularly limited, and may be an orientation flat of the target object 11 or a pattern of a functional element.
  • the alignment target 11n is provided at a position of the target object 11 in the 0 ° direction.
  • the alignment target 11n is provided at a position where the outer edge of the object 11 and the second crystal orientation K2 are orthogonal to each other.
  • a line A is set as a trimming schedule line on the object 11.
  • Line A is a line scheduled to form the modified region 12.
  • the line A extends in an annular shape inside the outer edge of the object 11.
  • the line A here extends in an annular shape.
  • the line A is set at the boundary between the effective region R and the removal region E of the object 11.
  • the line A can be set by the control unit 6.
  • the line A is a virtual line, but it may be a line actually drawn.
  • the line A may be coordinated.
  • the control unit 6 acquires the object information regarding the object 11.
  • the object information includes, for example, information regarding the crystal orientation of the object 11 (first crystal orientation K1 and second crystal orientation K2), and alignment information regarding the position of the object 11 in the 0 ° direction and the diameter of the object 11. include.
  • the control unit 6 can acquire the object information based on the image captured by the camera for alignment and the input by the user's operation or communication from the outside.
  • the control unit 6 acquires line information regarding the line A.
  • the line information includes information on the line A and information on the moving direction (also referred to as “machining progress direction”) of the movement when the condensing region C is relatively moved along the line A.
  • the processing progress direction is the tangential direction of the line A passing through the light collecting region C located on the line A.
  • the control unit 6 can acquire line information based on an input by a user's operation or communication from the outside.
  • control unit 6 relatively moves the condensing region C along the line A so that the longitudinal direction of the beam shape intersects the machining progress direction based on the acquired object information and line information.
  • the control unit 6 determines the orientation of the longitudinal NH in the first orientation and the second orientation based on the object information and the line information.
  • the first orientation is the longitudinal orientation of the beam shape when the condensing region C is relatively moved along the first region A1 of the line A.
  • the second orientation is the longitudinal orientation of the beam shape when the condensing region C is relatively moved along the second region A2 of the line A.
  • the "longitudinal direction of the beam shape" is also simply referred to as the "direction of the beam shape".
  • the first region A1 is an arcuate region, and as an example, the point where the second crystal orientation K2 and the line A are orthogonal to each other is 0 °, and the point where the first crystal orientation K1 and the line A are orthogonal to each other is 90.
  • the point between 0 ° and 90 ° on line A is 45 °
  • the region from 0 ° to 45 ° the region from 90 ° to 135 °
  • the second region A2 is an arcuate region, a region from 45 ° to 90 °, a region from 135 ° to 180 °, and a region from 225 ° to 270 °.
  • the 45 ° point and the 225 ° point are the points where the third crystal direction K3 orthogonal to the (100) plane and the line A are orthogonal to each other, and the 135 ° point and the 315 ° point.
  • Point is a point where the fourth crystal orientation K4 orthogonal to the (100) plane and the line A are orthogonal to each other.
  • the line A includes a plurality of first regions A1 and a plurality of second regions A2 arranged alternately at intervals of 45 ° in a counterclockwise direction.
  • the above-mentioned angle range of the first region A1 and the second region A2 can be arbitrarily changed depending on where the point of 0 ° is set. For example, when the point where the first crystal orientation K1 and the line A are orthogonal to each other is set to 0 ° (when the above 90 ° point is set to 0 °), the first region A1 and the second region A2 are described above. The angle range is rotated by 90 ° from the angle range of.
  • the point of 315 ° which is a point rotated by 45 ° clockwise from the point of 0 °, can be paraphrased as a point of ⁇ 45 °.
  • the point of the boundary (for example, 45 °) between the first region A1 and the second region A2 may be included in either one of the first region A1 and the second region A2, or may be included in both. May be good.
  • the first region A1 includes a region in which the processing angle described later is 0 ° or more and 45 ° or less, or ⁇ 90 ° or more and ⁇ 45 ° or less when the condensing region C is relatively moved along the line A. ..
  • the second region A2 includes a region in which the processing angle described later is 45 ° or more and less than 90 ° or ⁇ 45 ° or more and less than 0 ° when the condensing region C is relatively moved along the line A.
  • the processing angle ⁇ is the angle of the processing progress direction ND with respect to the first crystal orientation K1.
  • the processing angle ⁇ is a positive (plus) angle when viewed from the Z direction intersecting the first surface 11a, which is the incident surface of the laser beam L, and a negative (minus) angle toward the clockwise direction. ).
  • the processing angle ⁇ can be acquired based on the ⁇ information of the stage 2, the object information, and the line information.
  • the machining progress direction ND is closer to one of the first crystal orientation K1 and the second crystal orientation K2, which has a larger angle (one farther away) from the machining progress direction ND. It is the direction of inclination with respect to.
  • the first orientation and the second orientation are as follows when the processing angle ⁇ is 0 ° or more and 90 ° or less.
  • the first direction is the direction in which the longitudinal direction NH is inclined with respect to the machining progress direction ND toward the side approaching the second crystal orientation K2.
  • the second direction is the direction in which the longitudinal direction NH is inclined with respect to the machining progress direction ND toward the side approaching the first crystal orientation K1.
  • the first direction is, for example, a direction inclined by 10 ° to 35 ° from the processing progress direction ND toward the side approaching the second crystal orientation K2.
  • the second direction is, for example, a direction inclined by 10 ° to 35 ° from the processing progress direction ND toward the side approaching the first crystal orientation K1.
  • the first direction is the direction of the condensing region C when the beam angle ⁇ is + 10 ° to + 35 °.
  • the second direction is the direction of the condensing region C when the beam angle ⁇ is ⁇ 35 ° to ⁇ 10 °.
  • the beam angle ⁇ is an angle between the machining progress direction ND and the longitudinal direction NH.
  • the beam angle ⁇ is a positive (plus) angle when viewed from the Z direction intersecting the first surface 11a, which is the incident surface of the laser beam L, and a negative (minus) angle toward the clockwise direction. ).
  • the beam angle ⁇ can be obtained based on the direction of the condensing region C and the processing progress direction ND.
  • the control unit 6 controls the start and stop of laser machining on the object 11.
  • the control unit 6 relatively moves the condensing region C along the first region A1 of the line A to form the modified region 12, and also forms the modified region 12 in the region other than the first region A1 of the line A.
  • the first processing process for stopping the formation of the twelve is executed.
  • the control unit 6 relatively moves the condensing region C along the second region A2 of the line A to form the modified region 12, and also forms the modified region 12 in the region other than the second region A2 of the line A.
  • a second processing process for stopping the formation of the twelve is executed.
  • the formation of the modified region 12 and the switching of its stop by the control unit 6 can be realized as follows.
  • the formation of the modified region 12 and the stop of the formation can be switched by switching the start and stop (ON / OFF) of the irradiation (output) of the laser beam L.
  • the ON / OFF of the Q switch AOM (acousto-optic modulator), EOM (electro-optical modulator), etc.
  • the output of the semiconductor laser constituting the seed laser and the amplifier (excitation) laser can be switched ON / OFF, so that the irradiation of the laser beam L can be started and stopped at high speed. Can be switched.
  • the laser oscillator uses an external modulation element, the ON / OFF of the external modulation element (AOM, EOM, etc.) provided outside the resonator can be switched, so that the irradiation of the laser beam L can be turned ON / OFF at high speed. Can be switched.
  • the formation of the modified region 12 and the switching of its stop by the control unit 6 may be realized as follows.
  • the optical path of the laser beam L may be opened and closed by controlling a mechanical mechanism such as a shutter, and the formation of the modified region 12 and the stop of the formation may be switched.
  • the formation of the modified region 12 may be stopped by switching the laser beam L to the CW light (continuous wave).
  • the modified region 12 is formed by displaying on the liquid crystal layer 76 of the spatial light modulator 7 a pattern that makes the condensing state of the laser beam L unmodifiable (for example, a pattern of a satin pattern that scatters the laser). You may stop it.
  • the formation of the modified region 12 may be stopped by controlling an output adjusting unit such as an attenuator and reducing the output of the laser beam L so that the modified region 12 cannot be formed. By switching the polarization direction, the formation of the modified region 12 may be stopped. The formation of the modified region 12 may be stopped by scattering (skipping) the laser beam L in a direction other than the optical axis to cut the laser beam L.
  • an output adjusting unit such as an attenuator
  • the control unit 6 adjusts the direction of the light collecting region C by controlling the spatial light modulator 7.
  • the control unit 6 adjusts the direction of the light collecting region C so that it faces the first direction when the first processing process is executed.
  • the control unit 6 adjusts the direction of the light collecting region C so that it faces the second direction when the second processing process is executed.
  • the control unit 6 adjusts the longitudinal direction NH of the condensing region C so as to change within a range of ⁇ 35 ° with respect to the machining progress direction ND.
  • the above-mentioned laser processing apparatus 1 performs the following trimming processing.
  • the stage 2 is rotated so that the alignment camera is located directly above the alignment target 11n of the object 11 and the camera is in focus on the alignment target 11n, and the irradiation unit on which the camera is mounted is mounted. 3 is moved along the X direction and the Y direction.
  • an image is taken with an alignment camera.
  • the position of the object 11 in the 0 ° direction is acquired based on the image captured by the camera.
  • the control unit 6 acquires object information and line information based on the captured image of the camera and the input by the user's operation or communication from the outside.
  • the object information includes alignment information regarding the position and diameter of the object 11 in the 0 ° direction.
  • the position in the 0 ° direction can be obtained by obtaining the position of the alignment target 11n from the captured image.
  • the diameter of the object 11 can be obtained based on the image captured by the camera.
  • the diameter of the object 11 may be set by input from the user.
  • control unit 6 sets the direction of the light-collecting area C as the direction NH in the longitudinal direction when the light-collecting area C is relatively moved along the line A. Determine the 1st and 2nd orientations.
  • the stage 2 is rotated to position the object 11 at a position in the 0 ° direction.
  • the irradiation unit 3 is moved along the X direction and the Y direction so that the light collecting region C is located at a predetermined trimming position.
  • the trimming predetermined position is a predetermined position on the line A in the object 11.
  • the rotation of stage 2 is started.
  • the tracking of the first surface 11a by the distance measuring sensor (not shown) is started.
  • the position of the condensing region C is within the length-measurable range of the distance measuring sensor.
  • the control unit 6 By switching ON / OFF of the irradiation of the laser beam L by the control unit 6 while rotating the stage 2, as shown in FIG. 28A, the light is focused along the first region A1 of the line A.
  • the region C is relatively moved to form the modified region 12, and the formation of the modified region 12 in the region other than the first region A1 of the line A is stopped (first processing step).
  • the control unit 6 adjusts the orientation of the condensing region C so as to be in the first orientation. That is, the orientation of the light collecting region C in the first processing step is fixed in the first orientation.
  • the above-mentioned first processing step and second processing step are repeated by changing the position of the trimming predetermined position in the Z direction.
  • a plurality of rows of modified regions 12 are formed in the Z direction along the line A on the periphery of the effective region R.
  • FIG. 30 is a diagram showing an object of laser machining according to an embodiment.
  • FIG. 30A is a plan view
  • FIG. 30B is a side view.
  • FIG. 31 is a cross-sectional view of the object shown in FIG.
  • the object 100 includes the above-mentioned object 11 and the object 11R which is a member different from the object 11.
  • the object 11R is, for example, a silicon wafer.
  • the object 11 includes a plurality of functional elements and includes a device layer 110 formed on the second surface 11b.
  • the object 11R includes a plurality of functional elements, and includes a device layer 110R formed on the first surface 11Ra of the object 11R.
  • the object 11 and the object 11R are attached to each other by arranging the device layer 110 and the device layer 110R so as to face each other and joining them to each other to form the object 100.
  • a crack 13 extending from the modified region 12 and the modified region 12 is formed in the object 11, and a trimming process is performed to cut off the removed region E of the object 11 with the modified region 12 and the crack 13 as a boundary. .. More specifically, the object 11 has the first portion 15A and the second portion 15B arranged in order from the second surface 11b (opposite surface) side opposite to the first surface 11a which is the incident surface of the laser beam L. including. Then, in the first portion 15A, the modified region 12 is formed so as to form a crack 13 extending diagonally in the Z direction (hereinafter, may be referred to as “diagonal crack”), and in the second portion 15B, the modified region 12 is formed.
  • diagonal crack a crack 13 extending diagonally in the Z direction
  • the modified region 12 is formed so as to form a crack 13 extending along the Z direction (hereinafter, may be referred to as a “vertical crack”).
  • the line R1 in FIG. 31 shows a line where an oblique crack is planned to be formed, and a line R2 shows a line where a vertical crack is planned to be formed.
  • the above trimming process and the process for causing an oblique crack are used together. That is, when machining the first portion 15A, the angle between the first crystal orientation K1 and the second crystal orientation K2 with respect to the machining progress direction ND is larger than that of the machining progress direction ND. While forming the beam shape so that the longitudinal direction NH is inclined, the modified region 12 and the crack 13 are formed along the line A, and the crack 13 is formed into an oblique crack.
  • the laser when processing the first region A1 of the line A, the laser is formed so as to be the condensing region C of the first orientation Q1 as shown in FIG. 28 (b).
  • the light L is formed and the second region A2 of the line A is processed, the light L is formed so as to be the light collecting region C of the second shape Q2 in the second direction as shown in FIG. 29 (b).
  • the laser beam L is formed. In the case of performing such processing, the following processing test was performed.
  • FIG. 32 is a plan view of the object shown in FIG. As shown in FIG. 32, here, from the point of 0 °, which is the intersection of the line A and the second crystal orientation K2, in the line A, the intersection of the line A and the fourth crystal orientation K4 is ⁇ 45.
  • the condensing region C was relatively moved with the machining progress direction ND as the forward direction ND1 and the condensing region C with the machining progress direction ND as the reverse direction ND2. In each case, processing was actually performed and cross-sectional observation was performed.
  • the condensing region C is the second shape Q2 shown in FIG. 29 (b).
  • the direction CD in which the diagonal crack extends is a direction toward the outside from the center side of the object 11 (see (b) in FIG. 29).
  • the machining progress direction ND is the forward direction ND1
  • the extending direction CD is on the same side and the machining progress direction ND is the reverse direction ND2 (when the direction of the arrow of the machining progress direction ND is reversed)
  • the direction of inclination and the direction CD in which the diagonal crack extends are opposite to each other.
  • the forward direction ND1 is a counterclockwise direction
  • the reverse direction ND2 is a clockwise direction.
  • FIG. 33 and 34 are cross-sectional photographs showing the processing results.
  • FIG. 33 shows the machining results in the forward direction ND1, and (a) to (d) are points at 0 °, -15 °, -30 °, and ⁇ 45 °, respectively. It is a cross-sectional photograph.
  • FIG. 34 shows the processing results in the reverse direction ND2, and (a) to (d) are 0 ° points, -15 ° points, -30 ° points, and ⁇ 45 °, respectively. It is a cross-sectional photograph of a point.
  • FIG. 35 is a schematic diagram for explaining the processing test.
  • FIG. 36 is a schematic view showing the relationship between the machining progress direction, the beam shape, and the oblique crack in the machining test.
  • the direction at which the angle is 45 ° with respect to the (110) plane when viewed from the Z direction is defined as the machining progress direction ND, and the forward direction ND1 and the reverse direction ND2 are defined.
  • processing was performed when the direction CD in which the diagonal crack extends was set to the forward direction CD1 and the case where the direction CD was the reverse direction CD2.
  • the beam shape of the condensing region C is set to the first shape Q1 for a total of four combinations of two ways in the order of the machining progress direction ND and two ways in the forward and reverse directions of the diagonal crack extending direction CD. Processing was performed in the case of the case and the case of the second shape Q2 (a total of eight types of processing).
  • FIG. 37 is a table showing the results of the processing tests shown in FIGS. 35 and 36.
  • the direction CD in which the diagonal crack extends is set to the positive direction CD1 for a total of eight types of machining
  • the beam shape of the condensing region C is set to the second shape Q2 and the machining progress direction.
  • Good machining results (in the table of FIG. 37) when the ND is the forward direction ND1 and when the beam shape of the condensing region C is the first shape Q1 and the machining progress direction ND is the reverse direction ND2. "A") was obtained.
  • the beam shape of the condensing region C is set to the first shape Q1 and the machining progress direction ND is set to the forward direction ND1.
  • Good machining results were obtained when the beam shape of the condensing region C was set to the second shape Q2 and the machining progress direction ND was set to the reverse direction ND2. From this, when machining at least 45 ° points, the order of the machining progress direction ND is adjusted, and the direction of inclination of the longitudinal direction NH of the condensing region C with respect to the machining progress direction ND and the direction in which the oblique crack extends. It was found that good processing results are obtained when the CD is on the same side.
  • the point of 45 ° is a point where the third crystal orientation K3 orthogonal to the (100) plane and the line A are orthogonal to each other when the point where the second crystal orientation K2 and the line A are orthogonal to each other is 0 °.
  • This is equivalent to the point at ⁇ 45 °, which is the point where the fourth crystal orientation K4 orthogonal to the (100) plane and the line A are orthogonal to each other.
  • FIG. 38 is a table showing the results of the processing test.
  • the condition that the beam shape is the first shape Q1 in the first region A1 and the condition that the beam shape is the second shape Q2 in the second region A2 are processed.
  • Good machining results (evaluation "A” in the table of FIG. 38) under the conditions IR1 and IR2 in which the direction of inclination of the longitudinal direction NH of the condensing region C with respect to the traveling direction ND and the direction CD in which the oblique crack extends are on the same side. Or the evaluation "B) was obtained.
  • the evaluation shown in FIG. 38 is improved in the order of evaluation "A”, evaluation "B", evaluation "C”, evaluation "D”, and evaluation "E” (that is, evaluation "A”). Is the best, and the rating "E” is not the best).
  • the condition IR1 is to order the machining progress direction ND with respect to the second region A2 from the 0 ° point to the ⁇ 45 ° point when the point where the first crystal direction K1 and the line A are orthogonal to each other is 0 °. It is a condition that the direction ND1 and the beam shape of the condensing region C are the second shape Q2. Further, the condition IR2 is a machining progress direction with respect to the first region A1 from the point of ⁇ 45 ° to the point of ⁇ 90 ° when the point where the first crystal direction K1 and the line A are orthogonal to each other is 0 °. It is a condition that the ND is the reverse direction ND2 and the beam shape of the condensing region C is the first shape Q1.
  • the condition is that the beam shape is the first shape Q1 in the first region A1 and the beam shape is the second shape Q2 in the second region A2.
  • the condition IR3 and the condition IR4 in which the direction of inclination of the longitudinal direction NH of the condensing region C with respect to the processing progress direction ND and the direction CD in which the oblique crack extends are not on the same side, are also inferior to the condition IR1 and the condition IR2. Good processing results were obtained except for the point of -45 °.
  • FIG. 39 is the evaluation "E” in the table of FIG. 38
  • (b) of FIG. 39 is the evaluation "D” in the table of FIG. 38
  • (c) of FIG. 39 is in the table of FIG. 38.
  • the evaluation "A” and the evaluation "B” show good processing results in which the unevenness reaching the lower surface is not formed.
  • the evaluation "C” shows generally good results, although the unevenness reaching the lower surface is slightly generated.
  • the unevenness reaching the lower surface is relatively large, and the results are not good.
  • laser processing is performed based on the above knowledge.
  • the first portion 15A (see FIG. 31) of the object 11 is processed. That is, by switching ON / OFF of the irradiation of the laser beam L by the control unit 6 while rotating the stage 2, as shown in FIG. 40 (a), along the first region A1 of the line A.
  • the light collecting region C is relatively moved to form the modified region 12, and the formation of the modified region 12 in the region other than the first region A1 of the line A (second region A2) is stopped (first). processing).
  • the rotation direction of the stage 2 is controlled under the control of the moving section 4 of the control section 6, so that the machining progress direction ND is the reverse direction ND2. It is said that.
  • the first processing is the processing of the first region A1
  • the laser beam L is formed by the spatial light modulator 7 under the control of the control unit 6, so that the beam shape of the condensing region C is formed. Is the first shape Q1.
  • the direction CD in which the diagonal crack extends is defined as the positive direction CD1 so as to incline in the direction outward from the center of the object 11 with respect to the Z direction toward the second surface 11b (see FIG. 31).
  • the position of the condensing region C1 in the Z direction intersecting the first surface 11a, which is the incident surface of the laser beam L1 on the object 11, is set to the first Z position Z1.
  • the modified region (first modified region) 12a and the crack (first crack) 13a extending from the modified region 12a are formed. It is formed on the object 11 (first formation).
  • the position of the light collecting region C1 along the first surface 11a and intersecting the X direction in the Y direction is set to the first Y position Y1.
  • the position of the condensing region C2 of the laser beam L2 in the Z direction is set to the first surface 11a (incident surface) side of the first Z position Z1 of the condensing region C1 in the first formation.
  • a crack extending from the modified region 12b (second modified region) and the modified region 12b (second) by relatively moving the condensing region C2 along the line A (X direction) while setting the 2Z position Z2. (Crack) 13b is formed (second formation).
  • the position of the condensing region C2 in the Y direction is set to the second Y position Y2 shifted from the first Y position Y1 of the condensing region C1.
  • the beam shape of the condensing region C2 in the YZ plane S including the Y direction and the Z direction is inclined in the direction of the shift at least on the first surface 11a side of the center of the condensing region C2.
  • the laser beam L2 is modulated so as to have an inclined shape (the beam shape of the condensing region C2 when viewed from the Z direction is the first shape Q1).
  • the crack 13 is formed in the YZ plane S so as to be inclined in the direction of the shift.
  • the control of the beam shape in the YZ plane S is as described in the above-mentioned knowledge about the oblique crack.
  • the beam shape of the condensing region C1 in the YZ plane S including the Y direction and the Z direction is at least first than the center of the condensing region C1.
  • the laser beam L1 is modulated so as to have an inclined shape inclined in the direction of the shift on the surface 11a side (also in this case, the beam shape of the condensing region C1 when viewed from the Z direction is the first shape Q1). ..
  • FIG. 41 (b) in the first region A1 of the line A, the crack 13a and the crack 13b are connected and the crack 13 (diagonal crack 13F) extending diagonally over the modified regions 12a and 12b. ) Is formed.
  • the diagonal crack 13F may or may not reach the second surface 11b of the object 11 (it may be appropriately set according to the required processing mode).
  • the laser beams L1 and L2 are divided into two laser beams L by, for example, displaying a pattern for branching the laser beam L on the spatial light modulator 7 and modulating the laser beam L. Can be generated.
  • the first formation and the second formation will be carried out at the same time.
  • the laser beams L1 and L2 may be different laser beams, and in this case, the first formation and the second formation are performed at different timings.
  • the condensing regions C1 and C2 are condensing regions of the laser beams L1 and L2 corresponding to the condensing regions C of the laser light L, respectively.
  • the second line A The condensing region C is relatively moved along the region A2 to form the modified region 12, and the modified region 12 is formed in the region (first region A1) other than the second region A2 of the line A. Stop (second processing).
  • the rotation direction of the stage 2 is controlled under the control of the moving section 4 of the control section 6, so that the machining progress direction ND is the forward direction ND1. It is said that. That is, between the first machining and the second machining, the forward / reverse of the machining progress direction ND (whether the forward direction ND1 or the reverse direction ND2 is used) is switched. Further, since the second processing is the processing of the second region A2, the laser beam L is formed by the spatial light modulator 7 under the control of the control unit 6, so that the beam shape of the condensing region C is formed. Is the second shape Q2. Further, here, the direction CD in which the diagonal crack extends is defined as the positive direction CD1 so as to incline in the direction outward from the center of the object 11 with respect to the Z direction toward the second surface 11b (see FIG. 31). To.
  • the position of the condensing region C1 in the Z direction intersecting the first surface 11a, which is the incident surface of the laser beam L1 on the object 11, is the second.
  • the crack) 13a is formed on the object 11 (first formation). In this first formation, the position of the light collecting region C1 along the first surface 11a and intersecting the X direction in the Y direction is set to the first Y position Y1.
  • the position of the condensing region C2 of the laser beam L2 in the Z direction is set to the first surface 11a (incident surface) side of the first Z position Z1 of the condensing region C1 in the first formation.
  • a crack extending from the modified region 12b (second modified region) and the modified region 12b (second) by relatively moving the condensing region C2 along the line A (X direction) while setting the 2Z position Z2. (Crack) 13b is formed (second formation).
  • the position of the condensing region C2 in the Y direction is set to the second Y position Y2 shifted from the first Y position Y1 of the condensing region C1.
  • the beam shape of the condensing region C2 in the YZ plane S including the Y direction and the Z direction is inclined in the direction of the shift at least on the first surface 11a side of the center of the condensing region C2.
  • the laser beam L2 is modulated so as to have an inclined shape (the beam shape of the condensing region C2 when viewed from the Z direction is the second shape Q2).
  • the crack 13 is formed in the YZ plane S so as to be inclined in the direction of the shift.
  • the beam shape of the condensing region C1 in the YZ plane S including the Y direction and the Z direction is at least first than the center of the condensing region C1.
  • the laser beam L1 is modulated so as to have an inclined shape inclined in the direction of the shift on the surface 11a side (also in this case, the beam shape of the condensing region C1 when viewed from the Z direction is the second shape Q2). ..
  • the crack 13a and the crack 13b are connected and the crack 13 (diagonal crack 13F) extending diagonally over the modified regions 12a and 12b. ) Is formed.
  • the crack 13 may or may not reach the second surface 11b of the object 11 (it may be appropriately set according to the required processing mode).
  • the modulation pattern for making the beam shape an inclined shape is as described above.
  • the modulation pattern here includes a coma aberration pattern for imparting coma aberration to the laser beam L, and at least in the second formation, the control unit 6 controls the magnitude of coma aberration due to the coma aberration pattern.
  • the first pattern control for making the beam shape of the condensing region C2 an inclined shape can be performed.
  • adding coma to the laser beam L is synonymous with the offset of the spherical aberration correction pattern.
  • the modulation pattern here includes the spherical aberration correction pattern Ps for correcting the spherical aberration of the laser beam L, and in at least the second formation, the control unit 6 is the center of the incident pupil surface 33a of the condenser lens 33.
  • the second pattern control for making the beam shape of the condensing region C2 an inclined shape may be performed.
  • the control unit 6 makes the beam shape of the condensing region C2 an inclined shape by displaying the modulation pattern asymmetrical with respect to the axis Ax along the X direction on the spatial light modulator 7.
  • the third pattern control for the purpose may be performed.
  • the modulation pattern asymmetric with respect to the axis line Ax may be the modulation patterns PG1 to PG4 including the grating pattern Ga, or the modulation patterns PE including the elliptical patterns Es and Ew (or those including both). May be).
  • the modulation pattern here includes elliptical patterns Es and Ew for making the beam shape of the condensing region C in the XY plane an elliptical shape having the longitudinal direction in the X direction, and in the second formation, the control unit 6 By displaying the modulation pattern PE on the spatial light modulator 7 so that the intensities of the elliptical patterns Es and Ew are asymmetric with respect to the axis Ax along the X direction, the beam shape of the condensing region C2 is obtained.
  • a fourth pattern control for forming an inclined shape may be performed.
  • the control unit 6 has a modulation pattern (for example, the above-mentioned Axicon lens pattern PA) for forming a plurality of condensing regions C arranged along the direction of the shift in the YZ plane S. ) May be displayed on the spatial light modulator 7, and the fifth pattern control for making the beam shape of the condensing region C an inclined shape may be performed.
  • a modulation pattern for example, the above-mentioned Axicon lens pattern PA
  • the fifth pattern control for making the beam shape of the condensing region C an inclined shape may be performed.
  • the various patterns described above may be arbitrarily combined and superimposed. That is, the control unit 6 can execute the first pattern control to the fifth pattern control in any combination.
  • the first formation and the second formation may be performed at the same time (multifocal processing) or in sequence (single pass processing). That is, the control unit 6 may perform the second formation after performing the first formation on, for example, the first region A1 of the line A. Alternatively, the control unit 6 causes the spatial light modulator 7 to display a modulation pattern including a branch pattern for branching the laser beam L into the laser beams L1 and L2, so that, for example, the line A set on the object 11 is displayed. The first formation and the second formation may be carried out simultaneously for the first region A1.
  • the second portion 15B (see FIG. 31) of the object 11 is processed.
  • the formation of diagonal cracks is not essential, and here vertical cracks are formed. Therefore, the processing of the second portion 15B forms the modified regions 12c and 12d and the cracks (vertical cracks) 13c and 13d extending from them by the same processing as the trimming processing described above (see FIG. 45).
  • different machining different from the first machining and the second machining is performed without switching the order of the machining progress direction ND between the first region A1 and the second region A2.
  • the beam shape is set to the first shape Q1 (first process) during the process of the first region A1 and the second region A2 is processed in order to suppress deterioration of the quality of the trim surface.
  • the beam shape was set to the second shape Q2 (second processing), but in the second portion 15B, the longitudinal direction NH of the condensing region C is inclined along the processing progress direction ND (inclination with respect to the processing progress direction ND).
  • the condensing region C is continuously moved relative to the entire line A without turning on / off the irradiation of the laser beam L at the boundary between the first region A1 and the second region A2.
  • the modified regions 12c and 12d and the cracks 13c and 13d may be formed.
  • the condensing region C is relatively moved along the first region A1 of the line A without switching the machining progress direction ND, so that the light condensing region C is modified along the first region A1.
  • the modified regions 12c and 12d are formed along the second region A2, and the second Z forming cracks 13c and 13d extending from the modified regions 12c and 12d in the Z direction.
  • Processing and processing may be performed as separate processing.
  • the light collecting region C has the longitudinal direction NH when viewed from the Z direction, and the longitudinal direction NH is
  • the laser beam L can be formed so as to be inclined with respect to the machining progress direction NDD in a direction approaching one of the first crystal orientation K1 and the second crystal orientation K2 having a larger angle with the machining progress direction ND. ..
  • the modified region 12 and the crack 13 are formed in the object 11 over the entire line A and almost the entire Z direction.
  • the device layer 110 of the object 11 and the device layer 110R of the object 11R are arranged from the first surface 11a to the second surface 11b of the object 11.
  • Cracks 13a and 13b inclined from the inner position of the joint region toward the outer edge 110e of the joint region are formed.
  • the cracks 13c and 13d may be divided without being continuous or may be continuous.
  • the cracks 13b and the cracks 13c may be separated without being continuous, or may be continuous.
  • the removal process is performed in the same manner as the above trimming process. Specifically, the laser beam L is irradiated in the removal region E without rotating the stage 2, the irradiation unit 3 is moved along the X direction, and the condensing region C of the laser beam L is the object 11 It moves relative to the X direction. After rotating the stage 2 by 90 °, the laser beam L is irradiated in the removal region E, the irradiation unit 3 is moved in the X direction along the X direction, and the condensing region C of the laser beam L is the object 11 It moves relative to the X direction.
  • the modified region 12 and the crack 13 extending from the modified region 12 are formed along the line extending so as to divide the removal region E into four equal parts when viewed from the Z direction.
  • the removal region E is removed with the modified region 12 as a boundary, for example, by using a jig or air.
  • the semiconductor device 11K is formed from the object 11, and the object 100K including the semiconductor device 11K is obtained.
  • the semiconductor device 11K is ground from the first surface 11a side.
  • the second portion 15B is removed and a part of the first portion 15A is removed.
  • the part of the first portion 15A to be removed is the portion where the modified regions 12a and 12b are formed. Therefore, the remaining portion of the first portion 15A does not include the modified regions 12a and 12b.
  • the polishing can be simplified.
  • the semiconductor device 11M is formed, and the object 100M including the semiconductor device 11M is obtained.
  • the laser processing apparatus 1 is for irradiating the object 11 with the laser light L (laser light L1, L2) to form the modified region 12, and at least a stage for supporting the object 11. 2, the irradiation unit 3 for irradiating the laser beam L toward the object 11 supported by the stage 2, and the condensing region C (condensing regions C1 and C2) of the laser beam L with respect to the object 11. It is provided with moving units 4 and 5 for relative movement, and a control unit 6 for controlling the moving units 4 and 5 and the irradiation unit 3.
  • the irradiation unit 3 has a spatial light modulator 7 that shapes the laser beam L so that the condensing region C has the longitudinal direction NH when viewed from the Z direction.
  • the control unit 6 relatively moves the light-collecting area C (light-collecting area C1 and C2) along the first region A1 of the line A by controlling the irradiation unit 3 and the moving units 4 and 5.
  • the modified region 12 (modified regions 12a, 12b) is formed on the object 11 along the first region A1, and the modified region 12 becomes the incident surface of the object 11 with the first surface 11a.
  • the first processing process (the above-mentioned first processing) for forming the oblique crack 13F extending diagonally with respect to the Z direction toward the second surface 11b on the opposite side is executed.
  • control unit 6 relatively moves the condensing region C (condensing region C1 and C2) along the second region A2 of the line A by controlling the irradiation unit 3 and the moving units 4 and 5.
  • the modified region 12 (modified regions 12a, 12b) is formed in the object 11 along the second region A2, and the diagonal crack 13F (crack 13a) extending from the modified region 12 toward the second surface 11b is formed.
  • 13b) The second processing process (the above-mentioned second processing) for forming) is executed.
  • the control unit 6 controls the spatial optical modulator 7 so that the condensing region C has the longitudinal direction NH when viewed from the Z direction, and the longitudinal direction NH. Is inclined with respect to the machining progress direction ND in the direction closer to the larger angle between the first crystal orientation K1 and the second crystal orientation K2 and the machining progress direction ND, which is the movement direction of the condensing region C. As described above, the laser beam L is formed. Further, in the first machining process and the second machining process, the control unit 6 controls the moving units 4 and 5, so that the direction of inclination of the longitudinal direction NH is set with respect to the machining progress direction ND when viewed from the Z direction. The order of the machining progress direction ND is switched between the first machining process and the second machining process so that the diagonal crack 13F is on the same side as the extending direction.
  • the laser processing method according to the present embodiment is for irradiating the object 11 with the laser light L (laser light L1, L2) to form the modified region 12, and is set on the object 11.
  • the modified region 12 By relatively moving the condensing region C (condensing region C1 and C2) along the first region A1 of the line A, the modified region 12 (modifying region 12) is moved to the object 11 along the first region A1. 12a, 12b) is formed, and an oblique crack 13F (diagonal crack 13F) extending diagonally from the modified region 12 toward the second surface 11b opposite to the first surface 11a, which is the incident surface of the object 11, in the Z direction. It has a first processing step (the above-mentioned first processing) for forming cracks 13a, 13b).
  • the condensing region C (condensing region C1 and C2) is relatively moved along the second region A2 of the line A, so that the condensing region C (C1 and C2) is relatively moved along the second region A2.
  • a second processing step of forming a modified region 12 (modified regions 12a, 12b) on the object 11 and forming an oblique crack 13F (cracks 13a, 13b) extending from the modified region 12 toward the second surface 11b. has (the above second processing).
  • the light-collecting region C has the longitudinal direction NH when viewed from the Z direction, and the longitudinal direction NH of the light-collecting region C is the first crystal orientation K1 and the second.
  • the laser beam L is formed so that the angle between the crystal orientation K2 and the processing progress direction ND, which is the movement direction of the condensing region C, is larger and the laser beam L is inclined with respect to the processing progress direction ND.
  • the direction of the inclination of the longitudinal direction NH is the same side as the direction in which the diagonal crack 13F extends with respect to the processing progress direction ND.
  • the order of the traveling direction ND is switched between the first processing step and the second processing step.
  • the object 11 has a crystal structure.
  • the modified region 12 is formed on the object 11 along the first region A1 of the line A that relatively moves the condensing region C of the laser beam L (first processing, first processing).
  • the object is formed from the modified region 12.
  • An oblique crack 13F extending diagonally in the Z direction (direction intersecting the incident surface) toward the second surface 11b (opposite surface) opposite to the first surface 11a (incident surface) of 11 is formed. Therefore, by switching the order of the machining progress direction ND between the first machining process (first region A1) and the second machining process (second region A2), the machining progresses more appropriately according to the crystal structure of the object 11.
  • the direction ND can be set.
  • the control unit 6 executes the first machining process and the second machining process on the first portion 15A while switching the order of the machining progress direction ND, and the second portion. Another processing process (separate processing) different from the first processing process and the second processing process may be executed on the 15B.
  • the control unit 6 controls the irradiation unit 3 and the moving units 4 and 5 to form the light-collecting region C along the line A while making the order of the processing progress direction ND the same throughout the line A.
  • a modified region 12 and a crack 13 extending from the modified region 12 along the Z direction may be formed in the object 11 along the line A.
  • acceleration / deceleration of the relative movement of the condensing region C of the laser beam L is compared with the case where the order of the machining progress direction ND is switched between the first region A1 and the second region A2 of the line A. Time related to is reduced.
  • the control unit 6 controls the spatial light modulator 7, so that the condensing region C has a longitudinal direction NH when viewed from the Z direction.
  • the laser beam L may be formed so that the longitudinal direction NH of the light collecting region C is along the processing progress direction ND.
  • the inclination of the condensing region C of the laser beam L is set between the processing of the first region A1 and the processing of the second region A2 of the line A.
  • the processing of the control unit 6 is simplified as compared with the case where the laser beam L is formed so as to change.
  • the object 11 includes a joining region joined to another member (object 11R), and in the first machining process and the second machining process, the control unit 6 is used.
  • An oblique crack 13F inclined so as to be directed from the inner position of the joint region toward the outer edge 11e of the joint region may be formed from the first surface 11a to the second surface 11b.
  • the object 11 is orthogonal to the (100) plane, one (110) plane, another (110) plane, and one (110) plane. It has a crystal structure including one crystal orientation K1 and a second crystal orientation K2 orthogonal to another (110) plane, and is supported by stage 2 so that the (100) plane is an incident plane.
  • the control unit 6 controls the spatial optical modulator 7 so that the condensing region C has the longitudinal direction NH when viewed from the Z direction, and the collection thereof.
  • Processing progresses in the direction in which the longitudinal direction NH of the optical region C approaches one of the first crystal orientation K1 and the second crystal orientation K2, which has a larger angle between the processing progress direction ND, which is the movement direction of the light collecting region C.
  • the laser beam L is formed so as to be inclined with respect to the direction ND. Therefore, as shown in the above findings, deterioration of the quality of the trim surface is suppressed.
  • the control unit 6 controls the moving units 4 and 5 to control the moving units 4 and 5 so as to be in the longitudinal direction NH when viewed from the Z direction.
  • the order of the machining progress direction ND is switched between the first machining process and the second machining process so that the direction of inclination is the same as the direction in which the diagonal crack 13F extends with respect to the machining progress direction ND. Therefore, in both the first region A1 and the second region A2, the direction of inclination of the longitudinal direction NH of the condensing region C with respect to the processing progress direction ND and the extending side of the oblique crack 13F are on the same side.
  • the relationship between the direction of NH in the longitudinal direction of the condensing region C and the inclination direction of the oblique crack 13F is a combination in which relatively good quality can be obtained, and quality deterioration is suppressed. ..
  • the oblique crack 13F can be formed while suppressing the deterioration of the quality of the trim surface of the object 11.
  • the object 11 includes the first portion 15A and the second portion 15B arranged in order from the second surface 11b side along the Z direction. Then, the control unit 6 executes the first machining process and the second machining process while switching the order of the machining progress direction ND with respect to the first portion 15A, and the machining progress direction ND with respect to the second portion 15B. By controlling the irradiation unit 3 and the moving units 4 and 5 without switching, the light-collecting region C is relatively moved along the first region A1 of the line A to the first region A1.
  • the first Z processing (the above-mentioned first Z processing) for forming a modified region 12 in the object 11 along the same direction and forming a crack 13 extending in the Z direction from the modified region 12, and the irradiation unit 3 and movement.
  • the light collecting region C is relatively moved along the second region A2 of the line A to form the modified region 12 in the object 11 along the second region A2.
  • the second Z processing process (the above-mentioned second processing) for forming the crack 13 extending from the modified region 12 along the Z direction may be executed as a separate processing.
  • the first region A1 and the second region A2 are set in the first region A1 and the second region A2 in the longitudinal direction NH of the condensing region C according to the processing progress direction ND.
  • the time related to the acceleration / deceleration of the relative movement of the condensing region C of the laser beam L is reduced.
  • the control unit 6 sets the position of the light collecting region C1 in the Z direction to the first Z position Z1 while setting the line.
  • the first forming process (first formation described above) for forming the crack 13a extending from the modified region 12a and the modified region 12a in the object 11 by relatively moving the condensing region C1 along A, and the Z direction.
  • the modified region 12b By moving the condensing region C2 relative to the line A while setting the position of the condensing region C2 about the above to the second Z position Z2 on the first surface 11a side of the first Z position Z1, the modified region 12b And the second forming process (the above-mentioned second forming) for forming the crack 13b extending from the modified region 12b can be performed.
  • the control unit 6 sets the position of the light collecting region C1 in the Y direction intersecting the machining progress direction ND and the Z direction to the first Y position Y1, and in the second forming process, the control unit 6 sets the position of the light collecting region C1.
  • the position of the condensing region C2 in the Y direction is set to the second Y position Y2 shifted from the first Y position Y1, and under the control of the spatial optical modulator 7, the position in the YZ plane S including the Y direction and the Z direction is set.
  • the shift is performed in the YZ surface S.
  • the crack 13b may be formed so as to be inclined in the direction. By doing so, it is possible to suitably form an oblique crack inclined in the Z direction.
  • the irradiation unit 3 includes a condenser lens 33 for condensing the laser beam L from the spatial light modulator 7 toward the object 11, and the second formation.
  • the control unit 6 forms the laser light L by modulating the laser light L so that the shape of the condensing region C becomes an inclined shape by controlling the modulation pattern displayed on the spatial light modulator 7. May be good.
  • the laser beam L can be easily formed by using the spatial light modulator 7.
  • the modulation pattern includes a coma aberration pattern for imparting coma aberration to the laser beam L, and in the second forming process, the control unit 6 has coma aberration.
  • the first pattern control for making the shape of the condensing region C an inclined shape may be performed.
  • the shape of the condensing region C in the YZ plane S is formed in an arc shape.
  • the shape of the condensing region C is inclined in the shift direction on the first surface 11a (incident surface) side of the center Ca of the condensing region C, and is larger than the center Ca of the condensing region C. It is tilted in the direction opposite to the shift direction on the side opposite to the incident surface. Even in this case, it is possible to form an oblique crack 13F that is inclined in the shift direction.
  • the modulation pattern includes a spherical aberration correction pattern for correcting the spherical aberration of the laser light L
  • the control unit 6 is the condenser lens 33.
  • the shape of the condensing region C in the YZ plane S can be formed in an arc shape as in the case of using the coma aberration pattern, and the diagonal crack 13F inclined in the shift direction. Can be formed.
  • the control unit 6 causes the spatial light modulator 7 to display a modulation pattern asymmetric with respect to the axis along the processing progress direction ND.
  • a third pattern control may be performed to make the shape of the light collecting region C an inclined shape.
  • the modulation pattern has the shape of the condensing region C in the XY plane including the X direction and the Y direction intersecting the Y direction and the Z direction, and the X direction is the longitudinal direction.
  • the control unit 6 spatially photomodulates the modulation pattern so that the intensity of the elliptical pattern is asymmetric with respect to the axis along the X direction.
  • the fourth pattern control for making the beam shape an inclined shape may be performed by displaying the light on the device 7. According to the findings of the present inventor, even in this case, the shape of the condensing region C in the YZ plane S can be formed in an arc shape, and the diagonal crack 13F inclined in the shift direction can be formed.
  • the control unit 6 forms a condensing point CI of a plurality of laser beams L arranged along the shift direction in the YZ plane S.
  • the fifth pattern control for making the shape of the light-collecting region C including the plurality of light-collecting points CI into an inclined shape may be performed. According to the findings of the present inventor, it is possible to form an oblique crack 13F inclined in the shift direction also in this case.
  • FIG. 48 is a diagram showing an object of laser machining according to an embodiment.
  • the object of laser machining according to the present embodiment is the object 11 which is bonded to the object 11R to form the object 100, as in the first embodiment.
  • the angle ranges of the first region A1 and the second region A2 in the line A are different from those in the first embodiment.
  • the boundary between the first region A1 and the second region A2 is set to a point of 45 ° or ⁇ 45 ° where the quality of the trim surface is likely to deteriorate.
  • the order and reverse of the machining progress direction ND are adjusted, and when machining the points at 45 ° and ⁇ 45 °. It was based on the finding that quality deterioration can be suppressed if the direction of inclination of the longitudinal direction NH of the condensing region C with respect to the processing progress direction ND and the direction in which the oblique crack 13F extends are on the same side.
  • the machining progress direction ND at the time of machining the first region A1 and the second region A2 is set to the forward direction ND1 (first and third from the top).
  • the point of -45 ° shows quality deterioration when the beam shape of the condensing region C is the first shape Q1 (see the third table from the top), but when the beam shape of the second shape Q2 is used (see the table).
  • the first table from the top It can be seen that good quality is obtained, and good quality is still obtained at the point of -50 °.
  • the condensing region is used in the machining in the angle range from 0 ° to -50 °. If the beam shape of C is the second shape Q2 and the beam shape of the condensing region C is the first shape Q1 when processing in an angle range of about -50 ° to -90 °, all angles. Good processing quality can be obtained in the range. In fact, referring to the table of FIG. 49, it can be seen that good processing quality can be obtained in all angle ranges by using the condition IR7 and the condition IR8 together.
  • the temperature is ⁇ 45 °.
  • the point shows that the quality is deteriorated when the beam shape of the condensing region C is the second shape Q2 (see the second table from the top), and when the beam shape is the first shape Q1. (See the fourth table from the top) It can be seen that good quality is obtained, and good quality is still obtained at the point of ⁇ 40 °.
  • the condensing region is used in the machining in the angle range from 0 ° to -40 °. If the beam shape of C is the second shape Q2 and the beam shape of the condensing region C is the first shape Q1 during processing in an angle range of about -40 ° to -90 °, all angles are set. Good processing quality can be obtained in the range. In fact, referring to the table of FIG. 50, it can be seen that good processing quality can be obtained in all angle ranges by using the condition IR9 and the condition IR10 together.
  • the longitudinal direction NH of the condensing region C is inclined with respect to the machining progress direction ND in the direction closer to one of the first crystal orientation K1 and the second crystal orientation K2, which has a larger angle with the machining progress direction ND.
  • the order of the processing progress direction is the same for the processing of the first region A1 (the above-mentioned first processing) and the processing of the second region A2 (the above-mentioned second processing).
  • one of the first region A1 and the second region A2 where the direction of inclination of the longitudinal direction NH is the same side as the side where the oblique crack 13F extends with respect to the machining progress direction ND is 45 °. If the boundary between the first region A1 and the second region A2 is set so as to include (the point of ⁇ 45 ° in the above example), good processing quality can be obtained in all the angle ranges.
  • the laser processing according to this embodiment is performed based on the above knowledge. That is, in the laser machining according to the present embodiment, as shown in FIG. 48, the boundary Ks between the first region A1 and the second region A2 is inclined in the longitudinal direction NH at an angle with respect to the machining progress direction ND.
  • One of the sides on which the crack 13F extends is set to include a 45 ° point (-45 ° point in the above example).
  • the machining progress direction ND is set to the forward direction ND1
  • the boundary Ks is set so that the second region A2 includes a point at 45 °.
  • the first region A1 is reduced by about 5 ° to form an arc of about 40 ° from 0 ° to about 40 °
  • the second region A2 is about 5 Since the arc is expanded by ° to form an arc of about 50 ° from 40 ° to 90 °, the second region A2 is longer than the first region A1 by about 10 °.
  • the machining of the first region A1 and the second region A2 is the above-mentioned first machining and second machining (further, further, except that the machining progress direction ND is unified to the forward direction ND1 (or the reverse direction ND2). It is carried out in the same manner as the first formation and the second formation).
  • the laser processing apparatus 1 is for irradiating the object 11 with the laser light L (laser light L1, L2) to form the modified region 12, and at least a stage for supporting the object 11. 2, the irradiation unit 3 for irradiating the laser beam L toward the object 11 supported by the stage 2, and the condensing region C (condensing regions C1 and C2) of the laser beam L with respect to the object 11. It is provided with moving units 4 and 5 for relative movement, and a control unit 6 for controlling the moving units 4 and 5 and the irradiation unit 3.
  • the irradiation unit 3 has a spatial light modulator 7 that shapes the laser beam L so that the condensing region C has the longitudinal direction NH when viewed from the Z direction.
  • the control unit 6 relatively moves the light-collecting area C (light-collecting area C1 and C2) along the first region A1 of the line A by controlling the irradiation unit 3 and the moving units 4 and 5.
  • the modified region 12 (modified regions 12a, 12b) is formed on the object 11 along the first region A1, and the modified region 12 becomes the incident surface of the object 11 with the first surface 11a.
  • the first processing (the above-mentioned first processing) for forming diagonal cracks 13F (cracks 13a, 13b) extending diagonally in the Z direction toward the second surface 11b on the opposite side is executed.
  • control unit 6 relatively moves the condensing region C (condensing region C1 and C2) along the second region A2 of the line A by controlling the irradiation unit 3 and the moving units 4 and 5.
  • the modified region 12 (modified regions 12a, 12b) is formed in the object 11 along the second region A2, and the diagonal crack 13F (crack 13a) extending from the modified region 12 toward the second surface 11b is formed.
  • 13b) The second processing process (the above-mentioned second processing) for forming) is executed.
  • the control unit 6 controls the spatial optical modulator 7 so that the longitudinal direction NH of the condensing region C is the first crystal orientation K1 and the second crystal orientation K2.
  • the laser beam L is formed so as to be inclined with respect to the machining progress direction ND so that the angle between the light collecting region C and the machining progress direction ND is large and the angle is closer to one side, and the first machining process is performed.
  • the second processing process, the order and reverse of the processing progress direction ND are the same.
  • the point where the second crystal direction K2 and the line A are orthogonal to each other is 0 °
  • the point where the first crystal direction K1 and the line A are orthogonal to each other is 90 °
  • the point between 0 ° and 90 ° in the line A is set.
  • the direction of inclination of the longitudinal direction NH is the same as the side where the diagonal crack 13F extends with respect to the machining progress direction ND when viewed from the Z direction.
  • the boundary Ks between the first region A1 and the second region A2 is set so that one of them includes a point of 45 °.
  • the laser processing method according to the present embodiment is for irradiating the object 11 with the laser light L (laser light L1, L2) to form the modified region 12, and is set on the object 11.
  • the modified region 12 By relatively moving the condensing region C (condensing region C1 and C2) along the first region A1 of the line A, the modified region 12 (modifying region 12) is moved to the object 11 along the first region A1. 12a, 12b) is formed, and an oblique crack 13F (diagonal crack 13F) extending diagonally from the modified region 12 toward the second surface 11b opposite to the first surface 11a, which is the incident surface of the object 11, in the Z direction. It has a first processing step (the above-mentioned first processing) for forming cracks 13a, 13b).
  • the condensing region C (condensing region C1 and C2) is relatively moved along the second region A2 of the line A, so that the condensing region C (C1 and C2) is relatively moved along the second region A2.
  • a second processing step of forming a modified region 12 (modified regions 12a, 12b) on the object 11 and forming an oblique crack 13F (cracks 13a, 13b) extending from the modified region 12 toward the second surface 11b. has (the above second processing).
  • the light-collecting region C has the longitudinal direction NH when viewed from the Z direction, and the longitudinal direction NH of the light-collecting region C is the first crystal orientation K1 and the second.
  • the laser beam L is formed so that the angle between the crystal orientation K2 and the processing progress direction ND, which is the movement direction of the condensing region C, is larger and the laser beam L is inclined with respect to the processing progress direction ND.
  • the order of the machining progress direction ND is the same in the first machining step and the second machining step.
  • the point where the second crystal direction K2 and the line A are orthogonal to each other is 0 °
  • the point where the first crystal direction K1 and the line A are orthogonal to each other is 90 °
  • the point between 0 ° and 90 ° in the line A is set.
  • the direction of inclination of the longitudinal direction NH is the same as the side where the diagonal crack 13F extends with respect to the machining progress direction ND when viewed from the Z direction.
  • the boundary Ks between the first region A1 and the second region A2 is set so that one of them includes a point of 45 °.
  • the object 11 has a (100) plane, one (110) plane, another (110) plane, and one. It has a crystal structure including a first crystal orientation K1 orthogonal to the (110) plane and a second crystal orientation K2 orthogonal to another (110) plane. Then, here, when the modified region 12 is formed on the object 11 along the first region A1 of the line A that relatively moves the condensing region C of the laser beam L (first processing, first processing).
  • the light collecting region C The laser beam L is such that the longitudinal direction NH is inclined with respect to the processing progress direction ND so that the angle between the first crystal direction K1 and the second crystal direction K2 and the processing progress direction ND is larger and approaches one of them. Is molded. Therefore, as shown in the above findings, deterioration of the quality of the trim surface is suppressed.
  • the reforming region 12 is placed in the first machining process and the second machining process (the same applies to the first machining step and the second machining step (the same applies hereinafter)).
  • the boundary Ks between the first region A1 and the second region A2 is the longitudinal length of the first region A1 and the second region A2.
  • the direction of inclination of the direction NH is set to be the same side as the side on which the diagonal crack 13F extends with respect to the machining progress direction ND, and one of them includes a point of 45 °.
  • the direction of NH in the longitudinal direction of the condensing region C and the inclination direction of the oblique crack 13F are opposite to each other in the machining progress direction ND. Does not reach the 45 ° point on line A.
  • the order of the processing progress direction ND is the same in the first processing process and the second processing process. Therefore, the time required for accelerating / decelerating the relative movement of the condensing region C of the laser beam L is reduced as compared with the case where the order of the processing progress direction ND is switched between the first processing process and the second processing process.
  • the diagonal crack 13F extends in the direction of inclination of NH in the longitudinal direction with respect to the processing progress direction ND when viewed from the Z direction.
  • One that is on the same side as the side may be longer than the other. In this way, the lengths of the first region A1 and the second region A2 may be set differently.
  • the control unit 6 executes the first machining process and the second machining process on the first portion 15A while making the order of the machining progress direction ND the same.
  • a separate processing (separate processing) different from the first processing and the second processing may be executed on the second portion 15B.
  • the control unit 6 controls the irradiation unit 3 and the moving units 4 and 5 to relatively move the condensing region C while making the order of the processing progress direction ND the same throughout the line A.
  • the modified region 12 and the crack 13 extending from the modified region 12 along the Z direction may be formed in the object 11 along the line A.
  • acceleration / deceleration of the relative movement of the condensing region C of the laser beam L is compared with the case where the order of the machining progress direction ND is switched between the first region A1 and the second region A2 of the line A. Time related to is reduced.
  • the spatial light modulator 7 is controlled so that the condensing region C has the longitudinal direction NH when viewed from the Z direction, and
  • the laser beam L may be formed so that the longitudinal direction NH of the light collecting region C is along the processing progress direction ND.
  • the inclination of the condensing region C of the laser beam L is set between the processing of the first region A1 and the processing of the second region A2 of the line A.
  • the processing of the control unit 6 is simplified as compared with the case where the laser beam L is formed so as to change.
  • the irradiation section 3 and the moving sections 4 and 5 are controlled for the second portion 15B without switching the machining progress direction ND.
  • the modified region 12 is formed on the object 11 along the first region A1 and the modified region 12 is formed.
  • the first Z processing the above-mentioned first Z processing
  • the second region A2 of the line A can be formed.
  • the modified region 12 is formed in the object 11 along the second region A2, and the crack 13 extending from the modified region 12 in the Z direction is formed.
  • the second Z processing process (the above-mentioned second process) may be executed as a separate processing.
  • the first region A1 and the second region A2 are set in the longitudinal direction NH of the condensing region C in the first region A1 and the second region A2 according to the processing progress direction ND.
  • the time related to the acceleration / deceleration of the relative movement of the condensing region C of the laser beam L is reduced.
  • the object 11 includes a joining region joined to another member (object 11R), and in the first machining process and the second machining process, the control unit 6 is used.
  • An oblique crack 13F inclined so as to be directed from the inner position of the joint region toward the outer edge 11e of the joint region may be formed from the first surface 11a to the second surface 11b.
  • the control unit 6 sets the position of the light collecting region C1 in the Z direction to the first Z position Z1 while setting the line.
  • the first forming process (first formation described above) for forming the crack 13a extending from the modified region 12a and the modified region 12a in the object 11 by relatively moving the condensing region C1 along A, and the Z direction.
  • the modified region 12b By moving the condensing region C2 relative to the line A while setting the position of the condensing region C2 about the above to the second Z position Z2 on the first surface 11a side of the first Z position Z1, the modified region 12b And the second forming process (the above-mentioned second forming) for forming the crack 13b extending from the modified region 12b can be performed.
  • the control unit 6 sets the position of the light collecting region C1 in the Y direction intersecting the machining progress direction ND and the Z direction to the first Y position Y1, and in the second forming process, the control unit 6 sets the position of the light collecting region C1.
  • the position of the condensing region C2 in the Y direction is set to the second Y position Y2 shifted from the first Y position Y1, and under the control of the spatial optical modulator 7, the position in the YZ plane S including the Y direction and the Z direction is set.
  • Diagonal cracks 13F may be formed so as to be inclined in the direction. By doing so, it is possible to suitably form an oblique crack inclined in the Z direction.
  • the irradiation unit 3 includes a condenser lens 33 for condensing the laser beam L from the spatial light modulator 7 toward the object 11, and the second formation.
  • the control unit 6 forms the laser light L by modulating the laser light L so that the shape of the condensing region C becomes an inclined shape by controlling the modulation pattern displayed on the spatial light modulator 7. May be good.
  • the laser beam L can be easily formed by using the spatial light modulator 7.
  • the modulation pattern includes a coma aberration pattern for imparting coma aberration to the laser beam L, and in the second forming process, the control unit 6 has coma aberration.
  • the first pattern control for making the shape of the condensing region C an inclined shape may be performed.
  • the shape of the condensing region C in the YZ plane S is formed in an arc shape.
  • the shape of the condensing region C is inclined in the shift direction on the first surface 11a (incident surface) side of the center Ca of the condensing region C, and is larger than the center Ca of the condensing region C. It is tilted in the direction opposite to the shift direction on the side opposite to the incident surface. Even in this case, it is possible to form an oblique crack 13F that is inclined in the shift direction.
  • the modulation pattern includes a spherical aberration correction pattern for correcting the spherical aberration of the laser light L
  • the control unit 6 is the condenser lens 33.
  • the shape of the condensing region C in the YZ plane S can be formed in an arc shape as in the case of using the coma aberration pattern, and the diagonal crack 13F inclined in the shift direction. Can be formed.
  • the control unit 6 causes the spatial light modulator 7 to display a modulation pattern asymmetric with respect to the axis along the processing progress direction ND.
  • a third pattern control may be performed to make the shape of the light collecting region C an inclined shape.
  • the modulation pattern has the shape of the condensing region C in the XY plane including the X direction and the Y direction intersecting the Y direction and the Z direction, and the X direction is the longitudinal direction.
  • the control unit 6 spatially photomodulates the modulation pattern so that the intensity of the elliptical pattern is asymmetric with respect to the axis along the X direction.
  • the fourth pattern control for making the beam shape an inclined shape may be performed by displaying the light on the device 7. According to the findings of the present inventor, even in this case, the shape of the condensing region C in the YZ plane S can be formed in an arc shape, and the diagonal crack 13F inclined in the shift direction can be formed.
  • the control unit 6 forms a condensing point CI of a plurality of laser beams L arranged along the shift direction in the YZ plane S.
  • the fifth pattern control for making the shape of the light-collecting region C including the plurality of light-collecting points CI into an inclined shape may be performed. According to the findings of the present inventor, it is possible to form an oblique crack 13F inclined in the shift direction also in this case.
  • one aspect of the laser processing apparatus and the laser processing method has been described above, one aspect of the present disclosure is not limited to the above aspect and can be modified.
  • the object 100 formed by bonding the object 11 and the object 11R is mentioned, but the target of laser processing is not limited to such a bonded wafer, and is simply a single object. It may be an object such as one wafer.
  • a vertical crack was formed with respect to the second portion 15B of the object 11.
  • the second portion 15B of the object 11 may also form an oblique crack in the same manner as the first portion 15A.
  • the first processing which is the processing of the first region A1 of the line A
  • the second processing which is the processing of the second region A2
  • the first processing which is the processing of the first region A1 of the line A
  • the second processing which is the processing of the second region A2
  • the laser is set on the GUI so as to be switched at 45 ° intervals such as 90 °
  • the actual laser ON / OFF is also performed at the same angle.
  • the laser ON / OFF delay is delayed by several hundred msec from the setting. That is, it is not limited to the case where the laser is strictly turned on and off at the boundary between the first region A1 and the second region A2.
  • the control unit 6 corrects the delay time of turning on / off the laser in advance, and the correction parameter for turning the laser on / off early. You may have.
  • the deviation of the formation position of the modified region 12 can be suppressed within 1 mm.
  • the circumference is about 942 mm and is about 2.617 mm per 1 °, so that the deviation in this case can be contained within 1 °.
  • the switching point between the first region A1 and the second region A2 has a processing quality margin of about ⁇ 5 °. Therefore, the setting of the switching point may be intentionally shifted as long as it is within the quality margin such as ° ⁇ 5 °, 45 ° ⁇ 5 °, 90 ° ⁇ 5 °.
  • the modified region 12 is formed so as to be annular when viewed from the Z direction, but strictly speaking, it is partially turned on and off at the position where it is turned on and off.
  • the modified regions 12 may overlap (for example, about several hundred ⁇ m), or conversely, there may be regions where the modified regions 12 are not partially formed (for example, about several hundred ⁇ m).
  • a plurality of stages are processed by giving the effects of the formation of diagonal cracks and the above-mentioned first processing and second processing to a plurality of stages.
  • a run-up distance is required until the relative movement speed of the condensing region C becomes constant, so switching between the forward direction ND1 and the reverse direction ND2 includes the run-up.
  • the laser is turned off, and after the speed becomes constant, the laser is turned on at the switching point.
  • the number of revolutions during the run-up depends on the performance of the device.
  • the autofocus may be adjusted so that the autofocus is followed from the run-up and the overshoot does not occur when the modified region is formed.
  • the second embodiment also has the same switching accuracy as the above example, but the switching points such as the 45 ° point and the 135 ° point are as shown in the table of FIG. 49. At least no switching is performed at the ⁇ 45 ° point, and the switching is centered on the ⁇ 50 ° point (in the example of the table in FIG. 50, the switching is centered on the ⁇ 40 ° point). At that time, the allowable margin of deviation is about ⁇ 2 ° as an example, but it may be increased to about ⁇ 4 ° depending on the beam shape (further increasing the ellipticity).
  • the object 11 has a (100) plane, one (110) plane, another (110) plane, a first crystal orientation K1 orthogonal to one (110) plane, and another (110).
  • the crystal structure includes the second crystal orientation K2 orthogonal to the plane, the point at which the line A and the second crystal orientation K2 are orthogonal is set to 0 °, and the line A and the first crystal orientation K1 are orthogonal to each other.
  • the point to be crystallized is 90 °, and the point between 0 ° and 90 ° on the line A is 45 °.
  • the present inventor sets a region including 45 ° in the line A separately from the first region A1 and the second region A2, and in the region, the direction of the longitudinal direction NH of the beam shape is the machining progress direction. It was found that the quality of the trimmed surface becomes better when it is in line with ND. This point will be described in more detail.
  • FIG. 51 is a diagram showing an object according to the present embodiment.
  • the object 11 shown in FIG. 51 is the same as the first embodiment and the second embodiment described above, but the setting of the line A is different. That is, in the present embodiment, the line A is a region between the first region A1 including 0 °, the second region A2 including 90 °, and the first region A1 and the second region A2, and is 45 °.
  • the arc-shaped third region A3 including the above.
  • the first region A1 includes a region from 0 ° to 40 °, a region from 90 ° to 130 °, a region from 180 ° to 220 °, and a region from 270 ° to 310 °.
  • the second region A2 includes a region from 50 ° to 90 °, a region from 140 ° to 180 °, a region from 230 ° to 270 °, and a region from 320 ° to 360 °.
  • the third region A3 includes a region from 40 ° to 50 °, a region from 130 ° to 140 °, a region from 220 ° to 230 °, and a region from 310 ° to 320 °. That is, here, a third region A3 having a width of 10 ° is interposed between the first region A1 and the second region A2 with an interval of 90 °.
  • the above-mentioned angle range of the first region A1, the second region A2, and the third region A3 can be arbitrarily changed depending on where the point of 0 ° is set. For example, when the point where the first crystal orientation K1 and the line A are orthogonal to each other is set to 0 ° (when the above 90 ° point is set to 0 °), the first region A1, the second region A2, and the first region A2.
  • the three regions A3 are an angle range rotated by 90 ° from the above angle range.
  • the point of 315 ° which is a point rotated by 45 ° clockwise from the point of 0 °, can be paraphrased as a point of ⁇ 45 °.
  • the boundary points of the first region A1, the second region A2, and the third region A3 may be included in any one of the first region A1, the second region A2, and the third region A3. , May be included in two adjacent two of them.
  • the first region A1 and the second region A2 are subjected to the first processing and the second processing in the same manner as in the first embodiment and the second embodiment, and the third region A3 is different from these processings.
  • Perform the third processing As shown in FIG. 52, in the third processing, the trimming processing is performed while forming diagonal cracks as in the first processing and the second processing, but at this time, the longitudinal direction NH of the condensing region C of the laser beam L is performed. Is the third shape Q3 along the processing progress direction ND, and the laser beam L is formed.
  • FIG. 53 is a table showing an actual processing result (quality of the trim surface) in a state where the longitudinal direction of the light collecting region of the laser beam is along the processing progress direction.
  • laser processing is performed based on the above findings. Subsequently, the laser processing according to the third embodiment will be described.
  • the first portion 15A (see FIG. 31) of the object 11 is processed. That is, the first processing is carried out in the same manner as in the first embodiment. More specifically, as shown in FIG. 54, first, while rotating the stage 2, the control unit 6 switches ON / OFF of the irradiation of the laser beam L along the first region A1 of the line A. Therefore, the condensing region C is relatively moved to form the modified region 12, and the modified region 12 in the regions other than the first region A1 (second region A2 and third region A3) of the line A is formed. Stop forming (first processing).
  • the rotation direction of the stage 2 is controlled under the control of the moving section 4 of the control section 6, so that the machining progress direction ND is set to the reverse direction ND2.
  • the first processing is the processing of the first region A1
  • the laser beam L is formed by the spatial light modulator 7 under the control of the control unit 6, so that the beam shape of the condensing region C is formed. Is the first shape Q1 (see (b) in FIG. 40).
  • the direction CD in which the diagonal crack extends is defined as the positive direction CD1 so as to incline in the direction outward from the center of the object 11 with respect to the Z direction toward the second surface 11b (see FIG. 31).
  • the method of forming an oblique crack is the same as that of the first embodiment.
  • the third embodiment by switching ON / OFF of the irradiation of the laser beam L by the control unit 6 while rotating the stage 2, as shown in FIG. 54, the second region A2 of the line A
  • the condensing region C is relatively moved along the line A to form the modified region 12, and the modified region 12 in regions other than the second region A2 of the line A (first region A1 and third region A3). Stops the formation of (second processing).
  • the rotation direction of the stage 2 is controlled under the control of the moving section 4 of the control section 6, so that the machining progress direction ND is set to the forward direction ND1. That is, between the first machining and the second machining, the forward / reverse of the machining progress direction ND (whether the forward direction ND1 or the reverse direction ND2 is used) is switched. Further, since the second processing is the processing of the second region A2, the laser beam L is formed by the spatial light modulator 7 under the control of the control unit 6, so that the beam shape of the condensing region C is formed. Is the second shape Q2 (see (b) in FIG. 42).
  • the direction CD in which the diagonal crack extends is defined as the positive direction CD1 so as to incline in the direction outward from the center of the object 11 with respect to the Z direction toward the second surface 11b (see FIG. 31).
  • the method of forming an oblique crack is the same as that of the first embodiment.
  • the third region A3 of the line A by switching ON / OFF of the irradiation of the laser beam L by the control unit 6 while rotating the stage 2, as shown in FIG. 54, the third region A3 of the line A
  • the condensing region C is relatively moved along the line A to form the modified region 12, and the modified region 12 in regions other than the third region A3 of the line A (first region A1 and second region A2). Stops the formation of (third processing).
  • the rotation direction of the stage 2 is maintained from the second machining under the control of the moving section 4 of the control section 6, so that the machining progress direction ND is maintained in the forward direction ND1.
  • the third processing is the processing of the third region A3
  • the laser beam L is formed by the spatial light modulator 7 under the control of the control unit 6, so that the beam shape of the condensing region C is formed. Is the third shape Q3 (see FIG. 52).
  • the direction CD in which the diagonal crack extends is defined as the positive direction CD1 so as to incline in the direction outward from the center of the object 11 with respect to the Z direction toward the second surface 11b (see FIG. 31).
  • the method of forming an oblique crack is the same as that of the first embodiment. That is, in the third processing, the first formation and the second formation for forming diagonal cracks can be performed in the same manner as in the first processing and the second processing.
  • the third processing of the third region A3 is performed following the second processing of the second region A2. As a result, it is not necessary to temporarily stop the rotation of the stage 2 to reverse the rotation, and it is possible to shorten the time required for accelerating / decelerating the rotation of the stage 2.
  • the beam shape of the condensing region C is set so that the longitudinal direction NH thereof follows the processing progress direction ND. Therefore, regardless of whether the machining progress direction ND is the forward direction ND1 or the reverse direction ND2, similarly good machining results (evaluation “A”) can be obtained (see FIG. 53).
  • the order of the machining progress direction ND is not limited.
  • the order of the machining progress direction ND in the third machining is continuous with the third machining of the first machining and the second machining from the viewpoint of shortening the time related to the acceleration / deceleration related to the relative movement of the condensing region C. It can be the same as the order and reverse of the processing progress direction ND on the one hand.
  • the order of the processing progress direction ND in the third processing is reversed.
  • the forward direction ND1 can be used.
  • the order of the processing progress direction in the third processing is the same as that of the first processing. It can be ND2 in the reverse direction.
  • the second portion 15B (see FIG. 31) of the object 11 is processed.
  • the processing of the second portion 15B can be performed in the same manner as in the first embodiment and the second embodiment. That is, when processing the second portion 15B, the above-mentioned separate processing (for example, first Z processing and second Z processing) can be performed.
  • the modified region 12 and the crack 13 are formed in the object 11 over the entire line A and substantially over the entire Z direction.
  • the device layer 110 of the object 11 and the device layer 110R of the object 11R are located inside the junction region. Cracks 13a and 13b inclined toward the outer edge 110e of the joint region are formed.
  • the crack 13 extending from the modified region 12 and the modified region 12 along the line extending so as to divide the removal region E into four equal parts when viewed from the Z direction. Is formed, and the removal region E is removed with the modified region 12 as a boundary.
  • the semiconductor device 11K is formed from the object 11, and the object 100K including the semiconductor device 11K is obtained.
  • the semiconductor device 11M is formed, and the object 100M including the semiconductor device 11M is obtained.
  • the laser processing apparatus 1 is for irradiating the object 11 with the laser light L (laser light L1, L2) to form the modified region 12, and at least a stage for supporting the object 11. 2, the irradiation unit 3 for irradiating the laser beam L toward the object 11 supported by the stage 2, and the condensing region C (condensing regions C1 and C2) of the laser beam L with respect to the object 11. It is provided with moving units 4 and 5 for relative movement, and a control unit 6 for controlling the moving units 4 and 5 and the irradiation unit 3.
  • the irradiation unit 3 has a spatial light modulator 7 that shapes the laser beam L so that the condensing region C has the longitudinal direction NH when viewed from the Z direction.
  • the control unit 6 relatively moves the light-collecting area C (light-collecting area C1 and C2) along the first region A1 of the line A by controlling the irradiation unit 3 and the moving units 4 and 5.
  • the modified region 12 (modified regions 12a, 12b) is formed on the object 11 along the first region A1, and the modified region 12 becomes the incident surface of the object 11 with the first surface 11a.
  • the first processing process (the above-mentioned first processing) for forming the oblique crack 13F extending diagonally with respect to the Z direction toward the second surface 11b on the opposite side is executed.
  • control unit 6 relatively moves the condensing region C (condensing region C1 and C2) along the second region A2 of the line A by controlling the irradiation unit 3 and the moving units 4 and 5.
  • the modified region 12 (modified regions 12a, 12b) is formed in the object 11 along the second region A2, and the diagonal crack 13F (crack 13a) extending from the modified region 12 toward the second surface 11b is formed.
  • 13b) The second processing process (the above-mentioned second processing) for forming) is executed.
  • the control unit 6 controls the spatial light modulator 7 so that the longitudinal direction NH of the condensing region C is the first crystal orientation K1 and the second crystal orientation K2.
  • the laser beam L is formed so as to be inclined with respect to the machining progress direction ND so that the angle between the light collection region C and the machining progress direction ND, which is the movement direction, is large and approaches one side.
  • the control unit 6 controls the moving units 4 and 5, so that the direction of inclination of the longitudinal direction NH is set with respect to the machining progress direction ND when viewed from the Z direction.
  • the order of the machining progress direction ND is switched between the first machining process and the second machining process so that the diagonal crack 13F is on the same side as the extending direction.
  • control unit 6 relatively moves the condensing region C along the third region A3 of the line A by controlling the irradiation unit 3 and the moving units 4 and 5, thereby moving to the third region A3.
  • a third processing process (the above-mentioned third processing) for forming a modified region 12 in the object 11 along the same line and forming an oblique crack extending from the modified region 12 toward the second surface 11b is executed.
  • control unit 6 controls the spatial light modulator 7 to form the laser beam L so that the longitudinal direction NH of the condensing region C is along the processing progress direction ND.
  • control unit 6 controls the moving units 4 and 5 to reverse the order of the processing progress direction ND of the light collecting region C in the first processing process and the second processing process. It is the same as the order of the machining progress direction ND in one of the processes executed continuously with the third machining process.
  • the laser processing method according to the present embodiment is a laser processing method for irradiating an object 11 with laser light L (laser light L1, L2) to form a modified region 12 (modified regions 12a, 12b).
  • the first region A1 is obtained by relatively moving the condensing region C (condensing region C1 and C2) of the laser beam L along the first region A1 of the line A set on the object 11.
  • a modified region 12 is formed in the object 11 along the above line, and diagonal cracks 13F (cracks 13a, 13b) extending diagonally in the Z direction from the modified region 12 toward the second surface 11b of the object 11 are formed. It has a first processing step of forming (the first processing described above).
  • the light collecting region C is relatively moved along the second region A2 of the line A, so that the modified region 12 is formed on the object 11 along the second region A2.
  • a second processing step of forming an oblique crack 13F extending from the modified region 12 toward the second surface 11b is provided.
  • the order of the processing progress direction ND which is the moving direction of the condensing region C, is switched between the first processing step and the second processing step.
  • the light collecting region C is relatively moved along the third region A3 of the line A, so that the modified region 12 is formed on the object 11 along the third region A3. It has a third processing step (the above-mentioned third processing) of forming an oblique crack 13F extending from the modified region 12 toward the second surface 11b.
  • the laser beam L is formed so that the longitudinal direction NH of the condensing region C is along the processing progress direction ND.
  • the first processing and the second processing are performed in the same manner as in the first embodiment, so that the same effect as in the first embodiment can be obtained. It is possible to play. Further, according to the laser processing apparatus 1 and the laser processing method according to the present embodiment, in the third processing, the laser beam L is formed so that the longitudinal direction NH of the condensing region C is along the processing progress direction ND. Therefore, as shown in the above findings, the quality of the trimmed surface in the region including the 45 ° point is better.
  • the control unit 6 controls the moving units 4 and 5, so that the order of the processing progress direction ND of the condensing region C is first. It can be the same as the order of the machining progress direction ND in one of the machining processes and the second machining process, which is continuously executed with the third machining process. In this case, it is possible to shorten the time required for acceleration and deceleration for relative movement of the light collecting region C and suppress tact reduction.
  • the longitudinal direction NH of the condensing region C is not limited to the case where the longitudinal direction NH exactly matches the processing progress direction ND, and the longitudinal direction NH is not limited to the case where the longitudinal direction NH exactly matches the processing progress direction ND. This includes the case where the inclination is about 6 ° with respect to the machining progress direction ND. Further, the angle range of the third region A3 is not limited to 40 ° to 50 °, and can be arbitrarily selected from a range of less than about 45 ° ⁇ 10 °.
  • the irradiation of the laser beam L is turned off and the stage 2 is rotated.
  • There may be a sustained time ie, the idling time at which stage 2 idles.
  • the control unit 6 changes the modulation pattern displayed on the spatial light modulator 7 into the shape of the light collecting region C (for example, the third shape Q3). It is possible to execute a process of switching to a modulation pattern for shaping.
  • the direction of NH in the longitudinal direction of the beam shape and the inclination direction of the diagonal crack are opposite to each other with respect to the machining progress direction ND when machining the point at 45 °.
  • the quality of the trimmed surface tends to deteriorate.
  • the region including 45 ° in the line A is set separately from the first region A1 and the second region A2, and in the region, the direction of the longitudinal direction NH of the beam shape is the machining progress direction. If it is along the ND, the quality of the trimmed surface will be better.
  • laser processing is performed based on the above findings. Subsequently, the laser processing according to the fourth embodiment will be described.
  • the object 11 is orthogonal to the (100) plane, one (110) plane, another (110) plane, and one (110) plane.
  • the first crystal orientation K1 to be formed and the second crystal orientation K2 orthogonal to another (110) plane are included.
  • the point where the line A and the second crystal orientation K2 are orthogonal to each other is 0 °
  • the point where the line A and the first crystal orientation K1 are orthogonal to each other is 90 °
  • 0 ° and 90 ° in the line A are defined. The point between them is 45 °.
  • the line A is a region between the first region A1 including 0 °, the second region A2 including 90 °, and the first region A1 and the second region A2. Includes an arcuate third region A3 that includes 45 °.
  • the first region A1 includes a region from 0 ° to 40 °, a region from 90 ° to 130 °, a region from 180 ° to 220 °, and a region from 270 ° to 310 °.
  • the second region A2 includes a region from 50 ° to 90 °, a region from 140 ° to 180 °, a region from 230 ° to 270 °, and a region from 320 ° to 360 °.
  • the third region A3 includes a region from 40 ° to 50 °, a region from 130 ° to 140 °, a region from 220 ° to 230 °, and a region from 310 ° to 320 °. That is, here, a third region A3 having a width of 10 ° is interposed between the first region A1 and the second region A2 with an interval of 90 °.
  • the first portion 15A (see FIG. 31) of the object 11 is processed. That is, in the fourth embodiment, the first processing is carried out in the same manner as in the second embodiment. More specifically, as shown in FIG. 55, first, while rotating the stage 2, the control unit 6 switches ON / OFF of the irradiation of the laser beam L along the first region A1 of the line A. Therefore, the condensing region C is relatively moved to form the modified region 12, and the modified region 12 in the regions other than the first region A1 (second region A2 and third region A3) of the line A is formed. Stop forming (first processing).
  • the rotation direction of the stage 2 is controlled under the control of the moving section 4 of the control section 6, so that the machining progress direction ND is set to the forward direction ND1.
  • the first processing is the processing of the first region A1
  • the laser beam L is formed by the spatial light modulator 7 under the control of the control unit 6, so that the beam shape of the condensing region C is formed. Is the first shape Q1.
  • the direction CD in which the diagonal crack extends is defined as the positive direction CD1 so as to incline in the direction outward from the center of the object 11 with respect to the Z direction toward the second surface 11b (see FIG. 31).
  • the method of forming an oblique crack is the same as that of the first embodiment.
  • the fourth embodiment by switching ON / OFF of the irradiation of the laser beam L by the control unit 6 while rotating the stage 2, as shown in FIG. 55, the second region A2 of the line A
  • the condensing region C is relatively moved along the line A to form the modified region 12, and the modified region 12 in regions other than the second region A2 of the line A (first region A1 and third region A3). Stops the formation of (second processing).
  • the rotation direction of the stage 2 is controlled under the control of the moving section 4 of the control section 6, so that the machining progress direction ND is maintained in the same forward direction ND1 as the first machining. That is, between the first machining and the second machining, the forward / reverse of the machining progress direction ND (whether the forward direction ND1 or the reverse direction ND2 is used) is the same. Further, since the second processing is the processing of the second region A2, the laser beam L is formed by the spatial light modulator 7 under the control of the control unit 6, so that the beam shape of the condensing region C is formed. Is the second shape Q2.
  • the direction CD in which the diagonal crack extends is defined as the positive direction CD1 so as to incline in the direction outward from the center of the object 11 with respect to the Z direction toward the second surface 11b (see FIG. 31).
  • the method of forming an oblique crack is the same as that of the first embodiment.
  • the reverse direction ND2 may be used, not limited to the forward direction ND1 as described above.
  • the fourth embodiment by switching ON / OFF of the irradiation of the laser beam L by the control unit 6 while rotating the stage 2, as shown in FIG. 55, the third region A3 of the line A
  • the condensing region C is relatively moved along the line A to form the modified region 12, and the modified region 12 in regions other than the third region A3 of the line A (first region A1 and second region A2). Stops the formation of (third processing).
  • the rotation direction of the stage 2 is maintained from the second machining under the control of the moving section 4 of the control section 6, so that the machining progress direction ND is maintained in the forward direction ND1.
  • the third processing is the processing of the third region A3
  • the laser beam L is formed by the spatial light modulator 7 under the control of the control unit 6, so that the beam shape of the condensing region C is formed. Is the third shape Q3 (see FIG. 52).
  • the direction CD in which the diagonal crack extends is defined as the positive direction CD1 so as to incline in the direction outward from the center of the object 11 with respect to the Z direction toward the second surface 11b (see FIG. 31).
  • the method of forming an oblique crack is the same as that of the first embodiment. That is, in the third processing, the first formation and the second formation for forming diagonal cracks can be performed in the same manner as in the first processing and the second processing.
  • the beam shape of the condensing region C is set so that the longitudinal direction NH thereof follows the processing progress direction ND. Therefore, regardless of whether the machining progress direction ND is the forward direction ND1 or the reverse direction ND2, similarly good machining results (evaluation “A”) can be obtained (see FIG. 53).
  • the order of the machining progress direction ND is not limited.
  • the forward / reverse of the machining progress direction ND in the third machining is the same as the forward / reverse of the machining progress direction ND of the first machining and the second machining from the viewpoint of shortening the time related to the acceleration / deceleration related to the relative movement of the condensing region C. can do.
  • the second portion 15B (see FIG. 31) of the object 11 is processed.
  • the processing of the second portion 15B can be performed in the same manner as in the first embodiment and the second embodiment. That is, when processing the second portion 15B, the above-mentioned separate processing (for example, first Z processing and second Z processing) can be performed.
  • the modified region 12 and the crack 13 are formed in the object 11 over the entire line A and substantially over the entire Z direction.
  • the device layer 110 of the object 11 and the device layer 110R of the object 11R are located inside the junction region. Cracks 13a and 13b inclined toward the outer edge 110e of the joint region are formed.
  • the crack 13 extending from the modified region 12 and the modified region 12 along the line extending so as to divide the removal region E into four equal parts when viewed from the Z direction. Is formed, and the removal region E is removed with the modified region 12 as a boundary.
  • the semiconductor device 11K is formed from the object 11, and the object 100K including the semiconductor device 11K is obtained.
  • the semiconductor device 11M is formed, and the object 100M including the semiconductor device 11M is obtained.
  • the laser processing apparatus 1 is for irradiating the object 11 with the laser light L (laser light L1, L2) to form the modified region 12, and at least a stage for supporting the object 11. 2, the irradiation unit 3 for irradiating the laser beam L toward the object 11 supported by the stage 2, and the condensing region C (condensing regions C1 and C2) of the laser beam L with respect to the object 11. It is provided with moving units 4 and 5 for relative movement, and a control unit 6 for controlling the moving units 4 and 5 and the irradiation unit 3.
  • the irradiation unit 3 has a spatial light modulator 7 that shapes the laser beam L so that the condensing region C has the longitudinal direction NH when viewed from the Z direction.
  • the control unit 6 relatively moves the light-collecting area C (light-collecting area C1 and C2) along the first region A1 of the line A by controlling the irradiation unit 3 and the moving units 4 and 5.
  • the modified region 12 (modified regions 12a, 12b) is formed on the object 11 along the first region A1, and the modified region 12 becomes the incident surface of the object 11 with the first surface 11a.
  • the first processing (the above-mentioned first processing) for forming diagonal cracks 13F (cracks 13a, 13b) extending diagonally in the Z direction toward the second surface 11b on the opposite side is executed.
  • control unit 6 relatively moves the condensing region C (condensing region C1 and C2) along the second region A2 of the line A by controlling the irradiation unit 3 and the moving units 4 and 5.
  • the modified region 12 (modified regions 12a, 12b) is formed in the object 11 along the second region A2, and the diagonal crack 13F (crack 13a) extending from the modified region 12 toward the second surface 11b is formed.
  • 13b) The second processing process (the above-mentioned second processing) for forming) is executed.
  • the control unit 6 controls the spatial optical modulator 7 so that the longitudinal direction NH of the condensing region C is the first crystal orientation K1 and the second crystal orientation K2.
  • the laser beam L is formed so as to be inclined with respect to the machining progress direction ND so that the angle between the light collecting region C and the machining progress direction ND is large and the angle is closer to one side, and the first machining process is performed.
  • the second processing process, the order and reverse of the processing progress direction ND are the same.
  • the control unit 6 relatively moves the condensing region C (condensing region C1 and C2) along the third region A3 of the line A by controlling the irradiation unit 3 and the moving units 4 and 5.
  • the modified region 12 (modified regions 12a, 12b) is formed in the object 11 along the third region A3, and the oblique crack 13F (crack 13a) extending from the modified region 12 toward the second surface 11b is formed.
  • the third processing process (the above-mentioned third processing) for forming) is executed.
  • the control unit 6 controls the spatial light modulator 7 to form the laser beam L so that the longitudinal direction NH of the condensing region C is along the processing progress direction ND.
  • the laser processing method according to the present embodiment is for irradiating the object 11 with the laser light L (laser light L1, L2) to form the modified region 12, and is set on the object 11.
  • the laser processing method according to the present embodiment is for irradiating the object 11 with the laser light L (laser light L1, L2) to form the modified region 12, and is set on the object 11.
  • the condensing region C condensing region C1 and C2
  • the modified region 12 is moved to the object 11 along the first region A1.
  • the condensing region C (condensing region C1 and C2) is relatively moved along the second region A2 of the line A, so that the condensing region C (C1 and C2) is relatively moved along the second region A2.
  • a second processing step of forming a modified region 12 (modified regions 12a, 12b) on the object 11 and forming an oblique crack 13F (cracks 13a, 13b) extending from the modified region 12 toward the second surface 11b. has (the above second processing).
  • the light-collecting region C has the longitudinal direction NH when viewed from the Z direction, and the longitudinal direction NH of the light-collecting region C is the first crystal orientation K1 and the second.
  • the laser beam L is formed so that the angle between the crystal orientation K2 and the processing progress direction ND, which is the movement direction of the condensing region C, is larger and the laser beam L is inclined with respect to the processing progress direction ND.
  • the order of the machining progress direction ND is the same in the first machining step and the second machining step.
  • the condensing region C (condensing region C1 and C2) is relatively moved along the third region A3 of the line A, so that the condensing region C (C1 and C2) is relatively moved along the third region A3.
  • a third processing step of forming a modified region 12 (modified regions 12a, 12b) on the object 11 and forming an oblique crack 13F (cracks 13a, 13b) extending from the modified region 12 toward the second surface 11b. has (the above third processing).
  • the laser beam L is formed so that the longitudinal direction NH of the condensing region C is along the processing progress direction ND.
  • the first processing and the second processing are performed in the same manner as in the second embodiment, so that the same effect as in the second embodiment can be obtained. Is possible.
  • a third region A3 including a point of 45 ° is interposed between the first region A1 and the second region A2. Then, in the third processing in which the processing of the third region A3 is performed, the longitudinal direction NH of the condensing region C of the laser beam L is set to be along the processing progress direction ND. Therefore, as shown in the above findings, the quality of the trimmed surface in the region including the 45 ° point is better.
  • the order of the machining progress direction ND is the same for at least the first machining and the second machining. Therefore, as compared with the case where the order of the processing progress direction ND is switched between the first processing and the second processing, the time related to the acceleration / deceleration of the relative movement of the condensing region C of the laser beam L is reduced.
  • the control unit 6 controls the moving units 4 and 5, so that the order of the processing progress direction ND of the condensing region C is first. It may be the same as the order of the machining progress direction ND of the machining process and the second machining process. In this case, in the first processing process, the second processing process, and the third processing process, the order of the processing progress direction ND is the same. As a result, it is possible to shorten the time required for acceleration and deceleration for relative movement of the condensing region C and suppress tact reduction.
  • the configurations of the above-mentioned first embodiment, the second embodiment, and the third embodiment, and the first embodiment and the first embodiment are also used. 2
  • Each configuration of the embodiment and the modification according to the third embodiment can be arbitrarily selected and adopted.
  • the order of the first processing, the second processing, and the third processing is arbitrary.
  • a laser processing device capable of setting a processing progress direction more appropriately according to the crystal structure of an object, and a laser processing method.

Abstract

Provided is a laser processing device for irradiating a subject having a crystalline structure with laser light to form a reformed area, the laser processing device being provided with: a support unit for supporting the subject; an irradiation unit for irradiating the subject supported by the support unit with the laser light; a movement unit for moving a light collection area of the laser light relatively to the subject; and a control unit for controlling the movement unit and the irradiation unit. For the subject, an annular line including a first area and a second area each having an arc shape when viewed in a Z direction intersecting with an incident plane of the laser light is set. The irradiation unit has a shaping unit for shaping the laser light.

Description

レーザ加工装置、及び、レーザ加工方法Laser processing equipment and laser processing method
 本開示の一側面は、レーザ加工装置、及び、レーザ加工方法に関する。 One aspect of the present disclosure relates to a laser processing apparatus and a laser processing method.
 特許文献1には、ワークを保持する保持機構と、保持機構に保持されたワークにレーザ光を照射するレーザ照射機構と、を備えるレーザ加工装置が記載されている。特許文献1に記載のレーザ加工装置では、集光レンズを有するレーザ照射機構が基台に対して固定されており、集光レンズの光軸に垂直な方向に沿ったワークの移動が保持機構によって実施される。 Patent Document 1 describes a laser processing device including a holding mechanism for holding a work and a laser irradiation mechanism for irradiating a work held by the holding mechanism with a laser beam. In the laser processing apparatus described in Patent Document 1, a laser irradiation mechanism having a condenser lens is fixed to the base, and the movement of the work along the direction perpendicular to the optical axis of the condenser lens is performed by the holding mechanism. Will be implemented.
特許第5456510号公報Japanese Patent No. 5456510 特開2020-069530号公報Japanese Unexamined Patent Publication No. 2020-609530
 ところで、例えば半導体デバイスの製造工程では、半導体ウェハからその外縁部分を不要部分として除去するトリミング加工が実施される場合がある。すなわち、対象物からその外縁部分を除去するために、対象物の外縁の内側において環状に延在するラインに沿ってレーザ光の集光点を相対的に移動させることにより、当該ラインに沿って改質領域を形成する場合がある。 By the way, for example, in the manufacturing process of a semiconductor device, a trimming process for removing an outer edge portion thereof from a semiconductor wafer as an unnecessary portion may be performed. That is, in order to remove the outer edge portion of the object from the object, the focusing point of the laser light is relatively moved along the line extending in an annular shape inside the outer edge of the object, so as to be along the line. May form modified regions.
 一方、本発明者の知見によれば、トリミング加工の際に、対象物のレーザ光の入射面側から、その反対側の面に至るように改質領域から亀裂を伸展させる場合、対象物の厚さ方向に沿って鉛直方向に亀裂を伸展させるのではなく、厚さ方向に対して傾斜するように斜めに亀裂を伸展させる要求がある。これは、例えば、厚さ方向に沿って亀裂を伸展させた場合、厚さ方向に沿って対象物の直下に配置された別の部材(例えば、対象物に張り合わされたウェハ)に至ってしまうこと抑制するためである。このとき、本発明者の知見によれば、対象物の結晶構造に応じて、集光点の相対移動の方向である加工進行方向の設定に改善の余地がある。 On the other hand, according to the knowledge of the present inventor, when the crack is extended from the modified region from the incident surface side of the laser beam of the object to the opposite surface during the trimming process, the object is used. There is a demand to extend the crack diagonally so as to be inclined with respect to the thickness direction, instead of extending the crack in the vertical direction along the thickness direction. This means that, for example, when a crack is stretched along the thickness direction, it leads to another member (for example, a wafer bonded to the object) arranged directly under the object along the thickness direction. This is to suppress it. At this time, according to the knowledge of the present inventor, there is room for improvement in setting the processing progress direction, which is the direction of relative movement of the condensing point, according to the crystal structure of the object.
 そこで、本開示の一側面は、対象物の結晶構造に応じてより適切に加工進行方向を設定可能なレーザ加工装置、及び、レーザ加工方法を提供することを目的とする。 Therefore, one aspect of the present disclosure is to provide a laser processing apparatus capable of setting a processing progress direction more appropriately according to the crystal structure of an object, and a laser processing method.
 本発明者は、上記課題を解決するために鋭意研究を進めることにより、次のような知見を得た。すなわち、厚さ方向に対して傾斜するように斜めに亀裂を形成する場合であって、対象物が結晶構造を有する場合、ある領域と別の領域との間で、適切な加工進行方向が異なる場合があるのである。したがって、加工進行方向を全ての領域で同一方向とするのではなく、加工進行方向の順逆を切り替えることで、より適切な加工進行方向を設定可能となる。本開示の一側面は、このような知見に基づいてなされたものである。なお、加工進行方向の順逆を切り替えるとは、例えば円環状のラインに沿って加工を行う場合、加工進行方向を反時計回り(例えば順方向)とするか、時計回り(例えば逆方向)とするか、を切り替えることである。 The present inventor obtained the following findings by proceeding with diligent research in order to solve the above problems. That is, when the crack is formed diagonally so as to be inclined with respect to the thickness direction, and the object has a crystal structure, the appropriate processing progress direction differs between one region and another region. There are cases. Therefore, it is possible to set a more appropriate machining progress direction by switching the order of the machining progress directions instead of setting the machining progress directions to the same direction in all the regions. One aspect of the present disclosure is based on such findings. To switch the order of the machining progress direction, for example, when machining along an annular line, the machining progress direction is set to counterclockwise (for example, forward direction) or clockwise (for example, reverse direction). Or to switch.
 すなわち、本開示の一側面に係るレーザ加工装置は、結晶構造を有する対象物にレーザ光を照射して改質領域を形成するためのレーザ加工装置であって、対象物を支持するための支持部と、記支持部に支持された対象物に向けてレーザ光を照射するための照射部と、レーザ光の集光領域を対象物に対して相対移動させるための移動部と、移動部及び照射部を制御するための制御部と、を備え、対象物には、レーザ光の入射面に交差するZ方向からみて、円弧状の第1領域と円弧状の第2領域とを含む円環状のラインが設定されており、照射部は、レーザ光を成形するための成形部を有し、制御部は、照射部及び移動部を制御することによって、ラインのうちの第1領域に沿って集光領域を相対移動させることにより、第1領域に沿って対象物に改質領域を形成すると共に、当該改質領域から対象物の入射面と反対側の反対面に向けてZ方向に対して斜めに延びる斜め亀裂を形成する第1加工処理と、照射部及び移動部を制御することによって、ラインのうちの第2領域に沿って集光領域を相対移動させることにより、第2領域に沿って対象物に改質領域を形成すると共に、当該改質領域から反対面に向けて延びる斜め亀裂を形成する第2加工処理と、を実行し、第1加工処理及び第2加工処理では、制御部は、集光領域の移動方向である加工進行方向の順逆を第1加工処理と前記第2加工処理とで切り替える。 That is, the laser processing apparatus according to one aspect of the present disclosure is a laser processing apparatus for irradiating an object having a crystal structure with laser light to form a modified region, and is a support for supporting the object. A unit, an irradiation unit for irradiating a laser beam toward an object supported by a support unit, a moving unit for moving a condensing region of the laser light relative to the object, a moving unit, and a moving unit. A control unit for controlling the irradiation unit is provided, and the object has an annular shape including an arc-shaped first region and an arc-shaped second region when viewed from the Z direction intersecting the incident surface of the laser beam. The line is set, the irradiation unit has a molding unit for molding the laser beam, and the control unit controls the irradiation unit and the moving unit along the first region of the line. By moving the condensing region relative to each other, a modified region is formed on the object along the first region, and the modified region is directed toward the opposite surface opposite to the incident surface of the object in the Z direction. By controlling the irradiation part and the moving part, the light-collecting area is moved relative to the second area in the line, and the light-collecting area is moved to the second area. A second processing process of forming a modified region along the object and forming an oblique crack extending from the modified region toward the opposite surface is executed, and in the first processing process and the second processing process, The control unit switches the order of the processing progress direction, which is the moving direction of the condensing region, between the first processing process and the second processing process.
 或いは、本開示の一側面に係るレーザ加工方法は、結晶構造を有する対象物にレーザ光を照射して改質領域を形成するためのレーザ加工方法であって、対象物に設定されたラインのうちの第1領域に沿ってレーザ光の集光領域を相対移動させることにより、第1領域に沿って対象物に改質領域を形成すると共に、当該改質領域から対象物のレーザ光の入射面と反対側の反対面に向けて入射面に交差するZ方向に対して斜めに延びる斜め亀裂を形成する第1加工工程と、ラインのうちの第2領域に沿って集光領域を相対移動させることにより、第2領域に沿って対象物に改質領域を形成すると共に、当該改質領域から反対面に向けて延びる斜め亀裂を形成する第2加工工程と、を備え、対象物には、Z方向からみて、円弧状の第1領域と円弧状の第2領域とを含む円環状の前記ラインが設定されており、第1加工工程及び第2加工工程では、集光領域の移動方向である加工進行方の順逆を第1加工工程と第2加工工程とで切り替える。 Alternatively, the laser processing method according to one aspect of the present disclosure is a laser processing method for irradiating an object having a crystal structure with laser light to form a modified region, and is a laser processing method for forming a modified region of the line set on the object. By relatively moving the condensing region of the laser beam along the first region, a modified region is formed on the object along the first region, and the laser light of the object is incident from the modified region. The first processing step of forming an oblique crack extending diagonally with respect to the Z direction intersecting the incident surface toward the opposite surface on the opposite side of the surface, and the relative movement of the condensing region along the second region of the line. The object is provided with a second processing step of forming a modified region in the object along the second region and forming an oblique crack extending from the modified region toward the opposite surface. , The annular line including the arc-shaped first region and the arc-shaped second region when viewed from the Z direction is set, and in the first processing step and the second processing step, the moving direction of the condensing region. The order of the processing progress is switched between the first processing process and the second processing process.
 これらの装置及び方法では、対象物は結晶構造を有する。そして、ここでは、レーザ光の集光領域を相対移動させるラインのうちの第1領域に沿って対象物に改質領域を形成する場合(第1加工処理、第1加工工程)、及び、当該ラインのうちの第2領域に沿って対象物に改質領域を形成する場合(第2加工処理、第2加工工程)において、改質領域から対象物の入射面と反対側の反対面に向けてZ方向(入射面に交差する方向)に対して斜めに延びる斜め亀裂を形成する。したがって、上記知見に示されるように、加工進行方向の順逆を第1加工処理(第1領域)と第2加工処理(第2領域)とで切り替えることにより、対象物の結晶構造に応じてより適切に加工進行方向を設定可能である。 In these devices and methods, the object has a crystal structure. Then, here, when a modified region is formed on the object along the first region of the line that relatively moves the focused region of the laser beam (first processing process, first processing step), and the case where the modification region is formed. In the case of forming a modified region on the object along the second region of the line (second processing process, second processing step), the modified region is directed toward the opposite surface opposite to the incident surface of the object. A diagonal crack extending diagonally with respect to the Z direction (direction intersecting the incident surface) is formed. Therefore, as shown in the above findings, by switching the order of the processing progress direction between the first processing process (first region) and the second processing process (second region), it is possible to obtain more depending on the crystal structure of the object. The machining progress direction can be set appropriately.
 本開示の一側面に係るレーザ加工装置では、対象物は、Z方向に沿って反対面側から順に配列された第1部分及び第2部分を含み、制御部は、第1部分に対して、加工進行方向の順逆を切り替えながら第1加工処理及び第2加工処理を実行すると共に、第2部分に対して、第1加工処理及び前記第2加工処理と異なる別加工処理を実行し、別加工処理では、制御部は、照射部及び移動部を制御することによって、ラインの全体にわたって加工進行方向の順逆を同一としつつラインに沿って集光領域を相対移動させることにより、ラインに沿って対象物に改質領域及び当該改質領域からZ方向に沿って延びる亀裂を形成してもよい。この場合、Z方向に沿った亀裂を形成する第2部分では、ラインの全体にわたって加工進行方向の向きが同一とされてレーザ加工が行われる。したがって、第2部分でもラインの第1領域と第2領域とで加工進行方向の順逆を切り替える場合と比較して、レーザ光の集光領域の相対移動の加減速に係る時間が削減される。 In the laser processing apparatus according to one aspect of the present disclosure, the object includes the first portion and the second portion arranged in order from the opposite surface side along the Z direction, and the control unit refers to the first portion with respect to the first portion. The first machining process and the second machining process are executed while switching the order of the machining progress directions, and another machining process different from the first machining process and the second machining process is executed for the second part to perform another machining. In the processing, the control unit controls the irradiation unit and the moving unit to move the condensing region relative to the line while making the order and reverse of the processing progress direction the same throughout the line, thereby targeting along the line. The object may be formed with a modified region and cracks extending from the modified region along the Z direction. In this case, in the second portion where the crack is formed along the Z direction, the laser machining is performed with the same direction in the machining progress direction over the entire line. Therefore, even in the second portion, the time required for accelerating / decelerating the relative movement of the condensing region of the laser beam is reduced as compared with the case where the order of the processing progress direction is switched between the first region and the second region of the line.
 本開示の一側面に係るレーザ加工装置では、別加工処理では、制御部は、成形部を制御することによって、Z方向からみたときに集光領域が長手方向を有するように、且つ、当該集光領域の長手方向が加工進行方向に沿うようにレーザ光を成形してもよい。この場合、Z方向に沿った亀裂を形成する第2部分では、ラインの第1領域の加工と第2領域の加工との間で集光領域の長手方向と加工進行方向との関係を変化させるようにレーザ光の成形を行う必要がないため、制御部の処理が簡略化される。 In the laser processing apparatus according to one aspect of the present disclosure, in another processing, the control unit controls the molding unit so that the condensing region has a longitudinal direction when viewed from the Z direction, and the collection thereof. The laser beam may be formed so that the longitudinal direction of the optical region is along the processing progress direction. In this case, in the second portion where the crack is formed along the Z direction, the relationship between the longitudinal direction of the condensing region and the machining progress direction is changed between the machining of the first region and the machining of the second region of the line. Since it is not necessary to mold the laser beam as described above, the processing of the control unit is simplified.
 本開示の一側面に係るレーザ加工装置では、対象物は、別の部材に接合された接合領域を含み、第1加工処理及び第2加工処理では、制御部は、入射面から反対面に向かうにつれて接合領域の内側の位置から接合領域の外縁に向かうように傾斜した斜め亀裂を形成してもよい。この場合、斜め亀裂を境界として対象物の一部を対象物から除去し、対象物の残部を残存させた場合に、対象物の他の部材との接合領域を越えて対象物の残部が外側に延在することが避けられる。 In the laser machining apparatus according to one aspect of the present disclosure, the object includes a joining region joined to another member, and in the first machining process and the second machining process, the control unit is directed from the incident surface to the opposite surface. Increasingly, an oblique crack may be formed that is inclined from a position inside the joint region toward the outer edge of the joint region. In this case, when a part of the object is removed from the object with the diagonal crack as a boundary and the remaining part of the object remains, the remaining part of the object is outside beyond the joint region with other members of the object. It is avoided to extend to.
 ここで、本発明者は、上記知見に基づいてさらなる研究を進めることにより、次のような知見を得た。すなわち、対象物からその外縁部分を除去するために、対象物の外縁の内側において環状に延在するラインに沿ってレーザ光の集光点を相対的に移動させることにより、当該ラインに沿って改質領域を形成すると(トリミング加工を行うと)、外縁部分が除去されて形成される対象物のトリム面の品質が場所によって低下するおそれがあるのである。すなわち、本発明者の知見によれば、外縁部分が除去された対象物のトリム面の品質低下を抑制しつつ、斜め亀裂を形成可能とする要求があるのである。 Here, the present inventor obtained the following findings by proceeding with further research based on the above findings. That is, in order to remove the outer edge portion of the object from the object, the focusing point of the laser light is relatively moved along the line extending in a ring shape inside the outer edge of the object, so as to be along the line. When the modified region is formed (trimming is performed), the quality of the trimmed surface of the object formed by removing the outer edge portion may deteriorate depending on the location. That is, according to the knowledge of the present inventor, there is a demand that diagonal cracks can be formed while suppressing deterioration of the quality of the trim surface of the object from which the outer edge portion has been removed.
 本発明者は、トリム面の品質低下の抑制に対して、次のようなさらなる知見を得ている。すなわち、まず、対象物が、(100)面を主面とし、一の(110)面に直交する第1結晶方位と、別の(110)面に直交する第2結晶方位と、を有するウェハである場合、第1結晶方位及び第2結晶方位のうち加工進行方向(集光点の相対移動の方向)との間の角度が大きい一方に近づくように、加工進行方向に対して傾斜するようにビーム形状を成形することにより、外側面の品質の低下を抑制できるのである(例えば、上記の特許文献2参照)。 The present inventor has obtained the following further findings regarding the suppression of quality deterioration of the trim surface. That is, first, the object has a (100) plane as a main plane, and has a first crystal orientation orthogonal to one (110) plane and a second crystal orientation orthogonal to another (110) plane. If, it is inclined with respect to the processing progress direction so that the angle between the first crystal orientation and the second crystal orientation and the processing progress direction (direction of relative movement of the condensing point) is closer to one of them. By forming the beam shape into a beam shape, deterioration of the quality of the outer surface can be suppressed (see, for example, Patent Document 2 above).
 より具体的には、改質領域から延びる亀裂が、例えば第1結晶方位に引っ張られる場合に、ビーム形状を長尺状にすると共に、その長手方向の向きを加工進行方向の向きにするのではなく、加工進行方向に対して第1結晶方位側とは反対側の第2結晶方位に近づくように傾斜させる。これにより、結晶方位(結晶軸)による亀裂伸展力に対して、ビーム形状を長尺状にしたことによる亀裂伸展力が打ち消すように作用し、亀裂が加工進行方向に精度よく沿って伸びるようになると考えられる。 More specifically, when a crack extending from the modified region is pulled in the first crystal orientation, for example, the beam shape may be elongated and the longitudinal direction thereof may be oriented in the machining progress direction. Instead, it is tilted so as to approach the second crystal orientation opposite to the first crystal orientation side with respect to the processing progress direction. As a result, the crack extension force due to the elongated beam shape acts to cancel out the crack extension force due to the crystal orientation (crystal axis), so that the crack grows accurately along the processing progress direction. It is considered to be.
 また、改質領域から延びる亀裂が、例えば第2結晶方位に引っ張られる場合には、ビーム形状を長尺状にすると共に、その長手方向の向きを加工進行方向の向きにするのではなく、加工進行方向に対して第2結晶方位側とは反対側の第1結晶方位に近づくように傾斜させる。これにより、結晶方位による亀裂伸展力に対して、ビーム形状を長尺状にしたことによる亀裂伸展力が打ち消すように作用し、亀裂が加工進行方向に精度よく沿って伸びるようになると考えられる。これらの結果、トリム面の品質低下が抑制されると考えられる。本発明者は、このような知見に基づいて、次の発明を完成させた。 Further, when the crack extending from the modified region is pulled in the second crystal direction, for example, the beam shape is made long and the direction in the longitudinal direction thereof is not changed to the direction in the processing progress direction. It is tilted so as to approach the first crystal orientation opposite to the second crystal orientation side with respect to the traveling direction. As a result, it is considered that the crack extension force due to the elongated beam shape acts to cancel the crack extension force due to the crystal orientation, and the crack grows accurately along the processing progress direction. As a result, it is considered that the deterioration of the quality of the trim surface is suppressed. The present inventor has completed the following invention based on such findings.
 すなわち、本開示の一側面に係るレーザ加工装置では、対象物は、(100)面と、一の(110)面と、別の(110)面と、一の(110)面に直交する第1結晶方位と、別の(110)面に直交する第2結晶方位と、を含む結晶構造を有すると共に、(100)面が入射面となるように支持部に支持され、第1加工処理及び第2加工処理では、制御部は、成形部を制御することによって、Z方向からみたときに集光領域が長手方向を有するように、且つ、当該集光領域の長手方向が、第1結晶方位及び第2結晶方位のうち、集光領域の移動方向である加工進行方向との間の角度が大きい一方に近づく向きに加工進行方向に対して傾斜するように、レーザ光を成形してもよい。この場合、上記知見に示されるように、トリム面の品質低下が抑制される。 That is, in the laser processing apparatus according to one aspect of the present disclosure, the object is the first plane orthogonal to the (100) plane, one (110) plane, another (110) plane, and one (110) plane. It has a crystal structure including one crystal orientation and a second crystal orientation orthogonal to another (110) plane, and is supported by a support portion so that the (100) plane is an incident plane. In the second processing, the control unit controls the molding unit so that the condensing region has a longitudinal direction when viewed from the Z direction, and the longitudinal direction of the condensing region is the first crystal orientation. The laser beam may be formed so that the angle between the second crystal orientation and the processing progress direction, which is the movement direction of the condensing region, is larger and the second crystal direction is inclined with respect to the processing progress direction. .. In this case, as shown in the above findings, quality deterioration of the trim surface is suppressed.
 一方、本発明者は、上記知見に基づいてさらなる研究を進めることにより、加工進行方向と結晶構造とに基づいてビーム形状の長手方向の向きを上記のとおり設定した場合であっても、ビーム形状の長手方向の向きと斜め亀裂の傾斜方向との関係によっては、トリム面の品質低下のさらなる抑制の余地があることを発見した。すなわち、ビーム形状の長手方向の向きと斜め亀裂の傾斜方向とが、加工進行方向に対して同じ側にある場合にはトリム面の品質が相対的に良好である一方で、ビーム形状の長手方向の向きと斜め亀裂の傾斜方向とが、加工進行方向に対して互いに逆側となる場合には、トリム面の品質が相対的に良好でない場合があるのである。 On the other hand, the present inventor has further researched based on the above findings, and even when the longitudinal direction of the beam shape is set as described above based on the processing progress direction and the crystal structure, the beam shape is formed. It was found that there is room for further suppression of quality deterioration of the trimmed surface depending on the relationship between the longitudinal orientation of the trimmer and the tilting direction of the diagonal crack. That is, when the longitudinal direction of the beam shape and the inclination direction of the oblique crack are on the same side with respect to the machining progress direction, the quality of the trim surface is relatively good, while the longitudinal direction of the beam shape. When the direction of the sloping crack and the inclination direction of the oblique crack are opposite to each other with respect to the machining progress direction, the quality of the trimmed surface may not be relatively good.
 この問題を解決するに際して、加工進行方向に対するビーム形状の長手方向の向きは、対象物の結晶構造に応じて(すなわち、上述したように、加工進行方向と第1結晶方位及び第2結晶方位との角度の大小関係によって)決定されるため、変更の自由度が小さい。したがって、ビーム形状の長手方向の向きと斜め亀裂の傾斜方向との関係を、相対的に良好な品質が得られる組み合わせにするためには、加工進行方向の順逆を、加工する領域の結晶構造に応じて上記のように切り替えることが有効である。すなわち、上記のように対象物の結晶構造に応じて適切に加工進行方向を設定すれば、トリム面の品質低下のさらなる抑制が可能となる。以下の発明は、以上のような知見に基づいてなされたものである。 In solving this problem, the longitudinal orientation of the beam shape with respect to the machining progress direction depends on the crystal structure of the object (that is, as described above, the machining progress direction and the first crystal orientation and the second crystal orientation. Since it is determined by the magnitude relation of the angle of, the degree of freedom of change is small. Therefore, in order to make the relationship between the longitudinal direction of the beam shape and the inclination direction of the oblique cracks a combination that can obtain relatively good quality, the order of the machining progress direction should be changed to the crystal structure of the region to be machined. It is effective to switch as described above accordingly. That is, if the processing progress direction is appropriately set according to the crystal structure of the object as described above, it is possible to further suppress the deterioration of the quality of the trimmed surface. The following inventions have been made based on the above findings.
 すなわち、本開示の一側面に係るレーザ加工装置では、第1加工処理及び第2加工処理では、制御部は、移動部を制御することによって、Z方向からみたとき、長手方向の傾斜の向きが、加工進行方向に対して斜め亀裂が延びる方向と同じ側となるように、加工進行方向の順逆を第1加工処理と第2加工処理とで切り替えてもよい。この場合、第1領域及び第2領域の両方において、加工進行方向に対する集光領域の長手方向の傾斜の向きと斜め亀裂の延びる側とが同じ側となる。よって、上記知見に示されるように、集光領域の長手方向の向きと斜め亀裂の傾斜方向との関係が、相対的に良好な品質が得られる組み合わせとなり、品質低下が抑制される。このように、対象物のトリム面の品質低下を抑制しつつ、斜め亀裂を形成可能である。 That is, in the laser machining apparatus according to one aspect of the present disclosure, in the first machining process and the second machining process, the control unit controls the moving unit so that the direction of inclination in the longitudinal direction is different when viewed from the Z direction. The order of the machining progress direction may be switched between the first machining process and the second machining process so that the diagonal crack extends on the same side as the machining progress direction. In this case, in both the first region and the second region, the direction of inclination in the longitudinal direction of the condensing region with respect to the processing progress direction and the side on which the oblique crack extends are the same side. Therefore, as shown in the above findings, the relationship between the longitudinal direction of the condensing region and the inclination direction of the oblique crack is a combination that can obtain relatively good quality, and the deterioration of quality is suppressed. In this way, it is possible to form diagonal cracks while suppressing deterioration of the quality of the trim surface of the object.
 本開示の一側面に係るレーザ加工装置では、別加工処理では、制御部は、加工進行方向の切り替えを行うことなく、ラインのうちの第1領域に沿って集光領域を相対移動させることにより、第1領域に沿って対象物に改質領域を形成すると共に、当該改質領域からZ方向に沿って延びる亀裂を形成する第1Z加工処理と、ラインのうちの第2領域に沿って集光領域を相対移動させることにより、第2領域に沿って対象物に改質領域を形成すると共に、当該改質領域からZ方向に沿って延びる亀裂を形成する第2Z加工処理と、を実行し、第1Z加工処理及び第2Z加工処理では、制御部は、成形部を制御することによって、Z方向からみたときに集光領域が長手方向を有するように、且つ、当該長手方向が、第1結晶方位及び第2結晶方位のうち、集光領域の移動方向である加工進行方向との間の角度が大きい一方に近づく向きに加工進行方向に対して傾斜するように、レーザ光を成形してもよい。この場合、第2部分についても、第1領域と第2領域とで集光領域の長手方向を加工進行方向に応じて設定しつつ、第1領域と第2領域とで加工進行方向の順逆を切り替える場合と比較してレーザ光の集光領域の相対移動の加減速に係る時間が削減される。 In the laser processing apparatus according to one aspect of the present disclosure, in another processing, the control unit moves the condensing region relative to the first region of the line without switching the processing progress direction. The first Z processing process for forming a modified region on the object along the first region and forming cracks extending in the Z direction from the modified region, and collecting along the second region of the line. By relatively moving the optical region, a modified region is formed in the object along the second region, and a second Z processing process for forming a crack extending in the Z direction from the modified region is executed. In the first Z processing and the second Z processing, the control unit controls the molding unit so that the condensing region has a longitudinal direction when viewed from the Z direction, and the longitudinal direction is the first. The laser beam is formed so that the angle between the crystal orientation and the second crystal orientation, which is the moving direction of the condensing region, is larger than the machining progress direction and is inclined with respect to the machining progress direction. May be good. In this case, also for the second portion, the longitudinal direction of the condensing region is set in the first region and the second region according to the machining progress direction, and the order of the machining progress directions is reversed in the first region and the second region. Compared with the case of switching, the time required for accelerating / decelerating the relative movement of the condensing region of the laser beam is reduced.
 他方、本発明者は、上記知見に基づいてさらなる研究を進めることにより、加工進行方向と結晶構造とに基づいてビーム形状の長手方向の向きを上記のとおり設定した場合であっても、結晶構造における特定の領域においてトリム面の品質低下のさらなる抑制の余地があることを発見した。すなわち、対象物が、(100)面と、一の(110)面と、別の(110)面と、一の(110)面に直交する第1結晶方位と、別の(110)面に直交する第2結晶方位と、を含む結晶構造を有する場合、レーザ光の集光領域を相対移動させるラインと第2結晶方位とが直交する点を0°とし、当該ラインと第1結晶方位とが直交する点を90°とし、当該ラインにおける0°と90°との間の点を45°としたとき、この45°付近の領域では、ビーム形状の長手方向の向きが加工進行方向に沿っている場合に、トリム面の品質がより良好となるのである。以下の発明は、以上のような知見に基づいてなされたものである。 On the other hand, the present inventor has further researched based on the above findings, and even when the direction of the beam shape in the longitudinal direction is set as described above based on the processing progress direction and the crystal structure, the crystal structure It was found that there is room for further suppression of quality deterioration of the trimmed surface in a specific area in. That is, the object is on the (100) plane, one (110) plane, another (110) plane, the first crystal orientation orthogonal to the one (110) plane, and another (110) plane. When the crystal structure includes the second crystal orientation that is orthogonal to each other, the point where the line that relatively moves the condensing region of the laser beam and the second crystal orientation are orthogonal to each other is set to 0 °, and the line and the first crystal orientation are defined as 0 °. When the point where is orthogonal is 90 ° and the point between 0 ° and 90 ° in the line is 45 °, the longitudinal direction of the beam shape is along the machining progress direction in the region near 45 °. If so, the quality of the trimmed surface will be better. The following inventions have been made based on the above findings.
 すなわち、本開示の一側面に係るレーザ加工装置では、ラインは、第2結晶方位とラインとが直交する点を0°とし、第1結晶方位とラインとが直交する点を90°とし、ラインにおける0°と90°との間の点を45°としたとき、0°を含む第1領域と、90°を含む第2領域と、第1領域と前記第2領域との間の領域であって45°を含む円弧状の第3領域を含み、制御部は、照射部及び移動部を制御することによって、ラインのうちの第3領域に沿って集光領域を相対移動させることにより、第3領域に沿って対象物に改質領域を形成すると共に、当該改質領域から反対面に向けて延びる斜め亀裂を形成する第3加工処理を実行し、第3加工処理では、制御部は、成形部を制御することによって、Z方向からみたときに集光領域が長手方向を有するように、且つ、当該集光領域の長手方向が加工進行方向に沿うようにレーザ光を成形してもよい。この場合、45°の点を含む第3領域の加工を行う第3加工処理において、レーザ光の集光領域の長手方向が加工進行方向に沿うようにされる。このため、上記知見に示されるように、45°の点を含む領域でのトリム面の品質がより良好となる。 That is, in the laser processing apparatus according to one aspect of the present disclosure, the line has a point where the second crystal orientation and the line are orthogonal to each other at 0 ° and a point where the first crystal orientation and the line are orthogonal to each other at 90 °. In the region between the first region including 0 °, the second region including 90 °, and the region between the first region and the second region, where the point between 0 ° and 90 ° is 45 °. A third region having an arc shape including 45 ° is included, and the control unit relatively moves the light-collecting region along the third region of the line by controlling the irradiation unit and the moving unit. A third processing process is executed in which a modified region is formed in the object along the third region and diagonal cracks extending from the modified region toward the opposite surface are formed. In the third processing process, the control unit performs the third processing process. By controlling the molded portion, even if the laser beam is molded so that the condensing region has a longitudinal direction when viewed from the Z direction and the longitudinal direction of the condensing region is along the processing progress direction. good. In this case, in the third processing process for processing the third region including the point of 45 °, the longitudinal direction of the light collecting region of the laser beam is set to be along the processing progress direction. Therefore, as shown in the above findings, the quality of the trimmed surface in the region including the 45 ° point is better.
 本開示の一側面に係るレーザ加工装置では、第3加工処理では、制御部は、移動部を制御することによって、集光領域の加工進行方向の順逆を、第1加工処理及び第2加工処理のうちの第3加工処理と連続して実行される一方における加工進行方向の順逆と同一としてもよい。この場合、集光領域の相対移動のための加速及び減速に係る時間を短縮し、タクト低減を抑制可能である。 In the laser processing apparatus according to one aspect of the present disclosure, in the third processing process, the control unit controls the moving unit to reverse the order of the processing progress direction of the condensing region in the first processing process and the second processing process. It may be the same as the forward / reverse direction of the machining progress direction in one of the processes executed continuously with the third machining process. In this case, it is possible to shorten the time required for acceleration and deceleration for relative movement of the condensing region and suppress tact reduction.
 本開示の一側面に係るレーザ加工装置では、第1加工処理及び第2加工処理では、制御部は、移動部を制御することによって、Z方向からみたとき、長手方向の傾斜の向きが、加工進行方向に対して斜め亀裂が延びる方向と同じ側となるように、加工進行方向の順逆を第1加工処理と第2加工処理とで切り替えてもよい。この場合、第1領域及び第2領域の両方において、加工進行方向に対する集光領域の長手方向の傾斜の向きと斜め亀裂の延びる側とが同じ側となる。よって、上記知見に示されるように、集光領域の長手方向の向きと斜め亀裂の傾斜方向との関係が、相対的に良好な品質が得られる組み合わせとなり、品質低下が抑制される。このように、対象物のトリム面の品質低下を抑制しつつ、斜め亀裂を形成可能である。 In the laser machining apparatus according to one aspect of the present disclosure, in the first machining process and the second machining process, the control unit controls the moving unit so that the direction of inclination in the longitudinal direction when viewed from the Z direction is processed. The order of the machining progress direction may be switched between the first machining process and the second machining process so that the diagonal crack extends on the same side as the traveling direction. In this case, in both the first region and the second region, the direction of inclination in the longitudinal direction of the condensing region with respect to the processing progress direction and the side on which the oblique crack extends are the same side. Therefore, as shown in the above findings, the relationship between the longitudinal direction of the condensing region and the inclination direction of the oblique crack is a combination that can obtain relatively good quality, and the deterioration of quality is suppressed. In this way, it is possible to form diagonal cracks while suppressing deterioration of the quality of the trim surface of the object.
 本開示の一側面に係るレーザ加工装置では、第1加工処理及び第2加工処理では、制御部は、Z方向についての集光領域の位置を第1Z位置に設定しつつ、ラインに沿って集光領域を相対移動させることにより、改質領域としての第1改質領域及び第1改質領域から延びる亀裂を対象物に形成する第1形成処理と、Z方向についての集光領域の位置を第1Z位置よりも入射面側の第2Z位置に設定しつつ、ラインに沿って集光領域を相対移動させることにより、改質領域としての第2改質領域及び第2改質領域から延びる亀裂を形成する第2形成処理と、を実行し、第1形成処理では、制御部は、加工進行方向及びZ方向に交差するY方向についての集光領域の位置を第1Y位置に設定し、第2形成処理では、制御部は、Y方向についての集光領域の位置を第1Y位置からシフトした第2Y位置に設定すると共に、成形部の制御によって、Y方向及びZ方向を含むYZ面内での集光領域の形状が、少なくとも集光領域の中心よりも入射面側においてシフトの方向に傾斜する傾斜形状となるようにレーザ光を成形することにより、YZ面内においてシフトの方向に傾斜するように斜め亀裂を形成してもよい。このようにすれば、Z方向に対して傾斜した斜め亀裂を好適に形成可能である。 In the laser processing apparatus according to one aspect of the present disclosure, in the first processing process and the second processing process, the control unit collects light along the line while setting the position of the condensing region in the Z direction to the first Z position. By moving the optical region relative to each other, the first reforming region as a reforming region and the first forming process for forming cracks extending from the first reforming region on the object, and the position of the condensing region in the Z direction are determined. A crack extending from the second modified region and the second modified region as the modified region by relatively moving the condensing region along the line while setting the second Z position on the incident surface side of the first Z position. In the first forming process, the control unit sets the position of the condensing region in the Y direction intersecting the machining progress direction and the Z direction to the first Y position, and the second forming process is executed. In the two-forming process, the control unit sets the position of the light-collecting region in the Y direction to the second Y position shifted from the first Y position, and by controlling the molding unit, in the YZ plane including the Y direction and the Z direction. By forming the laser beam so that the shape of the condensing region of the light is inclined in the direction of the shift at least on the incident surface side from the center of the condensing region, the light is inclined in the direction of the shift in the YZ plane. Diagonal cracks may be formed as described above. By doing so, it is possible to suitably form an oblique crack inclined in the Z direction.
 本開示の一側面に係るレーザ加工装置では、成形部は、レーザ光を変調パターンに応じて変調することによりレーザ光を成形するための空間光変調器を含み、照射部は、空間光変調器からのレーザ光を対象物に向けて集光するための集光レンズを含み、第2形成処理では、制御部は、空間光変調器に表示させる変調パターンの制御によって、集光領域の形状が傾斜形状となるようにレーザ光を変調することによりレーザ光を成形してもよい。この場合、空間光変調器を用いて容易にレーザ光を成形できる。 In the laser processing apparatus according to one aspect of the present disclosure, the molding unit includes a spatial light modulator for molding laser light by modulating the laser light according to a modulation pattern, and the irradiation unit includes a spatial light modulator. In the second forming process, the control unit controls the modulation pattern displayed on the spatial optical modulator to change the shape of the condensing region. The laser light may be formed by modulating the laser light so as to have an inclined shape. In this case, the laser beam can be easily formed by using the spatial light modulator.
 本開示の一側面に係るレーザ加工装置では、変調パターンは、レーザ光に対してコマ収差を付与するためのコマ収差パターンを含み、第2形成処理では、制御部は、コマ収差パターンによるコマ収差の大きさを制御することにより、集光領域の形状を傾斜形状とするための第1パターン制御を行ってもよい。本発明者の知見によれば、この場合、YZ面内における集光領域の形状が、弧状に形成される。すなわち、この場合には、集光領域の形状が、集光領域の中心よりも入射面側でシフト方向に傾斜すると共に、集光領域の中心よりも入射面と反対側でシフト方向と反対方向に傾斜される。この場合であっても、シフト方向に傾斜する斜め亀裂を形成可能である。 In the laser processing apparatus according to one aspect of the present disclosure, the modulation pattern includes a coma aberration pattern for imparting coma aberration to the laser light, and in the second forming process, the control unit is used for coma aberration due to the coma aberration pattern. By controlling the size of the light-collecting region, the first pattern control for making the shape of the condensing region an inclined shape may be performed. According to the findings of the present inventor, in this case, the shape of the condensing region in the YZ plane is formed in an arc shape. That is, in this case, the shape of the condensing region is inclined in the shift direction on the incident surface side from the center of the condensing region, and is opposite to the shift direction on the side opposite to the incident surface from the center of the condensing region. Is tilted to. Even in this case, it is possible to form an oblique crack that is inclined in the shift direction.
 本開示の一側面に係るレーザ加工装置では、変調パターンは、レーザ光の球面収差を補正するための球面収差補正パターンを含み、第2形成処理では、制御部は、集光レンズの入射瞳面の中心に対して球面収差補正パターンの中心をY方向にオフセットさせることにより、集光領域の形状を傾斜形状とするための第2パターン制御を行ってもよい。本発明者の知見によれば、この場合にも、コマ収差パターンを利用した場合と同様に、YZ面内における集光領域の形状を弧状に形成でき、シフト方向に傾斜する斜め亀裂を形成可能である。 In the laser processing apparatus according to one aspect of the present disclosure, the modulation pattern includes a spherical aberration correction pattern for correcting the spherical aberration of the laser light, and in the second forming process, the control unit is the incident pupil surface of the condenser lens. By offsetting the center of the spherical aberration correction pattern in the Y direction with respect to the center of the light, the second pattern control for making the shape of the condensing region an inclined shape may be performed. According to the findings of the present inventor, in this case as well, the shape of the condensing region in the YZ plane can be formed in an arc shape and an oblique crack inclined in the shift direction can be formed, as in the case of using the coma aberration pattern. Is.
 本開示の一側面に係るレーザ加工装置では、第2形成処理では、制御部は、加工進行方向に沿った軸線に対して非対称な変調パターンを空間光変調器に表示させることにより、集光領域の形状を傾斜形状とするための第3パターン制御を行ってもよい。本発明者の知見によれば、この場合、YZ面内における集光領域の形状の全体を、シフト方向に傾斜させることができる。この場合であっても、シフト方向に傾斜する斜め亀裂を形成可能である。 In the laser processing apparatus according to one aspect of the present disclosure, in the second forming process, the control unit causes the spatial light modulator to display a modulation pattern that is asymmetric with respect to the axis along the processing progress direction, thereby displaying a condensing region. The third pattern control for making the shape of the slanted shape may be performed. According to the findings of the present inventor, in this case, the entire shape of the condensing region in the YZ plane can be tilted in the shift direction. Even in this case, it is possible to form an oblique crack that is inclined in the shift direction.
 本開示の一側面に係るレーザ加工装置では、変調パターンは、Y方向及びZ方向に交差するX方向とY方向とを含むXY面内における集光領域の形状を、X方向を長手とする楕円形状とするための楕円パターンを含み、第2形成処理では、制御部は、楕円パターンの強度が、X方向に沿った軸線に対して非対称となるように、変調パターンを空間光変調器に表示させることによって、集光領域の形状を傾斜形状とするための第4パターン制御を行ってもよい。本発明者の知見によれば、この場合にも、YZ面内における集光領域の形状を弧状に形成でき、シフト方向に傾斜する斜め亀裂を形成可能である。 In the laser processing apparatus according to one aspect of the present disclosure, the modulation pattern is an ellipse having the shape of the condensing region in the XY plane including the X direction and the Y direction intersecting the Y direction and the Z direction as the longitudinal direction in the X direction. In the second forming process, which includes an elliptical pattern for shaping, the control unit displays the modulation pattern on the spatial light modulator so that the intensity of the elliptical pattern is asymmetric with respect to the axis along the X direction. By doing so, the fourth pattern control for making the shape of the condensing region an inclined shape may be performed. According to the findings of the present inventor, even in this case, the shape of the condensing region in the YZ plane can be formed in an arc shape, and an oblique crack inclined in the shift direction can be formed.
 本開示の一側面に係るレーザ加工装置では、第2形成処理では、制御部は、YZ面内でシフトの方向に沿って配列された複数のレーザ光の集光点を形成するための変調パターンを空間光変調器に表示させることにより、複数の集光点を含む集光領域の形状を傾斜形状とするための第5パターン制御を行ってもよい。本発明者の知見によれば、この場合にも、シフト方向に傾斜する斜め亀裂を形成可能である。 In the laser processing apparatus according to one aspect of the present disclosure, in the second forming process, in the second forming process, the control unit forms a modulation pattern for forming a plurality of focusing points of laser light arranged along the shift direction in the YZ plane. May be displayed on the spatial light modulator to control the fifth pattern in order to make the shape of the condensing region including a plurality of condensing points an inclined shape. According to the knowledge of the present inventor, it is possible to form an oblique crack inclined in the shift direction in this case as well.
 本開示の一側面に係るレーザ加工装置では、第1領域は、第2結晶方位とラインとが直交する点を0°とし、第1結晶方位とラインとが直交する点を90°とし、ラインにおける0°と90°との間の点を45°としたとき、0°から45°までの領域を含み、第2領域は、45°から90°までの領域を含んでもよい。これにより、対象物が(100)面を入射面とするウェハである場合に、対象物のトリム面の品質が場所によって低下するのを確実に抑制することができる。 In the laser processing apparatus according to one aspect of the present disclosure, in the first region, the point where the second crystal orientation and the line are orthogonal is set to 0 °, and the point where the first crystal orientation and the line are orthogonal is set to 90 °, and the line is set. Assuming that the point between 0 ° and 90 ° in is 45 °, the region may include a region from 0 ° to 45 °, and the second region may include a region from 45 ° to 90 °. Thereby, when the object is a wafer having the (100) plane as the incident surface, it is possible to surely suppress the deterioration of the quality of the trim surface of the object depending on the location.
 本開示の一側面によれば、外縁部分が除去された対象物のトリム面の品質低下を抑制しつつ、斜め亀裂を形成可能とするレーザ加工装置、及び、レーザ加工方法を提供できる。 According to one aspect of the present disclosure, it is possible to provide a laser processing apparatus capable of forming diagonal cracks while suppressing deterioration of the quality of the trim surface of the object from which the outer edge portion has been removed, and a laser processing method.
図1は、一実施形態に係るレーザ加工装置の構成を示す模式図である。FIG. 1 is a schematic diagram showing a configuration of a laser processing apparatus according to an embodiment. 図2は、に示されたレーザ照射部の構成を示す模式図である。FIG. 2 is a schematic diagram showing the configuration of the laser irradiation unit shown in. 図3は、図2に示された4fレンズユニットを示す図である。FIG. 3 is a diagram showing the 4f lens unit shown in FIG. 図4は、図2に示された空間光変調器を示す図である。FIG. 4 is a diagram showing the spatial light modulator shown in FIG. 図5は、斜め亀裂形成の知見を説明するための対象物の断面図である。FIG. 5 is a cross-sectional view of an object for explaining the findings of oblique crack formation. 図6は、斜め亀裂形成の知見を説明するための対象物の断面図である。FIG. 6 is a cross-sectional view of an object for explaining the findings of oblique crack formation. 図7は、レーザ光の集光領域のビーム形状を示す図である。FIG. 7 is a diagram showing the beam shape of the focused region of the laser beam. 図8は、変調パターンのオフセットを示す図である。FIG. 8 is a diagram showing the offset of the modulation pattern. 図9は、斜め亀裂の形成状態を示す断面写真である。FIG. 9 is a cross-sectional photograph showing a state in which diagonal cracks are formed. 図10は、対象物の模式的な平面図である。FIG. 10 is a schematic plan view of the object. 図11は、斜め亀裂の形成状態を示す断面写真である。FIG. 11 is a cross-sectional photograph showing a state in which diagonal cracks are formed. 図12は、斜め亀裂の形成状態を示す断面写真である。FIG. 12 is a cross-sectional photograph showing a state in which diagonal cracks are formed. 図13は、変調パターンの一例を示す図である。FIG. 13 is a diagram showing an example of a modulation pattern. 図14は、集光レンズの入射瞳面における強度分布、及び、集光領域のビーム形状を示す図である。FIG. 14 is a diagram showing the intensity distribution of the condenser lens on the entrance pupil surface and the beam shape of the condenser region. 図15は、集光領域のビーム形状、及び、集光領域の強度分布の観測結果を示す図である。FIG. 15 is a diagram showing observation results of the beam shape of the condensing region and the intensity distribution of the condensing region. 図16は、変調パターンの一例を示す図である。FIG. 16 is a diagram showing an example of a modulation pattern. 図17は、非対称な変調パターンの別の例を示す図である。FIG. 17 is a diagram showing another example of an asymmetric modulation pattern. 図18は、集光レンズの入射瞳面における強度分布、及び、集光領域のビーム形状を示す図である。FIG. 18 is a diagram showing the intensity distribution of the condenser lens on the entrance pupil surface and the beam shape of the condenser region. 図19は、変調パターンの一例、及び集光領域の形成を示す図である。FIG. 19 is a diagram showing an example of a modulation pattern and the formation of a condensing region. 図20は、加工の対象物を示す図である。FIG. 20 is a diagram showing an object to be processed. 図21は、加工の対象物を示す図である。FIG. 21 is a diagram showing an object to be processed. 図22は、集光領域のビーム形状を示す模式図である。FIG. 22 is a schematic diagram showing the beam shape of the condensing region. 図23は、集光領域のビーム形状を示す模式図である。FIG. 23 is a schematic diagram showing the beam shape of the condensing region. 図24は、トリミング加工の一工程を示す図である。FIG. 24 is a diagram showing one step of the trimming process. 図25は、トリミング加工の一工程を示す図である。FIG. 25 is a diagram showing one step of the trimming process. 図26は、トリミング加工の一工程を示す図である。FIG. 26 is a diagram showing one step of the trimming process. 図27は、トリミング加工の一工程を示す図である。FIG. 27 is a diagram showing one step of the trimming process. 図28は、トリミング加工の一工程を示す図である。FIG. 28 is a diagram showing one step of the trimming process. 図29は、トリミング加工の一工程を示す図である。FIG. 29 is a diagram showing one step of the trimming process. 図30は、一実施形態に係るレーザ加工の対象物を示す図である。FIG. 30 is a diagram showing an object of laser machining according to an embodiment. 図31は、図30に示された対象物の断面図である。FIG. 31 is a cross-sectional view of the object shown in FIG. 図32は、図30に示された対象物の平面図である。FIG. 32 is a plan view of the object shown in FIG. 図33は、加工結果を示す断面写真である。FIG. 33 is a cross-sectional photograph showing the processing result. 図34は、加工結果を示す断面写真である。FIG. 34 is a cross-sectional photograph showing the processing result. 図35は、加工試験を説明するための模式図である。FIG. 35 is a schematic diagram for explaining a processing test. 図36は、加工試験における加工進行方向とビーム形状と斜め亀裂との関係を示す模式図である。FIG. 36 is a schematic view showing the relationship between the machining progress direction, the beam shape, and the oblique crack in the machining test. 図37は、図35,36に示される加工試験の結果を示す表である。FIG. 37 is a table showing the results of the machining tests shown in FIGS. 35 and 36. 図38は、加工試験の結果を示す表である。FIG. 38 is a table showing the results of the processing test. 図39は、加工試験の結果を示す断面写真である。FIG. 39 is a cross-sectional photograph showing the result of the processing test. 図40は、一実施形態に係るレーザ加工の一工程を示す図である。FIG. 40 is a diagram showing one step of laser processing according to one embodiment. 図41は、一実施形態に係るレーザ加工の一工程を示す図である。FIG. 41 is a diagram showing one step of laser processing according to one embodiment. 図42は、一実施形態に係るレーザ加工の一工程を示す図である。FIG. 42 is a diagram showing one step of laser processing according to one embodiment. 図43は、一実施形態に係るレーザ加工の一工程を示す図である。FIG. 43 is a diagram showing one step of laser processing according to one embodiment. 図44は、一実施形態に係るレーザ加工の一工程を示す図である。FIG. 44 is a diagram showing one step of laser processing according to one embodiment. 図45は、一実施形態に係るレーザ加工の一工程を示す図である。FIG. 45 is a diagram showing one step of laser processing according to one embodiment. 図46は、一実施形態に係るレーザ加工の一工程を示す図である。FIG. 46 is a diagram showing one step of laser processing according to one embodiment. 図47は、一実施形態に係るレーザ加工の一工程を示す図である。FIG. 47 is a diagram showing one step of laser processing according to one embodiment. 図48は、一実施形態に係るレーザ加工の対象物を示す図である。FIG. 48 is a diagram showing an object of laser machining according to an embodiment. 図49は、加工試験の結果を示す表である。FIG. 49 is a table showing the results of the processing test. 図50は、加工試験の結果を示す表である。FIG. 50 is a table showing the results of the processing test. 図51は、本実施形態に係る対象物を示す図である。FIG. 51 is a diagram showing an object according to the present embodiment. 図52は、第3領域を加工する際のビーム形状を示す図である。FIG. 52 is a diagram showing a beam shape when processing the third region. 図53は、図52に示されたビーム形状での加工結果を示す表である。FIG. 53 is a table showing the processing results in the beam shape shown in FIG. 52. 図54は、第3実施形態に係るレーザ加工を説明するための図である。FIG. 54 is a diagram for explaining the laser machining according to the third embodiment. 図55は、第4実施形態に係るレーザ加工を説明するための図である。FIG. 55 is a diagram for explaining the laser machining according to the fourth embodiment.
 以下、一実施形態について、図面を参照して詳細に説明する。なお、各図において、同一又は相当する部分には同一の符号を付し、重複する説明を省略する場合がある。また、各図には、X軸、Y軸、及びZ軸によって規定される直交座標系を示す場合がある。
[レーザ加工装置、及び、レーザ加工の概要]
Hereinafter, one embodiment will be described in detail with reference to the drawings. In each figure, the same or corresponding parts may be designated by the same reference numerals, and duplicate description may be omitted. Further, each figure may show a Cartesian coordinate system defined by the X-axis, the Y-axis, and the Z-axis.
[Overview of laser processing equipment and laser processing]
 図1は、一実施形態に係るレーザ加工装置の構成を示す模式図である。図1に示されるように、レーザ加工装置1は、ステージ(支持部)2と、照射部3と、移動部4,5と、制御部6と、を備えている。レーザ加工装置1は、対象物11にレーザ光Lを照射することにより、対象物11に改質領域12を形成するための装置である。 FIG. 1 is a schematic diagram showing a configuration of a laser processing apparatus according to an embodiment. As shown in FIG. 1, the laser processing apparatus 1 includes a stage (support portion) 2, an irradiation unit 3, moving units 4 and 5, and a control unit 6. The laser processing device 1 is a device for forming a modified region 12 on the object 11 by irradiating the object 11 with the laser beam L.
 ステージ2は、例えば対象物11に貼り付けられたフィルムを保持することにより、対象物11を支持する。ステージ2は、Z方向に平行な軸線を回転軸として回転可能である。ステージ2は、X方向及びY方向のそれぞれに沿って移動可能とされてもよい。なお、X方向及びY方向は、互いに交差(直交)する第1水平方向及び第2水平方向であり、Z方向は鉛直方向である。 The stage 2 supports the object 11 by holding the film attached to the object 11, for example. The stage 2 can rotate about an axis parallel to the Z direction as a rotation axis. The stage 2 may be movable along each of the X direction and the Y direction. The X direction and the Y direction are the first horizontal direction and the second horizontal direction intersecting (orthogonal) with each other, and the Z direction is the vertical direction.
 照射部3は、対象物11に対して透過性を有するレーザ光Lを集光して対象物11に照射する。ステージ2に支持された対象物11の内部にレーザ光Lが集光されると、レーザ光Lの集光領域C(例えば後述する中心Ca)に対応する部分においてレーザ光Lが特に吸収され、対象物11の内部に改質領域12が形成される。なお、集光領域Cは、詳細な説明は後述するが、レーザ光Lのビーム強度が最も高くなる位置又はビーム強度の重心位置から所定範囲の領域である。 The irradiation unit 3 condenses the laser beam L having transparency to the object 11 and irradiates the object 11. When the laser beam L is focused inside the object 11 supported by the stage 2, the laser beam L is particularly absorbed in the portion of the laser beam L corresponding to the focused region C (for example, the central Ca described later). A modified region 12 is formed inside the object 11. Although the detailed description will be described later, the condensing region C is a region within a predetermined range from the position where the beam intensity of the laser beam L is highest or the position of the center of gravity of the beam intensity.
 改質領域12は、密度、屈折率、機械的強度、その他の物理的特性が周囲の非改質領域とは異なる領域である。改質領域12としては、例えば、溶融処理領域、クラック領域、絶縁破壊領域、屈折率変化領域等がある。改質領域12は、改質領域12からレーザ光Lの入射側及びその反対側に亀裂が延びるように形成され得る。そのような改質領域12及び亀裂は、例えば対象物11の切断に利用される。 The modified region 12 is a region whose density, refractive index, mechanical strength, and other physical properties are different from those of the surrounding non-modified region. The modified region 12 includes, for example, a melt processing region, a crack region, a dielectric breakdown region, a refractive index change region, and the like. The modified region 12 may be formed so that a crack extends from the modified region 12 to the incident side of the laser beam L and the opposite side thereof. Such modified regions 12 and cracks are utilized, for example, for cutting the object 11.
 一例として、ステージ2をX方向に沿って移動させ、対象物11に対して集光領域CをX方向に沿って相対的に移動させると、複数の改質スポット12sがX方向に沿って1列に並ぶように形成される。1つの改質スポット12sは、1パルスのレーザ光Lの照射によって形成される。1列の改質領域12は、1列に並んだ複数の改質スポット12sの集合である。隣り合う改質スポット12sは、対象物11に対する集光領域Cの相対的な移動速度及びレーザ光Lの繰り返し周波数によって、互いに繋がる場合も、互いに離れる場合もある。 As an example, when the stage 2 is moved along the X direction and the condensing region C is relatively moved along the X direction with respect to the object 11, a plurality of modified spots 12s are 1 along the X direction. Formed to line up. One modified spot 12s is formed by irradiation with one pulse of laser light L. The modified region 12 in one row is a set of a plurality of modified spots 12s arranged in one row. Adjacent modified spots 12s may be connected to each other or separated from each other depending on the relative moving speed of the condensing region C with respect to the object 11 and the repetition frequency of the laser beam L.
 移動部4は、ステージ2をZ方向に交差(直交)する面内の一方向に移動させる第1移動部41と、ステージ2をZ方向に交差(直交)する面内の別方向に移動させる第2移動部42と、を含む。一例として、第1移動部41は、ステージ2をX方向に沿って移動させ、第2移動部42は、ステージ2をY方向に沿って移動させる。また、移動部4は、ステージ2をZ方向に平行な軸線を回転軸として回転させる。移動部5は、照射部3を支持している。移動部5は、照射部3をX方向、Y方向、及びZ方向に沿って移動させる。レーザ光Lの集光領域Cが形成されている状態においてステージ2及び/又は照射部3が移動させられることにより、集光領域Cが対象物11に対して相対移動させられる。すなわち、移動部4,5は、対象物11に対してレーザ光Lの集光領域Cを相対移動させるために、ステージ2及び照射部3の少なくとも一方を移動させる。 The moving unit 4 moves the first moving unit 41 that moves the stage 2 in one direction in the plane that intersects (orthogonally) in the Z direction, and moves the stage 2 in another direction in the plane that intersects (orthogonally) in the Z direction. The second moving unit 42 and the like are included. As an example, the first moving unit 41 moves the stage 2 along the X direction, and the second moving unit 42 moves the stage 2 along the Y direction. Further, the moving unit 4 rotates the stage 2 with an axis parallel to the Z direction as a rotation axis. The moving unit 5 supports the irradiation unit 3. The moving unit 5 moves the irradiation unit 3 along the X direction, the Y direction, and the Z direction. By moving the stage 2 and / or the irradiation unit 3 in the state where the condensing region C of the laser beam L is formed, the condensing region C is relatively moved with respect to the object 11. That is, the moving units 4 and 5 move at least one of the stage 2 and the irradiation unit 3 in order to move the condensing region C of the laser beam L relative to the object 11.
 制御部6は、ステージ2、照射部3、及び移動部4,5の動作を制御する。制御部6は、処理部、記憶部、及び入力受付部を有している(不図示)。処理部は、プロセッサ、メモリ、ストレージ及び通信デバイス等を含むコンピュータ装置として構成されている。処理部では、プロセッサが、メモリ等に読み込まれたソフトウェア(プログラム)を実行し、メモリ及びストレージにおけるデータの読み出し及び書き込み、並びに、通信デバイスによる通信を制御する。記憶部は、例えばハードディスク等であり、各種データを記憶する。入力受付部は、各種情報を表示すると共に、ユーザから各種情報の入力を受け付けるインターフェース部である。入力受付部は、GUI(Graphical User Interface)を構成している。 The control unit 6 controls the operations of the stage 2, the irradiation unit 3, and the moving units 4 and 5. The control unit 6 has a processing unit, a storage unit, and an input receiving unit (not shown). The processing unit is configured as a computer device including a processor, a memory, a storage, a communication device, and the like. In the processing unit, the processor executes software (program) read into the memory or the like, and controls reading and writing of data in the memory and storage, and communication by the communication device. The storage unit is, for example, a hard disk or the like, and stores various data. The input receiving unit is an interface unit that displays various information and accepts input of various information from the user. The input reception unit constitutes a GUI (Graphical User Interface).
 図2は、図1に示された照射部の構成を示す模式図である。図2には、レーザ加工の予定を示す仮想的なラインAを示している。図2に示されるように、照射部3は、光源31と、空間光変調器(成形部)7と、集光レンズ33と、4fレンズユニット34と、を有している。光源31は、例えばパルス発振方式によって、レーザ光Lを出力する。なお、照射部3は、光源31を有さず、照射部3の外部からレーザ光Lを導入するように構成されてもよい。空間光変調器7は、光源31から出力されたレーザ光Lを変調する。集光レンズ33は、空間光変調器7によって変調されて空間光変調器7から出力されたレーザ光Lを対象物11に向けて集光する。 FIG. 2 is a schematic diagram showing the configuration of the irradiation unit shown in FIG. FIG. 2 shows a virtual line A indicating a laser machining schedule. As shown in FIG. 2, the irradiation unit 3 includes a light source 31, a spatial light modulator (molding unit) 7, a condenser lens 33, and a 4f lens unit 34. The light source 31 outputs the laser beam L by, for example, a pulse oscillation method. The irradiation unit 3 does not have a light source 31, and may be configured to introduce the laser beam L from the outside of the irradiation unit 3. The spatial light modulator 7 modulates the laser beam L output from the light source 31. The condenser lens 33 condenses the laser beam L modulated by the spatial light modulator 7 and output from the spatial light modulator 7 toward the object 11.
 図3に示されるように、4fレンズユニット34は、空間光変調器7から集光レンズ33に向かうレーザ光Lの光路上に配列された一対のレンズ34A,34Bを有している。一対のレンズ34A,34Bは、空間光変調器7の変調面7aと集光レンズ33の入射瞳面(瞳面)33aとが結像関係にある両側テレセントリック光学系を構成している。これにより、空間光変調器7の変調面7aでのレーザ光Lの像(空間光変調器7において変調されたレーザ光Lの像)が、集光レンズ33の入射瞳面33aに転像(結像)される。なお、図中のFsはフーリエ面を示す。 As shown in FIG. 3, the 4f lens unit 34 has a pair of lenses 34A and 34B arranged on the optical path of the laser beam L from the spatial light modulator 7 to the condenser lens 33. The pair of lenses 34A and 34B constitute a bilateral telecentric optical system in which the modulation surface 7a of the spatial light modulator 7 and the entrance pupil surface (pupil surface) 33a of the condenser lens 33 are in an imaging relationship. As a result, the image of the laser beam L on the modulation surface 7a of the spatial light modulator 7 (the image of the laser beam L modulated by the spatial light modulator 7) is transferred to the incident pupil surface 33a of the condenser lens 33 ( Image). Note that Fs in the figure indicates a Fourier plane.
 図4に示されるように、空間光変調器7は、反射型液晶(LCOS:Liquid Crystal on Silicon)の空間光変調器(SLM:Spatial Light Modulator)である。空間光変調器7は、半導体基板71上に、駆動回路層72、画素電極層73、反射膜74、配向膜75、液晶層76、配向膜77、透明導電膜78及び透明基板79がこの順序で積層されることで、構成されている。 As shown in FIG. 4, the spatial light modulator 7 is a spatial light modulator (SLM: Spatial Light Modulator) of a reflective liquid crystal (LCOS: Liquid Crystal on Silicon). In the spatial light modulator 7, the drive circuit layer 72, the pixel electrode layer 73, the reflective film 74, the alignment film 75, the liquid crystal layer 76, the alignment film 77, the transparent conductive film 78, and the transparent substrate 79 are arranged in this order on the semiconductor substrate 71. It is configured by being laminated with.
 半導体基板71は、例えば、シリコン基板である。駆動回路層72は、半導体基板71上において、アクティブ・マトリクス回路を構成している。画素電極層73は、半導体基板71の表面に沿ってマトリックス状に配列された複数の画素電極73aを含んでいる。各画素電極73aは、例えば、アルミニウム等の金属材料によって形成されている。各画素電極73aには、駆動回路層72によって電圧が印加される。 The semiconductor substrate 71 is, for example, a silicon substrate. The drive circuit layer 72 constitutes an active matrix circuit on the semiconductor substrate 71. The pixel electrode layer 73 includes a plurality of pixel electrodes 73a arranged in a matrix along the surface of the semiconductor substrate 71. Each pixel electrode 73a is made of a metal material such as aluminum. A voltage is applied to each pixel electrode 73a by the drive circuit layer 72.
 反射膜74は、例えば、誘電体多層膜である。配向膜75は、液晶層76における反射膜74側の表面に設けられており、配向膜77は、液晶層76における反射膜74とは反対側の表面に設けられている。各配向膜75,77は、例えば、ポリイミド等の高分子材料によって形成されており、各配向膜75,77における液晶層76との接触面には、例えば、ラビング処理が施されている。配向膜75,77は、液晶層76に含まれる液晶分子76aを一定方向に配列させる。 The reflective film 74 is, for example, a dielectric multilayer film. The alignment film 75 is provided on the surface of the liquid crystal layer 76 on the reflective film 74 side, and the alignment film 77 is provided on the surface of the liquid crystal layer 76 opposite to the reflective film 74. Each of the alignment films 75, 77 is formed of, for example, a polymer material such as polyimide, and the contact surface of each of the alignment films 75, 77 with the liquid crystal layer 76 is subjected to, for example, a rubbing treatment. The alignment films 75 and 77 arrange the liquid crystal molecules 76a contained in the liquid crystal layer 76 in a certain direction.
 透明導電膜78は、透明基板79における配向膜77側の表面に設けられており、液晶層76等を挟んで画素電極層73と向かい合っている。透明基板79は、例えば、ガラス基板である。透明導電膜78は、例えば、ITO等の光透過性且つ導電性材料によって形成されている。透明基板79及び透明導電膜78は、レーザ光Lを透過させる。 The transparent conductive film 78 is provided on the surface of the transparent substrate 79 on the alignment film 77 side, and faces the pixel electrode layer 73 with the liquid crystal layer 76 and the like interposed therebetween. The transparent substrate 79 is, for example, a glass substrate. The transparent conductive film 78 is formed of a light-transmitting and conductive material such as ITO. The transparent substrate 79 and the transparent conductive film 78 transmit the laser beam L.
 以上のように構成された空間光変調器7では、変調パターンを示す信号が制御部6から駆動回路層72に入力されると、当該信号に応じた電圧が各画素電極73aに印加され、各画素電極73aと透明導電膜78との間に電界が形成される。当該電界が形成されると、液晶層76において、各画素電極73aに対応する領域ごとに液晶分子76aの配列方向が変化し、各画素電極73aに対応する領域ごとに屈折率が変化する。この状態が、液晶層76に変調パターンが表示された状態である。変調パターンは、レーザ光Lを変調するためのものである。 In the spatial light modulator 7 configured as described above, when a signal indicating a modulation pattern is input from the control unit 6 to the drive circuit layer 72, a voltage corresponding to the signal is applied to each pixel electrode 73a, and each of them. An electric field is formed between the pixel electrode 73a and the transparent conductive film 78. When the electric field is formed, in the liquid crystal layer 76, the arrangement direction of the liquid crystal molecules 76a changes in each region corresponding to each pixel electrode 73a, and the refractive index changes in each region corresponding to each pixel electrode 73a. This state is the state in which the modulation pattern is displayed on the liquid crystal layer 76. The modulation pattern is for modulating the laser beam L.
 すなわち、液晶層76に変調パターンが表示された状態で、レーザ光Lが、外部から透明基板79及び透明導電膜78を介して液晶層76に入射し、反射膜74で反射されて、液晶層76から透明導電膜78及び透明基板79を介して外部に出射させられると、液晶層76に表示された変調パターンに応じて、レーザ光Lが変調される。このように、空間光変調器7によれば、液晶層76に表示する変調パターンを適宜設定することで、レーザ光Lの変調(例えば、レーザ光Lの強度、振幅、位相、偏光等の変調)が可能である。なお、図3に示された変調面7aは、例えば液晶層76である。 That is, with the modulation pattern displayed on the liquid crystal layer 76, the laser beam L is incident on the liquid crystal layer 76 from the outside via the transparent substrate 79 and the transparent conductive film 78, and is reflected by the reflective film 74 to be reflected on the liquid crystal layer. When the light is emitted from the 76 to the outside via the transparent conductive film 78 and the transparent substrate 79, the laser beam L is modulated according to the modulation pattern displayed on the liquid crystal layer 76. As described above, according to the spatial light modulator 7, the modulation of the laser beam L (for example, the modulation of the intensity, amplitude, phase, polarization, etc. of the laser beam L) is performed by appropriately setting the modulation pattern to be displayed on the liquid crystal layer 76. ) Is possible. The modulation surface 7a shown in FIG. 3 is, for example, a liquid crystal layer 76.
 以上のように、光源31から出力されたレーザ光Lが、空間光変調器7及び4fレンズユニット34を介して集光レンズ33に入射され、集光レンズ33によって対象物11内に集光されることにより、その集光領域Cにおいて対象物11に改質領域12及び改質領域12から延びる亀裂が形成される。さらに、制御部6が移動部4,5を制御することにより、集光領域Cを対象物11に対して相対移動させることにより、集光領域Cの移動方向に沿って改質領域12及び亀裂が形成されることとなる。
[斜め亀裂形成に関する知見の説明]
As described above, the laser beam L output from the light source 31 is incident on the condenser lens 33 via the spatial light modulator 7 and the 4f lens unit 34, and is condensed in the object 11 by the condenser lens 33. As a result, cracks extending from the modified region 12 and the modified region 12 are formed in the object 11 in the light collecting region C. Further, the control unit 6 controls the moving units 4 and 5 to move the condensing region C relative to the object 11, thereby causing the modified region 12 and the crack along the moving direction of the condensing region C. Will be formed.
[Explanation of findings regarding diagonal crack formation]
 ここで、このときの集光領域Cの相対移動の方向(加工進行方向)をX方向とする。また、対象物11におけるレーザ光Lの入射面である第1面11aに交差(直交)する方向をZ方向とする。また、X方向及びZ方向に交差(直交)する方向をY方向とする。X方向及びY方向は第1面11aに沿った方向である。なお、Z方向は、集光レンズ33の光軸、集光レンズ33を介して対象物11に向けて集光されるレーザ光Lの光軸として規定されてもよい。 Here, the direction of relative movement (machining progress direction) of the light collecting region C at this time is defined as the X direction. Further, the direction that intersects (orthogonally) the first surface 11a, which is the incident surface of the laser beam L on the object 11, is defined as the Z direction. Further, the direction that intersects (orthogonally) the X direction and the Z direction is defined as the Y direction. The X direction and the Y direction are directions along the first surface 11a. The Z direction may be defined as the optical axis of the condenser lens 33 and the optical axis of the laser beam L focused toward the object 11 via the condenser lens 33.
 図5に示されるように、加工進行方向であるX方向に交差する交差面(Y方向及びZ方向を含むYZ面S)内において、Z方向及びY方向に対して傾斜するラインRA(ここではY方向から所定の角度θをもって傾斜するラインRA)に沿って斜めに亀裂を形成する要求がある。このような斜め亀裂形成に対する本発明者の知見について、加工例を示しながら説明する。 As shown in FIG. 5, in the intersection surface (YZ surface S including the Y direction and the Z direction) intersecting the X direction which is the machining progress direction, the line RA (here, the line RA inclined with respect to the Z direction and the Y direction). There is a need to form cracks diagonally along the line RA) that slopes from the Y direction at a predetermined angle θ. The inventor's knowledge of such diagonal crack formation will be described with reference to processing examples.
 ここでは、改質領域12として改質領域12a,12bを形成する。これにより、改質領域12aから延びる亀裂13aと、改質領域12bから延びる亀裂13bとをつなげて、ラインRAに沿って斜めに延びる亀裂13を形成する。ここでは、まず、図6に示されるように、対象物11における第1面11aをレーザ光Lの入射面としつつ集光領域C1を形成する。一方、集光領域C1よりも第1面11a側において、第1面11aをレーザ光Lの入射面としつつ集光領域C2を形成する。このとき、集光領域C2は、集光領域C1よりもZ方向に距離Szだけシフトされており、且つ、集光領域C1よりもY方向に距離Syだけシフトされている。距離Sz及び距離Syは、一例として、ラインRAの傾きに対応する。 Here, the modified regions 12a and 12b are formed as the modified regions 12. As a result, the crack 13a extending from the modified region 12a and the crack 13b extending from the modified region 12b are connected to form a crack 13 extending diagonally along the line RA. Here, first, as shown in FIG. 6, the condensing region C1 is formed while the first surface 11a of the object 11 is used as the incident surface of the laser beam L. On the other hand, on the first surface 11a side of the condensing region C1, the condensing region C2 is formed while the first surface 11a is the incident surface of the laser beam L. At this time, the condensing region C2 is shifted from the condensing region C1 by a distance Sz in the Z direction, and is also shifted from the condensing region C1 in the Y direction by a distance Sy. The distance Sz and the distance Sy correspond to the slope of the line RA as an example.
 他方、図7に示されるように、空間光変調器7を用いてレーザ光Lを変調することにより、集光領域C(少なくとも集光領域C2)のYZ面S内でのビーム形状を、少なくとも集光領域Cの中心Caよりも第1面11a側において、Z方向に対してシフトの方向(ここではY方向の負側)に傾斜する傾斜形状とする。図7の例では、中心Caよりも第1面11a側において、Z方向に対してY方向の負側に傾斜すると共に、中心Caよりも第1面11aと反対側においても、Z方向に対してY方向の負側に傾斜する弧形状とされている。なお、YZ面S内における集光領域Cのビーム形状とは、YZ面S内における集光領域Cでのレーザ光Lの強度分布である。 On the other hand, as shown in FIG. 7, by modulating the laser beam L using the spatial light modulator 7, the beam shape of the condensing region C (at least the condensing region C2) in the YZ plane S is at least. The shape is inclined so as to be inclined in the shift direction (here, the negative side in the Y direction) with respect to the Z direction on the first surface 11a side of the center Ca of the light collection region C. In the example of FIG. 7, the first surface 11a side of the central Ca is inclined to the negative side in the Y direction with respect to the Z direction, and the side opposite to the first surface 11a of the central Ca is also inclined in the Z direction. It has an arc shape that inclines to the negative side in the Y direction. The beam shape of the condensing region C in the YZ plane S is the intensity distribution of the laser beam L in the condensing region C in the YZ plane S.
 このように、少なくとも2つの集光領域C1,C2をY方向にシフトさせると共に、少なくとも集光領域C2(ここでは集光領域C1,C2の両方)のビーム形状を傾斜形状とすることにより、図9の(a)に示されるように、斜めに伸びる亀裂13を形成することができる。なお、例えば空間光変調器7の変調パターンの制御によって、レーザ光Lを分岐することにより集光領域C1,C2を同時に形成して改質領域12及び亀裂13の形成を行ってもよいし(多焦点加工)、集光領域C1の形成により改質領域12a及び亀裂13aを形成した後に、集光領域C2の形成により改質領域12b及び亀裂13bを形成するようにしてもよい(シングルパス加工)。 In this way, at least two condensing regions C1 and C2 are shifted in the Y direction, and at least the beam shape of the condensing region C2 (here, both the condensing regions C1 and C2) is made an inclined shape. As shown in (a) of 9, it is possible to form a crack 13 extending diagonally. In addition, for example, by controlling the modulation pattern of the spatial light modulator 7, the condensing regions C1 and C2 may be formed at the same time by branching the laser beam L to form the modified region 12 and the crack 13 (the modified region 12 and the crack 13 may be formed (). After forming the modified region 12a and the crack 13a by forming the light-collecting region C1 (multifocal processing), the modified region 12b and the crack 13b may be formed by forming the light-collecting region C2 (single-pass processing). ).
 また、集光領域C1と集光領域C2との間に別の集光領域を形成することにより、図9の(b)に示されるように、改質領域12aと改質領域12bとの間に別の改質領域12cを介在させ、より長く斜めに伸びる亀裂13を形成してもよい。 Further, by forming another condensing region between the condensing region C1 and the condensing region C2, as shown in FIG. 9B, between the modified region 12a and the modified region 12b. Another modified region 12c may be interposed to form a longer and diagonally extending crack 13.
 引き続いて、集光領域CのYZ面S内でのビーム形状を傾斜形状とするための知見について説明する。まず、集光領域Cの定義について具体的に説明する。ここでは、集光領域Cとは、中心Caから所定範囲(例えばZ方向について中心Caから±25μmの範囲)の領域である。中心Caは、上述したように、ビーム強度が最も高くなる位置、又は、ビーム強度の重心位置である。ビーム強度の重心位置は、例えば、レーザ光Lを分岐させるための変調パターンといったようなレーザ光Lの光軸をシフトさせる変調パターンによる変調が行われていない状態でのレーザ光Lの光軸上で、ビーム強度の重心が位置する位置である。ビーム強度が最も高くなる位置やビーム強度の重心は、以下のように取得できる。すなわち、レーザ光Lの出力を対象物11に改質領域12が形成されない程度に(加工閾値よりも)低くした状態で、対象物11にレーザ光Lを照射する。これと共に、対象物11のレーザ光Lの入射面と反対側の面(ここでは第2面11b)からのレーザ光Lの反射光を、例えば図15に示されるZ方向の複数の位置F1~F7についてカメラで撮像する。これにより、得られた画像に基づいてビーム強度の最も高くなる位置や重心を取得できる。なお、改質領域12は、この中心Ca付近で形成される。 Next, the knowledge for making the beam shape in the YZ plane S of the condensing region C an inclined shape will be described. First, the definition of the condensing region C will be specifically described. Here, the light-collecting region C is a region within a predetermined range from the central Ca (for example, a range of ± 25 μm from the central Ca in the Z direction). As described above, the central Ca is the position where the beam intensity is highest or the position of the center of gravity of the beam intensity. The position of the center of gravity of the beam intensity is on the optical axis of the laser beam L in a state where the modulation pattern for shifting the optical axis of the laser beam L, such as a modulation pattern for branching the laser beam L, is not performed. This is the position where the center of gravity of the beam intensity is located. The position where the beam intensity is highest and the center of gravity of the beam intensity can be obtained as follows. That is, the laser beam L is irradiated to the object 11 in a state where the output of the laser beam L is lowered to the extent that the modified region 12 is not formed on the object 11 (below the processing threshold value). At the same time, the reflected light of the laser beam L from the surface of the object 11 opposite to the incident surface of the laser beam L (here, the second surface 11b) is transferred to a plurality of positions F1 to the Z direction shown in FIG. 15, for example. The F7 is imaged with a camera. As a result, the position and the center of gravity where the beam intensity is highest can be obtained based on the obtained image. The modified region 12 is formed in the vicinity of the central Ca.
 集光領域Cでのビーム形状を傾斜形状とするためには、変調パターンをオフセットさせる方法がある。より具体的には、空間光変調器7には、波面の歪を補正するための歪補正パターン、レーザ光を分岐するためのグレーティングパターン、スリットパターン、非点収差パターン、コマ収差パターン、及び、球面収差補正パターン等の種々のパターンが表示される(これらが重畳されたパターンが表示される)。このうち、図8に示されるように、球面収差補正パターンPsをオフセットさせることにより、集光領域Cのビーム形状を調整可能である。 There is a method of offsetting the modulation pattern in order to make the beam shape in the condensing region C an inclined shape. More specifically, the spatial light modulator 7 has a distortion correction pattern for correcting the distortion of the wavefront, a grating pattern for branching the laser beam, a slit pattern, an astigmatism pattern, a coma aberration pattern, and the like. Various patterns such as spherical aberration correction patterns are displayed (patterns in which these are superimposed are displayed). Of these, as shown in FIG. 8, the beam shape of the condensing region C can be adjusted by offsetting the spherical aberration correction pattern Ps.
 図8の例では、変調面7aにおいて、球面収差補正パターンPsの中心Pcを、レーザ光Lの(ビームスポットの)中心Lcに対して、Y方向の負側にオフセット量Oy1だけオフセットさせている。上述したように、変調面7aは、4fレンズユニット34によって、集光レンズ33の入射瞳面33aに転像される。したがって、変調面7aにおけるオフセットは、入射瞳面33aでは、Y方向の正側へのオフセットになる。すなわち、入射瞳面33aでは、球面収差補正パターンPsの中心Pcは、レーザ光Lの中心Lc、及び入射瞳面33aの中心(ここでは、中心Lcと一致している)からY方向の正側にオフセット量Oy2だけオフセットされる。 In the example of FIG. 8, on the modulation plane 7a, the center Pc of the spherical aberration correction pattern Ps is offset to the negative side in the Y direction by the offset amount Oy1 with respect to the center Lc (of the beam spot) of the laser beam L. .. As described above, the modulation surface 7a is transferred to the entrance pupil surface 33a of the condenser lens 33 by the 4f lens unit 34. Therefore, the offset on the modulation plane 7a is the offset to the positive side in the Y direction on the entrance pupil plane 33a. That is, on the entrance pupil surface 33a, the center Pc of the spherical aberration correction pattern Ps is the positive side in the Y direction from the center Lc of the laser beam L and the center of the entrance pupil surface 33a (here, it coincides with the center Lc). The offset amount Oy2 is offset to.
 このように、球面収差補正パターンPsをオフセットさせることにより、レーザ光Lの集光領域Cのビーム形状が、図7に示されるように弧状の傾斜形状に変形される。以上のように球面収差補正パターンPsをオフセットさせることは、レーザ光Lに対してコマ収差を与えることに相当する。したがって、空間光変調器7の変調パターンに、レーザ光Lに対してコマ収差を付与するためのコマ収差パターンを含ませることにより、集光領域Cのビーム形状を傾斜形状としてもよい。なお、コマ収差パターンとしては、Zernikeの多項式の9項(3次のコマ収差のY成分)に相当するパターンであって、Y方向にコマ収差が発生するパターンを使用することができる。 By offsetting the spherical aberration correction pattern Ps in this way, the beam shape of the condensing region C of the laser beam L is deformed into an arc-shaped inclined shape as shown in FIG. 7. Offsetting the spherical aberration correction pattern Ps as described above corresponds to giving coma aberration to the laser beam L. Therefore, the beam shape of the condensing region C may be an inclined shape by including the coma aberration pattern for imparting coma aberration to the laser beam L in the modulation pattern of the spatial light modulator 7. As the coma aberration pattern, a pattern corresponding to the 9th term (Y component of the third-order coma aberration) of the Zernike polynomial, in which coma aberration occurs in the Y direction, can be used.
 引き続いて、対象物11の結晶性と亀裂13との関係についての知見を説明する。図10は、対象物の模式的な平面図である。ここでは、対象物11は、シリコンウェハ(t775μm、<100>、1Ω・cm)であり、ノッチ11dが形成されている。この対象物11に対して、加工進行方向であるX方向を0°(110)面に合わせた第1加工例を図11の(a)に示し、X方向を15°に合わせた第2加工例を図11の(b)に示し、30°に合わせた第3加工例を図12の(a)に示し、45°(100)面に合わせた第4加工例を図12の(b)に示す。各加工例においては、YZ面S内におけるラインRAのY方向からの角度θを71°としている。 Next, I will explain the knowledge about the relationship between the crystallinity of the object 11 and the crack 13. FIG. 10 is a schematic plan view of the object. Here, the object 11 is a silicon wafer (t775 μm, <100>, 1 Ω · cm), and a notch 11d is formed. An example of the first machining in which the X direction, which is the machining progress direction, is aligned with the 0 ° (110) plane with respect to the object 11, is shown in FIG. 11A, and the second machining in which the X direction is aligned with 15 °. An example is shown in FIG. 11 (b), a third machining example adjusted to 30 ° is shown in FIG. 12 (a), and a fourth machining example matched to a 45 ° (100) plane is shown in FIG. 12 (b). Shown in. In each processing example, the angle θ of the line RA in the YZ plane S from the Y direction is 71 °.
 また、各加工例では、第1パスとして集光領域C1をX方向に相対移動させて改質領域12a及び亀裂13aを形成した後に、第2パスとして集光領域C2をX方向に相対移動させて改質領域12b及び亀裂13bを形成するシングルパス加工としている。第1パス及び第2パスの加工条件は以下のとおりとした。なお、以下のCPは集光補正の強度を示したものであり、コマ(LBAオフセットY)は、球面収差補正パターンPsのY方向へのオフセット量を空間光変調器7のピクセル単位で示したものである。 Further, in each processing example, the condensing region C1 is relatively moved in the X direction as the first pass to form the modified region 12a and the crack 13a, and then the condensing region C2 is relatively moved in the X direction as the second pass. The single pass processing is performed to form the modified region 12b and the crack 13b. The processing conditions for the first pass and the second pass were as follows. The CP below indicates the strength of the light collection correction, and the coma (LBA offset Y) indicates the amount of offset of the spherical aberration correction pattern Ps in the Y direction in pixel units of the spatial light modulator 7. It is a thing.
 <第1パス>
   Z方向位置:161μm
   CP:-18
   出力:2W
   速度:530mm/s
   周波数:80kHz
   コマ(LBAオフセットY):-5
   Y方向位置:0
<1st pass>
Z direction position: 161 μm
CP: -18
Output: 2W
Speed: 530mm / s
Frequency: 80kHz
Frame (LBA offset Y): -5
Y direction position: 0
 <第2パス>
   Z方向位置:151μm
   CP:-18
   出力:2W
   速度:530mm/s
   周波数80kHz
   コマ(LBAオフセットY):-5
   Y方向位置:0.014mm
<Second pass>
Z direction position: 151 μm
CP: -18
Output: 2W
Speed: 530mm / s
Frequency 80kHz
Frame (LBA offset Y): -5
Y direction position: 0.014 mm
 図11及び図12に示されるように、いずれの場合であっても、Y方向に対して71°で傾斜するラインRAに沿って亀裂13を形成することができた。すなわち、対象物11における主要劈開面である(110)面、(111)面、及び、(100)面等の影響に依らず、すなわち、対象物11の結晶構造に依らずに、所望のラインRAに沿って斜めに延びる亀裂13を形成することができた。 As shown in FIGS. 11 and 12, in any case, the crack 13 could be formed along the line RA inclined at 71 ° with respect to the Y direction. That is, the desired line does not depend on the influence of the (110) plane, the (111) plane, the (100) plane, etc., which are the main cleavage planes of the object 11, that is, regardless of the crystal structure of the object 11. A crack 13 extending diagonally along the RA could be formed.
 なお、このように斜めに延びる亀裂13を形成するためのビーム形状の制御は、上記の例に限定されない。引き続いて、ビーム形状を傾斜形状とするための別の例について説明する。図13の(a)に示されるように、加工進行方向であるX方向に沿った軸線Axに対して非対称な変調パターンPG1によってレーザ光Lを変調し、集光領域Cのビーム形状を傾斜形状としてもよい。変調パターンPG1は、Y方向におけるレーザ光Lのビームスポットの中心Lcを通るX方向に沿った軸線AxよりもY方向の負側にグレーティングパターンGaを含むと共に、軸線AxよりもY方向の正側に非変調領域Baを含む。換言すれば、変調パターンPG1は、軸線AxよりもY方向の正側のみにグレーティングパターンGaが含まれる。なお、図13の(b)は、図13の(a)の変調パターンPG1を集光レンズ33の入射瞳面33aに対応するように反転させたものである。 Note that the control of the beam shape for forming the crack 13 extending diagonally in this way is not limited to the above example. Subsequently, another example for making the beam shape an inclined shape will be described. As shown in FIG. 13A, the laser beam L is modulated by the modulation pattern PG1 that is asymmetric with respect to the axis Ax along the X direction, which is the processing progress direction, and the beam shape of the condensing region C is inclined. May be. The modulation pattern PG1 includes the grating pattern Ga on the negative side in the Y direction with respect to the axis Ax along the X direction passing through the center Lc of the beam spot of the laser beam L in the Y direction, and is on the positive side in the Y direction with respect to the axis Ax. Includes a non-modulation region Ba. In other words, the modulation pattern PG1 includes the grating pattern Ga only on the positive side in the Y direction with respect to the axis Ax. Note that FIG. 13B shows the modulation pattern PG1 of FIG. 13A inverted so as to correspond to the entrance pupil surface 33a of the condenser lens 33.
 図14の(a)は、集光レンズ33の入射瞳面33aにおけるレーザ光Lの強度分布を示す。図14の(a)に示されるように、このような変調パターンPG1を用いることにより、空間光変調器7に入射したレーザ光LのうちのグレーティングパターンGaにより変調された部分が集光レンズ33の入射瞳面33aに入射しなくなる。この結果、図14の(b)及び図15に示されるように、YZ面S内における集光領域Cのビーム形状を、その全体がZ方向に対して一方向に傾斜した傾斜形状とすることができる。 FIG. 14A shows the intensity distribution of the laser beam L on the entrance pupil surface 33a of the condenser lens 33. As shown in FIG. 14A, by using such a modulation pattern PG1, the portion of the laser beam L incident on the spatial light modulator 7 that is modulated by the grating pattern Ga is the condenser lens 33. No longer incident on the incident pupil surface 33a. As a result, as shown in FIG. 14B and FIG. 15, the beam shape of the condensing region C in the YZ plane S is made to be an inclined shape in which the entire beam shape is inclined in one direction with respect to the Z direction. Can be done.
 すなわち、この場合には、集光領域Cのビーム形状が、集光領域Cの中心Caよりも第1面11a側において、Z方向に対してY方向の負側に傾斜する共に、集光領域Cの中心Caよりも第1面11aと反対側において、Z方向に対してY方向の正側に傾斜することとなる。なお、図15の(b)の各図は、図15の(a)に示されたZ方向の各位置F1~F7におけるレーザ光LのXY面内の強度分布を示し、カメラによる実際の観測結果である。集光領域Cのビーム形状をこのように制御した場合であっても、上記の例と同様に、斜めに伸びる亀裂13を形成できる。 That is, in this case, the beam shape of the condensing region C is inclined to the negative side in the Y direction with respect to the Z direction on the first surface 11a side of the center Ca of the condensing region C, and the condensing region. On the side opposite to the first surface 11a from the center Ca of C, it is inclined to the positive side in the Y direction with respect to the Z direction. It should be noted that each figure of FIG. 15 (b) shows the intensity distribution of the laser beam L in the XY plane at each position F1 to F7 in the Z direction shown in FIG. 15 (a), and is actually observed by a camera. The result. Even when the beam shape of the condensing region C is controlled in this way, the crack 13 extending diagonally can be formed as in the above example.
 さらに、軸線Axに対して非対称な変調パターンとしては、図16に示される変調パターンPG2,PG3,PG4を採用することもできる。変調パターンPG2は、軸線AxよりもY方向の負側において、軸線Axから離れる方向に順に配列された非変調領域Ba及びグレーティングパターンGaを含み、軸線AxよりもY方向の正側に非変調領域Baを含む。すなわち、変調パターンPG2は、軸線AxよりもY方向の負側の領域の一部にグレーティングパターンGaを含む。 Further, as the modulation pattern asymmetric with respect to the axis line Ax, the modulation patterns PG2, PG3, and PG4 shown in FIG. 16 can also be adopted. The modulation pattern PG2 includes an unmodulated region Ba and a grating pattern Ga arranged in order away from the axis Ax on the negative side in the Y direction with respect to the axis Ax, and a non-modulated region on the positive side in the Y direction with respect to the axis Ax. Including Ba. That is, the modulation pattern PG2 includes the grating pattern Ga in a part of the region on the negative side in the Y direction with respect to the axis Ax.
 変調パターンPG3は、軸線AXよりもY方向の負側において、軸線Axから離れる方向に順に配列された非変調領域Ba及びグレーティングパターンGaを含むと共に、軸線AxよりもY方向の正側においても、軸線Axから離れる方向に順に配列された非変調領域Ba及びグレーティングパターンGaを含む。変調パターンPG3では、軸線AxよりもY方向の正側とY方向の負側とで、非変調領域Ba及びグレーティングパターンGaの割合を異ならせることで(Y方向の負側で相対的に非変調領域Baが狭くされることで)、軸線Axに対して非対称とされている。 The modulation pattern PG3 includes an unmodulated region Ba and a grating pattern Ga arranged in order away from the axis Ax on the negative side in the Y direction from the axis AX, and also on the positive side in the Y direction from the axis Ax. It includes an unmodulated region Ba and a grating pattern Ga sequentially arranged in a direction away from the axis Ax. In the modulation pattern PG3, the ratios of the non-modulation region Ba and the grating pattern Ga are different between the positive side in the Y direction and the negative side in the Y direction with respect to the axis Ax (relatively unmodulation on the negative side in the Y direction). (By narrowing the region Ba), it is asymmetric with respect to the axis Ax.
 変調パターンPG4は、変調パターンPG2と同様に、軸線AxよりもY方向の負側の領域の一部にグレーティングパターンGaを含む。変調パターンPG4では、さらに、X方向についても、グレーティングパターンGaが設けられた領域が一部とされている。すなわち、変調パターンPG4では、軸線AxよりもY方向の負側の領域において、X方向に順に配列された非変調領域Ba、グレーティングパターンGa、及び、非変調領域Baを含む。ここでは、グレーティングパターンGaは、X方向におけるレーザ光Lのビームスポットの中心Lcを通るY方向に沿った軸線Ayを含む領域に配置されている。 Similar to the modulation pattern PG2, the modulation pattern PG4 includes the grating pattern Ga in a part of the region on the negative side in the Y direction with respect to the axis Ax. In the modulation pattern PG4, a region where the grating pattern Ga is provided is also a part in the X direction. That is, the modulation pattern PG4 includes the non-modulation region Ba, the grating pattern Ga, and the non-modulation region Ba arranged in order in the X direction in the region on the negative side in the Y direction with respect to the axis Ax. Here, the grating pattern Ga is arranged in a region including an axis Ay along the Y direction passing through the center Lc of the beam spot of the laser beam L in the X direction.
 以上のいずれの変調パターンPG2~PG4によっても、集光領域Cのビーム形状を、少なくとも中心Caよりも第1面11a側においてZ方向に対してY方向の負側に傾斜する傾斜形状とすることができる。すなわち、集光領域Cのビーム形状を、少なくとも中心Caよりも第1面11a側においてZ方向に対してY方向の負側に傾斜するように制御するためには、変調パターンPG1~PG4のように、或いは、変調パターンPG1~PG4に限らず、グレーティングパターンGaを含む非対称な変調パターンを用いることができる。 In any of the above modulation patterns PG2 to PG4, the beam shape of the condensing region C shall be an inclined shape that is inclined to the negative side in the Y direction with respect to the Z direction at least on the first surface 11a side of the central Ca. Can be done. That is, in order to control the beam shape of the focusing region C so as to be inclined to the negative side in the Y direction with respect to the Z direction at least on the first surface 11a side of the center Ca, the modulation patterns PG1 to PG4 are used. Alternatively, not limited to the modulation patterns PG1 to PG4, an asymmetric modulation pattern including the grating pattern Ga can be used.
 さらに、集光領域Cのビーム形状を傾斜形状とするための非対称な変調パターンとしては、グレーティングパターンGaを利用するものに限定されない。図17は、非対称な変調パターンの別の例を示す図である。図17の(a)に示されるように、変調パターンPEは、軸線AxよりもY方向の負側に楕円パターンEwを含むと共に、軸線AxよりもY方向の正側に楕円パターンEsを含む。なお、図17の(b)は、図17の(a)の変調パターンPEを集光レンズ33の入射瞳面33aに対応するように反転させたものである。 Further, the asymmetric modulation pattern for making the beam shape of the focusing region C an inclined shape is not limited to the one using the grating pattern Ga. FIG. 17 is a diagram showing another example of an asymmetric modulation pattern. As shown in FIG. 17A, the modulation pattern PE includes the elliptical pattern Ew on the negative side in the Y direction with respect to the axis Ax and the elliptical pattern Es on the positive side in the Y direction with respect to the axis Ax. Note that FIG. 17B shows the modulation pattern PE of FIG. 17A inverted so as to correspond to the entrance pupil surface 33a of the condenser lens 33.
 図17の(c)に示されるように、楕円パターンEw,Esは、いずれも、X方向及びY方向を含むXY面における集光領域Cのビーム形状を、X方向を長手方向とする楕円形状とするためのパターンである。ただし、楕円パターンEwと楕円パターンEsとでは変調の強度が異なる。より具体的には、楕円パターンEsによる変調の強度が楕円パターンEwによる変調の強度よりも大きくされている。すなわち、楕円パターンEsによって変調されたレーザ光Lが形成する集光領域Csが、楕円パターンEwによって変調されたレーザ光Lが形成する集光領域CwよりもX方向に長い楕円形状となるようにされている。ここでは、軸線AxよりもY方向の負側に相対的に強い楕円パターンEsが配置されている。 As shown in FIG. 17 (c), the elliptical patterns Ew and Es both have an elliptical shape in which the beam shape of the condensing region C on the XY plane including the X direction and the Y direction is the longitudinal direction in the X direction. It is a pattern for. However, the modulation intensity is different between the elliptical pattern Ew and the elliptical pattern Es. More specifically, the intensity of the modulation by the elliptical pattern Es is made larger than the intensity of the modulation by the elliptical pattern Ew. That is, the condensing region Cs formed by the laser beam L modulated by the elliptical pattern Es has an elliptical shape longer in the X direction than the condensing region Cw formed by the laser beam L modulated by the elliptical pattern Ew. Has been done. Here, the elliptical pattern Es, which is relatively strong on the negative side in the Y direction with respect to the axis Ax, is arranged.
 図18の(a)に示されるように、このような変調パターンPEを用いることにより、YZ面S内における集光領域Cのビーム形状を、中心Caよりも第1面11a側においてZ方向に対してY方向の負側に傾斜する傾斜形状とすることができる。特に、この場合には、YZ面S内における集光領域Cのビーム形状が、中心Caよりも第1面11aと反対側においてもZ方向に対してY方向の負側に傾斜することとなり、全体として弧状となる。なお、図18の(b)の各図は、図18の(a)に示されたZ方向の各位置H1~F8におけるレーザ光LのXY面内の強度分布を示し、カメラによる実際の観測結果である。 As shown in FIG. 18A, by using such a modulation pattern PE, the beam shape of the condensing region C in the YZ plane S can be changed in the Z direction on the first plane 11a side of the central Ca. On the other hand, the shape can be inclined so as to be inclined to the negative side in the Y direction. In particular, in this case, the beam shape of the condensing region C in the YZ plane S is inclined to the negative side in the Y direction with respect to the Z direction even on the side opposite to the first plane 11a from the central Ca. It becomes arcuate as a whole. It should be noted that each figure of FIG. 18B shows the intensity distribution of the laser beam L in the XY plane at each position H1 to F8 in the Z direction shown in FIG. 18A, and is actually observed by a camera. The result.
 さらには、集光領域Cのビーム形状を傾斜形状とするための変調パターンは、以上の非対称なパターンに限定されない。一例として、そのような変調パターンとして、図19に示されるように、YZ面S内において複数位置に集光点CIを形成して、複数の集光点CIの全体で(複数の集光点CIを含む)傾斜形状である集光領域Cを形成するように、レーザ光Lを変調するためのパターンが挙げられる。このような変調パターンは一例として、アキシコンレンズパターンに基づいて形成できる。このような変調パターンを用いた場合には、改質領域12自体もYZ面S内において斜めに形成することができる。このため、この場合には、所望する傾斜に応じて正確に斜めの亀裂13を形成できる。一方、このような変調パターンを用いた場合には、上記の他の例と比較して、亀裂13の長さが短くなる傾向がある。したがって、要求に応じて各種の変調パターンを使い分けることにより、所望の加工が可能となる。 Furthermore, the modulation pattern for making the beam shape of the condensing region C an inclined shape is not limited to the above asymmetric pattern. As an example, as such a modulation pattern, as shown in FIG. 19, condensing point CIs are formed at a plurality of positions in the YZ plane S, and the entire plurality of condensing point CIs (multiple condensing points) are formed. A pattern for modulating the laser beam L so as to form a focused region C having an inclined shape (including CI) can be mentioned. As an example, such a modulation pattern can be formed based on the axicon lens pattern. When such a modulation pattern is used, the modified region 12 itself can be formed obliquely in the YZ plane S. Therefore, in this case, the oblique crack 13 can be formed accurately according to the desired inclination. On the other hand, when such a modulation pattern is used, the length of the crack 13 tends to be shorter than that of the other examples described above. Therefore, desired processing can be performed by properly using various modulation patterns according to the requirements.
 なお、上記集光点CIは、例えば、非変調のレーザ光が集光される点である。以上のように、本発明者の知見によれば、YZ面S内において少なくとの2つの改質領域12a,12bをY方向及びZ方向にシフトさせ、且つ、YZ面S内において集光領域Cのビーム形状を傾斜形状とすることにより、Z方向に対してY方向に傾斜するように斜めに延びる亀裂13を形成することができるのである。 The focusing point CI is, for example, a point where unmodulated laser light is focused. As described above, according to the findings of the present inventor, at least two modified regions 12a and 12b in the YZ plane S are shifted in the Y direction and the Z direction, and a condensing region in the YZ plane S. By making the beam shape of C an inclined shape, it is possible to form a crack 13 extending diagonally so as to be inclined in the Y direction with respect to the Z direction.
 なお、ビーム形状の制御に際して、球面収差補正パターンのオフセットを利用する場合、コマ収差パターンを利用する場合、及び、楕円パターンを利用する場合には、回折格子パターンを利用してレーザ光の一部をカットする場合と比較して、高エネルギーでの加工が可能となる。また、これらの場合には、亀裂の形成を重視する場合に有効である。また、コマ収差パターンを利用する場合には、多焦点加工の場合に、一部の集光領域のビーム形状のみを傾斜形状とすることが可能である。さらに、アキシコンレンズパターンを利用する場合は、他のパターンの利用は、他のパターンと比較して改質領域の形成を重視する場合に有効である。
[トリミング加工の一例]
When controlling the beam shape, when the offset of the spherical aberration correction pattern is used, when the coma aberration pattern is used, and when the elliptical pattern is used, a part of the laser beam is used by using the diffraction grating pattern. Compared to the case of cutting, it is possible to process with high energy. Further, in these cases, it is effective when the formation of cracks is emphasized. Further, when the coma aberration pattern is used, it is possible to make only the beam shape of a part of the condensing region an inclined shape in the case of multifocal processing. Further, when the axicon lens pattern is used, the use of other patterns is effective when the formation of the modified region is emphasized as compared with the other patterns.
[Example of trimming]
 引き続いて、トリミング加工の一例について説明する。トリミング加工は、対象物11において不要部分を除去する加工である。トリミング加工は、対象物11に集光領域を合わせてレーザ光Lを照射することにより、対象物11に改質領域12を形成するレーザ加工方法を含む。対象物11は、例えば円板状に形成された半導体ウェハを含む。対象物としては特に限定されず、種々の材料で形成されていてもよいし、種々の形状を呈していてもよい。対象物11の第2面11bには、機能素子(不図示)が形成されている。機能素子は、例えば、フォトダイオード等の受光素子、レーザダイオード等の発光素子、メモリ等の回路素子等である。 Next, an example of trimming will be explained. The trimming process is a process for removing an unnecessary portion in the object 11. The trimming process includes a laser processing method for forming a modified region 12 on the object 11 by aligning the condensing region with the object 11 and irradiating the object 11 with laser light L. The object 11 includes, for example, a semiconductor wafer formed in a disk shape. The object is not particularly limited, and may be formed of various materials or may have various shapes. A functional element (not shown) is formed on the second surface 11b of the object 11. The functional element is, for example, a light receiving element such as a photodiode, a light emitting element such as a laser diode, a circuit element such as a memory, or the like.
 図20及び図21は、加工の対象物を示す図である。図20,21に示されるように、対象物11には、有効領域R及び除去領域Eが設定されている。有効領域Rは、取得する半導体デバイスに対応する部分である。ここでの有効領域Rは、対象物11を厚さ方向から見て中央部分を含む円板状の部分である。除去領域Eは、対象物11における有効領域Rよりも外側の領域である。除去領域Eは、対象物11において有効領域R以外の外縁部分である。ここでの除去領域Eは、有効領域Rを囲う円環状の部分である。除去領域Eは、対象物11を厚さ方向から見て周縁部分(外縁のベベル部)を含む。有効領域R及び除去領域Eの設定は、制御部6において行うことができる。有効領域R及び除去領域Eは、座標指定されたものであってもよい。 20 and 21 are diagrams showing an object to be processed. As shown in FIGS. 20 and 21, the effective region R and the removal region E are set in the object 11. The effective domain R is a portion corresponding to the semiconductor device to be acquired. The effective domain R here is a disk-shaped portion including a central portion when the object 11 is viewed from the thickness direction. The removal region E is a region outside the effective region R in the object 11. The removal region E is an outer edge portion of the object 11 other than the effective region R. The removal region E here is an annular portion surrounding the effective region R. The removal region E includes a peripheral portion (bevel portion of the outer edge) when the object 11 is viewed from the thickness direction. The effective region R and the removal region E can be set in the control unit 6. The effective area R and the removal area E may have coordinates specified.
 ステージ2は、対象物11が載置される支持部である。本実施形態のステージ2には、対象物11の第1面11aをレーザ光入射面側である上側にした状態(第2面11bをステージ2側である下側にした状態)で、対象物11が載置されている。ステージ2は、その中心に設けられた回転軸Cxを有する。回転軸Cxは、Z方向に沿って延びる軸である。ステージ2は、回転軸Cxを中心に回転可能である。ステージ2は、モータ等の公知の駆動装置の駆動力により回転駆動される。 Stage 2 is a support portion on which the object 11 is placed. In the stage 2 of the present embodiment, the first surface 11a of the object 11 is on the upper side of the laser beam incident surface side (the second surface 11b is on the lower side of the stage 2 side). 11 is placed. The stage 2 has a rotation axis Cx provided at the center thereof. The rotation axis Cx is an axis extending along the Z direction. The stage 2 can rotate about the rotation axis Cx. The stage 2 is rotationally driven by the driving force of a known driving device such as a motor.
 照射部3は、ステージ2に載置された対象物11にレーザ光LをZ方向に沿って照射し、当該対象物11の内部に改質領域を形成する。照射部3は、移動部5に取り付けられている。照射部3は、モータ等の公知の駆動装置の駆動力によりZ方向に直線的に移動可能である。照射部3は、モータ等の公知の駆動装置の駆動力によりX方向及びY方向に直線的に移動可能である。 The irradiation unit 3 irradiates the object 11 placed on the stage 2 with the laser beam L along the Z direction to form a modified region inside the object 11. The irradiation unit 3 is attached to the moving unit 5. The irradiation unit 3 can move linearly in the Z direction by the driving force of a known driving device such as a motor. The irradiation unit 3 can move linearly in the X direction and the Y direction by the driving force of a known driving device such as a motor.
 照射部3は、上述したように、空間光変調器7を備えている。空間光変調器7は、レーザ光Lの光軸に垂直な面内における集光領域Cの形状(すなわち、Z方向からみたときの集光領域Cの形状)(以下、「ビーム形状」ともいう)を成形する成形部を構成する。空間光変調器7は、Z方向からみたときのビーム形状が長手方向を有するようにレーザ光Lを成形することができる。例えば空間光変調器7は、ビーム形状を楕円形状とする変調パターンを表示ずることで、ビーム形状を楕円形状へ成形する。 As described above, the irradiation unit 3 includes a spatial light modulator 7. The spatial light modulator 7 also refers to the shape of the condensing region C in the plane perpendicular to the optical axis of the laser beam L (that is, the shape of the condensing region C when viewed from the Z direction) (hereinafter, also referred to as “beam shape”). ) Is formed. The spatial light modulator 7 can shape the laser beam L so that the beam shape when viewed from the Z direction has a longitudinal direction. For example, the spatial light modulator 7 shapes the beam shape into an elliptical shape by displaying a modulation pattern in which the beam shape is an elliptical shape.
 ビーム形状は、楕円形状に限定されず、長尺形状であればよい。ビーム形状は、扁平円形状、長円形状又はトラック形状であってもよい。ビーム形状は、長尺な三角形形状、矩形形状又は多角形形状であってもよい。このようなビーム形状を実現する空間光変調器7の変調パターンは、スリットパターン及び非点パターンの少なくとも何れかを含んでいてもよい。なお、レーザ光Lが非点収差等によって複数の集光領域Cを有する場合、複数の集光領域Cのうち、レーザ光Lの光路における最も上流側の集光領域Cの形状が、本実施形態のビーム形状である(その他のレーザ光において同じ)。ここでの長手方向は、ビーム形状に係る楕円形状の長軸方向であり、楕円長軸方向とも称される。 The beam shape is not limited to an elliptical shape, and may be a long shape. The beam shape may be a flat circular shape, an oval shape, or a track shape. The beam shape may be a long triangular shape, a rectangular shape, or a polygonal shape. The modulation pattern of the spatial light modulator 7 that realizes such a beam shape may include at least one of a slit pattern and an astigmatic pattern. When the laser beam L has a plurality of condensing regions C due to non-point aberration or the like, the shape of the condensing region C on the most upstream side in the optical path of the laser beam L among the plurality of condensing regions C is the present implementation. It is a beam shape of the form (same for other laser beams). The longitudinal direction here is the major axis direction of the elliptical shape related to the beam shape, and is also referred to as the elliptical major axis direction.
 ビーム形状は、集光点の形状に限定されず、集光点付近の形状であってもよく、要は、集光領域Cの一部の形状であればよい。例えば、非点収差を有するレーザ光Lの場合、図22の(a)に示されるように、集光点付近におけるレーザ光入射面側の領域では、ビーム形状が長手方向NHを有する。図22の(a)のビーム形状の平面内(集光点付近におけるレーザ光入射面側のZ方向位置での平面内)のビーム強度分布では、長手方向NHに強い強度を持つ分布になっており、ビーム強度の強い方向が長手方向NHと一致している。 The beam shape is not limited to the shape of the condensing point, and may be a shape near the condensing point, in short, it may be a part of the condensing region C. For example, in the case of the laser beam L having astigmatism, as shown in FIG. 22 (a), the beam shape has the longitudinal direction NH in the region on the laser beam incident surface side near the condensing point. In the beam intensity distribution in the plane of the beam shape of FIG. 22 (a) (in the plane at the position in the Z direction on the laser light incident surface side near the condensing point), the distribution has a strong intensity in the longitudinal direction NH. The direction in which the beam intensity is strong coincides with the longitudinal direction NH.
 非点収差を有するレーザ光Lの場合、図22の(c)に示されるように、集光点付近におけるレーザ光入射面の反対面側の領域では、ビーム形状が、レーザ光入射面側の領域の長手方向NH(図22の(a)参照)に対して垂直な長手方向NH0を有する。図22の(c)のビーム形状の平面内(集光点付近におけるレーザ光入射面の反対面側のZ方向位置での平面内)のビーム強度分布では、長手方向NH0に強い強度を持つ分布になっており、ビーム強度の強い方向が長手方向NH0と一致している。非点収差を有するレーザ光Lの場合、図22の(b)に示されるように、集光点付近におけるレーザ光入射面側とその反対面側との間の領域では、集光領域Cが長手方向を有さずに円形となる。 In the case of the laser beam L having non-point aberration, as shown in FIG. 22 (c), in the region on the opposite surface side of the laser beam incident surface near the condensing point, the beam shape is on the laser beam incident surface side. It has a longitudinal NH0 perpendicular to the longitudinal NH of the region (see (a) in FIG. 22). In the beam intensity distribution in the plane of the beam shape of FIG. 22 (c) (in the plane at the position in the Z direction on the opposite side of the laser beam incident surface near the condensing point), the distribution has a strong intensity in the longitudinal direction NH0. The direction in which the beam intensity is strong coincides with the longitudinal direction NH0. In the case of the laser beam L having astigmatism, as shown in FIG. 22 (b), the condensing region C is located in the region between the laser beam incident surface side and the opposite surface side in the vicinity of the condensing point. It has no longitudinal direction and is circular.
 このような非点収差を有するレーザ光Lの場合において、本実施形態が対象とする集光領域Cは、集光点付近におけるレーザ光入射面側の領域を含み、本実施形態が対象とするビーム形状は、図22の(a)に示されるビーム形状である。 In the case of the laser beam L having such astigmatism, the condensing region C targeted by the present embodiment includes a region on the laser beam incident surface side in the vicinity of the condensing point, and is targeted by the present embodiment. The beam shape is the beam shape shown in FIG. 22 (a).
 なお、空間光変調器7の変調パターンを調整することによって、集光領域Cにおける図22の(a)に示されるビーム形状となる位置を、所望に制御することができる。例えば、集光点付近におけるレーザ光入射面の反対面側の領域にて図22の(a)に示されるビーム形状を有するように制御することができる。また例えば、集光点付近におけるレーザ光入射面側とその反対面側との間の領域にて図22の(a)に示されるビーム形状を有するように制御することができる。集光領域Cの一部の位置は、特に限定されず、対象物11のレーザ光入射面からその反対面までの間の何れかの位置であればよい。 By adjusting the modulation pattern of the spatial light modulator 7, the position of the focused region C having the beam shape shown in FIG. 22 (a) can be controlled as desired. For example, it can be controlled to have the beam shape shown in FIG. 22 (a) in the region on the opposite surface side of the laser beam incident surface near the condensing point. Further, for example, it can be controlled to have the beam shape shown in FIG. 22 (a) in the region between the laser beam incident surface side and the opposite surface side in the vicinity of the condensing point. The position of a part of the condensing region C is not particularly limited, and may be any position between the laser beam incident surface of the object 11 and the opposite surface thereof.
 また例えば、変調パターンの制御及び/又は機械式機構によるスリット又は楕円光学系を用いた場合、図23の(a)に示されるように、集光点付近におけるレーザ光入射面側の領域では、ビーム形状が長手方向NHを有する。図23の(a)のビーム形状の平面内(集光点付近におけるレーザ光入射面側のZ方向位置での平面内)のビーム強度分布では、長手方向NHに強い強度を持つ分布になっており、ビーム強度の強い方向が長手方向NHと一致している。 Further, for example, when a slit or an elliptical optical system with modulation pattern control and / or a mechanical mechanism is used, as shown in FIG. 23 (a), in the region on the laser light incident surface side near the condensing point, The beam shape has longitudinal NH. In the beam intensity distribution in the plane of the beam shape of FIG. 23 (a) (in the plane at the position in the Z direction on the laser light incident surface side near the condensing point), the distribution has a strong intensity in the longitudinal direction NH. The direction in which the beam intensity is strong coincides with the longitudinal direction NH.
 スリット又は楕円光学系を用いた場合、図23の(c)に示されるように、集光点付近におけるレーザ光入射面の反対面側の領域では、ビーム形状が、レーザ光入射面側の領域の長手方向NH(図22の(a)参照)と同じ長手方向NHを有する。図23の(c)のビーム形状の平面内(集光点付近におけるレーザ光入射面の反対面側のZ方向位置での平面内)のビーム強度分布では、長手方向NHに強い強度を持つ分布になっており、ビーム強度の強い方向が長手方向NHと一致している。スリット又は楕円光学系を用いた場合、図23の(b)に示されるように、集光点では、ビーム形状が、レーザ光入射面側の領域の長手方向NH(図23の(a)参照)に対して垂直な長手方向NH0を有する。図23の(b)のビーム形状の平面内(集光点のZ方向位置での平面内)のビーム強度分布では、長手方向NH0に強い強度を持つ分布になっており、ビーム強度の強い方向が長手方向NH0と一致している。 When a slit or an elliptical optical system is used, as shown in FIG. 23 (c), in the region on the opposite side of the laser beam incident surface near the condensing point, the beam shape is the region on the laser beam incident surface side. Has the same longitudinal NH as (see (a) in FIG. 22). In the beam intensity distribution in the plane of the beam shape of FIG. 23 (c) (in the plane at the position in the Z direction on the opposite side of the laser beam incident surface near the condensing point), the distribution has a strong intensity in the longitudinal direction NH. The direction in which the beam intensity is strong coincides with the longitudinal direction NH. When a slit or elliptical optical system is used, as shown in FIG. 23 (b), at the condensing point, the beam shape is NH in the longitudinal direction of the region on the laser beam incident surface side (see FIG. 23 (a)). ) Has a longitudinal direction NH0 perpendicular to). In the beam intensity distribution in the plane of the beam shape of FIG. 23 (b) (in the plane at the Z direction position of the condensing point), the distribution has a strong intensity in the longitudinal direction NH0, and the direction in which the beam intensity is strong. Consistent with NH0 in the longitudinal direction.
 このようなスリット又は楕円光学系を用いた場合には、集光点以外のビーム形状が長手方向を有する形状となり、集光点以外のビーム形状は、本実施形態が対象とするビーム形状である。すなわち、本実施形態が対象とする集光領域Cの一部は、集光点付近におけるレーザ光入射面側の領域を含み、本実施形態が対象とするビーム形状は、図23の(a)に示されるビーム形状である。 When such a slit or an elliptical optical system is used, the beam shape other than the focusing point has a longitudinal direction, and the beam shape other than the focusing point is the beam shape targeted by the present embodiment. .. That is, a part of the focusing region C targeted by the present embodiment includes a region on the laser beam incident surface side near the focusing point, and the beam shape targeted by the present embodiment is shown in FIG. 23 (a). It is a beam shape shown in.
 トリミング加工では、制御部6は、ステージ2の回転、照射部3からのレーザ光Lの照射、ビーム形状、及び、集光領域Cの移動を制御する。制御部6は、ステージ2の回転量に関する回転情報(以下、「θ情報」ともいう)に基づいて、各種の制御を実行可能である。θ情報は、ステージ2を回転させる駆動装置の駆動量から取得されてもよいし、別途のセンサ等により取得されてもよい。θ情報は、公知の種々の手法により取得することができる。ここでのθ情報は、対象物11が0°方向の位置に位置するときの状態を基準にした回転角度を含む。 In the trimming process, the control unit 6 controls the rotation of the stage 2, the irradiation of the laser beam L from the irradiation unit 3, the beam shape, and the movement of the condensing region C. The control unit 6 can execute various controls based on the rotation information (hereinafter, also referred to as “θ information”) regarding the rotation amount of the stage 2. The θ information may be acquired from the driving amount of the driving device that rotates the stage 2, or may be acquired by a separate sensor or the like. θ information can be obtained by various known methods. The θ information here includes a rotation angle based on the state when the object 11 is located at the position in the 0 ° direction.
 制御部6は、ステージ2を回転させながら、対象物11におけるラインA(有効領域Rの周縁)に沿った位置に集光領域Cを位置させた状態で、θ情報に基づいて照射部3におけるレーザ光Lの照射の開始及び停止を制御することにより、有効領域Rの周縁に沿って改質領域を形成させる周縁処理を実行する。 The control unit 6 in the irradiation unit 3 based on the θ information in a state where the condensing region C is positioned along the line A (periphery of the effective region R) in the object 11 while rotating the stage 2. By controlling the start and stop of the irradiation of the laser beam L, the peripheral treatment for forming the modified region along the peripheral edge of the effective region R is executed.
 制御部6は、ステージ2を回転させずに、除去領域Eにレーザ光Lを照射させると共に、当該レーザ光Lの集光領域Cを移動させることにより、除去領域Eに改質領域を形成させる除去処理を実行する。 The control unit 6 irradiates the removal region E with the laser beam L without rotating the stage 2, and moves the condensing region C of the laser beam L to form a modified region in the removal region E. Execute the removal process.
 制御部6は、改質領域に含まれる複数の改質スポットのピッチ(加工進行方向に隣接する改質スポットの間隔)が一定になるように、ステージ2の回転、照射部3からのレーザ光Lの照射、並びに、集光領域Cの移動の少なくとも何れかを制御する。 The control unit 6 rotates the stage 2 and laser light from the irradiation unit 3 so that the pitch of the plurality of modification spots included in the modification region (interval between the modification spots adjacent to the processing progress direction) is constant. At least one of the irradiation of L and the movement of the condensing region C is controlled.
 制御部6は、アライメント用のカメラ(不図示)の撮像画像から、対象物11の回転方向の基準位置(0°方向の位置)及び対象物11の直径を取得する。制御部6は、照射部3がステージ2の回転軸Cx上までX方向に沿って移動できるように、照射部3の移動を制御する。 The control unit 6 acquires the reference position (position in the 0 ° direction) in the rotation direction of the object 11 and the diameter of the object 11 from the captured image of the camera for alignment (not shown). The control unit 6 controls the movement of the irradiation unit 3 so that the irradiation unit 3 can move along the X direction to the rotation axis Cx of the stage 2.
 次に、トリミング加工の一例について説明する。まず、第1面11aがレーザ光Lの入射面となるように、ステージ2上に対象物11を載置する。対象物11において機能素子が搭載された第2面11b側は、支持基板ないししテープ材が接着されて保護されている。 Next, an example of trimming will be described. First, the object 11 is placed on the stage 2 so that the first surface 11a is the incident surface of the laser beam L. The second surface 11b side on which the functional element is mounted in the object 11 is protected by adhering a support substrate or a tape material.
 続いて、トリミング加工を実施する。トリミング加工では、制御部6により周縁処理を実行する。具体的には、図24の(a)に示されるように、ステージ2を一定の速さで回転しながら、対象物11における有効領域Rの周縁に沿った位置に集光領域Cを位置させた状態で、θ情報に基づいて照射部3におけるレーザ光Lの照射の開始及び停止を制御する。これにより、図24の(b)及び図24の(c)に示されるように、ラインA(有効領域Rの周縁)に沿って改質領域12を形成する。形成した改質領域12は、改質スポット及び改質スポットから延びる亀裂を含む。 Subsequently, trimming is performed. In the trimming process, the control unit 6 executes peripheral processing. Specifically, as shown in FIG. 24A, the condensing region C is positioned along the peripheral edge of the effective region R in the object 11 while rotating the stage 2 at a constant speed. In this state, the start and stop of the irradiation of the laser beam L in the irradiation unit 3 are controlled based on the θ information. As a result, as shown in (b) of FIG. 24 and (c) of FIG. 24, the modified region 12 is formed along the line A (periphery of the effective region R). The modified region 12 formed contains the modified spot and cracks extending from the modified spot.
 トリミング加工では、制御部6により除去処理を実行する。具体的には、図25の(a)に示されるように、ステージ2を回転させずに、除去領域Eにおいてレーザ光Lを照射すると共に、照射部3をX方向に沿って移動し、当該レーザ光Lの集光領域Cを対象物11に対してX方向に相対移動する。ステージ2を90°回転させた後、除去領域Eにおいてレーザ光Lを照射すると共に、照射部3をX方向に沿って移動し、当該レーザ光Lの集光領域Cを対象物11に対してX方向に相対移動する。 In the trimming process, the control unit 6 executes the removal process. Specifically, as shown in FIG. 25 (a), the laser beam L is irradiated in the removal region E without rotating the stage 2, and the irradiation unit 3 is moved along the X direction. The condensing region C of the laser beam L moves relative to the object 11 in the X direction. After rotating the stage 2 by 90 °, the laser beam L is irradiated in the removal region E, the irradiation unit 3 is moved along the X direction, and the condensing region C of the laser beam L is directed with respect to the object 11. It moves relative to the X direction.
 これにより、図25の(b)に示されるように、Z方向から見て除去領域Eに4等分するように延びるラインに沿って、改質領域12を形成する。形成した改質領域12は、改質スポット及び改質スポットから延びる亀裂を含む。この亀裂は、第1面11a及び第2面11bの少なくとも何れかに到達していてもよいし、第1面11a及び第2面11bの少なくとも何れかに到達していなくてもよい。その後、図26の(a)及び図26の(b)に示されるように、例えば冶具又はエアーにより、改質領域12を境界として除去領域Eを取り除く。これにより、対象物11から半導体デバイス11Kが形成される。 As a result, as shown in FIG. 25 (b), the modified region 12 is formed along the line extending so as to divide the removal region E into four equal parts when viewed from the Z direction. The modified region 12 formed contains the modified spot and cracks extending from the modified spot. The crack may reach at least one of the first surface 11a and the second surface 11b, or may not reach at least one of the first surface 11a and the second surface 11b. Then, as shown in (a) of FIG. 26 and (b) of FIG. 26, the removal region E is removed with the modified region 12 as a boundary, for example, by using a jig or air. As a result, the semiconductor device 11K is formed from the object 11.
 続いて、図26の(c)に示されるように、半導体デバイス11Kの剥離面11cに対して仕上げの研削、ないし砥石等の研磨材KMによる研磨を行う。エッチングにより対象物11を剥離している場合、当該研磨を簡略化することができる。以上の結果、半導体デバイス11Mが取得される。 Subsequently, as shown in FIG. 26 (c), the peeled surface 11c of the semiconductor device 11K is subjected to finish grinding or polishing with an abrasive material KM such as a grindstone. When the object 11 is peeled off by etching, the polishing can be simplified. As a result of the above, the semiconductor device 11M is acquired.
 次に、トリミング加工に関して、より詳細に説明する。図27に示されるように、対象物11は、板状を呈している。対象物11は、(100)面と、一の(110)面と、別の(110)面と、一の(110)面に直交する第1結晶方位K1と、別の(110)面に直交する第2結晶方位K2と、を含む結晶構造を有している。対象物11の第1面11aは、(100)面である。対象物11は、(100)面(すなわち第1面11a)がレーザ光Lの入射面となるようにステージ2に支持されている。対象物11は、例えば、シリコンで形成されたシリコンウェハである。(110)面は、へき開面である。第1結晶方位K1及び第2結晶方位K2は、へき開方向、すなわち、対象物11において最も亀裂が延びやすい方向である。第1結晶方位K1と第2結晶方位K2とは、互いに直交する。 Next, the trimming process will be explained in more detail. As shown in FIG. 27, the object 11 has a plate shape. The object 11 has a (100) plane, one (110) plane, another (110) plane, a first crystal orientation K1 orthogonal to one (110) plane, and another (110) plane. It has a crystal structure including a second crystal orientation K2 that is orthogonal to each other. The first surface 11a of the object 11 is the (100) surface. The object 11 is supported by the stage 2 so that the (100) plane (that is, the first plane 11a) is the incident plane of the laser beam L. The object 11 is, for example, a silicon wafer made of silicon. The (110) plane is a cleavage plane. The first crystal orientation K1 and the second crystal orientation K2 are cleavage directions, that is, directions in which cracks are most likely to extend in the object 11. The first crystal orientation K1 and the second crystal orientation K2 are orthogonal to each other.
 対象物11には、アライメント対象11nが設けられている。例えばアライメント対象11nは、対象物11の0°方向の位置に対してθ方向(ステージ2の回転軸Cx回りの回転方向)に一定の関係を有する。0°方向の位置とは、θ方向において基準となる対象物11の位置である。例えばアライメント対象11nは、外縁部に形成されたノッチである。なお、アライメント対象11nは、特に限定されず、対象物11のオリエンテーションフラットであってもよいし、機能素子のパターンであってもよい。図示する例では、アライメント対象11nは、対象物11の0°方向の位置に設けられている。換言すると、アライメント対象11nは、対象物11の外縁と第2結晶方位K2とが直交する位置に設けられている。 The object 11 is provided with an alignment target 11n. For example, the alignment target 11n has a certain relationship in the θ direction (rotational direction around the rotation axis Cx of the stage 2) with respect to the position of the object 11 in the 0 ° direction. The position in the 0 ° direction is the position of the reference object 11 in the θ direction. For example, the alignment target 11n is a notch formed at the outer edge portion. The alignment target 11n is not particularly limited, and may be an orientation flat of the target object 11 or a pattern of a functional element. In the illustrated example, the alignment target 11n is provided at a position of the target object 11 in the 0 ° direction. In other words, the alignment target 11n is provided at a position where the outer edge of the object 11 and the second crystal orientation K2 are orthogonal to each other.
 対象物11には、トリミング予定ラインとしてのラインAが設定されている。ラインAは、改質領域12の形成を予定するラインである。ラインAは、対象物11の外縁の内側において環状に延在する。ここでのラインAは、円環状に延在する。ラインAは、対象物11の有効領域Rと除去領域Eとの境界に設定されている。ラインAの設定は、制御部6において行うことができる。ラインAは、仮想的なラインであるが、実際に引かれたラインであってもよい。ラインAは、座標指定されたものであってもよい。 A line A is set as a trimming schedule line on the object 11. Line A is a line scheduled to form the modified region 12. The line A extends in an annular shape inside the outer edge of the object 11. The line A here extends in an annular shape. The line A is set at the boundary between the effective region R and the removal region E of the object 11. The line A can be set by the control unit 6. The line A is a virtual line, but it may be a line actually drawn. The line A may be coordinated.
 制御部6は、対象物11に関する対象物情報を取得する。対象物情報は、例えば対象物11の結晶方位(第1結晶方位K1及び第2結晶方位K2)に関する情報と、対象物11の0°方向の位置及び対象物11の直径に関するアライメント情報と、を含む。制御部6は、アライメント用のカメラの撮像画像、並びに、ユーザの操作又は外部からの通信等による入力に基づいて、対象物情報を取得することができる。 The control unit 6 acquires the object information regarding the object 11. The object information includes, for example, information regarding the crystal orientation of the object 11 (first crystal orientation K1 and second crystal orientation K2), and alignment information regarding the position of the object 11 in the 0 ° direction and the diameter of the object 11. include. The control unit 6 can acquire the object information based on the image captured by the camera for alignment and the input by the user's operation or communication from the outside.
 また、制御部6は、ラインAに関するライン情報を取得する。ライン情報は、ラインAの情報、及び、ラインAに沿って集光領域Cを相対的に移動させる場合の当該移動の移動方向(「加工進行方向」ともいう)に関する情報を含む。例えば加工進行方向は、ラインA上に位置する集光領域Cを通るラインAの接線方向である。制御部6は、ユーザの操作又は外部からの通信等による入力に基づいて、ライン情報を取得することができる。 Further, the control unit 6 acquires line information regarding the line A. The line information includes information on the line A and information on the moving direction (also referred to as “machining progress direction”) of the movement when the condensing region C is relatively moved along the line A. For example, the processing progress direction is the tangential direction of the line A passing through the light collecting region C located on the line A. The control unit 6 can acquire line information based on an input by a user's operation or communication from the outside.
 さらに、制御部6は、取得された対象物情報及びライン情報に基づいて、ビーム形状の長手方向が加工進行方向と交差するように、ラインAに沿って集光領域Cを相対的に移動させる場合の長手方向の向きを決定する。具体的には、制御部6は、対象物情報及びライン情報に基づいて、長手方向NHの向きを第1向き及び第2向きに決定する。第1向きは、ラインAの第1領域A1に沿って集光領域Cを相対的に移動させる場合のビーム形状の長手方向の向きである。第2向きは、ラインAの第2領域A2に沿って集光領域Cを相対的に移動させる場合のビーム形状の長手方向の向きである。以下、「ビーム形状の長手方向の向き」を、単に「ビーム形状の向き」ともいう。 Further, the control unit 6 relatively moves the condensing region C along the line A so that the longitudinal direction of the beam shape intersects the machining progress direction based on the acquired object information and line information. Determine the longitudinal orientation of the case. Specifically, the control unit 6 determines the orientation of the longitudinal NH in the first orientation and the second orientation based on the object information and the line information. The first orientation is the longitudinal orientation of the beam shape when the condensing region C is relatively moved along the first region A1 of the line A. The second orientation is the longitudinal orientation of the beam shape when the condensing region C is relatively moved along the second region A2 of the line A. Hereinafter, the "longitudinal direction of the beam shape" is also simply referred to as the "direction of the beam shape".
 第1領域A1は、円弧状の領域であって、一例として、第2結晶方位K2とラインAとが直交する点を0°とし、第1結晶方位K1とラインAとが直交する点を90°とし、ラインAにおける0°と90°との中間の点を45°としたとき、0°から45°までの領域、90°から135°までの領域、180°から225°までの領域、及び、270°から315°までの領域を含み、第2領域A2は、円弧状の領域であって、45°から90°までの領域、135°から180°までの領域、225°から270°までの領域、及び、315°から360°までの領域を含む。なお、この場合、45°の点、及び、225°の点は、(100)面に直交する第3結晶方位K3とラインAとが直交する点であり、135°の点、及び、315°の点は、(100)面に直交する第4結晶方位K4とラインAとが直交する点である。 The first region A1 is an arcuate region, and as an example, the point where the second crystal orientation K2 and the line A are orthogonal to each other is 0 °, and the point where the first crystal orientation K1 and the line A are orthogonal to each other is 90. When the point between 0 ° and 90 ° on line A is 45 °, the region from 0 ° to 45 °, the region from 90 ° to 135 °, the region from 180 ° to 225 °, And a region from 270 ° to 315 °, the second region A2 is an arcuate region, a region from 45 ° to 90 °, a region from 135 ° to 180 °, and a region from 225 ° to 270 °. And the region from 315 ° to 360 °. In this case, the 45 ° point and the 225 ° point are the points where the third crystal direction K3 orthogonal to the (100) plane and the line A are orthogonal to each other, and the 135 ° point and the 315 ° point. Point is a point where the fourth crystal orientation K4 orthogonal to the (100) plane and the line A are orthogonal to each other.
 このように、ラインAは、反時計回りに45°ごとに交互に配列された複数の第1領域A1及び複数の第2領域A2を含む。ただし、第1領域A1及び第2領域A2の上記の角度範囲は、0°の点をどこに設定するかによって任意に変更され得る。例えば、第1結晶方位K1とラインAとが直交する点を0°とした場合(上記の90°の点を0°とした場合)には、第1領域A1及び第2領域A2は、上記の角度範囲から90°だけ回転された角度範囲となる。また、上記のとおり0°の点を設定した場合、0°の点から時計回りに45°だけ回転された点である315°の点を、-45°の点と言い換えることも可能である。さらに、第1領域A1と第2領域A2との境界(例えば45°)の点は、第1領域A1と第2領域A2とのいずれか一方に含まれてもよいし、両方に含まれてもよい。 As described above, the line A includes a plurality of first regions A1 and a plurality of second regions A2 arranged alternately at intervals of 45 ° in a counterclockwise direction. However, the above-mentioned angle range of the first region A1 and the second region A2 can be arbitrarily changed depending on where the point of 0 ° is set. For example, when the point where the first crystal orientation K1 and the line A are orthogonal to each other is set to 0 ° (when the above 90 ° point is set to 0 °), the first region A1 and the second region A2 are described above. The angle range is rotated by 90 ° from the angle range of. Further, when the point of 0 ° is set as described above, the point of 315 °, which is a point rotated by 45 ° clockwise from the point of 0 °, can be paraphrased as a point of −45 °. Further, the point of the boundary (for example, 45 °) between the first region A1 and the second region A2 may be included in either one of the first region A1 and the second region A2, or may be included in both. May be good.
 第1領域A1は、ラインAに沿って集光領域Cを相対的に移動させる場合に、後述の加工角度が0°以上45°以下、もしくは-90°以上-45°以下となる領域を含む。第2領域A2は、ラインAに沿って集光領域Cを相対的に移動させる場合に、後述の加工角度が45°以上90°未満もしくは-45°以上0°未満となる領域を含む。 The first region A1 includes a region in which the processing angle described later is 0 ° or more and 45 ° or less, or −90 ° or more and −45 ° or less when the condensing region C is relatively moved along the line A. .. The second region A2 includes a region in which the processing angle described later is 45 ° or more and less than 90 ° or −45 ° or more and less than 0 ° when the condensing region C is relatively moved along the line A.
 図28の(b)に示されるように、加工角度αは、第1結晶方位K1に対する加工進行方向NDの角度である。加工角度αは、レーザ光Lの入射面である第1面11aに交差するZ方向から見て、反時計回りに向かう角度を正(プラス)の角度とし、時計回りに向かう角度を負(マイナス)の角度とする。加工角度αは、ステージ2のθ情報、対象物情報及びライン情報に基づき取得できる。第1領域A1に沿って集光領域Cを相対的に移動している場合は、例えば、加工角度αが0°以上45°以下もしくは-90°以上-45°以下の場合として認識することができる。第2領域A2に沿って集光領域Cを相対的に移動する場合は、例えば、加工角度αが45°以上90°以下もしくは-45°以上0°以下の場合として認識することができる。 As shown in FIG. 28 (b), the processing angle α is the angle of the processing progress direction ND with respect to the first crystal orientation K1. The processing angle α is a positive (plus) angle when viewed from the Z direction intersecting the first surface 11a, which is the incident surface of the laser beam L, and a negative (minus) angle toward the clockwise direction. ). The processing angle α can be acquired based on the θ information of the stage 2, the object information, and the line information. When the light collecting region C is relatively moved along the first region A1, it can be recognized as, for example, a case where the processing angle α is 0 ° or more and 45 ° or less or −90 ° or more and −45 ° or less. can. When the light collecting region C is relatively moved along the second region A2, it can be recognized as, for example, a case where the processing angle α is 45 ° or more and 90 ° or less or −45 ° or more and 0 ° or less.
 第1向き及び第2向きは、第1結晶方位K1及び第2結晶方位K2のうち加工進行方向NDとの間の角度が大きい一方(より離れている一方)に近づくように、加工進行方向NDに対して傾斜した方向の向きである。 In the first orientation and the second orientation, the machining progress direction ND is closer to one of the first crystal orientation K1 and the second crystal orientation K2, which has a larger angle (one farther away) from the machining progress direction ND. It is the direction of inclination with respect to.
 第1向き及び第2向きは、加工角度αが0°以上90°以下の場合、次のとおりである。第1向きは、第2結晶方位K2に近づく側へ長手方向NHが加工進行方向NDに対して傾斜した方向の向きである。第2向きは、第1結晶方位K1に近づく側へ長手方向NHが加工進行方向NDに対して傾斜した方向の向きである。第1向きは、例えば、加工進行方向NDから第2結晶方位K2に近づく側へ10°~35°傾斜した方向の向きである。第2向きは、例えば、加工進行方向NDから第1結晶方位K1に近づく側へ10°~35°傾斜した方向の向きである。 The first orientation and the second orientation are as follows when the processing angle α is 0 ° or more and 90 ° or less. The first direction is the direction in which the longitudinal direction NH is inclined with respect to the machining progress direction ND toward the side approaching the second crystal orientation K2. The second direction is the direction in which the longitudinal direction NH is inclined with respect to the machining progress direction ND toward the side approaching the first crystal orientation K1. The first direction is, for example, a direction inclined by 10 ° to 35 ° from the processing progress direction ND toward the side approaching the second crystal orientation K2. The second direction is, for example, a direction inclined by 10 ° to 35 ° from the processing progress direction ND toward the side approaching the first crystal orientation K1.
 第1向きは、ビーム角度βが+10°~+35°の場合の集光領域Cの向きである。第2向きは、ビーム角度βが-35°~-10°の場合の集光領域Cの向きである。ビーム角度βは、加工進行方向NDと長手方向NHとの間の角度である。ビーム角度βは、レーザ光Lの入射面である第1面11aに交差するZ方向から見て、反時計回りに向かう角度を正(プラス)の角度とし、時計回りに向かう角度を負(マイナス)の角度とする。ビーム角度βは、集光領域Cの向きと加工進行方向NDとに基づき取得できる。 The first direction is the direction of the condensing region C when the beam angle β is + 10 ° to + 35 °. The second direction is the direction of the condensing region C when the beam angle β is −35 ° to −10 °. The beam angle β is an angle between the machining progress direction ND and the longitudinal direction NH. The beam angle β is a positive (plus) angle when viewed from the Z direction intersecting the first surface 11a, which is the incident surface of the laser beam L, and a negative (minus) angle toward the clockwise direction. ). The beam angle β can be obtained based on the direction of the condensing region C and the processing progress direction ND.
 制御部6は、対象物11に対するレーザ加工の開始及び停止を制御する。制御部6は、ラインAの第1領域A1に沿って集光領域Cを相対的に移動させて改質領域12を形成させると共に、ラインAの第1領域A1以外の領域での改質領域12の形成を停止させる第1加工処理を実行する。制御部6は、ラインAの第2領域A2に沿って集光領域Cを相対的に移動させて改質領域12を形成させると共に、ラインAの第2領域A2以外の領域での改質領域12の形成を停止させる第2加工処理と、を実行する。 The control unit 6 controls the start and stop of laser machining on the object 11. The control unit 6 relatively moves the condensing region C along the first region A1 of the line A to form the modified region 12, and also forms the modified region 12 in the region other than the first region A1 of the line A. The first processing process for stopping the formation of the twelve is executed. The control unit 6 relatively moves the condensing region C along the second region A2 of the line A to form the modified region 12, and also forms the modified region 12 in the region other than the second region A2 of the line A. A second processing process for stopping the formation of the twelve is executed.
 制御部6による改質領域12の形成及びその停止の切り替えは、次のようにして実現することができる。例えば、照射部3において、レーザ光Lの照射(出力)の開始及び停止(ON/OFF)を切替えることで、改質領域12の形成と当該形成の停止とを切り替えることが可能である。具体的には、レーザ発振器が固体レーザで構成されている場合、共振器内に設けられたQスイッチ(AOM(音響光学変調器)、EOM(電気光学変調器)等)のON/OFFが切り替えられることで、レーザ光Lの照射の開始及び停止が高速に切り替えられる。レーザ発振器がファイバレーザで構成されている場合、シードレーザ、アンプ(励起用)レーザを構成する半導体レーザの出力のON/OFFが切り替えられることで、レーザ光Lの照射の開始及び停止が高速に切り替えられる。レーザ発振器が外部変調素子を用いている場合、共振器外に設けられた外部変調素子(AOM、EOM等)のON/OFFが切り替えられることで、レーザ光Lの照射のON/OFFが高速に切り替えられる。 The formation of the modified region 12 and the switching of its stop by the control unit 6 can be realized as follows. For example, in the irradiation unit 3, the formation of the modified region 12 and the stop of the formation can be switched by switching the start and stop (ON / OFF) of the irradiation (output) of the laser beam L. Specifically, when the laser oscillator is composed of a solid-state laser, the ON / OFF of the Q switch (AOM (acousto-optic modulator), EOM (electro-optical modulator), etc.) provided in the resonator can be switched. By doing so, the start and stop of the irradiation of the laser beam L can be switched at high speed. When the laser oscillator is composed of a fiber laser, the output of the semiconductor laser constituting the seed laser and the amplifier (excitation) laser can be switched ON / OFF, so that the irradiation of the laser beam L can be started and stopped at high speed. Can be switched. When the laser oscillator uses an external modulation element, the ON / OFF of the external modulation element (AOM, EOM, etc.) provided outside the resonator can be switched, so that the irradiation of the laser beam L can be turned ON / OFF at high speed. Can be switched.
 或いは、制御部6による改質領域12の形成及びその停止の切り替えは、次のようにして実現してもよい。例えば、シャッタ等の機械式機構を制御するによってレーザ光Lの光路を開閉し、改質領域12の形成と当該形成の停止とを切り替えてもよい。レーザ光LをCW光(連続波)へ切り替えることで、改質領域12の形成を停止させてもよい。空間光変調器7の液晶層76に、レーザ光Lの集光状態を改質できない状態とするパターン(例えば、レーザ散乱させる梨地模様のパターン)を表示することで、改質領域12の形成を停止させてもよい。アッテネータ等の出力調整部を制御し、改質領域12が形成できないようにレーザ光Lの出力に低下させることで、改質領域12の形成を停止させてもよい。偏光方向を切り替えることで、改質領域12の形成を停止させてもよい。レーザ光Lを光軸以外の方向に散乱させて(飛ばして)カットすることで、改質領域12の形成を停止させてもよい。 Alternatively, the formation of the modified region 12 and the switching of its stop by the control unit 6 may be realized as follows. For example, the optical path of the laser beam L may be opened and closed by controlling a mechanical mechanism such as a shutter, and the formation of the modified region 12 and the stop of the formation may be switched. The formation of the modified region 12 may be stopped by switching the laser beam L to the CW light (continuous wave). The modified region 12 is formed by displaying on the liquid crystal layer 76 of the spatial light modulator 7 a pattern that makes the condensing state of the laser beam L unmodifiable (for example, a pattern of a satin pattern that scatters the laser). You may stop it. The formation of the modified region 12 may be stopped by controlling an output adjusting unit such as an attenuator and reducing the output of the laser beam L so that the modified region 12 cannot be formed. By switching the polarization direction, the formation of the modified region 12 may be stopped. The formation of the modified region 12 may be stopped by scattering (skipping) the laser beam L in a direction other than the optical axis to cut the laser beam L.
 制御部6は、空間光変調器7を制御することにより、集光領域Cの向きを調整する。制御部6は、第1加工処理を実行する場合に、第1向きとなるように集光領域Cの向きを調整する。制御部6は、第2加工処理を実行する場合に、第2向きとなるように集光領域Cの向きを調整する。制御部6は、一例として、加工進行方向NDに対して±35°の範囲で変化するように、集光領域Cの長手方向NHを調整する。 The control unit 6 adjusts the direction of the light collecting region C by controlling the spatial light modulator 7. The control unit 6 adjusts the direction of the light collecting region C so that it faces the first direction when the first processing process is executed. The control unit 6 adjusts the direction of the light collecting region C so that it faces the second direction when the second processing process is executed. As an example, the control unit 6 adjusts the longitudinal direction NH of the condensing region C so as to change within a range of ± 35 ° with respect to the machining progress direction ND.
 上述したレーザ加工装置1では、以下のトリミング加工を実施する。 The above-mentioned laser processing apparatus 1 performs the following trimming processing.
 トリミング加工では、まず、アライメント用のカメラが対象物11のアライメント対象11nの直上に位置し且つアライメント対象11nにカメラのピントが合うように、ステージ2を回転させると共にカメラが搭載されている照射部3をX方向及びY方向に沿って移動させる。 In the trimming process, first, the stage 2 is rotated so that the alignment camera is located directly above the alignment target 11n of the object 11 and the camera is in focus on the alignment target 11n, and the irradiation unit on which the camera is mounted is mounted. 3 is moved along the X direction and the Y direction.
 続いて、アライメント用のカメラにより撮像を行う。カメラの撮像画像に基づいて、対象物11の0°方向の位置を取得する。制御部6により、カメラの撮像画像、並びに、ユーザの操作又は外部からの通信等による入力に基づいて、対象物情報及びライン情報を取得する。対象物情報は、対象物11の0°方向の位置及び直径に関するアライメント情報を含む。上述したように、アライメント対象11nは0°方向の位置に対してθ方向に一定の関係を有することから、撮像画像からアライメント対象11nの位置を得ることで、0°方向の位置を取得できる。カメラの撮像画像に基づくことで、対象物11の直径を取得できる。なお、対象物11の直径は、ユーザからの入力により設定されてもよい。 Subsequently, an image is taken with an alignment camera. The position of the object 11 in the 0 ° direction is acquired based on the image captured by the camera. The control unit 6 acquires object information and line information based on the captured image of the camera and the input by the user's operation or communication from the outside. The object information includes alignment information regarding the position and diameter of the object 11 in the 0 ° direction. As described above, since the alignment target 11n has a constant relationship in the θ direction with respect to the position in the 0 ° direction, the position in the 0 ° direction can be obtained by obtaining the position of the alignment target 11n from the captured image. The diameter of the object 11 can be obtained based on the image captured by the camera. The diameter of the object 11 may be set by input from the user.
 続いて、取得された対象物情報及びライン情報に基づいて、制御部6により、ラインAに沿って集光領域Cを相対的に移動させる場合の集光領域Cの長手方向NHの向きとして第1向き及び第2向きを決定する。 Subsequently, based on the acquired object information and line information, the control unit 6 sets the direction of the light-collecting area C as the direction NH in the longitudinal direction when the light-collecting area C is relatively moved along the line A. Determine the 1st and 2nd orientations.
 続いて、ステージ2を回転させ、対象物11を0°方向の位置に位置させる。X方向において、集光領域Cがトリミング所定位置に位置するように、照射部3をX方向及びY方向に沿って移動させる。例えばトリミング所定位置は、対象物11におけるラインA上の所定位置である。 Subsequently, the stage 2 is rotated to position the object 11 at a position in the 0 ° direction. In the X direction, the irradiation unit 3 is moved along the X direction and the Y direction so that the light collecting region C is located at a predetermined trimming position. For example, the trimming predetermined position is a predetermined position on the line A in the object 11.
 続いて、ステージ2の回転を開始する。測距センサ(不図示)による第1面11aの追従を開始する。なお、測距センサの追従開始の前に、集光領域Cの位置が測距センサの測長可能範囲内であることを予め確認する。ステージ2の回転速度が一定(等速)になった時点で、照射部3によるレーザ光Lの照射を開始する。 Subsequently, the rotation of stage 2 is started. The tracking of the first surface 11a by the distance measuring sensor (not shown) is started. Before starting the tracking of the distance measuring sensor, it is confirmed in advance that the position of the condensing region C is within the length-measurable range of the distance measuring sensor. When the rotation speed of the stage 2 becomes constant (constant speed), the irradiation unit 3 starts irradiating the laser beam L.
 ステージ2を回転させながら、制御部6によりレーザ光Lの照射のON/OFFを切り替えることで、図28の(a)に示されるように、ラインAのうち第1領域A1に沿って集光領域Cを相対的に移動させて改質領域12を形成させると共に、ラインAの第1領域A1以外の領域での改質領域12の形成を停止させる(第1加工工程)。図28の(b)に示されるように、第1加工工程を実行する場合、制御部6により、第1向きとなるように集光領域Cの向きを調整する。つまり、第1加工工程における集光領域Cの向きは、第1向きで固定されている。 By switching ON / OFF of the irradiation of the laser beam L by the control unit 6 while rotating the stage 2, as shown in FIG. 28A, the light is focused along the first region A1 of the line A. The region C is relatively moved to form the modified region 12, and the formation of the modified region 12 in the region other than the first region A1 of the line A is stopped (first processing step). As shown in FIG. 28 (b), when the first processing step is executed, the control unit 6 adjusts the orientation of the condensing region C so as to be in the first orientation. That is, the orientation of the light collecting region C in the first processing step is fixed in the first orientation.
 続いて、ステージ2を回転させながら、制御部6によりレーザ光Lの照射のON/OFFを切り替えることで、図29の(a)に示されるように、ラインAのうち第2領域A2に沿って集光領域Cを相対的に移動させて改質領域12を形成させると共に、ラインAの第1領域A1以外の領域での改質領域12の形成を停止させる(第2加工工程)。図29の(b)に示されるように、第2加工工程を実行する場合、制御部6により、第2向きとなるように集光領域Cの向きを調整する。つまり、第2加工工程における集光領域Cの向きは、第2向きで固定されている。 Subsequently, by switching ON / OFF of the irradiation of the laser beam L by the control unit 6 while rotating the stage 2, as shown in FIG. 29 (a), along the second region A2 of the line A. The light collecting region C is relatively moved to form the modified region 12, and the formation of the modified region 12 in regions other than the first region A1 of the line A is stopped (second processing step). As shown in FIG. 29 (b), when the second processing step is executed, the control unit 6 adjusts the orientation of the condensing region C so as to be in the second orientation. That is, the orientation of the light collecting region C in the second processing step is fixed in the second orientation.
 上述した第1加工工程及び第2加工工程を、トリミング所定位置のZ方向の位置を変えて繰り返し行う。以上により、対象物11の内部において、有効領域Rの周縁のラインAに沿って、Z方向に複数列の改質領域12を形成する。
[レーザ加工の第1実施形態]
The above-mentioned first processing step and second processing step are repeated by changing the position of the trimming predetermined position in the Z direction. As described above, inside the object 11, a plurality of rows of modified regions 12 are formed in the Z direction along the line A on the periphery of the effective region R.
[First Embodiment of Laser Machining]
 以上、斜め亀裂形成に関する知見、及び、トリミング加工の一例について説明した。ここでは、トリミング加工の際に斜め亀裂の形成を行うレーザ加工の一実施形態について説明を行う。図30は、一実施形態に係るレーザ加工の対象物を示す図である。図30の(a)は平面図であり、図30の(b)は側面図である。図31は、図30に示された対象物の断面図である。 Above, we have explained the knowledge about diagonal crack formation and an example of trimming. Here, an embodiment of laser processing for forming diagonal cracks during trimming processing will be described. FIG. 30 is a diagram showing an object of laser machining according to an embodiment. FIG. 30A is a plan view, and FIG. 30B is a side view. FIG. 31 is a cross-sectional view of the object shown in FIG.
 図30,31に示されるように、対象物100は、上述した対象物11と、対象物11とは別部材である対象物11Rと、を含む。対象物11Rは、例えばシリコンウェハである。対象物11は、複数の機能素子を含み、第2面11bに形成されたデバイス層110を含む。対象物11Rは、複数の機能素子を含み、対象物11Rの第1面11Raに形成されたデバイス層110Rを含む。対象物11と対象物11Rとは、デバイス層110とデバイス層110Rとが互いに対向するように配置されて互いに接合されることによって張り合わされており、対象物100を構成している。 As shown in FIGS. 30 and 31, the object 100 includes the above-mentioned object 11 and the object 11R which is a member different from the object 11. The object 11R is, for example, a silicon wafer. The object 11 includes a plurality of functional elements and includes a device layer 110 formed on the second surface 11b. The object 11R includes a plurality of functional elements, and includes a device layer 110R formed on the first surface 11Ra of the object 11R. The object 11 and the object 11R are attached to each other by arranging the device layer 110 and the device layer 110R so as to face each other and joining them to each other to form the object 100.
 ここでは、対象物11に改質領域12及び改質領域12から延びる亀裂13を形成し、それらの改質領域12及び亀裂13を境界として対象物11の除去領域Eを切除するトリミング加工を行う。より具体的には、対象物11は、レーザ光Lの入射面となる第1面11aの反対側の第2面11b(反対面)側から順に配列された第1部分15A及び第2部分15Bを含む。そして、第1部分15Aでは、Z方向に対して斜めに延びる亀裂13(以下、「斜め亀裂」という場合がある)を形成するように改質領域12の形成を行い、第2部分15Bでは、Z方向に沿って延びる亀裂13(以下、「垂直亀裂」という場合がある)を形成するように改質領域12の形成を行う。なお、図31のラインR1は、斜め亀裂を形成する予定のラインを示し、ラインR2は垂直亀裂を形成する予定のラインを示す。 Here, a crack 13 extending from the modified region 12 and the modified region 12 is formed in the object 11, and a trimming process is performed to cut off the removed region E of the object 11 with the modified region 12 and the crack 13 as a boundary. .. More specifically, the object 11 has the first portion 15A and the second portion 15B arranged in order from the second surface 11b (opposite surface) side opposite to the first surface 11a which is the incident surface of the laser beam L. including. Then, in the first portion 15A, the modified region 12 is formed so as to form a crack 13 extending diagonally in the Z direction (hereinafter, may be referred to as “diagonal crack”), and in the second portion 15B, the modified region 12 is formed. The modified region 12 is formed so as to form a crack 13 extending along the Z direction (hereinafter, may be referred to as a “vertical crack”). The line R1 in FIG. 31 shows a line where an oblique crack is planned to be formed, and a line R2 shows a line where a vertical crack is planned to be formed.
 したがって、少なくとも第1部分15Aの加工の際には、上記のトリミング加工と斜め亀裂を生じさせるための加工とが併用される。すなわち、第1部分15Aの加工の際には、第1結晶方位K1及び第2結晶方位K2のうち加工進行方向NDとの間の角度が大きい一方に近づくように、加工進行方向NDに対して長手方向NHが傾斜するようにビーム形状を成形しつつラインAに沿って改質領域12及び亀裂13を形成すると共に、亀裂13が斜め亀裂となるようにする。 Therefore, at least when processing the first portion 15A, the above trimming process and the process for causing an oblique crack are used together. That is, when machining the first portion 15A, the angle between the first crystal orientation K1 and the second crystal orientation K2 with respect to the machining progress direction ND is larger than that of the machining progress direction ND. While forming the beam shape so that the longitudinal direction NH is inclined, the modified region 12 and the crack 13 are formed along the line A, and the crack 13 is formed into an oblique crack.
 より具体的には、ラインAの第1領域A1の加工を行う場合には、図28の(b)に示されるような第1向きの第1形状Q1の集光領域Cとなるようにレーザ光Lの成形を行い、ラインAの第2領域A2の加工を行う場合には、図29の(b)に示されるような第2向きの第2形状Q2の集光領域Cとなるようにレーザ光Lの成形を行う。このような加工を行う場合について、次のような加工試験を行った。 More specifically, when processing the first region A1 of the line A, the laser is formed so as to be the condensing region C of the first orientation Q1 as shown in FIG. 28 (b). When the light L is formed and the second region A2 of the line A is processed, the light L is formed so as to be the light collecting region C of the second shape Q2 in the second direction as shown in FIG. 29 (b). The laser beam L is formed. In the case of performing such processing, the following processing test was performed.
 図32は、図30に示された対象物の平面図である。図32に示されるように、ここでは、ラインAのうち、ラインAと第2結晶方位K2との交点である0°の点から、ラインAと第4結晶方位K4との交点である-45°の点までの第2領域A2について、加工進行方向NDを順方向ND1として集光領域Cを相対移動させた場合と、加工進行方向NDを逆方向ND2として集光領域Cを相対移動させた場合と、のそれぞれの場合で実際に加工を行って断面観察を行った。ここでは、第2領域A2の加工を行うため、集光領域Cは、図29の(b)に示される第2形状Q2とされる。また、斜め亀裂の延びる方向CDは、対象物11の中心側から外側に向かう方向(図29の(b)参照)である。 FIG. 32 is a plan view of the object shown in FIG. As shown in FIG. 32, here, from the point of 0 °, which is the intersection of the line A and the second crystal orientation K2, in the line A, the intersection of the line A and the fourth crystal orientation K4 is −45. Regarding the second region A2 up to the point of °, the condensing region C was relatively moved with the machining progress direction ND as the forward direction ND1 and the condensing region C with the machining progress direction ND as the reverse direction ND2. In each case, processing was actually performed and cross-sectional observation was performed. Here, in order to process the second region A2, the condensing region C is the second shape Q2 shown in FIG. 29 (b). Further, the direction CD in which the diagonal crack extends is a direction toward the outside from the center side of the object 11 (see (b) in FIG. 29).
 したがって、図29の(b)に示されるように、加工進行方向NDが順方向ND1である場合には、加工進行方向NDに対する集光領域Cの長手方向NHの傾斜の向きと、斜め亀裂の延びる方向CDとが同じ側となる一方で、加工進行方向NDが逆方向ND2である場合(加工進行方向NDの矢印の向きを逆にした場合)には、加工進行方向NDに対する長手方向NHの傾斜の向きと、斜め亀裂の延びる方向CDとが互いに反対側となる。なお、順方向ND1を反時計回りの方向とし、逆方向ND2を時計回りの方向としている。 Therefore, as shown in FIG. 29 (b), when the machining progress direction ND is the forward direction ND1, the direction of the inclination of the longitudinal NH of the condensing region C with respect to the machining progress direction ND and the oblique crack. When the extending direction CD is on the same side and the machining progress direction ND is the reverse direction ND2 (when the direction of the arrow of the machining progress direction ND is reversed), the longitudinal direction NH with respect to the machining progress direction ND The direction of inclination and the direction CD in which the diagonal crack extends are opposite to each other. The forward direction ND1 is a counterclockwise direction, and the reverse direction ND2 is a clockwise direction.
 図33及び図34は、加工結果を示す断面写真である。図33は、順方向ND1での加工結果を示し、(a)~(d)は、それぞれ、0°の点、-15°の点、-30°の点、及び、-45°の点の断面写真である。また、図34は、逆方向ND2での加工結果を示し、(a)~(d)は、それぞれ、0°の点、-15°の点、-30°の点、及び、-45°の点の断面写真である。 33 and 34 are cross-sectional photographs showing the processing results. FIG. 33 shows the machining results in the forward direction ND1, and (a) to (d) are points at 0 °, -15 °, -30 °, and −45 °, respectively. It is a cross-sectional photograph. Further, FIG. 34 shows the processing results in the reverse direction ND2, and (a) to (d) are 0 ° points, -15 ° points, -30 ° points, and −45 °, respectively. It is a cross-sectional photograph of a point.
 図33,34に示されるように、長手方向NHの向きと斜め亀裂の延びる方向CDとが加工進行方向NDに対して同じ側となる順方向ND1での加工では、0°から-45°に至るまで良好な加工結果が得られたものの、長手方向NHの向きと斜め亀裂の延びる方向CDとが加工進行方向NDに対して逆側となる逆方向ND2での加工では、-45°の点(図34の(d))において、下面に至るような凹凸FNが発生し、品質低下が確認された。このことから、加工進行方向NDに対する長手方向NHの傾斜の向きと、加工進行方向NDに対する斜め亀裂の延びる方向CDとの関係が、加工品質に影響していることが理解された。この理解に基づいて、別の加工試験を行った。 As shown in FIGS. 33 and 34, in the case of machining in the forward direction ND1 where the direction of the longitudinal NH and the direction CD in which the diagonal crack extends are on the same side with respect to the machining progress direction ND, the temperature changes from 0 ° to −45 °. Although good machining results were obtained up to the point, in the machining in the opposite direction ND2 where the direction of NH in the longitudinal direction and the direction CD in which the diagonal crack extends are opposite to the machining progress direction ND, the point is -45 °. (In (d) of FIG. 34, uneven FN extending to the lower surface was generated, and deterioration in quality was confirmed. From this, it was understood that the relationship between the direction of the inclination of the longitudinal NH with respect to the machining progress direction ND and the direction CD in which the diagonal crack extends with respect to the machining progress direction ND affects the machining quality. Based on this understanding, another processing test was conducted.
 図35は、加工試験を説明するための模式図である。図36は、加工試験における加工進行方向とビーム形状と斜め亀裂との関係を示す模式図である。図35,36に示されるように、この加工試験では、Z方向からみたときに(110)面に対して45°となる方向を加工進行方向NDとし、その順方向ND1と逆方向ND2とのそれぞれについて、斜め亀裂の延びる方向CDを正方向CD1とした場合と逆方向CD2とした場合の加工を行った。すなわち、加工進行方向NDの順逆で2通り、斜め亀裂の延びる方向CDの正逆で2通りの計4通りの組み合わせに対して、さらに、集光領域Cのビーム形状を第1形状Q1とした場合と第2形状Q2とした場合の加工(計8通りの加工)を行った。 FIG. 35 is a schematic diagram for explaining the processing test. FIG. 36 is a schematic view showing the relationship between the machining progress direction, the beam shape, and the oblique crack in the machining test. As shown in FIGS. 35 and 36, in this machining test, the direction at which the angle is 45 ° with respect to the (110) plane when viewed from the Z direction is defined as the machining progress direction ND, and the forward direction ND1 and the reverse direction ND2 are defined. For each, processing was performed when the direction CD in which the diagonal crack extends was set to the forward direction CD1 and the case where the direction CD was the reverse direction CD2. That is, the beam shape of the condensing region C is set to the first shape Q1 for a total of four combinations of two ways in the order of the machining progress direction ND and two ways in the forward and reverse directions of the diagonal crack extending direction CD. Processing was performed in the case of the case and the case of the second shape Q2 (a total of eight types of processing).
 図37は、図35,36に示される加工試験の結果を示す表である。図37に示されるように、計8通りの加工に対して、斜め亀裂の延びる方向CDを正方向CD1としたときには、集光領域Cのビーム形状を第2形状Q2とし、且つ、加工進行方向NDを順方向ND1とした場合、及び、集光領域Cのビーム形状を第1形状Q1とし、且つ、加工進行方向NDを逆方向ND2とした場合に、良好な加工結果(図37の表の「A」)が得られた。 FIG. 37 is a table showing the results of the processing tests shown in FIGS. 35 and 36. As shown in FIG. 37, when the direction CD in which the diagonal crack extends is set to the positive direction CD1 for a total of eight types of machining, the beam shape of the condensing region C is set to the second shape Q2 and the machining progress direction. Good machining results (in the table of FIG. 37) when the ND is the forward direction ND1 and when the beam shape of the condensing region C is the first shape Q1 and the machining progress direction ND is the reverse direction ND2. "A") was obtained.
 また、計8通りの加工に対して、斜め亀裂の延びる方向CDを逆方向CD2としたときには、集光領域Cのビーム形状を第1形状Q1とし、且つ、加工進行方向NDを順方向ND1とした場合、及び、集光領域Cのビーム形状を第2形状Q2とし、且つ、加工進行方向NDを逆方向ND2とした場合に、良好な加工結果が得られた。このことから、少なくとも45°の点の加工を行う際には、加工進行方向NDの順逆を調整し、加工進行方向NDに対する集光領域Cの長手方向NHの傾斜の向きと斜め亀裂の延びる方向CDとが同じ側となる場合に、良好な加工結果となるとの知見が得られた。 Further, when the direction CD in which the diagonal crack extends is set to the reverse direction CD2 for a total of eight types of machining, the beam shape of the condensing region C is set to the first shape Q1 and the machining progress direction ND is set to the forward direction ND1. Good machining results were obtained when the beam shape of the condensing region C was set to the second shape Q2 and the machining progress direction ND was set to the reverse direction ND2. From this, when machining at least 45 ° points, the order of the machining progress direction ND is adjusted, and the direction of inclination of the longitudinal direction NH of the condensing region C with respect to the machining progress direction ND and the direction in which the oblique crack extends. It was found that good processing results are obtained when the CD is on the same side.
 なお、45°の点は、第2結晶方位K2とラインAとが直交する点を0°とした場合には、(100)面に直交する第3結晶方位K3とラインAとが直交する点であり、同じく(100)面に直交する第4結晶方位K4とラインAとが直交する点である-45°の点と同等である。 The point of 45 ° is a point where the third crystal orientation K3 orthogonal to the (100) plane and the line A are orthogonal to each other when the point where the second crystal orientation K2 and the line A are orthogonal to each other is 0 °. This is equivalent to the point at −45 °, which is the point where the fourth crystal orientation K4 orthogonal to the (100) plane and the line A are orthogonal to each other.
 以上の知見に基づいて、さらなる加工試験を行った。図38は、加工試験の結果を示す表である。図38の表に示される各条件のうち、第1領域A1でビーム形状を第1形状Q1とする条件、及び、第2領域A2でビーム形状を第2形状Q2とする条件であって、加工進行方向NDに対する集光領域Cの長手方向NHの傾斜の向きと斜め亀裂の延びる方向CDとが同じ側となる条件IR1及び条件IR2で、良好な加工結果(図38の表の評価「A」又は評価「B」)が得られた。なお、図38に示される評価は、評価「A」、評価「B」、評価「C」、評価「D」、及び、評価「E」の順に良好となっている(すなわち、評価「A」が最も良好であり、評価「E」が最も良好でない)。 Based on the above findings, further processing tests were conducted. FIG. 38 is a table showing the results of the processing test. Of the conditions shown in the table of FIG. 38, the condition that the beam shape is the first shape Q1 in the first region A1 and the condition that the beam shape is the second shape Q2 in the second region A2 are processed. Good machining results (evaluation "A" in the table of FIG. 38) under the conditions IR1 and IR2 in which the direction of inclination of the longitudinal direction NH of the condensing region C with respect to the traveling direction ND and the direction CD in which the oblique crack extends are on the same side. Or the evaluation "B") was obtained. The evaluation shown in FIG. 38 is improved in the order of evaluation "A", evaluation "B", evaluation "C", evaluation "D", and evaluation "E" (that is, evaluation "A"). Is the best, and the rating "E" is not the best).
 条件IR1は、第1結晶方位K1とラインAとが直交する点を0°とした場合の0°の点から-45°の点までの第2領域A2に対して、加工進行方向NDを順方向ND1とし、且つ、集光領域Cのビーム形状を第2形状Q2とする条件である。また、条件IR2は、第1結晶方位K1とラインAとが直交する点を0°とした場合の-45°の点から-90°の点までの第1領域A1に対して、加工進行方向NDを逆方向ND2とし、且つ、集光領域Cのビーム形状を第1形状Q1とする条件である。 The condition IR1 is to order the machining progress direction ND with respect to the second region A2 from the 0 ° point to the −45 ° point when the point where the first crystal direction K1 and the line A are orthogonal to each other is 0 °. It is a condition that the direction ND1 and the beam shape of the condensing region C are the second shape Q2. Further, the condition IR2 is a machining progress direction with respect to the first region A1 from the point of −45 ° to the point of −90 ° when the point where the first crystal direction K1 and the line A are orthogonal to each other is 0 °. It is a condition that the ND is the reverse direction ND2 and the beam shape of the condensing region C is the first shape Q1.
 一方、図38の表に示される各条件のうち、第1領域A1でビーム形状を第1形状Q1とする条件、及び、第2領域A2でビーム形状を第2形状Q2とする条件であれば、加工進行方向NDに対する集光領域Cの長手方向NHの傾斜の向きと斜め亀裂の延びる方向CDとが同じ側でない条件IR3及び条件IR4についても、条件IR1及び条件IR2と比較して劣るものの、-45°の点を除いて概ね良好な加工結果が得られた。他方、図38の表に示される各条件のうち、第1領域A1でビーム形状を第2形状Q2とする条件IR5、及び、第2領域A2でビーム形状を第1形状Q1とする条件IR6では、加工進行方向NDの順逆によらず、全般的に良好な結果が得られなかった。 On the other hand, among the conditions shown in the table of FIG. 38, if the condition is that the beam shape is the first shape Q1 in the first region A1 and the beam shape is the second shape Q2 in the second region A2. The condition IR3 and the condition IR4, in which the direction of inclination of the longitudinal direction NH of the condensing region C with respect to the processing progress direction ND and the direction CD in which the oblique crack extends are not on the same side, are also inferior to the condition IR1 and the condition IR2. Good processing results were obtained except for the point of -45 °. On the other hand, among the conditions shown in the table of FIG. 38, the condition IR5 in which the beam shape is the second shape Q2 in the first region A1 and the condition IR6 in which the beam shape is the first shape Q1 in the second region A2. In general, good results were not obtained regardless of the order of the machining progress direction ND.
 なお、図39の(a)は図38の表中の評価「E」、図39の(b)は図38の表中の評価「D」、図39の(c)は図38の表中の評価「C」、図39の(d)は図38の表中の評価「B」、図39の(e)は図38の表中の評価「A」のそれぞれに対応する断面写真の一例である。図39に示されるように、評価「A」及び評価「B」は、下面に至る凹凸が形成されていない良好な加工結果を示す。また、評価「C」は、下面に至る凹凸がわずかに生じているものの、概ね良好な結果を示す。一方、評価「D」及び評価「E」は、下面に至る凹凸が相対的に多く生じており、良好でない結果を示す。 In addition, (a) of FIG. 39 is the evaluation "E" in the table of FIG. 38, (b) of FIG. 39 is the evaluation "D" in the table of FIG. 38, and (c) of FIG. 39 is in the table of FIG. 38. Is an example of a cross-sectional photograph corresponding to the evaluation "C" in FIG. 39, the evaluation "B" in the table of FIG. 38, and the evaluation "A" in the table of FIG. 39 (e). Is. As shown in FIG. 39, the evaluation "A" and the evaluation "B" show good processing results in which the unevenness reaching the lower surface is not formed. Further, the evaluation "C" shows generally good results, although the unevenness reaching the lower surface is slightly generated. On the other hand, in the evaluation "D" and the evaluation "E", the unevenness reaching the lower surface is relatively large, and the results are not good.
 図38,39に示される加工試験の結果によれば、図37に示される加工試験の結果より得られた知見の正しさが確認された。 According to the results of the machining test shown in FIGS. 38 and 39, the correctness of the findings obtained from the results of the machining test shown in FIG. 37 was confirmed.
 本実施形態では、以上のような知見に基づいてレーザ加工を行う。ここでは、まず、対象物11の第1部分15A(図31参照)の加工を行う。すなわち、ステージ2を回転させながら、制御部6によりレーザ光Lの照射のON/OFFを切り替えることで、図40の(a)に示されるように、ラインAのうち第1領域A1に沿って集光領域Cを相対的に移動させて改質領域12を形成すると共に、ラインAの第1領域A1以外の領域(第2領域A2)での改質領域12の形成を停止する(第1加工)。 In this embodiment, laser processing is performed based on the above knowledge. Here, first, the first portion 15A (see FIG. 31) of the object 11 is processed. That is, by switching ON / OFF of the irradiation of the laser beam L by the control unit 6 while rotating the stage 2, as shown in FIG. 40 (a), along the first region A1 of the line A. The light collecting region C is relatively moved to form the modified region 12, and the formation of the modified region 12 in the region other than the first region A1 of the line A (second region A2) is stopped (first). processing).
 図40の(b)に示されるように、第1加工では、制御部6の移動部4の制御のもとでステージ2の回転方向が制御されることにより、加工進行方向NDが逆方向ND2とされる。また、第1加工では、第1領域A1の加工であるため、制御部6の制御のもとで空間光変調器7によるレーザ光Lの成形が行われることにより、集光領域Cのビーム形状が第1形状Q1とされる。さらに、ここでは、第2面11bに向かうにつれてZ方向に対して対象物11の中心から外側に向かう方向に傾斜するように(図31参照)、斜め亀裂の延びる方向CDが正方向CD1とされる。 As shown in FIG. 40 (b), in the first machining, the rotation direction of the stage 2 is controlled under the control of the moving section 4 of the control section 6, so that the machining progress direction ND is the reverse direction ND2. It is said that. Further, since the first processing is the processing of the first region A1, the laser beam L is formed by the spatial light modulator 7 under the control of the control unit 6, so that the beam shape of the condensing region C is formed. Is the first shape Q1. Further, here, the direction CD in which the diagonal crack extends is defined as the positive direction CD1 so as to incline in the direction outward from the center of the object 11 with respect to the Z direction toward the second surface 11b (see FIG. 31). To.
 ここでの斜め亀裂の形成方法について具体的に説明する。すなわち、第1加工では、図41に示されるように、対象物11におけるレーザ光L1の入射面である第1面11aに交差するZ方向についての集光領域C1の位置を第1Z位置Z1に設定しつつ、ラインA(X方向)に沿って集光領域C1を相対移動させることにより、改質領域(第1改質領域)12a及び改質領域12aから延びる亀裂(第1亀裂)13aを対象物11に形成する(第1形成)。この第1形成では、第1面11aに沿うと共にX方向に交差するY方向についての集光領域C1の位置を第1Y位置Y1に設定する。 The method of forming diagonal cracks here will be specifically explained. That is, in the first processing, as shown in FIG. 41, the position of the condensing region C1 in the Z direction intersecting the first surface 11a, which is the incident surface of the laser beam L1 on the object 11, is set to the first Z position Z1. By relatively moving the condensing region C1 along the line A (X direction) while setting, the modified region (first modified region) 12a and the crack (first crack) 13a extending from the modified region 12a are formed. It is formed on the object 11 (first formation). In this first formation, the position of the light collecting region C1 along the first surface 11a and intersecting the X direction in the Y direction is set to the first Y position Y1.
 また、第1加工では、Z方向についてのレーザ光L2の集光領域C2の位置を、第1形成での集光領域C1の第1Z位置Z1よりも第1面11a(入射面)側の第2Z位置Z2に設定しつつ、ラインA(X方向)に沿って集光領域C2を相対移動させることにより、改質領域12b(第2改質領域)及び改質領域12bから延びる亀裂(第2亀裂)13bを形成する(第2形成)。この第2形成では、Y方向についての集光領域C2の位置を、集光領域C1の第1Y位置Y1からシフトした第2Y位置Y2に設定する。また、第2形成では、Y方向及びZ方向を含むYZ面S内での集光領域C2のビーム形状が、少なくとも集光領域C2の中心よりも第1面11a側において当該シフトの方向に傾斜する傾斜形状となるようにレーザ光L2を変調させる(Z方向からみたときの集光領域C2のビーム形状は第1形状Q1である)。これにより、YZ面S内において当該シフトの方向に傾斜するように亀裂13が形成される。YZ面S内におけるビーム形状の制御については、上記の斜め亀裂に関する知見で説明した通りである。 Further, in the first processing, the position of the condensing region C2 of the laser beam L2 in the Z direction is set to the first surface 11a (incident surface) side of the first Z position Z1 of the condensing region C1 in the first formation. A crack extending from the modified region 12b (second modified region) and the modified region 12b (second) by relatively moving the condensing region C2 along the line A (X direction) while setting the 2Z position Z2. (Crack) 13b is formed (second formation). In this second formation, the position of the condensing region C2 in the Y direction is set to the second Y position Y2 shifted from the first Y position Y1 of the condensing region C1. Further, in the second formation, the beam shape of the condensing region C2 in the YZ plane S including the Y direction and the Z direction is inclined in the direction of the shift at least on the first surface 11a side of the center of the condensing region C2. The laser beam L2 is modulated so as to have an inclined shape (the beam shape of the condensing region C2 when viewed from the Z direction is the first shape Q1). As a result, the crack 13 is formed in the YZ plane S so as to be inclined in the direction of the shift. The control of the beam shape in the YZ plane S is as described in the above-mentioned knowledge about the oblique crack.
 なお、ここでは、第1形成でも、第2形成と同様に、Y方向及びZ方向を含むYZ面S内での集光領域C1のビーム形状が、少なくとも集光領域C1の中心よりも第1面11a側において当該シフトの方向に傾斜する傾斜形状となるようにレーザ光L1を変調させる(この場合にも、Z方向からみたときの集光領域C1のビーム形状は第1形状Q1である)。以上により、図41の(b)に示されるように、ラインAの第1領域A1において、亀裂13aと亀裂13bとがつなげられ、改質領域12a,12bにわたって斜めに延びる亀裂13(斜め亀裂13F)が形成される。斜め亀裂13Fは、対象物11の第2面11bに到達してもよいし到達しなくてもよい(要求される加工の態様に応じて適宜設定され得る)。 Here, also in the first formation, as in the second formation, the beam shape of the condensing region C1 in the YZ plane S including the Y direction and the Z direction is at least first than the center of the condensing region C1. The laser beam L1 is modulated so as to have an inclined shape inclined in the direction of the shift on the surface 11a side (also in this case, the beam shape of the condensing region C1 when viewed from the Z direction is the first shape Q1). .. As a result, as shown in FIG. 41 (b), in the first region A1 of the line A, the crack 13a and the crack 13b are connected and the crack 13 (diagonal crack 13F) extending diagonally over the modified regions 12a and 12b. ) Is formed. The diagonal crack 13F may or may not reach the second surface 11b of the object 11 (it may be appropriately set according to the required processing mode).
 なお、レーザ光L1,L2は、例えば、空間光変調器7にレーザ光Lを分岐するためのパターンを表示させてレーザ光Lを変調することにより、レーザ光Lを2つに分岐することにより生成され得る。この場合、第1形成と第2形成とが同時に実施されることとなる。ただし、レーザ光L1,L2は、別のレーザ光であってもよく、この場合、第1形成と第2形成とが別途のタイミングで行われることとなる。また、集光領域C1,C2は、それぞれ、レーザ光Lの集光領域Cに相当するレーザ光L1,L2の集光領域である。 The laser beams L1 and L2 are divided into two laser beams L by, for example, displaying a pattern for branching the laser beam L on the spatial light modulator 7 and modulating the laser beam L. Can be generated. In this case, the first formation and the second formation will be carried out at the same time. However, the laser beams L1 and L2 may be different laser beams, and in this case, the first formation and the second formation are performed at different timings. Further, the condensing regions C1 and C2 are condensing regions of the laser beams L1 and L2 corresponding to the condensing regions C of the laser light L, respectively.
 一方、本実施形態では、ステージ2を回転させながら、制御部6によりレーザ光Lの照射のON/OFFを切り替えることで、図42の(a)に示されるように、ラインAのうち第2領域A2に沿って集光領域Cを相対的に移動させて改質領域12を形成すると共に、ラインAの第2領域A2以外の領域(第1領域A1)での改質領域12の形成を停止する(第2加工)。 On the other hand, in the present embodiment, by switching ON / OFF of the irradiation of the laser beam L by the control unit 6 while rotating the stage 2, as shown in FIG. 42 (a), the second line A The condensing region C is relatively moved along the region A2 to form the modified region 12, and the modified region 12 is formed in the region (first region A1) other than the second region A2 of the line A. Stop (second processing).
 図42の(b)に示されるように、第2加工では、制御部6の移動部4の制御のもとでステージ2の回転方向が制御されることにより、加工進行方向NDが順方向ND1とされる。すなわち、第1加工と第2加工との間では、加工進行方向NDの順逆(順方向ND1とするか逆方向ND2とするか)が切り替えられる。また、第2加工では、第2領域A2の加工であるため、制御部6の制御のもとで空間光変調器7によるレーザ光Lの成形が行われることにより、集光領域Cのビーム形状が第2形状Q2とされる。さらに、ここでは、第2面11bに向かうにつれてZ方向に対して対象物11の中心から外側に向かう方向に傾斜するように(図31参照)、斜め亀裂の延びる方向CDが正方向CD1とされる。 As shown in FIG. 42 (b), in the second machining, the rotation direction of the stage 2 is controlled under the control of the moving section 4 of the control section 6, so that the machining progress direction ND is the forward direction ND1. It is said that. That is, between the first machining and the second machining, the forward / reverse of the machining progress direction ND (whether the forward direction ND1 or the reverse direction ND2 is used) is switched. Further, since the second processing is the processing of the second region A2, the laser beam L is formed by the spatial light modulator 7 under the control of the control unit 6, so that the beam shape of the condensing region C is formed. Is the second shape Q2. Further, here, the direction CD in which the diagonal crack extends is defined as the positive direction CD1 so as to incline in the direction outward from the center of the object 11 with respect to the Z direction toward the second surface 11b (see FIG. 31). To.
 ここでの斜め亀裂の形成方法について具体的に説明する。すなわち、第2加工では、図43の(a)に示されるように、対象物11におけるレーザ光L1の入射面である第1面11aに交差するZ方向についての集光領域C1の位置を第1Z位置Z1に設定しつつ、ラインA(X方向)に沿って集光領域C1を相対移動させることにより、改質領域(第1改質領域)12a及び改質領域12aから延びる亀裂(第1亀裂)13aを対象物11に形成する(第1形成)。この第1形成では、第1面11aに沿うと共にX方向に交差するY方向についての集光領域C1の位置を第1Y位置Y1に設定する。 The method of forming diagonal cracks here will be specifically explained. That is, in the second processing, as shown in FIG. 43 (a), the position of the condensing region C1 in the Z direction intersecting the first surface 11a, which is the incident surface of the laser beam L1 on the object 11, is the second. A crack extending from the modified region (first modified region) 12a and the modified region 12a (first) by relatively moving the condensing region C1 along the line A (X direction) while setting the 1Z position Z1. The crack) 13a is formed on the object 11 (first formation). In this first formation, the position of the light collecting region C1 along the first surface 11a and intersecting the X direction in the Y direction is set to the first Y position Y1.
 また、第2形成では、Z方向についてのレーザ光L2の集光領域C2の位置を、第1形成での集光領域C1の第1Z位置Z1よりも第1面11a(入射面)側の第2Z位置Z2に設定しつつ、ラインA(X方向)に沿って集光領域C2を相対移動させることにより、改質領域12b(第2改質領域)及び改質領域12bから延びる亀裂(第2亀裂)13bを形成する(第2形成)。この第2形成では、Y方向についての集光領域C2の位置を、集光領域C1の第1Y位置Y1からシフトした第2Y位置Y2に設定する。また、第2形成では、Y方向及びZ方向を含むYZ面S内での集光領域C2のビーム形状が、少なくとも集光領域C2の中心よりも第1面11a側において当該シフトの方向に傾斜する傾斜形状となるようにレーザ光L2を変調させる(Z方向からみたときの集光領域C2のビーム形状は、第2形状Q2である)。これにより、YZ面S内において当該シフトの方向に傾斜するように亀裂13が形成される。 Further, in the second formation, the position of the condensing region C2 of the laser beam L2 in the Z direction is set to the first surface 11a (incident surface) side of the first Z position Z1 of the condensing region C1 in the first formation. A crack extending from the modified region 12b (second modified region) and the modified region 12b (second) by relatively moving the condensing region C2 along the line A (X direction) while setting the 2Z position Z2. (Crack) 13b is formed (second formation). In this second formation, the position of the condensing region C2 in the Y direction is set to the second Y position Y2 shifted from the first Y position Y1 of the condensing region C1. Further, in the second formation, the beam shape of the condensing region C2 in the YZ plane S including the Y direction and the Z direction is inclined in the direction of the shift at least on the first surface 11a side of the center of the condensing region C2. The laser beam L2 is modulated so as to have an inclined shape (the beam shape of the condensing region C2 when viewed from the Z direction is the second shape Q2). As a result, the crack 13 is formed in the YZ plane S so as to be inclined in the direction of the shift.
 なお、ここでは、第1形成でも、第2形成と同様に、Y方向及びZ方向を含むYZ面S内での集光領域C1のビーム形状が、少なくとも集光領域C1の中心よりも第1面11a側において当該シフトの方向に傾斜する傾斜形状となるようにレーザ光L1を変調させる(この場合にも、Z方向からみたときの集光領域C1のビーム形状は第2形状Q2である)。以上により、図43の(b)に示されるように、ラインAの第2領域A2において、亀裂13aと亀裂13bとがつなげられ、改質領域12a,12bにわたって斜めに延びる亀裂13(斜め亀裂13F)が形成される。亀裂13は、対象物11の第2面11bに到達してもよいし到達しなくてもよい(要求される加工の態様に応じて適宜設定され得る)。なお、ビーム形状を傾斜形状とするための変調パターンは、上述したとおりである。 Here, also in the first formation, as in the second formation, the beam shape of the condensing region C1 in the YZ plane S including the Y direction and the Z direction is at least first than the center of the condensing region C1. The laser beam L1 is modulated so as to have an inclined shape inclined in the direction of the shift on the surface 11a side (also in this case, the beam shape of the condensing region C1 when viewed from the Z direction is the second shape Q2). .. As a result, as shown in FIG. 43 (b), in the second region A2 of the line A, the crack 13a and the crack 13b are connected and the crack 13 (diagonal crack 13F) extending diagonally over the modified regions 12a and 12b. ) Is formed. The crack 13 may or may not reach the second surface 11b of the object 11 (it may be appropriately set according to the required processing mode). The modulation pattern for making the beam shape an inclined shape is as described above.
 すなわち、ここでの変調パターンは、レーザ光Lに対してコマ収差を付与するためのコマ収差パターンを含み、少なくとも第2形成では、制御部6は、コマ収差パターンによるコマ収差の大きさを制御することにより、集光領域C2のビーム形状を傾斜形状とするための第1パターン制御を行うことができる。上述したように、レーザ光Lに対してコマ収差を付与することは、球面収差補正パターンのオフセットと同義である。 That is, the modulation pattern here includes a coma aberration pattern for imparting coma aberration to the laser beam L, and at least in the second formation, the control unit 6 controls the magnitude of coma aberration due to the coma aberration pattern. By doing so, the first pattern control for making the beam shape of the condensing region C2 an inclined shape can be performed. As described above, adding coma to the laser beam L is synonymous with the offset of the spherical aberration correction pattern.
 したがって、ここでの変調パターンは、レーザ光Lの球面収差を補正するための球面収差補正パターンPsを含み、少なくとも第2形成では、制御部6は、集光レンズ33の入射瞳面33aの中心に対して球面収差補正パターンPsの中心PcをY方向にオフセットさせることにより、集光領域C2のビーム形状を傾斜形状とするための第2パターン制御を行ってもよい。 Therefore, the modulation pattern here includes the spherical aberration correction pattern Ps for correcting the spherical aberration of the laser beam L, and in at least the second formation, the control unit 6 is the center of the incident pupil surface 33a of the condenser lens 33. By offsetting the center Pc of the spherical aberration correction pattern Ps in the Y direction, the second pattern control for making the beam shape of the condensing region C2 an inclined shape may be performed.
 或いは、第2形成では、制御部6は、X方向に沿った軸線Axに対して非対称な変調パターンを空間光変調器7に表示させることにより、集光領域C2のビーム形状を傾斜形状とするための第3パターン制御を行ってもよい。軸線Axに対して非対称な変調パターンとしては、グレーティングパターンGaを含む変調パターンPG1~PG4であってもよいし、楕円パターンEs,Ewを含む変調パターンPEであってもよい(或いは両方を含むものであってもよい)。 Alternatively, in the second formation, the control unit 6 makes the beam shape of the condensing region C2 an inclined shape by displaying the modulation pattern asymmetrical with respect to the axis Ax along the X direction on the spatial light modulator 7. The third pattern control for the purpose may be performed. The modulation pattern asymmetric with respect to the axis line Ax may be the modulation patterns PG1 to PG4 including the grating pattern Ga, or the modulation patterns PE including the elliptical patterns Es and Ew (or those including both). May be).
 すなわち、ここでの変調パターンは、XY面内における集光領域Cのビーム形状を、X方向を長手とする楕円形状とするための楕円パターンEs,Ewを含み、第2形成では、制御部6は、楕円パターンEs,Ewの強度が、X方向に沿った軸線Axに対して非対称となるように、変調パターンPEを空間光変調器7に表示させることによって、集光領域C2のビーム形状を傾斜形状とするための第4パターン制御を行ってもよい。 That is, the modulation pattern here includes elliptical patterns Es and Ew for making the beam shape of the condensing region C in the XY plane an elliptical shape having the longitudinal direction in the X direction, and in the second formation, the control unit 6 By displaying the modulation pattern PE on the spatial light modulator 7 so that the intensities of the elliptical patterns Es and Ew are asymmetric with respect to the axis Ax along the X direction, the beam shape of the condensing region C2 is obtained. A fourth pattern control for forming an inclined shape may be performed.
 さらには、制御部6は、第2形成において、YZ面S内で当該シフトの方向に沿って配列された複数の集光領域Cを形成するための変調パターン(例えば上記のアキシコンレンズパターンPA)を空間光変調器7に表示させることにより、集光領域Cのビーム形状を傾斜形状とするための第5パターン制御を行ってもよい。上記の各種パターンは任意に組み合わされて重畳されてもよい。すなわち、制御部6は、第1パターン制御~第5パターン制御を任意に組み合わせて実行することができる。 Further, in the second formation, the control unit 6 has a modulation pattern (for example, the above-mentioned Axicon lens pattern PA) for forming a plurality of condensing regions C arranged along the direction of the shift in the YZ plane S. ) May be displayed on the spatial light modulator 7, and the fifth pattern control for making the beam shape of the condensing region C an inclined shape may be performed. The various patterns described above may be arbitrarily combined and superimposed. That is, the control unit 6 can execute the first pattern control to the fifth pattern control in any combination.
 なお、第1形成と第2形成とは、同時に実施されてもよいし(多焦点加工)、順番に実施されてもよい(シングルパス加工)。すなわち、制御部6は、ラインAの例えば第1領域A1に対して、第1形成を実施した後に、第2形成を実施してもよい。或いは、制御部6は、レーザ光Lをレーザ光L1,L2に分岐させるための分岐パターンを含む変調パターンを空間光変調器7に表示させることにより、対象物11に設定されたラインAの例えば第1領域A1に対して第1形成と第2形成とを同時に実施してもよい。 The first formation and the second formation may be performed at the same time (multifocal processing) or in sequence (single pass processing). That is, the control unit 6 may perform the second formation after performing the first formation on, for example, the first region A1 of the line A. Alternatively, the control unit 6 causes the spatial light modulator 7 to display a modulation pattern including a branch pattern for branching the laser beam L into the laser beams L1 and L2, so that, for example, the line A set on the object 11 is displayed. The first formation and the second formation may be carried out simultaneously for the first region A1.
 引き続いて、本実施形態では、対象物11の第2部分15B(図31参照)の加工を行う。第2部分15Bでは、斜め亀裂を形成は必須でなく、ここでは垂直亀裂を形成する。したがって、第2部分15Bの加工は、上述したトリミング加工と同様の加工によって、改質領域12c,12d及びそれらから延びる亀裂(垂直亀裂)13c,13dを形成する(図45参照)。この場合、第2部分15Bでは、第1領域A1と第2領域A2とで加工進行方向NDの順逆を切り替えることなく、第1加工及び第2加工と異なる別加工を行うこととなる。 Subsequently, in the present embodiment, the second portion 15B (see FIG. 31) of the object 11 is processed. In the second part 15B, the formation of diagonal cracks is not essential, and here vertical cracks are formed. Therefore, the processing of the second portion 15B forms the modified regions 12c and 12d and the cracks (vertical cracks) 13c and 13d extending from them by the same processing as the trimming processing described above (see FIG. 45). In this case, in the second portion 15B, different machining different from the first machining and the second machining is performed without switching the order of the machining progress direction ND between the first region A1 and the second region A2.
 ただし、上述したトリミング加工では、トリム面の品質の低下抑制のため、第1領域A1の加工の際にビーム形状が第1形状Q1とされ(第1加工)、第2領域A2の加工の際にビーム形状が第2形状Q2とされていた(第2加工)が、第2部分15Bでは集光領域Cの長手方向NHが加工進行方向NDに沿うように(加工進行方向NDに対して傾斜しないように)すると共に、第1領域A1と第2領域A2との境界でレーザ光Lの照射のON・OFFを行うことなくラインAの全体わたって連続的に集光領域Cを相対移動させて改質領域12c,12d及び亀裂13c,13dを形成してもよい。すなわち、第2部分15Bでは、第1加工及び第2加工と異なる別加工を行うこともできる。或いは、第2部分15Bでは、加工進行方向NDの切り替えを行うことなく、ラインAのうちの第1領域A1に沿って集光領域Cを相対移動させることにより、第1領域A1に沿って改質領域12c,12dを形成すると共に、当該改質領域12c,12dからZ方向に沿って延びる亀裂13c,13dを形成する第1Z加工と、ラインAのうちの第2領域A2に沿って集光領域Cを相対移動させることにより、第2領域A2に沿って改質領域12c,12dを形成すると共に、当該改質領域12c,12dからZ方向に沿って延びる亀裂13c,13dを形成する第2Z加工と、を別加工として行ってもよい。この場合、第1Z加工及び第2Z加工では、第1加工及び第2加工と同様に、Z方向からみたときに集光領域Cが長手方向NHを有するように、且つ、当該長手方向NHが、第1結晶方位K1及び第2結晶方位K2のうち加工進行方向NDとの間の角度が大きい一方に近づく向きに加工進行方向NDDに対して傾斜するように、レーザ光Lを成形することができる。 However, in the above-mentioned trimming process, the beam shape is set to the first shape Q1 (first process) during the process of the first region A1 and the second region A2 is processed in order to suppress deterioration of the quality of the trim surface. The beam shape was set to the second shape Q2 (second processing), but in the second portion 15B, the longitudinal direction NH of the condensing region C is inclined along the processing progress direction ND (inclination with respect to the processing progress direction ND). In addition, the condensing region C is continuously moved relative to the entire line A without turning on / off the irradiation of the laser beam L at the boundary between the first region A1 and the second region A2. The modified regions 12c and 12d and the cracks 13c and 13d may be formed. That is, in the second portion 15B, different processing different from the first processing and the second processing can be performed. Alternatively, in the second portion 15B, the condensing region C is relatively moved along the first region A1 of the line A without switching the machining progress direction ND, so that the light condensing region C is modified along the first region A1. The first Z processing to form the quality regions 12c and 12d and the cracks 13c and 13d extending from the modified regions 12c and 12d in the Z direction, and the light collection along the second region A2 of the line A. By relatively moving the region C, the modified regions 12c and 12d are formed along the second region A2, and the second Z forming cracks 13c and 13d extending from the modified regions 12c and 12d in the Z direction. Processing and processing may be performed as separate processing. In this case, in the first Z processing and the second Z processing, as in the first processing and the second processing, the light collecting region C has the longitudinal direction NH when viewed from the Z direction, and the longitudinal direction NH is The laser beam L can be formed so as to be inclined with respect to the machining progress direction NDD in a direction approaching one of the first crystal orientation K1 and the second crystal orientation K2 having a larger angle with the machining progress direction ND. ..
 以上の加工によって、図44及び図45に示されるように、ラインAの全体にわたって、且つ、Z方向の概ね全体にわたって、対象物11に改質領域12及び亀裂13が形成されることとなる。特に、図45に示されるように、第1部分15Aでは、対象物11の第1面11aから第2面11bに向かうにつれて、対象物11のデバイス層110と対象物11Rのデバイス層110Rとの接合領域の内側の位置から当該接合領域の外縁110eに向かうように傾斜した亀裂13a,13bが形成される。また、亀裂13c,13dは、連続せずに分断されていてもよいし、連続していてもよい。さらには、亀裂13bと亀裂13cとが連続せずに分断されていてもよいし、連続していてもよい。 By the above processing, as shown in FIGS. 44 and 45, the modified region 12 and the crack 13 are formed in the object 11 over the entire line A and almost the entire Z direction. In particular, as shown in FIG. 45, in the first portion 15A, the device layer 110 of the object 11 and the device layer 110R of the object 11R are arranged from the first surface 11a to the second surface 11b of the object 11. Cracks 13a and 13b inclined from the inner position of the joint region toward the outer edge 110e of the joint region are formed. Further, the cracks 13c and 13d may be divided without being continuous or may be continuous. Further, the cracks 13b and the cracks 13c may be separated without being continuous, or may be continuous.
 引き続いて、上記のトリミング加工と同様に、除去処理が行われる。具体的には、ステージ2を回転させずに、除去領域Eにおいてレーザ光Lを照射すると共に、照射部3をX方向に沿って移動し、当該レーザ光Lの集光領域Cを対象物11に対してX方向に相対移動する。ステージ2を90°回転させた後、除去領域Eにおいてレーザ光Lを照射すると共に、照射部3をX方向に沿ってX方向に移動し、当該レーザ光Lの集光領域Cを対象物11に対してX方向に相対移動する。 Subsequently, the removal process is performed in the same manner as the above trimming process. Specifically, the laser beam L is irradiated in the removal region E without rotating the stage 2, the irradiation unit 3 is moved along the X direction, and the condensing region C of the laser beam L is the object 11 It moves relative to the X direction. After rotating the stage 2 by 90 °, the laser beam L is irradiated in the removal region E, the irradiation unit 3 is moved in the X direction along the X direction, and the condensing region C of the laser beam L is the object 11 It moves relative to the X direction.
 これにより、図46に示されるように、Z方向から見て除去領域Eに4等分するように延びるラインに沿って、改質領域12及び改質領域12から延びる亀裂13を形成する。その後、図47の(a)に示されるように、例えば冶具又はエアーにより、改質領域12を境界として除去領域Eを取り除く。これにより、対象物11から半導体デバイス11Kが形成され、半導体デバイス11Kを含む対象物100Kが得られる。 As a result, as shown in FIG. 46, the modified region 12 and the crack 13 extending from the modified region 12 are formed along the line extending so as to divide the removal region E into four equal parts when viewed from the Z direction. Then, as shown in FIG. 47 (a), the removal region E is removed with the modified region 12 as a boundary, for example, by using a jig or air. As a result, the semiconductor device 11K is formed from the object 11, and the object 100K including the semiconductor device 11K is obtained.
 続いて、半導体デバイス11Kを第1面11a側から研削する。ここでは、第2部分15Bを除去すると共に、第1部分15Aの一部を除去する。第1部分15Aの除去される一部は、改質領域12a,12bが形成された部分である。したがって、第1部分15Aの残存される残部は、改質領域12a,12bを含まない。エッチングにより対象物11を剥離している場合、当該研磨を簡略化することができる。以上の結果、半導体デバイス11Mが形成され、半導体デバイス11Mを含む対象物100Mが得られる。 Subsequently, the semiconductor device 11K is ground from the first surface 11a side. Here, the second portion 15B is removed and a part of the first portion 15A is removed. The part of the first portion 15A to be removed is the portion where the modified regions 12a and 12b are formed. Therefore, the remaining portion of the first portion 15A does not include the modified regions 12a and 12b. When the object 11 is peeled off by etching, the polishing can be simplified. As a result of the above, the semiconductor device 11M is formed, and the object 100M including the semiconductor device 11M is obtained.
 以上の本実施形態に係るレーザ加工について、レーザ加工装置1の構成として説明する。すなわち、レーザ加工装置1は、対象物11にレーザ光L(レーザ光L1,L2)を照射して改質領域12を形成するためのものであり、少なくとも、対象物11を支持するためのステージ2と、ステージ2に支持された対象物11に向けてレーザ光Lを照射するための照射部3と、レーザ光Lの集光領域C(集光領域C1,C2)を対象物11に対して相対移動させるための移動部4,5と、移動部4,5及び照射部3を制御するための制御部6と、を備えている。照射部3は、Z方向からみたときに集光領域Cが長手方向NHを有するようにレーザ光Lを成形する空間光変調器7を有する。 The above laser processing according to the present embodiment will be described as a configuration of the laser processing apparatus 1. That is, the laser processing apparatus 1 is for irradiating the object 11 with the laser light L (laser light L1, L2) to form the modified region 12, and at least a stage for supporting the object 11. 2, the irradiation unit 3 for irradiating the laser beam L toward the object 11 supported by the stage 2, and the condensing region C (condensing regions C1 and C2) of the laser beam L with respect to the object 11. It is provided with moving units 4 and 5 for relative movement, and a control unit 6 for controlling the moving units 4 and 5 and the irradiation unit 3. The irradiation unit 3 has a spatial light modulator 7 that shapes the laser beam L so that the condensing region C has the longitudinal direction NH when viewed from the Z direction.
 そして、制御部6は、照射部3及び移動部4,5を制御することによって、ラインAのうちの第1領域A1に沿って集光領域C(集光領域C1,C2)を相対移動させることにより、第1領域A1に沿って対象物11に改質領域12(改質領域12a,12b)を形成すると共に、当該改質領域12から対象物11の入射面である第1面11aと反対側の第2面11bに向けてZ方向に対して斜めに延びる斜め亀裂13Fを形成する第1加工処理(上記の第1加工)を実行する。 Then, the control unit 6 relatively moves the light-collecting area C (light-collecting area C1 and C2) along the first region A1 of the line A by controlling the irradiation unit 3 and the moving units 4 and 5. As a result, the modified region 12 (modified regions 12a, 12b) is formed on the object 11 along the first region A1, and the modified region 12 becomes the incident surface of the object 11 with the first surface 11a. The first processing process (the above-mentioned first processing) for forming the oblique crack 13F extending diagonally with respect to the Z direction toward the second surface 11b on the opposite side is executed.
 さらに、制御部6は、照射部3及び移動部4,5を制御することによって、ラインAのうちの第2領域A2に沿って集光領域C(集光領域C1,C2)を相対移動させることにより、第2領域A2に沿って対象物11に改質領域12(改質領域12a,12b)を形成すると共に、改質領域12から第2面11bに向けて延びる斜め亀裂13F(亀裂13a,13b)を形成する第2加工処理(上記の第2加工)を実行する。 Further, the control unit 6 relatively moves the condensing region C (condensing region C1 and C2) along the second region A2 of the line A by controlling the irradiation unit 3 and the moving units 4 and 5. As a result, the modified region 12 (modified regions 12a, 12b) is formed in the object 11 along the second region A2, and the diagonal crack 13F (crack 13a) extending from the modified region 12 toward the second surface 11b is formed. , 13b) The second processing process (the above-mentioned second processing) for forming) is executed.
 第1加工処理及び第2加工処理では、制御部6は、空間光変調器7を制御することによって、Z方向からみて集光領域Cが長手方向NHを有するように、且つ、当該長手方向NHが、第1結晶方位K1及び第2結晶方位K2のうち、集光領域Cの移動方向である加工進行方向NDとの間の角度が大きい一方に近づく向きに加工進行方向NDに対して傾斜するように、レーザ光Lを成形する。また、第1加工処理及び第2加工処理では、制御部6は、移動部4,5を制御することによって、Z方向からみたとき、長手方向NHの傾斜の向きが、加工進行方向NDに対して斜め亀裂13Fが延びる方向と同じ側となるように、加工進行方向NDの順逆を第1加工処理と第2加工処理とで切り替える。 In the first processing and the second processing, the control unit 6 controls the spatial optical modulator 7 so that the condensing region C has the longitudinal direction NH when viewed from the Z direction, and the longitudinal direction NH. Is inclined with respect to the machining progress direction ND in the direction closer to the larger angle between the first crystal orientation K1 and the second crystal orientation K2 and the machining progress direction ND, which is the movement direction of the condensing region C. As described above, the laser beam L is formed. Further, in the first machining process and the second machining process, the control unit 6 controls the moving units 4 and 5, so that the direction of inclination of the longitudinal direction NH is set with respect to the machining progress direction ND when viewed from the Z direction. The order of the machining progress direction ND is switched between the first machining process and the second machining process so that the diagonal crack 13F is on the same side as the extending direction.
 引き続いて、以上の本実施形態に係るレーザ加工について、レーザ加工方法の工程として説明する。すなわち、本実施形態に係るレーザ加工方法は、対象物11にレーザ光L(レーザ光L1,L2)を照射して改質領域12を形成するためのものであり、対象物11に設定されたラインAのうちの第1領域A1に沿って集光領域C(集光領域C1,C2)を相対移動させることにより、第1領域A1に沿って対象物11に改質領域12(改質領域12a,12b)を形成すると共に、当該改質領域12から対象物11の入射面である第1面11aと反対側の第2面11bに向けてZ方向に対して斜めに延びる斜め亀裂13F(亀裂13a,13b)を形成する第1加工工程(上記の第1加工)を有する。 Subsequently, the laser processing according to the above embodiment will be described as a process of the laser processing method. That is, the laser processing method according to the present embodiment is for irradiating the object 11 with the laser light L (laser light L1, L2) to form the modified region 12, and is set on the object 11. By relatively moving the condensing region C (condensing region C1 and C2) along the first region A1 of the line A, the modified region 12 (modifying region 12) is moved to the object 11 along the first region A1. 12a, 12b) is formed, and an oblique crack 13F (diagonal crack 13F) extending diagonally from the modified region 12 toward the second surface 11b opposite to the first surface 11a, which is the incident surface of the object 11, in the Z direction. It has a first processing step (the above-mentioned first processing) for forming cracks 13a, 13b).
 また、本実施形態に係るレーザ加工方法は、ラインAのうちの第2領域A2に沿って集光領域C(集光領域C1,C2)を相対移動させることにより、第2領域A2に沿って対象物11に改質領域12(改質領域12a,12b)を形成すると共に、改質領域12から第2面11bに向けて延びる斜め亀裂13F(亀裂13a,13b)を形成する第2加工工程(上記の第2加工)を有する。 Further, in the laser processing method according to the present embodiment, the condensing region C (condensing region C1 and C2) is relatively moved along the second region A2 of the line A, so that the condensing region C (C1 and C2) is relatively moved along the second region A2. A second processing step of forming a modified region 12 (modified regions 12a, 12b) on the object 11 and forming an oblique crack 13F ( cracks 13a, 13b) extending from the modified region 12 toward the second surface 11b. Has (the above second processing).
 第1加工工程及び第2加工工程では、Z方向からみたときに集光領域Cが長手方向NHを有するように、且つ、集光領域Cの長手方向NHが、第1結晶方位K1及び第2結晶方位K2のうち、集光領域Cの移動方向である加工進行方向NDとの間の角度が大きい一方に近づく向きに加工進行方向NDに対して傾斜するように、レーザ光Lを成形する。また、第1加工工程及び第2加工工程では、Z方向からみたとき、長手方向NHの傾斜の向きが、加工進行方向NDに対して斜め亀裂13Fが延びる方向と同じ側となるように、加工進行方向NDの順逆を第1加工工程と第2加工工程とで切り替える。 In the first processing step and the second processing step, the light-collecting region C has the longitudinal direction NH when viewed from the Z direction, and the longitudinal direction NH of the light-collecting region C is the first crystal orientation K1 and the second. The laser beam L is formed so that the angle between the crystal orientation K2 and the processing progress direction ND, which is the movement direction of the condensing region C, is larger and the laser beam L is inclined with respect to the processing progress direction ND. Further, in the first processing step and the second processing step, when viewed from the Z direction, the direction of the inclination of the longitudinal direction NH is the same side as the direction in which the diagonal crack 13F extends with respect to the processing progress direction ND. The order of the traveling direction ND is switched between the first processing step and the second processing step.
 以上説明したように、本実施形態に係るレーザ加工装置1及びレーザ加工方法では、対象物11は結晶構造を有する。そして、ここでは、レーザ光Lの集光領域Cを相対移動させるラインAのうちの第1領域A1に沿って対象物11に改質領域12を形成する場合(第1加工処理、第1加工工程)、及び、当該ラインAのうちの第2領域A2に沿って対象物11に改質領域12を形成する場合(第2加工処理、第2加工工程)において、改質領域12から対象物11の第1面11a(入射面)と反対側の第2面11b(反対面)に向けてZ方向(入射面に交差する方向)に対して斜めに延びる斜め亀裂13Fを形成する。したがって、加工進行方向NDの順逆を第1加工処理(第1領域A1)と第2加工処理(第2領域A2)とで切り替えることにより、対象物11の結晶構造に応じてより適切に加工進行方向NDを設定可能である。 As described above, in the laser processing apparatus 1 and the laser processing method according to the present embodiment, the object 11 has a crystal structure. Then, here, when the modified region 12 is formed on the object 11 along the first region A1 of the line A that relatively moves the condensing region C of the laser beam L (first processing, first processing). Step) and in the case of forming the modified region 12 in the object 11 along the second region A2 of the line A (second processing process, second processing step), the object is formed from the modified region 12. An oblique crack 13F extending diagonally in the Z direction (direction intersecting the incident surface) toward the second surface 11b (opposite surface) opposite to the first surface 11a (incident surface) of 11 is formed. Therefore, by switching the order of the machining progress direction ND between the first machining process (first region A1) and the second machining process (second region A2), the machining progresses more appropriately according to the crystal structure of the object 11. The direction ND can be set.
 本実施形態に係るレーザ加工装置1では、制御部6は、第1部分15Aに対して、加工進行方向NDの順逆を切り替えながら第1加工処理及び第2加工処理を実行すると共に、第2部分15Bに対して、第1加工処理及び第2加工処理と異なる別加工処理(別加工)を実行してもよい。別加工処理では、制御部6は、照射部3及び移動部4,5を制御することによって、ラインAの全体にわたって加工進行方向NDの順逆を同一としつつラインAに沿って集光領域Cを相対移動させることにより、ラインAに沿って対象物11に改質領域12及び当該改質領域12からZ方向に沿って延びる亀裂13を形成してもよい。この場合、第2部分15BでもラインAの第1領域A1と第2領域A2とで加工進行方向NDの順逆を切り替える場合と比較して、レーザ光Lの集光領域Cの相対移動の加減速に係る時間が削減される。 In the laser machining apparatus 1 according to the present embodiment, the control unit 6 executes the first machining process and the second machining process on the first portion 15A while switching the order of the machining progress direction ND, and the second portion. Another processing process (separate processing) different from the first processing process and the second processing process may be executed on the 15B. In the separate processing, the control unit 6 controls the irradiation unit 3 and the moving units 4 and 5 to form the light-collecting region C along the line A while making the order of the processing progress direction ND the same throughout the line A. By moving relative to each other, a modified region 12 and a crack 13 extending from the modified region 12 along the Z direction may be formed in the object 11 along the line A. In this case, even in the second portion 15B, acceleration / deceleration of the relative movement of the condensing region C of the laser beam L is compared with the case where the order of the machining progress direction ND is switched between the first region A1 and the second region A2 of the line A. Time related to is reduced.
 また、本実施形態に係るレーザ加工装置1では、別加工処理では、制御部6は、空間光変調器7を制御することによって、Z方向からみたときに集光領域Cが長手方向NHを有するように、且つ、当該集光領域Cの長手方向NHが加工進行方向NDに沿うようにレーザ光Lを成形してもよい。この場合、Z方向に沿った亀裂13を形成する第2部分15Bでは、ラインAの第1領域A1の加工と第2領域A2の加工との間でレーザ光Lの集光領域Cの傾きが変化するようにレーザ光Lの成形を行う場合と比較して、制御部6の処理が簡略化される。 Further, in the laser processing apparatus 1 according to the present embodiment, in another processing, the control unit 6 controls the spatial light modulator 7, so that the condensing region C has a longitudinal direction NH when viewed from the Z direction. As such, the laser beam L may be formed so that the longitudinal direction NH of the light collecting region C is along the processing progress direction ND. In this case, in the second portion 15B forming the crack 13 along the Z direction, the inclination of the condensing region C of the laser beam L is set between the processing of the first region A1 and the processing of the second region A2 of the line A. The processing of the control unit 6 is simplified as compared with the case where the laser beam L is formed so as to change.
 また、本実施形態に係るレーザ加工装置1では、対象物11は、別の部材(対象物11R)に接合された接合領域を含み、第1加工処理及び第2加工処理では、制御部6は、第1面11aから第2面11bに向かうにつれて接合領域の内側の位置から接合領域の外縁11eに向かうように傾斜した斜め亀裂13Fを形成してもよい。この場合、斜め亀裂13Fを境界として対象物11の一部を対象物11から除去し、対象物11の残部を残存させた場合に、対象物11の他の部材との接合領域を越えて対象物11の残部が外側に延在することが避けられる。 Further, in the laser machining apparatus 1 according to the present embodiment, the object 11 includes a joining region joined to another member (object 11R), and in the first machining process and the second machining process, the control unit 6 is used. , An oblique crack 13F inclined so as to be directed from the inner position of the joint region toward the outer edge 11e of the joint region may be formed from the first surface 11a to the second surface 11b. In this case, when a part of the object 11 is removed from the object 11 with the diagonal crack 13F as a boundary and the rest of the object 11 remains, the object goes beyond the joint region with other members of the object 11. It is avoided that the rest of the object 11 extends outward.
 また、本実施形態に係るレーザ加工装置1では、対象物11は、(100)面と、一の(110)面と、別の(110)面と、一の(110)面に直交する第1結晶方位K1と、別の(110)面に直交する第2結晶方位K2と、を含む結晶構造を有すると共に、(100)面が入射面となるようにステージ2に支持される。第1加工処理及び第2加工処理では、制御部6は、空間光変調器7を制御することによって、Z方向からみたときに集光領域Cが長手方向NHを有するように、且つ、当該集光領域Cの長手方向NHが、第1結晶方位K1及び第2結晶方位K2のうち、集光領域Cの移動方向である加工進行方向NDとの間の角度が大きい一方に近づく向きに加工進行方向NDに対して傾斜するように、レーザ光Lを成形する。このため、上記知見に示されるように、トリム面の品質低下が抑制される。 Further, in the laser processing apparatus 1 according to the present embodiment, the object 11 is orthogonal to the (100) plane, one (110) plane, another (110) plane, and one (110) plane. It has a crystal structure including one crystal orientation K1 and a second crystal orientation K2 orthogonal to another (110) plane, and is supported by stage 2 so that the (100) plane is an incident plane. In the first processing and the second processing, the control unit 6 controls the spatial optical modulator 7 so that the condensing region C has the longitudinal direction NH when viewed from the Z direction, and the collection thereof. Processing progresses in the direction in which the longitudinal direction NH of the optical region C approaches one of the first crystal orientation K1 and the second crystal orientation K2, which has a larger angle between the processing progress direction ND, which is the movement direction of the light collecting region C. The laser beam L is formed so as to be inclined with respect to the direction ND. Therefore, as shown in the above findings, deterioration of the quality of the trim surface is suppressed.
 また、本実施形態に係るレーザ加工装置1では、第1加工処理及び第2加工処理では、制御部6は、移動部4,5を制御することによって、Z方向からみたとき、長手方向NHの傾斜の向きが、加工進行方向NDに対して斜め亀裂13Fが延びる方向と同じ側となるように、加工進行方向NDの順逆を第1加工処理と第2加工処理とで切り替える。このため、第1領域A1及び第2領域A2の両方において、加工進行方向NDに対する集光領域Cの長手方向NHの傾斜の向きと斜め亀裂13Fの延びる側とが同じ側となる。よって、上記知見に示されるように、集光領域Cの長手方向NHの向きと斜め亀裂13Fの傾斜方向との関係が、相対的に良好な品質が得られる組み合わせとなり、品質低下が抑制される。このように、この場合には、対象物11のトリム面の品質低下を抑制しつつ、斜め亀裂13Fを形成可能である。 Further, in the laser machining apparatus 1 according to the present embodiment, in the first machining process and the second machining process, the control unit 6 controls the moving units 4 and 5 to control the moving units 4 and 5 so as to be in the longitudinal direction NH when viewed from the Z direction. The order of the machining progress direction ND is switched between the first machining process and the second machining process so that the direction of inclination is the same as the direction in which the diagonal crack 13F extends with respect to the machining progress direction ND. Therefore, in both the first region A1 and the second region A2, the direction of inclination of the longitudinal direction NH of the condensing region C with respect to the processing progress direction ND and the extending side of the oblique crack 13F are on the same side. Therefore, as shown in the above findings, the relationship between the direction of NH in the longitudinal direction of the condensing region C and the inclination direction of the oblique crack 13F is a combination in which relatively good quality can be obtained, and quality deterioration is suppressed. .. As described above, in this case, the oblique crack 13F can be formed while suppressing the deterioration of the quality of the trim surface of the object 11.
 また、本実施形態に係るレーザ加工装置1では、対象物11は、Z方向に沿って第2面11b側から順に配列された第1部分15A及び第2部分15Bを含む。そして、制御部6は、第1部分15Aに対して、加工進行方向NDの順逆を切り替えながら第1加工処理及び第2加工処理を実行すると共に、第2部分15Bに対して、加工進行方向NDの切り替えを行うことなく、照射部3及び移動部4,5を制御することによって、ラインAのうちの第1領域A1に沿って集光領域Cを相対移動させることにより、第1領域A1に沿って対象物11に改質領域12を形成すると共に、当該改質領域12からZ方向に沿って延びる亀裂13を形成する第1Z加工処理(上記の第1Z加工)と、照射部3及び移動部4,5を制御することによって、ラインAのうちの第2領域A2に沿って集光領域Cを相対移動させることにより、第2領域A2に沿って対象物11に改質領域12を形成すると共に、当該改質領域12からZ方向に沿って延びる亀裂13を形成する第2Z加工処理(上記の第2加工)と、を別加処理として実行してもよい。この場合、第2部分15Bについても、第1領域A1と第2領域A2とにおいて集光領域Cの長手方向NHを加工進行方向NDに応じて設定しつつ、第1領域A1と第2領域A2とで加工進行方向NDの順逆を切り替える場合と比較してレーザ光Lの集光領域Cの相対移動の加減速に係る時間が削減される。 Further, in the laser processing apparatus 1 according to the present embodiment, the object 11 includes the first portion 15A and the second portion 15B arranged in order from the second surface 11b side along the Z direction. Then, the control unit 6 executes the first machining process and the second machining process while switching the order of the machining progress direction ND with respect to the first portion 15A, and the machining progress direction ND with respect to the second portion 15B. By controlling the irradiation unit 3 and the moving units 4 and 5 without switching, the light-collecting region C is relatively moved along the first region A1 of the line A to the first region A1. The first Z processing (the above-mentioned first Z processing) for forming a modified region 12 in the object 11 along the same direction and forming a crack 13 extending in the Z direction from the modified region 12, and the irradiation unit 3 and movement. By controlling the parts 4 and 5, the light collecting region C is relatively moved along the second region A2 of the line A to form the modified region 12 in the object 11 along the second region A2. At the same time, the second Z processing process (the above-mentioned second processing) for forming the crack 13 extending from the modified region 12 along the Z direction may be executed as a separate processing. In this case, also for the second portion 15B, the first region A1 and the second region A2 are set in the first region A1 and the second region A2 in the longitudinal direction NH of the condensing region C according to the processing progress direction ND. Compared with the case of switching the order of the processing progress direction ND, the time related to the acceleration / deceleration of the relative movement of the condensing region C of the laser beam L is reduced.
 また、本実施形態に係るレーザ加工装置1では、第1加工処理及び第2加工処理では、制御部6は、Z方向についての集光領域C1の位置を第1Z位置Z1に設定しつつ、ラインAに沿って集光領域C1を相対移動させることにより、改質領域12a及び改質領域12aから延びる亀裂13aを対象物11に形成する第1形成処理(上記の第1形成)と、Z方向についての集光領域C2の位置を第1Z位置Z1よりも第1面11a側の第2Z位置Z2に設定しつつ、ラインAに沿って集光領域C2を相対移動させることにより、改質領域12b及び改質領域12bから延びる亀裂13bを形成する第2形成処理(上記の第2形成)と、を実行することができる。 Further, in the laser processing apparatus 1 according to the present embodiment, in the first processing and the second processing, the control unit 6 sets the position of the light collecting region C1 in the Z direction to the first Z position Z1 while setting the line. The first forming process (first formation described above) for forming the crack 13a extending from the modified region 12a and the modified region 12a in the object 11 by relatively moving the condensing region C1 along A, and the Z direction. By moving the condensing region C2 relative to the line A while setting the position of the condensing region C2 about the above to the second Z position Z2 on the first surface 11a side of the first Z position Z1, the modified region 12b And the second forming process (the above-mentioned second forming) for forming the crack 13b extending from the modified region 12b can be performed.
 第1形成処理では、制御部6は、加工進行方向ND及びZ方向に交差するY方向についての集光領域C1の位置を第1Y位置Y1に設定し、第2形成処理では、制御部6は、Y方向についての集光領域C2の位置を第1Y位置Y1からシフトした第2Y位置Y2に設定すると共に、空間光変調器7の制御によって、Y方向及びZ方向を含むYZ面S内での集光領域C2の形状が、少なくとも集光領域C2の中心より第1面11a側においてシフトの方向に傾斜する傾斜形状となるようにレーザ光L2を成形することにより、YZ面S内においてシフトの方向に傾斜するように亀裂13bを形成してもよい。このようにすれば、Z方向に対して傾斜した斜め亀裂を好適に形成可能である。 In the first forming process, the control unit 6 sets the position of the light collecting region C1 in the Y direction intersecting the machining progress direction ND and the Z direction to the first Y position Y1, and in the second forming process, the control unit 6 sets the position of the light collecting region C1. , The position of the condensing region C2 in the Y direction is set to the second Y position Y2 shifted from the first Y position Y1, and under the control of the spatial optical modulator 7, the position in the YZ plane S including the Y direction and the Z direction is set. By forming the laser beam L2 so that the shape of the condensing region C2 is inclined in the direction of the shift at least on the first surface 11a side from the center of the condensing region C2, the shift is performed in the YZ surface S. The crack 13b may be formed so as to be inclined in the direction. By doing so, it is possible to suitably form an oblique crack inclined in the Z direction.
 また、本実施形態に係るレーザ加工装置1では、照射部3は、空間光変調器7からのレーザ光Lを対象物11に向けて集光するための集光レンズ33を含み、第2形成処理では、制御部6は、空間光変調器7に表示させる変調パターンの制御によって、集光領域Cの形状が傾斜形状となるようにレーザ光Lを変調することによりレーザ光Lを成形してもよい。この場合、空間光変調器7を用いて容易にレーザ光Lを成形できる。 Further, in the laser processing apparatus 1 according to the present embodiment, the irradiation unit 3 includes a condenser lens 33 for condensing the laser beam L from the spatial light modulator 7 toward the object 11, and the second formation. In the processing, the control unit 6 forms the laser light L by modulating the laser light L so that the shape of the condensing region C becomes an inclined shape by controlling the modulation pattern displayed on the spatial light modulator 7. May be good. In this case, the laser beam L can be easily formed by using the spatial light modulator 7.
 このとき、本実施形態に係るレーザ加工装置1では、変調パターンは、レーザ光Lに対してコマ収差を付与するためのコマ収差パターンを含み、第2形成処理では、制御部6は、コマ収差パターンによるコマ収差の大きさを制御することにより、集光領域Cの形状を傾斜形状とするための第1パターン制御を行ってもよい。本発明者の知見によれば、この場合、YZ面S内における集光領域Cの形状が、弧状に形成される。すなわち、この場合には、集光領域Cの形状が、集光領域Cの中心Caよりも第1面11a(入射面)側でシフト方向に傾斜すると共に、集光領域Cの中心Caよりも入射面と反対側でシフト方向と反対方向に傾斜される。この場合であっても、シフト方向に傾斜する斜め亀裂13Fを形成可能である。 At this time, in the laser processing apparatus 1 according to the present embodiment, the modulation pattern includes a coma aberration pattern for imparting coma aberration to the laser beam L, and in the second forming process, the control unit 6 has coma aberration. By controlling the magnitude of coma aberration due to the pattern, the first pattern control for making the shape of the condensing region C an inclined shape may be performed. According to the findings of the present inventor, in this case, the shape of the condensing region C in the YZ plane S is formed in an arc shape. That is, in this case, the shape of the condensing region C is inclined in the shift direction on the first surface 11a (incident surface) side of the center Ca of the condensing region C, and is larger than the center Ca of the condensing region C. It is tilted in the direction opposite to the shift direction on the side opposite to the incident surface. Even in this case, it is possible to form an oblique crack 13F that is inclined in the shift direction.
 また、本実施形態に係るレーザ加工装置1では、変調パターンは、レーザ光Lの球面収差を補正するための球面収差補正パターンを含み、第2形成処理では、制御部6は、集光レンズ33の入射瞳面33aの中心に対して球面収差補正パターンPsの中心をY方向にオフセットさせることにより、集光領域Cの形状を傾斜形状とするための第2パターン制御を行ってもよい。本発明者の知見によれば、この場合にも、コマ収差パターンを利用した場合と同様に、YZ面S内における集光領域Cの形状を弧状に形成でき、シフト方向に傾斜する斜め亀裂13Fを形成可能である。 Further, in the laser processing apparatus 1 according to the present embodiment, the modulation pattern includes a spherical aberration correction pattern for correcting the spherical aberration of the laser light L, and in the second forming process, the control unit 6 is the condenser lens 33. By offsetting the center of the spherical aberration correction pattern Ps in the Y direction with respect to the center of the incident pupil surface 33a, the second pattern control for making the shape of the condensing region C an inclined shape may be performed. According to the findings of the present inventor, in this case as well, the shape of the condensing region C in the YZ plane S can be formed in an arc shape as in the case of using the coma aberration pattern, and the diagonal crack 13F inclined in the shift direction. Can be formed.
 また、本実施形態に係るレーザ加工装置1では、第2形成処理では、制御部6は、加工進行方向NDに沿った軸線に対して非対称な変調パターンを空間光変調器7に表示させることにより、集光領域Cの形状を傾斜形状とするための第3パターン制御を行ってもよい。本発明者の知見によれば、この場合、YZ面S内における集光領域Cの形状の全体を、シフト方向に傾斜させることができる。この場合であっても、シフト方向に傾斜する斜め亀裂13Fを形成可能である。 Further, in the laser processing apparatus 1 according to the present embodiment, in the second forming process, the control unit 6 causes the spatial light modulator 7 to display a modulation pattern asymmetric with respect to the axis along the processing progress direction ND. A third pattern control may be performed to make the shape of the light collecting region C an inclined shape. According to the findings of the present inventor, in this case, the entire shape of the condensing region C in the YZ plane S can be tilted in the shift direction. Even in this case, it is possible to form an oblique crack 13F that is inclined in the shift direction.
 また、本実施形態に係るレーザ加工装置1では、変調パターンは、Y方向及びZ方向に交差するX方向とY方向とを含むXY面内における集光領域Cの形状を、X方向を長手とする楕円形状とするための楕円パターンを含み、第2形成処理では、制御部6は、楕円パターンの強度が、X方向に沿った軸線に対して非対称となるように、変調パターンを空間光変調器7に表示させることによって、ビーム形状を傾斜形状とするための第4パターン制御を行ってもよい。本発明者の知見によれば、この場合にも、YZ面S内における集光領域Cの形状を弧状に形成でき、シフト方向に傾斜する斜め亀裂13Fを形成可能である。 Further, in the laser processing apparatus 1 according to the present embodiment, the modulation pattern has the shape of the condensing region C in the XY plane including the X direction and the Y direction intersecting the Y direction and the Z direction, and the X direction is the longitudinal direction. In the second forming process, the control unit 6 spatially photomodulates the modulation pattern so that the intensity of the elliptical pattern is asymmetric with respect to the axis along the X direction. The fourth pattern control for making the beam shape an inclined shape may be performed by displaying the light on the device 7. According to the findings of the present inventor, even in this case, the shape of the condensing region C in the YZ plane S can be formed in an arc shape, and the diagonal crack 13F inclined in the shift direction can be formed.
 また、本実施形態に係るレーザ加工装置1では、第2形成処理では、制御部6は、YZ面S内でシフトの方向に沿って配列された複数のレーザ光Lの集光点CIを形成するための変調パターンを空間光変調器7に表示させることにより、複数の集光点CIを含む集光領域Cの形状を傾斜形状とするための第5パターン制御を行ってもよい。本発明者の知見によれば、この場合にも、シフト方向に傾斜する斜め亀裂13Fを形成可能である。
[レーザ加工の第2実施形態]
Further, in the laser processing apparatus 1 according to the present embodiment, in the second forming process, the control unit 6 forms a condensing point CI of a plurality of laser beams L arranged along the shift direction in the YZ plane S. By displaying the modulation pattern for this purpose on the spatial light modulator 7, the fifth pattern control for making the shape of the light-collecting region C including the plurality of light-collecting points CI into an inclined shape may be performed. According to the findings of the present inventor, it is possible to form an oblique crack 13F inclined in the shift direction also in this case.
[Second Embodiment of Laser Machining]
 引き続いて、トリミング加工の際に斜め亀裂の形成を行うレーザ加工の別の実施形態について説明する。図48は、一実施形態に係るレーザ加工の対象物を示す図である。図48に示されるように、本実施形態に係るレーザ加工の対象物は、第1実施形態と同様に、対象物11Rに張り合わされて対象物100を構成する対象物11である。ただし、本実施形態では、ラインAにおける第1領域A1及び第2領域A2の角度範囲が第1実施形態と異なる。 Subsequently, another embodiment of laser processing for forming diagonal cracks during trimming processing will be described. FIG. 48 is a diagram showing an object of laser machining according to an embodiment. As shown in FIG. 48, the object of laser machining according to the present embodiment is the object 11 which is bonded to the object 11R to form the object 100, as in the first embodiment. However, in the present embodiment, the angle ranges of the first region A1 and the second region A2 in the line A are different from those in the first embodiment.
 第1実施形態では、一例として、第1領域A1と第2領域A2との境界が、トリム面の品質低下が生じやすい45°や-45°の点に設定されていた。これは、第1実施形態では、品質低下が生じやすい45°,-45°の点であっても、加工進行方向NDの順逆を調整し、45°,-45°の点の加工の際に加工進行方向NDに対する集光領域Cの長手方向NHの傾斜の向きと斜め亀裂13Fが延びる方向とを同じ側とすれば、品質低下を抑制可能であるとの知見に基づいたものであった。 In the first embodiment, as an example, the boundary between the first region A1 and the second region A2 is set to a point of 45 ° or −45 ° where the quality of the trim surface is likely to deteriorate. In the first embodiment, even at the points of 45 ° and −45 ° where quality deterioration is likely to occur, the order and reverse of the machining progress direction ND are adjusted, and when machining the points at 45 ° and −45 °. It was based on the finding that quality deterioration can be suppressed if the direction of inclination of the longitudinal direction NH of the condensing region C with respect to the processing progress direction ND and the direction in which the oblique crack 13F extends are on the same side.
 一方、図38の表に示されるように、例えば、第1領域A1及び第2領域A2の加工の際の加工進行方向NDをいずれも順方向ND1とする場合(上から1番目及び3番目の表参照)、-45°の点は、集光領域Cのビーム形状を第1形状Q1としたときには(上から3番目の表参照)品質低下が見られるものの、第2形状Q2としたときには(上から1番目の表参照)良好な品質が得られ、且つ、-50°の点でも依然として良好な品質が得られることがわかる。 On the other hand, as shown in the table of FIG. 38, for example, when the machining progress direction ND at the time of machining the first region A1 and the second region A2 is set to the forward direction ND1 (first and third from the top). (Refer to the table), the point of -45 ° shows quality deterioration when the beam shape of the condensing region C is the first shape Q1 (see the third table from the top), but when the beam shape of the second shape Q2 is used (see the table). (See the first table from the top) It can be seen that good quality is obtained, and good quality is still obtained at the point of -50 °.
 したがって、第1領域A1及び第2領域A2の加工の際の加工進行方向NDを順方向ND1に統一したとしても、0°から-50°程度までの角度範囲での加工の際に集光領域Cのビーム形状を第2形状Q2とし、且つ、-50°から-90°程度までの角度範囲での加工の際に集光領域Cのビーム形状を第1形状Q1とすれば、全ての角度範囲で良好な加工品質が得られるのである。実際に、図49の表を参照すると、条件IR7と条件IR8とを併用することにより全ての角度範囲で良好な加工品質が得られることがわかる。 Therefore, even if the machining progress direction ND in the machining of the first region A1 and the second region A2 is unified to the forward direction ND1, the condensing region is used in the machining in the angle range from 0 ° to -50 °. If the beam shape of C is the second shape Q2 and the beam shape of the condensing region C is the first shape Q1 when processing in an angle range of about -50 ° to -90 °, all angles. Good processing quality can be obtained in the range. In fact, referring to the table of FIG. 49, it can be seen that good processing quality can be obtained in all angle ranges by using the condition IR7 and the condition IR8 together.
 さらに、例えば、第1領域A1及び第2領域A2の加工の際の加工進行方向NDをいずれも逆方向ND2とする場合(上から2番目及び4番目の表参照)には、-45°の点は、順方向D1の例とは反対に、集光領域Cのビーム形状を第2形状Q2としたときには(上から2番目の表参照)品質低下が見られ、第1形状Q1としたときには(上から4番目の表参照)良好な品質が得られ、且つ、-40°の点でも依然として良好な品質が得られることがわかる。 Further, for example, when the machining progress direction ND at the time of machining the first region A1 and the second region A2 is set to the reverse direction ND2 (see the second and fourth tables from the top), the temperature is −45 °. Contrary to the example of the forward direction D1, the point shows that the quality is deteriorated when the beam shape of the condensing region C is the second shape Q2 (see the second table from the top), and when the beam shape is the first shape Q1. (See the fourth table from the top) It can be seen that good quality is obtained, and good quality is still obtained at the point of −40 °.
 したがって、第1領域A1及び第2領域A2の加工の際の加工進行方向NDを逆方向ND2に統一したとしても、0°から-40°程度までの角度範囲での加工の際に集光領域Cのビーム形状を第2形状Q2とし、且つ、-40°から-90°程度までの角度範囲での加工の際に集光領域Cのビーム形状を第1形状Q1とすれば、全ての角度範囲で良好な加工品質が得られるのである。実際に、図50の表を参照すると、条件IR9条件IR10とを併用することにより全ての角度範囲で良好な加工品質が得られることがわかる。 Therefore, even if the machining progress direction ND in the machining of the first region A1 and the second region A2 is unified to the reverse direction ND2, the condensing region is used in the machining in the angle range from 0 ° to -40 °. If the beam shape of C is the second shape Q2 and the beam shape of the condensing region C is the first shape Q1 during processing in an angle range of about -40 ° to -90 °, all angles are set. Good processing quality can be obtained in the range. In fact, referring to the table of FIG. 50, it can be seen that good processing quality can be obtained in all angle ranges by using the condition IR9 and the condition IR10 together.
 つまり、集光領域Cの長手方向NHが、第1結晶方位K1及び第2結晶方位K2のうち、加工進行方向NDとの間の角度が大きい一方に近づく向きに加工進行方向NDに対して傾斜するようにレーザ光Lを成形することを前提に、第1領域A1の加工(上記の第1加工)と第2領域A2の加工(上記の第2加工)とで加工進行方向の順逆を同一とした場合には、第1領域A1及び第2領域A2のうち、長手方向NHの傾斜の向きが加工進行方向NDに対して斜め亀裂13Fが延びる側と同じ側となる一方が45°の点(上記の例では-45°の点)を含むように、第1領域A1と第2領域A2との境界を設定すれば、全ての角度範囲で良好な加工品質が得られるのである。 That is, the longitudinal direction NH of the condensing region C is inclined with respect to the machining progress direction ND in the direction closer to one of the first crystal orientation K1 and the second crystal orientation K2, which has a larger angle with the machining progress direction ND. On the premise that the laser beam L is formed so as to be performed, the order of the processing progress direction is the same for the processing of the first region A1 (the above-mentioned first processing) and the processing of the second region A2 (the above-mentioned second processing). In the case of, one of the first region A1 and the second region A2 where the direction of inclination of the longitudinal direction NH is the same side as the side where the oblique crack 13F extends with respect to the machining progress direction ND is 45 °. If the boundary between the first region A1 and the second region A2 is set so as to include (the point of −45 ° in the above example), good processing quality can be obtained in all the angle ranges.
 本実施形態に係るレーザ加工では、以上の知見に基づいて行われる。すなわち、本実施形態に係るレーザ加工では、図48に示されるように、第1領域A1と第2領域A2との境界Ksが、長手方向NHの傾斜の向きが加工進行方向NDに対して斜め亀裂13Fが延びる側と同じ側となる一方が45°の点(上記の例では-45°の点)を含むように設定される。図示の例では、加工進行方向NDを順方向ND1とし、第2領域A2が45°の点を含むように境界Ksが設定されている。 The laser processing according to this embodiment is performed based on the above knowledge. That is, in the laser machining according to the present embodiment, as shown in FIG. 48, the boundary Ks between the first region A1 and the second region A2 is inclined in the longitudinal direction NH at an angle with respect to the machining progress direction ND. One of the sides on which the crack 13F extends is set to include a 45 ° point (-45 ° point in the above example). In the illustrated example, the machining progress direction ND is set to the forward direction ND1, and the boundary Ks is set so that the second region A2 includes a point at 45 °.
 特に、ここでは、第1実施形態と比較して、第1領域A1を約5°分だけ縮小して0°から40°程度までの約40°分の円弧とし、第2領域A2を約5°分だけ拡大して40°から90°程度までの約50°分の円弧とすることから、第2領域A2が第1領域A1よりも約10°分だけ長くされている。第1領域A1及び第2領域A2のそれぞれの加工は、加工進行方向NDが順方向ND1(或いは逆方向ND2)に統一されている点を除き、上記の第1加工及び第2加工(さらには第1形成及び第2形成)と同様に実施される。 In particular, here, as compared with the first embodiment, the first region A1 is reduced by about 5 ° to form an arc of about 40 ° from 0 ° to about 40 °, and the second region A2 is about 5 Since the arc is expanded by ° to form an arc of about 50 ° from 40 ° to 90 °, the second region A2 is longer than the first region A1 by about 10 °. The machining of the first region A1 and the second region A2 is the above-mentioned first machining and second machining (further, further, except that the machining progress direction ND is unified to the forward direction ND1 (or the reverse direction ND2). It is carried out in the same manner as the first formation and the second formation).
 以上の本実施形態に係るレーザ加工について、レーザ加工装置1の構成として説明する。すなわち、レーザ加工装置1は、対象物11にレーザ光L(レーザ光L1,L2)を照射して改質領域12を形成するためのものであり、少なくとも、対象物11を支持するためのステージ2と、ステージ2に支持された対象物11に向けてレーザ光Lを照射するための照射部3と、レーザ光Lの集光領域C(集光領域C1,C2)を対象物11に対して相対移動させるための移動部4,5と、移動部4,5及び照射部3を制御するための制御部6と、を備えている。照射部3は、Z方向からみたときに集光領域Cが長手方向NHを有するようにレーザ光Lを成形する空間光変調器7を有する。 The above laser processing according to the present embodiment will be described as a configuration of the laser processing apparatus 1. That is, the laser processing apparatus 1 is for irradiating the object 11 with the laser light L (laser light L1, L2) to form the modified region 12, and at least a stage for supporting the object 11. 2, the irradiation unit 3 for irradiating the laser beam L toward the object 11 supported by the stage 2, and the condensing region C (condensing regions C1 and C2) of the laser beam L with respect to the object 11. It is provided with moving units 4 and 5 for relative movement, and a control unit 6 for controlling the moving units 4 and 5 and the irradiation unit 3. The irradiation unit 3 has a spatial light modulator 7 that shapes the laser beam L so that the condensing region C has the longitudinal direction NH when viewed from the Z direction.
 そして、制御部6は、照射部3及び移動部4,5を制御することによって、ラインAのうちの第1領域A1に沿って集光領域C(集光領域C1,C2)を相対移動させることにより、第1領域A1に沿って対象物11に改質領域12(改質領域12a,12b)を形成すると共に、当該改質領域12から対象物11の入射面である第1面11aと反対側の第2面11bに向けてZ方向に対して斜めに延びる斜め亀裂13F(亀裂13a,13b)を形成する第1加工処理(上記の第1加工)を実行する。 Then, the control unit 6 relatively moves the light-collecting area C (light-collecting area C1 and C2) along the first region A1 of the line A by controlling the irradiation unit 3 and the moving units 4 and 5. As a result, the modified region 12 (modified regions 12a, 12b) is formed on the object 11 along the first region A1, and the modified region 12 becomes the incident surface of the object 11 with the first surface 11a. The first processing (the above-mentioned first processing) for forming diagonal cracks 13F ( cracks 13a, 13b) extending diagonally in the Z direction toward the second surface 11b on the opposite side is executed.
 さらに、制御部6は、照射部3及び移動部4,5を制御することによって、ラインAのうちの第2領域A2に沿って集光領域C(集光領域C1,C2)を相対移動させることにより、第2領域A2に沿って対象物11に改質領域12(改質領域12a,12b)を形成すると共に、改質領域12から第2面11bに向けて延びる斜め亀裂13F(亀裂13a,13b)を形成する第2加工処理(上記の第2加工)を実行する。 Further, the control unit 6 relatively moves the condensing region C (condensing region C1 and C2) along the second region A2 of the line A by controlling the irradiation unit 3 and the moving units 4 and 5. As a result, the modified region 12 (modified regions 12a, 12b) is formed in the object 11 along the second region A2, and the diagonal crack 13F (crack 13a) extending from the modified region 12 toward the second surface 11b is formed. , 13b) The second processing process (the above-mentioned second processing) for forming) is executed.
 第1加工処理及び第2加工処理では、制御部6は、空間光変調器7を制御することによって、集光領域Cの長手方向NHが、第1結晶方位K1及び第2結晶方位K2のうち、集光領域Cの移動方向である加工進行方向NDとの間の角度が大きい一方に近づく向きに加工進行方向NDに対して傾斜するように、レーザ光Lを成形すると共に、第1加工処理と第2加工処理とで加工進行方向NDの順逆を同一とする。 In the first processing and the second processing, the control unit 6 controls the spatial optical modulator 7 so that the longitudinal direction NH of the condensing region C is the first crystal orientation K1 and the second crystal orientation K2. The laser beam L is formed so as to be inclined with respect to the machining progress direction ND so that the angle between the light collecting region C and the machining progress direction ND is large and the angle is closer to one side, and the first machining process is performed. And the second processing process, the order and reverse of the processing progress direction ND are the same.
 そして、第2結晶方位K2とラインAとが直交する点を0°とし、第1結晶方位K1とラインAとが直交する点を90°とし、ラインAにおける0°と90°との中間の点を45°としたときに、第1領域A1及び第2領域A2のうち、Z方向からみて、長手方向NHの傾斜の向きが加工進行方向NDに対して斜め亀裂13Fが延びる側と同じ側となる一方が45°の点を含むように、第1領域A1と第2領域A2との境界Ksが設定される。 Then, the point where the second crystal direction K2 and the line A are orthogonal to each other is 0 °, the point where the first crystal direction K1 and the line A are orthogonal to each other is 90 °, and the point between 0 ° and 90 ° in the line A is set. When the point is set to 45 °, of the first region A1 and the second region A2, the direction of inclination of the longitudinal direction NH is the same as the side where the diagonal crack 13F extends with respect to the machining progress direction ND when viewed from the Z direction. The boundary Ks between the first region A1 and the second region A2 is set so that one of them includes a point of 45 °.
 引き続いて、以上の本実施形態に係るレーザ加工について、レーザ加工方法の工程として説明する。すなわち、本実施形態に係るレーザ加工方法は、対象物11にレーザ光L(レーザ光L1,L2)を照射して改質領域12を形成するためのものであり、対象物11に設定されたラインAのうちの第1領域A1に沿って集光領域C(集光領域C1,C2)を相対移動させることにより、第1領域A1に沿って対象物11に改質領域12(改質領域12a,12b)を形成すると共に、当該改質領域12から対象物11の入射面である第1面11aと反対側の第2面11bに向けてZ方向に対して斜めに延びる斜め亀裂13F(亀裂13a,13b)を形成する第1加工工程(上記の第1加工)を有する。 Subsequently, the laser processing according to the above embodiment will be described as a process of the laser processing method. That is, the laser processing method according to the present embodiment is for irradiating the object 11 with the laser light L (laser light L1, L2) to form the modified region 12, and is set on the object 11. By relatively moving the condensing region C (condensing region C1 and C2) along the first region A1 of the line A, the modified region 12 (modifying region 12) is moved to the object 11 along the first region A1. 12a, 12b) is formed, and an oblique crack 13F (diagonal crack 13F) extending diagonally from the modified region 12 toward the second surface 11b opposite to the first surface 11a, which is the incident surface of the object 11, in the Z direction. It has a first processing step (the above-mentioned first processing) for forming cracks 13a, 13b).
 また、本実施形態に係るレーザ加工方法は、ラインAのうちの第2領域A2に沿って集光領域C(集光領域C1,C2)を相対移動させることにより、第2領域A2に沿って対象物11に改質領域12(改質領域12a,12b)を形成すると共に、改質領域12から第2面11bに向けて延びる斜め亀裂13F(亀裂13a,13b)を形成する第2加工工程(上記の第2加工)を有する。 Further, in the laser processing method according to the present embodiment, the condensing region C (condensing region C1 and C2) is relatively moved along the second region A2 of the line A, so that the condensing region C (C1 and C2) is relatively moved along the second region A2. A second processing step of forming a modified region 12 (modified regions 12a, 12b) on the object 11 and forming an oblique crack 13F ( cracks 13a, 13b) extending from the modified region 12 toward the second surface 11b. Has (the above second processing).
 第1加工工程及び第2加工工程では、Z方向からみたときに集光領域Cが長手方向NHを有するように、且つ、集光領域Cの長手方向NHが、第1結晶方位K1及び第2結晶方位K2のうち、集光領域Cの移動方向である加工進行方向NDとの間の角度が大きい一方に近づく向きに加工進行方向NDに対して傾斜するように、レーザ光Lを成形すると共に、第1加工工程と第2加工工程とで加工進行方向NDの順逆を同一とする。 In the first processing step and the second processing step, the light-collecting region C has the longitudinal direction NH when viewed from the Z direction, and the longitudinal direction NH of the light-collecting region C is the first crystal orientation K1 and the second. The laser beam L is formed so that the angle between the crystal orientation K2 and the processing progress direction ND, which is the movement direction of the condensing region C, is larger and the laser beam L is inclined with respect to the processing progress direction ND. , The order of the machining progress direction ND is the same in the first machining step and the second machining step.
 そして、第2結晶方位K2とラインAとが直交する点を0°とし、第1結晶方位K1とラインAとが直交する点を90°とし、ラインAにおける0°と90°との中間の点を45°としたときに、第1領域A1及び第2領域A2のうち、Z方向からみて、長手方向NHの傾斜の向きが加工進行方向NDに対して斜め亀裂13Fが延びる側と同じ側となる一方が45°の点を含むように、第1領域A1と第2領域A2との境界Ksが設定される。 Then, the point where the second crystal direction K2 and the line A are orthogonal to each other is 0 °, the point where the first crystal direction K1 and the line A are orthogonal to each other is 90 °, and the point between 0 ° and 90 ° in the line A is set. When the point is set to 45 °, of the first region A1 and the second region A2, the direction of inclination of the longitudinal direction NH is the same as the side where the diagonal crack 13F extends with respect to the machining progress direction ND when viewed from the Z direction. The boundary Ks between the first region A1 and the second region A2 is set so that one of them includes a point of 45 °.
 以上説明したように、本実施形態に係るレーザ加工装置1及びレーザ加工方法では、対象物11は、(100)面と、一の(110)面と、別の(110)面と、一の(110)面に直交する第1結晶方位K1と、別の(110)面に直交する第2結晶方位K2と、を含む結晶構造を有する。そして、ここでは、レーザ光Lの集光領域Cを相対移動させるラインAのうちの第1領域A1に沿って対象物11に改質領域12を形成する場合(第1加工処理、第1加工工程)、及び、当該ラインAのうちの第2領域A2に沿って対象物11に改質領域12を形成する場合(第2加工処理、第2加工工程)のそれぞれにおいて、集光領域Cの長手方向NHが、第1結晶方位K1及び第2結晶方位K2のうちの加工進行方向NDとの間の角度が大きい一方に近づく向きに加工進行方向NDに対して傾斜するように、レーザ光Lが成形される。このため、上記知見に示されるように、トリム面の品質低下が抑制される。 As described above, in the laser machining apparatus 1 and the laser machining method according to the present embodiment, the object 11 has a (100) plane, one (110) plane, another (110) plane, and one. It has a crystal structure including a first crystal orientation K1 orthogonal to the (110) plane and a second crystal orientation K2 orthogonal to another (110) plane. Then, here, when the modified region 12 is formed on the object 11 along the first region A1 of the line A that relatively moves the condensing region C of the laser beam L (first processing, first processing). Step) and in the case of forming the modified region 12 in the object 11 along the second region A2 of the line A (second processing process, second processing step), the light collecting region C The laser beam L is such that the longitudinal direction NH is inclined with respect to the processing progress direction ND so that the angle between the first crystal direction K1 and the second crystal direction K2 and the processing progress direction ND is larger and approaches one of them. Is molded. Therefore, as shown in the above findings, deterioration of the quality of the trim surface is suppressed.
 一方、本実施形態に係るレーザ加工装置1及びレーザ加工方法では、第1加工処理及び第2加工処理(第1加工工程及び第2加工工程も同様(以下同様))おいて、改質領域12から対象物11の第1面11a(入射面)と反対側の第2面11b(反対面)に向けてZ方向(入射面に交差する方向)に対して斜めに延びる斜め亀裂13Fを形成する。したがって、斜め亀裂13Fの延びる方向と集光領域Cの長手方向NHの向きとの関係を考慮する必要がある。特に、45°の点の加工の際に、集光領域Cの長手方向NHの向きと斜め亀裂13Fの傾斜方向とが加工進行方向NDに対して互いに逆側となる状態であると、トリム面の品質の低下が発生しやすい。 On the other hand, in the laser machining apparatus 1 and the laser machining method according to the present embodiment, the reforming region 12 is placed in the first machining process and the second machining process (the same applies to the first machining step and the second machining step (the same applies hereinafter)). To form an oblique crack 13F extending diagonally in the Z direction (direction intersecting the incident surface) toward the second surface 11b (opposite surface) opposite to the first surface 11a (incident surface) of the object 11. .. Therefore, it is necessary to consider the relationship between the extending direction of the oblique crack 13F and the direction of NH in the longitudinal direction of the condensing region C. In particular, when machining a point at 45 °, if the direction of NH in the longitudinal direction of the condensing region C and the tilting direction of the oblique crack 13F are opposite to each other with respect to the machining progress direction ND, the trim surface Quality deterioration is likely to occur.
 これに対して、本実施形態に係るレーザ加工装置1及びレーザ加工方法では、第1領域A1と第2領域A2との間の境界Ksが、第1領域A1及び第2領域A2のうちの長手方向NHの傾斜の向きが加工進行方向NDに対して斜め亀裂13Fが延びる側と同じ側となる一方が45°の点を含むように設定される。換言すれば、第1領域A1及び第2領域A2のうち、集光領域Cの長手方向NHの向きと斜め亀裂13Fの傾斜方向とが加工進行方向NDに対して互いに逆側となる状態で加工を行う領域が、ラインAにおける45°の点に至らない。したがって、品質低下が抑制される。このように、本実施形態に係るレーザ加工装置1及びレーザ加工方法によれば、対象物11のトリム面の品質低下を抑制しつつ、斜め亀裂13Fを形成可能である。 On the other hand, in the laser processing apparatus 1 and the laser processing method according to the present embodiment, the boundary Ks between the first region A1 and the second region A2 is the longitudinal length of the first region A1 and the second region A2. The direction of inclination of the direction NH is set to be the same side as the side on which the diagonal crack 13F extends with respect to the machining progress direction ND, and one of them includes a point of 45 °. In other words, of the first region A1 and the second region A2, the direction of NH in the longitudinal direction of the condensing region C and the inclination direction of the oblique crack 13F are opposite to each other in the machining progress direction ND. Does not reach the 45 ° point on line A. Therefore, quality deterioration is suppressed. As described above, according to the laser processing apparatus 1 and the laser processing method according to the present embodiment, it is possible to form the oblique crack 13F while suppressing the deterioration of the quality of the trim surface of the object 11.
 さらに、本実施形態に係るレーザ加工装置1及びレーザ加工方法では、第1加工処理と第2加工処理とで加工進行方向NDの順逆が同一とされる。したがって、第1加工処理と第2加工処理とで加工進行方向NDの順逆を切り替える場合と比較して、レーザ光Lの集光領域Cの相対移動の加減速に係る時間が削減される。 Further, in the laser processing apparatus 1 and the laser processing method according to the present embodiment, the order of the processing progress direction ND is the same in the first processing process and the second processing process. Therefore, the time required for accelerating / decelerating the relative movement of the condensing region C of the laser beam L is reduced as compared with the case where the order of the processing progress direction ND is switched between the first processing process and the second processing process.
 また、本実施形態に係るレーザ加工装置1では、第1領域A1及び第2領域A2のうち、Z方向からみて、長手方向NHの傾斜の向きが加工進行方向NDに対して斜め亀裂13Fが延びる側と同じ側となる一方が、他方よりも長くてもよい。このように、第1領域A1と第2領域A2との長さを違えて設定してもよい。 Further, in the laser processing apparatus 1 according to the present embodiment, among the first region A1 and the second region A2, the diagonal crack 13F extends in the direction of inclination of NH in the longitudinal direction with respect to the processing progress direction ND when viewed from the Z direction. One that is on the same side as the side may be longer than the other. In this way, the lengths of the first region A1 and the second region A2 may be set differently.
 また、本実施形態に係るレーザ加工装置1では、制御部6は、第1部分15Aに対して、加工進行方向NDの順逆を同一にしつつ第1加工処理及び第2加工処理を実行すると共に、第2部分15Bに対して、第1加工処理及び第2加工処理と異なる別加工処理(別加工)を実行してもよい。別加工処理では、制御部6は、照射部3及び移動部4,5を制御することによって、ラインAの全体にわたって加工進行方向NDの順逆を同一としつつ集光領域Cを相対移動させることにより、ラインAに沿って対象物11に改質領域12及び当該改質領域12からZ方向に沿って延びる亀裂13を形成してもよい。この場合、第2部分15BでもラインAの第1領域A1と第2領域A2とで加工進行方向NDの順逆を切り替える場合と比較して、レーザ光Lの集光領域Cの相対移動の加減速に係る時間が削減される。 Further, in the laser machining apparatus 1 according to the present embodiment, the control unit 6 executes the first machining process and the second machining process on the first portion 15A while making the order of the machining progress direction ND the same. A separate processing (separate processing) different from the first processing and the second processing may be executed on the second portion 15B. In the separate processing, the control unit 6 controls the irradiation unit 3 and the moving units 4 and 5 to relatively move the condensing region C while making the order of the processing progress direction ND the same throughout the line A. , The modified region 12 and the crack 13 extending from the modified region 12 along the Z direction may be formed in the object 11 along the line A. In this case, even in the second portion 15B, acceleration / deceleration of the relative movement of the condensing region C of the laser beam L is compared with the case where the order of the machining progress direction ND is switched between the first region A1 and the second region A2 of the line A. Time related to is reduced.
 また、本実施形態に係るレーザ加工装置1では、別加工処理では、空間光変調器7を制御することによって、Z方向からみたときに集光領域Cが長手方向NHを有するように、且つ、当該集光領域Cの長手方向NHが加工進行方向NDに沿うようにレーザ光Lを成形してもよい。この場合、Z方向に沿った亀裂13を形成する第2部分15Bでは、ラインAの第1領域A1の加工と第2領域A2の加工との間でレーザ光Lの集光領域Cの傾きが変化するようにレーザ光Lの成形を行う場合と比較して、制御部6の処理が簡略化される。 Further, in the laser processing apparatus 1 according to the present embodiment, in the separate processing, the spatial light modulator 7 is controlled so that the condensing region C has the longitudinal direction NH when viewed from the Z direction, and The laser beam L may be formed so that the longitudinal direction NH of the light collecting region C is along the processing progress direction ND. In this case, in the second portion 15B forming the crack 13 along the Z direction, the inclination of the condensing region C of the laser beam L is set between the processing of the first region A1 and the processing of the second region A2 of the line A. The processing of the control unit 6 is simplified as compared with the case where the laser beam L is formed so as to change.
 また、本実施形態に係るレーザ加工装置1では、別加工処理として、第2部分15Bに対して、加工進行方向NDの切り替えを行うことなく、照射部3及び移動部4,5を制御することによって、ラインAのうちの第1領域A1に沿って集光領域Cを相対移動させることにより、第1領域A1に沿って対象物11に改質領域12を形成すると共に、当該改質領域12からZ方向に沿って延びる亀裂13を形成する第1Z加工処理(上記の第1Z加工)と、照射部3及び移動部4,5を制御することによって、ラインAのうちの第2領域A2に沿って集光領域Cを相対移動させることにより、第2領域A2に沿って対象物11に改質領域12を形成すると共に、当該改質領域12からZ方向に沿って延びる亀裂13を形成する第2Z加工処理(上記の第2加工)と、を別加処理として実行してもよい。この場合、第2部分15Bについても、第1領域A1と第2領域A2とで集光領域Cの長手方向NHを加工進行方向NDに応じて設定しつつ、第1領域A1と第2領域A2とで加工進行方向NDの順逆を切り替える場合と比較してレーザ光Lの集光領域Cの相対移動の加減速に係る時間が削減される。 Further, in the laser machining apparatus 1 according to the present embodiment, as a separate machining process, the irradiation section 3 and the moving sections 4 and 5 are controlled for the second portion 15B without switching the machining progress direction ND. By relatively moving the condensing region C along the first region A1 of the line A, the modified region 12 is formed on the object 11 along the first region A1 and the modified region 12 is formed. By controlling the first Z processing (the above-mentioned first Z processing) for forming the crack 13 extending in the Z direction from the irradiation portion 3 and the moving portions 4 and 5, the second region A2 of the line A can be formed. By relatively moving the condensing region C along the second region A2, the modified region 12 is formed in the object 11 along the second region A2, and the crack 13 extending from the modified region 12 in the Z direction is formed. The second Z processing process (the above-mentioned second process) may be executed as a separate processing. In this case, also for the second portion 15B, the first region A1 and the second region A2 are set in the longitudinal direction NH of the condensing region C in the first region A1 and the second region A2 according to the processing progress direction ND. Compared with the case of switching the order of the processing progress direction ND, the time related to the acceleration / deceleration of the relative movement of the condensing region C of the laser beam L is reduced.
 また、本実施形態に係るレーザ加工装置1では、対象物11は、別の部材(対象物11R)に接合された接合領域を含み、第1加工処理及び第2加工処理では、制御部6は、第1面11aから第2面11bに向かうにつれて接合領域の内側の位置から接合領域の外縁11eに向かうように傾斜した斜め亀裂13Fを形成してもよい。この場合、斜め亀裂13Fを境界として対象物11の一部を対象物11から除去し、対象物11の残部を残存させた場合に、対象物11の他の部材との接合領域を越えて対象物11の残部が外側に延在することが避けられる。 Further, in the laser machining apparatus 1 according to the present embodiment, the object 11 includes a joining region joined to another member (object 11R), and in the first machining process and the second machining process, the control unit 6 is used. , An oblique crack 13F inclined so as to be directed from the inner position of the joint region toward the outer edge 11e of the joint region may be formed from the first surface 11a to the second surface 11b. In this case, when a part of the object 11 is removed from the object 11 with the diagonal crack 13F as a boundary and the rest of the object 11 remains, the object goes beyond the joint region with other members of the object 11. It is avoided that the rest of the object 11 extends outward.
 また、本実施形態に係るレーザ加工装置1では、第1加工処理及び第2加工処理では、制御部6は、Z方向についての集光領域C1の位置を第1Z位置Z1に設定しつつ、ラインAに沿って集光領域C1を相対移動させることにより、改質領域12a及び改質領域12aから延びる亀裂13aを対象物11に形成する第1形成処理(上記の第1形成)と、Z方向についての集光領域C2の位置を第1Z位置Z1よりも第1面11a側の第2Z位置Z2に設定しつつ、ラインAに沿って集光領域C2を相対移動させることにより、改質領域12b及び改質領域12bから延びる亀裂13bを形成する第2形成処理(上記の第2形成)と、を実行することができる。 Further, in the laser processing apparatus 1 according to the present embodiment, in the first processing and the second processing, the control unit 6 sets the position of the light collecting region C1 in the Z direction to the first Z position Z1 while setting the line. The first forming process (first formation described above) for forming the crack 13a extending from the modified region 12a and the modified region 12a in the object 11 by relatively moving the condensing region C1 along A, and the Z direction. By moving the condensing region C2 relative to the line A while setting the position of the condensing region C2 about the above to the second Z position Z2 on the first surface 11a side of the first Z position Z1, the modified region 12b And the second forming process (the above-mentioned second forming) for forming the crack 13b extending from the modified region 12b can be performed.
 第1形成処理では、制御部6は、加工進行方向ND及びZ方向に交差するY方向についての集光領域C1の位置を第1Y位置Y1に設定し、第2形成処理では、制御部6は、Y方向についての集光領域C2の位置を第1Y位置Y1からシフトした第2Y位置Y2に設定すると共に、空間光変調器7の制御によって、Y方向及びZ方向を含むYZ面S内での集光領域C2の形状が、少なくとも集光領域C2の中心より第1面11a側においてシフトの方向に傾斜する傾斜形状となるようにレーザ光L2を成形することにより、YZ面S内においてシフトの方向に傾斜するように斜め亀裂13Fを形成してもよい。このようにすれば、Z方向に対して傾斜した斜め亀裂を好適に形成可能である。 In the first forming process, the control unit 6 sets the position of the light collecting region C1 in the Y direction intersecting the machining progress direction ND and the Z direction to the first Y position Y1, and in the second forming process, the control unit 6 sets the position of the light collecting region C1. , The position of the condensing region C2 in the Y direction is set to the second Y position Y2 shifted from the first Y position Y1, and under the control of the spatial optical modulator 7, the position in the YZ plane S including the Y direction and the Z direction is set. By forming the laser beam L2 so that the shape of the condensing region C2 is inclined in the direction of the shift at least on the first surface 11a side from the center of the condensing region C2, the shift is performed in the YZ surface S. Diagonal cracks 13F may be formed so as to be inclined in the direction. By doing so, it is possible to suitably form an oblique crack inclined in the Z direction.
 また、本実施形態に係るレーザ加工装置1では、照射部3は、空間光変調器7からのレーザ光Lを対象物11に向けて集光するための集光レンズ33を含み、第2形成処理では、制御部6は、空間光変調器7に表示させる変調パターンの制御によって、集光領域Cの形状が傾斜形状となるようにレーザ光Lを変調することによりレーザ光Lを成形してもよい。この場合、空間光変調器7を用いて容易にレーザ光Lを成形できる。 Further, in the laser processing apparatus 1 according to the present embodiment, the irradiation unit 3 includes a condenser lens 33 for condensing the laser beam L from the spatial light modulator 7 toward the object 11, and the second formation. In the processing, the control unit 6 forms the laser light L by modulating the laser light L so that the shape of the condensing region C becomes an inclined shape by controlling the modulation pattern displayed on the spatial light modulator 7. May be good. In this case, the laser beam L can be easily formed by using the spatial light modulator 7.
 このとき、本実施形態に係るレーザ加工装置1では、変調パターンは、レーザ光Lに対してコマ収差を付与するためのコマ収差パターンを含み、第2形成処理では、制御部6は、コマ収差パターンによるコマ収差の大きさを制御することにより、集光領域Cの形状を傾斜形状とするための第1パターン制御を行ってもよい。本発明者の知見によれば、この場合、YZ面S内における集光領域Cの形状が、弧状に形成される。すなわち、この場合には、集光領域Cの形状が、集光領域Cの中心Caよりも第1面11a(入射面)側でシフト方向に傾斜すると共に、集光領域Cの中心Caよりも入射面と反対側でシフト方向と反対方向に傾斜される。この場合であっても、シフト方向に傾斜する斜め亀裂13Fを形成可能である。 At this time, in the laser processing apparatus 1 according to the present embodiment, the modulation pattern includes a coma aberration pattern for imparting coma aberration to the laser beam L, and in the second forming process, the control unit 6 has coma aberration. By controlling the magnitude of coma aberration due to the pattern, the first pattern control for making the shape of the condensing region C an inclined shape may be performed. According to the findings of the present inventor, in this case, the shape of the condensing region C in the YZ plane S is formed in an arc shape. That is, in this case, the shape of the condensing region C is inclined in the shift direction on the first surface 11a (incident surface) side of the center Ca of the condensing region C, and is larger than the center Ca of the condensing region C. It is tilted in the direction opposite to the shift direction on the side opposite to the incident surface. Even in this case, it is possible to form an oblique crack 13F that is inclined in the shift direction.
 また、本実施形態に係るレーザ加工装置1では、変調パターンは、レーザ光Lの球面収差を補正するための球面収差補正パターンを含み、第2形成処理では、制御部6は、集光レンズ33の入射瞳面33aの中心に対して球面収差補正パターンPsの中心をY方向にオフセットさせることにより、集光領域Cの形状を傾斜形状とするための第2パターン制御を行ってもよい。本発明者の知見によれば、この場合にも、コマ収差パターンを利用した場合と同様に、YZ面S内における集光領域Cの形状を弧状に形成でき、シフト方向に傾斜する斜め亀裂13Fを形成可能である。 Further, in the laser processing apparatus 1 according to the present embodiment, the modulation pattern includes a spherical aberration correction pattern for correcting the spherical aberration of the laser light L, and in the second forming process, the control unit 6 is the condenser lens 33. By offsetting the center of the spherical aberration correction pattern Ps in the Y direction with respect to the center of the incident pupil surface 33a, the second pattern control for making the shape of the condensing region C an inclined shape may be performed. According to the findings of the present inventor, in this case as well, the shape of the condensing region C in the YZ plane S can be formed in an arc shape as in the case of using the coma aberration pattern, and the diagonal crack 13F inclined in the shift direction. Can be formed.
 また、本実施形態に係るレーザ加工装置1では、第2形成処理では、制御部6は、加工進行方向NDに沿った軸線に対して非対称な変調パターンを空間光変調器7に表示させることにより、集光領域Cの形状を傾斜形状とするための第3パターン制御を行ってもよい。本発明者の知見によれば、この場合、YZ面S内における集光領域Cの形状の全体を、シフト方向に傾斜させることができる。この場合であっても、シフト方向に傾斜する斜め亀裂13Fを形成可能である。 Further, in the laser processing apparatus 1 according to the present embodiment, in the second forming process, the control unit 6 causes the spatial light modulator 7 to display a modulation pattern asymmetric with respect to the axis along the processing progress direction ND. A third pattern control may be performed to make the shape of the light collecting region C an inclined shape. According to the findings of the present inventor, in this case, the entire shape of the condensing region C in the YZ plane S can be tilted in the shift direction. Even in this case, it is possible to form an oblique crack 13F that is inclined in the shift direction.
 また、本実施形態に係るレーザ加工装置1では、変調パターンは、Y方向及びZ方向に交差するX方向とY方向とを含むXY面内における集光領域Cの形状を、X方向を長手とする楕円形状とするための楕円パターンを含み、第2形成処理では、制御部6は、楕円パターンの強度が、X方向に沿った軸線に対して非対称となるように、変調パターンを空間光変調器7に表示させることによって、ビーム形状を傾斜形状とするための第4パターン制御を行ってもよい。本発明者の知見によれば、この場合にも、YZ面S内における集光領域Cの形状を弧状に形成でき、シフト方向に傾斜する斜め亀裂13Fを形成可能である。 Further, in the laser processing apparatus 1 according to the present embodiment, the modulation pattern has the shape of the condensing region C in the XY plane including the X direction and the Y direction intersecting the Y direction and the Z direction, and the X direction is the longitudinal direction. In the second forming process, the control unit 6 spatially photomodulates the modulation pattern so that the intensity of the elliptical pattern is asymmetric with respect to the axis along the X direction. The fourth pattern control for making the beam shape an inclined shape may be performed by displaying the light on the device 7. According to the findings of the present inventor, even in this case, the shape of the condensing region C in the YZ plane S can be formed in an arc shape, and the diagonal crack 13F inclined in the shift direction can be formed.
 また、本実施形態に係るレーザ加工装置1では、第2形成処理では、制御部6は、YZ面S内でシフトの方向に沿って配列された複数のレーザ光Lの集光点CIを形成するための変調パターンを空間光変調器7に表示させることにより、複数の集光点CIを含む集光領域Cの形状を傾斜形状とするための第5パターン制御を行ってもよい。本発明者の知見によれば、この場合にも、シフト方向に傾斜する斜め亀裂13Fを形成可能である。
[変形例]
Further, in the laser processing apparatus 1 according to the present embodiment, in the second forming process, the control unit 6 forms a condensing point CI of a plurality of laser beams L arranged along the shift direction in the YZ plane S. By displaying the modulation pattern for this purpose on the spatial light modulator 7, the fifth pattern control for making the shape of the light-collecting region C including the plurality of light-collecting points CI into an inclined shape may be performed. According to the findings of the present inventor, it is possible to form an oblique crack 13F inclined in the shift direction also in this case.
[Modification example]
 以上、レーザ加工装置及びレーザ加工方法の一態様について説明したが、本開示の一側面は、上記の態様に限定されず、変形され得る。 Although one aspect of the laser processing apparatus and the laser processing method has been described above, one aspect of the present disclosure is not limited to the above aspect and can be modified.
 例えば、上記の例では、対象物11と対象物11Rとが張り合わされて構成される対象物100(張り合わせウェハ)を挙げたが、レーザ加工の対象はこのような張り合わせウェハに限定されず、単一のウェハ等の対象物であってもよい。 For example, in the above example, the object 100 (bonded wafer) formed by bonding the object 11 and the object 11R is mentioned, but the target of laser processing is not limited to such a bonded wafer, and is simply a single object. It may be an object such as one wafer.
 また、図45に示される例では、第1部分15Aに対して、2つの集光領域C1,C2を用いて2つの改質領域12a,12bを形成する場合が挙げられている。この場合、斜め亀裂13Fの形成に際して、少なくとも、より第1面11a側の集光領域C2のYZ面S内でのビーム形状を制御した。しかし、第1部分15Aに対して、複数組の改質領域12a,12bを形成する場合には、最も第2面11b側(対象物11R側)の改質領域12a,12bの形成のときに、少なくとも、より第1面11a側の集光領域C2のYZ面S内でのビーム形状を制御すればよい。 Further, in the example shown in FIG. 45, there is a case where two modified regions 12a and 12b are formed by using the two condensing regions C1 and C2 with respect to the first portion 15A. In this case, when forming the oblique crack 13F, at least the beam shape in the YZ surface S of the condensing region C2 on the first surface 11a side was controlled. However, when a plurality of sets of modified regions 12a and 12b are formed with respect to the first portion 15A, when the modified regions 12a and 12b on the second surface 11b side (object 11R side) are formed. At least, the beam shape in the YZ surface S of the condensing region C2 on the first surface 11a side may be controlled.
 また、上記実施形態では、対象物11の第2部分15Bに対して垂直亀裂を形成した。しかし、対象物11の第2部分15Bについても、第1部分15Aと同様に斜め亀裂を形成してもよい。 Further, in the above embodiment, a vertical crack was formed with respect to the second portion 15B of the object 11. However, the second portion 15B of the object 11 may also form an oblique crack in the same manner as the first portion 15A.
 また、第1実施形態に係るレーザ加工では、ラインAのうちの第1領域A1の加工である第1加工と、第2領域A2の加工である第2加工とを、0°、45°、90°といったように45°間隔で切り替えるようにGUI上で設定され、実際のレーザのON・OFFも同角度で行われる例を記載している。しかし、実際の装置では、レーザのON・OFFの遅れにより、設定よりも数百msec程度遅れる場合がある。すなわち、第1領域A1と第2領域A2との境界で厳密にレーザのON・OFFが行われる場合に限定されない。 Further, in the laser processing according to the first embodiment, the first processing, which is the processing of the first region A1 of the line A, and the second processing, which is the processing of the second region A2, are performed at 0 °, 45 °, and so on. An example is described in which the laser is set on the GUI so as to be switched at 45 ° intervals such as 90 °, and the actual laser ON / OFF is also performed at the same angle. However, in an actual device, there is a case where the laser ON / OFF delay is delayed by several hundred msec from the setting. That is, it is not limited to the case where the laser is strictly turned on and off at the boundary between the first region A1 and the second region A2.
 また、上記のような原因により、改質領域12の形成位置ズレ量を減らすため、制御部6は、レーザのON・OFFの遅れ時間を予め補正し、レーザを早めにON・OFFさせる補正パラメータを持っていてもよい。この場合、改質領域12の形成位置のズレは、1mm以内に抑制可能である。一例として、対象物11が12インチウエハの場合、円周は約942mmであり、1°あたり2.617mm程度であるため、この場合のズレは1°以内に収められる。 Further, in order to reduce the amount of the formation position deviation of the reforming region 12 due to the above-mentioned causes, the control unit 6 corrects the delay time of turning on / off the laser in advance, and the correction parameter for turning the laser on / off early. You may have. In this case, the deviation of the formation position of the modified region 12 can be suppressed within 1 mm. As an example, when the object 11 is a 12-inch wafer, the circumference is about 942 mm and is about 2.617 mm per 1 °, so that the deviation in this case can be contained within 1 °.
 なお、図38等の結果に示されるように、第1領域A1と第2領域A2との切り替えポイントには、±5°程度の加工品質マージンがある事が確認される。そのため、切り替えポイントの設定を°±5°、45°±5°、90°±5°といったように、品質のマージン内であれば、意図的にずらしてもよい。 As shown in the results of FIG. 38 and the like, it is confirmed that the switching point between the first region A1 and the second region A2 has a processing quality margin of about ± 5 °. Therefore, the setting of the switching point may be intentionally shifted as long as it is within the quality margin such as ° ± 5 °, 45 ° ± 5 °, 90 ° ± 5 °.
 また、上記実施形態では、例えばレーザのON・OFFによって、Z方向からみたときに環状になるように改質領域12を形成するが、厳密には、ON・OFFされる位置において、部分的に改質領域12が(例えば数百μm程度)重なっている場合や、逆に、改質領域12が一部形成されない領域が(例えば数百μm程度)あってもよい。それらの影響で品質が悪化しないように、多段加工で複数の段に、斜め亀裂の形成と上記の第1加工・第2加工の効果を持たせて加工する場合がある。 Further, in the above embodiment, for example, by turning the laser on and off, the modified region 12 is formed so as to be annular when viewed from the Z direction, but strictly speaking, it is partially turned on and off at the position where it is turned on and off. The modified regions 12 may overlap (for example, about several hundred μm), or conversely, there may be regions where the modified regions 12 are not partially formed (for example, about several hundred μm). In order to prevent the quality from deteriorating due to these influences, there is a case where a plurality of stages are processed by giving the effects of the formation of diagonal cracks and the above-mentioned first processing and second processing to a plurality of stages.
 また、実際の加工では、集光領域Cの相対移動の速さが一定になるまでに助走距離が必要であるため、順方向ND1と逆方向ND2との切り替えは、助走を含む。助走時にはレーザをOFFし、等速になってから切り替えポイントでレーザをONする。助走時に何回転するかは、装置の性能による。また、オートフォーカスに関しては、助走時から追従させ、改質領域形成時にオーバーシュートがおきないように、調整をしても良い。 Further, in actual processing, a run-up distance is required until the relative movement speed of the condensing region C becomes constant, so switching between the forward direction ND1 and the reverse direction ND2 includes the run-up. At the time of approaching, the laser is turned off, and after the speed becomes constant, the laser is turned on at the switching point. The number of revolutions during the run-up depends on the performance of the device. Further, the autofocus may be adjusted so that the autofocus is followed from the run-up and the overshoot does not occur when the modified region is formed.
 さらに、第2実施形態についても、切り替えの精度に関しては、上記の例と共通であるが、45°の点、135°の点等の切り替えポイントとしては、図49の表に示されるように、-45°の点では少なくとも切り替えをせず、-50°の点を中心に切り替える(図50の表の例では-40°の点を中心に切り替える)。その際、ズレの許容マージンは一例として±2°程度であるが、ビーム形状(楕円率をさらに高める)によっては、例えば±4°程度まで高める事ができる場合がある。一方、0°、90°の切り替えポイントはずらす必要がないが、品質のマージンにあわせて、例えば±4°度程度の範囲でずらしても良い。
[レーザ加工の第3実施形態]
Further, the second embodiment also has the same switching accuracy as the above example, but the switching points such as the 45 ° point and the 135 ° point are as shown in the table of FIG. 49. At least no switching is performed at the −45 ° point, and the switching is centered on the −50 ° point (in the example of the table in FIG. 50, the switching is centered on the −40 ° point). At that time, the allowable margin of deviation is about ± 2 ° as an example, but it may be increased to about ± 4 ° depending on the beam shape (further increasing the ellipticity). On the other hand, it is not necessary to shift the switching point between 0 ° and 90 °, but it may be shifted within a range of, for example, ± 4 ° according to the quality margin.
[Third Embodiment of Laser Machining]
 引き続いて、トリミング加工の際に斜め亀裂の形成を行うレーザ加工の別の実施形態について説明する。まず、例えば上記第1実施形態及び第2実施形態に係るレーザ加工を行った場合の新たな課題に関する知見について説明する。すなわち、本発明者は、加工進行方向NDと結晶構造とに基づいてビーム形状の長手方向NHの向きを上記のとおり設定した場合であっても、集光領域Cを相対移動させるラインAの特定の領域において、トリム面の品質低下のさらなる抑制の余地があることを発見した。 Subsequently, another embodiment of laser processing for forming diagonal cracks during trimming processing will be described. First, for example, the knowledge regarding a new problem when the laser processing according to the first embodiment and the second embodiment is performed will be described. That is, the present inventor specifies the line A that relatively moves the condensing region C even when the direction of the longitudinal direction NH of the beam shape is set as described above based on the processing progress direction ND and the crystal structure. It was discovered that there is room for further suppression of quality deterioration of the trim surface in this area.
 すなわち、対象物11が、(100)面と、一の(110)面と、別の(110)面と、一の(110)面に直交する第1結晶方位K1と、別の(110)面に直交する第2結晶方位K2と、を含む結晶構造を有する場合に、ラインAと第2結晶方位K2とが直交する点を0°とし、当該ラインAと第1結晶方位K1とが直交する点を90°とし、当該ラインAにおける0°と90°との間の点を45°とする。 That is, the object 11 has a (100) plane, one (110) plane, another (110) plane, a first crystal orientation K1 orthogonal to one (110) plane, and another (110). When the crystal structure includes the second crystal orientation K2 orthogonal to the plane, the point at which the line A and the second crystal orientation K2 are orthogonal is set to 0 °, and the line A and the first crystal orientation K1 are orthogonal to each other. The point to be crystallized is 90 °, and the point between 0 ° and 90 ° on the line A is 45 °.
 このとき、例えば図38,49,50に示されるように、ラインAにおける45°付近の領域では、集光領域Cの形状や加工進行方向NDの順逆を調整すれば良好な加工結果(評価「B」)が得られるものの、より良好な加工結果(評価「A」)が得られるように改善の余地があることが理解される。 At this time, for example, as shown in FIGS. 38, 49, and 50, in the region near 45 ° in the line A, good machining results (evaluation " It is understood that although B ") is obtained, there is room for improvement so that better processing results (evaluation" A ") can be obtained.
 これに対して、本発明者は、ラインAにおける45°を含む領域を第1領域A1及び第2領域A2とは別に設定し、当該領域において、ビーム形状の長手方向NHの向きを加工進行方向NDに沿うようにすると、トリム面の品質がより良好となるとの知見を得た。この点について、より詳細に説明する。 On the other hand, the present inventor sets a region including 45 ° in the line A separately from the first region A1 and the second region A2, and in the region, the direction of the longitudinal direction NH of the beam shape is the machining progress direction. It was found that the quality of the trimmed surface becomes better when it is in line with ND. This point will be described in more detail.
 図51は、本実施形態に係る対象物を示す図である。図51に示される対象物11は、上記の第1実施形態及び第2実施形態と同様であるが、ラインAの設定が異なっている。すなわち、本実施形態では、ラインAは、0°を含む第1領域A1と、90°を含む第2領域A2と、第1領域A1と第2領域A2との間の領域であって45°を含む円弧状の第3領域A3と、を含む。 FIG. 51 is a diagram showing an object according to the present embodiment. The object 11 shown in FIG. 51 is the same as the first embodiment and the second embodiment described above, but the setting of the line A is different. That is, in the present embodiment, the line A is a region between the first region A1 including 0 °, the second region A2 including 90 °, and the first region A1 and the second region A2, and is 45 °. The arc-shaped third region A3 including the above.
 ここでは、一例として、第1領域A1は、0°から40°までの領域、90°から130°までの領域、180°から220°までの領域、及び、270°から310°までの領域を含み、第2領域A2は、50°から90°までの領域、140°から180°までの領域、230°から270°までの領域、及び、320°から360°までの領域を含む。そして、第3領域A3は、40°から50°までの領域、130°から140°までの領域、220°から230°までの領域、及び、310°から320°までの領域を含む。すなわち、ここでは、第1領域A1と第2領域A2との間に、90°分の間隔を空けて10°分の幅を有する第3領域A3が介在される。 Here, as an example, the first region A1 includes a region from 0 ° to 40 °, a region from 90 ° to 130 °, a region from 180 ° to 220 °, and a region from 270 ° to 310 °. The second region A2 includes a region from 50 ° to 90 °, a region from 140 ° to 180 °, a region from 230 ° to 270 °, and a region from 320 ° to 360 °. The third region A3 includes a region from 40 ° to 50 °, a region from 130 ° to 140 °, a region from 220 ° to 230 °, and a region from 310 ° to 320 °. That is, here, a third region A3 having a width of 10 ° is interposed between the first region A1 and the second region A2 with an interval of 90 °.
 なお、上述した場合と同様に、第1領域A1、第2領域A2、及び第3領域A3の上記の角度範囲は、0°の点をどこに設定するかによって任意に変更され得る。例えば、第1結晶方位K1とラインAとが直交する点を0°とした場合(上記の90°の点を0°とした場合)には、第1領域A1、第2領域A2、及び第3領域A3は、上記の角度範囲から90°だけ回転された角度範囲となる。また、上記のとおり0°の点を設定した場合、0°の点から時計回りに45°だけ回転された点である315°の点を、-45°の点と言い換えることも可能である。さらに、第1領域A1、第2領域A2、及び第3領域A3の境界の点は、第1領域A1、第2領域A2、及び第3領域A3のいずれか1つに含まれてもよいし、そのうちの隣接する2つに含まれてもよい。 As in the case described above, the above-mentioned angle range of the first region A1, the second region A2, and the third region A3 can be arbitrarily changed depending on where the point of 0 ° is set. For example, when the point where the first crystal orientation K1 and the line A are orthogonal to each other is set to 0 ° (when the above 90 ° point is set to 0 °), the first region A1, the second region A2, and the first region A2. The three regions A3 are an angle range rotated by 90 ° from the above angle range. Further, when the point of 0 ° is set as described above, the point of 315 °, which is a point rotated by 45 ° clockwise from the point of 0 °, can be paraphrased as a point of −45 °. Further, the boundary points of the first region A1, the second region A2, and the third region A3 may be included in any one of the first region A1, the second region A2, and the third region A3. , May be included in two adjacent two of them.
 これらの第1領域A1、及び第2領域A2については、上記第1実施形態及び第2実施形態と同様に第1加工及び第2加工を行い、第3領域A3については、これらの加工と異なる第3加工を行う。図52に示されるように、第3加工では、第1加工及び第2加工と同様に斜め亀裂を形成しつつトリミング加工を行うが、このとき、レーザ光Lの集光領域Cの長手方向NHが加工進行方向NDに沿う第3形状Q3となるようにレーザ光Lの成形を行う。 The first region A1 and the second region A2 are subjected to the first processing and the second processing in the same manner as in the first embodiment and the second embodiment, and the third region A3 is different from these processings. Perform the third processing. As shown in FIG. 52, in the third processing, the trimming processing is performed while forming diagonal cracks as in the first processing and the second processing, but at this time, the longitudinal direction NH of the condensing region C of the laser beam L is performed. Is the third shape Q3 along the processing progress direction ND, and the laser beam L is formed.
 これにより、図53に示されるように、加工進行方向NDの順逆によらずに、-40°から-50°にわたる第3領域A3において、より良好な加工結果(評価「A」)が得られるのである。なお、図53は、レーザ光の集光領域の長手方向が加工進行方向に沿うようにされた状態での実際の加工結果(トリム面の品質)を示す表である。本実施形態では、以上のような知見に基づいてレーザ加工を行う。引き続いて、第3実施形態に係るレーザ加工について説明する。 As a result, as shown in FIG. 53, better machining results (evaluation "A") can be obtained in the third region A3 extending from -40 ° to -50 ° regardless of the order of the machining progress direction ND. It is. Note that FIG. 53 is a table showing an actual processing result (quality of the trim surface) in a state where the longitudinal direction of the light collecting region of the laser beam is along the processing progress direction. In this embodiment, laser processing is performed based on the above findings. Subsequently, the laser processing according to the third embodiment will be described.
 第3実施形態では、まず、対象物11の第1部分15A(図31参照)の加工を行う。すなわち、第1実施形態と同様に第1加工を実施する。より具体的には、図54に示されるように、まず、ステージ2を回転させながら、制御部6によりレーザ光Lの照射のON/OFFを切り替えることで、ラインAの第1領域A1に沿って、集光領域Cを相対的に移動させて改質領域12を形成すると共に、ラインAの第1領域A1以外の領域(第2領域A2及び第3領域A3)での改質領域12の形成を停止する(第1加工)。 In the third embodiment, first, the first portion 15A (see FIG. 31) of the object 11 is processed. That is, the first processing is carried out in the same manner as in the first embodiment. More specifically, as shown in FIG. 54, first, while rotating the stage 2, the control unit 6 switches ON / OFF of the irradiation of the laser beam L along the first region A1 of the line A. Therefore, the condensing region C is relatively moved to form the modified region 12, and the modified region 12 in the regions other than the first region A1 (second region A2 and third region A3) of the line A is formed. Stop forming (first processing).
 第1加工では、制御部6の移動部4の制御のもとでステージ2の回転方向が制御されることにより、加工進行方向NDが逆方向ND2とされる。また、第1加工では、第1領域A1の加工であるため、制御部6の制御のもとで空間光変調器7によるレーザ光Lの成形が行われることにより、集光領域Cのビーム形状が第1形状Q1とされる(図40の(b)参照)。さらに、ここでは、第2面11bに向かうにつれてZ方向に対して対象物11の中心から外側に向かう方向に傾斜するように(図31参照)、斜め亀裂の延びる方向CDが正方向CD1とされる。斜め亀裂の形成方法については、第1実施形態と同様である。 In the first machining, the rotation direction of the stage 2 is controlled under the control of the moving section 4 of the control section 6, so that the machining progress direction ND is set to the reverse direction ND2. Further, since the first processing is the processing of the first region A1, the laser beam L is formed by the spatial light modulator 7 under the control of the control unit 6, so that the beam shape of the condensing region C is formed. Is the first shape Q1 (see (b) in FIG. 40). Further, here, the direction CD in which the diagonal crack extends is defined as the positive direction CD1 so as to incline in the direction outward from the center of the object 11 with respect to the Z direction toward the second surface 11b (see FIG. 31). To. The method of forming an oblique crack is the same as that of the first embodiment.
 引き続いて、第3実施形態では、ステージ2を回転させながら、制御部6によりレーザ光Lの照射のON/OFFを切り替えることで、図54に示されるように、ラインAのうち第2領域A2に沿って集光領域Cを相対的に移動させて改質領域12を形成すると共に、ラインAの第2領域A2以外の領域(第1領域A1及び第3領域A3)での改質領域12の形成を停止する(第2加工)。 Subsequently, in the third embodiment, by switching ON / OFF of the irradiation of the laser beam L by the control unit 6 while rotating the stage 2, as shown in FIG. 54, the second region A2 of the line A The condensing region C is relatively moved along the line A to form the modified region 12, and the modified region 12 in regions other than the second region A2 of the line A (first region A1 and third region A3). Stops the formation of (second processing).
 第2加工では、制御部6の移動部4の制御のもとでステージ2の回転方向が制御されることにより、加工進行方向NDが順方向ND1とされる。すなわち、第1加工と第2加工との間では、加工進行方向NDの順逆(順方向ND1とするか逆方向ND2とするか)が切り替えられる。また、第2加工では、第2領域A2の加工であるため、制御部6の制御のもとで空間光変調器7によるレーザ光Lの成形が行われることにより、集光領域Cのビーム形状が第2形状Q2とされる(図42の(b)参照)。さらに、ここでは、第2面11bに向かうにつれてZ方向に対して対象物11の中心から外側に向かう方向に傾斜するように(図31参照)、斜め亀裂の延びる方向CDが正方向CD1とされる。斜め亀裂の形成方法は第1実施形態と同様である。 In the second machining, the rotation direction of the stage 2 is controlled under the control of the moving section 4 of the control section 6, so that the machining progress direction ND is set to the forward direction ND1. That is, between the first machining and the second machining, the forward / reverse of the machining progress direction ND (whether the forward direction ND1 or the reverse direction ND2 is used) is switched. Further, since the second processing is the processing of the second region A2, the laser beam L is formed by the spatial light modulator 7 under the control of the control unit 6, so that the beam shape of the condensing region C is formed. Is the second shape Q2 (see (b) in FIG. 42). Further, here, the direction CD in which the diagonal crack extends is defined as the positive direction CD1 so as to incline in the direction outward from the center of the object 11 with respect to the Z direction toward the second surface 11b (see FIG. 31). To. The method of forming an oblique crack is the same as that of the first embodiment.
 引き続いて、第3実施形態では、ステージ2を回転させながら、制御部6によりレーザ光Lの照射のON/OFFを切り替えることで、図54に示されるように、ラインAのうち第3領域A3に沿って集光領域Cを相対的に移動させて改質領域12を形成すると共に、ラインAの第3領域A3以外の領域(第1領域A1及び第2領域A2)での改質領域12の形成を停止する(第3加工)。 Subsequently, in the third embodiment, by switching ON / OFF of the irradiation of the laser beam L by the control unit 6 while rotating the stage 2, as shown in FIG. 54, the third region A3 of the line A The condensing region C is relatively moved along the line A to form the modified region 12, and the modified region 12 in regions other than the third region A3 of the line A (first region A1 and second region A2). Stops the formation of (third processing).
 第3加工では、制御部6の移動部4の制御のもとでステージ2の回転方向が第2加工から維持されることにより、加工進行方向NDが順方向ND1で維持される。また、第3加工では、第3領域A3の加工であるため、制御部6の制御のもとで空間光変調器7によるレーザ光Lの成形が行われることにより、集光領域Cのビーム形状が第3形状Q3とされる(図52参照)。さらに、ここでは、第2面11bに向かうにつれてZ方向に対して対象物11の中心から外側に向かう方向に傾斜するように(図31参照)、斜め亀裂の延びる方向CDが正方向CD1とされる。斜め亀裂の形成方法については、第1実施形態と同様である。すなわち、第3加工においても、第1加工及び第2加工と同様に、斜め亀裂形成のための第1形成及び第2形成を行うことができる。 In the third machining, the rotation direction of the stage 2 is maintained from the second machining under the control of the moving section 4 of the control section 6, so that the machining progress direction ND is maintained in the forward direction ND1. Further, since the third processing is the processing of the third region A3, the laser beam L is formed by the spatial light modulator 7 under the control of the control unit 6, so that the beam shape of the condensing region C is formed. Is the third shape Q3 (see FIG. 52). Further, here, the direction CD in which the diagonal crack extends is defined as the positive direction CD1 so as to incline in the direction outward from the center of the object 11 with respect to the Z direction toward the second surface 11b (see FIG. 31). To. The method of forming an oblique crack is the same as that of the first embodiment. That is, in the third processing, the first formation and the second formation for forming diagonal cracks can be performed in the same manner as in the first processing and the second processing.
 なお、ここでは、第2領域A2の第2加工に連続して第3領域A3の第3加工が行われる。これにより、ステージ2の回転を一旦止めて逆回転とする必要が無く、ステージ2の回転の加減速に係る時間の短縮を図ることが可能となる。なお、第3領域A3の第3加工では、集光領域Cのビーム形状が、その長手方向NHが加工進行方向NDに沿うようにされる。したがって、加工進行方向NDが順方向ND1及び逆方向ND2のいずれであっても、同様に良好な加工結果(評価「A」)が得られる(図53参照)。 Here, the third processing of the third region A3 is performed following the second processing of the second region A2. As a result, it is not necessary to temporarily stop the rotation of the stage 2 to reverse the rotation, and it is possible to shorten the time required for accelerating / decelerating the rotation of the stage 2. In the third processing of the third region A3, the beam shape of the condensing region C is set so that the longitudinal direction NH thereof follows the processing progress direction ND. Therefore, regardless of whether the machining progress direction ND is the forward direction ND1 or the reverse direction ND2, similarly good machining results (evaluation “A”) can be obtained (see FIG. 53).
 したがって、第3加工では、加工進行方向NDの順逆が限定されない。ただし、第3加工における加工進行方向NDの順逆は、集光領域Cの相対移動に関する加減速に係る時間の短縮の観点から、第1加工及び第2加工のうちの第3加工と連続して行われる一方での加工進行方向NDの順逆と同一とすることができる。 Therefore, in the third machining, the order of the machining progress direction ND is not limited. However, the order of the machining progress direction ND in the third machining is continuous with the third machining of the first machining and the second machining from the viewpoint of shortening the time related to the acceleration / deceleration related to the relative movement of the condensing region C. It can be the same as the order and reverse of the processing progress direction ND on the one hand.
 すなわち、上記のように第2加工の後に続けて第3加工を行う場合や、第3加工の後に続けて第2加工を行う場合には、第3加工での加工進行方向NDの順逆は、第2加工と同じく順方向ND1とすることができる。或いは、第1加工の後に続けて第3加工を行う場合や、第3加工の後に続けて第1加工を行う場合には、第3加工での加工進行方向の順逆は、第1加工と同じく逆方向ND2とすることができる。 That is, when the third processing is performed after the second processing as described above, or when the second processing is performed after the third processing, the order of the processing progress direction ND in the third processing is reversed. As with the second processing, the forward direction ND1 can be used. Alternatively, when the third processing is performed after the first processing or when the first processing is performed after the third processing, the order of the processing progress direction in the third processing is the same as that of the first processing. It can be ND2 in the reverse direction.
 引き続いて、第3実施形態では、対象物11の第2部分15B(図31参照)の加工を行う。第2部分15Bの加工は、第1実施形態及び第2実施形態と同様に行うことができる。すなわち、第2部分15Bの加工の際には、上述した別加工(例えば第1Z加工及び第2Z加工)を行うことができる。 Subsequently, in the third embodiment, the second portion 15B (see FIG. 31) of the object 11 is processed. The processing of the second portion 15B can be performed in the same manner as in the first embodiment and the second embodiment. That is, when processing the second portion 15B, the above-mentioned separate processing (for example, first Z processing and second Z processing) can be performed.
 以上の加工によって、ラインAの全体にわたって、且つ、Z方向の概ね全体にわたって、対象物11に改質領域12及び亀裂13が形成されることとなる。特に、第1部分15Aでは、対象物11の第1面11aから第2面11bに向かうにつれて、対象物11のデバイス層110と対象物11Rのデバイス層110Rとの接合領域の内側の位置から当該接合領域の外縁110eに向かうように傾斜した亀裂13a,13bが形成される。 By the above processing, the modified region 12 and the crack 13 are formed in the object 11 over the entire line A and substantially over the entire Z direction. In particular, in the first portion 15A, as the object 11 moves from the first surface 11a to the second surface 11b, the device layer 110 of the object 11 and the device layer 110R of the object 11R are located inside the junction region. Cracks 13a and 13b inclined toward the outer edge 110e of the joint region are formed.
 引き続いて、第1実施形態及び第2実施形態と同様に、Z方向から見て除去領域Eに4等分するように延びるラインに沿って、改質領域12及び改質領域12から延びる亀裂13を形成すると共に、改質領域12を境界として除去領域Eを取り除く。これにより、対象物11から半導体デバイス11Kが形成され、半導体デバイス11Kを含む対象物100Kが得られる。その後、半導体デバイス11Kを第1面11a側から研削することにより、半導体デバイス11Mが形成され、半導体デバイス11Mを含む対象物100Mが得られる。 Subsequently, as in the first embodiment and the second embodiment, the crack 13 extending from the modified region 12 and the modified region 12 along the line extending so as to divide the removal region E into four equal parts when viewed from the Z direction. Is formed, and the removal region E is removed with the modified region 12 as a boundary. As a result, the semiconductor device 11K is formed from the object 11, and the object 100K including the semiconductor device 11K is obtained. Then, by grinding the semiconductor device 11K from the first surface 11a side, the semiconductor device 11M is formed, and the object 100M including the semiconductor device 11M is obtained.
 以上の第3実施形態に係るレーザ加工について、レーザ加工装置1の構成として説明する。ここでは、第1実施形態及び第2実施形態と重複する部分についても説明する。すなわち、レーザ加工装置1は、対象物11にレーザ光L(レーザ光L1,L2)を照射して改質領域12を形成するためのものであり、少なくとも、対象物11を支持するためのステージ2と、ステージ2に支持された対象物11に向けてレーザ光Lを照射するための照射部3と、レーザ光Lの集光領域C(集光領域C1,C2)を対象物11に対して相対移動させるための移動部4,5と、移動部4,5及び照射部3を制御するための制御部6と、を備えている。照射部3は、Z方向からみたときに集光領域Cが長手方向NHを有するようにレーザ光Lを成形する空間光変調器7を有する。 The laser processing according to the above third embodiment will be described as a configuration of the laser processing apparatus 1. Here, the parts that overlap with the first embodiment and the second embodiment will also be described. That is, the laser processing apparatus 1 is for irradiating the object 11 with the laser light L (laser light L1, L2) to form the modified region 12, and at least a stage for supporting the object 11. 2, the irradiation unit 3 for irradiating the laser beam L toward the object 11 supported by the stage 2, and the condensing region C (condensing regions C1 and C2) of the laser beam L with respect to the object 11. It is provided with moving units 4 and 5 for relative movement, and a control unit 6 for controlling the moving units 4 and 5 and the irradiation unit 3. The irradiation unit 3 has a spatial light modulator 7 that shapes the laser beam L so that the condensing region C has the longitudinal direction NH when viewed from the Z direction.
 そして、制御部6は、照射部3及び移動部4,5を制御することによって、ラインAのうちの第1領域A1に沿って集光領域C(集光領域C1,C2)を相対移動させることにより、第1領域A1に沿って対象物11に改質領域12(改質領域12a,12b)を形成すると共に、当該改質領域12から対象物11の入射面である第1面11aと反対側の第2面11bに向けてZ方向に対して斜めに延びる斜め亀裂13Fを形成する第1加工処理(上記の第1加工)を実行する。 Then, the control unit 6 relatively moves the light-collecting area C (light-collecting area C1 and C2) along the first region A1 of the line A by controlling the irradiation unit 3 and the moving units 4 and 5. As a result, the modified region 12 (modified regions 12a, 12b) is formed on the object 11 along the first region A1, and the modified region 12 becomes the incident surface of the object 11 with the first surface 11a. The first processing process (the above-mentioned first processing) for forming the oblique crack 13F extending diagonally with respect to the Z direction toward the second surface 11b on the opposite side is executed.
 さらに、制御部6は、照射部3及び移動部4,5を制御することによって、ラインAのうちの第2領域A2に沿って集光領域C(集光領域C1,C2)を相対移動させることにより、第2領域A2に沿って対象物11に改質領域12(改質領域12a,12b)を形成すると共に、改質領域12から第2面11bに向けて延びる斜め亀裂13F(亀裂13a,13b)を形成する第2加工処理(上記の第2加工)を実行する。 Further, the control unit 6 relatively moves the condensing region C (condensing region C1 and C2) along the second region A2 of the line A by controlling the irradiation unit 3 and the moving units 4 and 5. As a result, the modified region 12 (modified regions 12a, 12b) is formed in the object 11 along the second region A2, and the diagonal crack 13F (crack 13a) extending from the modified region 12 toward the second surface 11b is formed. , 13b) The second processing process (the above-mentioned second processing) for forming) is executed.
 第1加工処理及び第2加工処理では、制御部6は、空間光変調器7を制御することによって、集光領域Cの長手方向NHが、第1結晶方位K1及び第2結晶方位K2のうち、集光領域Cの移動方向である加工進行方向NDとの間の角度が大きい一方に近づく向きに加工進行方向NDに対して傾斜するように、レーザ光Lを成形する。また、第1加工処理及び第2加工処理では、制御部6は、移動部4,5を制御することによって、Z方向からみたとき、長手方向NHの傾斜の向きが、加工進行方向NDに対して斜め亀裂13Fが延びる方向と同じ側となるように、加工進行方向NDの順逆を第1加工処理と第2加工処理とで切り替える。 In the first processing and the second processing, the control unit 6 controls the spatial light modulator 7 so that the longitudinal direction NH of the condensing region C is the first crystal orientation K1 and the second crystal orientation K2. The laser beam L is formed so as to be inclined with respect to the machining progress direction ND so that the angle between the light collection region C and the machining progress direction ND, which is the movement direction, is large and approaches one side. Further, in the first machining process and the second machining process, the control unit 6 controls the moving units 4 and 5, so that the direction of inclination of the longitudinal direction NH is set with respect to the machining progress direction ND when viewed from the Z direction. The order of the machining progress direction ND is switched between the first machining process and the second machining process so that the diagonal crack 13F is on the same side as the extending direction.
 ラインAは、第2結晶方位K2とラインAとが直交する点を0°とし、第1結晶方位K1とラインAとが直交する点を90°とし、ラインAにおける0°と90°との間の点を45°としたとき、0°を含む第1領域A1と、90°を含む第2領域A2と、第1領域A1と第2領域A2との間の領域であって45°を含む円弧状の第3領域A3と、を含む。 In line A, the point where the second crystal orientation K2 and the line A are orthogonal to each other is 0 °, the point where the first crystal orientation K1 and the line A are orthogonal to each other is 90 °, and 0 ° and 90 ° in the line A. When the point between them is 45 °, the region between the first region A1 including 0 °, the second region A2 including 90 °, and the first region A1 and the second region A2 is 45 °. Includes an arcuate third region A3 and.
 そして、制御部6は、照射部3及び移動部4,5を制御することによって、ラインAのうちの第3領域A3に沿って集光領域Cを相対移動させることにより、第3領域A3に沿って対象物11に改質領域12を形成すると共に、当該改質領域12から第2面11bに向けて延びる斜め亀裂を形成する第3加工処理(上記の第3加工)を実行する。 Then, the control unit 6 relatively moves the condensing region C along the third region A3 of the line A by controlling the irradiation unit 3 and the moving units 4 and 5, thereby moving to the third region A3. A third processing process (the above-mentioned third processing) for forming a modified region 12 in the object 11 along the same line and forming an oblique crack extending from the modified region 12 toward the second surface 11b is executed.
 この第3加工処理では、制御部6は、空間光変調器7を制御することによって、集光領域Cの長手方向NHが加工進行方向NDに沿うようにレーザ光Lを成形する。特に、ここでは、第3加工処理では、制御部6は、移動部4,5を制御することによって、集光領域Cの加工進行方向NDの順逆を、第1加工処理及び第2加工処理のうちの第3加工処理と連続して実行される一方における加工進行方向NDの順逆と同一とする。 In this third processing, the control unit 6 controls the spatial light modulator 7 to form the laser beam L so that the longitudinal direction NH of the condensing region C is along the processing progress direction ND. In particular, here, in the third processing process, the control unit 6 controls the moving units 4 and 5 to reverse the order of the processing progress direction ND of the light collecting region C in the first processing process and the second processing process. It is the same as the order of the machining progress direction ND in one of the processes executed continuously with the third machining process.
 引き続いて、第3実施形態に係るレーザ加工について、レーザ加工方法の工程として説明する。すなわち、本実施形態に係るレーザ加工方法は、対象物11にレーザ光L(レーザ光L1,L2)を照射して改質領域12(改質領域12a,12b)を形成するためのレーザ加工方法であって、対象物11に設定されたラインAのうちの第1領域A1に沿ってレーザ光Lの集光領域C(集光領域C1,C2)を相対移動させることにより、第1領域A1に沿って対象物11に改質領域12を形成すると共に、改質領域12から対象物11の第2面11bに向けてZ方向に対して斜めに延びる斜め亀裂13F(亀裂13a,13b)を形成する第1加工工程(上記の第1加工)を有する。 Subsequently, the laser processing according to the third embodiment will be described as a process of the laser processing method. That is, the laser processing method according to the present embodiment is a laser processing method for irradiating an object 11 with laser light L (laser light L1, L2) to form a modified region 12 (modified regions 12a, 12b). The first region A1 is obtained by relatively moving the condensing region C (condensing region C1 and C2) of the laser beam L along the first region A1 of the line A set on the object 11. A modified region 12 is formed in the object 11 along the above line, and diagonal cracks 13F ( cracks 13a, 13b) extending diagonally in the Z direction from the modified region 12 toward the second surface 11b of the object 11 are formed. It has a first processing step of forming (the first processing described above).
 また、本実施形態に係るレーザ加工方法は、ラインAのうちの第2領域A2に沿って集光領域Cを相対移動させることにより、第2領域A2に沿って対象物11に改質領域12を形成すると共に、改質領域12から第2面11bに向けて延びる斜め亀裂13Fを形成する第2加工工程を備える。 Further, in the laser processing method according to the present embodiment, the light collecting region C is relatively moved along the second region A2 of the line A, so that the modified region 12 is formed on the object 11 along the second region A2. A second processing step of forming an oblique crack 13F extending from the modified region 12 toward the second surface 11b is provided.
 第1加工工程及び第2加工工程では、集光領域Cの移動方向である加工進行方向NDの順逆を第1加工工程と第2加工工程とで切り替える。 In the first processing step and the second processing step, the order of the processing progress direction ND, which is the moving direction of the condensing region C, is switched between the first processing step and the second processing step.
 一方、本実施形態に係るレーザ加工方法は、ラインAのうちの第3領域A3に沿って集光領域Cを相対移動させることにより、第3領域A3に沿って対象物11に改質領域12を形成すると共に、改質領域12から第2面11bに向けて延びる斜め亀裂13Fを形成する第3加工工程(上記の第3加工)を有する。 On the other hand, in the laser processing method according to the present embodiment, the light collecting region C is relatively moved along the third region A3 of the line A, so that the modified region 12 is formed on the object 11 along the third region A3. It has a third processing step (the above-mentioned third processing) of forming an oblique crack 13F extending from the modified region 12 toward the second surface 11b.
 そして、第3加工工程では、集光領域Cの長手方向NHが加工進行方向NDに沿うようにレーザ光Lを成形する。 Then, in the third processing step, the laser beam L is formed so that the longitudinal direction NH of the condensing region C is along the processing progress direction ND.
 以上説明したように、本実施形態に係るレーザ加工装置1及びレーザ加工方法によれば、第1実施形態と同様に第1加工及び第2加工を行うため、第1実施形態と同様の効果を奏することが可能である。さらに、本実施形態に係るレーザ加工装置1及びレーザ加工方法によれば、第3加工では、集光領域Cの長手方向NHが加工進行方向NDに沿うようにレーザ光Lを成形する。このため、上記知見に示されるように、45°の点を含む領域でのトリム面の品質がより良好となる。 As described above, according to the laser processing apparatus 1 and the laser processing method according to the present embodiment, the first processing and the second processing are performed in the same manner as in the first embodiment, so that the same effect as in the first embodiment can be obtained. It is possible to play. Further, according to the laser processing apparatus 1 and the laser processing method according to the present embodiment, in the third processing, the laser beam L is formed so that the longitudinal direction NH of the condensing region C is along the processing progress direction ND. Therefore, as shown in the above findings, the quality of the trimmed surface in the region including the 45 ° point is better.
 また、本実施形態に係るレーザ加工装置1では、第3加工処理において、制御部6が、移動部4,5を制御することによって、集光領域Cの加工進行方向NDの順逆を、第1加工処理及び第2加工処理のうちの第3加工処理と連続して実行される一方における加工進行方向NDの順逆と同一とすることができる。この場合、集光領域Cの相対移動のための加速及び減速に係る時間を短縮し、タクト低減を抑制可能である。 Further, in the laser processing apparatus 1 according to the present embodiment, in the third processing, the control unit 6 controls the moving units 4 and 5, so that the order of the processing progress direction ND of the condensing region C is first. It can be the same as the order of the machining progress direction ND in one of the machining processes and the second machining process, which is continuously executed with the third machining process. In this case, it is possible to shorten the time required for acceleration and deceleration for relative movement of the light collecting region C and suppress tact reduction.
 なお、第3加工処理において、集光領域Cの長手方向NHが加工進行方向NDに沿うとは、当該長手方向NHが加工進行方向NDに厳密に一致する場合に限定されず、長手方向NHが加工進行方向NDに対して6°程度の傾きを有する場合を含む。また、第3領域A3の角度範囲は、40°~50°に限定されず、45°±10°未満程度の範囲から任意に選択され得る。 In the third processing, the longitudinal direction NH of the condensing region C is not limited to the case where the longitudinal direction NH exactly matches the processing progress direction ND, and the longitudinal direction NH is not limited to the case where the longitudinal direction NH exactly matches the processing progress direction ND. This includes the case where the inclination is about 6 ° with respect to the machining progress direction ND. Further, the angle range of the third region A3 is not limited to 40 ° to 50 °, and can be arbitrarily selected from a range of less than about 45 ° ± 10 °.
 さらに、一の加工処理(例えば第3加工処理)と別の処理(上記の例では第2加工処理)との間には、レーザ光Lの照射がOFFとされ、且つ、ステージ2の回転が維持されている時間(すなわち、ステージ2が空転する空転時間)が生じてもよい。この場合、この空転時間内において、制御部6が、空間光変調器7に表示される変調パターンを、集光領域Cの形状を当該別の処理の際の形状(例えば第3形状Q3)に整形するための変調パターンに切り替える処理を実行することができる。 Further, between one processing process (for example, the third processing process) and another process (second processing process in the above example), the irradiation of the laser beam L is turned off and the stage 2 is rotated. There may be a sustained time (ie, the idling time at which stage 2 idles). In this case, within this idling time, the control unit 6 changes the modulation pattern displayed on the spatial light modulator 7 into the shape of the light collecting region C (for example, the third shape Q3). It is possible to execute a process of switching to a modulation pattern for shaping.
 その他、第3実施形態に係るレーザ加工装置1及びレーザ加工方法に対しても、上記の第1実施形態及び第2実施形態の各構成、及び、第1実施形態及び第2実施形態に係る変形例の各構成を任意に選択して採用され得る。
[レーザ加工の第4実施形態]
In addition, with respect to the laser processing apparatus 1 and the laser processing method according to the third embodiment, the configurations of the above-mentioned first embodiment and the second embodiment, and the modifications according to the first embodiment and the second embodiment are also made. Each configuration of the example can be arbitrarily selected and adopted.
[Fourth Embodiment of Laser Machining]
 引き続いて、トリミング加工の際に斜め亀裂の形成を行うレーザ加工の別の実施形態について説明する。上述したように、例えば上記第1実施形態及び第2実施形態に係るレーザ加工を行った場合、ラインAにおける45°付近の領域では、より良好な加工結果(例えば上記の評価「A」)が得られるように改善の余地がある。特に、加工進行方向NDを規定するラインAと第2結晶方位K2とが直交する点を0°とし、ラインAと第1結晶方位K1とが直交する点を90°とし、ラインAにおける0°と90°との中間の点を45°としたとき、45°の点の加工の際に、ビーム形状の長手方向NHの向きと斜め亀裂の傾斜方向とが加工進行方向NDに対して互いに逆側となる状態であると、トリム面の品質の低下が発生しやすい。 Subsequently, another embodiment of laser processing for forming diagonal cracks during trimming processing will be described. As described above, for example, when the laser machining according to the first embodiment and the second embodiment is performed, a better machining result (for example, the above evaluation "A") is obtained in the region near 45 ° on the line A. There is room for improvement so that it can be obtained. In particular, the point where the line A defining the machining progress direction ND and the second crystal orientation K2 are orthogonal to each other is 0 °, the point where the line A and the first crystal orientation K1 are orthogonal to each other is 90 °, and 0 ° in the line A. When the intermediate point between 90 ° and 90 ° is set to 45 °, the direction of NH in the longitudinal direction of the beam shape and the inclination direction of the diagonal crack are opposite to each other with respect to the machining progress direction ND when machining the point at 45 °. When it is on the side, the quality of the trimmed surface tends to deteriorate.
 これに対して、上述したように、ラインAにおける45°を含む領域を第1領域A1及び第2領域A2とは別に設定し、当該領域において、ビーム形状の長手方向NHの向きを加工進行方向NDに沿うようにすると、トリム面の品質がより良好となる。本実施形態では、以上のような知見に基づいてレーザ加工を行う。引き続いて、第4実施形態に係るレーザ加工について説明する。 On the other hand, as described above, the region including 45 ° in the line A is set separately from the first region A1 and the second region A2, and in the region, the direction of the longitudinal direction NH of the beam shape is the machining progress direction. If it is along the ND, the quality of the trimmed surface will be better. In this embodiment, laser processing is performed based on the above findings. Subsequently, the laser processing according to the fourth embodiment will be described.
 第4実施形態においても、第3実施形態と同様に、対象物11が、(100)面と、一の(110)面と、別の(110)面と、一の(110)面に直交する第1結晶方位K1と、別の(110)面に直交する第2結晶方位K2と、を含むむ。そして、ラインAと第2結晶方位K2とが直交する点を0°とし、当該ラインAと第1結晶方位K1とが直交する点を90°とし、当該ラインAにおける0°と90°との間の点を45°とする。 Also in the fourth embodiment, as in the third embodiment, the object 11 is orthogonal to the (100) plane, one (110) plane, another (110) plane, and one (110) plane. The first crystal orientation K1 to be formed and the second crystal orientation K2 orthogonal to another (110) plane are included. Then, the point where the line A and the second crystal orientation K2 are orthogonal to each other is 0 °, the point where the line A and the first crystal orientation K1 are orthogonal to each other is 90 °, and 0 ° and 90 ° in the line A are defined. The point between them is 45 °.
 また、第4実施形態においても、ラインAは、0°を含む第1領域A1と、90°を含む第2領域A2と、第1領域A1と第2領域A2との間の領域であって45°を含む円弧状の第3領域A3と、を含む。 Further, also in the fourth embodiment, the line A is a region between the first region A1 including 0 °, the second region A2 including 90 °, and the first region A1 and the second region A2. Includes an arcuate third region A3 that includes 45 °.
 ここでは、一例として、第1領域A1は、0°から40°までの領域、90°から130°までの領域、180°から220°までの領域、及び、270°から310°までの領域を含み、第2領域A2は、50°から90°までの領域、140°から180°までの領域、230°から270°までの領域、及び、320°から360°までの領域を含む。そして、第3領域A3は、40°から50°までの領域、130°から140°までの領域、220°から230°までの領域、及び、310°から320°までの領域を含む。すなわち、ここでは、第1領域A1と第2領域A2との間に、90°分の間隔を空けて10°分の幅を有する第3領域A3が介在される。 Here, as an example, the first region A1 includes a region from 0 ° to 40 °, a region from 90 ° to 130 °, a region from 180 ° to 220 °, and a region from 270 ° to 310 °. The second region A2 includes a region from 50 ° to 90 °, a region from 140 ° to 180 °, a region from 230 ° to 270 °, and a region from 320 ° to 360 °. The third region A3 includes a region from 40 ° to 50 °, a region from 130 ° to 140 °, a region from 220 ° to 230 °, and a region from 310 ° to 320 °. That is, here, a third region A3 having a width of 10 ° is interposed between the first region A1 and the second region A2 with an interval of 90 °.
 このような対象物11に対して、第4実施形態では、まず、対象物11の第1部分15A(図31参照)の加工を行う。すなわち、第4実施形態では、第2実施形態と同様に第1加工を実施する。より具体的には、図55に示されるように、まず、ステージ2を回転させながら、制御部6によりレーザ光Lの照射のON/OFFを切り替えることで、ラインAの第1領域A1に沿って、集光領域Cを相対的に移動させて改質領域12を形成すると共に、ラインAの第1領域A1以外の領域(第2領域A2及び第3領域A3)での改質領域12の形成を停止する(第1加工)。 For such an object 11, in the fourth embodiment, first, the first portion 15A (see FIG. 31) of the object 11 is processed. That is, in the fourth embodiment, the first processing is carried out in the same manner as in the second embodiment. More specifically, as shown in FIG. 55, first, while rotating the stage 2, the control unit 6 switches ON / OFF of the irradiation of the laser beam L along the first region A1 of the line A. Therefore, the condensing region C is relatively moved to form the modified region 12, and the modified region 12 in the regions other than the first region A1 (second region A2 and third region A3) of the line A is formed. Stop forming (first processing).
 第1加工では、制御部6の移動部4の制御のもとでステージ2の回転方向が制御されることにより、加工進行方向NDが順方向ND1とされる。また、第1加工では、第1領域A1の加工であるため、制御部6の制御のもとで空間光変調器7によるレーザ光Lの成形が行われることにより、集光領域Cのビーム形状が第1形状Q1とされる。さらに、ここでは、第2面11bに向かうにつれてZ方向に対して対象物11の中心から外側に向かう方向に傾斜するように(図31参照)、斜め亀裂の延びる方向CDが正方向CD1とされる。斜め亀裂の形成方法については、第1実施形態と同様である。 In the first machining, the rotation direction of the stage 2 is controlled under the control of the moving section 4 of the control section 6, so that the machining progress direction ND is set to the forward direction ND1. Further, since the first processing is the processing of the first region A1, the laser beam L is formed by the spatial light modulator 7 under the control of the control unit 6, so that the beam shape of the condensing region C is formed. Is the first shape Q1. Further, here, the direction CD in which the diagonal crack extends is defined as the positive direction CD1 so as to incline in the direction outward from the center of the object 11 with respect to the Z direction toward the second surface 11b (see FIG. 31). To. The method of forming an oblique crack is the same as that of the first embodiment.
 引き続いて、第4実施形態では、ステージ2を回転させながら、制御部6によりレーザ光Lの照射のON/OFFを切り替えることで、図55に示されるように、ラインAのうち第2領域A2に沿って集光領域Cを相対的に移動させて改質領域12を形成すると共に、ラインAの第2領域A2以外の領域(第1領域A1及び第3領域A3)での改質領域12の形成を停止する(第2加工)。 Subsequently, in the fourth embodiment, by switching ON / OFF of the irradiation of the laser beam L by the control unit 6 while rotating the stage 2, as shown in FIG. 55, the second region A2 of the line A The condensing region C is relatively moved along the line A to form the modified region 12, and the modified region 12 in regions other than the second region A2 of the line A (first region A1 and third region A3). Stops the formation of (second processing).
 第2加工では、制御部6の移動部4の制御のもとでステージ2の回転方向が制御されることにより、加工進行方向NDが第1加工と同一の順方向ND1に維持される。すなわち、第1加工と第2加工との間では、加工進行方向NDの順逆(順方向ND1とするか逆方向ND2とするか)が同一とされる。また、第2加工では、第2領域A2の加工であるため、制御部6の制御のもとで空間光変調器7によるレーザ光Lの成形が行われることにより、集光領域Cのビーム形状が第2形状Q2とされる。さらに、ここでは、第2面11bに向かうにつれてZ方向に対して対象物11の中心から外側に向かう方向に傾斜するように(図31参照)、斜め亀裂の延びる方向CDが正方向CD1とされる。斜め亀裂の形成方法は第1実施形態と同様である。なお、第1加工と第2加工とで加工進行方向NDの順逆を同一とするに際しては、上記のように順方向ND1とする場合に限らず逆方向ND2としてもよい。 In the second machining, the rotation direction of the stage 2 is controlled under the control of the moving section 4 of the control section 6, so that the machining progress direction ND is maintained in the same forward direction ND1 as the first machining. That is, between the first machining and the second machining, the forward / reverse of the machining progress direction ND (whether the forward direction ND1 or the reverse direction ND2 is used) is the same. Further, since the second processing is the processing of the second region A2, the laser beam L is formed by the spatial light modulator 7 under the control of the control unit 6, so that the beam shape of the condensing region C is formed. Is the second shape Q2. Further, here, the direction CD in which the diagonal crack extends is defined as the positive direction CD1 so as to incline in the direction outward from the center of the object 11 with respect to the Z direction toward the second surface 11b (see FIG. 31). To. The method of forming an oblique crack is the same as that of the first embodiment. When the order of the machining progress direction ND is the same for the first machining and the second machining, the reverse direction ND2 may be used, not limited to the forward direction ND1 as described above.
 引き続いて、第4実施形態では、ステージ2を回転させながら、制御部6によりレーザ光Lの照射のON/OFFを切り替えることで、図55に示されるように、ラインAのうち第3領域A3に沿って集光領域Cを相対的に移動させて改質領域12を形成すると共に、ラインAの第3領域A3以外の領域(第1領域A1及び第2領域A2)での改質領域12の形成を停止する(第3加工)。 Subsequently, in the fourth embodiment, by switching ON / OFF of the irradiation of the laser beam L by the control unit 6 while rotating the stage 2, as shown in FIG. 55, the third region A3 of the line A The condensing region C is relatively moved along the line A to form the modified region 12, and the modified region 12 in regions other than the third region A3 of the line A (first region A1 and second region A2). Stops the formation of (third processing).
 第3加工では、制御部6の移動部4の制御のもとでステージ2の回転方向が第2加工から維持されることにより、加工進行方向NDが順方向ND1で維持される。また、第3加工では、第3領域A3の加工であるため、制御部6の制御のもとで空間光変調器7によるレーザ光Lの成形が行われることにより、集光領域Cのビーム形状が第3形状Q3とされる(図52参照)。さらに、ここでは、第2面11bに向かうにつれてZ方向に対して対象物11の中心から外側に向かう方向に傾斜するように(図31参照)、斜め亀裂の延びる方向CDが正方向CD1とされる。斜め亀裂の形成方法については、第1実施形態と同様である。すなわち、第3加工においても、第1加工及び第2加工と同様に、斜め亀裂形成のための第1形成及び第2形成を行うことができる。 In the third machining, the rotation direction of the stage 2 is maintained from the second machining under the control of the moving section 4 of the control section 6, so that the machining progress direction ND is maintained in the forward direction ND1. Further, since the third processing is the processing of the third region A3, the laser beam L is formed by the spatial light modulator 7 under the control of the control unit 6, so that the beam shape of the condensing region C is formed. Is the third shape Q3 (see FIG. 52). Further, here, the direction CD in which the diagonal crack extends is defined as the positive direction CD1 so as to incline in the direction outward from the center of the object 11 with respect to the Z direction toward the second surface 11b (see FIG. 31). To. The method of forming an oblique crack is the same as that of the first embodiment. That is, in the third processing, the first formation and the second formation for forming diagonal cracks can be performed in the same manner as in the first processing and the second processing.
 なお、第3領域A3の第3加工では、集光領域Cのビーム形状が、その長手方向NHが加工進行方向NDに沿うようにされる。したがって、加工進行方向NDが順方向ND1及び逆方向ND2のいずれであっても、同様に良好な加工結果(評価「A」)が得られる(図53参照)。 In the third processing of the third region A3, the beam shape of the condensing region C is set so that the longitudinal direction NH thereof follows the processing progress direction ND. Therefore, regardless of whether the machining progress direction ND is the forward direction ND1 or the reverse direction ND2, similarly good machining results (evaluation “A”) can be obtained (see FIG. 53).
 したがって、第3加工では、加工進行方向NDの順逆が限定されない。ただし、第3加工における加工進行方向NDの順逆は、集光領域Cの相対移動に関する加減速に係る時間の短縮の観点から、第1加工及び第2加工の加工進行方向NDの順逆と同一とすることができる。 Therefore, in the third machining, the order of the machining progress direction ND is not limited. However, the forward / reverse of the machining progress direction ND in the third machining is the same as the forward / reverse of the machining progress direction ND of the first machining and the second machining from the viewpoint of shortening the time related to the acceleration / deceleration related to the relative movement of the condensing region C. can do.
 引き続いて、第4実施形態では、対象物11の第2部分15B(図31参照)の加工を行う。第2部分15Bの加工は、第1実施形態及び第2実施形態と同様に行うことができる。すなわち、第2部分15Bの加工の際には、上述した別加工処理(例えば第1Z加工及び第2Z加工)を行うことができる。 Subsequently, in the fourth embodiment, the second portion 15B (see FIG. 31) of the object 11 is processed. The processing of the second portion 15B can be performed in the same manner as in the first embodiment and the second embodiment. That is, when processing the second portion 15B, the above-mentioned separate processing (for example, first Z processing and second Z processing) can be performed.
 以上の加工によって、ラインAの全体にわたって、且つ、Z方向の概ね全体にわたって、対象物11に改質領域12及び亀裂13が形成されることとなる。特に、第1部分15Aでは、対象物11の第1面11aから第2面11bに向かうにつれて、対象物11のデバイス層110と対象物11Rのデバイス層110Rとの接合領域の内側の位置から当該接合領域の外縁110eに向かうように傾斜した亀裂13a,13bが形成される。 By the above processing, the modified region 12 and the crack 13 are formed in the object 11 over the entire line A and substantially over the entire Z direction. In particular, in the first portion 15A, as the object 11 moves from the first surface 11a to the second surface 11b, the device layer 110 of the object 11 and the device layer 110R of the object 11R are located inside the junction region. Cracks 13a and 13b inclined toward the outer edge 110e of the joint region are formed.
 引き続いて、第1実施形態及び第2実施形態と同様に、Z方向から見て除去領域Eに4等分するように延びるラインに沿って、改質領域12及び改質領域12から延びる亀裂13を形成すると共に、改質領域12を境界として除去領域Eを取り除く。これにより、対象物11から半導体デバイス11Kが形成され、半導体デバイス11Kを含む対象物100Kが得られる。その後、半導体デバイス11Kを第1面11a側から研削することにより、半導体デバイス11Mが形成され、半導体デバイス11Mを含む対象物100Mが得られる。 Subsequently, as in the first embodiment and the second embodiment, the crack 13 extending from the modified region 12 and the modified region 12 along the line extending so as to divide the removal region E into four equal parts when viewed from the Z direction. Is formed, and the removal region E is removed with the modified region 12 as a boundary. As a result, the semiconductor device 11K is formed from the object 11, and the object 100K including the semiconductor device 11K is obtained. Then, by grinding the semiconductor device 11K from the first surface 11a side, the semiconductor device 11M is formed, and the object 100M including the semiconductor device 11M is obtained.
 以上の第4実施形態に係るレーザ加工について、レーザ加工装置1の構成として説明する。すなわち、レーザ加工装置1は、対象物11にレーザ光L(レーザ光L1,L2)を照射して改質領域12を形成するためのものであり、少なくとも、対象物11を支持するためのステージ2と、ステージ2に支持された対象物11に向けてレーザ光Lを照射するための照射部3と、レーザ光Lの集光領域C(集光領域C1,C2)を対象物11に対して相対移動させるための移動部4,5と、移動部4,5及び照射部3を制御するための制御部6と、を備えている。照射部3は、Z方向からみたときに集光領域Cが長手方向NHを有するようにレーザ光Lを成形する空間光変調器7を有する。 The laser processing according to the above-mentioned fourth embodiment will be described as a configuration of the laser processing apparatus 1. That is, the laser processing apparatus 1 is for irradiating the object 11 with the laser light L (laser light L1, L2) to form the modified region 12, and at least a stage for supporting the object 11. 2, the irradiation unit 3 for irradiating the laser beam L toward the object 11 supported by the stage 2, and the condensing region C (condensing regions C1 and C2) of the laser beam L with respect to the object 11. It is provided with moving units 4 and 5 for relative movement, and a control unit 6 for controlling the moving units 4 and 5 and the irradiation unit 3. The irradiation unit 3 has a spatial light modulator 7 that shapes the laser beam L so that the condensing region C has the longitudinal direction NH when viewed from the Z direction.
 そして、制御部6は、照射部3及び移動部4,5を制御することによって、ラインAのうちの第1領域A1に沿って集光領域C(集光領域C1,C2)を相対移動させることにより、第1領域A1に沿って対象物11に改質領域12(改質領域12a,12b)を形成すると共に、当該改質領域12から対象物11の入射面である第1面11aと反対側の第2面11bに向けてZ方向に対して斜めに延びる斜め亀裂13F(亀裂13a,13b)を形成する第1加工処理(上記の第1加工)を実行する。 Then, the control unit 6 relatively moves the light-collecting area C (light-collecting area C1 and C2) along the first region A1 of the line A by controlling the irradiation unit 3 and the moving units 4 and 5. As a result, the modified region 12 (modified regions 12a, 12b) is formed on the object 11 along the first region A1, and the modified region 12 becomes the incident surface of the object 11 with the first surface 11a. The first processing (the above-mentioned first processing) for forming diagonal cracks 13F ( cracks 13a, 13b) extending diagonally in the Z direction toward the second surface 11b on the opposite side is executed.
 さらに、制御部6は、照射部3及び移動部4,5を制御することによって、ラインAのうちの第2領域A2に沿って集光領域C(集光領域C1,C2)を相対移動させることにより、第2領域A2に沿って対象物11に改質領域12(改質領域12a,12b)を形成すると共に、改質領域12から第2面11bに向けて延びる斜め亀裂13F(亀裂13a,13b)を形成する第2加工処理(上記の第2加工)を実行する。 Further, the control unit 6 relatively moves the condensing region C (condensing region C1 and C2) along the second region A2 of the line A by controlling the irradiation unit 3 and the moving units 4 and 5. As a result, the modified region 12 (modified regions 12a, 12b) is formed in the object 11 along the second region A2, and the diagonal crack 13F (crack 13a) extending from the modified region 12 toward the second surface 11b is formed. , 13b) The second processing process (the above-mentioned second processing) for forming) is executed.
 第1加工処理及び第2加工処理では、制御部6は、空間光変調器7を制御することによって、集光領域Cの長手方向NHが、第1結晶方位K1及び第2結晶方位K2のうち、集光領域Cの移動方向である加工進行方向NDとの間の角度が大きい一方に近づく向きに加工進行方向NDに対して傾斜するように、レーザ光Lを成形すると共に、第1加工処理と第2加工処理とで加工進行方向NDの順逆を同一とする。 In the first processing and the second processing, the control unit 6 controls the spatial optical modulator 7 so that the longitudinal direction NH of the condensing region C is the first crystal orientation K1 and the second crystal orientation K2. The laser beam L is formed so as to be inclined with respect to the machining progress direction ND so that the angle between the light collecting region C and the machining progress direction ND is large and the angle is closer to one side, and the first machining process is performed. And the second processing process, the order and reverse of the processing progress direction ND are the same.
 一方、制御部6は、照射部3及び移動部4,5を制御することによって、ラインAのうちの第3領域A3に沿って集光領域C(集光領域C1,C2)を相対移動させることにより、第3領域A3に沿って対象物11に改質領域12(改質領域12a,12b)を形成すると共に、改質領域12から第2面11bに向けて延びる斜め亀裂13F(亀裂13a,13b)を形成する第3加工処理(上記の第3加工)を実行する。特に、制御部6は、第3加工処理では、空間光変調器7を制御することによって、集光領域Cの長手方向NHが加工進行方向NDに沿うようにレーザ光Lを成形する。 On the other hand, the control unit 6 relatively moves the condensing region C (condensing region C1 and C2) along the third region A3 of the line A by controlling the irradiation unit 3 and the moving units 4 and 5. As a result, the modified region 12 (modified regions 12a, 12b) is formed in the object 11 along the third region A3, and the oblique crack 13F (crack 13a) extending from the modified region 12 toward the second surface 11b is formed. , 13b) The third processing process (the above-mentioned third processing) for forming) is executed. In particular, in the third processing, the control unit 6 controls the spatial light modulator 7 to form the laser beam L so that the longitudinal direction NH of the condensing region C is along the processing progress direction ND.
 引き続いて、以上の第4実施形態に係るレーザ加工について、レーザ加工方法の工程として説明する。すなわち、本実施形態に係るレーザ加工方法は、対象物11にレーザ光L(レーザ光L1,L2)を照射して改質領域12を形成するためのものであり、対象物11に設定されたラインAのうちの第1領域A1に沿って集光領域C(集光領域C1,C2)を相対移動させることにより、第1領域A1に沿って対象物11に改質領域12(改質領域12a,12b)を形成すると共に、当該改質領域12から対象物11の入射面である第1面11aと反対側の第2面11bに向けてZ方向に対して斜めに延びる斜め亀裂13F(亀裂13a,13b)を形成する第1加工工程(上記の第1加工)を有する。 Subsequently, the laser processing according to the above-mentioned fourth embodiment will be described as a process of the laser processing method. That is, the laser processing method according to the present embodiment is for irradiating the object 11 with the laser light L (laser light L1, L2) to form the modified region 12, and is set on the object 11. By relatively moving the condensing region C (condensing region C1 and C2) along the first region A1 of the line A, the modified region 12 (modifying region 12) is moved to the object 11 along the first region A1. 12a, 12b) is formed, and an oblique crack 13F (diagonal crack 13F) extending diagonally from the modified region 12 toward the second surface 11b opposite to the first surface 11a, which is the incident surface of the object 11, in the Z direction. It has a first processing step (the above-mentioned first processing) for forming cracks 13a, 13b).
 また、本実施形態に係るレーザ加工方法は、ラインAのうちの第2領域A2に沿って集光領域C(集光領域C1,C2)を相対移動させることにより、第2領域A2に沿って対象物11に改質領域12(改質領域12a,12b)を形成すると共に、改質領域12から第2面11bに向けて延びる斜め亀裂13F(亀裂13a,13b)を形成する第2加工工程(上記の第2加工)を有する。 Further, in the laser processing method according to the present embodiment, the condensing region C (condensing region C1 and C2) is relatively moved along the second region A2 of the line A, so that the condensing region C (C1 and C2) is relatively moved along the second region A2. A second processing step of forming a modified region 12 (modified regions 12a, 12b) on the object 11 and forming an oblique crack 13F ( cracks 13a, 13b) extending from the modified region 12 toward the second surface 11b. Has (the above second processing).
 第1加工工程及び第2加工工程では、Z方向からみたときに集光領域Cが長手方向NHを有するように、且つ、集光領域Cの長手方向NHが、第1結晶方位K1及び第2結晶方位K2のうち、集光領域Cの移動方向である加工進行方向NDとの間の角度が大きい一方に近づく向きに加工進行方向NDに対して傾斜するように、レーザ光Lを成形すると共に、第1加工工程と第2加工工程とで加工進行方向NDの順逆を同一とする。 In the first processing step and the second processing step, the light-collecting region C has the longitudinal direction NH when viewed from the Z direction, and the longitudinal direction NH of the light-collecting region C is the first crystal orientation K1 and the second. The laser beam L is formed so that the angle between the crystal orientation K2 and the processing progress direction ND, which is the movement direction of the condensing region C, is larger and the laser beam L is inclined with respect to the processing progress direction ND. , The order of the machining progress direction ND is the same in the first machining step and the second machining step.
 一方、本実施形態に係るレーザ加工方法は、ラインAのうちの第3領域A3に沿って集光領域C(集光領域C1,C2)を相対移動させることにより、第3領域A3に沿って対象物11に改質領域12(改質領域12a,12b)を形成すると共に、改質領域12から第2面11bに向けて延びる斜め亀裂13F(亀裂13a,13b)を形成する第3加工工程(上記の第3加工)を有する。 On the other hand, in the laser processing method according to the present embodiment, the condensing region C (condensing region C1 and C2) is relatively moved along the third region A3 of the line A, so that the condensing region C (C1 and C2) is relatively moved along the third region A3. A third processing step of forming a modified region 12 (modified regions 12a, 12b) on the object 11 and forming an oblique crack 13F ( cracks 13a, 13b) extending from the modified region 12 toward the second surface 11b. Has (the above third processing).
 そして、第3加工工程では、空間光変調器7を制御することによって、集光領域Cの長手方向NHが加工進行方向NDに沿うようにレーザ光Lを成形する。 Then, in the third processing step, by controlling the spatial light modulator 7, the laser beam L is formed so that the longitudinal direction NH of the condensing region C is along the processing progress direction ND.
 以上説明したように、本実施形態に係るレーザ加工装置1及びレーザ加工方法では、第2実施形態と同様に第1加工及び第2加工を行うため、第2実施形態と同様の効果を奏することが可能である。さらに、本実施形態に係るレーザ加工装置1及びレーザ加工方法では、第1領域A1と第2領域A2との間に45°の点を含む第3領域A3が介在されている。そして、第3領域A3の加工を行う第3加工において、レーザ光Lの集光領域Cの長手方向NHが加工進行方向NDに沿うようにされる。このため、上記知見に示されるように、45°の点を含む領域でのトリム面の品質がより良好となる。このように、本実施形態に係るレーザ加工装置1及びレーザ加工方法によれば、対象物11のトリム面の品質低下を抑制しつつ、斜め亀裂を形成可能である。 As described above, in the laser processing apparatus 1 and the laser processing method according to the present embodiment, the first processing and the second processing are performed in the same manner as in the second embodiment, so that the same effect as in the second embodiment can be obtained. Is possible. Further, in the laser processing apparatus 1 and the laser processing method according to the present embodiment, a third region A3 including a point of 45 ° is interposed between the first region A1 and the second region A2. Then, in the third processing in which the processing of the third region A3 is performed, the longitudinal direction NH of the condensing region C of the laser beam L is set to be along the processing progress direction ND. Therefore, as shown in the above findings, the quality of the trimmed surface in the region including the 45 ° point is better. As described above, according to the laser processing apparatus 1 and the laser processing method according to the present embodiment, it is possible to form an oblique crack while suppressing the deterioration of the quality of the trim surface of the object 11.
 さらに、本実施形態に係るレーザ加工装置1及びレーザ加工方法では、少なくとも第1加工と第2加工とで加工進行方向NDの順逆が同一とされる。したがって、第1加工と第2加工とで加工進行方向NDの順逆を切り替える場合と比較して、レーザ光Lの集光領域Cの相対移動の加減速に係る時間が削減される。 Further, in the laser machining apparatus 1 and the laser machining method according to the present embodiment, the order of the machining progress direction ND is the same for at least the first machining and the second machining. Therefore, as compared with the case where the order of the processing progress direction ND is switched between the first processing and the second processing, the time related to the acceleration / deceleration of the relative movement of the condensing region C of the laser beam L is reduced.
 また、本実施形態に係るレーザ加工装置1では、第3加工処理では、制御部6は、移動部4,5を制御することによって、集光領域Cの加工進行方向NDの順逆を、第1加工処理及び第2加工処理の加工進行方向NDの順逆と同一としてもよい。この場合、第1加工処理、第2加工処理、及び、第3加工処理において、加工進行方向NDの順逆が同一とされる。これにより、集光領域Cの相対移動のための加速及び減速に係る時間を短縮し、タクト低減を抑制可能である。 Further, in the laser processing apparatus 1 according to the present embodiment, in the third processing, the control unit 6 controls the moving units 4 and 5, so that the order of the processing progress direction ND of the condensing region C is first. It may be the same as the order of the machining progress direction ND of the machining process and the second machining process. In this case, in the first processing process, the second processing process, and the third processing process, the order of the processing progress direction ND is the same. As a result, it is possible to shorten the time required for acceleration and deceleration for relative movement of the condensing region C and suppress tact reduction.
 その他、第4実施形態に係るレーザ加工装置1及びレーザ加工方法に対しても、上記の第1実施形態、第2実施形態、及び第3実施形態の各構成、並びに、第1実施形態、第2実施形態、及び第3実施形態に係る変形例の各構成を任意に選択して採用され得る。 In addition, with respect to the laser processing apparatus 1 and the laser processing method according to the fourth embodiment, the configurations of the above-mentioned first embodiment, the second embodiment, and the third embodiment, and the first embodiment and the first embodiment are also used. 2 Each configuration of the embodiment and the modification according to the third embodiment can be arbitrarily selected and adopted.
 なお、第3実施形態及び第4実施形態において、第1加工、第2加工、及び第3加工の順序は任意である。 In the third embodiment and the fourth embodiment, the order of the first processing, the second processing, and the third processing is arbitrary.
 対象物の結晶構造に応じてより適切に加工進行方向を設定可能なレーザ加工装置、及び、レーザ加工方法が提供される。 Provided are a laser processing device capable of setting a processing progress direction more appropriately according to the crystal structure of an object, and a laser processing method.
 1…レーザ加工装置、2…ステージ(支持部)、3…照射部、4,5…移動部、6…制御部、7…空間光変調器、11…対象物、11a…第1面(入射面)、11b…第2面(反対面)、12,12a,12b…改質領域、13,13a,13b…亀裂、13F…斜め亀裂、33…集光レンズ、A1…第1領域、A2…第2領域、A3…第3領域、K1…第1結晶方位、K2…第2結晶方位、L…レーザ光、C,C1,C2…集光領域、ND…加工進行方向。 1 ... Laser processing device, 2 ... Stage (support part), 3 ... Irradiation part, 4, 5 ... Moving part, 6 ... Control part, 7 ... Spatial light modulator, 11 ... Object, 11a ... First surface (incident) Surface), 11b ... Second surface (opposite surface), 12, 12a, 12b ... Modified region, 13, 13a, 13b ... Crack, 13F ... Diagonal crack, 33 ... Condensing lens, A1 ... First region, A2 ... 2nd region, A3 ... 3rd region, K1 ... 1st crystal orientation, K2 ... 2nd crystal orientation, L ... laser light, C, C1, C2 ... condensing region, ND ... processing progress direction.

Claims (19)

  1.  結晶構造を有する対象物にレーザ光を照射して改質領域を形成するためのレーザ加工装置であって、
     前記対象物を支持するための支持部と、
     前記支持部に支持された前記対象物に向けて前記レーザ光を照射するための照射部と、
     前記レーザ光の集光領域を前記対象物に対して相対移動させるための移動部と、
     前記移動部及び前記照射部を制御するための制御部と、
     を備え、
     前記対象物には、前記レーザ光の入射面に交差するZ方向からみて、円弧状の第1領域と円弧状の第2領域とを含む円環状のラインが設定されており、
     前記照射部は、前記レーザ光を成形するための成形部を有し、
     前記制御部は、
     前記照射部及び前記移動部を制御することによって、前記ラインのうちの前記第1領域に沿って前記集光領域を相対移動させることにより、前記第1領域に沿って前記対象物に前記改質領域を形成すると共に、当該改質領域から前記対象物の前記入射面と反対側の反対面に向けて前記Z方向に対して斜めに延びる斜め亀裂を形成する第1加工処理と、
     前記照射部及び前記移動部を制御することによって、前記ラインのうちの前記第2領域に沿って前記集光領域を相対移動させることにより、前記第2領域に沿って前記対象物に前記改質領域を形成すると共に、当該改質領域から前記反対面に向けて延びる前記斜め亀裂を形成する第2加工処理と、
     を実行し、
     前記第1加工処理及び前記第2加工処理では、前記制御部は、前記集光領域の移動方向である加工進行方向の順逆を前記第1加工処理と前記第2加工処理とで切り替える、
     レーザ加工装置。
    A laser processing device for irradiating an object having a crystal structure with laser light to form a modified region.
    A support portion for supporting the object and
    An irradiation unit for irradiating the laser beam toward the object supported by the support unit, and an irradiation unit.
    A moving portion for moving the focused region of the laser beam relative to the object, and a moving portion.
    A control unit for controlling the moving unit and the irradiation unit,
    Equipped with
    An annular line including an arc-shaped first region and an arc-shaped second region is set on the object when viewed from the Z direction intersecting the incident surface of the laser beam.
    The irradiation unit has a molding unit for molding the laser beam.
    The control unit
    By controlling the irradiation unit and the moving unit, the light collecting region is relatively moved along the first region of the line, thereby modifying the object along the first region. The first processing process of forming a region and forming an oblique crack extending diagonally with respect to the Z direction from the modified region toward the opposite surface of the object to the incident surface.
    By controlling the irradiation unit and the moving unit, the light collecting region is relatively moved along the second region of the line, thereby modifying the object into the object along the second region. A second processing process for forming a region and forming the diagonal crack extending from the modified region toward the opposite surface.
    And run
    In the first processing process and the second processing process, the control unit switches the order of the processing progress direction, which is the moving direction of the light collecting region, between the first processing process and the second processing process.
    Laser processing equipment.
  2.  前記対象物は、前記Z方向に沿って前記反対面側から順に配列された第1部分及び第2部分を含み、
     前記制御部は、前記第1部分に対して、前記加工進行方向の順逆を切り替えながら前記第1加工処理及び前記第2加工処理を実行すると共に、前記第2部分に対して、前記第1加工処理及び前記第2加工処理と異なる別加工処理を実行し、
     前記別加工処理では、前記制御部は、前記照射部及び前記移動部を制御することによって、前記ラインの全体にわたって前記加工進行方向の順逆を同一としつつ前記ラインに沿って前記集光領域を相対移動させることにより、前記ラインに沿って前記対象物に前記改質領域及び当該改質領域から前記Z方向に沿って延びる亀裂を形成する、
     請求項1に記載のレーザ加工装置。
    The object includes a first portion and a second portion arranged in order from the opposite side along the Z direction.
    The control unit executes the first machining process and the second machining process while switching the order of the machining progress direction with respect to the first portion, and the first machining process with respect to the second portion. Execution of processing and another processing processing different from the second processing processing,
    In the separate processing, the control unit controls the irradiation unit and the moving unit to make the condensing region relative to the light collecting region along the line while making the order of the processing progress direction the same throughout the line. By moving the object, a crack extending from the modified region and the modified region along the Z direction is formed along the line.
    The laser processing apparatus according to claim 1.
  3.  前記別加工処理では、前記制御部は、前記成形部を制御することによって、前記Z方向からみたときに前記集光領域が長手方向を有するように、且つ、当該集光領域の長手方向が前記加工進行方向に沿うように前記レーザ光を成形する、
     請求項2に記載のレーザ加工装置。
    In the separate processing, the control unit controls the molding unit so that the light-collecting region has a longitudinal direction when viewed from the Z direction, and the longitudinal direction of the light-collecting region is the longitudinal direction. The laser beam is molded so as to follow the processing progress direction.
    The laser processing apparatus according to claim 2.
  4.  前記対象物は、別の部材に接合された接合領域を含み、
     前記第1加工処理及び前記第2加工処理では、前記制御部は、前記入射面から前記反対面に向かうにつれて前記接合領域の内側の位置から前記接合領域の外縁に向かうように傾斜した前記斜め亀裂を形成する、
     請求項1~3のいずれか一項に記載のレーザ加工装置。
    The object includes a joining region joined to another member.
    In the first processing and the second processing, the control unit is inclined from the inner position of the joint region toward the outer edge of the joint region as it goes from the incident surface to the opposite surface. Form,
    The laser processing apparatus according to any one of claims 1 to 3.
  5.  前記対象物は、(100)面と、一の(110)面と、別の(110)面と、前記一の(110)面に直交する第1結晶方位と、前記別の(110)面に直交する第2結晶方位と、を含む結晶構造を有すると共に、前記(100)面が前記入射面となるように前記支持部に支持され、
     前記第1加工処理及び前記第2加工処理では、前記制御部は、
     前記成形部を制御することによって、前記Z方向からみたときに前記集光領域が長手方向を有するように、且つ、当該長手方向が、前記第1結晶方位及び前記第2結晶方位のうち、前記集光領域の移動方向である加工進行方向との間の角度が大きい一方に近づく向きに前記加工進行方向に対して傾斜するように、前記レーザ光を成形する、
     請求項1~4のいずれか一項に記載のレーザ加工装置。
    The object has a (100) plane, one (110) plane, another (110) plane, a first crystal orientation orthogonal to the one (110) plane, and the other (110) plane. It has a crystal structure including a second crystal orientation orthogonal to the above, and is supported by the support portion so that the (100) plane becomes the incident plane.
    In the first processing and the second processing, the control unit is
    By controlling the molded portion, the condensing region has a longitudinal direction when viewed from the Z direction, and the longitudinal direction is the first crystal orientation and the second crystal orientation. The laser beam is formed so as to be inclined with respect to the processing progress direction in a direction approaching one side having a large angle with the processing progress direction which is the movement direction of the light collecting region.
    The laser processing apparatus according to any one of claims 1 to 4.
  6.  前記第1領域は、前記第2結晶方位と前記ラインとが直交する点を0°とし、前記第1結晶方位と前記ラインとが直交する点を90°とし、前記ラインにおける前記0°と前記90°との間の点を45°としたとき、前記0°から前記45°までの領域を含み、
     前記第2領域は、前記45°から前記90°までの領域を含む、
     請求項5に記載のレーザ加工装置。
    In the first region, the point where the second crystal orientation and the line are orthogonal is 0 °, the point where the first crystal orientation and the line are orthogonal is 90 °, and the 0 ° and the line in the line are the same. Assuming that the point between 90 ° and 45 ° is 45 °, the region from 0 ° to 45 ° is included.
    The second region includes the region from 45 ° to 90 °.
    The laser processing apparatus according to claim 5.
  7.  前記第1加工処理及び前記第2加工処理では、前記制御部は、前記移動部を制御することによって、前記Z方向からみたとき、前記長手方向の傾斜の向きが、前記加工進行方向に対して前記斜め亀裂が延びる方向と同じ側となるように、前記加工進行方向の順逆を前記第1加工処理と前記第2加工処理とで切り替える、
     請求項5又は6に記載のレーザ加工装置。
    In the first processing and the second processing, the control unit controls the moving unit so that when viewed from the Z direction, the direction of inclination in the longitudinal direction is relative to the processing progress direction. The order of the processing progress direction is switched between the first processing process and the second processing process so that the diagonal crack is on the same side as the extending direction.
    The laser processing apparatus according to claim 5 or 6.
  8.  前記対象物は、(100)面と、一の(110)面と、別の(110)面と、前記一の(110)面に直交する第1結晶方位と、前記別の(110)面に直交する第2結晶方位と、を含む結晶構造を有すると共に、前記(100)面が前記入射面となるように前記支持部に支持され、
     前記別加工処理では、前記制御部は、前記加工進行方向の切り替えを行うことなく、前記ラインのうちの前記第1領域に沿って前記集光領域を相対移動させることにより、前記第1領域に沿って前記対象物に前記改質領域を形成すると共に、当該改質領域から前記Z方向に沿って延びる亀裂を形成する第1Z加工処理と、前記ラインのうちの前記第2領域に沿って前記集光領域を相対移動させることにより、前記第2領域に沿って前記対象物に前記改質領域を形成すると共に、当該改質領域から前記Z方向に沿って延びる亀裂を形成する第2Z加工処理と、を実行し、
     前記第1Z加工処理及び前記第2Z加工処理では、前記制御部は、前記成形部を制御することによって、前記Z方向からみたときに前記集光領域が長手方向を有するように、且つ、当該長手方向が、前記第1結晶方位及び前記第2結晶方位のうち前記加工進行方向との間の角度が大きい一方に近づく向きに前記加工進行方向に対して傾斜するように、前記レーザ光を成形する、
     請求項2又は3に記載のレーザ加工装置。
    The object has a (100) plane, one (110) plane, another (110) plane, a first crystal orientation orthogonal to the one (110) plane, and the other (110) plane. It has a crystal structure including a second crystal orientation orthogonal to the above, and is supported by the support portion so that the (100) plane becomes the incident plane.
    In the separate machining process, the control unit moves the condensing region relative to the first region of the line without switching the machining progress direction to the first region. The first Z processing process for forming the modified region in the object along the line and forming cracks extending from the modified region along the Z direction, and the second region of the line. A second Z processing process for forming the modified region on the object along the second region and forming cracks extending from the modified region along the Z direction by relatively moving the light collecting region. And execute,
    In the 1st Z processing and the 2nd Z processing, the control unit controls the molding unit so that the light collecting region has a longitudinal direction when viewed from the Z direction and the longitudinal direction thereof. The laser beam is molded so that the direction is inclined with respect to the processing progress direction in a direction approaching one of the first crystal orientation and the second crystal orientation, which has a larger angle with the processing progress direction. ,
    The laser processing apparatus according to claim 2 or 3.
  9.  前記ラインは、前記第2結晶方位と前記ラインとが直交する点を0°とし、前記第1結晶方位と前記ラインとが直交する点を90°とし、前記ラインにおける前記0°と前記90°との間の点を45°としたとき、前記0°を含む前記第1領域と、前記90°を含む前記第2領域と、前記第1領域と前記第2領域との間の領域であって前記45°を含む円弧状の第3領域と、を含み、
     前記制御部は、前記照射部及び前記移動部を制御することによって、前記ラインのうちの前記第3領域に沿って前記集光領域を相対移動させることにより、前記第3領域に沿って前記対象物に前記改質領域を形成すると共に、当該改質領域から前記反対面に向けて延びる前記斜め亀裂を形成する第3加工処理を実行し、
     前記第3加工処理では、前記制御部は、前記成形部を制御することによって、前記Z方向からみたときに前記集光領域が長手方向を有するように、且つ、当該長手方向が前記加工進行方向に沿うように前記レーザ光を成形する、
     請求項5又は8に記載のレーザ加工装置。
    In the line, the point where the second crystal orientation and the line are orthogonal to each other is 0 °, the point where the first crystal orientation and the line are orthogonal to each other is 90 °, and the 0 ° and the 90 ° in the line are defined. When the point between the two is 45 °, it is the region between the first region including the 0 °, the second region including the 90 °, and the first region and the second region. Including the arcuate third region including the 45 °
    The control unit controls the irradiation unit and the moving unit to move the light collecting region relative to the third region of the line, thereby moving the light collecting region relative to the target along the third region. A third processing process for forming the modified region on the object and forming the diagonal crack extending from the modified region toward the opposite surface was executed.
    In the third processing, the control unit controls the molding unit so that the light collecting region has a longitudinal direction when viewed from the Z direction, and the longitudinal direction is the processing progress direction. The laser beam is molded so as to be in line with.
    The laser processing apparatus according to claim 5 or 8.
  10.  前記第3加工処理では、前記制御部は、前記移動部を制御することによって、前記集光領域の前記加工進行方向の順逆を、前記第1加工処理及び前記第2加工処理のうちの前記第3加工処理と連続して実行される一方における前記加工進行方向の順逆と同一とする、
     請求項9に記載のレーザ加工装置。
    In the third processing process, the control unit controls the moving unit to reverse the order of the processing progress direction of the light collecting region to the first of the first processing process and the second processing process. 3 Same as the reverse order of the machining progress direction while being executed continuously with the machining process.
    The laser processing apparatus according to claim 9.
  11.  前記第1加工処理及び前記第2加工処理では、前記制御部は、前記移動部を制御することによって、前記Z方向からみたとき、前記長手方向の傾斜の向きが、前記加工進行方向に対して前記斜め亀裂が延びる方向と同じ側となるように、前記加工進行方向の順逆を前記第1加工処理と前記第2加工処理とで切り替える、
     請求項9又は10に記載のレーザ加工装置。
    In the first processing and the second processing, the control unit controls the moving unit so that when viewed from the Z direction, the direction of inclination in the longitudinal direction is relative to the processing progress direction. The order of the processing progress direction is switched between the first processing process and the second processing process so that the diagonal crack is on the same side as the extending direction.
    The laser processing apparatus according to claim 9 or 10.
  12.  前記第1加工処理及び前記第2加工処理では、前記制御部は、
     前記Z方向についての前記集光領域の位置を第1Z位置に設定しつつ、前記ラインに沿って前記集光領域を相対移動させることにより、前記改質領域としての第1改質領域及び前記第1改質領域から延びる亀裂を前記対象物に形成する第1形成処理と、
     前記Z方向についての前記集光領域の位置を前記第1Z位置よりも前記入射面側の第2Z位置に設定しつつ、前記ラインに沿って前記集光領域を相対移動させることにより、前記改質領域としての第2改質領域及び前記第2改質領域から延びる亀裂を形成する第2形成処理と、を実行し、
     前記第1形成処理では、前記制御部は、前記加工進行方向及び前記Z方向に交差するY方向についての前記集光領域の位置を第1Y位置に設定し、
     前記第2形成処理では、前記制御部は、前記Y方向についての前記集光領域の位置を前記第1Y位置からシフトした第2Y位置に設定すると共に、前記成形部の制御によって、前記Y方向及び前記Z方向を含むYZ面内での前記集光領域の形状が、少なくとも前記集光領域の中心よりも前記入射面側において前記シフトの方向に傾斜する傾斜形状となるように前記レーザ光を成形することにより、前記YZ面内において前記シフトの方向に傾斜するように前記斜め亀裂を形成する、
     請求項1~11のいずれか一項に記載のレーザ加工装置。
    In the first processing and the second processing, the control unit is
    The first modified region and the first modified region as the modified region are obtained by relatively moving the focused region along the line while setting the position of the focused region in the Z direction to the first Z position. 1 The first forming process for forming a crack extending from the modified region on the object, and
    The modification is performed by relatively moving the condensing region along the line while setting the position of the condensing region in the Z direction to the second Z position on the incident surface side of the first Z position. A second reforming region as a region and a second forming treatment for forming cracks extending from the second reforming region are performed.
    In the first forming process, the control unit sets the position of the light collecting region in the Y direction intersecting the processing progress direction and the Z direction at the first Y position.
    In the second forming process, the control unit sets the position of the light collecting region in the Y direction to the second Y position shifted from the first Y position, and is controlled by the molding unit in the Y direction and. The laser beam is formed so that the shape of the condensing region in the YZ plane including the Z direction is inclined in the direction of the shift at least on the incident surface side of the center of the condensing region. By doing so, the oblique crack is formed in the YZ plane so as to be inclined in the direction of the shift.
    The laser processing apparatus according to any one of claims 1 to 11.
  13.  前記成形部は、前記レーザ光を変調パターンに応じて変調することにより前記レーザ光を成形するための空間光変調器を含み、
     前記照射部は、前記空間光変調器からの前記レーザ光を前記対象物に向けて集光するための集光レンズを含み、
     前記第2形成処理では、前記制御部は、前記空間光変調器に表示させる前記変調パターンの制御によって、前記集光領域の形状が前記傾斜形状となるように前記レーザ光を変調することにより前記レーザ光を成形する、
     請求項12に記載のレーザ加工装置。
    The molding unit includes a spatial light modulator for molding the laser beam by modulating the laser beam according to a modulation pattern.
    The irradiation unit includes a condenser lens for condensing the laser beam from the spatial light modulator toward the object.
    In the second forming process, the control unit modulates the laser beam so that the shape of the condensing region becomes the inclined shape by controlling the modulation pattern displayed on the spatial light modulator. Molding laser light,
    The laser processing apparatus according to claim 12.
  14.  前記変調パターンは、前記レーザ光に対してコマ収差を付与するためのコマ収差パターンを含み、
     前記第2形成処理では、前記制御部は、前記コマ収差パターンによる前記コマ収差の大きさを制御することにより、前記集光領域の形状を前記傾斜形状とするための第1パターン制御を行う、
     請求項13に記載のレーザ加工装置。
    The modulation pattern includes a coma aberration pattern for imparting coma aberration to the laser beam.
    In the second forming process, the control unit controls the magnitude of the coma aberration according to the coma aberration pattern to perform the first pattern control for making the shape of the condensing region into the inclined shape.
    The laser processing apparatus according to claim 13.
  15.  前記変調パターンは、前記レーザ光の球面収差を補正するための球面収差補正パターンを含み、
     前記第2形成処理では、前記制御部は、前記集光レンズの入射瞳面の中心に対して前記球面収差補正パターンの中心を前記Y方向にオフセットさせることにより、前記集光領域の形状を前記傾斜形状とするための第2パターン制御を行う、
     請求項13又は14に記載のレーザ加工装置。
    The modulation pattern includes a spherical aberration correction pattern for correcting the spherical aberration of the laser beam.
    In the second forming process, the control unit offsets the center of the spherical aberration correction pattern in the Y direction with respect to the center of the entrance pupil surface of the focusing lens, thereby changing the shape of the focusing region. Perform the second pattern control to make the shape inclined,
    The laser processing apparatus according to claim 13 or 14.
  16.  前記第2形成処理では、前記制御部は、前記加工進行方向に沿った軸線に対して非対称な前記変調パターンを前記空間光変調器に表示させることにより、前記集光領域の形状を前記傾斜形状とするための第3パターン制御を行う、
     請求項13~15のいずれか一項に記載のレーザ加工装置。
    In the second forming process, the control unit causes the spatial light modulator to display the modulation pattern asymmetrical with respect to the axis along the processing progress direction, thereby changing the shape of the light collecting region into the inclined shape. 3rd pattern control for
    The laser processing apparatus according to any one of claims 13 to 15.
  17.  前記変調パターンは、前記Y方向及び前記Z方向に交差するX方向と前記Y方向とを含むXY面内における前記集光領域の形状を、前記X方向を長手とする楕円形状とするための楕円パターンを含み、
     前記第2形成処理では、前記制御部は、前記楕円パターンの強度が、前記X方向に沿った軸線に対して非対称となるように、前記変調パターンを前記空間光変調器に表示させることによって、前記集光領域の形状を前記傾斜形状とするための第4パターン制御を行う、
     請求項13~16のいずれか一項に記載のレーザ加工装置。
    The modulation pattern is an ellipse for making the shape of the condensing region in the XY plane including the X direction intersecting the Y direction and the Z direction and the Y direction into an elliptical shape having the X direction as a length. Including patterns,
    In the second forming process, the control unit causes the spatial light modulator to display the modulation pattern so that the intensity of the ellipse pattern is asymmetric with respect to the axis along the X direction. A fourth pattern control is performed to make the shape of the light collecting region the inclined shape.
    The laser processing apparatus according to any one of claims 13 to 16.
  18.  前記第2形成処理では、前記制御部は、前記YZ面内で前記シフトの方向に沿って配列された複数の前記レーザ光の集光点を形成するための前記変調パターンを前記空間光変調器に表示させることにより、複数の前記集光点を含む前記集光領域の形状を前記傾斜形状とするための第5パターン制御を行う、
     請求項13~17のいずれか一項に記載のレーザ加工装置。
    In the second formation process, the control unit uses the spatial light modulator to form the modulation pattern for forming a plurality of focusing points of the laser light arranged along the shift direction in the YZ plane. The fifth pattern control for changing the shape of the light collecting region including the plurality of light collecting points into the inclined shape is performed.
    The laser processing apparatus according to any one of claims 13 to 17.
  19.  結晶構造を有する対象物にレーザ光を照射して改質領域を形成するためのレーザ加工方法であって、
     前記対象物に設定されたラインのうちの第1領域に沿って前記レーザ光の集光領域を相対移動させることにより、前記第1領域に沿って前記対象物に前記改質領域を形成すると共に、当該改質領域から前記対象物の前記レーザ光の入射面と反対側の反対面に向けて前記入射面に交差するZ方向に対して斜めに延びる斜め亀裂を形成する第1加工工程と、
     前記ラインのうちの第2領域に沿って前記集光領域を相対移動させることにより、前記第2領域に沿って前記対象物に前記改質領域を形成すると共に、当該改質領域から前記反対面に向けて延びる前記斜め亀裂を形成する第2加工工程と、
     を備え、
     前記対象物には、前記Z方向からみて、円弧状の前記第1領域と円弧状の前記第2領域とを含む円環状の前記ラインが設定されており、
     前記第1加工工程及び前記第2加工工程では、前記集光領域の移動方向である加工進行方の順逆を前記第1加工工程と前記第2加工工程とで切り替える、
     レーザ加工方法。
    It is a laser processing method for irradiating an object having a crystal structure with laser light to form a modified region.
    By relatively moving the condensing region of the laser beam along the first region of the lines set on the object, the modified region is formed on the object along the first region. The first processing step of forming an oblique crack extending diagonally from the modified region toward the opposite surface of the object to the incident surface of the laser beam in the Z direction intersecting the incident surface.
    By relatively moving the condensing region along the second region of the line, the modified region is formed on the object along the second region, and the modified region is opposed to the opposite surface. The second processing step of forming the diagonal crack extending toward
    Equipped with
    The object is set with the annular line including the arc-shaped first region and the arc-shaped second region when viewed from the Z direction.
    In the first processing step and the second processing step, the order of the processing progress, which is the moving direction of the light collecting region, is switched between the first processing step and the second processing step.
    Laser processing method.
PCT/JP2021/013399 2020-07-15 2021-03-29 Laser processing device and laser processing method WO2022014105A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2022536134A JPWO2022014105A1 (en) 2020-07-15 2021-03-29
KR1020237000694A KR20230037547A (en) 2020-07-15 2021-03-29 Laser processing device and laser processing method
CN202180061227.5A CN116075389A (en) 2020-07-15 2021-03-29 Laser processing device and laser processing method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2020-121652 2020-07-15
JP2020121652 2020-07-15
JP2020-217758 2020-12-25
JP2020217758 2020-12-25

Publications (1)

Publication Number Publication Date
WO2022014105A1 true WO2022014105A1 (en) 2022-01-20

Family

ID=79554709

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/013399 WO2022014105A1 (en) 2020-07-15 2021-03-29 Laser processing device and laser processing method

Country Status (5)

Country Link
JP (1) JPWO2022014105A1 (en)
KR (1) KR20230037547A (en)
CN (1) CN116075389A (en)
TW (1) TW202204077A (en)
WO (1) WO2022014105A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012014720A1 (en) * 2010-07-26 2012-02-02 浜松ホトニクス株式会社 Laser processing method
JP2013089714A (en) * 2011-10-17 2013-05-13 Disco Abrasive Syst Ltd Chip formation method
JP2014017433A (en) * 2012-07-11 2014-01-30 Disco Abrasive Syst Ltd Optical device and processing method of the same
JP2014138956A (en) * 2009-08-03 2014-07-31 Hamamatsu Photonics Kk Laser beam machining method and method for manufacturing semiconductor device
JP2018535912A (en) * 2015-10-02 2018-12-06 ユーエービー アルテクナ アールアンドディー Laser processing method and apparatus for transparent material
WO2020090905A1 (en) * 2018-10-30 2020-05-07 浜松ホトニクス株式会社 Laser processing device and laser processing method
JP2020069531A (en) * 2018-10-30 2020-05-07 浜松ホトニクス株式会社 Laser processing device and laser processing method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5456510B2 (en) 2010-02-23 2014-04-02 株式会社ディスコ Laser processing equipment
KR102248637B1 (en) 2018-12-07 2021-05-06 임유택 Width adjustment for the cultivator

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014138956A (en) * 2009-08-03 2014-07-31 Hamamatsu Photonics Kk Laser beam machining method and method for manufacturing semiconductor device
WO2012014720A1 (en) * 2010-07-26 2012-02-02 浜松ホトニクス株式会社 Laser processing method
JP2013089714A (en) * 2011-10-17 2013-05-13 Disco Abrasive Syst Ltd Chip formation method
JP2014017433A (en) * 2012-07-11 2014-01-30 Disco Abrasive Syst Ltd Optical device and processing method of the same
JP2018535912A (en) * 2015-10-02 2018-12-06 ユーエービー アルテクナ アールアンドディー Laser processing method and apparatus for transparent material
WO2020090905A1 (en) * 2018-10-30 2020-05-07 浜松ホトニクス株式会社 Laser processing device and laser processing method
JP2020069531A (en) * 2018-10-30 2020-05-07 浜松ホトニクス株式会社 Laser processing device and laser processing method

Also Published As

Publication number Publication date
CN116075389A (en) 2023-05-05
TW202204077A (en) 2022-02-01
KR20230037547A (en) 2023-03-16
JPWO2022014105A1 (en) 2022-01-20

Similar Documents

Publication Publication Date Title
JP5905274B2 (en) Manufacturing method of semiconductor device
WO2022014105A1 (en) Laser processing device and laser processing method
WO2022014106A1 (en) Laser processing device and laser processing method
KR20220103771A (en) laser processing equipment
WO2022014346A1 (en) Laser machining method and method for manufacturing semiconductor member
WO2021199874A1 (en) Laser processing apparatus, laser processing method, and wafer
WO2022014347A1 (en) Semiconductor member manufacturing method
WO2022014104A1 (en) Laser machining apparatus, laser machining method, and method for manufacturing semiconductor member
WO2024057780A1 (en) Laser processing device, and laser processing method
WO2023277006A1 (en) Laser processing device and laser processing method
TW202322951A (en) Laser processing device and laser processing method capable of suppressing deterioration in quality of a trimming processing of a bonded wafer
JP2023069018A (en) Laser processing apparatus and laser processing method
WO2022014619A1 (en) Laser machining apparatus and laser machining method
US20230057674A1 (en) Laser processing device and laser processing method
JP2022018511A (en) Laser processing apparatus and laser processing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21842352

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022536134

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21842352

Country of ref document: EP

Kind code of ref document: A1