WO2024057780A1 - Laser processing device, and laser processing method - Google Patents

Laser processing device, and laser processing method Download PDF

Info

Publication number
WO2024057780A1
WO2024057780A1 PCT/JP2023/028946 JP2023028946W WO2024057780A1 WO 2024057780 A1 WO2024057780 A1 WO 2024057780A1 JP 2023028946 W JP2023028946 W JP 2023028946W WO 2024057780 A1 WO2024057780 A1 WO 2024057780A1
Authority
WO
WIPO (PCT)
Prior art keywords
line
laser
laser processing
extension part
spatial light
Prior art date
Application number
PCT/JP2023/028946
Other languages
French (fr)
Japanese (ja)
Inventor
剛志 坂本
孝文 荻原
雅輝 小柳津
Original Assignee
浜松ホトニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浜松ホトニクス株式会社 filed Critical 浜松ホトニクス株式会社
Publication of WO2024057780A1 publication Critical patent/WO2024057780A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/073Shaping the laser spot
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/50Working by transmitting the laser beam through or within the workpiece
    • B23K26/53Working by transmitting the laser beam through or within the workpiece for modifying or reforming the material inside the workpiece, e.g. for producing break initiation cracks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26

Definitions

  • the present disclosure relates to a laser processing device and a laser processing method.
  • a support part that supports a target object, a light source that emits laser light, a spatial light modulator that modulates the laser light emitted from the light source, and a laser light modulated by the spatial light modulator that focuses the laser light on the target object.
  • a laser processing apparatus includes a condensing section and an image transfer section that transfers an image of a laser beam in a spatial light modulator onto an entrance pupil plane of the condensing section (see, for example, Patent Document 1).
  • a laser processing device such as that described above can form modified regions and cracks in a target object. Formation of such modified regions and cracks can be applied to various processes, such as dicing to divide an object into a plurality of chips, trimming to remove unnecessary parts from the object, and the like.
  • An object of the present disclosure is to provide a laser processing device and a laser processing method that can form appropriate modified regions and cracks in a target object depending on the processing.
  • a laser processing apparatus includes [1] "a support section that supports a target object, a light source that emits laser light, and a modulation pattern that displays the laser beam emitted from the light source.” a spatial light modulator that modulates the laser beam, a focusing section that focuses the laser beam modulated by the spatial light modulator on the object, and a driving section that drives at least one of the support section and the focusing section. , a control unit that controls at least the spatial light modulator and the drive unit, and the control unit is configured such that the beam shape of the laser beam at the focused spot of the laser beam is radial from the center and the center.
  • a modulation pattern including a trefoil aberration pattern is formed in the space so that the beam shape includes a first extension part, a second extension part, and a third extension part extending in the space and has the highest intensity in the center part.
  • the focused spot moves relatively along a line set on the object while the modulation pattern including the trefoil aberration pattern is displayed on the spatial light modulator.
  • a laser processing apparatus in which at least one of the supporting section and the light condensing section is driven by the driving section.
  • the beam shape of the laser beam at the focused spot is formed into a central portion, a first extending portion, a second extending portion, and a third extending portion extending radially from the central portion.
  • the focused spot is relatively moved along a line set on the object, with the focus having the highest intensity at the center.
  • the state of at least one of the modified region and the cracks formed in the object can be adjusted. Therefore, according to the laser processing apparatus described in [1] above, appropriate modified regions and cracks can be formed in the object according to the processing.
  • a laser processing apparatus includes [2] "forming a modified region in the target object along the line, and from the modified region in the incident direction of the laser beam and in the extending direction of the line.
  • [2] "forming a crack in the object along a first surface parallel to both directions of Displaying the modulation pattern including the trefoil aberration pattern on the spatial light modulator such that the second extension part is located at and the third extension part is located on the other side with respect to the line.
  • the laser processing apparatus described in [1] above.
  • the width of the crack in the laser beam incident direction can be made smaller than, for example, when the modulation pattern does not include a trefoil aberration pattern.
  • the laser processing device may be the laser processing device described in [2] above, [3] "wherein the control unit causes the spatial light modulator to display the modulation pattern including the trefoil aberration pattern such that the first extension portion is located in front of the direction in which the focused spot moves relatively along the line, and the second extension portion and the third extension portion are located in the rear of the direction.”
  • the control unit causes the spatial light modulator to display the modulation pattern including the trefoil aberration pattern such that the first extension portion is located in front of the direction in which the focused spot moves relatively along the line, and the second extension portion and the third extension portion are located in the rear of the direction.
  • the laser processing device includes [4] “In the case where the focused spot is relatively moved along each of a first line and a second line set on the object as the line, When the direction in which the focused spot is relatively moved along the first line is different from the direction in which the focused spot is relatively moved along the second line, the control unit The first extension part is located on the front side in the direction in which the focused spot moves relatively along each of the first line and the second line, and the second extension part and the The laser processing apparatus according to [3] above may change the direction of the modulation pattern including the trefoil aberration pattern so that the third extension portion is located.
  • the direction in which the focused spot is relatively moved along the first line and the direction in which the focused spot is relatively moved along the second line are different. Even when different, the first extension part is located on the front side in the direction in which the focused spot moves relatively along each of the first line and the second line, and the second extension part is located on the rear side in the direction. The state in which the third extension portion is located can be easily and reliably realized.
  • the laser processing device provides [5] “When the control unit sets a width of at least one of the modified region and the crack in the incident direction of the laser beam as a first width, If the modulation pattern including the trefoil aberration pattern having a first trefoil aberration intensity is displayed on the spatial light modulator, and the width of at least one of the patterns is a second width smaller than the first width, The laser processing device according to any one of [2] to [4] above, wherein the modulation pattern including the trefoil aberration pattern having a second trefoil aberration intensity stronger than the trefoil aberration intensity is displayed on the spatial light modulator. ”. According to the laser processing apparatus described in [5], the width of at least one of the modified region and the crack in the incident direction of the laser beam can be set to an appropriate width depending on the processing.
  • the laser processing apparatus includes [6] "forming a modified region in the object along the line, and from the modified region in the incident direction of the laser beam and in the extending direction of the line.
  • a crack is formed in the object along a second surface that is inclined with respect to a first surface that is parallel to both directions, a region on the opposite side to the incident side of the laser beam is perpendicular to the first surface.
  • the control section is configured such that the first extending section is located on the one side with respect to the line and the second surface is inclined with respect to the line.
  • the modulation pattern including the trefoil aberration pattern is displayed on the spatial light modulator so that the second extension part and the third extension part are located on the other side. It may also be a "laser processing device". According to the laser processing apparatus described in [6], the crack extending from the modified region can be inclined to a desired side.
  • the laser processing device includes [7] “In the case where the focused spot is relatively moved along each of a first line and a second line set on the object as the line, When the direction in which the focused spot is relatively moved along the first line is different from the direction in which the focused spot is relatively moved along the second line, the control unit The first extending portion is located on the one side with respect to each of the first line and the second line, and the second extending portion is located on the other side with respect to each of the first line and the second line.
  • the laser processing apparatus may change the direction of the modulation pattern including the trefoil aberration pattern so that the trefoil aberration pattern and the third extension portion are located.
  • the direction in which the focused spot is relatively moved along the first line and the direction in which the focused spot is relatively moved along the second line are different. Even in different cases, the first extension part is located on one side with respect to each of the first line and the second line, and the second extension part is located on the other side with respect to each of the first line and the second line. It is possible to easily and reliably realize the state in which the third extension part and the third extension part are located.
  • the laser processing device includes [8] “When the angle between the first surface and the second surface is the first angle, the control unit controls the first trefoil aberration intensity.
  • the modulation pattern including the trefoil aberration pattern is displayed on the spatial light modulator and the angle is a second angle larger than the first angle, a second trefoil aberration intensity stronger than the first trefoil aberration intensity is used.
  • the laser processing apparatus may display the modulation pattern including the trefoil aberration pattern of aberration intensity on the spatial light modulator. According to the laser processing apparatus described in [8], the angle at which the crack extending from the modified region is inclined can be set to an appropriate angle depending on the processing.
  • a laser processing method includes [9] "a supporting part that supports a target object, a light source that emits a laser beam, and a modulation pattern that is displayed, so that the laser beam that is emitted from the light source is a spatial light modulator that modulates the laser beam, a focusing section that focuses the laser beam modulated by the spatial light modulator on the object, and a driving section that drives at least one of the support section and the focusing section.
  • a laser processing method carried out in a laser processing apparatus comprising: a beam shape of the laser light at a focused spot of the laser light includes a center portion and a first extension portion extending radially from the center portion; , displaying a modulation pattern including a trefoil aberration pattern on the spatial light modulator so as to have a beam shape that includes a second extension part and a third extension part and has the highest intensity at the center; The supporting portion and a step of causing the driving section to drive at least one of the light condensing sections.
  • the beam shape of the laser beam at the condensed spot includes a central portion, a first extending portion, a second extending portion, and a third extending portion extending radially from the central portion.
  • the focused spot is relatively moved along a line set on the object, with the focus having the highest intensity at the center.
  • the state of at least one of the modified region and the cracks formed in the object can be adjusted. Therefore, according to the laser processing method described in [9] above, appropriate modified regions and cracks can be formed in the object depending on the processing.
  • FIG. 1 is a diagram showing the configuration of a laser processing apparatus according to an embodiment.
  • FIG. 2 is a diagram showing the configuration of the irradiation section shown in FIG. 1.
  • FIG. 3 is a diagram showing the 4f lens unit shown in FIG. 2.
  • FIG. 4 is a diagram showing the spatial light modulator shown in FIG. 2.
  • FIG. 5 is a diagram showing an example of a trefoil aberration pattern.
  • FIG. 6 is a diagram showing an example of a focused state of laser light and an example of a beam shape of the laser light at the focused spot.
  • FIG. 7 is a diagram showing an example of a beam shape of a laser beam for each trefoil aberration intensity.
  • FIG. 1 is a diagram showing the configuration of a laser processing apparatus according to an embodiment.
  • FIG. 2 is a diagram showing the configuration of the irradiation section shown in FIG. 1.
  • FIG. 3 is a diagram showing the 4f lens unit shown in FIG. 2.
  • FIG. 4 is
  • FIG. 8 is a diagram showing an example of a beam shape of laser light modulated by a trefoil aberration pattern.
  • FIG. 9 is a diagram showing an example of a beam shape of a laser beam modulated by a trefoil aberration pattern and an astigmatism pattern.
  • FIG. 10 is a diagram showing an example of a beam shape of laser light modulated by a trefoil aberration pattern, an astigmatism pattern, and a spherical aberration pattern.
  • FIG. 11 is a diagram showing an example of a beam shape of laser light modulated by a trefoil aberration pattern.
  • FIG. 12 is a diagram illustrating an example of a focused state of laser light and an example of damage caused by light leakage of laser light.
  • FIG. 13 is a diagram showing a first example of a cut surface of a target object for each laser processing condition.
  • FIG. 14 is a diagram showing a first example of a cut surface of a target object for each laser processing condition.
  • FIG. 15 is a diagram showing the relationship between the trefoil aberration intensity and the respective widths of the modified region and crack.
  • FIG. 16 is a diagram showing a second example of the cut surface of the object for each laser processing condition.
  • FIG. 17 is a diagram showing a second example of the cut surface of the object for each laser processing condition.
  • FIG. 18 is a diagram showing the relationship between the trefoil aberration intensity and the angle at which the crack is inclined.
  • FIG. 19 is a diagram showing the relationship between the trefoil aberration intensity and the angle at which the crack is inclined.
  • FIG. 20 is a diagram showing an object to which the first example of the laser processing method is applied.
  • FIG. 21 is a diagram showing one step of the first example of the laser processing method.
  • FIG. 22 is a diagram illustrating an example of a cut surface of an object subjected to light damage suppression processing.
  • FIG. 23 is a diagram showing an object to which the second example of the laser processing method is applied.
  • FIG. 24 is a diagram showing one step of the second example of the laser processing method.
  • the laser processing device 1 includes a support section 2, an irradiation section 3, drive sections 4 and 5, and a control section 6.
  • the laser processing apparatus 1 forms a modified region 12 on the object 11 by irradiating the object 11 with a laser beam L.
  • the support section 2 supports the object 11 by holding a film attached to the object 11, for example.
  • the support part 2 is movable in each of the X direction and the Y direction, and is rotatable about an axis parallel to the Z direction as a rotation axis.
  • the X direction and the Y direction are a first horizontal direction and a second horizontal direction that are perpendicular to each other, and the Z direction is a vertical direction.
  • the irradiation unit 3 focuses a laser beam L that is transparent to the object 11 and irradiates the object 11 with the laser beam L.
  • the irradiation unit 3 is movable in the Z direction.
  • the laser beam L is particularly absorbed in the part corresponding to the focused spot C of the laser beam L, and the laser beam L is absorbed inside the object 11.
  • a modified region 12 is formed.
  • the focused spot C is also referred to as a focused area or a focused point.
  • the modified region 12 is a region whose density, refractive index, mechanical strength, and other physical properties are different from those of the surrounding unmodified region.
  • Examples of the modified region 12 include a melt-treated region, a crack region, a dielectric breakdown region, and a refractive index change region. From the modified region 12, cracks are formed on the incident side of the laser beam L and on the opposite side. Such modified regions 12 and cracks are used to cut the object 11.
  • a plurality of modified spots 12s are lined up in a line along the line A. is formed.
  • One modification spot 12s is formed by irradiation with one pulse of laser light L.
  • One row of modified regions 12 is a collection of a plurality of modified spots 12s arranged in one row. Adjacent modification spots 12s may be connected to each other or separated from each other depending on the relative moving speed of the focused spot C with respect to the object 11 and the repetition frequency of the laser beam L.
  • the drive section 4 supports the support section 2 and drives the support section 2.
  • the drive unit 4 moves the support unit 2 in each of the X direction and the Y direction, and rotates the support unit 2 using an axis parallel to the Z direction as the rotation axis.
  • the drive section 5 supports the irradiation section 3 and drives the irradiation section 3.
  • the drive section 5 moves the irradiation section 3 in the Z direction.
  • the drive unit 4 rotates the support unit 2 so that the line A is parallel to the X direction, and the drive unit 4 rotates the support unit so that the focused spot C is located on the line A.
  • the drive unit 5 moves the irradiation unit 3 in the Z direction so that the focused spot C is located inside the object 11, and further, the focused spot C is moved relative to the target object 11 along the line A.
  • the drive section 4 moves the support section 2 so as to move the support section 2 as desired.
  • the control unit 6 controls the support unit 2, the irradiation unit 3, and the drive units 4 and 5.
  • the control unit 6 has a processing unit, a memory unit, and an input reception unit (not shown).
  • the processing unit is configured as a computer device including a processor, memory, storage, and a communication device.
  • the processor executes software (programs) loaded into the memory, etc., and controls the reading and writing of data in the memory and storage, as well as communication by the communication device.
  • the memory unit is, for example, a hard disk, and stores various types of data.
  • the input reception unit is an interface unit that displays various types of information and receives input of various types of information from the user.
  • the input reception unit constitutes, for example, a GUI (Graphical User Interface).
  • the irradiation section 3 includes a light source 31, a spatial light modulator 7, a condensing section 33, and a 4f lens unit 34.
  • the light source 31 emits laser light L using, for example, a pulse oscillation method.
  • the spatial light modulator 7 modulates the laser beam L emitted from the light source 31 by displaying a modulation pattern.
  • the condensing unit 33 includes at least one lens, and condenses the laser beam L modulated by the spatial light modulator 7 onto the object 11 .
  • the 4f lens unit 34 transfers the image of the laser beam L on the modulation surface of the spatial light modulator 7 to the entrance pupil surface of the condenser 33 .
  • the light source 31 may be provided outside the irradiation section 3 and the laser light L emitted from the light source 31 may be guided to the irradiation section 3.
  • the irradiation unit 3 may include other optical systems.
  • the irradiation unit 3 may include an optical system (for example, an attenuator, a beam expander, etc.) arranged on the optical path between the light source 31 and the spatial light modulator 7.
  • the 4f lens unit 34 has a pair of lenses 34A and 34B.
  • the pair of lenses 34A and 34B are arranged on the optical path of the laser beam L traveling from the spatial light modulator 7 to the condensing section 33.
  • the pair of lenses 34A and 34B constitute a double-sided telecentric optical system in which the modulation surface 7a of the spatial light modulator 7 and the entrance pupil surface 33a of the condenser 33 are in an imaging relationship.
  • the image of the laser beam L on the modulation surface 7a of the spatial light modulator 7 (the image of the laser beam L modulated in the spatial light modulator 7) is transferred (formed) onto the entrance pupil plane 33a of the condenser 33. image) to be done.
  • f1 and f2 indicate the focal lengths of the lenses 34A and 34B, respectively, and Fs indicates the Fourier plane.
  • the spatial light modulator 7 is a reflective liquid crystal (LCOS) spatial light modulator (SLM).
  • LCOS reflective liquid crystal
  • SLM spatial light modulator
  • a drive circuit layer 72, a pixel electrode layer 73, a reflective film 74, an alignment film 75, a liquid crystal layer 76, an alignment film 77, a transparent conductive film 78, and a transparent substrate 79 are arranged on a semiconductor substrate 71 in this order. It is constructed by laminating layers.
  • the semiconductor substrate 71 is, for example, a silicon substrate.
  • the drive circuit layer 72 constitutes an active matrix circuit on the semiconductor substrate 71.
  • the pixel electrode layer 73 includes a plurality of pixel electrodes 73a arranged in a matrix along the surface of the semiconductor substrate 71.
  • Each pixel electrode 73a is made of, for example, a metal material such as aluminum. A voltage is applied to each pixel electrode 73a by the drive circuit layer 72.
  • the reflective film 74 is, for example, a dielectric multilayer film.
  • the alignment film 75 is provided on the surface of the liquid crystal layer 76 on the reflective film 74 side, and the alignment film 77 is provided on the surface of the liquid crystal layer 76 on the opposite side to the reflective film 74.
  • Each of the alignment films 75 and 77 is made of, for example, a polymeric material such as polyimide, and the contact surface of each of the alignment films 75 and 77 with the liquid crystal layer 76 is subjected to, for example, a rubbing treatment.
  • the alignment films 75 and 77 align liquid crystal molecules 76a included in the liquid crystal layer 76 in a certain direction.
  • the transparent conductive film 78 is provided on the surface of the transparent substrate 79 on the alignment film 77 side, and faces the pixel electrode layer 73 with the liquid crystal layer 76 and the like interposed therebetween.
  • the transparent substrate 79 is, for example, a glass substrate.
  • the transparent conductive film 78 is made of a light-transmissive and conductive material such as ITO, for example.
  • the transparent substrate 79 and the transparent conductive film 78 transmit the laser beam L.
  • the spatial light modulator 7 configured as described above, when a signal indicating a modulation pattern is input from the control unit 6 to the drive circuit layer 72, a voltage corresponding to the signal is applied to each pixel electrode 73a, and each An electric field is formed between the pixel electrode 73a and the transparent conductive film 78.
  • the electric field is formed, in the liquid crystal layer 76, the alignment direction of the liquid crystal molecules 76a changes for each region corresponding to each pixel electrode 73a, and the refractive index changes for each region corresponding to each pixel electrode 73a. This state is the state in which the spatial light modulator 7 displays a modulation pattern.
  • the laser beam L enters the liquid crystal layer 76 from the outside via the transparent substrate 79 and the transparent conductive film 78, is reflected by the reflective film 74, and the laser beam L enters the liquid crystal layer 76 from the outside through the transparent substrate 79 and the transparent conductive film 78.
  • the intensity, amplitude, phase, polarization, etc. of the laser beam L are modulated according to the modulation pattern displayed on the liquid crystal layer 76.
  • the modulation surface 7a shown in FIG. 3 corresponds to the liquid crystal layer 76.
  • the control unit 6 can cause the spatial light modulator 7 to display a modulation pattern including a trefoil aberration pattern.
  • FIG. 5 is a diagram showing an example of a trefoil aberration pattern.
  • Trefoil aberration is one of Zernike's third-order aberrations. Note that spherical aberration and astigmatism are included in Zernike's second-order aberration, and coma aberration and trefoil aberration are included in Zernike's third-order aberration.
  • the laser beam L modulated by the spatial light modulator 7 displaying the trefoil aberration pattern is focused by the condenser 33, the laser beam L becomes a condensed spot, as shown in FIG. 6(a). It is most narrowed down in C.
  • the beam shape 9 of the laser beam L at the condensed spot C i.e., a surface that is perpendicular to the optical axis of the laser beam L (dotted chain line shown in FIG. 6(a)) and includes the condensed spot C.
  • FIG. 92 and the third extending portion 93 and has the highest strength at the center portion 90.
  • each of the first extending portion 91, the second extending portion 92, and the third extending portion 93 becomes smaller as the distance from the center portion 90 increases.
  • the strength of each of the existing portion 92 and the third extending portion 93 decreases as the distance from the center portion 90 increases.
  • the beam shape 9 of the laser beam L is like a triangle with each side curved inward.
  • the modulation pattern including a trefoil aberration pattern includes not only a modulation pattern including only a trefoil aberration pattern, but also a modulation pattern including a trefoil aberration pattern and other patterns. Even when the modulation pattern includes a pattern other than the trefoil aberration pattern, when the laser beam L modulated by the spatial light modulator 7 displaying the modulation pattern including the trefoil aberration pattern is condensed by the condenser 33. , the beam shape 9 of the laser beam L at the focused spot C includes a center portion 90 and a first extending portion 91, a second extending portion 92, and a third extending portion 93 extending radially from the center portion 90.
  • the beam shape has the highest intensity at the center portion 90.
  • the beam shape 9 of the laser light L at each focused spot C is determined by the center portion 90 and the first extending portions 91, second extending portions 92, and third extending portions extending radially from the center portion 90.
  • the beam shape includes the existing portion 93 and has the highest strength at the center portion 90.
  • FIG. 7 is a diagram showing an example of the beam shape of the laser light L for each trefoil aberration intensity.
  • the absolute value of the trefoil aberration strength indicates the strength of the trefoil aberration, and the larger the absolute value of the trefoil aberration strength, the stronger the trefoil aberration (therefore, "the trefoil aberration strength is strong" means that the absolute value of the trefoil aberration strength is large) (meaning).
  • the positive or negative sign of the trefoil aberration intensity indicates the direction of the trefoil aberration, and the direction of the trefoil aberration differs by 180 degrees between the trefoil aberration having a positive sign and the trefoil aberration having a negative sign.
  • FIG. 7 shows a camera image taken by a camera as the beam shape of the laser light L.
  • the beam shape 9 of the laser beam L at the focused spot C is The beam shape includes the extending portion 91, the second extending portion 92, and the third extending portion 93 and has the highest strength at the center portion 90 (see (b) of FIG. 6).
  • the beam shape of the laser light L at the -20 ⁇ m position and the beam shape of the laser light L at the +20 ⁇ m position also have the same shape and direction as the beam shape 9 of the laser light L at the focused spot C. becomes.
  • the beam shape 9 of the laser light L at the focused spot C is oriented to the opposite side from the beam shape of the laser light L at the -20 ⁇ m position and the beam shape of the laser light L at the +20 ⁇ m position.
  • the "-20 ⁇ m position” is a position 20 ⁇ m away from the condensing spot C toward the condensing unit 33
  • the "+20 ⁇ m position” is 20 ⁇ m away from the condensing spot C on the side opposite to the condensing unit 33. It is a remote location.
  • FIG. 8 is a diagram showing an example of the beam shape of the laser light L modulated by the trefoil aberration pattern.
  • FIG. 9 is a diagram showing an example of a beam shape of laser light L modulated by a trefoil aberration pattern and an astigmatism pattern (that is, a modulation pattern in which they are superimposed).
  • FIG. 10 is a diagram showing an example of a beam shape of laser light L modulated by a trefoil aberration pattern, an astigmatism pattern, and a spherical aberration pattern (that is, a modulation pattern in which they are superimposed).
  • 8, 9, and 10 show a simulation image obtained by simulation and a camera image captured by a camera as the beam shape of the laser light L.
  • the trefoil aberration intensity of the trefoil aberration pattern is -0.6.
  • the beam shape 9 of the laser beam L at the focused spot C is The beam shape includes the first extending portion 91, the second extending portion 92, and the third extending portion 93 and has the highest strength at the center portion 90 (see (b) of FIG. 6).
  • the beam shape of the laser light L at the -20 ⁇ m position and the beam shape of the laser light L at the +20 ⁇ m position also have the same shape and direction as the beam shape 9 of the laser light L at the focused spot C. becomes.
  • the beam shape 9 of the laser light L at the focused spot C is oriented to the opposite side from the beam shape of the laser light L at the -20 ⁇ m position and the beam shape of the laser light L at the +20 ⁇ m position.
  • you include not only the high-intensity parts but also the low-intensity parts you can see that they are facing the same side as the beam shape.
  • FIG. 11 is a diagram showing an example of the beam shape of the laser light L modulated by the trefoil aberration pattern.
  • the trefoil aberration intensity of the trefoil aberration pattern is -0.5.
  • the beam shape of the laser light L at the -100 ⁇ m position and the beam shape of the laser light L at the +100 ⁇ m position are on the opposite side to the beam shape 9 of the laser light L at the focused spot C.
  • the beam shape is oriented.
  • the "-100 ⁇ m position” is a position 100 ⁇ m away from the condensing spot C toward the condensing part 33, and the "+100 ⁇ m position” is 100 ⁇ m away from the condensing spot C on the side opposite to the condensing part 33. It is a remote location.
  • the beam shape of the laser light L at the -20 ⁇ m position and the beam shape of the laser light L at the +20 ⁇ m position are similar to the beam shape 9 of the laser light L at the focused spot C. and a beam shape having a direction (see FIGS. 7, 8, 9, and 10).
  • the beam shape of the laser light L at the ⁇ 20 ⁇ m position clearly shows the beam shape 9 of the laser light L at the focused spot C compared to the beam shape of the laser light L at the +20 ⁇ m position.
  • a metal film 8 is formed on the second surface 11b of the object 11, which is a silicon wafer, and the first surface 11a of the object 11 is used as the incident surface of the laser beam L.
  • the laser beam L is irradiated onto the object 11 by aligning the focused spot C with a position 20 to 30 ⁇ m from the second surface 11b and inside the object 11, the laser beam L is modulated by a modulation pattern including a trefoil aberration pattern.
  • damage having the same shape and direction as the beam shape 9 of the laser beam L at the focused spot C occurs on the metal, as shown in FIG.
  • the film 8 is formed. Therefore, in order to estimate the beam shape 9 of the laser light L at the focused spot C when the laser light L modulated by the modulation pattern including the trefoil aberration pattern is focused, it is necessary to 8 and observe the damage.
  • 13 and 14 are diagrams showing first examples of cut surfaces of the object 11 for each laser processing condition.
  • 13 and 14 "Two rows of modified regions aligned in the thickness direction of the silicon wafer are formed inside the object 11, which is a silicon wafer, along line A, and then the object 11 is A cut surface of the object 11 when it is cut along line A by expanding is shown.
  • condition A is that the condensed spot C is relatively moved in the "direction indicated by the arrow on line A" (rightward in FIG. 13, leftward in FIG. 14);
  • the beam shape 9 of the laser beam L at the focused spot C is such that (1) the center portion 90 and the first extension portion 91 are located on the line A, and the first side with respect to the line A (FIG. 13
  • the second extending portion 92 is located on the upper side in FIG. 14, and the lower side in FIG. and (2) the first extension part 91 is located on the front side in the direction in which the focused spot C moves relatively along the line A, and the second extension part 91 is located on the rear side in the direction.
  • the laser processing conditions are such that the portion 92 and the third extension portion 93 are located.
  • Extension B is such that the focused spot C is relatively moved in the "direction indicated by the arrow on line A" (leftward in FIG. 13, rightward in FIG. 14), and at that time, the focused spot
  • the beam shape 9 of the laser beam L at C is as follows: 13, the second extending portion 92 is located on the lower side) and the third extending portion 93 is located on the first side (lower side in FIG. 13, upper side in FIG. and (3) "the first extension part 91 is located on the rear side in the direction in which the focused spot C moves relatively along the line A, and the second extension part 92 and the third extension part are located on the front side in the direction These are the laser processing conditions in which the extension portion 93 is positioned.
  • “Standard” in the "Condition A” column is a laser processing condition that differs from “Condition A” only in that the modulation pattern does not include a trefoil aberration pattern.
  • “Standard” in the “Condition B” stage is a laser processing condition that differs from “Condition B” only in that the modulation pattern does not include a trefoil aberration pattern.
  • a modified region 12 is formed in the object 11 along a line A, and the incident direction (Z direction) of the laser beam L from the modified region 12 and the extending direction of the line A are
  • the incident direction (Z direction) of the laser beam L from the modified region 12 and the extending direction of the line A are
  • a first The extension part 91 is located
  • the second extension part 92 is located on one side with respect to line A
  • the third extension part 93 is located on the other side with respect to line A (FIG. 13).
  • a modulation pattern including a trefoil aberration pattern may be displayed on the spatial light modulator 7.
  • the width of the crack in the incident direction of the laser beam L is small because the black streaks extending in the left and right direction are modified in two rows. This can be seen from the fact that it is formed between the dark areas (black band-shaped areas extending in the left-right direction).
  • the reason for this is that when cutting the object 11 by expanding is performed in a state where the cracks extending from each modified region are not connected between the two rows of modified regions when two rows of modified regions are formed. This is because black streaks extending in the left-right direction may be formed.
  • the laser beam L when forming the modified region 12 in the object 11 along the line A and also forming the crack 13 in the object 11 along the first surface P1, the laser beam L When reducing not only the width of the crack 13 in the incident direction of the laser beam L but also the width of the modified region 12 in the incident direction of the laser beam L and suppressing the meandering of the crack 13 with respect to the line A,
  • the first extension part 91 is located on the front side in the direction in which the focused spot C moves relatively along the line, and the second extension part 92 and the third extension part 93 are located on the rear side in the direction.
  • a modulation pattern including a trefoil aberration pattern may be displayed on the spatial light modulator 7.
  • twist hackle the amount of twist hackle (referred to as twist hackle) was decreased in "Condition A” compared to "Standard” and "Condition B".
  • the focused spot C is relatively moved along the first line.
  • the direction in which the focused spot C is moved is different from the direction in which the focused spot C is relatively moved along the second line
  • the focused spot C is relatively moved along each of the first line and the second line.
  • a trefoil aberration pattern is formed in the spatial light modulator 7 so that the first extension part 91 is located on the front side in the direction, and the second extension part 92 and the third extension part 93 are located on the rear side in the direction. What is necessary is to switch the direction of the included modulation pattern.
  • the trefoil with the first trefoil aberration strength is displayed on the spatial light modulator 7 and at least one of the widths is a second width smaller than the first width, the second trefoil aberration intensity is stronger than the first trefoil aberration intensity.
  • the widths of each of the modified region 12 and the crack 13 in the incident direction of the laser beam L are smaller at the second trefoil aberration intensity than at the first trefoil aberration intensity.
  • FIGS. 16 and 17 are diagrams showing second examples of cut surfaces of the object 11 for each laser processing condition. 16 and 17, "Two rows of modified regions lined up in the thickness direction of the silicon wafer are formed inside the object 11, which is a silicon wafer, along line A, and then the object 11 is A cut surface of the object 11 when it is cut along line A by expanding is shown.
  • Extension D is such that the focused spot C is relatively moved in the "direction indicated by the arrow on line A" (leftward in FIG. 16, rightward in FIG. 17), and at that time, the focused spot
  • the beam shape 9 of the laser beam L at C is defined as (5) "The center part 90 is located on line A, and the first part is located on the second side with respect to line A (upper side in FIG. 16, lower side in FIG. A state in which the extension part 91 is located and the second extension part 92 and the third extension part 93 are located on the first side (lower side in FIG. 16, upper side in FIG. 17) with respect to line A. These are laser processing conditions.
  • “Standard” in the "Condition C” column is a laser processing condition that differs from “Condition C” only in that the modulation pattern does not include a trefoil aberration pattern.
  • “Standard” in the “Condition D” stage is a laser processing condition that differs from “Condition D” only in that the modulation pattern does not include a trefoil aberration pattern.
  • a modified region 12 is formed in the object 11 along a line A, and the incident direction (Z direction) of the laser beam L from the modified region 12 and the extending direction of the line A are
  • the incident direction (Z direction) of the laser beam L from the modified region 12 and the extending direction of the line A are
  • the area on the opposite side to the incident side of the laser beam L is
  • the second surface P2 is inclined so as to be located on one side (the left side in FIG.
  • the Trefoil aberration pattern is such that the first extending part 91 is located on the left side) and the second extending part 92 and the third extending part 93 are located on the other side (right side in FIG. 18) with respect to the line A. What is necessary is to display a modulation pattern including the following on the spatial light modulator 7.
  • a modified region 12 is formed in the object 11 along line A, and the incident direction (Z direction) of the laser beam L from the modified region 12 and the extending direction of line A are When forming a crack 13 in the object 11 along the second surface P2 that is inclined with respect to the first surface P1 that is parallel to both directions (X direction), the area on the opposite side to the incident side of the laser beam L is When the second surface P2 is inclined so as to be located on the other side (the right side in FIG.
  • the Trefoil aberration pattern is such that the first extending part 91 is located on the right side) and the second extending part 92 and the third extending part 93 are located on one side (left side in FIG. 19) with respect to the line A. What is necessary is to display a modulation pattern including the following on the spatial light modulator 7.
  • the focused spot C is relatively moved along each of the first line and the second line set on the object 11 as the line A.
  • the first extension portion 91 is placed on one side with respect to each of the first line and the second line.
  • a trefoil aberration pattern is formed such that What is necessary is to switch the direction of the included modulation pattern.
  • the angle between the first surface P1 and the second surface P2 (that is, the acute angle formed by the first surface P1 and the second surface P2) is
  • a modulation pattern including a trefoil aberration pattern with the first trefoil aberration intensity is displayed on the spatial light modulator 7, and when the angle is set as a second angle larger than the first angle, the first trefoil aberration intensity is
  • the spatial light modulator 7 may display a modulation pattern including a trefoil aberration pattern having a second trefoil aberration intensity stronger than the trefoil aberration intensity.
  • FIG. 20 is a diagram showing an object 11 to which the first example of the laser processing method is applied.
  • the object 11 is a semiconductor wafer having a first surface 11a and a second surface 11b.
  • the object 11 includes a silicon wafer and a plurality of functional elements (not shown) formed on the first surface 11a side of the silicon wafer.
  • the plurality of functional elements are arranged in a matrix along the first surface 11a with a notch 11c formed in the object 11 as a reference.
  • Each functional element is, for example, a light receiving element such as a photodiode, a light emitting element such as a laser diode, a circuit element such as a memory, and the like.
  • Each functional element may be configured three-dimensionally by stacking a plurality of layers. Note that an orientation flat may be formed on the object 11 instead of the notch 11c.
  • a first example of the laser processing method is carried out in the laser processing apparatus 1 described above.
  • the object 11 shown in FIG. 20 is cut into functional elements along each of a plurality of processing surfaces P10 extending in a grid pattern.
  • Each processed surface P10 is a plane perpendicular to the first surface 11a and the second surface 11b.
  • two rows of modified regions 12 aligned in the thickness direction of the object 11 are formed inside the object 11 along the line A.
  • a modified region 12 is formed in the object 11 along a line A extending within the processing surface P10, and a crack 13 is formed in the object 11 along the first surface P1.
  • the widths of the modified region 12 and the crack 13 in the direction of incidence of the laser beam L are made small, and the crack 13 is made small with respect to the line A. I want to suppress meandering.
  • the first extension part 91 is located on the line A
  • the second extension part 92 is located on one side with respect to the line A
  • the second extension part 92 is located on the other side with respect to the line A.
  • the first extending part 91 is located in the front side in the direction in which the focused spot C moves relatively along the line A
  • the control unit 6 causes the spatial light modulator 7 to display a modulation pattern including the trefoil aberration pattern so that the second extension part 92 and the third extension part 93 are located on the side.
  • the control unit 6 changes the modulation pattern including the trefoil aberration pattern with stronger trefoil aberration intensity to the spatial light. Displayed on the modulator 7.
  • the control unit 6 controls the support unit 2 so that the focused spot C moves relatively along the line A.
  • the drive section 4 is caused to drive.
  • the laser beam L may be incident on the first surface 11a side of the object 11, or the laser beam L may be incident on the second surface 11b side of the object 11. You can. Furthermore, one row of modified regions 12 may be formed inside the object 11 along line A, or three or more rows of modified regions 12 lined up in the thickness direction of object 11 may be formed along line A. It may be formed inside the object 11. When a plurality of rows of modified regions 12 arranged in the thickness direction of the object 11 are formed inside the object 11 along the line A, the laser beam L is spatially modulated so as to have a plurality of focused spots C.
  • a plurality of rows of modified regions 12 are created inside the object 11 along the line A by one scan of the laser beam L (relative movement of the laser beam L along the line A). may be formed.
  • a dicing tape may be attached to the first surface 11a or the second surface 11b opposite to the surface on which the laser beam L is incident, or the first surface on which the laser beam L is incident.
  • a dicing tape that is transparent to the laser beam L may be attached to the first surface 11a or the second surface 11b.
  • the second surface 11b of the object 11 may be ground to make the object 11 thinner. At that time, the modified region 12 formed in the object 11 may be removed.
  • a modified region 12 (hereinafter referred to as "first modified region") near the surface on the emission side of the laser beam L (second surface 11b in the example shown in FIG. 21)
  • the first modified region is formed so that the cracks 13 do not reach the surface on the emission side of the laser beam L from the first modified region, and the first modified region and the surface on the incidence side of the laser beam L are formed.
  • the first surface 11a when forming the modified region 12 (hereinafter referred to as "second modified region"), the first modified region and the second The cracks 13 may be connected to the modified region, and the cracks 13 may be made to reach the surface on the emission side of the laser beam L from the first modified region (hereinafter referred to as "light leakage damage suppression processing").
  • the first extending portion 91 is located on the line A
  • the second extending portion 92 is located on one side with respect to the line A
  • the first extending portion 91 is located on the line A.
  • the control unit 6 causes the spatial light modulator 7 to display a modulation pattern including a trefoil aberration pattern so that the third extension part 93 is located on the other side with respect to A, thereby forming a second modified region.
  • the control unit 6 transmits a modulation pattern that does not include a trefoil aberration pattern (or a modulation pattern that includes a trefoil aberration pattern having a weaker trefoil aberration intensity than when forming the first modified region) to the spatial light modulator 7.
  • the first extending portion 91 is located on line A
  • the second extending portion 92 is located on one side with respect to line A
  • the first extending part 91 is located in front of the direction in which the focused spot C moves relatively along the line A
  • the third extending part 93 is located on the other side.
  • the above findings are applicable when forming "at least one row of first modified regions" and "at least one row of second modified regions” inside the target object 11 along line A in the thickness direction of the target object 11. Applicable to In this case, the number of rows of the first modified region and the number of rows of the second modified region may be the same or different.
  • the laser beam L is modulated by the spatial light modulator 7 so as to have a plurality of focused spots C, and by one scan of the laser beam L, multiple rows of the first modified region are lined up. It may be formed inside the object 11 along A. Also in this case, the first extension part 91 is located on line A, the second extension part 92 is located on one side with respect to line A, and the third extension part 92 is located on the other side with respect to line A.
  • the control unit 6 causes the spatial light modulator 7 to display a modulation pattern including the trefoil aberration pattern so that the existing portion 93 is located.
  • the first extending part 91 is located on line A
  • the second extending part 92 is located on one side with respect to line A
  • the third extending part 93 is located on the other side with respect to line A.
  • the first extension part 91 is located on the front side in the direction in which the focused spot C moves relatively along line A
  • the control unit 6 causes the spatial light modulator 7 to display a modulation pattern including the trefoil aberration pattern so that the third extension portion 93 is located.
  • a plurality of rows of first modified regions may be formed inside the object 11 along the line A by each scan of the laser beam L a plurality of times. Note that even when a plurality of rows of first modified regions are formed inside the object 11 along the line A by one scan of the laser beam L, a plurality of rows of first modified regions are formed by each of the plurality of scans of the laser beam L. Even when each of the first modified regions in the rows is formed inside the object 11 along the line A, it is preferable that the cracks extending from each of the first modified regions in the plurality of rows do not connect to each other.
  • a plurality of focused spots C are formed in order to increase the takt time. Even if the laser beam L is modulated by the spatial light modulator 7 so that a plurality of rows of second modified regions are formed inside the object 11 along the line A by one scan of the laser beam L. good.
  • the plural rows of second modified regions are formed by each of the plurality of scans of the laser beam L.
  • Each of the second modified regions may be formed inside the object 11 along the line A.
  • FIG. 22 is a diagram illustrating an example of a cut surface of the object 11 obtained by processing to suppress damage caused by light leakage.
  • the example of the cut plane shown in FIGS. 22(a) and (b) shows "three rows of first modified regions” and "three rows of second modified regions” arranged in the thickness direction of the object 11. This is obtained by forming it inside the object 11 along line A.
  • three rows of first modified regions are formed inside the object 11 along the line A by one scan of the laser beam L, and then, Three rows of second modified regions were formed inside the object 11 along the line A by one scan of the laser beam L.
  • FIG. 22 is a diagram illustrating an example of a cut surface of the object 11 obtained by processing to suppress damage caused by light leakage.
  • the example of the cut plane shown in FIGS. 22(a) and (b) shows "three rows of first modified regions" and "three rows of second modified regions” arranged in the thickness direction of the object 11. This is obtained by forming it inside the object 11 along line A.
  • FIG. 22(a) when forming three rows of first modified regions, a modulation pattern that does not include a trefoil aberration pattern is displayed on the spatial light modulator 7.
  • the first extending portion 91 is located on line A, and the second extending portion is located on one side with respect to line A.
  • 92 and the third extension part 93 is located on the other side with respect to the line A, and the first extension part 93 is located on the front side in the direction in which the focused spot C moves relatively along the line A.
  • a modulation pattern including a trefoil aberration pattern was displayed on the spatial light modulator 7 such that the existing portion 91 was located and the second extending portion 92 and the third extending portion 93 were located on the rear side in this direction.
  • twist hackles occurred in the region where the three rows of first modified regions were formed, and the way the cracks grew was not stable.
  • FIG. 22(b) the occurrence of twist hackles was suppressed in the region where the three rows of first modified regions were formed, and the growth of cracks was also stabilized.
  • FIGS. 23A and 23B are diagrams showing an object 100 to which the second example of the laser processing method is applied.
  • the object 100 includes an object 11 and an object 11R that is a separate member from the object 11.
  • Each target object 11, 11R is, for example, a silicon wafer.
  • a device layer 110 including a plurality of functional elements (not shown) is formed on the second surface 11b of the object 11.
  • a device layer 110R including a plurality of functional elements (not shown) is formed on one surface of the object 11R.
  • the device layer 110 and the device layer 110R are bonded to each other.
  • a second example of the laser processing method is carried out in the laser processing apparatus 1 described above.
  • the object 11 shown in FIGS. 23A and 23B is cut along each of the processing surface P11, the processing surface P12, and the plurality of processing surfaces P13, and The outer edge portion of the object 11 is removed (trimming process).
  • the processed surface P11 is a cylindrical surface having a center line parallel to the Z direction.
  • the processed surface P12 is a truncated conical tapered surface that expands from the end of the processed surface P11 on the device layer 110 side toward the outer edge of the device layer 110R.
  • the plurality of processing surfaces P13 are planes extending from the processing surface P11 to the outer edge of the object 11.
  • the line A extends circumferentially within the processing surface P12, but when the line A is a curved line, the extending direction of the line A is defined as means the tangential direction.
  • a modified region 12 is formed in the object 11 along the line A extending within the processing surface P12, and a crack 13 is formed in the object 11 along the second surface P2.
  • the second surface P2 is inclined such that the region on the opposite side to the incident side of the laser beam L is located on the outside in the direction perpendicular to the first surface P1 (Y direction). ing.
  • the first extension part 91 is located outside the line A, and the second extension part 92 and the third extension part 93 are located inside the line A.
  • the control unit 6 causes the spatial light modulator 7 to display a modulation pattern including the trefoil aberration pattern.
  • the control unit 6 applies a modulation pattern including a trefoil aberration pattern with a stronger trefoil aberration intensity to the spatial light modulator 7. Display.
  • the control unit 6 controls the support unit 2 so that the focused spot C moves relatively along the line A.
  • the drive section 4 is caused to drive. Subsequently, a plurality of modified regions 12 arranged in the thickness direction of the object 11 are formed along each of the processed surface P11 and the plurality of processed surfaces P13. After the above steps are performed, the outer edge portion of the object 11 is removed, and the first surface 11a of the object 11 is polished to remove the portion where the processed surface P11 was set. [Action and effect]
  • the beam shape 9 of the laser light L at the focused spot C has a center portion 90 and a first extension extending radially from the center portion 90.
  • the focused spot C is located along the line A set on the object 11, including the existing part 91, the second extending part 92, and the third extending part 93, and having the highest intensity in the central part 90. can be moved relative to each other.
  • the state of at least one of the modified region 12 and the crack 13 formed in the object 11 can be adjusted. Therefore, according to the laser processing apparatus 1, appropriate modified regions 12 and cracks 13 can be formed in the object 11 according to the processing.
  • a modified region 12 is formed in the object 11 along the line A, and a first surface parallel to both the incident direction of the laser beam L and the extending direction of the line A is formed from the modified region 12.
  • the control unit 6 determines that the first extension part 91 is located on the line A and the second extension part is located on one side with respect to the line A.
  • a modulation pattern including a trefoil aberration pattern is displayed on the spatial light modulator 7 such that the third extension part 93 is located on the other side with respect to the line A.
  • the width of the crack 13 in the incident direction of the laser beam L can be made smaller than, for example, when the modulation pattern does not include a trefoil aberration pattern.
  • the control unit 6 is configured such that the first extension part 91 is located on the front side in the direction in which the focused spot C moves relatively along the line A, and the second extension part 91 is located on the rear side in the direction in which the focused spot C moves relatively along the line A.
  • a modulation pattern including a trefoil aberration pattern is displayed on the spatial light modulator 7 such that the third extension portion 92 and the third extension portion 93 are located.
  • the control unit 6 moves the focal spot C along the first line and the second line, respectively.
  • Trefoil aberration is created such that the first extension part 91 is located on the front side in the direction in which the light spot C moves relatively, and the second extension part 92 and the third extension part 93 are located on the rear side in the direction. Switch the orientation of modulation patterns including patterns.
  • the first line and The first extension part 91 is located on the front side in the direction in which the focused spot C moves relatively along each of the second lines, and the second extension part 92 and the third extension part are on the rear side in the direction. 93 can be easily and reliably realized.
  • the controller 6 sets a trefoil aberration pattern with a first trefoil aberration intensity.
  • the spatial light modulator 7 displays a modulation pattern including a modulation pattern, and when at least one of the widths is a second width smaller than the first width, a trefoil aberration with a second trefoil aberration intensity stronger than the first trefoil aberration intensity.
  • a modulation pattern including the pattern is displayed on the spatial light modulator 7.
  • a modified region 12 is formed in the object 11 along the line A, and a first surface parallel to both the incident direction of the laser beam L and the extending direction of the line A is formed from the modified region 12.
  • the region opposite to the incident side of the laser beam L is on one side in the direction perpendicular to the first surface P1.
  • the second surface P2 is inclined so as to be located at A modulation pattern including a trefoil aberration pattern is displayed on the spatial light modulator 7 so that the second extension part 92 and the third extension part 93 are located.
  • the cracks 13 extending from the modified region 12 can be inclined to a desired side.
  • the control unit 6 controls one direction for each of the first line and the second line. Trefoil aberration such that the first extending part 91 is located on the side of Switch the orientation of modulation patterns including patterns.
  • the first line and A first extending portion 91 is located on one side with respect to each of the second lines, and a second extending portion 92 and a third extending portion are located on the other side with respect to each of the first line and the second line. 93 can be easily and reliably realized.
  • the control unit 6 when the control unit 6 sets the angle between the first surface P1 and the second surface P2 as the first angle, the control unit 6 spatially modulates the modulation pattern including the trefoil aberration pattern with the first trefoil aberration intensity.
  • a modulation pattern including a trefoil aberration pattern with a second trefoil aberration intensity stronger than the first trefoil aberration intensity is displayed on the spatial light. Displayed on the modulator 7. Thereby, the angle at which the cracks 13 extending from the modified region 12 are inclined can be set to an appropriate angle depending on the processing.
  • the spatial light modulator 7 is not limited to a reflective type, but may be a transmissive type.
  • the optical system that transfers the image of the laser beam L on the modulation surface 7a of the spatial light modulator 7 to the entrance pupil plane 33a of the condenser 33 is limited to the 4f lens unit 34 having a pair of lenses 34A and 34B.
  • the first lens system for example, a cemented lens, three or more lenses, etc.
  • the second lens system for example, a cemented lens, three or more lenses, etc.
  • the drive section 4 drives the support section 2, and the drive section 5 drives the light collecting section 33 by driving the irradiation section 3,
  • the drive section of the present disclosure The section is not limited to such.
  • the drive unit 4 may move the support unit 2 in each of the Z direction, the X direction, and the Y direction, and rotate the support unit 2 using an axis parallel to the Z direction as the rotation axis.
  • the drive section 5 may move the light condensing section 33 in each of the Z direction, the X direction, and the Y direction, and may move the light condensing section 33 with an axis parallel to the Z direction as the center line.
  • the drive unit of the present disclosure may be any drive unit that drives at least one of the support unit and the light condensing unit.
  • control unit 6 controls the support unit 2, the irradiation unit 3, and the drive units 4 and 5, but the control unit of the present disclosure is not limited to such a unit.
  • the control unit of the present disclosure may be any unit as long as it controls at least the spatial light modulator and the drive unit.
  • the Trefoil is arranged such that the first extending portion 91 is located on one side with respect to line A, and the second extending portion 92 and third extending portion 93 are located on the other side with respect to line A.
  • the laser processing method of displaying a modulation pattern including an aberration pattern on the spatial light modulator 7 can also be used when cutting a wafer into a plurality of square pyramid-shaped chips, cutting out a plurality of truncated cone-shaped wafers from a wafer, etc. It is valid.
  • SYMBOLS 1 Laser processing device, 2... Support part, 4, 5... Drive part, 6... Control part, 7... Spatial light modulator, 9... Beam shape, 11... Target object, 12... Modified region, 13... Crack, 31...Light source, 33...Condensing part, 90...Central part, 91...First extension part, 92...Second extension part, 93...Third extension part, A...Line, C...Condensing spot, L ...Laser light, P1...first surface, P2...second surface.

Abstract

This laser processing device comprises a support unit for supporting a target object, a light source for emitting laser light, a spatial optical modulator for modulating the laser light by displaying a modulation pattern, a condensing unit for condensing the laser light onto the target object, a drive unit for driving at least one of the support unit and the condensing unit, and a control unit. The control unit causes the spatial optical modulator to display a modulation pattern that includes a trefoil aberration pattern such that a beam shape of the laser light at a focal spot includes a central portion and a first extended portion, a second extended portion and a third extended portion that extend in a radial pattern from the central portion, and such that the highest intensity in the beam shape central is in the central portion. The control unit causes the drive unit to drive the at least one of the support unit and the condensing unit such that the focal spot moves relatively along a line.

Description

レーザ加工装置及びレーザ加工方法Laser processing equipment and laser processing method
 本開示は、レーザ加工装置及びレーザ加工方法に関する。 The present disclosure relates to a laser processing device and a laser processing method.
 対象物を支持する支持部と、レーザ光を出射する光源と、光源から出射されたレーザ光を変調する空間光変調器と、空間光変調器によって変調されたレーザ光を対象物に集光する集光部と、空間光変調器におけるレーザ光の像を集光部の入射瞳面に転像する転像部と、を備えるレーザ加工装置が知られている(例えば、特許文献1参照)。 A support part that supports a target object, a light source that emits laser light, a spatial light modulator that modulates the laser light emitted from the light source, and a laser light modulated by the spatial light modulator that focuses the laser light on the target object. 2. Description of the Related Art A laser processing apparatus is known that includes a condensing section and an image transfer section that transfers an image of a laser beam in a spatial light modulator onto an entrance pupil plane of the condensing section (see, for example, Patent Document 1).
特開2011-51011号公報Japanese Patent Application Publication No. 2011-51011
 上述したようなレーザ加工装置は、改質領域及び亀裂を対象物に形成することができる。そのような改質領域及び亀裂の形成は、対象物を複数のチップに分割するのダイシング加工、対象物から不要部分を除去するトリミング加工等、様々な加工に応用可能である。 A laser processing device such as that described above can form modified regions and cracks in a target object. Formation of such modified regions and cracks can be applied to various processes, such as dicing to divide an object into a plurality of chips, trimming to remove unnecessary parts from the object, and the like.
 本開示は、加工に応じて適切な改質領域及び亀裂を対象物に形成することができるレーザ加工装置及びレーザ加工方法を提供することを目的とする。 An object of the present disclosure is to provide a laser processing device and a laser processing method that can form appropriate modified regions and cracks in a target object depending on the processing.
 本開示の一側面のレーザ加工装置は、[1]「対象物を支持する支持部と、レーザ光を出射する光源と、変調パターンを表示することで、前記光源から出射された前記レーザ光を変調する空間光変調器と、前記空間光変調器によって変調された前記レーザ光を前記対象物に集光する集光部と、前記支持部及び前記集光部の少なくとも一方を駆動する駆動部と、少なくとも前記空間光変調器及び前記駆動部を制御する制御部と、を備え、前記制御部は、前記レーザ光の集光スポットにおける前記レーザ光のビーム形状が、中心部並びに前記中心部から放射状に延在する第1延在部、第2延在部及び第3延在部を含み且つ前記中心部において最も高い強度を有するビーム形状となるように、トレフォイル収差パターンを含む変調パターンを前記空間光変調器に表示させ、前記トレフォイル収差パターンを含む前記変調パターンを前記空間光変調器に表示させた状態で、前記対象物に設定されたラインに沿って前記集光スポットが相対的に移動するように、前記支持部及び前記集光部の少なくとも一方を前記駆動部に駆動させる、レーザ加工装置」である。 A laser processing apparatus according to an aspect of the present disclosure includes [1] "a support section that supports a target object, a light source that emits laser light, and a modulation pattern that displays the laser beam emitted from the light source." a spatial light modulator that modulates the laser beam, a focusing section that focuses the laser beam modulated by the spatial light modulator on the object, and a driving section that drives at least one of the support section and the focusing section. , a control unit that controls at least the spatial light modulator and the drive unit, and the control unit is configured such that the beam shape of the laser beam at the focused spot of the laser beam is radial from the center and the center. A modulation pattern including a trefoil aberration pattern is formed in the space so that the beam shape includes a first extension part, a second extension part, and a third extension part extending in the space and has the highest intensity in the center part. The focused spot moves relatively along a line set on the object while the modulation pattern including the trefoil aberration pattern is displayed on the spatial light modulator. A laser processing apparatus in which at least one of the supporting section and the light condensing section is driven by the driving section.
 上記[1]に記載のレーザ加工装置では、集光スポットにおけるレーザ光のビーム形状が、中心部並びに中心部から放射状に延在する第1延在部、第2延在部及び第3延在部を含み且つ中心部において最も高い強度を有する状態で、当該集光スポットが、対象物に設定されたラインに沿って相対的に移動させられる。このとき、ラインに対するビーム形状の向き等を調整することで、対象物に形成される改質領域及び亀裂の少なくとも一方の状態を調整することができる。よって、上記[1]に記載のレーザ加工装置によれば、加工に応じて適切な改質領域及び亀裂を対象物に形成することができる。 In the laser processing apparatus according to [1] above, the beam shape of the laser beam at the focused spot is formed into a central portion, a first extending portion, a second extending portion, and a third extending portion extending radially from the central portion. The focused spot is relatively moved along a line set on the object, with the focus having the highest intensity at the center. At this time, by adjusting the direction of the beam shape with respect to the line, etc., the state of at least one of the modified region and the cracks formed in the object can be adjusted. Therefore, according to the laser processing apparatus described in [1] above, appropriate modified regions and cracks can be formed in the object according to the processing.
 本開示の一側面のレーザ加工装置は、[2]「前記ラインに沿って前記対象物に改質領域を形成すると共に、前記改質領域から前記レーザ光の入射方向及び前記ラインの延在方向の両方向に平行な第1面に沿って前記対象物に亀裂を形成する場合には、前記制御部は、前記ライン上に前記第1延在部が位置し且つ前記ラインに対して一方の側に前記第2延在部が位置し且つ前記ラインに対して他方の側に前記第3延在部が位置するように、前記トレフォイル収差パターンを含む前記変調パターンを前記空間光変調器に表示させる、上記[1]に記載のレーザ加工装置」であってもよい。当該[2]に記載のレーザ加工装置によれば、例えば変調パターンがトレフォイル収差パターンを含まない場合に比べ、レーザ光の入射方向における亀裂の幅を小さくすることができる。 A laser processing apparatus according to one aspect of the present disclosure includes [2] "forming a modified region in the target object along the line, and from the modified region in the incident direction of the laser beam and in the extending direction of the line. When forming a crack in the object along a first surface parallel to both directions of Displaying the modulation pattern including the trefoil aberration pattern on the spatial light modulator such that the second extension part is located at and the third extension part is located on the other side with respect to the line. , the laser processing apparatus described in [1] above. According to the laser processing apparatus described in [2], the width of the crack in the laser beam incident direction can be made smaller than, for example, when the modulation pattern does not include a trefoil aberration pattern.
 本開示の一側面のレーザ加工装置は、[3]「前記制御部は、前記ラインに沿って前記集光スポットが相対的に移動する向きの前側に前記第1延在部が位置し且つ前記向きの後側に前記第2延在部及び前記第3延在部が位置するように、前記トレフォイル収差パターンを含む前記変調パターンを前記空間光変調器に表示させる、上記[2]に記載のレーザ加工装置」であってもよい。当該[3]に記載のレーザ加工装置によれば、レーザ光の入射方向における亀裂の幅だけでなく、レーザ光の入射方向における改質領域の幅も小さくすることができる。また、ラインに対して亀裂が蛇行するのを確実に抑制することができる。 The laser processing device according to one aspect of the present disclosure may be the laser processing device described in [2] above, [3] "wherein the control unit causes the spatial light modulator to display the modulation pattern including the trefoil aberration pattern such that the first extension portion is located in front of the direction in which the focused spot moves relatively along the line, and the second extension portion and the third extension portion are located in the rear of the direction." According to the laser processing device described in [3], not only the width of the crack in the incident direction of the laser light, but also the width of the modified region in the incident direction of the laser light can be reduced. In addition, it is possible to reliably prevent the crack from meandering along the line.
 本開示の一側面のレーザ加工装置は、[4]「前記ラインとして前記対象物に設定された第1ライン及び第2ラインのそれぞれに沿って前記集光スポットを相対的に移動させる場合において、前記第1ラインに沿って前記集光スポットを相対的に移動させる向きと、前記第2ラインに沿って前記集光スポットを相対的に移動させる向きとが異なるときには、前記制御部は、前記第1ライン及び前記第2ラインのそれぞれに沿って前記集光スポットが相対的に移動する向きの前側に前記第1延在部が位置し且つ前記向きの後側に前記第2延在部及び前記第3延在部が位置するように、前記トレフォイル収差パターンを含む前記変調パターンの向きを切り替える、上記[3]に記載のレーザ加工装置」であってもよい。当該[4]に記載のレーザ加工装置によれば、第1ラインに沿って集光スポットを相対的に移動させる向きと、第2ラインに沿って集光スポットを相対的に移動させる向きとが異なる場合にも、第1ライン及び第2ラインのそれぞれに沿って集光スポットが相対的に移動する向きの前側に第1延在部が位置し且つ当該向きの後側に第2延在部及び第3延在部が位置する状態を容易に且つ確実に実現することができる。 The laser processing device according to one aspect of the present disclosure includes [4] “In the case where the focused spot is relatively moved along each of a first line and a second line set on the object as the line, When the direction in which the focused spot is relatively moved along the first line is different from the direction in which the focused spot is relatively moved along the second line, the control unit The first extension part is located on the front side in the direction in which the focused spot moves relatively along each of the first line and the second line, and the second extension part and the The laser processing apparatus according to [3] above may change the direction of the modulation pattern including the trefoil aberration pattern so that the third extension portion is located. According to the laser processing apparatus described in [4], the direction in which the focused spot is relatively moved along the first line and the direction in which the focused spot is relatively moved along the second line are different. Even when different, the first extension part is located on the front side in the direction in which the focused spot moves relatively along each of the first line and the second line, and the second extension part is located on the rear side in the direction. The state in which the third extension portion is located can be easily and reliably realized.
 本開示の一側面のレーザ加工装置は、[5]「前記制御部は、前記レーザ光の前記入射方向における前記改質領域及び前記亀裂の少なくとも一方の幅を第1幅とする場合には、第1トレフォイル収差強度の前記トレフォイル収差パターンを含む前記変調パターンを前記空間光変調器に表示させ、前記少なくとも一方の幅を前記第1幅よりも小さい第2幅とする場合には、前記第1トレフォイル収差強度よりも強い第2トレフォイル収差強度の前記トレフォイル収差パターンを含む前記変調パターンを前記空間光変調器に表示させる、上記[2]~[4]のいずれか一つに記載のレーザ加工装置」であってもよい。当該[5]に記載のレーザ加工装置によれば、レーザ光の入射方向における改質領域及び亀裂の少なくとも一方の幅を、加工に応じて適切な幅にすることができる。 The laser processing device according to one aspect of the present disclosure provides [5] “When the control unit sets a width of at least one of the modified region and the crack in the incident direction of the laser beam as a first width, If the modulation pattern including the trefoil aberration pattern having a first trefoil aberration intensity is displayed on the spatial light modulator, and the width of at least one of the patterns is a second width smaller than the first width, The laser processing device according to any one of [2] to [4] above, wherein the modulation pattern including the trefoil aberration pattern having a second trefoil aberration intensity stronger than the trefoil aberration intensity is displayed on the spatial light modulator. ”. According to the laser processing apparatus described in [5], the width of at least one of the modified region and the crack in the incident direction of the laser beam can be set to an appropriate width depending on the processing.
 本開示の一側面のレーザ加工装置は、[6]「前記ラインに沿って前記対象物に改質領域を形成すると共に、前記改質領域から前記レーザ光の入射方向及び前記ラインの延在方向の両方向に平行な第1面に対して傾斜する第2面に沿って前記対象物に亀裂を形成する場合において、前記レーザ光の入射側とは反対側の領域が前記第1面に垂直な方向における一方の側に位置するように前記第2面が傾斜しているときには、前記制御部は、前記ラインに対して前記一方の側に前記第1延在部が位置し且つ前記ラインに対して他方の側に前記第2延在部及び前記第3延在部が位置するように、前記トレフォイル収差パターンを含む前記変調パターンを前記空間光変調器に表示させる、上記[1]に記載のレーザ加工装置」であってもよい。当該[6]に記載のレーザ加工装置によれば、改質領域から延在する亀裂を所望の側に傾斜させることができる。 The laser processing apparatus according to one aspect of the present disclosure includes [6] "forming a modified region in the object along the line, and from the modified region in the incident direction of the laser beam and in the extending direction of the line. When a crack is formed in the object along a second surface that is inclined with respect to a first surface that is parallel to both directions, a region on the opposite side to the incident side of the laser beam is perpendicular to the first surface. When the second surface is inclined so as to be located on one side in the direction, the control section is configured such that the first extending section is located on the one side with respect to the line and the second surface is inclined with respect to the line. [1], wherein the modulation pattern including the trefoil aberration pattern is displayed on the spatial light modulator so that the second extension part and the third extension part are located on the other side. It may also be a "laser processing device". According to the laser processing apparatus described in [6], the crack extending from the modified region can be inclined to a desired side.
 本開示の一側面のレーザ加工装置は、[7]「前記ラインとして前記対象物に設定された第1ライン及び第2ラインのそれぞれに沿って前記集光スポットを相対的に移動させる場合において、前記第1ラインに沿って前記集光スポットを相対的に移動させる向きと、前記第2ラインに沿って前記集光スポットを相対的に移動させる向きとが異なるときには、前記制御部は、前記第1ライン及び前記第2ラインのそれぞれに対して前記一方の側に前記第1延在部が位置し且つ前記第1ライン及び前記第2ラインのそれぞれに対して他方の側に前記第2延在部及び前記第3延在部が位置するように、前記トレフォイル収差パターンを含む前記変調パターンの向きを切り替える、上記[6]に記載のレーザ加工装置」であってもよい。当該[7]に記載のレーザ加工装置によれば、第1ラインに沿って集光スポットを相対的に移動させる向きと、第2ラインに沿って集光スポットを相対的に移動させる向きとが異なる場合にも、第1ライン及び第2ラインのそれぞれに対して一方の側に第1延在部が位置し且つ第1ライン及び第2ラインのそれぞれに対して他方の側に第2延在部及び第3延在部が位置する状態を容易に且つ確実に実現することができる。 The laser processing device according to one aspect of the present disclosure includes [7] “In the case where the focused spot is relatively moved along each of a first line and a second line set on the object as the line, When the direction in which the focused spot is relatively moved along the first line is different from the direction in which the focused spot is relatively moved along the second line, the control unit The first extending portion is located on the one side with respect to each of the first line and the second line, and the second extending portion is located on the other side with respect to each of the first line and the second line. The laser processing apparatus according to item [6] above may change the direction of the modulation pattern including the trefoil aberration pattern so that the trefoil aberration pattern and the third extension portion are located. According to the laser processing apparatus described in [7], the direction in which the focused spot is relatively moved along the first line and the direction in which the focused spot is relatively moved along the second line are different. Even in different cases, the first extension part is located on one side with respect to each of the first line and the second line, and the second extension part is located on the other side with respect to each of the first line and the second line. It is possible to easily and reliably realize the state in which the third extension part and the third extension part are located.
 本開示の一側面のレーザ加工装置は、[8]「前記制御部は、前記第1面と前記第2面との間の角度を第1角度とする場合には、第1トレフォイル収差強度の前記トレフォイル収差パターンを含む前記変調パターンを前記空間光変調器に表示させ、前記角度を前記第1角度よりも大きい第2角度とする場合には、前記第1トレフォイル収差強度よりも強い第2トレフォイル収差強度の前記トレフォイル収差パターンを含む前記変調パターンを前記空間光変調器に表示させる、上記[6]又は[7]に記載のレーザ加工装置」であってもよい。当該[8]に記載のレーザ加工装置によれば、改質領域から延在する亀裂が傾斜する角度を、加工に応じて適切な角度にすることができる。 The laser processing device according to one aspect of the present disclosure includes [8] “When the angle between the first surface and the second surface is the first angle, the control unit controls the first trefoil aberration intensity. When the modulation pattern including the trefoil aberration pattern is displayed on the spatial light modulator and the angle is a second angle larger than the first angle, a second trefoil aberration intensity stronger than the first trefoil aberration intensity is used. The laser processing apparatus according to [6] or [7] above may display the modulation pattern including the trefoil aberration pattern of aberration intensity on the spatial light modulator. According to the laser processing apparatus described in [8], the angle at which the crack extending from the modified region is inclined can be set to an appropriate angle depending on the processing.
 本開示の一側面のレーザ加工方法は、[9]「対象物を支持する支持部と、レーザ光を出射する光源と、変調パターンを表示することで、前記光源から出射された前記レーザ光を変調する空間光変調器と、前記空間光変調器によって変調された前記レーザ光を前記対象物に集光する集光部と、前記支持部及び前記集光部の少なくとも一方を駆動する駆動部と、を備えるレーザ加工装置において実施されるレーザ加工方法であって、前記レーザ光の集光スポットにおける前記レーザ光のビーム形状が、中心部並びに前記中心部から放射状に延在する第1延在部、第2延在部及び第3延在部を含み且つ前記中心部において最も高い強度を有するビーム形状となるように、トレフォイル収差パターンを含む変調パターンを前記空間光変調器に表示させる工程と、前記トレフォイル収差パターンを含む前記変調パターンを前記空間光変調器に表示させた状態で、前記対象物に設定されたラインに沿って前記集光スポットが相対的に移動するように、前記支持部及び前記集光部の少なくとも一方を前記駆動部に駆動させる工程と、を備える、レーザ加工方法」である。 A laser processing method according to one aspect of the present disclosure includes [9] "a supporting part that supports a target object, a light source that emits a laser beam, and a modulation pattern that is displayed, so that the laser beam that is emitted from the light source is a spatial light modulator that modulates the laser beam, a focusing section that focuses the laser beam modulated by the spatial light modulator on the object, and a driving section that drives at least one of the support section and the focusing section. A laser processing method carried out in a laser processing apparatus comprising: a beam shape of the laser light at a focused spot of the laser light includes a center portion and a first extension portion extending radially from the center portion; , displaying a modulation pattern including a trefoil aberration pattern on the spatial light modulator so as to have a beam shape that includes a second extension part and a third extension part and has the highest intensity at the center; The supporting portion and a step of causing the driving section to drive at least one of the light condensing sections.''
 上記[9]に記載のレーザ加工方法では、集光スポットにおけるレーザ光のビーム形状が、中心部並びに中心部から放射状に延在する第1延在部、第2延在部及び第3延在部を含み且つ中心部において最も高い強度を有する状態で、当該集光スポットが、対象物に設定されたラインに沿って相対的に移動させられる。このとき、ラインに対するビーム形状の向き等を調整することで、対象物に形成される改質領域及び亀裂の少なくとも一方の状態を調整することができる。よって、上記[9]に記載のレーザ加工方法によれば、加工に応じて適切な改質領域及び亀裂を対象物に形成することができる。 In the laser processing method described in [9] above, the beam shape of the laser beam at the condensed spot includes a central portion, a first extending portion, a second extending portion, and a third extending portion extending radially from the central portion. The focused spot is relatively moved along a line set on the object, with the focus having the highest intensity at the center. At this time, by adjusting the direction of the beam shape with respect to the line, etc., the state of at least one of the modified region and the cracks formed in the object can be adjusted. Therefore, according to the laser processing method described in [9] above, appropriate modified regions and cracks can be formed in the object depending on the processing.
 本開示によれば、加工に応じて適切な改質領域及び亀裂を対象物に形成することができるレーザ加工装置及びレーザ加工方法を提供することが可能となる。 According to the present disclosure, it is possible to provide a laser processing device and a laser processing method that can form appropriate modified regions and cracks in a target object depending on the processing.
図1は、一実施形態のレーザ加工装置の構成を示す図である。FIG. 1 is a diagram showing the configuration of a laser processing apparatus according to an embodiment. 図2は、図1に示される照射部の構成を示す図である。FIG. 2 is a diagram showing the configuration of the irradiation section shown in FIG. 1. 図3は、図2に示される4fレンズユニットを示す図である。FIG. 3 is a diagram showing the 4f lens unit shown in FIG. 2. 図4は、図2に示される空間光変調器を示す図である。FIG. 4 is a diagram showing the spatial light modulator shown in FIG. 2. 図5は、トレフォイル収差パターンの一例を示す図である。FIG. 5 is a diagram showing an example of a trefoil aberration pattern. 図6は、レーザ光の集光状態の一例、及び集光スポットにおけるレーザ光のビーム形状の一例を示す図である。FIG. 6 is a diagram showing an example of a focused state of laser light and an example of a beam shape of the laser light at the focused spot. 図7は、トレフォイル収差強度ごとのレーザ光のビーム形状の一例を示す図である。FIG. 7 is a diagram showing an example of a beam shape of a laser beam for each trefoil aberration intensity. 図8は、トレフォイル収差パターンによって変調されたレーザ光のビーム形状の一例を示す図である。FIG. 8 is a diagram showing an example of a beam shape of laser light modulated by a trefoil aberration pattern. 図9は、トレフォイル収差パターン及び非点収差パターンによって変調されたレーザ光のビーム形状の一例を示す図である。FIG. 9 is a diagram showing an example of a beam shape of a laser beam modulated by a trefoil aberration pattern and an astigmatism pattern. 図10は、トレフォイル収差パターン、非点収差パターン及び球面収差パターンによって変調されたレーザ光のビーム形状の一例を示す図である。FIG. 10 is a diagram showing an example of a beam shape of laser light modulated by a trefoil aberration pattern, an astigmatism pattern, and a spherical aberration pattern. 図11は、トレフォイル収差パターンによって変調されたレーザ光のビーム形状の一例を示す図である。FIG. 11 is a diagram showing an example of a beam shape of laser light modulated by a trefoil aberration pattern. 図12は、レーザ光の集光状態の一例、及びレーザ光の抜け光によるダメージの一例を示す図である。FIG. 12 is a diagram illustrating an example of a focused state of laser light and an example of damage caused by light leakage of laser light. 図13は、レーザ加工条件ごとの対象物の切断面の第1例を示す図である。FIG. 13 is a diagram showing a first example of a cut surface of a target object for each laser processing condition. 図14は、レーザ加工条件ごとの対象物の切断面の第1例を示す図である。FIG. 14 is a diagram showing a first example of a cut surface of a target object for each laser processing condition. 図15は、トレフォイル収差強度と改質領域及び亀裂のそれぞれの幅との関係を示す図である。FIG. 15 is a diagram showing the relationship between the trefoil aberration intensity and the respective widths of the modified region and crack. 図16は、レーザ加工条件ごとの対象物の切断面の第2例を示す図である。FIG. 16 is a diagram showing a second example of the cut surface of the object for each laser processing condition. 図17は、レーザ加工条件ごとの対象物の切断面の第2例を示す図である。FIG. 17 is a diagram showing a second example of the cut surface of the object for each laser processing condition. 図18は、トレフォイル収差強度と亀裂が傾斜する角度との関係を示す図である。FIG. 18 is a diagram showing the relationship between the trefoil aberration intensity and the angle at which the crack is inclined. 図19は、トレフォイル収差強度と亀裂が傾斜する角度との関係を示す図である。FIG. 19 is a diagram showing the relationship between the trefoil aberration intensity and the angle at which the crack is inclined. 図20は、レーザ加工方法の第1例が適用される対象物を示す図である。FIG. 20 is a diagram showing an object to which the first example of the laser processing method is applied. 図21は、レーザ加工方法の第1例の一工程を示す図である。FIG. 21 is a diagram showing one step of the first example of the laser processing method. 図22は、抜け光ダメージ抑制加工による対象物の切断面の例を示す図である。FIG. 22 is a diagram illustrating an example of a cut surface of an object subjected to light damage suppression processing. 図23は、レーザ加工方法の第2例が適用される対象物を示す図である。FIG. 23 is a diagram showing an object to which the second example of the laser processing method is applied. 図24は、レーザ加工方法の第2例の一工程を示す図である。FIG. 24 is a diagram showing one step of the second example of the laser processing method.
 以下、本開示の実施形態について、図面を参照して詳細に説明する。なお、各図において同一又は相当部分には同一符号を付し、重複する説明を省略する。
[レーザ加工装置の構成]
Embodiments of the present disclosure will be described in detail below with reference to the drawings. In each figure, the same or corresponding parts are denoted by the same reference numerals, and redundant explanations will be omitted.
[Laser processing equipment configuration]
 図1に示されるように、レーザ加工装置1は、支持部2と、照射部3と、駆動部4,5と、制御部6と、を備えている。レーザ加工装置1は、対象物11にレーザ光Lを照射することで、対象物11に改質領域12を形成する。 As shown in FIG. 1, the laser processing device 1 includes a support section 2, an irradiation section 3, drive sections 4 and 5, and a control section 6. The laser processing apparatus 1 forms a modified region 12 on the object 11 by irradiating the object 11 with a laser beam L.
 支持部2は、例えば対象物11に貼り付けられたフィルムを保持することで、対象物11を支持する。本実施形態では、支持部2は、X方向及びY方向のそれぞれの方向に移動可能であり、Z方向に平行な軸線を回転軸として回転可能である。一例として、X方向及びY方向は、互いに垂直な第1水平方向及び第2水平方向であり、Z方向は、鉛直方向である。 The support section 2 supports the object 11 by holding a film attached to the object 11, for example. In this embodiment, the support part 2 is movable in each of the X direction and the Y direction, and is rotatable about an axis parallel to the Z direction as a rotation axis. As an example, the X direction and the Y direction are a first horizontal direction and a second horizontal direction that are perpendicular to each other, and the Z direction is a vertical direction.
 照射部3は、対象物11に対して透過性を有するレーザ光Lを集光して対象物11に照射する。本実施形態では、照射部3は、Z方向に移動可能である。支持部2に支持された対象物11の内部にレーザ光Lが集光されると、レーザ光Lの集光スポットCに対応する部分においてレーザ光Lが特に吸収され、対象物11の内部に改質領域12が形成される。なお、集光スポットCは、集光領域又は集光点とも称される。 The irradiation unit 3 focuses a laser beam L that is transparent to the object 11 and irradiates the object 11 with the laser beam L. In this embodiment, the irradiation unit 3 is movable in the Z direction. When the laser beam L is focused inside the object 11 supported by the support part 2, the laser beam L is particularly absorbed in the part corresponding to the focused spot C of the laser beam L, and the laser beam L is absorbed inside the object 11. A modified region 12 is formed. Note that the focused spot C is also referred to as a focused area or a focused point.
 改質領域12は、密度、屈折率、機械的強度、その他の物理的特性が周囲の非改質領域とは異なる領域である。改質領域12としては、例えば、溶融処理領域、クラック領域、絶縁破壊領域、屈折率変化領域等がある。改質領域12からは、レーザ光Lの入射側及びその反対側に亀裂が形成される。そのような改質領域12及び亀裂は、対象物11の切断に利用される。 The modified region 12 is a region whose density, refractive index, mechanical strength, and other physical properties are different from those of the surrounding unmodified region. Examples of the modified region 12 include a melt-treated region, a crack region, a dielectric breakdown region, and a refractive index change region. From the modified region 12, cracks are formed on the incident side of the laser beam L and on the opposite side. Such modified regions 12 and cracks are used to cut the object 11.
 一例として、対象物11に設定されたX方向に平行なラインAに沿って集光スポットCが相対的に移動させられると、ラインAに沿って複数の改質スポット12sが1列に並ぶように形成される。一つの改質スポット12sは、1パルスのレーザ光Lの照射によって形成される。1列の改質領域12は、1列に並んだ複数の改質スポット12sの集合である。隣り合う改質スポット12sは、対象物11に対する集光スポットCの相対的な移動速度及びレーザ光Lの繰り返し周波数によって、互いに繋がる場合もあるし、互いに離れる場合もある。 As an example, when the focused spot C is relatively moved along a line A parallel to the X direction set on the object 11, a plurality of modified spots 12s are lined up in a line along the line A. is formed. One modification spot 12s is formed by irradiation with one pulse of laser light L. One row of modified regions 12 is a collection of a plurality of modified spots 12s arranged in one row. Adjacent modification spots 12s may be connected to each other or separated from each other depending on the relative moving speed of the focused spot C with respect to the object 11 and the repetition frequency of the laser beam L.
 駆動部4は、支持部2を支持しており、支持部2を駆動する。本実施形態では、駆動部4は、X方向及びY方向のそれぞれの方向に支持部2を移動させ、Z方向に平行な軸線を回転軸として支持部2を回転させる。駆動部5は、照射部3を支持しており、照射部3を駆動する。本実施形態では、駆動部5は、Z方向に照射部3を移動させる。一例として、レーザ加工装置1では、ラインAがX方向に平行となるように駆動部4が支持部2を回転させ、集光スポットCがラインA上に位置するように駆動部4が支持部2をY方向に移動させ、集光スポットCが対象物11の内部に位置するように駆動部5がZ方向に照射部3を移動させ、更に、ラインAに沿って集光スポットCが相対的に移動するように駆動部4が支持部2を移動させる。 The drive section 4 supports the support section 2 and drives the support section 2. In this embodiment, the drive unit 4 moves the support unit 2 in each of the X direction and the Y direction, and rotates the support unit 2 using an axis parallel to the Z direction as the rotation axis. The drive section 5 supports the irradiation section 3 and drives the irradiation section 3. In this embodiment, the drive section 5 moves the irradiation section 3 in the Z direction. As an example, in the laser processing apparatus 1, the drive unit 4 rotates the support unit 2 so that the line A is parallel to the X direction, and the drive unit 4 rotates the support unit so that the focused spot C is located on the line A. 2 in the Y direction, the drive unit 5 moves the irradiation unit 3 in the Z direction so that the focused spot C is located inside the object 11, and further, the focused spot C is moved relative to the target object 11 along the line A. The drive section 4 moves the support section 2 so as to move the support section 2 as desired.
 制御部6は、支持部2、照射部3及び駆動部4,5を制御する。制御部6は、処理部、記憶部及び入力受付部を有している(図示省略)。処理部は、プロセッサ、メモリ、ストレージ及び通信デバイス等を含むコンピュータ装置として構成されている。処理部では、プロセッサが、メモリ等に読み込まれたソフトウェア(プログラム)を実行し、メモリ及びストレージにおけるデータの読み出し及び書き込み、並びに、通信デバイスによる通信が制御される。記憶部は、例えばハードディスク等であり、各種データを記憶する。入力受付部は、各種情報を表示すると共に、ユーザから各種情報の入力を受け付けるインターフェース部である。入力受付部は、例えば、GUI(Graphical User Interface)を構成している。 The control unit 6 controls the support unit 2, the irradiation unit 3, and the drive units 4 and 5. The control unit 6 has a processing unit, a memory unit, and an input reception unit (not shown). The processing unit is configured as a computer device including a processor, memory, storage, and a communication device. In the processing unit, the processor executes software (programs) loaded into the memory, etc., and controls the reading and writing of data in the memory and storage, as well as communication by the communication device. The memory unit is, for example, a hard disk, and stores various types of data. The input reception unit is an interface unit that displays various types of information and receives input of various types of information from the user. The input reception unit constitutes, for example, a GUI (Graphical User Interface).
 図2に示されるように、照射部3は、光源31と、空間光変調器7と、集光部33と、4fレンズユニット34と、を有している。光源31は、例えばパルス発振方式によって、レーザ光Lを出射する。空間光変調器7は、変調パターンを表示することで、光源31から出射されたレーザ光Lを変調する。集光部33は、少なくとも一つのレンズによって構成されており、空間光変調器7によって変調されたレーザ光Lを対象物11に集光する。4fレンズユニット34は、空間光変調器7の変調面でのレーザ光Lの像を集光部33の入射瞳面に転像する。なお、光源31が照射部3の外部に設けられており、光源31から出射されたレーザ光Lが照射部3に導光されてもよい。また、照射部3は、他の光学系を備えていてもよい。一例として、照射部3は、光源31と空間光変調器7との間の光路上に配置された光学系(例えば、アッテネータ、ビームエキスパンダ等)を備えていてもよい。 As shown in FIG. 2, the irradiation section 3 includes a light source 31, a spatial light modulator 7, a condensing section 33, and a 4f lens unit 34. The light source 31 emits laser light L using, for example, a pulse oscillation method. The spatial light modulator 7 modulates the laser beam L emitted from the light source 31 by displaying a modulation pattern. The condensing unit 33 includes at least one lens, and condenses the laser beam L modulated by the spatial light modulator 7 onto the object 11 . The 4f lens unit 34 transfers the image of the laser beam L on the modulation surface of the spatial light modulator 7 to the entrance pupil surface of the condenser 33 . Note that the light source 31 may be provided outside the irradiation section 3 and the laser light L emitted from the light source 31 may be guided to the irradiation section 3. Further, the irradiation unit 3 may include other optical systems. As an example, the irradiation unit 3 may include an optical system (for example, an attenuator, a beam expander, etc.) arranged on the optical path between the light source 31 and the spatial light modulator 7.
 図3に示されるように、4fレンズユニット34は、一対のレンズ34A,34Bを有している。一対のレンズ34A,34Bは、空間光変調器7から集光部33に進行するレーザ光Lの光路上に配置されている。一対のレンズ34A,34Bは、空間光変調器7の変調面7aと集光部33の入射瞳面33aとが結像関係にある両側テレセントリック光学系を構成している。これにより、空間光変調器7の変調面7aでのレーザ光Lの像(空間光変調器7において変調されたレーザ光Lの像)が集光部33の入射瞳面33aに転像(結像)される。なお、図3において、f1,f2はそれぞれレンズ34A,34Bの焦点距離を示し、Fsはフーリエ面を示す。 As shown in FIG. 3, the 4f lens unit 34 has a pair of lenses 34A and 34B. The pair of lenses 34A and 34B are arranged on the optical path of the laser beam L traveling from the spatial light modulator 7 to the condensing section 33. The pair of lenses 34A and 34B constitute a double-sided telecentric optical system in which the modulation surface 7a of the spatial light modulator 7 and the entrance pupil surface 33a of the condenser 33 are in an imaging relationship. As a result, the image of the laser beam L on the modulation surface 7a of the spatial light modulator 7 (the image of the laser beam L modulated in the spatial light modulator 7) is transferred (formed) onto the entrance pupil plane 33a of the condenser 33. image) to be done. In addition, in FIG. 3, f1 and f2 indicate the focal lengths of the lenses 34A and 34B, respectively, and Fs indicates the Fourier plane.
 図4に示されるように、空間光変調器7は、反射型液晶(LCOS:Liquid Crystal on Silicon)の空間光変調器(SLM:Spatial Light Modulator)である。空間光変調器7は、半導体基板71上に、駆動回路層72、画素電極層73、反射膜74、配向膜75、液晶層76、配向膜77、透明導電膜78及び透明基板79がこの順序で積層されることで、構成されている。 As shown in FIG. 4, the spatial light modulator 7 is a reflective liquid crystal (LCOS) spatial light modulator (SLM). In the spatial light modulator 7, a drive circuit layer 72, a pixel electrode layer 73, a reflective film 74, an alignment film 75, a liquid crystal layer 76, an alignment film 77, a transparent conductive film 78, and a transparent substrate 79 are arranged on a semiconductor substrate 71 in this order. It is constructed by laminating layers.
 半導体基板71は、例えば、シリコン基板である。駆動回路層72は、半導体基板71上において、アクティブ・マトリクス回路を構成している。画素電極層73は、半導体基板71の表面に沿ってマトリックス状に配列された複数の画素電極73aを含んでいる。各画素電極73aは、例えば、アルミニウム等の金属材料によって形成されている。各画素電極73aには、駆動回路層72によって電圧が印加される。 The semiconductor substrate 71 is, for example, a silicon substrate. The drive circuit layer 72 constitutes an active matrix circuit on the semiconductor substrate 71. The pixel electrode layer 73 includes a plurality of pixel electrodes 73a arranged in a matrix along the surface of the semiconductor substrate 71. Each pixel electrode 73a is made of, for example, a metal material such as aluminum. A voltage is applied to each pixel electrode 73a by the drive circuit layer 72.
 反射膜74は、例えば、誘電体多層膜である。配向膜75は、液晶層76における反射膜74側の表面に設けられており、配向膜77は、液晶層76における反射膜74とは反対側の表面に設けられている。各配向膜75,77は、例えば、ポリイミド等の高分子材料によって形成されており、各配向膜75,77における液晶層76との接触面には、例えば、ラビング処理が施されている。配向膜75,77は、液晶層76に含まれる液晶分子76aを一定方向に配列させる。 The reflective film 74 is, for example, a dielectric multilayer film. The alignment film 75 is provided on the surface of the liquid crystal layer 76 on the reflective film 74 side, and the alignment film 77 is provided on the surface of the liquid crystal layer 76 on the opposite side to the reflective film 74. Each of the alignment films 75 and 77 is made of, for example, a polymeric material such as polyimide, and the contact surface of each of the alignment films 75 and 77 with the liquid crystal layer 76 is subjected to, for example, a rubbing treatment. The alignment films 75 and 77 align liquid crystal molecules 76a included in the liquid crystal layer 76 in a certain direction.
 透明導電膜78は、透明基板79における配向膜77側の表面に設けられており、液晶層76等を挟んで画素電極層73と向かい合っている。透明基板79は、例えば、ガラス基板である。透明導電膜78は、例えば、ITO等の光透過性且つ導電性材料によって形成されている。透明基板79及び透明導電膜78は、レーザ光Lを透過させる。 The transparent conductive film 78 is provided on the surface of the transparent substrate 79 on the alignment film 77 side, and faces the pixel electrode layer 73 with the liquid crystal layer 76 and the like interposed therebetween. The transparent substrate 79 is, for example, a glass substrate. The transparent conductive film 78 is made of a light-transmissive and conductive material such as ITO, for example. The transparent substrate 79 and the transparent conductive film 78 transmit the laser beam L.
 以上のように構成された空間光変調器7では、変調パターンを示す信号が制御部6から駆動回路層72に入力されると、当該信号に応じた電圧が各画素電極73aに印加され、各画素電極73aと透明導電膜78との間に電界が形成される。当該電界が形成されると、液晶層76において、各画素電極73aに対応する領域ごとに液晶分子76aの配列方向が変化し、各画素電極73aに対応する領域ごとに屈折率が変化する。この状態が、空間光変調器7が変調パターンを表示した状態である。 In the spatial light modulator 7 configured as described above, when a signal indicating a modulation pattern is input from the control unit 6 to the drive circuit layer 72, a voltage corresponding to the signal is applied to each pixel electrode 73a, and each An electric field is formed between the pixel electrode 73a and the transparent conductive film 78. When the electric field is formed, in the liquid crystal layer 76, the alignment direction of the liquid crystal molecules 76a changes for each region corresponding to each pixel electrode 73a, and the refractive index changes for each region corresponding to each pixel electrode 73a. This state is the state in which the spatial light modulator 7 displays a modulation pattern.
 空間光変調器7が変調パターンを表示した状態で、レーザ光Lが、外部から透明基板79及び透明導電膜78を介して液晶層76に入射し、反射膜74で反射されて、液晶層76から透明導電膜78及び透明基板79を介して外部に出射させられると、液晶層76に表示された変調パターンに応じて、レーザ光Lの強度、振幅、位相、偏光等が変調される。なお、図3に示される変調面7aは、液晶層76に対応する。
[トレフォイル収差パターンを用いたレーザ加工方法]
With the spatial light modulator 7 displaying a modulation pattern, the laser beam L enters the liquid crystal layer 76 from the outside via the transparent substrate 79 and the transparent conductive film 78, is reflected by the reflective film 74, and the laser beam L enters the liquid crystal layer 76 from the outside through the transparent substrate 79 and the transparent conductive film 78. When the laser beam L is emitted to the outside through the transparent conductive film 78 and the transparent substrate 79, the intensity, amplitude, phase, polarization, etc. of the laser beam L are modulated according to the modulation pattern displayed on the liquid crystal layer 76. Note that the modulation surface 7a shown in FIG. 3 corresponds to the liquid crystal layer 76.
[Laser processing method using Trefoil aberration pattern]
 レーザ加工装置1において、制御部6は、トレフォイル収差パターンを含む変調パターンを空間光変調器7に表示させることができる。図5は、トレフォイル収差パターンの一例を示す図である。トレフォイル収差は、ゼルニケの三次収差の一つである。なお、球面収差及び非点収差はゼルニケの二次収差に含まれ、コマ収差及びトレフォイル収差はゼルニケの三次収差に含まれる。 In the laser processing apparatus 1, the control unit 6 can cause the spatial light modulator 7 to display a modulation pattern including a trefoil aberration pattern. FIG. 5 is a diagram showing an example of a trefoil aberration pattern. Trefoil aberration is one of Zernike's third-order aberrations. Note that spherical aberration and astigmatism are included in Zernike's second-order aberration, and coma aberration and trefoil aberration are included in Zernike's third-order aberration.
 トレフォイル収差パターンを表示した空間光変調器7によって変調されたレーザ光Lが集光部33によって集光されると、図6の(a)に示されるように、レーザ光Lは、集光スポットCにおいて最も絞られる。このとき、集光スポットCにおけるレーザ光Lのビーム形状9(すなわち、「レーザ光Lの光軸(図6の(a)に示される一点鎖線)に垂直であり且つ集光スポットCを含む面」内でのレーザ光Lの強度分布)は、図6の(b)に示されるように、中心部90並びに中心部90から放射状に延在する第1延在部91、第2延在部92及び第3延在部93を含み且つ中心部90において最も高い強度を有するビーム形状となる。一例として、第1延在部91、第2延在部92及び第3延在部93のそれぞれの幅は、中心部90から離れるほど小さくなっており、第1延在部91、第2延在部92及び第3延在部93のそれぞれの強度は、中心部90から離れるほど低くなっている。一例として、レーザ光Lのビーム形状9は、三角形の各辺が内側に湾曲したような形状である。 When the laser beam L modulated by the spatial light modulator 7 displaying the trefoil aberration pattern is focused by the condenser 33, the laser beam L becomes a condensed spot, as shown in FIG. 6(a). It is most narrowed down in C. At this time, the beam shape 9 of the laser beam L at the condensed spot C (i.e., a surface that is perpendicular to the optical axis of the laser beam L (dotted chain line shown in FIG. 6(a)) and includes the condensed spot C. As shown in FIG. 92 and the third extending portion 93, and has the highest strength at the center portion 90. As an example, the width of each of the first extending portion 91, the second extending portion 92, and the third extending portion 93 becomes smaller as the distance from the center portion 90 increases. The strength of each of the existing portion 92 and the third extending portion 93 decreases as the distance from the center portion 90 increases. As an example, the beam shape 9 of the laser beam L is like a triangle with each side curved inward.
 なお、トレフォイル収差パターンを含む変調パターンには、トレフォイル収差パターンのみを含む変調パターンは勿論、トレフォイル収差パターン及びそれ以外のパターンを含む変調パターンも含まれる。変調パターンがトレフォイル収差パターン以外のパターンを含んでいる場合にも、トレフォイル収差パターンを含む変調パターンを表示した空間光変調器7によって変調されたレーザ光Lが集光部33によって集光されると、集光スポットCにおけるレーザ光Lのビーム形状9が、中心部90並びに中心部90から放射状に延在する第1延在部91、第2延在部92及び第3延在部93を含み且つ中心部90において最も高い強度を有するビーム形状となる。一例として、トレフォイル収差パターン及び非点収差パターンを含む変調パターンを表示した空間光変調器7によって変調されたレーザ光Lが集光部33によって集光されると、複数の集光スポットCが現れる場合があるが、そのような場合にも、各集光スポットCにおけるレーザ光Lのビーム形状9(この場合、「集光スポットCに集光されるレーザ光Lの光軸に垂直であり且つ集光スポットCを含む面」内でのレーザ光Lの強度分布)は、中心部90並びに中心部90から放射状に延在する第1延在部91、第2延在部92及び第3延在部93を含み且つ中心部90において最も高い強度を有するビーム形状となる。 Note that the modulation pattern including a trefoil aberration pattern includes not only a modulation pattern including only a trefoil aberration pattern, but also a modulation pattern including a trefoil aberration pattern and other patterns. Even when the modulation pattern includes a pattern other than the trefoil aberration pattern, when the laser beam L modulated by the spatial light modulator 7 displaying the modulation pattern including the trefoil aberration pattern is condensed by the condenser 33. , the beam shape 9 of the laser beam L at the focused spot C includes a center portion 90 and a first extending portion 91, a second extending portion 92, and a third extending portion 93 extending radially from the center portion 90. Moreover, the beam shape has the highest intensity at the center portion 90. As an example, when the laser beam L modulated by the spatial light modulator 7 that displays a modulation pattern including a trefoil aberration pattern and an astigmatism pattern is focused by the focusing unit 33, a plurality of focused spots C appear. However, even in such a case, the beam shape 9 of the laser light L at each focused spot C (in this case, "perpendicular to the optical axis of the laser light L focused on the focused spot C and The intensity distribution of the laser beam L within the plane including the focused spot C is determined by the center portion 90 and the first extending portions 91, second extending portions 92, and third extending portions extending radially from the center portion 90. The beam shape includes the existing portion 93 and has the highest strength at the center portion 90.
 図7は、トレフォイル収差強度ごとのレーザ光Lのビーム形状の一例を示す図である。トレフォイル収差強度の絶対値はトレフォイル収差の強さを示し、トレフォイル収差強度の絶対値が大きくなるほどトレフォイル収差が強くなる(したがって、「トレフォイル収差強度が強い」とは、トレフォイル収差強度の絶対値が大きいこと意味する)。トレフォイル収差強度の正負の符号はトレフォイル収差の向きを示し、正の符号を有するトレフォイル収差と負の符号を有するトレフォイル収差とではトレフォイル収差の向きが180度異なる。図7には、レーザ光Lのビーム形状として、カメラによって撮像されたカメラ像が示されている。 FIG. 7 is a diagram showing an example of the beam shape of the laser light L for each trefoil aberration intensity. The absolute value of the trefoil aberration strength indicates the strength of the trefoil aberration, and the larger the absolute value of the trefoil aberration strength, the stronger the trefoil aberration (therefore, "the trefoil aberration strength is strong" means that the absolute value of the trefoil aberration strength is large) (meaning). The positive or negative sign of the trefoil aberration intensity indicates the direction of the trefoil aberration, and the direction of the trefoil aberration differs by 180 degrees between the trefoil aberration having a positive sign and the trefoil aberration having a negative sign. FIG. 7 shows a camera image taken by a camera as the beam shape of the laser light L.
 図7に示されるように、いずれのトレフォイル収差強度を有するトレフォイル収差パターンによってレーザ光Lが変調された場合にも、集光スポットCにおけるレーザ光Lのビーム形状9は、中心部90並びに第1延在部91、第2延在部92及び第3延在部93を含み且つ中心部90において最も高い強度を有するビーム形状となる(図6の(b)参照)。このとき、-20μmの位置におけるレーザ光Lのビーム形状、及び+20μmの位置におけるレーザ光Lのビーム形状も、集光スポットCにおけるレーザ光Lのビーム形状9と同様の形状及び向きを有するビーム形状となる。集光スポットCにおけるレーザ光Lのビーム形状9は、カメラ像を一見すると、-20μmの位置におけるレーザ光Lのビーム形状、及び+20μmの位置におけるレーザ光Lのビーム形状とは逆側に向いているように見える場合があるが、そのような場合にも、強度が高い部分だけでなく強度が低い部分まで含めると、それらのビーム形状と同じ側に向いていることが分かる。なお、「-20μmの位置」は、集光スポットCから集光部33側に20μm離れた位置であり、「+20μmの位置」は、集光スポットCから集光部33とは反対側に20μm離れた位置である。 As shown in FIG. 7, even when the laser beam L is modulated by the trefoil aberration pattern having any trefoil aberration intensity, the beam shape 9 of the laser beam L at the focused spot C is The beam shape includes the extending portion 91, the second extending portion 92, and the third extending portion 93 and has the highest strength at the center portion 90 (see (b) of FIG. 6). At this time, the beam shape of the laser light L at the -20 μm position and the beam shape of the laser light L at the +20 μm position also have the same shape and direction as the beam shape 9 of the laser light L at the focused spot C. becomes. When looking at the camera image at a glance, the beam shape 9 of the laser light L at the focused spot C is oriented to the opposite side from the beam shape of the laser light L at the -20 μm position and the beam shape of the laser light L at the +20 μm position. However, even in such cases, if you include not only the high-intensity parts but also the low-intensity parts, you can see that they are facing the same side as the beam shape. Note that the "-20 μm position" is a position 20 μm away from the condensing spot C toward the condensing unit 33, and the "+20 μm position" is 20 μm away from the condensing spot C on the side opposite to the condensing unit 33. It is a remote location.
 図8は、トレフォイル収差パターンによって変調されたレーザ光Lのビーム形状の一例を示す図である。図9は、トレフォイル収差パターン及び非点収差パターン(すなわち、それらが重畳された変調パターン)によって変調されたレーザ光Lのビーム形状の一例を示す図である。図10は、トレフォイル収差パターン、非点収差パターン及び球面収差パターン(すなわち、それらが重畳された変調パターン)によって変調されたレーザ光Lのビーム形状の一例を示す図である。図8、図9及び図10には、レーザ光Lのビーム形状として、シミュレーションによって取得されたシミュレーション像、及びカメラによって撮像されたカメラ像が示されている。なお、図8、図9及び図10のいずれの場合も、トレフォイル収差パターンのトレフォイル収差強度は-0.6である。 FIG. 8 is a diagram showing an example of the beam shape of the laser light L modulated by the trefoil aberration pattern. FIG. 9 is a diagram showing an example of a beam shape of laser light L modulated by a trefoil aberration pattern and an astigmatism pattern (that is, a modulation pattern in which they are superimposed). FIG. 10 is a diagram showing an example of a beam shape of laser light L modulated by a trefoil aberration pattern, an astigmatism pattern, and a spherical aberration pattern (that is, a modulation pattern in which they are superimposed). 8, 9, and 10 show a simulation image obtained by simulation and a camera image captured by a camera as the beam shape of the laser light L. In addition, in any case of FIG. 8, FIG. 9, and FIG. 10, the trefoil aberration intensity of the trefoil aberration pattern is -0.6.
 図8、図9及び図10に示されるように、トレフォイル収差パターンを含む変調パターンによってレーザ光Lが変調されると、集光スポットCにおけるレーザ光Lのビーム形状9は、中心部90並びに第1延在部91、第2延在部92及び第3延在部93を含み且つ中心部90において最も高い強度を有するビーム形状となる(図6の(b)参照)。このとき、-20μmの位置におけるレーザ光Lのビーム形状、及び+20μmの位置におけるレーザ光Lのビーム形状も、集光スポットCにおけるレーザ光Lのビーム形状9と同様の形状及び向きを有するビーム形状となる。集光スポットCにおけるレーザ光Lのビーム形状9は、カメラ像を一見すると、-20μmの位置におけるレーザ光Lのビーム形状、及び+20μmの位置におけるレーザ光Lのビーム形状とは逆側に向いているように見える場合があるが、そのような場合にも、強度が高い部分だけでなく強度が低い部分まで含めると、それらのビーム形状と同じ側に向いていることが分かる。 As shown in FIGS. 8, 9 and 10, when the laser beam L is modulated by a modulation pattern including a trefoil aberration pattern, the beam shape 9 of the laser beam L at the focused spot C is The beam shape includes the first extending portion 91, the second extending portion 92, and the third extending portion 93 and has the highest strength at the center portion 90 (see (b) of FIG. 6). At this time, the beam shape of the laser light L at the -20 μm position and the beam shape of the laser light L at the +20 μm position also have the same shape and direction as the beam shape 9 of the laser light L at the focused spot C. becomes. When looking at the camera image at a glance, the beam shape 9 of the laser light L at the focused spot C is oriented to the opposite side from the beam shape of the laser light L at the -20 μm position and the beam shape of the laser light L at the +20 μm position. However, even in such cases, if you include not only the high-intensity parts but also the low-intensity parts, you can see that they are facing the same side as the beam shape.
 図11は、トレフォイル収差パターンによって変調されたレーザ光Lのビーム形状の一例を示す図である。この場合、トレフォイル収差パターンのトレフォイル収差強度は-0.5である。図11に示されるように、-100μmの位置におけるレーザ光Lのビーム形状、及び+100μmの位置におけるレーザ光Lのビーム形状は、集光スポットCにおけるレーザ光Lのビーム形状9とは逆側に向いたビーム形状となる。なお、「-100μmの位置」は、集光スポットCから集光部33側に100μm離れた位置であり、「+100μmの位置」は、集光スポットCから集光部33とは反対側に100μm離れた位置である。 FIG. 11 is a diagram showing an example of the beam shape of the laser light L modulated by the trefoil aberration pattern. In this case, the trefoil aberration intensity of the trefoil aberration pattern is -0.5. As shown in FIG. 11, the beam shape of the laser light L at the -100 μm position and the beam shape of the laser light L at the +100 μm position are on the opposite side to the beam shape 9 of the laser light L at the focused spot C. The beam shape is oriented. Note that the "-100 μm position" is a position 100 μm away from the condensing spot C toward the condensing part 33, and the "+100 μm position" is 100 μm away from the condensing spot C on the side opposite to the condensing part 33. It is a remote location.
 これに対し、上述したように、-20μmの位置におけるレーザ光Lのビーム形状、及び+20μmの位置におけるレーザ光Lのビーム形状は、集光スポットCにおけるレーザ光Lのビーム形状9と同様の形状及び向きを有するビーム形状となる(図7、図8、図9及び図10参照)。特に、-20μmの位置におけるレーザ光Lのビーム形状は、+20μmの位置におけるレーザ光Lのビーム形状に比べ、集光スポットCにおけるレーザ光Lのビーム形状9を顕著に示している。したがって、トレフォイル収差パターンを含む変調パターンによって変調されたレーザ光Lが集光されている場合に、集光スポットCにおけるレーザ光Lのビーム形状9を推定するためには、-20μmの位置におけるレーザ光Lのビーム形状をカメラによって撮像し、そのカメラ像を観察すればよい。 On the other hand, as described above, the beam shape of the laser light L at the -20 μm position and the beam shape of the laser light L at the +20 μm position are similar to the beam shape 9 of the laser light L at the focused spot C. and a beam shape having a direction (see FIGS. 7, 8, 9, and 10). In particular, the beam shape of the laser light L at the −20 μm position clearly shows the beam shape 9 of the laser light L at the focused spot C compared to the beam shape of the laser light L at the +20 μm position. Therefore, when the laser beam L modulated by a modulation pattern including a trefoil aberration pattern is focused, in order to estimate the beam shape 9 of the laser beam L at the focused spot C, it is necessary to What is necessary is to image the beam shape of the light L with a camera and observe the camera image.
 また、図12の(a)に示されるように、シリコンウェハである対象物11の第2表面11bに金属膜8を形成し、対象物11の第1表面11aをレーザ光Lの入射面として且つ第2表面11bから20~30μmの位置であって対象物11の内部の位置に集光スポットCを合わせて、対象物11にレーザ光Lを照射すると、トレフォイル収差パターンを含む変調パターンによって変調されたレーザ光Lが集光されている場合には、図12の(b)に示されるように、集光スポットCにおけるレーザ光Lのビーム形状9と同様の形状及び向きを有するダメージが金属膜8に形成される。したがって、トレフォイル収差パターンを含む変調パターンによって変調されたレーザ光Lが集光されている場合に、集光スポットCにおけるレーザ光Lのビーム形状9を推定するためには、上述のように金属膜8にダメージを形成し、そのダメージを観察すればよい。 Further, as shown in FIG. 12(a), a metal film 8 is formed on the second surface 11b of the object 11, which is a silicon wafer, and the first surface 11a of the object 11 is used as the incident surface of the laser beam L. When the laser beam L is irradiated onto the object 11 by aligning the focused spot C with a position 20 to 30 μm from the second surface 11b and inside the object 11, the laser beam L is modulated by a modulation pattern including a trefoil aberration pattern. When the laser beam L is focused, damage having the same shape and direction as the beam shape 9 of the laser beam L at the focused spot C occurs on the metal, as shown in FIG. The film 8 is formed. Therefore, in order to estimate the beam shape 9 of the laser light L at the focused spot C when the laser light L modulated by the modulation pattern including the trefoil aberration pattern is focused, it is necessary to 8 and observe the damage.
 以上を踏まえ、トレフォイル収差パターンを用いたレーザ加工方法によって形成される改質領域及び亀裂(改質領域の形成時に改質領域から延在する亀裂)の第1例について説明する。図13及び図14は、レーザ加工条件ごとの対象物11の切断面の第1例を示す図である。図13及び図14には、「シリコンウェハである対象物11の内部に、シリコンウェハの厚さ方向に並ぶ二列の改質領域がラインAに沿って形成され、その後に、対象物11がエキスパンドによってラインAに沿って切断された場合」における対象物11の切断面が示されている。 Based on the above, a first example of a modified region and a crack (a crack extending from the modified region when the modified region is formed) formed by a laser processing method using a trefoil aberration pattern will be described. 13 and 14 are diagrams showing first examples of cut surfaces of the object 11 for each laser processing condition. 13 and 14, "Two rows of modified regions aligned in the thickness direction of the silicon wafer are formed inside the object 11, which is a silicon wafer, along line A, and then the object 11 is A cut surface of the object 11 when it is cut along line A by expanding is shown.
 図13及び図14において、「条件A」は、「ラインA上の矢印で示される向き」(図13では右向き、図14では左向き)に集光スポットCが相対的に移動させられ、その際に、集光スポットCにおけるレーザ光Lのビーム形状9が、(1)「ラインA上に中心部90及び第1延在部91が位置し且つラインAに対して第1の側(図13では上側、図14では下側)に第2延在部92が位置し且つラインAに対して第2の側(図13では下側、図14では上側)に第3延在部93が位置する状態」となり、且つ、(2)「ラインAに沿って集光スポットCが相対的に移動する向きの前側に第1延在部91が位置し且つ当該向きの後側に第2延在部92及び第3延在部93が位置する状態」となるレーザ加工条件である。 13 and 14, "condition A" is that the condensed spot C is relatively moved in the "direction indicated by the arrow on line A" (rightward in FIG. 13, leftward in FIG. 14); , the beam shape 9 of the laser beam L at the focused spot C is such that (1) the center portion 90 and the first extension portion 91 are located on the line A, and the first side with respect to the line A (FIG. 13 The second extending portion 92 is located on the upper side in FIG. 14, and the lower side in FIG. and (2) the first extension part 91 is located on the front side in the direction in which the focused spot C moves relatively along the line A, and the second extension part 91 is located on the rear side in the direction. The laser processing conditions are such that the portion 92 and the third extension portion 93 are located.
 また、「条件B」は、「ラインA上の矢印で示される向き」(図13では左向き、図14では右向き)に集光スポットCが相対的に移動させられ、その際に、集光スポットCにおけるレーザ光Lのビーム形状9が、(1)「ラインA上に中心部90及び第1延在部91が位置し且つラインAに対して第2の側(図13では上側、図14では下側)に第2延在部92が位置し且つラインAに対して第1の側(図13では下側、図14では上側)に第3延在部93が位置する状態」となり、且つ、(3)「ラインAに沿って集光スポットCが相対的に移動する向きの後側に第1延在部91が位置し且つ当該向きの前側に第2延在部92及び第3延在部93が位置する状態」となるレーザ加工条件である。 In addition, "Condition B" is such that the focused spot C is relatively moved in the "direction indicated by the arrow on line A" (leftward in FIG. 13, rightward in FIG. 14), and at that time, the focused spot The beam shape 9 of the laser beam L at C is as follows: 13, the second extending portion 92 is located on the lower side) and the third extending portion 93 is located on the first side (lower side in FIG. 13, upper side in FIG. and (3) "the first extension part 91 is located on the rear side in the direction in which the focused spot C moves relatively along the line A, and the second extension part 92 and the third extension part are located on the front side in the direction These are the laser processing conditions in which the extension portion 93 is positioned.
 なお、「条件A」の段における「標準」は、変調パターンがトレフォイル収差パターンを含んでいない点のみが「条件A」と相違するレーザ加工条件である。また、「条件B」の段における「標準」は、変調パターンがトレフォイル収差パターンを含んでいない点のみが「条件B」と相違するレーザ加工条件である。 Note that "Standard" in the "Condition A" column is a laser processing condition that differs from "Condition A" only in that the modulation pattern does not include a trefoil aberration pattern. Further, "Standard" in the "Condition B" stage is a laser processing condition that differs from "Condition B" only in that the modulation pattern does not include a trefoil aberration pattern.
 図13及び図14に示される対象物11の切断面の状態から得られる知見について、図15を参照しつつ説明する。 Knowledge obtained from the state of the cut surface of the object 11 shown in FIGS. 13 and 14 will be explained with reference to FIG. 15.
 まず、図15に示されるように、ラインAに沿って対象物11に改質領域12を形成すると共に、改質領域12からレーザ光Lの入射方向(Z方向)及びラインAの延在方向(X方向)の両方向に平行な第1面P1に沿って対象物11に亀裂13を形成する場合において、レーザ光Lの入射方向における亀裂13の幅を小さくするときには、ラインA上に第1延在部91が位置し且つラインAに対して一方の側に第2延在部92が位置し且つラインAに対して他方の側に第3延在部93が位置するように(図13及び図14では「条件A」及び「条件B」)、トレフォイル収差パターンを含む変調パターンを空間光変調器7に表示させればよい。 First, as shown in FIG. 15, a modified region 12 is formed in the object 11 along a line A, and the incident direction (Z direction) of the laser beam L from the modified region 12 and the extending direction of the line A are When forming a crack 13 in the object 11 along the first surface P1 parallel to both directions (X direction), when reducing the width of the crack 13 in the incident direction of the laser beam L, a first The extension part 91 is located, the second extension part 92 is located on one side with respect to line A, and the third extension part 93 is located on the other side with respect to line A (FIG. 13). and "Condition A" and "Condition B" in FIG. 14), a modulation pattern including a trefoil aberration pattern may be displayed on the spatial light modulator 7.
 なお、図13及び図14に示される対象物11の切断面において、レーザ光Lの入射方向における亀裂の幅が小さくなっていることは、左右方向に延在する黒色の筋が二列の改質領域(左右方向に延在する黒色の帯状領域)の間に形成されていることから分かる。その理由は、二列の改質領域の形成時に各改質領域から延在した亀裂が二列の改質領域の間で繋がっていない状態で、エキスパンドによる対象物11の切断が実施された場合に、左右方向に延在する黒色の筋が形成され得るからである。 In addition, in the cut plane of the object 11 shown in FIGS. 13 and 14, the width of the crack in the incident direction of the laser beam L is small because the black streaks extending in the left and right direction are modified in two rows. This can be seen from the fact that it is formed between the dark areas (black band-shaped areas extending in the left-right direction). The reason for this is that when cutting the object 11 by expanding is performed in a state where the cracks extending from each modified region are not connected between the two rows of modified regions when two rows of modified regions are formed. This is because black streaks extending in the left-right direction may be formed.
 また、図15に示されるように、ラインAに沿って対象物11に改質領域12を形成すると共に、第1面P1に沿って対象物11に亀裂13を形成する場合において、レーザ光Lの入射方向における亀裂13の幅だけでなく、レーザ光Lの入射方向における改質領域12の幅も小さくし、且つ、ラインAに対して亀裂13が蛇行するのを抑制するときには、ラインAに沿って集光スポットCが相対的に移動する向きの前側に第1延在部91が位置し且つ当該向きの後側に第2延在部92及び第3延在部93が位置するように(図13及び図14では「条件A」)、トレフォイル収差パターンを含む変調パターンを空間光変調器7に表示させればよい。なお、図13及び図14に示される対象物11の切断面において、ラインAに対する亀裂13の蛇行が抑制されていることは、二列の改質領域から上下方向に延在する黒色の筋(ツイストハックルと称される)が、「標準」及び「条件B」よりも「条件A」において減少していることから分かる。 Further, as shown in FIG. 15, when forming the modified region 12 in the object 11 along the line A and also forming the crack 13 in the object 11 along the first surface P1, the laser beam L When reducing not only the width of the crack 13 in the incident direction of the laser beam L but also the width of the modified region 12 in the incident direction of the laser beam L and suppressing the meandering of the crack 13 with respect to the line A, The first extension part 91 is located on the front side in the direction in which the focused spot C moves relatively along the line, and the second extension part 92 and the third extension part 93 are located on the rear side in the direction. (“Condition A” in FIGS. 13 and 14), a modulation pattern including a trefoil aberration pattern may be displayed on the spatial light modulator 7. In addition, in the cut plane of the object 11 shown in FIGS. 13 and 14, the fact that the meandering of the crack 13 with respect to the line A is suppressed is indicated by the black streaks ( This can be seen from the fact that the amount of twist hackle (referred to as twist hackle) was decreased in "Condition A" compared to "Standard" and "Condition B".
 なお、ラインAとして対象物11に設定された第1ライン及び第2ラインのそれぞれに沿って集光スポットCを相対的に移動させる場合において、第1ラインに沿って集光スポットCを相対的に移動させる向きと、第2ラインに沿って集光スポットCを相対的に移動させる向きとが異なるときには、第1ライン及び第2ラインのそれぞれに沿って集光スポットCが相対的に移動する向きの前側に第1延在部91が位置し且つ当該向きの後側に第2延在部92及び第3延在部93が位置するように、空間光変調器7において、トレフォイル収差パターンを含む変調パターンの向きを切り替えればよい。 In addition, in the case where the focused spot C is relatively moved along each of the first line and the second line set on the object 11 as the line A, the focused spot C is relatively moved along the first line. When the direction in which the focused spot C is moved is different from the direction in which the focused spot C is relatively moved along the second line, the focused spot C is relatively moved along each of the first line and the second line. A trefoil aberration pattern is formed in the spatial light modulator 7 so that the first extension part 91 is located on the front side in the direction, and the second extension part 92 and the third extension part 93 are located on the rear side in the direction. What is necessary is to switch the direction of the included modulation pattern.
 また、図15に示されるように、レーザ光Lの入射方向(Z方向)における改質領域12及び亀裂13の少なくとも一方の幅を第1幅とする場合には、第1トレフォイル収差強度のトレフォイル収差パターンを含む変調パターンを空間光変調器7に表示させ、当該少なくとも一方の幅を第1幅よりも小さい第2幅とする場合には、第1トレフォイル収差強度よりも強い第2トレフォイル収差強度のトレフォイル収差パターンを含む変調パターンを空間光変調器7に表示させればよい。なお、図15に示される例では、レーザ光Lの入射方向における改質領域12及び亀裂13のそれぞれの幅が、第1トレフォイル収差強度よりも第2トレフォイル収差強度において小さくなっている。 Further, as shown in FIG. 15, when the width of at least one of the modified region 12 and the crack 13 in the incident direction (Z direction) of the laser beam L is set as the first width, the trefoil with the first trefoil aberration strength is When a modulation pattern including an aberration pattern is displayed on the spatial light modulator 7 and at least one of the widths is a second width smaller than the first width, the second trefoil aberration intensity is stronger than the first trefoil aberration intensity. What is necessary is to display a modulation pattern including the trefoil aberration pattern on the spatial light modulator 7. In the example shown in FIG. 15, the widths of each of the modified region 12 and the crack 13 in the incident direction of the laser beam L are smaller at the second trefoil aberration intensity than at the first trefoil aberration intensity.
 次に、トレフォイル収差パターンを用いたレーザ加工方法によって形成される改質領域及び亀裂(改質領域の形成時に改質領域から延在する亀裂)の第2例について説明する。図16及び図17は、レーザ加工条件ごとの対象物11の切断面の第2例を示す図である。図16及び図17には、「シリコンウェハである対象物11の内部に、シリコンウェハの厚さ方向に並ぶ二列の改質領域がラインAに沿って形成され、その後に、対象物11がエキスパンドによってラインAに沿って切断された場合」における対象物11の切断面が示されている。 Next, a second example of a modified region and a crack (a crack extending from the modified region when the modified region is formed) formed by a laser processing method using a trefoil aberration pattern will be described. FIGS. 16 and 17 are diagrams showing second examples of cut surfaces of the object 11 for each laser processing condition. 16 and 17, "Two rows of modified regions lined up in the thickness direction of the silicon wafer are formed inside the object 11, which is a silicon wafer, along line A, and then the object 11 is A cut surface of the object 11 when it is cut along line A by expanding is shown.
 図16及び図17において、「条件C」は、「ラインA上の矢印で示される向き」(図16では右向き、図17では左向き)に集光スポットCが相対的に移動させられ、その際に、集光スポットCにおけるレーザ光Lのビーム形状9が、(4)「ラインA上に中心部90が位置し且つラインAに対して第1の側(図16では上側、図17では下側)に第1延在部91が位置し且つラインAに対して第2の側(図16では下側、図17では上側)に第2延在部92及び第3延在部93が位置する状態」となるレーザ加工条件である。 16 and 17, "Condition C" is such that the focused spot C is relatively moved in the "direction indicated by the arrow on line A" (toward the right in FIG. 16, to the left in FIG. 17); , the beam shape 9 of the laser beam L at the focused spot C is (4) "the center part 90 is located on the line A and the first side with respect to the line A (the upper side in FIG. 16, the lower side in FIG. 17)" The first extending part 91 is located on the side), and the second extending part 92 and the third extending part 93 are located on the second side with respect to the line A (lower side in FIG. 16, upper side in FIG. 17). These are the laser processing conditions that result in a state in which the
 また、「条件D」は、「ラインA上の矢印で示される向き」(図16では左向き、図17では右向き)に集光スポットCが相対的に移動させられ、その際に、集光スポットCにおけるレーザ光Lのビーム形状9が、(5)「ラインA上に中心部90が位置し且つラインAに対して第2の側(図16では上側、図17では下側)に第1延在部91が位置し且つラインAに対して第1の側(図16では下側、図17では上側)に第2延在部92及び第3延在部93が位置する状態」となるレーザ加工条件である。 In addition, "Condition D" is such that the focused spot C is relatively moved in the "direction indicated by the arrow on line A" (leftward in FIG. 16, rightward in FIG. 17), and at that time, the focused spot The beam shape 9 of the laser beam L at C is defined as (5) "The center part 90 is located on line A, and the first part is located on the second side with respect to line A (upper side in FIG. 16, lower side in FIG. A state in which the extension part 91 is located and the second extension part 92 and the third extension part 93 are located on the first side (lower side in FIG. 16, upper side in FIG. 17) with respect to line A. These are laser processing conditions.
 なお、「条件C」の段における「標準」は、変調パターンがトレフォイル収差パターンを含んでいない点のみが「条件C」と相違するレーザ加工条件である。また、「条件D」の段における「標準」は、変調パターンがトレフォイル収差パターンを含んでいない点のみが「条件D」と相違するレーザ加工条件である。 Note that "Standard" in the "Condition C" column is a laser processing condition that differs from "Condition C" only in that the modulation pattern does not include a trefoil aberration pattern. Further, "Standard" in the "Condition D" stage is a laser processing condition that differs from "Condition D" only in that the modulation pattern does not include a trefoil aberration pattern.
 図16及び図17に示される対象物11の切断面の状態から得られる知見について、図18及び図19を参照しつつ説明する。 Knowledge obtained from the state of the cut surface of the object 11 shown in FIGS. 16 and 17 will be explained with reference to FIGS. 18 and 19.
 まず、図18に示されるように、ラインAに沿って対象物11に改質領域12を形成すると共に、改質領域12からレーザ光Lの入射方向(Z方向)及びラインAの延在方向(X方向)の両方向に平行な第1面P1に対して傾斜する第2面P2に沿って対象物11に亀裂13を形成する場合において、レーザ光Lの入射側とは反対側の領域が第1面P1に垂直な方向(Y方向)における一方の側(図18では左側)に位置するように第2面P2が傾斜しているときには、ラインAに対して一方の側(図18では左側)に第1延在部91が位置し且つラインAに対して他方の側(図18では右側)に第2延在部92及び第3延在部93が位置するように、トレフォイル収差パターンを含む変調パターンを空間光変調器7に表示させればよい。 First, as shown in FIG. 18, a modified region 12 is formed in the object 11 along a line A, and the incident direction (Z direction) of the laser beam L from the modified region 12 and the extending direction of the line A are When forming a crack 13 in the object 11 along the second surface P2 that is inclined with respect to the first surface P1 that is parallel to both directions (X direction), the area on the opposite side to the incident side of the laser beam L is When the second surface P2 is inclined so as to be located on one side (the left side in FIG. 18) in the direction perpendicular to the first surface P1 (the Y direction), The Trefoil aberration pattern is such that the first extending part 91 is located on the left side) and the second extending part 92 and the third extending part 93 are located on the other side (right side in FIG. 18) with respect to the line A. What is necessary is to display a modulation pattern including the following on the spatial light modulator 7.
 また、図19に示されるように、ラインAに沿って対象物11に改質領域12を形成すると共に、改質領域12からレーザ光Lの入射方向(Z方向)及びラインAの延在方向(X方向)の両方向に平行な第1面P1に対して傾斜する第2面P2に沿って対象物11に亀裂13を形成する場合において、レーザ光Lの入射側とは反対側の領域が第1面P1に垂直な方向(Y方向)における他方の側(図19では右側)に位置するように第2面P2が傾斜しているときには、ラインAに対して他方の側(図19では右側)に第1延在部91が位置し且つラインAに対して一方の側(図19では左側)に第2延在部92及び第3延在部93が位置するように、トレフォイル収差パターンを含む変調パターンを空間光変調器7に表示させればよい。 Further, as shown in FIG. 19, a modified region 12 is formed in the object 11 along line A, and the incident direction (Z direction) of the laser beam L from the modified region 12 and the extending direction of line A are When forming a crack 13 in the object 11 along the second surface P2 that is inclined with respect to the first surface P1 that is parallel to both directions (X direction), the area on the opposite side to the incident side of the laser beam L is When the second surface P2 is inclined so as to be located on the other side (the right side in FIG. 19) in the direction perpendicular to the first surface P1 (Y direction), The Trefoil aberration pattern is such that the first extending part 91 is located on the right side) and the second extending part 92 and the third extending part 93 are located on one side (left side in FIG. 19) with respect to the line A. What is necessary is to display a modulation pattern including the following on the spatial light modulator 7.
 なお、ラインAとして対象物11に設定された第1ライン及び第2ラインのそれぞれに沿って集光スポットCを相対的に移動させる場合において、第1ラインに沿って集光スポットCを相対的に移動させる向きと、第2ラインに沿って集光スポットCを相対的に移動させる向きとが異なるときには、第1ライン及び第2ラインのそれぞれに対して一方の側に第1延在部91が位置し且つ第1ライン及び第2ラインのそれぞれに対して他方の側に第2延在部92及び第3延在部93が位置するように、空間光変調器7において、トレフォイル収差パターンを含む変調パターンの向きを切り替えればよい。 In addition, in the case where the focused spot C is relatively moved along each of the first line and the second line set on the object 11 as the line A, the focused spot C is relatively moved along the first line. When the direction in which the focused spot C is moved is different from the direction in which the focused spot C is relatively moved along the second line, the first extension portion 91 is placed on one side with respect to each of the first line and the second line. In the spatial light modulator 7, a trefoil aberration pattern is formed such that What is necessary is to switch the direction of the included modulation pattern.
 また、図18及び図19に示されるように、第1面P1と第2面P2との間の角度(すなわち、第1面P1と第2面P2とが成す鋭角側の角度)を第1角度とする場合には、第1トレフォイル収差強度のトレフォイル収差パターンを含む変調パターンを空間光変調器7に表示させ、当該角度を第1角度よりも大きい第2角度とする場合には、第1トレフォイル収差強度よりも強い第2トレフォイル収差強度のトレフォイル収差パターンを含む変調パターンを空間光変調器7に表示させればよい。なお、図16及び図17に示される対象物11の切断面において、トレフォイル収差強度が強くなるほど亀裂が傾斜する角度が大きくなっていることは、トレフォイル収差強度が強くなるほど黒色の領域が増加していることから分かる。図16及び図17に示される対象物11の切断面は、黒色の領域が増加する側が紙面の手前側に位置するように傾斜している。
[レーザ加工方法の第1例]
Further, as shown in FIGS. 18 and 19, the angle between the first surface P1 and the second surface P2 (that is, the acute angle formed by the first surface P1 and the second surface P2) is When the angle is set as an angle, a modulation pattern including a trefoil aberration pattern with the first trefoil aberration intensity is displayed on the spatial light modulator 7, and when the angle is set as a second angle larger than the first angle, the first trefoil aberration intensity is The spatial light modulator 7 may display a modulation pattern including a trefoil aberration pattern having a second trefoil aberration intensity stronger than the trefoil aberration intensity. In addition, in the cut plane of the object 11 shown in FIGS. 16 and 17, the angle at which the crack inclines increases as the trefoil aberration strength increases. This is because the black area increases as the trefoil aberration strength increases. You can tell from the fact that The cut plane of the object 11 shown in FIGS. 16 and 17 is inclined so that the side where the black area increases is located on the near side of the page.
[First example of laser processing method]
 図20は、レーザ加工方法の第1例が適用される対象物11を示す図である。図20に示されるように、対象物11は、第1表面11a及び第2表面11bを有する半導体ウェハである。一例として、対象物11は、シリコンウェハと、当該シリコンウェハの第1表面11a側に形成された複数の機能素子(図示省略)と、を備えている。複数の機能素子は、対象物11に形成されたノッチ11cを基準として、第1表面11aに沿ってマトリックス状に配置されている。各機能素子は、例えば、フォトダイオード等の受光素子、レーザダイオード等の発光素子、メモリ等の回路素子等である。各機能素子は、複数の層がスタックされて三次元的に構成される場合もある。なお、対象物11には、ノッチ11cの替わりに、オリエンテーションフラットが形成されていてもよい。 FIG. 20 is a diagram showing an object 11 to which the first example of the laser processing method is applied. As shown in FIG. 20, the object 11 is a semiconductor wafer having a first surface 11a and a second surface 11b. As an example, the object 11 includes a silicon wafer and a plurality of functional elements (not shown) formed on the first surface 11a side of the silicon wafer. The plurality of functional elements are arranged in a matrix along the first surface 11a with a notch 11c formed in the object 11 as a reference. Each functional element is, for example, a light receiving element such as a photodiode, a light emitting element such as a laser diode, a circuit element such as a memory, and the like. Each functional element may be configured three-dimensionally by stacking a plurality of layers. Note that an orientation flat may be formed on the object 11 instead of the notch 11c.
 レーザ加工方法の第1例は、上述したレーザ加工装置1において実施される。レーザ加工方法の第1例では、図20に示される対象物11が、格子状に延在する複数の加工面P10のそれぞれに沿って機能素子ごとに切断される。各加工面P10は、第1表面11a及び第2表面11bに垂直な平面である。レーザ加工方法の第1例では、図21の(a)及び(b)に示されるように、加工面P10が、レーザ光Lの入射方向(Z方向)及びラインAの延在方向(X方向)の両方向に平行な第1面P1に合わされた状態で、対象物11の内部に、対象物11の厚さ方向に並ぶ二列の改質領域12がラインAに沿って形成される。 A first example of the laser processing method is carried out in the laser processing apparatus 1 described above. In the first example of the laser processing method, the object 11 shown in FIG. 20 is cut into functional elements along each of a plurality of processing surfaces P10 extending in a grid pattern. Each processed surface P10 is a plane perpendicular to the first surface 11a and the second surface 11b. In the first example of the laser processing method, as shown in (a) and (b) of FIG. ), two rows of modified regions 12 aligned in the thickness direction of the object 11 are formed inside the object 11 along the line A.
 レーザ加工方法の第1例では、加工面P10内において延在するラインAに沿って対象物11に改質領域12を形成すると共に、第1面P1に沿って対象物11に亀裂13を形成したい。また、レーザ加工方法の第1例では、対象物11が薄いため、レーザ光Lの入射方向における改質領域12及び亀裂13のそれぞれの幅を小さくし、且つ、ラインAに対して亀裂13が蛇行するのを抑制したい。 In the first example of the laser processing method, a modified region 12 is formed in the object 11 along a line A extending within the processing surface P10, and a crack 13 is formed in the object 11 along the first surface P1. I want to. In the first example of the laser processing method, since the object 11 is thin, the widths of the modified region 12 and the crack 13 in the direction of incidence of the laser beam L are made small, and the crack 13 is made small with respect to the line A. I want to suppress meandering.
 そこで、レーザ加工方法の第1例では、ラインA上に第1延在部91が位置し且つラインAに対して一方の側に第2延在部92が位置し且つラインAに対して他方の側に第3延在部93が位置するように、且つ、ラインAに沿って集光スポットCが相対的に移動する向きの前側に第1延在部91が位置し且つ当該向きの後側に第2延在部92及び第3延在部93が位置するように、制御部6が、トレフォイル収差パターンを含む変調パターンを空間光変調器7に表示させる。このとき、レーザ光Lの入射方向における改質領域12及び亀裂13のそれぞれの幅をより小さくしたい場合には、制御部6が、より強いトレフォイル収差強度のトレフォイル収差パターンを含む変調パターンを空間光変調器7に表示させる。続いて、トレフォイル収差パターンを含む変調パターンを空間光変調器7に表示させた状態で、ラインAに沿って集光スポットCが相対的に移動するように、制御部6が、支持部2を駆動部4に駆動させる。以上の工程が全ての加工面P10に対して実施された後に、例えば対象物11の第2表面11bに貼られたダイシングテープの拡張によって、図20に示される対象物11が機能素子ごとに切断される。 Therefore, in the first example of the laser processing method, the first extension part 91 is located on the line A, the second extension part 92 is located on one side with respect to the line A, and the second extension part 92 is located on the other side with respect to the line A. , and the first extending part 91 is located in the front side in the direction in which the focused spot C moves relatively along the line A, and The control unit 6 causes the spatial light modulator 7 to display a modulation pattern including the trefoil aberration pattern so that the second extension part 92 and the third extension part 93 are located on the side. At this time, if it is desired to make each width of the modified region 12 and the crack 13 smaller in the incident direction of the laser beam L, the control unit 6 changes the modulation pattern including the trefoil aberration pattern with stronger trefoil aberration intensity to the spatial light. Displayed on the modulator 7. Next, with the modulation pattern including the trefoil aberration pattern displayed on the spatial light modulator 7, the control unit 6 controls the support unit 2 so that the focused spot C moves relatively along the line A. The drive section 4 is caused to drive. After the above steps have been performed on all processed surfaces P10, the object 11 shown in FIG. 20 is cut into functional elements by, for example, expanding the dicing tape attached to the second surface 11b of the object 11. be done.
 なお、レーザ加工方法の第1例では、レーザ光Lが対象物11の第1表面11a側から入射させられてもよいし、レーザ光Lが対象物11の第2表面11b側から入射させられてもよい。また、一列の改質領域12がラインAに沿って対象物11の内部に形成されてもよいし、対象物11の厚さ方向に並ぶ三列以上の改質領域12がラインAに沿って対象物11の内部に形成されてもよい。対象物11の厚さ方向に並ぶ複数列の改質領域12がラインAに沿って対象物11の内部に形成される場合、複数の集光スポットCを有するようにレーザ光Lが空間光変調器7によって変調されて、一回のレーザ光Lのスキャン(ラインAに沿ったレーザ光Lの相対的な移動)によって複数列の改質領域12がラインAに沿って対象物11の内部に形成されてもよい。また、レーザ加工時に、レーザ光Lが入射させられる表面とは反対側の第1表面11a又は第2表面11bにダイシングテープが貼られていてもよいし、レーザ光Lが入射させられる第1表面11a又は第2表面11bに、レーザ光Lに対して透過性を有するダイシングテープが貼られていてもよい。また、レーザ加工後であってダイシングテープの拡張前に、対象物11の第2表面11bが研削されて、対象物11が薄くされてもよい。その際に、対象物11に形成された改質領域12が除去されてもよい。 In the first example of the laser processing method, the laser beam L may be incident on the first surface 11a side of the object 11, or the laser beam L may be incident on the second surface 11b side of the object 11. You can. Furthermore, one row of modified regions 12 may be formed inside the object 11 along line A, or three or more rows of modified regions 12 lined up in the thickness direction of object 11 may be formed along line A. It may be formed inside the object 11. When a plurality of rows of modified regions 12 arranged in the thickness direction of the object 11 are formed inside the object 11 along the line A, the laser beam L is spatially modulated so as to have a plurality of focused spots C. Modulated by the device 7, a plurality of rows of modified regions 12 are created inside the object 11 along the line A by one scan of the laser beam L (relative movement of the laser beam L along the line A). may be formed. Further, during laser processing, a dicing tape may be attached to the first surface 11a or the second surface 11b opposite to the surface on which the laser beam L is incident, or the first surface on which the laser beam L is incident. A dicing tape that is transparent to the laser beam L may be attached to the first surface 11a or the second surface 11b. Furthermore, after the laser processing and before the expansion of the dicing tape, the second surface 11b of the object 11 may be ground to make the object 11 thinner. At that time, the modified region 12 formed in the object 11 may be removed.
 また、レーザ加工方法の第1例では、レーザ光Lの出射側の表面(図21に示される例では、第2表面11b)に近い改質領域12(以下、「第1改質領域」という)を形成する際に、第1改質領域からレーザ光Lの出射側の表面に亀裂13が到達しないように第1改質領域を形成し、第1改質領域とレーザ光Lの入射側の表面(図21に示される例では、第1表面11a)との間に改質領域12(以下、「第2改質領域」という)を形成する際に、第1改質領域と第2改質領域との間で亀裂13を繋げると共に、第1改質領域からレーザ光Lの出射側の表面に亀裂13を到達させてもよい(以下、「抜け光ダメージ抑制加工」という)。その場合において、第1改質領域を形成する際には、ラインA上に第1延在部91が位置し且つラインAに対して一方の側に第2延在部92が位置し且つラインAに対して他方の側に第3延在部93が位置するように、制御部6が、トレフォイル収差パターンを含む変調パターンを空間光変調器7に表示させ、第2改質領域を形成する際には、制御部6が、トレフォイル収差パターンを含まない変調パターン(或いは、第1改質領域を形成する際よりも弱いトレフォイル収差強度のトレフォイル収差パターンを含む変調パターン)を空間光変調器7に表示させることが好ましい。このようなレーザ加工法によれば、第1改質領域を形成する際にレーザ光Lの抜け光の散乱が抑制されるため、レーザ光Lの出射側の表面に抜け光によるダメージが生じるのを抑制することができる。それ以外にも、端面の品質を向上させることができ(すなわち、切断面の凹凸を低減することができ)、トレフォイル収差パターンを含む変調パターンを利用してツイストハックルを抑制することで、そのような効果を更に向上させることができる。 In addition, in the first example of the laser processing method, a modified region 12 (hereinafter referred to as "first modified region") near the surface on the emission side of the laser beam L (second surface 11b in the example shown in FIG. 21) ), the first modified region is formed so that the cracks 13 do not reach the surface on the emission side of the laser beam L from the first modified region, and the first modified region and the surface on the incidence side of the laser beam L are formed. (in the example shown in FIG. 21, the first surface 11a), when forming the modified region 12 (hereinafter referred to as "second modified region"), the first modified region and the second The cracks 13 may be connected to the modified region, and the cracks 13 may be made to reach the surface on the emission side of the laser beam L from the first modified region (hereinafter referred to as "light leakage damage suppression processing"). In that case, when forming the first modified region, the first extending portion 91 is located on the line A, the second extending portion 92 is located on one side with respect to the line A, and the first extending portion 91 is located on the line A. The control unit 6 causes the spatial light modulator 7 to display a modulation pattern including a trefoil aberration pattern so that the third extension part 93 is located on the other side with respect to A, thereby forming a second modified region. In this case, the control unit 6 transmits a modulation pattern that does not include a trefoil aberration pattern (or a modulation pattern that includes a trefoil aberration pattern having a weaker trefoil aberration intensity than when forming the first modified region) to the spatial light modulator 7. It is preferable to display the According to such a laser processing method, scattering of the passing light of the laser beam L is suppressed when forming the first modified region, so damage caused by the passing light is prevented from occurring on the surface on the emission side of the laser beam L. can be suppressed. Besides that, the quality of the end face can be improved (i.e., the unevenness of the cut surface can be reduced), and the twist hackle can be suppressed by utilizing a modulation pattern including a trefoil aberration pattern. The effects can be further improved.
 なお、第1改質領域を形成する際に、ラインA上に第1延在部91が位置し且つラインAに対して一方の側に第2延在部92が位置し且つラインAに対して他方の側に第3延在部93が位置するように、且つ、ラインAに沿って集光スポットCが相対的に移動する向きの前側に第1延在部91が位置し且つ当該向きの後側に第2延在部92及び第3延在部93が位置するように、制御部6が、トレフォイル収差パターンを含む変調パターンを空間光変調器7に表示させると、第1改質領域からレーザ光Lの出射側の表面に亀裂13が到達するのをより確実に防止することができる。 Note that when forming the first modified region, the first extending portion 91 is located on line A, the second extending portion 92 is located on one side with respect to line A, and and the first extending part 91 is located in front of the direction in which the focused spot C moves relatively along the line A, and the third extending part 93 is located on the other side. When the control unit 6 causes the spatial light modulator 7 to display a modulation pattern including a trefoil aberration pattern so that the second extension part 92 and the third extension part 93 are located on the rear side, the first modification It is possible to more reliably prevent the cracks 13 from reaching the surface on the emission side of the laser beam L from the region.
 以上の知見は、対象物11の厚さ方向に並ぶ「少なくとも一列の第1改質領域」及び「少なくとも一列の第2改質領域」をラインAに沿って対象物11の内部に形成する場合に適用可能である。なお、この場合において、第1改質領域の列数と第2改質領域の列数とは、互いに同じであってもよいし、互いに異なっていてもよい。 The above findings are applicable when forming "at least one row of first modified regions" and "at least one row of second modified regions" inside the target object 11 along line A in the thickness direction of the target object 11. Applicable to In this case, the number of rows of the first modified region and the number of rows of the second modified region may be the same or different.
 対象物11の厚さ方向に並ぶ複数列の第1改質領域をラインAに沿って対象物11の内部に形成する場合には、レーザ加工に要する時間を短縮化するために(すなわち、いわゆるタクトアップのために)、複数の集光スポットCを有するようにレーザ光Lが空間光変調器7によって変調されて、一回のレーザ光Lのスキャンによって複数列の第1改質領域がラインAに沿って対象物11の内部に形成されてもよい。この場合にも、ラインA上に第1延在部91が位置し且つラインAに対して一方の側に第2延在部92が位置し且つラインAに対して他方の側に第3延在部93が位置するように、制御部6が、トレフォイル収差パターンを含む変調パターンを空間光変調器7に表示させる。或いは、ラインA上に第1延在部91が位置し且つラインAに対して一方の側に第2延在部92が位置し且つラインAに対して他方の側に第3延在部93が位置するように、且つ、ラインAに沿って集光スポットCが相対的に移動する向きの前側に第1延在部91が位置し且つ当該向きの後側に第2延在部92及び第3延在部93が位置するように、制御部6が、トレフォイル収差パターンを含む変調パターンを空間光変調器7に表示させる。勿論、複数回のレーザ光Lのスキャンのそれぞれによって複数列の第1改質領域のそれぞれがラインAに沿って対象物11の内部に形成されてもよい。なお、一回のレーザ光Lのスキャンによって複数列の第1改質領域がラインAに沿って対象物11の内部に形成される場合にも、複数回のレーザ光Lのスキャンのそれぞれによって複数列の第1改質領域のそれぞれがラインAに沿って対象物11の内部に形成される場合にも、複数列の第1改質領域のそれぞれから伸びる亀裂は、互いに繋がらないことが好ましい。 When forming multiple rows of first modified regions in the thickness direction of the object 11 inside the object 11 along the line A, in order to shorten the time required for laser processing (i.e., the so-called In order to increase tact time), the laser beam L is modulated by the spatial light modulator 7 so as to have a plurality of focused spots C, and by one scan of the laser beam L, multiple rows of the first modified region are lined up. It may be formed inside the object 11 along A. Also in this case, the first extension part 91 is located on line A, the second extension part 92 is located on one side with respect to line A, and the third extension part 92 is located on the other side with respect to line A. The control unit 6 causes the spatial light modulator 7 to display a modulation pattern including the trefoil aberration pattern so that the existing portion 93 is located. Alternatively, the first extending part 91 is located on line A, the second extending part 92 is located on one side with respect to line A, and the third extending part 93 is located on the other side with respect to line A. The first extension part 91 is located on the front side in the direction in which the focused spot C moves relatively along line A, and the second extension part 92 and The control unit 6 causes the spatial light modulator 7 to display a modulation pattern including the trefoil aberration pattern so that the third extension portion 93 is located. Of course, a plurality of rows of first modified regions may be formed inside the object 11 along the line A by each scan of the laser beam L a plurality of times. Note that even when a plurality of rows of first modified regions are formed inside the object 11 along the line A by one scan of the laser beam L, a plurality of rows of first modified regions are formed by each of the plurality of scans of the laser beam L. Even when each of the first modified regions in the rows is formed inside the object 11 along the line A, it is preferable that the cracks extending from each of the first modified regions in the plurality of rows do not connect to each other.
 また、対象物11の厚さ方向に並ぶ複数列の第2改質領域をラインAに沿って対象物11の内部に形成する場合には、タクトアップのために、複数の集光スポットCを有するようにレーザ光Lが空間光変調器7によって変調されて、一回のレーザ光Lのスキャンによって複数列の第2改質領域がラインAに沿って対象物11の内部に形成されてもよい。勿論、対象物11の厚さ方向に並ぶ複数列の第2改質領域をラインAに沿って対象物11の内部に形成する場合に、複数回のレーザ光Lのスキャンのそれぞれによって複数列の第2改質領域のそれぞれがラインAに沿って対象物11の内部に形成されてもよい。なお、一回のレーザ光Lのスキャンによって複数列の第2改質領域がラインAに沿って対象物11の内部に形成される場合にも、複数回のレーザ光Lのスキャンのそれぞれによって複数列の第2改質領域のそれぞれがラインAに沿って対象物11の内部に形成される場合にも、複数列の第2改質領域のそれぞれから伸びる亀裂は、互いに繋がることが好ましい。 Furthermore, when forming a plurality of rows of second modified regions in the thickness direction of the object 11 inside the object 11 along the line A, a plurality of focused spots C are formed in order to increase the takt time. Even if the laser beam L is modulated by the spatial light modulator 7 so that a plurality of rows of second modified regions are formed inside the object 11 along the line A by one scan of the laser beam L. good. Of course, when forming a plurality of rows of second modified regions arranged in the thickness direction of the object 11 inside the object 11 along the line A, the plural rows of second modified regions are formed by each of the plurality of scans of the laser beam L. Each of the second modified regions may be formed inside the object 11 along the line A. Note that even when a plurality of rows of second modified regions are formed inside the object 11 along the line A by one scan of the laser beam L, a plurality of rows of second modified regions are formed by each of the plurality of scans of the laser beam L. Even when each of the rows of second modified regions is formed inside the object 11 along line A, it is preferable that the cracks extending from each of the plurality of rows of second modified regions are connected to each other.
 図22は、抜け光ダメージ抑制加工による対象物11の切断面の例を示す図である。図22の(a)及び(b)に示される切断面の例は、対象物11の厚さ方向に並ぶ「三列の第1改質領域」及び「三列の第2改質領域」をラインAに沿って対象物11の内部に形成することで、得られたものである。図22の(a)及び(b)のいずれにおいても、一回のレーザ光Lのスキャンによって三列の第1改質領域をラインAに沿って対象物11の内部に形成し、その後に、一回のレーザ光Lのスキャンによって三列の第2改質領域をラインAに沿って対象物11の内部に形成した。図22の(a)では、三列の第1改質領域を形成する際に、トレフォイル収差パターンを含まない変調パターンを空間光変調器7に表示させた。図22の(b)では、三列の第1改質領域を形成する際に、ラインA上に第1延在部91が位置し且つラインAに対して一方の側に第2延在部92が位置し且つラインAに対して他方の側に第3延在部93が位置するように、且つ、ラインAに沿って集光スポットCが相対的に移動する向きの前側に第1延在部91が位置し且つ当該向きの後側に第2延在部92及び第3延在部93が位置するように、トレフォイル収差パターンを含む変調パターンを空間光変調器7に表示させた。その結果、図22の(a)では、三列の第1改質領域が形成されている領域において、ツイストハックルが発生し、亀裂の伸び方も安定しなかった。一方、図22の(b)では、三列の第1改質領域が形成されている領域において、ツイストハックルの発生が抑制され、亀裂の伸び方も安定した。
[レーザ加工方法の第2例]
FIG. 22 is a diagram illustrating an example of a cut surface of the object 11 obtained by processing to suppress damage caused by light leakage. The example of the cut plane shown in FIGS. 22(a) and (b) shows "three rows of first modified regions" and "three rows of second modified regions" arranged in the thickness direction of the object 11. This is obtained by forming it inside the object 11 along line A. In both (a) and (b) of FIG. 22, three rows of first modified regions are formed inside the object 11 along the line A by one scan of the laser beam L, and then, Three rows of second modified regions were formed inside the object 11 along the line A by one scan of the laser beam L. In FIG. 22(a), when forming three rows of first modified regions, a modulation pattern that does not include a trefoil aberration pattern is displayed on the spatial light modulator 7. In FIG. 22(b), when forming three rows of first modified regions, the first extending portion 91 is located on line A, and the second extending portion is located on one side with respect to line A. 92 and the third extension part 93 is located on the other side with respect to the line A, and the first extension part 93 is located on the front side in the direction in which the focused spot C moves relatively along the line A. A modulation pattern including a trefoil aberration pattern was displayed on the spatial light modulator 7 such that the existing portion 91 was located and the second extending portion 92 and the third extending portion 93 were located on the rear side in this direction. As a result, in FIG. 22(a), twist hackles occurred in the region where the three rows of first modified regions were formed, and the way the cracks grew was not stable. On the other hand, in FIG. 22(b), the occurrence of twist hackles was suppressed in the region where the three rows of first modified regions were formed, and the growth of cracks was also stabilized.
[Second example of laser processing method]
 図23の(a)及び(b)は、レーザ加工方法の第2例が適用される対象物100を示す図である。図23の(a)及び(b)に示されるように、対象物100は、対象物11と、対象物11とは別部材である対象物11Rと、を備えている。各対象物11,11Rは、例えば、シリコンウェハである。対象物11の第2表面11bには、複数の機能素子(図示省略)を含むデバイス層110が形成されている。対象物11Rの一方の表面には、複数の機能素子(図示省略)を含むデバイス層110Rが形成されている。デバイス層110とデバイス層110Rとは、互いに接合されている。 FIGS. 23A and 23B are diagrams showing an object 100 to which the second example of the laser processing method is applied. As shown in FIGS. 23A and 23B, the object 100 includes an object 11 and an object 11R that is a separate member from the object 11. Each target object 11, 11R is, for example, a silicon wafer. A device layer 110 including a plurality of functional elements (not shown) is formed on the second surface 11b of the object 11. A device layer 110R including a plurality of functional elements (not shown) is formed on one surface of the object 11R. The device layer 110 and the device layer 110R are bonded to each other.
 レーザ加工方法の第2例は、上述したレーザ加工装置1において実施される。レーザ加工方法の第2例では、図23の(a)及び(b)に示される対象物11が、加工面P11、加工面P12、及び複数の加工面P13のそれぞれに沿って切断され、対象物11の外縁部分が除去される(トリミング加工)。加工面P11は、Z方向に平行な中心線を有する円柱面である。加工面P12は、加工面P11におけるデバイス層110側の端部からデバイス層110Rの外縁に向かって拡がる円錐台状のテーパ面である。複数の加工面P13は、加工面P11から対象物11の外縁に延在する平面である。レーザ加工方法の第2例では、図24の(a)及び(b)に示されるように、加工面P12が、レーザ光Lの入射方向(Z方向)及びラインAの延在方向(X方向)の両方向に平行な第1面P1に対して傾斜する第2面P2に合わされた状態で、対象物11の内部のうち加工面P12に沿った部分に、対象物11の厚さ方向に並ぶ二列の改質領域12がラインAに沿って形成される。なお、レーザ加工方法の第2例では、加工面P12内においてラインAが円周状に延在することになるが、ラインAが曲線である場合におけるラインAの延在方向とは、当該曲線の接線方向を意味する。 A second example of the laser processing method is carried out in the laser processing apparatus 1 described above. In the second example of the laser processing method, the object 11 shown in FIGS. 23A and 23B is cut along each of the processing surface P11, the processing surface P12, and the plurality of processing surfaces P13, and The outer edge portion of the object 11 is removed (trimming process). The processed surface P11 is a cylindrical surface having a center line parallel to the Z direction. The processed surface P12 is a truncated conical tapered surface that expands from the end of the processed surface P11 on the device layer 110 side toward the outer edge of the device layer 110R. The plurality of processing surfaces P13 are planes extending from the processing surface P11 to the outer edge of the object 11. In the second example of the laser processing method, as shown in (a) and (b) of FIG. ), lined up in the thickness direction of the object 11 in a portion of the inside of the object 11 along the processing surface P12, aligned with the second surface P2 that is inclined with respect to the first surface P1 that is parallel to both directions. Two rows of modified regions 12 are formed along line A. In the second example of the laser processing method, the line A extends circumferentially within the processing surface P12, but when the line A is a curved line, the extending direction of the line A is defined as means the tangential direction.
 レーザ加工方法の第2例では、加工面P12内において延在するラインAに沿って対象物11に改質領域12を形成すると共に、第2面P2に沿って対象物11に亀裂13を形成したい。また、レーザ加工方法の第2例では、レーザ光Lの入射側とは反対側の領域が第1面P1に垂直な方向(Y方向)における外側に位置するように第2面P2が傾斜している。 In the second example of the laser processing method, a modified region 12 is formed in the object 11 along the line A extending within the processing surface P12, and a crack 13 is formed in the object 11 along the second surface P2. I want to. In the second example of the laser processing method, the second surface P2 is inclined such that the region on the opposite side to the incident side of the laser beam L is located on the outside in the direction perpendicular to the first surface P1 (Y direction). ing.
 そこで、レーザ加工方法の第2例では、ラインAに対して外側に第1延在部91が位置し且つラインAに対して内側に第2延在部92及び第3延在部93が位置するように、制御部6が、トレフォイル収差パターンを含む変調パターンを空間光変調器7に表示させる。このとき、第1面P1と第2面P2との間の角度をより大きくしたい場合には、制御部6が、より強いトレフォイル収差強度のトレフォイル収差パターンを含む変調パターンを空間光変調器7に表示させる。続いて、トレフォイル収差パターンを含む変調パターンを空間光変調器7に表示させた状態で、ラインAに沿って集光スポットCが相対的に移動するように、制御部6が、支持部2を駆動部4に駆動させる。続いて、加工面P11、及び複数の加工面P13のそれぞれに沿って、対象物11の厚さ方向に並ぶ複数の改質領域12が形成される。以上の工程が実施された後に、対象物11の外縁部分が除去され、更に、対象物11の第1表面11aの研磨によって、加工面P11が設定されていた部分が除去される。
[作用及び効果]
Therefore, in the second example of the laser processing method, the first extension part 91 is located outside the line A, and the second extension part 92 and the third extension part 93 are located inside the line A. The control unit 6 causes the spatial light modulator 7 to display a modulation pattern including the trefoil aberration pattern. At this time, if it is desired to make the angle between the first surface P1 and the second surface P2 larger, the control unit 6 applies a modulation pattern including a trefoil aberration pattern with a stronger trefoil aberration intensity to the spatial light modulator 7. Display. Next, with the modulation pattern including the trefoil aberration pattern displayed on the spatial light modulator 7, the control unit 6 controls the support unit 2 so that the focused spot C moves relatively along the line A. The drive section 4 is caused to drive. Subsequently, a plurality of modified regions 12 arranged in the thickness direction of the object 11 are formed along each of the processed surface P11 and the plurality of processed surfaces P13. After the above steps are performed, the outer edge portion of the object 11 is removed, and the first surface 11a of the object 11 is polished to remove the portion where the processed surface P11 was set.
[Action and effect]
 レーザ加工装置1(及びレーザ加工装置1において実施されるレーザ光方法)では、集光スポットCにおけるレーザ光Lのビーム形状9が、中心部90並びに中心部90から放射状に延在する第1延在部91、第2延在部92及び第3延在部93を含み且つ中心部90において最も高い強度を有する状態で、当該集光スポットCが、対象物11に設定されたラインAに沿って相対的に移動させられる。このとき、ラインAに対するビーム形状9の向き等を調整することで、対象物11に形成される改質領域12及び亀裂13の少なくとも一方の状態を調整することができる。よって、レーザ加工装置1によれば、加工に応じて適切な改質領域12及び亀裂13を対象物11に形成することができる。 In the laser processing device 1 (and the laser beam method implemented in the laser processing device 1), the beam shape 9 of the laser light L at the focused spot C has a center portion 90 and a first extension extending radially from the center portion 90. The focused spot C is located along the line A set on the object 11, including the existing part 91, the second extending part 92, and the third extending part 93, and having the highest intensity in the central part 90. can be moved relative to each other. At this time, by adjusting the direction of the beam shape 9 with respect to the line A, etc., the state of at least one of the modified region 12 and the crack 13 formed in the object 11 can be adjusted. Therefore, according to the laser processing apparatus 1, appropriate modified regions 12 and cracks 13 can be formed in the object 11 according to the processing.
 レーザ加工装置1では、ラインAに沿って対象物11に改質領域12を形成すると共に、改質領域12からレーザ光Lの入射方向及びラインAの延在方向の両方向に平行な第1面P1に沿って対象物11に亀裂13を形成する場合には、制御部6が、ラインA上に第1延在部91が位置し且つラインAに対して一方の側に第2延在部92が位置し且つラインAに対して他方の側に第3延在部93が位置するように、トレフォイル収差パターンを含む変調パターンを空間光変調器7に表示させる。これにより、例えば変調パターンがトレフォイル収差パターンを含まない場合に比べ、レーザ光Lの入射方向における亀裂13の幅を小さくすることができる。 In the laser processing apparatus 1, a modified region 12 is formed in the object 11 along the line A, and a first surface parallel to both the incident direction of the laser beam L and the extending direction of the line A is formed from the modified region 12. When forming a crack 13 in the object 11 along P1, the control unit 6 determines that the first extension part 91 is located on the line A and the second extension part is located on one side with respect to the line A. A modulation pattern including a trefoil aberration pattern is displayed on the spatial light modulator 7 such that the third extension part 93 is located on the other side with respect to the line A. Thereby, the width of the crack 13 in the incident direction of the laser beam L can be made smaller than, for example, when the modulation pattern does not include a trefoil aberration pattern.
 レーザ加工装置1では、制御部6が、ラインAに沿って集光スポットCが相対的に移動する向きの前側に第1延在部91が位置し且つ向きの後側に第2延在部92及び第3延在部93が位置するように、トレフォイル収差パターンを含む変調パターンを空間光変調器7に表示させる。これにより、レーザ光Lの入射方向における亀裂13の幅だけでなく、レーザ光Lの入射方向における改質領域12の幅も小さくすることができる。また、ラインAに対して亀裂13が蛇行するのを確実に抑制することができる。 In the laser processing apparatus 1, the control unit 6 is configured such that the first extension part 91 is located on the front side in the direction in which the focused spot C moves relatively along the line A, and the second extension part 91 is located on the rear side in the direction in which the focused spot C moves relatively along the line A. A modulation pattern including a trefoil aberration pattern is displayed on the spatial light modulator 7 such that the third extension portion 92 and the third extension portion 93 are located. Thereby, not only the width of the crack 13 in the incident direction of the laser beam L, but also the width of the modified region 12 in the incident direction of the laser beam L can be reduced. Moreover, meandering of the crack 13 with respect to the line A can be reliably suppressed.
 レーザ加工装置1では、ラインAとして対象物11に設定された第1ライン及び第2ラインのそれぞれに沿って集光スポットCを相対的に移動させる場合において、第1ラインに沿って集光スポットCを相対的に移動させる向きと、第2ラインに沿って集光スポットCを相対的に移動させる向きとが異なるときには、制御部6が、第1ライン及び第2ラインのそれぞれに沿って集光スポットCが相対的に移動する向きの前側に第1延在部91が位置し且つ当該向きの後側に第2延在部92及び第3延在部93が位置するように、トレフォイル収差パターンを含む変調パターンの向きを切り替える。これにより、第1ラインに沿って集光スポットCを相対的に移動させる向きと、第2ラインに沿って集光スポットCを相対的に移動させる向きとが異なる場合にも、第1ライン及び第2ラインのそれぞれに沿って集光スポットCが相対的に移動する向きの前側に第1延在部91が位置し且つ当該向きの後側に第2延在部92及び第3延在部93が位置する状態を容易に且つ確実に実現することができる。 In the laser processing device 1, when the focused spot C is relatively moved along each of the first line and the second line set on the object 11 as the line A, the focused spot C is moved along the first line. When the direction in which the focal spot C is relatively moved is different from the direction in which the focal spot C is relatively moved along the second line, the control unit 6 moves the focal spot C along the first line and the second line, respectively. Trefoil aberration is created such that the first extension part 91 is located on the front side in the direction in which the light spot C moves relatively, and the second extension part 92 and the third extension part 93 are located on the rear side in the direction. Switch the orientation of modulation patterns including patterns. As a result, even if the direction in which the focused spot C is relatively moved along the first line is different from the direction in which the focused spot C is relatively moved along the second line, the first line and The first extension part 91 is located on the front side in the direction in which the focused spot C moves relatively along each of the second lines, and the second extension part 92 and the third extension part are on the rear side in the direction. 93 can be easily and reliably realized.
 レーザ加工装置1では、制御部6が、レーザ光Lの入射方向における改質領域12及び亀裂13の少なくとも一方の幅を第1幅とする場合には、第1トレフォイル収差強度のトレフォイル収差パターンを含む変調パターンを空間光変調器7に表示させ、当該少なくとも一方の幅を第1幅よりも小さい第2幅とする場合には、第1トレフォイル収差強度よりも強い第2トレフォイル収差強度のトレフォイル収差パターンを含む変調パターンを空間光変調器7に表示させる。これにより、レーザ光Lの入射方向における改質領域12及び亀裂13の少なくとも一方の幅を、加工に応じて適切な幅にすることができる。 In the laser processing apparatus 1, when the control unit 6 sets the width of at least one of the modified region 12 and the crack 13 in the incident direction of the laser beam L as the first width, the controller 6 sets a trefoil aberration pattern with a first trefoil aberration intensity. When the spatial light modulator 7 displays a modulation pattern including a modulation pattern, and when at least one of the widths is a second width smaller than the first width, a trefoil aberration with a second trefoil aberration intensity stronger than the first trefoil aberration intensity. A modulation pattern including the pattern is displayed on the spatial light modulator 7. Thereby, the width of at least one of the modified region 12 and the crack 13 in the incident direction of the laser beam L can be set to an appropriate width depending on the processing.
 レーザ加工装置1では、ラインAに沿って対象物11に改質領域12を形成すると共に、改質領域12からレーザ光Lの入射方向及びラインAの延在方向の両方向に平行な第1面P1に対して傾斜する第2面P2に沿って対象物11に亀裂13を形成する場合において、レーザ光Lの入射側とは反対側の領域が第1面P1に垂直な方向における一方の側に位置するように第2面P2が傾斜しているときには、制御部6が、ラインAに対して一方の側に第1延在部91が位置し且つラインAに対して他方の側に第2延在部92及び第3延在部93が位置するように、トレフォイル収差パターンを含む変調パターンを空間光変調器7に表示させる。これにより、改質領域12から延在する亀裂13を所望の側に傾斜させることができる。 In the laser processing apparatus 1, a modified region 12 is formed in the object 11 along the line A, and a first surface parallel to both the incident direction of the laser beam L and the extending direction of the line A is formed from the modified region 12. When forming a crack 13 in the object 11 along the second surface P2 that is inclined with respect to P1, the region opposite to the incident side of the laser beam L is on one side in the direction perpendicular to the first surface P1. When the second surface P2 is inclined so as to be located at A modulation pattern including a trefoil aberration pattern is displayed on the spatial light modulator 7 so that the second extension part 92 and the third extension part 93 are located. Thereby, the cracks 13 extending from the modified region 12 can be inclined to a desired side.
 レーザ加工装置1では、ラインAとして対象物11に設定された第1ライン及び第2ラインのそれぞれに沿って集光スポットCを相対的に移動させる場合において、第1ラインに沿って集光スポットCを相対的に移動させる向きと、第2ラインに沿って集光スポットCを相対的に移動させる向きとが異なるときには、制御部6が、第1ライン及び第2ラインのそれぞれに対して一方の側に第1延在部91が位置し且つ第1ライン及び第2ラインのそれぞれに対して他方の側に第2延在部92及び第3延在部93が位置するように、トレフォイル収差パターンを含む変調パターンの向きを切り替える。これにより、第1ラインに沿って集光スポットCを相対的に移動させる向きと、第2ラインに沿って集光スポットCを相対的に移動させる向きとが異なる場合にも、第1ライン及び第2ラインのそれぞれに対して一方の側に第1延在部91が位置し且つ第1ライン及び第2ラインのそれぞれに対して他方の側に第2延在部92及び第3延在部93が位置する状態を容易に且つ確実に実現することができる。 In the laser processing device 1, when the focused spot C is relatively moved along each of the first line and the second line set on the object 11 as the line A, the focused spot C is moved along the first line. When the direction in which the light spot C is relatively moved is different from the direction in which the focused spot C is relatively moved along the second line, the control unit 6 controls one direction for each of the first line and the second line. Trefoil aberration such that the first extending part 91 is located on the side of Switch the orientation of modulation patterns including patterns. As a result, even if the direction in which the focused spot C is relatively moved along the first line is different from the direction in which the focused spot C is relatively moved along the second line, the first line and A first extending portion 91 is located on one side with respect to each of the second lines, and a second extending portion 92 and a third extending portion are located on the other side with respect to each of the first line and the second line. 93 can be easily and reliably realized.
 レーザ加工装置1では、制御部6が、第1面P1と第2面P2との間の角度を第1角度とする場合には、第1トレフォイル収差強度のトレフォイル収差パターンを含む変調パターンを空間光変調器7に表示させ、当該角度を第1角度よりも大きい第2角度とする場合には、第1トレフォイル収差強度よりも強い第2トレフォイル収差強度のトレフォイル収差パターンを含む変調パターンを空間光変調器7に表示させる。これにより、改質領域12から延在する亀裂13が傾斜する角度を、加工に応じて適切な角度にすることができる。
[変形例]
In the laser processing apparatus 1, when the control unit 6 sets the angle between the first surface P1 and the second surface P2 as the first angle, the control unit 6 spatially modulates the modulation pattern including the trefoil aberration pattern with the first trefoil aberration intensity. When displaying on the optical modulator 7 and making the angle a second angle larger than the first angle, a modulation pattern including a trefoil aberration pattern with a second trefoil aberration intensity stronger than the first trefoil aberration intensity is displayed on the spatial light. Displayed on the modulator 7. Thereby, the angle at which the cracks 13 extending from the modified region 12 are inclined can be set to an appropriate angle depending on the processing.
[Modified example]
 本開示は、上記実施形態に限定されない。例えば、空間光変調器7は、反射型に限定されず、透過型であってもよい。また、空間光変調器7の変調面7aでのレーザ光Lの像を集光部33の入射瞳面33aに転像する光学系は、一対のレンズ34A,34Bを有する4fレンズユニット34に限定されず、空間光変調器7側の第1レンズ系(例えば、接合レンズ、三つ以上のレンズ等)及び集光部33側の第2レンズ系(例えば、接合レンズ、三つ以上のレンズ等)を含むもの等であってもよい。 The present disclosure is not limited to the above embodiments. For example, the spatial light modulator 7 is not limited to a reflective type, but may be a transmissive type. Further, the optical system that transfers the image of the laser beam L on the modulation surface 7a of the spatial light modulator 7 to the entrance pupil plane 33a of the condenser 33 is limited to the 4f lens unit 34 having a pair of lenses 34A and 34B. The first lens system (for example, a cemented lens, three or more lenses, etc.) on the spatial light modulator 7 side and the second lens system (for example, a cemented lens, three or more lenses, etc.) on the condensing section 33 side ).
 また、上記実施形態では、駆動部4が支持部2を駆動するものであり、駆動部5が照射部3を駆動することで集光部33を駆動するものであったが、本開示の駆動部は、そのようなものに限定されない。一例として、駆動部4が、Z方向、X方向及びY方向のそれぞれの方向に支持部2を移動させ、Z方向に平行な軸線を回転軸として支持部2を回転させてもよい。或いは、駆動部5が、Z方向、X方向及びY方向のそれぞれの方向に集光部33を移動させ、Z方向に平行な軸線を中心線として集光部33を移動させてもよい。つまり、本開示の駆動部は、支持部及び集光部の少なくとも一方を駆動するものであればよい。 Further, in the embodiment described above, the drive section 4 drives the support section 2, and the drive section 5 drives the light collecting section 33 by driving the irradiation section 3, but the drive section of the present disclosure The section is not limited to such. As an example, the drive unit 4 may move the support unit 2 in each of the Z direction, the X direction, and the Y direction, and rotate the support unit 2 using an axis parallel to the Z direction as the rotation axis. Alternatively, the drive section 5 may move the light condensing section 33 in each of the Z direction, the X direction, and the Y direction, and may move the light condensing section 33 with an axis parallel to the Z direction as the center line. That is, the drive unit of the present disclosure may be any drive unit that drives at least one of the support unit and the light condensing unit.
 また、上記実施形態では、制御部6が、支持部2、照射部3及び駆動部4,5を制御するものであったが、本開示の制御部は、そのようなものに限定されない。本開示の制御部は、少なくとも空間光変調器及び駆動部を制御するものであればあればよい。 Furthermore, in the embodiment described above, the control unit 6 controls the support unit 2, the irradiation unit 3, and the drive units 4 and 5, but the control unit of the present disclosure is not limited to such a unit. The control unit of the present disclosure may be any unit as long as it controls at least the spatial light modulator and the drive unit.
 また、ラインAに対して一方の側に第1延在部91が位置し且つラインAに対して他方の側に第2延在部92及び第3延在部93が位置するように、トレフォイル収差パターンを含む変調パターンを空間光変調器7に表示させるレーザ加工方法は、ウェハを複数の四角錘台状のチップに切断する場合、ウェハから複数の円錐台状のウェハを切り出す場合等にも有効である。 Further, the Trefoil is arranged such that the first extending portion 91 is located on one side with respect to line A, and the second extending portion 92 and third extending portion 93 are located on the other side with respect to line A. The laser processing method of displaying a modulation pattern including an aberration pattern on the spatial light modulator 7 can also be used when cutting a wafer into a plurality of square pyramid-shaped chips, cutting out a plurality of truncated cone-shaped wafers from a wafer, etc. It is valid.
 1…レーザ加工装置、2…支持部、4,5…駆動部、6…制御部、7…空間光変調器、9…ビーム形状、11…対象物、12…改質領域、13…亀裂、31…光源、33…集光部、90…中心部、91…第1延在部、92…第2延在部、93…第3延在部、A…ライン、C…集光スポット、L…レーザ光、P1…第1面、P2…第2面。

 
DESCRIPTION OF SYMBOLS 1... Laser processing device, 2... Support part, 4, 5... Drive part, 6... Control part, 7... Spatial light modulator, 9... Beam shape, 11... Target object, 12... Modified region, 13... Crack, 31...Light source, 33...Condensing part, 90...Central part, 91...First extension part, 92...Second extension part, 93...Third extension part, A...Line, C...Condensing spot, L ...Laser light, P1...first surface, P2...second surface.

Claims (9)

  1.  対象物を支持する支持部と、
     レーザ光を出射する光源と、
     変調パターンを表示することで、前記光源から出射された前記レーザ光を変調する空間光変調器と、
     前記空間光変調器によって変調された前記レーザ光を前記対象物に集光する集光部と、
     前記支持部及び前記集光部の少なくとも一方を駆動する駆動部と、
     少なくとも前記空間光変調器及び前記駆動部を制御する制御部と、を備え、
     前記制御部は、
     前記レーザ光の集光スポットにおける前記レーザ光のビーム形状が、中心部並びに前記中心部から放射状に延在する第1延在部、第2延在部及び第3延在部を含み且つ前記中心部において最も高い強度を有するビーム形状となるように、トレフォイル収差パターンを含む変調パターンを前記空間光変調器に表示させ、
     前記トレフォイル収差パターンを含む前記変調パターンを前記空間光変調器に表示させた状態で、前記対象物に設定されたラインに沿って前記集光スポットが相対的に移動するように、前記支持部及び前記集光部の少なくとも一方を前記駆動部に駆動させる、レーザ加工装置。
    a support part that supports the object;
    a light source that emits laser light;
    a spatial light modulator that modulates the laser light emitted from the light source by displaying a modulation pattern;
    a condensing unit that condenses the laser beam modulated by the spatial light modulator on the object;
    a driving section that drives at least one of the support section and the light condensing section;
    a control unit that controls at least the spatial light modulator and the drive unit,
    The control unit includes:
    The beam shape of the laser beam at the focused spot of the laser beam includes a center portion, a first extending portion, a second extending portion, and a third extending portion extending radially from the center portion, and displaying a modulation pattern including a trefoil aberration pattern on the spatial light modulator so as to have a beam shape having the highest intensity in the region;
    The supporting portion and A laser processing device that causes the driving section to drive at least one of the light condensing sections.
  2.  前記ラインに沿って前記対象物に改質領域を形成すると共に、前記改質領域から前記レーザ光の入射方向及び前記ラインの延在方向の両方向に平行な第1面に沿って前記対象物に亀裂を形成する場合には、
     前記制御部は、前記ライン上に前記第1延在部が位置し且つ前記ラインに対して一方の側に前記第2延在部が位置し且つ前記ラインに対して他方の側に前記第3延在部が位置するように、前記トレフォイル収差パターンを含む前記変調パターンを前記空間光変調器に表示させる、請求項1に記載のレーザ加工装置。
    Forming a modified region on the object along the line, and forming a modified region on the object along a first surface parallel to both the incident direction of the laser beam and the extending direction of the line from the modified region. When cracks form,
    The control unit is configured such that the first extension part is located on the line, the second extension part is located on one side with respect to the line, and the third extension part is located on the other side with respect to the line. The laser processing apparatus according to claim 1, wherein the modulation pattern including the trefoil aberration pattern is displayed on the spatial light modulator so that the extension portion is located.
  3.  前記制御部は、前記ラインに沿って前記集光スポットが相対的に移動する向きの前側に前記第1延在部が位置し且つ前記向きの後側に前記第2延在部及び前記第3延在部が位置するように、前記トレフォイル収差パターンを含む前記変調パターンを前記空間光変調器に表示させる、請求項2に記載のレーザ加工装置。 The control unit is configured such that the first extension part is located on the front side in a direction in which the focused spot moves relatively along the line, and the second extension part and the third extension part are located on the rear side in the direction. The laser processing apparatus according to claim 2, wherein the modulation pattern including the trefoil aberration pattern is displayed on the spatial light modulator so that the extension portion is located.
  4.  前記ラインとして前記対象物に設定された第1ライン及び第2ラインのそれぞれに沿って前記集光スポットを相対的に移動させる場合において、前記第1ラインに沿って前記集光スポットを相対的に移動させる向きと、前記第2ラインに沿って前記集光スポットを相対的に移動させる向きとが異なるときには、
     前記制御部は、前記第1ライン及び前記第2ラインのそれぞれに沿って前記集光スポットが相対的に移動する向きの前側に前記第1延在部が位置し且つ前記向きの後側に前記第2延在部及び前記第3延在部が位置するように、前記トレフォイル収差パターンを含む前記変調パターンの向きを切り替える、請求項3に記載のレーザ加工装置。
    In the case where the focused spot is relatively moved along each of a first line and a second line set on the object as the line, the focused spot is moved relatively along the first line. When the direction of movement and the direction of relative movement of the focused spot along the second line are different,
    The control unit is arranged such that the first extension part is located on the front side in a direction in which the focused spot moves relatively along each of the first line and the second line, and the first extension part is located on the rear side in the direction in which the focused spot moves relatively. The laser processing apparatus according to claim 3, wherein the direction of the modulation pattern including the trefoil aberration pattern is switched so that the second extension part and the third extension part are located.
  5.  前記制御部は、
     前記レーザ光の前記入射方向における前記改質領域及び前記亀裂の少なくとも一方の幅を第1幅とする場合には、第1トレフォイル収差強度の前記トレフォイル収差パターンを含む前記変調パターンを前記空間光変調器に表示させ、
     前記少なくとも一方の幅を前記第1幅よりも小さい第2幅とする場合には、前記第1トレフォイル収差強度よりも強い第2トレフォイル収差強度の前記トレフォイル収差パターンを含む前記変調パターンを前記空間光変調器に表示させる、請求項2~4のいずれか一項に記載のレーザ加工装置。
    The control unit includes:
    When the width of at least one of the modified region and the crack in the incident direction of the laser beam is a first width, the modulation pattern including the trefoil aberration pattern having a first trefoil aberration intensity is used for the spatial light modulation. display it on the device,
    When the at least one width is a second width smaller than the first width, the modulation pattern including the trefoil aberration pattern having a second trefoil aberration intensity stronger than the first trefoil aberration intensity is used as the spatial light. The laser processing device according to any one of claims 2 to 4, which is displayed on a modulator.
  6.  前記ラインに沿って前記対象物に改質領域を形成すると共に、前記改質領域から前記レーザ光の入射方向及び前記ラインの延在方向の両方向に平行な第1面に対して傾斜する第2面に沿って前記対象物に亀裂を形成する場合において、前記レーザ光の入射側とは反対側の領域が前記第1面に垂直な方向における一方の側に位置するように前記第2面が傾斜しているときには、
     前記制御部は、前記ラインに対して前記一方の側に前記第1延在部が位置し且つ前記ラインに対して他方の側に前記第2延在部及び前記第3延在部が位置するように、前記トレフォイル収差パターンを含む前記変調パターンを前記空間光変調器に表示させる、請求項1に記載のレーザ加工装置。
    A modified region is formed in the object along the line, and a second surface is inclined from the modified region to the first surface parallel to both the incident direction of the laser beam and the extending direction of the line. In the case where a crack is formed in the object along a surface, the second surface is arranged such that a region opposite to the incident side of the laser beam is located on one side in a direction perpendicular to the first surface. When it's tilted,
    The control unit is configured such that the first extension part is located on the one side with respect to the line, and the second extension part and the third extension part are located on the other side with respect to the line. The laser processing apparatus according to claim 1, wherein the modulation pattern including the trefoil aberration pattern is displayed on the spatial light modulator.
  7.  前記ラインとして前記対象物に設定された第1ライン及び第2ラインのそれぞれに沿って前記集光スポットを相対的に移動させる場合において、前記第1ラインに沿って前記集光スポットを相対的に移動させる向きと、前記第2ラインに沿って前記集光スポットを相対的に移動させる向きとが異なるときには、
     前記制御部は、前記第1ライン及び前記第2ラインのそれぞれに対して前記一方の側に前記第1延在部が位置し且つ前記第1ライン及び前記第2ラインのそれぞれに対して他方の側に前記第2延在部及び前記第3延在部が位置するように、前記トレフォイル収差パターンを含む前記変調パターンの向きを切り替える、請求項6に記載のレーザ加工装置。
    In the case where the focused spot is relatively moved along each of a first line and a second line set on the object as the line, the focused spot is moved relatively along the first line. When the direction of movement and the direction of relative movement of the focused spot along the second line are different,
    The control unit is configured such that the first extension portion is located on the one side with respect to each of the first line and the second line, and the first extension portion is located on the other side with respect to each of the first line and the second line. The laser processing apparatus according to claim 6, wherein the direction of the modulation pattern including the trefoil aberration pattern is switched so that the second extension part and the third extension part are located on the side.
  8.  前記制御部は、
     前記第1面と前記第2面との間の角度を第1角度とする場合には、第1トレフォイル収差強度の前記トレフォイル収差パターンを含む前記変調パターンを前記空間光変調器に表示させ、
     前記角度を前記第1角度よりも大きい第2角度とする場合には、前記第1トレフォイル収差強度よりも強い第2トレフォイル収差強度の前記トレフォイル収差パターンを含む前記変調パターンを前記空間光変調器に表示させる、請求項6又は7に記載のレーザ加工装置。
    The control unit includes:
    When the angle between the first surface and the second surface is a first angle, displaying the modulation pattern including the trefoil aberration pattern with a first trefoil aberration intensity on the spatial light modulator;
    When the angle is a second angle larger than the first angle, the modulation pattern including the trefoil aberration pattern having a second trefoil aberration intensity stronger than the first trefoil aberration intensity is applied to the spatial light modulator. The laser processing device according to claim 6 or 7, wherein the laser processing device displays the information.
  9.  対象物を支持する支持部と、
     レーザ光を出射する光源と、
     変調パターンを表示することで、前記光源から出射された前記レーザ光を変調する空間光変調器と、
     前記空間光変調器によって変調された前記レーザ光を前記対象物に集光する集光部と、
     前記支持部及び前記集光部の少なくとも一方を駆動する駆動部と、を備えるレーザ加工装置において実施されるレーザ加工方法であって、
     前記レーザ光の集光スポットにおける前記レーザ光のビーム形状が、中心部並びに前記中心部から放射状に延在する第1延在部、第2延在部及び第3延在部を含み且つ前記中心部において最も高い強度を有するビーム形状となるように、トレフォイル収差パターンを含む変調パターンを前記空間光変調器に表示させる工程と、
     前記トレフォイル収差パターンを含む前記変調パターンを前記空間光変調器に表示させた状態で、前記対象物に設定されたラインに沿って前記集光スポットが相対的に移動するように、前記支持部及び前記集光部の少なくとも一方を前記駆動部に駆動させる工程と、を備える、レーザ加工方法。

     
    a support part that supports the object;
    a light source that emits laser light;
    a spatial light modulator that modulates the laser light emitted from the light source by displaying a modulation pattern;
    a condensing unit that condenses the laser beam modulated by the spatial light modulator on the object;
    A laser processing method carried out in a laser processing apparatus including a driving section that drives at least one of the support section and the light condensing section,
    The beam shape of the laser beam at the focused spot of the laser beam includes a center portion, a first extending portion, a second extending portion, and a third extending portion extending radially from the center portion, and displaying a modulation pattern including a trefoil aberration pattern on the spatial light modulator so as to have a beam shape having the highest intensity in the spatial light modulator;
    The supporting portion and A laser processing method, comprising the step of causing the driving section to drive at least one of the light condensing sections.

PCT/JP2023/028946 2022-09-13 2023-08-08 Laser processing device, and laser processing method WO2024057780A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022145550A JP2024040900A (en) 2022-09-13 2022-09-13 Laser processing equipment and laser processing method
JP2022-145550 2022-09-13

Publications (1)

Publication Number Publication Date
WO2024057780A1 true WO2024057780A1 (en) 2024-03-21

Family

ID=90274765

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/028946 WO2024057780A1 (en) 2022-09-13 2023-08-08 Laser processing device, and laser processing method

Country Status (2)

Country Link
JP (1) JP2024040900A (en)
WO (1) WO2024057780A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021087974A (en) * 2019-12-04 2021-06-10 浜松ホトニクス株式会社 Laser processing device
JP2021090990A (en) * 2019-12-11 2021-06-17 株式会社ディスコ Correction method of spot shape of laser beam
JP2022029227A (en) * 2020-08-04 2022-02-17 株式会社ディスコ Laser processing device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021087974A (en) * 2019-12-04 2021-06-10 浜松ホトニクス株式会社 Laser processing device
JP2021090990A (en) * 2019-12-11 2021-06-17 株式会社ディスコ Correction method of spot shape of laser beam
JP2022029227A (en) * 2020-08-04 2022-02-17 株式会社ディスコ Laser processing device

Also Published As

Publication number Publication date
JP2024040900A (en) 2024-03-26

Similar Documents

Publication Publication Date Title
WO2021112137A1 (en) Laser processing device
WO2024057780A1 (en) Laser processing device, and laser processing method
US20230249285A1 (en) Laser machining method and method for manufacturing semiconductor member
WO2023277006A1 (en) Laser processing device and laser processing method
US20230219172A1 (en) Laser machining apparatus, laser machining method, and method for manufacturing semiconductor member
WO2022014347A1 (en) Semiconductor member manufacturing method
WO2022014107A1 (en) Laser machining device and laser machining method
WO2022014619A1 (en) Laser machining apparatus and laser machining method
WO2022014105A1 (en) Laser processing device and laser processing method
WO2022014618A1 (en) Laser processing device and laser processing method
WO2022014603A1 (en) Laser machining device and laser machining method
JP2024009576A (en) Laser processing apparatus
CN116060780A (en) Laser processing apparatus and laser processing method
CN116060781A (en) Laser processing apparatus and laser processing method
JP2023000512A (en) Laser processing apparatus and laser processing method
JP2004220702A (en) Optical information recording and reproducing device