WO2022014052A1 - レーダ信号処理装置及びレーダ信号処理方法 - Google Patents

レーダ信号処理装置及びレーダ信号処理方法 Download PDF

Info

Publication number
WO2022014052A1
WO2022014052A1 PCT/JP2020/027910 JP2020027910W WO2022014052A1 WO 2022014052 A1 WO2022014052 A1 WO 2022014052A1 JP 2020027910 W JP2020027910 W JP 2020027910W WO 2022014052 A1 WO2022014052 A1 WO 2022014052A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
signal
radar
antenna
pulse
Prior art date
Application number
PCT/JP2020/027910
Other languages
English (en)
French (fr)
Inventor
麻由 菅原
昇 大石
正芳 土田
聖平 中村
啓 諏訪
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2020/027910 priority Critical patent/WO2022014052A1/ja
Priority to JP2022536103A priority patent/JPWO2022014052A1/ja
Publication of WO2022014052A1 publication Critical patent/WO2022014052A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/89Radar or analogous systems specially adapted for specific applications for mapping or imaging
    • G01S13/90Radar or analogous systems specially adapted for specific applications for mapping or imaging using synthetic aperture techniques, e.g. synthetic aperture radar [SAR] techniques

Definitions

  • the present disclosure relates to a radar signal processing device and a radar signal processing method for reproducing a synthetic aperture radar (SAR) image.
  • SAR synthetic aperture radar
  • a radar signal processing device (a radar signal processing device that forms a beam from the received signal of the reflected pulse received by a plurality of antenna openings arranged in the traveling direction of the platform and reproduces a SAR image from the formed beam).
  • the platform is a mobile body equipped with a radar signal processing device.
  • the reflected pulse is a pulse that is radiated from each antenna opening and then reflected by the target observation point.
  • a beam is formed from a received signal of a reflected pulse received by a plurality of antenna openings in order to improve the resolution of a SAR image.
  • the antenna opening size per antenna is constant, the larger the number of antenna openings, the narrower the beam width can be formed after receiving the received signal, and the resolution of the SAR image can be improved or the resolution of the SAR image can be improved.
  • Wide area observation is possible. Pulses emitted from each antenna opening may be reflected at points other than the target observation point. Pulses reflected by points other than the target observation point may cause range ambiguity when received by their respective antenna openings. Range ambiguity is a false image in the range direction in a SAR image.
  • a pulse in which the char plate changes is used as a pulse radiated from each antenna opening.
  • the char plate is the frequency change rate of the pulse radiated in space, and changes for each pulse.
  • Azimuth ambiguity is a false image in the azimuth direction in a SAR image. If the platform is moving while the antenna opening is transmitting and receiving pulses that change the char plate, azimus ambiguity occurs as the platform moves. In the radar signal processing device disclosed in Patent Document 1, the number of antenna openings included in the antenna unit is one.
  • the present disclosure has been made to solve the above-mentioned problems, and the generation of azimuth ambiguity due to the use of a pulse in which the char plate changes as a reflected pulse received by each of a plurality of antenna openings. It is an object of the present invention to obtain a radar signal processing device and a radar signal processing method capable of suppressing the above.
  • the radar signal processing apparatus repeatedly acquires the received signal of the pulse in which the char plate changes as a reflected pulse from a target received by a plurality of antenna openings arranged in the traveling direction of the platform, and each antenna. After aligning the char plates of the plurality of received signals related to the aperture, each received signal is divided in the azimuth time direction, and the divided received signals related to the plurality of antenna openings are used to form a plurality of beams. As a correction process for each beam formed by the unit and the beam forming unit, the reflected pulse is received by a plurality of antenna openings by multiplying the signal in the two-dimensional frequency region of each beam by the correction coefficient.
  • a position shift correction unit that corrects the position shift of the image formation in the range direction and a plurality of beams that have been corrected by the position shift correction unit are repeatedly combined to obtain a plurality of beams. It is provided with a signal coupling unit that combines the combined signals of the above in the azimuth time direction, and an image reproduction unit that reproduces a composite aperture radar image from the combined signal by the signal coupling unit.
  • FIG. 1 It is a block diagram which shows the radar apparatus which includes the radar signal processing apparatus 2 which concerns on Embodiment 1.
  • FIG. 2 is a hardware block diagram which shows the hardware of the radar signal processing apparatus 2 which concerns on Embodiment 1.
  • FIG. It is a hardware block diagram of the computer when the radar signal processing apparatus 2 is realized by software, firmware and the like.
  • It is a flowchart which shows the radar signal processing method which is the processing procedure of a radar signal processing apparatus 2. It is explanatory drawing which shows the plurality of antenna openings which the antenna part 1 has, the observation beam at the time of a sliding spotlight mode observation, and the beam formed by a beam forming part 11.
  • FIG. 1 It is a block diagram which shows the radar apparatus which includes the radar signal processing apparatus 2 which concerns on Embodiment 1.
  • FIG. It is a hardware block diagram which shows the hardware of the radar signal processing apparatus 2 which concerns on Embodiment 1.
  • FIG. It is a hardware block diagram of the computer when the radar signal processing apparatus 2 is realized by
  • FIG. 6A is an explanatory diagram showing the relationship between the azimuth time and the Doppler frequency of the received signal of the reflected pulse received by one of the plurality of antenna openings
  • FIG. 6B is 1 of the received signal shown in FIG. 6A.
  • An explanatory diagram showing a sub-aperture FIG. 6C is an enlarged view of one sub-aperture shown in FIG. 6B.
  • FIG. 7A is an explanatory diagram showing the relationship between the azimuth time and the Doppler frequency of the received signal of the reflected pulse received by one of the plurality of antenna openings, and FIG. 7B is tilted by performing the delamping process.
  • 7C is an explanatory diagram showing the irradiation range of the beam from which the beam has been removed, FIG.
  • FIG. 7C is an explanatory diagram showing the irradiation range of the beam which is the signal Sy after synthesis by the beam synthesis unit 25, and FIG. 7D is the inclination addition by the beam inclination recovery unit 27. It is explanatory drawing which shows the irradiation range of the beam which is a signal AZT'after. It is explanatory drawing which shows the observation geometry of a sliding spotlight mode.
  • FIG. 1 is a configuration diagram showing a radar device including the radar signal processing device 2 according to the first embodiment.
  • FIG. 2 is a hardware configuration diagram showing the hardware of the radar signal processing device 2 according to the first embodiment.
  • the radar device shown in FIG. 1 is mounted on a platform such as an artificial satellite or an airplane. The radar device moves as the platform moves.
  • the radar device includes an antenna unit 1 and a radar signal processing device 2.
  • the antenna unit 1 has a plurality of antenna openings (see FIG. 5) arranged in the azimuth direction.
  • the azimuth direction is the direction of travel of the platform.
  • Pulses are repeatedly radiated into space from each antenna opening in the antenna unit 1.
  • the pulse repeatedly radiated from each antenna opening changes the char plate.
  • the char plate changes from pulse to pulse.
  • the pulses repeatedly radiated from each antenna opening form a radar beam, and the beam irradiation direction of the radar beam is rotating.
  • the radar beam is, for example, a radar beam in a sliding spotlight mode, a radar beam in a full spotlight mode, or a radar beam in a TOPS (Terrain Observation by Progressive Scan) mode. Pulses repeatedly emitted from each antenna opening are reflected by the target.
  • the pulse reflected by the target returns as a reflected pulse to each of the multiple antenna openings.
  • the reflected pulse is a pulse in which the char plate changes.
  • Each antenna opening in the antenna unit 1 receives a reflected pulse from the target.
  • the antenna unit 1 includes an analog-to-digital converter (hereinafter referred to as “A / D converter”) 1a.
  • the A / D converter 1a converts the received signal of the received reflected pulse from an analog signal to a digital signal.
  • the A / D converter 1a outputs a digital signal to the radar signal processing device 2.
  • the radar signal processing device 2 includes a beam forming unit 11, a position shift correction unit 15, a signal coupling unit 22, and an image reproduction unit 29.
  • the beam forming unit 11 includes a char plate unifying unit 12, a signal dividing unit 13, and a beam forming processing unit 14.
  • the beam forming unit 11 repeatedly acquires a digital signal from the antenna unit 1 as a reception signal of the reflected pulse from the target received by each of the plurality of antenna openings.
  • the beam forming unit 11 aligns the char plates of a plurality of digital signals related to the respective antenna openings, and then divides each digital signal in the azimuth time direction.
  • the beam forming unit 11 forms K beams by performing digital beamforming (DBF: Digital Beamforming) using the divided digital signals related to the plurality of antenna openings.
  • K is an integer of 2 or more.
  • the beam formed by the beam forming unit 11 is a beam formed in a virtual space used by the radar signal processing device 2 for calculation, and is different from the observation beam formed in the real space.
  • the observation beam is a beam formed by each antenna element in a plurality of antenna openings.
  • the beam forming portion 11 has a narrower beam width as the number of antenna openings possessed by the antenna portion 1 increases, that is, as the number of antenna openings increases when the antenna opening size per antenna is constant. It is possible to form a beam.
  • the beam forming unit 11 imparts a Doppler center frequency related to a desired direction to the beam in order to direct the beam in a desired direction.
  • the char plate unification unit 12 is realized by, for example, the char plate unification circuit 31 shown in FIG.
  • the char plate unification unit 12 repeatedly acquires a digital signal from the antenna unit 1 as a reception signal of a reflected pulse from a target received by each of the plurality of antenna openings.
  • the char plate unification unit 12 aligns the char plates of a plurality of digital signals related to each antenna opening.
  • the char plate unification unit 12 outputs a plurality of digital signals related to each antenna opening after aligning the char plates to the signal division unit 13.
  • the signal dividing unit 13 is realized by, for example, the signal dividing circuit 32 shown in FIG.
  • the signal dividing unit 13 is output from the char plate unifying unit 12 so that the Doppler bandwidth of each beam formed by the beam forming processing unit 14 is smaller than the pulse repetition frequency (PRF).
  • the digital signal of is divided in the azimuth time direction.
  • the signal dividing unit 13 outputs a plurality of divided digital signals related to each antenna opening to the beam forming processing unit 14.
  • the beam forming processing unit 14 is realized by, for example, the beam forming processing circuit 33 shown in FIG.
  • the beam forming processing unit 14 forms K beams by performing DBF using the divided digital signals related to the plurality of antenna openings.
  • the beam forming processing unit 14 assigns a Doppler center frequency related to a desired direction to each beam in order to direct each of the K beams in a desired direction.
  • the misalignment correction unit 15 includes a Doppler frequency removal unit 16, a two-dimensional Fourier transform unit 17, a misalignment correction processing unit 18, a two-dimensional inverse Fourier transform unit 19, an extraction coupling unit 20, and a Doppler frequency recovery unit 21.
  • the misalignment correction unit 15 performs correction processing for each beam formed by the beam forming unit 11. As a correction process for the beam, the misalignment correction unit 15 multiplies the signal in the two-dimensional frequency domain of each beam by a correction coefficient, so that a plurality of reflection pulses are received by the plurality of antenna openings. Corrects the misalignment of the image formation in the range direction that occurs as the antenna opening of the antenna moves.
  • the misalignment correction unit 15 outputs each beam after the correction process to the signal coupling unit 22.
  • the Doppler frequency elimination unit 16 is realized by, for example, the Doppler frequency elimination circuit 34 shown in FIG. Of the frequencies included in each beam formed by the beam forming processing unit 14, the Doppler frequency removing unit 16 assigns the Doppler center frequency at the sub-aperture center time of the observed beam to the beam by the beam forming processing unit 14. The Doppler center frequency with respect to the desired direction of direction is removed. The Doppler frequency removing unit 16 outputs each beam after removing the two Doppler center frequencies to the two-dimensional Fourier transform unit 17.
  • the two-dimensional Fourier transform unit 17 is realized by, for example, the two-dimensional Fourier transform circuit 35 shown in FIG.
  • the two-dimensional Fourier transform unit 17 converts each beam output from the Doppler frequency removal unit 16 into a signal in the two-dimensional frequency domain.
  • the signal in the two-dimensional frequency domain is a signal including a signal in the range frequency domain and a signal in the Doppler frequency domain.
  • the two-dimensional Fourier transform unit 17 outputs K signals in the two-dimensional frequency domain to the position shift correction processing unit 18.
  • the misalignment correction processing unit 18 is realized by, for example, the misalignment correction processing circuit 36 shown in FIG.
  • the misalignment correction processing unit 18 corrects the misalignment of the image formation in the range direction by multiplying the signals in each two-dimensional frequency domain output from the two-dimensional Fourier transform unit 17 by the correction coefficient.
  • the internal memory of the misalignment correction processing unit 18 stores correction coefficients as many as the number of char plates of the pulse used as the reflection pulse. If the number of char plates is, for example, Ch (Ch is an integer of 2 or more), Ch correction coefficients are stored in the internal memory of the misalignment correction processing unit 18.
  • the misalignment correction processing unit 18 multiplies K signals in the two-dimensional frequency domain by their respective correction coefficients.
  • the misalignment correction processing unit 18 outputs (K ⁇ Ch) multiplication signals to the two-dimensional inverse Fourier transform unit 19 as a signal obtained by multiplying the signal in the two-dimensional frequency domain and the correction coefficient.
  • the two-dimensional inverse Fourier transform unit 19 is realized by, for example, the two-dimensional inverse Fourier transform circuit 37 shown in FIG.
  • the two-dimensional inverse Fourier transform unit 19 converts each of the (K ⁇ Ch) multiplication signals output from the position shift correction processing unit 18 into signals in the two-dimensional time domain.
  • the signal in the two-dimensional time domain is a signal including a signal in the range time domain and a signal in the azimuth time domain.
  • the two-dimensional inverse Fourier transform unit 19 outputs (K ⁇ Ch) signals in the two-dimensional time domain to the extraction coupling unit 20.
  • the extraction coupling unit 20 is realized by, for example, the extraction coupling circuit 38 shown in FIG.
  • the signal in each two-dimensional time domain output from the two-dimensional inverse Fourier transform unit 19 is a signal multiplied by any one of the Ch correction coefficients.
  • the signals in each two-dimensional time domain include signals relating to a plurality of reflected pulses in which the char plates are different from each other. Therefore, among the signals related to the plurality of reflected pulses included in the signal in the two-dimensional time domain, the signal related to the reflected pulse having the same char plate as the char plate related to the corrected correction coefficient to be multiplied is misaligned correction processing. The position deviation of the image formation in the range direction is properly corrected by the unit 18.
  • the signal related to the reflected pulse having a char plate different from the char plate related to the corrected correction coefficient to be multiplied is the misalignment correction processing unit 18. Therefore, the misalignment of the image formation in the range direction is not properly corrected.
  • the extraction coupling unit 20 extracts a signal related to a reflected pulse having the same char plate as the char plate related to the corrected coefficient to be multiplied from the signals in each two-dimensional time domain.
  • the extraction coupling unit 20 combines a plurality of signals related to the kth beam among the signals related to the reflected pulses extracted from the signals in the (K ⁇ Ch) two-dimensional time domain with each other to form the kth beam. Generates a post-coupling signal according to.
  • the extraction coupling unit 20 outputs K signals after coupling to the Doppler frequency recovery unit 21.
  • the Doppler frequency recovery unit 21 is realized by, for example, the Doppler frequency recovery circuit 39 shown in FIG.
  • the Doppler frequency recovery unit 21 refers to the Doppler center frequency at the azimuth time center of the observation beam among the Doppler center frequencies removed by the Doppler frequency removal unit 16 with respect to the respective combined signals output from the extraction coupling unit 20. To recover.
  • the Doppler frequency recovery unit 21 outputs K signals after the Doppler center frequency recovery to the beam gradient removing unit 23.
  • the signal coupling unit 22 includes a beam gradient removing unit 23, an azimus Fourier transform unit 24, a beam synthesizing unit 25, an azimus inverse Fourier transform unit 26, a beam gradient recovery unit 27, and a signal coupling processing unit 28.
  • the signal coupling unit 22 repeatedly synthesizes a plurality of beams after the correction process by the misalignment correction unit 15, and couples the plurality of combined signals in the azimuth time direction. That is, the signal coupling unit 22 removes the inclination of each beam after the correction processing by the misalignment correction unit 15, and then repeatedly synthesizes the signals in the Doppler frequency region in the plurality of beams after the inclination is removed.
  • the signal coupling unit 22 imparts a slope to each of the combined signals, and couples a plurality of the combined signals after the slope is applied in the azimuth time direction.
  • the signal coupling unit 22 outputs the combined signal to the image reproduction unit 29.
  • the beam tilt removing unit 23 is realized by, for example, the beam tilt removing circuit 40 shown in FIG.
  • the beam inclination removing unit 23 removes the inclination of the signal after each Doppler center frequency recovery output from the Doppler frequency recovery unit 21. That is, the beam tilt removing unit 23 is accompanied by the rotation of the beam irradiation direction in the radar beam radiated from each antenna opening with respect to the signal after each Doppler center frequency recovery output from the Doppler frequency recovery unit 21. Performs processing to remove changes in the Doppler center frequency in the beam irradiation range.
  • the beam gradient removing unit 23 outputs signals after removing K Doppler center frequency changes to the azimuth Fourier transform unit 24.
  • the azimuth Fourier transform unit 24 is realized by, for example, the azimuth Fourier transform circuit 41 shown in FIG.
  • the azimuth Fourier transform unit 24 converts the signal after removing each Doppler center frequency change output from the beam gradient removing unit 23 into a signal in the Doppler frequency region.
  • the azimuth Fourier transform unit 24 outputs signals in the K Doppler frequency region to the beam synthesis unit 25.
  • the beam synthesis unit 25 is realized by, for example, the beam synthesis circuit 42 shown in FIG.
  • the beam synthesizing unit 25 repeatedly synthesizes the signals of the K Doppler frequency regions output from the azimus Fourier transform unit 24, and outputs each of the plurality of synthesized signals to the azimuth inverse Fourier transform unit 26.
  • the azimus inverse Fourier transform unit 26 is realized by, for example, the azimus inverse Fourier transform circuit 43 shown in FIG.
  • the azimuth inverse Fourier transform unit 26 converts each of the combined signals output from the beam synthesizing unit 25 into a signal in the azimuth time domain.
  • the azimuth inverse Fourier transform unit 26 outputs a signal in each azimuth time domain to the beam gradient recovery unit 27.
  • the beam inclination recovery unit 27 is realized by, for example, the beam inclination recovery circuit 44 shown in FIG.
  • the beam inclination recovery unit 27 imparts an inclination to each signal in the azimuth time domain output from the azimuth inverse Fourier transform unit 26. That is, the beam gradient recovery unit 27 receives the signal in each azimuth time domain output from the azimuth inverse Fourier transform unit 26 as the beam accompanies the rotation of the beam irradiation direction in the radar beam radiated from the respective antenna openings. Performs a process to recover the change in the Doppler center frequency in the irradiation range.
  • the beam inclination recovery unit 27 outputs the signal after each inclination is applied to the signal coupling processing unit 28.
  • the signal coupling processing unit 28 is realized by, for example, the signal coupling processing circuit 45 shown in FIG.
  • the signal coupling processing unit 28 combines a plurality of the signals after the inclination is applied, which are output from the beam inclination recovery unit 27, in the azimuth time direction, and outputs the combined signal to the image reproduction unit 29.
  • the image reproduction unit 29 is realized by, for example, the image reproduction circuit 46 shown in FIG.
  • the image reproduction unit 29 reproduces a SAR image from the signal after the combination by the signal coupling unit 22, and outputs the SAR image to the outside.
  • FIG. 1 a char plate unifying unit 12, a signal dividing unit 13, a beam forming processing unit 14, a Doppler frequency removing unit 16, a two-dimensional Fourier transform unit 17, and a misalignment correction processing unit 18, which are components of the radar signal processing device 2, are shown.
  • 2D inverse Fourier transform unit 19 extraction coupling unit 20, Doppler frequency recovery unit 21, beam tilt removal unit 23, azimus Fourier transform unit 24, beam synthesis unit 25, azimus inverse Fourier transform unit 26, beam gradient recovery unit 27, It is assumed that each of the signal coupling processing unit 28 and the image reproduction unit 29 is realized by dedicated hardware as shown in FIG.
  • the radar signal processing device 2 includes a char plate unified circuit 31, a signal dividing circuit 32, a beam forming processing circuit 33, a Doppler frequency removing circuit 34, a two-dimensional Fourier transform circuit 35, a misalignment correction processing circuit 36, and a two-dimensional inverse Fourier.
  • what is realized by the image reproduction circuit 46 is assumed.
  • Each of the Doppler frequency recovery circuit 39, the beam gradient removal circuit 40, the azimus Fourier conversion circuit 41, the beam synthesis circuit 42, the azimus inverse Fourier conversion circuit 43, the beam gradient recovery circuit 44, the signal coupling processing circuit 45, and the image reproduction circuit 46 For example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC (Application Specific Integrated Circuit), an FPGA (Field-Programmable Gate Array), or a combination thereof is applicable.
  • the components of the radar signal processing device 2 are not limited to those realized by dedicated hardware, but the radar signal processing device 2 is realized by software, firmware, or a combination of software and firmware. There may be.
  • the software or firmware is stored as a program in the memory of the computer.
  • a computer means hardware for executing a program, and corresponds to, for example, a CPU (Central Processing Unit), a central processing unit, a processing unit, a computing device, a microprocessor, a microcomputer, a processor, or a DSP (Digital Signal Processor). do.
  • FIG. 3 is a hardware configuration diagram of a computer when the radar signal processing device 2 is realized by software, firmware, or the like.
  • the char plate unifying unit 12 the signal dividing unit 13, the beam forming processing unit 14, the Doppler frequency removing unit 16, the two-dimensional Fourier transform unit 17, and the positional deviation correction are used.
  • a program for causing the computer to execute each processing procedure in the unit 27, the signal coupling processing unit 28, and the image reproduction unit 29 is stored in the memory 51.
  • the processor 52 of the computer executes the program stored in the memory 51.
  • FIG. 2 shows an example in which each of the components of the radar signal processing device 2 is realized by dedicated hardware
  • FIG. 3 shows an example in which the radar signal processing device 2 is realized by software, firmware, or the like. ing.
  • this is only an example, and some components in the radar signal processing device 2 may be realized by dedicated hardware, and the remaining components may be realized by software, firmware, or the like.
  • FIG. 4 is a flowchart showing a radar signal processing method which is a processing procedure of the radar signal processing device 2.
  • the radar device shown in FIG. 1 is mounted on a platform such as an artificial satellite or an airplane, and moves as the platform moves. In the radar device shown in FIG. 1, the platform is in constant velocity linear motion at a velocity of Vplt.
  • the antenna unit 1 has a plurality of antenna openings in the azimuth direction. The antenna unit 1 repeatedly radiates a pulse into the space from each antenna opening. The pulse repeatedly radiated from each antenna opening is a pulse in which the char plate changes. Further, the pulses repeatedly radiated from the plurality of antenna openings form the observation beam shown in FIG.
  • FIG. 5 is an explanatory diagram showing a plurality of antenna openings possessed by the antenna unit 1, an observation beam during sliding spotlight mode observation, and a beam formed by the beam forming unit 11.
  • the observation beam is, for example, a radar beam in a sliding spotlight mode, a radar beam in a full spotlight mode, or a radar beam in a TOPS mode.
  • FIG. 5 shows the observation beam and the radar beam in the sliding spotlight mode.
  • the antenna portion 1 has two antenna openings, and the two antenna openings move in the right direction in the figure.
  • the antenna portion 1 has two antenna openings.
  • the antenna unit 1 may have three or more antenna openings.
  • the shaded area is the observation beam, and the shaded area is the beam formed by the beam forming unit 11.
  • one of the K beams formed by the beam forming unit 11 is shown.
  • the beam width in the azimuth direction in the beam formed by the beam forming unit 11 is narrower than the beam width in the azimuth direction in the observation beam.
  • Pulses repeatedly emitted from each antenna opening are reflected by the target.
  • the pulse reflected by the target returns as a reflected pulse to each of the multiple antenna openings.
  • the reflected pulse is a pulse in which the char plate changes.
  • Each antenna opening in the antenna unit 1 receives a reflected pulse from the target.
  • the A / D converter 1a of the antenna unit 1 converts the received signal of each received reflected pulse from an analog signal to a digital signal, and outputs each digital signal to the radar signal processing device 2.
  • the Doppler frequency hereinafter referred to as “intrapulse Doppler effect”
  • the Doppler frequency hereinafter referred to as “intrapulse Doppler effect”
  • the in-pulse Doppler effect By applying the in-pulse Doppler effect, a shift occurs in the range imaging position of each reflected pulse.
  • FIG. 6 is an explanatory diagram showing a received signal when a radar beam in a sliding spotlight mode is observed using a plurality of antenna openings.
  • FIG. 6A shows the relationship between the azimuth time and the Doppler frequency of the received signal of the reflected pulse received by one of the plurality of antenna openings.
  • FIG. 6B shows one subaperture of the received signal shown in FIG. 6A.
  • FIG. 6C is an enlarged view of one sub-aperture shown in FIG. 6B.
  • the horizontal axis represents the azimuth time ⁇
  • the vertical axis represents the Doppler frequency f ⁇ .
  • the component exceeding the PRF of the reflected pulse at the time of observation is folded back.
  • FIG. 6A shows the relationship between the azimuth time and the Doppler frequency of the received signal of the reflected pulse received by one of the plurality of antenna openings.
  • FIG. 6B shows one subaperture of the received signal shown in FIG. 6A.
  • FIG. 6C
  • the 6A shows a state in which there is no wrapping for the sake of simplicity of explanation.
  • the dotted line shows the change in the Doppler frequency of the point scatterer.
  • the shaded area indicates the area irradiated by the observation beam.
  • the area surrounded by the thick solid line in the range irradiated with the observation beam indicates the irradiation range of the beam formed in a certain direction among the K beams formed by the beam forming unit 11. ing.
  • the irradiation range of the beam formed by the beam forming unit 11 is also tilted because the observation is performed while rotating the radar beam.
  • Fobs is the PRF of the reflected pulse at the time of observation
  • BF is the instantaneous Doppler bandwidth calculated from the 3 dB beam width of the observed beam.
  • F obs may be smaller than the instantaneous Doppler bandwidth B F of the observation beam.
  • Flex is the PRF of the signal after synthesis by the beam synthesizer 25.
  • F ex is required to be observed beam instantaneous Doppler bandwidth B F or more. That is, it is necessary that BF ⁇ Flex.
  • T sub is the beam forming unit 11, the instantaneous Doppler bandwidth B BF of beams formed in a plurality of directions, a sub-aperture time to fit the F obs is the PRF of the reflected pulse at the time of observation.
  • the char plate unification unit 12 repeatedly acquires a digital signal from the A / D converter 1a of the antenna unit 1 as a reception signal of a reflected pulse from a target received by each of the plurality of antenna openings.
  • the char plate unification unit 12 aligns the char plates of a plurality of digital signals related to the respective antenna openings in order to enable the position shift correction process by the position shift correction unit 15 (step ST1 in FIG. 4). Since the char plates of the plurality of digital signals may be aligned with any char plate, the char plates of the plurality of digital signals are aligned with any char plate by the char plate unification unit 12.
  • the char plate unification unit 12 outputs a plurality of digital signals related to each antenna opening after aligning the char plates to the signal division unit 13.
  • the signal division unit 13 acquires each digital signal output from the char plate unification unit 12.
  • Signal dividing unit 13, the instantaneous Doppler bandwidth B BF of beam formed by the beam forming processor 14, to be smaller than F obs is the PRF of the reflected pulse at the time of observation, the azimuth time each digital signal Divide in the direction (step ST2 in FIG. 4).
  • the division of the digital signal in the azimuth time direction is referred to as "sub-aperture division”.
  • the signal dividing unit 13 outputs the divided digital signal to the beam forming processing unit 14.
  • the wavelengths ⁇ in the equations (1) and (2) are shown in the following equations (3) and (4) according to the positive and negative of the respective sin functions in the equations (1) and (2). As described above, the wavelength ⁇ max or the wavelength ⁇ min in which the range bandwidth Br is taken into consideration is used. In formulas (3) and (4), c is the speed of light, the f c is the transmission carrier frequency.
  • the signal division unit 13 obtains each of the sub-aperture division start time ⁇ st [l] and the sub-aperture division end time ⁇ ed [l] that satisfy the equation (5), the above-mentioned sub-aperture division is performed. be able to.
  • l is a sub-aperture number and N sub is a sub-aperture division number. Since the calculation efficiency is improved when each sub-aperture time T- sub is aligned, the sub-aperture time T- sub may be determined by the following equation (6).
  • the beam forming processing unit 14 acquires a plurality of divided digital signals related to the respective antenna openings from the signal dividing unit 13.
  • the beam forming processing unit 14 forms K beams by performing DBF using a plurality of digital signals after division related to each antenna opening (step ST3 in FIG. 4).
  • the beam forming processing unit 14 assigns a Doppler center frequency related to a desired direction to each beam in order to direct each of the K beams in a desired direction.
  • the Doppler frequency removing unit 16 includes the Doppler center frequency at the sub-aperture center time of the observed beam and the beam forming processing unit among the frequencies included in each beam.
  • the Doppler center frequency with respect to the desired direction of direction given to the beam by 14 is removed (step ST4 in FIG. 4). That is, as shown in the following equation (7), the Doppler frequency removing unit 16 removes each Doppler center frequency by multiplying the formed beam by H [ ⁇ sub, i, k].
  • f ⁇ dc, i is the Doppler center frequency of the observation beam in the i-th sub-aperture center time eta dc [i].
  • f k is the Doppler center frequency given when directing the beam
  • ⁇ sub is the azimuth time in the sub-aperture.
  • the two-dimensional Fourier transform unit 17 acquires K beams after removing the Doppler center frequency from the Doppler frequency removing unit 16.
  • the two-dimensional Fourier transform unit 17 converts each beam into a signal in the two-dimensional frequency domain (step ST5 in FIG. 4).
  • the signal in the two-dimensional frequency domain is a signal including a signal in the range frequency domain and a signal in the Doppler frequency domain. Since the process itself of converting the beam into a signal in the two-dimensional frequency domain is a known technique, detailed description thereof will be omitted.
  • the two-dimensional Fourier transform unit 17 outputs K signals in the two-dimensional frequency domain to the position shift correction processing unit 18.
  • the misalignment correction processing unit 18 acquires K signals in the two-dimensional frequency domain from the two-dimensional Fourier transform unit 17.
  • the two-dimensional inverse Fourier transform unit 19 acquires (K ⁇ Ch) multiplication signals FD k ⁇ h k, ch from the position shift correction processing unit 18.
  • the signals TD k and ch in the two-dimensional time domain are signals including a signal in the range time domain and a signal in the azimuth time domain.
  • the two-dimensional inverse Fourier transform unit 19 outputs (K ⁇ Ch) signals TD k, ch in the two-dimensional time domain to the extraction coupling unit 20.
  • the extraction coupling unit 20 acquires (K ⁇ Ch) signals TD k, ch in the two-dimensional time domain from the two-dimensional inverse Fourier transform unit 19.
  • the signal TD k, ch in the (K ⁇ Ch) two-dimensional time domain is multiplied by the correction coefficient h k, ch of any one of the correction coefficients h k, 1 to h k, Ch of Ch. It is a signal.
  • the signals TD k, ch in the (K ⁇ Ch) two-dimensional time domain are the signals r k, 1 ; rk , 2 , ..., rk , Ch are included.
  • the position shift correction processing unit 18 properly corrects the position shift of the image formation in the range direction of the signal related to the reflected pulse having the same char plate as the char plate related to k and ch.
  • the reflected pulse having a char plate different from the char plate related to the corrected correction coefficient h k, ch to be multiplied.
  • the misalignment of the image formation in the range direction is not properly corrected by the misalignment correction processing unit 18.
  • the relevant signal is extracted from rk and ch. That is, the extraction coupling unit 20 r k signals from each of the (K ⁇ Ch) signals TD k and ch in the two-dimensional time domain regarding the reflected pulse in which the positional deviation of the image formation is appropriately corrected. , Extract from ch.
  • the correction coefficient h k which is multiplied
  • Ch 2
  • odd-numbered pulses among the pulses whose correction coefficients h k and 1 are included in rk and 1 can be corrected correctly.
  • the extraction coupling unit 20 extracts an odd number of pulses among the pulses included in rk and 1.
  • the even pulse is corrected correctly by the correction coefficient h k, 2
  • the extraction coupling unit 20 extracts the even pulse from rk 2, 2.
  • Which pulse is correctly corrected by which correction coefficient can be determined because it is known at the time of transmission what kind of chirp rate and in what order the pulses are transmitted.
  • the signal U k after the coupling related to the kth beam is generated.
  • Doppler frequency recovery unit 21 the extraction connector 20, and acquires the signal U k after the K-binding.
  • FIG. 7 is an explanatory diagram showing a received signal when a radar beam in a sliding spotlight mode is observed using a plurality of antenna openings.
  • the horizontal axis represents the azimuth time ⁇
  • the vertical axis represents the Doppler frequency f ⁇ .
  • FIG. 7A shows the relationship between the azimuth time and the Doppler frequency of the received signal of the reflected pulse received by one of the plurality of antenna openings, as in FIG. 6A.
  • the dotted line shows the change in the Doppler frequency of the point scatterer.
  • the shaded area indicates the area irradiated by the observation beam.
  • the area surrounded by the thick solid line in the range irradiated with the observation beam indicates the irradiation range of the beam formed in a certain direction among the K beams formed by the beam forming unit 11. ing.
  • the irradiation range of the beam formed by the beam forming unit 11 is also tilted because the observation is performed while rotating the radar beam. If the beam irradiation range remains tilted, it is difficult to perform beam synthesis processing in which signals in the Doppler frequency region of each beam formed by the beam forming unit 11 are cut out and signals in a plurality of Doppler frequency regions are combined. be.
  • Beam tilt removal unit 23 from the Doppler frequency recovery unit 21 obtains the signal U 'k after the K Doppler center frequency recovery. Beam tilt removal unit 23 removes the slope of the signal U 'k after each Doppler center frequency recovery (step ST9 of FIG. 4). That is, beam tilt removal unit 23, with respect to the signal U 'k after each Doppler center frequency recovery, caused by the rotation of the beam irradiation direction of the radar beams emitted from the respective antenna aperture, the Doppler center of the beam irradiation range Performs processing to remove changes in frequency.
  • the process of removing the change in the Doppler center frequency in the beam irradiation range is referred to as "delamping process".
  • the inclination of the irradiation range of the beam formed by the beam forming processing unit 14 is removed as shown in FIG. 7B.
  • FIG. 7B shows the irradiation range of the beam from which the inclination has been removed by performing the delamping process.
  • Deranpu processing by beam tilt removal unit 23 has the following formula Deranpu function H Drmp shown in (10) [ ⁇ sub, i ] , and can be realized by multiplying the signal U 'k after the Doppler center frequency recovery.
  • R rc [ ⁇ ] is the slant range at the azimuth time ⁇ from the antenna opening to the center of rotation of the observation beam, as shown in FIG.
  • ⁇ dc [i] is the sub-aperture processing range in the i-th sub-aperture division
  • i is the sub-aperture number.
  • FIG. 8 is an explanatory diagram showing the observation geometry of the sliding spotlight mode.
  • R rc [ ⁇ ] is expressed using the squint angle atan [ ⁇ V plf / R rc ] of the observation beam as shown in the following equation (11).
  • R rco is the closest slant range from the antenna aperture to the center of rotation of the observation beam
  • R rco [0] R rco .
  • ⁇ dc and s are the closest time of the observation region center position of each sub-aperture
  • ⁇ 0 is the closest time of the arbitrary scattering point based on the time when the beam rotation center is the closest.
  • ⁇ k is the squint angle in the beam directional direction when the beam is formed with respect to the observed beam directional direction
  • ⁇ c, s is the squint angle to the center position of the observation region of each sub-aperture
  • R [ ⁇ ] is arbitrary scattering. It is a slant range of points. R so is the closest slant range from the platform to the ground surface, ⁇ 0 [ ⁇ ] is the squint angle between the arbitrary scattering point and the platform, and R 0 is the slant range at the closest contact of the arbitrary scattering point.
  • the azimuth Fourier transform unit 24 acquires signals G k after removing K Doppler center frequency changes from the beam gradient removing unit 23.
  • the azimuth Fourier transform unit 24 converts each Doppler center frequency change-removed signal G k into a signal DP k in the Doppler frequency domain (step ST10 in FIG. 4). Since the process itself of converting the signal G k after removing the Doppler center frequency change into the signal DP k in the Doppler frequency domain is a known technique, detailed description thereof will be omitted.
  • the beam synthesis unit 25 acquires signals DP k in the K Doppler frequency domain from the azimuth Fourier transform unit 24.
  • the beam synthesizing unit 25 cuts out the Doppler frequency width BCUT k from each of the signals DP k in the K Doppler frequency domain, and synthesizes the cut out K Doppler frequency width BCUT k.
  • the combined signal Sy is output to the azimuth inverse Fourier transform unit 26 (step ST11 in FIG. 4).
  • the Doppler frequency width BCUT k is selected from the signal DP k of the K Doppler frequency domain.
  • FIG. 7C is an explanatory diagram showing an irradiation range of a beam which is a signal Sy after synthesis by the beam synthesis unit 25.
  • the region surrounded by the solid line shows the irradiation range of the beam which is the signal Sy after the synthesis by the beam synthesis unit 25.
  • the azimus inverse Fourier transform unit 26 acquires a plurality of combined signals Sy from the beam synthesizing unit 25.
  • the azimus inverse Fourier transform unit 26 converts each synthesized signal Sy into a signal AZT in the azimus time domain (step ST12 in FIG. 4). Since the process itself of converting the synthesized signal Sy into the signal AZT in the azimus time domain is a known technique, detailed description thereof will be omitted.
  • the azimus inverse Fourier transform unit 26 outputs the signal AZT of each azimus time domain to the beam gradient recovery unit 27.
  • the beam gradient recovery unit 27 acquires signals AZT in a plurality of azimus time domains from the azimus inverse Fourier transform unit 26. As shown in FIG. 7D, the beam inclination recovery unit 27 imparts an inclination to the signal AZT in each azimuth time domain (step ST13 in FIG. 4). That is, the beam tilt recovery unit 27 changes the Doppler center frequency of the beam irradiation range with the rotation of the radar beam radiated from each antenna opening in the beam irradiation direction with respect to the signal AZT in each azimuth time domain. Perform a re-ramp process to recover.
  • the relamping process can be realized by multiplying the signal AZT in the azimuth time domain by the conjugate complex of the delamp function H drmp [ ⁇ sub , i] shown in the equation (10).
  • the beam inclination recovery unit 27 outputs the signal AZT'after applying the plurality of inclinations to the signal coupling processing unit 28.
  • FIG. 7D is an explanatory diagram showing an irradiation range of a beam which is a signal AZT'after the tilt is applied by the beam tilt recovery unit 27.
  • the region surrounded by the solid line shows the irradiation range of the beam which is the signal AZT'after the inclination is applied by the beam inclination recovery unit 27.
  • the signal coupling processing unit 28 acquires a plurality of tilted signals AZT'from the beam slope recovery unit 27.
  • the signal coupling processing unit 28 couples the plurality of tilted signals AZT'in the azimuth time direction, and outputs the combined signal Un to the image reproduction unit 29 (step ST14 in FIG. 4).
  • the image reproduction unit 29 acquires the combined signal Un from the signal coupling unit 22.
  • the image reproduction unit 29 reproduces the SAR image from the combined signal Un and outputs the SAR image to the outside (step ST15 in FIG. 4).
  • the received signal of the pulse in which the char plate changes is repeatedly acquired as the reflected pulse from the target received by the plurality of antenna openings arranged in the traveling direction of the platform, and the received signal of the pulse is repeatedly acquired in each antenna opening.
  • each received signal is divided in the azimuth time direction, and the divided received signals related to the plurality of antenna openings are used to form a plurality of beams.
  • the reflected pulse is received by the plurality of antenna openings by multiplying the signal in the two-dimensional frequency region of each beam by the correction coefficient.
  • the position shift correction unit 15 that corrects the position shift of the image formation in the range direction, which occurs as the platform moves, and the plurality of beams after the correction process by the position shift correction unit 15 are repeatedly combined.
  • Radar signal processing so as to include a signal coupling unit 22 that couples a plurality of combined signals in the azimuth time direction, and an image reproduction unit 29 that reproduces a composite aperture radar image from the combined signal by the signal coupling unit 22.
  • the device 2 was configured. Therefore, the radar signal processing device 2 can suppress the generation of azimuth ambiguity due to the use of the pulse in which the char plate changes as the reflected pulse received by each of the plurality of antenna openings.
  • the present disclosure is suitable for a radar signal processing device and a radar signal processing method for reproducing a synthetic aperture radar image.

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

本発明のレーダ信号処理装置(2)は、チャープレートが変化する目標からの反射パルスを、プラットフォームの進行方向に並ぶ複数のアンテナ開口によって繰り返し受信し、それぞれのアンテナ開口に係る複数の受信信号のチャープレートを揃えてから、各受信信号をアジマス時間方向に分割し、分割後の受信信号を用いて複数のビームを形成するビーム形成部(11)と、形成されたそれぞれのビームについての2次元周波数領域の信号に補正係数を乗算することにより、複数のアンテナ開口により反射パルスが受信されているときに、プラットフォームが移動することに伴って発生する、レンジ方向における結像の位置ずれを補正する位置ずれ補正部(15)と、補正処理後の複数のビームを繰り返し合成し、複数の合成後の信号をアジマス時間方向に結合させる信号結合部(22)と、結合後の信号から合成開口レーダ画像を再生する画像再生部(29)とを備える。

Description

レーダ信号処理装置及びレーダ信号処理方法
 本開示は、合成開口レーダ(SAR:Synthetic Aperture Radar)画像を再生するレーダ信号処理装置及びレーダ信号処理方法に関するものである。
 レーダ信号処理装置の中には、プラットフォームの進行方向に並んでいる複数のアンテナ開口によって受信された反射パルスの受信信号からビームを形成し、形成したビームからSAR画像を再生するレーダ信号処理装置(以下「従来のレーダ信号処理装置」という)がある。プラットフォームは、レーダ信号処理装置が搭載されている移動体である。反射パルスは、それぞれのアンテナ開口から放射されたのち、目標の観測地点によって反射されたパルスである。
 従来のレーダ信号処理装置では、SAR画像の分解能を高めるため、複数のアンテナ開口によって受信された反射パルスの受信信号からビームが形成されている。1つ当たりのアンテナ開口サイズを一定とした場合に、アンテナ開口の数が多いほど、受信信号の受信後にビーム幅が狭いビームを形成することが可能であり、SAR画像の分解能の向上、又は、広域観測が可能となる。
 それぞれのアンテナ開口から放射されたパルスは、目標の観測地点以外の地点にも反射されることがある。目標の観測地点以外の地点によって反射されたパルスが、それぞれのアンテナ開口によって受信されると、レンジアンビギュイティを生じることがある。レンジアンビギュイティは、SAR画像におけるレンジ方向の偽像である。従来のレーダ信号処理装置では、レンジアンビギュイティの発生を抑えるために、それぞれのアンテナ開口から放射されるパルスとして、チャープレートが変化するパルスを用いている。チャープレートは、空間に放射されるパルスの周波数変化率であり、パルスごとに変化している。
 ところで、アジマスアンビギュイティの発生を抑えるために、レンジ方向における結像の位置ずれの補正処理を実施するレーダ信号処理装置がある(例えば、特許文献1を参照)。
 アジマスアンビギュイティは、SAR画像におけるアジマス方向の偽像である。アンテナ開口によって、チャープレートが変化するパルスが送受信されているときに、プラットフォームが移動していると、プラットフォームの移動に伴って、アジマスアンビギュイティが発生する。特許文献1に開示されているレーダ信号処理装置では、アンテナ部が有しているアンテナ開口の数が1つである。
国際公開第2017/195297号
 従来のレーダ信号処理装置では、それぞれのアンテナ開口から放射されるパルスとして、チャープレートが変化するパルスを用いることによって、アジマスアンビギュイティが発生してしまうことがあるという課題があった。
 特許文献1に開示されているレーダ信号処理装置によって実施される補正処理は、1つのアンテナ開口により反射パルスが受信されているときに、プラットフォームが移動することに伴って発生する位置ずれを補正するものであり、複数のアンテナ開口のそれぞれによって反射パルスが受信されているときには、プラットフォームが移動することに伴って発生する位置ずれを補正することができない。したがって、当該補正処理を従来のレーダ信号処理装置に適用したとしても、上記課題を解決できない。
 本開示は、上記のような課題を解決するためになされたもので、複数のアンテナ開口のそれぞれによって受信される反射パルスとして、チャープレートが変化するパルスが用いられることによるアジマスアンビギュイティの発生を抑えることができるレーダ信号処理装置及びレーダ信号処理方法を得ることを目的とする。
 本開示に係るレーダ信号処理装置は、プラットフォームの進行方向に並んでいる複数のアンテナ開口によって受信される目標からの反射パルスとして、チャープレートが変化するパルスの受信信号を繰り返し取得し、それぞれのアンテナ開口に係る複数の受信信号のチャープレートを揃えてから、それぞれの受信信号をアジマス時間方向に分割し、複数のアンテナ開口に係る分割後の受信信号を用いて、複数のビームを形成するビーム形成部と、ビーム形成部により形成されたそれぞれのビームに対する補正処理として、それぞれのビームにおける2次元周波数領域の信号に対して補正係数を乗算することによって、複数のアンテナ開口により反射パルスが受信されているときに、プラットフォームが移動することに伴って発生する、レンジ方向における結像の位置ずれを補正する位置ずれ補正部と、位置ずれ補正部による補正処理後の複数のビームを繰り返し合成し、複数の合成後の信号をアジマス時間方向に結合させる信号結合部と、信号結合部による結合後の信号から合成開口レーダ画像を再生する画像再生部とを備えるものである。
 本開示によれば、複数のアンテナ開口のそれぞれによって受信される反射パルスとして、チャープレートが変化するパルスが用いられることによるアジマスアンビギュイティの発生を抑えることができる。
実施の形態1に係るレーダ信号処理装置2を含むレーダ装置を示す構成図である。 実施の形態1に係るレーダ信号処理装置2のハードウェアを示すハードウェア構成図である。 レーダ信号処理装置2が、ソフトウェア又はファームウェア等によって実現される場合のコンピュータのハードウェア構成図である。 レーダ信号処理装置2の処理手順であるレーダ信号処理方法を示すフローチャートである。 アンテナ部1が有している複数のアンテナ開口と、スライディングスポットライトモード観測時の観測ビーム及びビーム形成部11により形成されるビームとを示す説明図である。 図6Aは、複数のアンテナ開口のうちの1つのアンテナ開口によって受信された反射パルスの受信信号のアジマス時間とドップラー周波数との関係を示す説明図、図6Bは、図6Aに示す受信信号の1サブアパーチャを示す説明図、図6Cは、図6Bに示す1サブアパーチャの拡大図である。 図7Aは、複数のアンテナ開口のうちの1つのアンテナ開口によって受信された反射パルスの受信信号のアジマス時間とドップラー周波数との関係を示す説明図、図7Bは、デランプ処理を実施することによって傾きが取り除かれたビームの照射範囲を示す説明図、図7Cは、ビーム合成部25による合成後の信号Syであるビームの照射範囲を示す説明図、図7Dは、ビーム傾斜回復部27による傾斜付与後の信号AZT’であるビームの照射範囲を示す説明図である。 スライディングスポットライトモードの観測幾何を示す説明図である。
 以下、本開示をより詳細に説明するために、本開示を実施するための形態について、添付の図面に従って説明する。
実施の形態1.
 図1は、実施の形態1に係るレーダ信号処理装置2を含むレーダ装置を示す構成図である。
 図2は、実施の形態1に係るレーダ信号処理装置2のハードウェアを示すハードウェア構成図である。
 図1に示すレーダ装置は、人工衛星、又は、飛行機等のプラットフォームに搭載されている。レーダ装置は、プラットフォームの移動に伴って、移動する。
 レーダ装置は、アンテナ部1及びレーダ信号処理装置2を備えている。
 アンテナ部1は、アジマス方向に並んでいる複数のアンテナ開口(図5を参照)を有している。アジマス方向は、プラットフォームの進行方向である。
 アンテナ部1におけるそれぞれのアンテナ開口から、パルスが繰り返し空間に放射される。
 それぞれのアンテナ開口から繰り返し放射されるパルスは、チャープレートが変化する。チャープレートは、パルスごとに変化している。また、それぞれのアンテナ開口から繰り返し放射されるパルスは、レーダビームを形成しており、当該レーダビームのビーム照射方向は、回転している。
 当該レーダビームは、例えば、スライディングスポットライトモードのレーダビーム、フルスポットライトモードのレーダビーム、又は、TOPS(Terrain Observation by Progressive Scan)モードのレーダビームである。
 それぞれのアンテナ開口から繰り返し放射されたパルスは、目標によって反射される。目標によって反射されたパルスは、反射パルスとして、複数のアンテナ開口のそれぞれに戻ってくる。反射パルスは、チャープレートが変化するパルスである。
 アンテナ部1におけるそれぞれのアンテナ開口は、目標からの反射パルスを受信する。
 アンテナ部1は、アナログデジタル変換器(以下「A/D変換器」という)1aを備えている。
 A/D変換器1aは、受信した反射パルスの受信信号をアナログ信号からデジタル信号に変換する。
 A/D変換器1aは、デジタル信号をレーダ信号処理装置2に出力する。
 レーダ信号処理装置2は、ビーム形成部11、位置ずれ補正部15、信号結合部22及び画像再生部29を備えている。
 ビーム形成部11は、チャープレート統一部12、信号分割部13及びビーム形成処理部14を備えている。
 ビーム形成部11は、アンテナ部1から、複数のアンテナ開口のそれぞれによって受信される目標からの反射パルスの受信信号として、デジタル信号を繰り返し取得する。
 ビーム形成部11は、それぞれのアンテナ開口に係る複数のデジタル信号のチャープレートを揃えてから、それぞれのデジタル信号をアジマス時間方向に分割する。
 ビーム形成部11は、複数のアンテナ開口に係る分割後のデジタル信号を用いて、デジタルビームフォーミング(DBF:Digital Beam Forming)を実施することで、K本のビームを形成する。Kは、2以上の整数である。
 ビーム形成部11により形成されるビームは、レーダ信号処理装置2によって計算上使用される、仮想的な空間に形成されるビームであり、実空間に形成される観測ビームと異なる。観測ビームは、複数のアンテナ開口内のそれぞれのアンテナ素子によって形成されるビームである。
 ビーム形成部11は、アンテナ部1が有しているアンテナ開口の数が多いほど、即ち、1つ当たりのアンテナ開口サイズを一定とした場合に、アンテナ開口の数が多いほど、ビーム幅が細いビームを形成することが可能である。
 ビーム形成部11は、ビームを所望の方向に指向させるため、所望の方向に係るドップラー中心周波数をビームに付与している。
 チャープレート統一部12は、例えば、図2に示すチャープレート統一回路31によって実現される。
 チャープレート統一部12は、アンテナ部1から、複数のアンテナ開口のそれぞれによって受信される目標からの反射パルスの受信信号として、デジタル信号を繰り返し取得する。
 チャープレート統一部12は、それぞれのアンテナ開口に係る複数のデジタル信号のチャープレートを揃える。
 チャープレート統一部12は、それぞれのアンテナ開口に係る、チャープレートを揃えた後の複数のデジタル信号を信号分割部13に出力する。
 信号分割部13は、例えば、図2に示す信号分割回路32によって実現される。
 信号分割部13は、ビーム形成処理部14により形成されるそれぞれのビームのドップラー帯域幅がパルス繰返し周波数(PRF:Pulse Repetition Frequency)よりも小さくなるように、チャープレート統一部12から出力されたそれぞれのデジタル信号をアジマス時間方向に分割する。
 信号分割部13は、それぞれのアンテナ開口に係る分割後の複数のデジタル信号をビーム形成処理部14に出力する。
 ビーム形成処理部14は、例えば、図2に示すビーム形成処理回路33によって実現される。
 ビーム形成処理部14は、複数のアンテナ開口に係る分割後のデジタル信号を用いて、DBFを実施することで、K本のビームを形成する。
 ビーム形成処理部14は、K本のビームのそれぞれを所望の方向に指向させるため、所望の方向に係るドップラー中心周波数をそれぞれのビームに付与している。
 位置ずれ補正部15は、ドップラー周波数除去部16、2次元フーリエ変換部17、位置ずれ補正処理部18、2次元逆フーリエ変換部19、抽出結合部20、ドップラー周波数回復部21を備えている。
 位置ずれ補正部15は、ビーム形成部11により形成されたそれぞれのビームに対する補正処理を実施する。
 位置ずれ補正部15は、ビームに対する補正処理として、それぞれのビームにおける2次元周波数領域の信号に対して補正係数を乗算することによって、複数のアンテナ開口により反射パルスが受信されているときに、複数のアンテナ開口が移動することに伴って発生する、レンジ方向における結像の位置ずれを補正する。
 位置ずれ補正部15は、補正処理後のそれぞれのビームを信号結合部22に出力する。
 ドップラー周波数除去部16は、例えば、図2に示すドップラー周波数除去回路34によって実現される。
 ドップラー周波数除去部16は、ビーム形成処理部14により形成されたそれぞれのビームに含まれている周波数のうち、観測ビームのサブアパーチャ中心時刻におけるドップラー中心周波数と、ビーム形成処理部14によってビームに付与された所望の指向方向に係るドップラー中心周波数とを除去する。
 ドップラー周波数除去部16は、2つのドップラー中心周波数除去後のそれぞれのビームを2次元フーリエ変換部17に出力する。
 2次元フーリエ変換部17は、例えば、図2に示す2次元フーリエ変換回路35によって実現される。
 2次元フーリエ変換部17は、ドップラー周波数除去部16から出力されたそれぞれのビームを2次元周波数領域の信号に変換する。2次元周波数領域の信号は、レンジ周波数領域の信号と、ドップラー周波数領域の信号とを含む信号である。
 2次元フーリエ変換部17は、K個の2次元周波数領域の信号を位置ずれ補正処理部18に出力する。
 位置ずれ補正処理部18は、例えば、図2に示す位置ずれ補正処理回路36によって実現される。
 位置ずれ補正処理部18は、2次元フーリエ変換部17から出力されたそれぞれの2次元周波数領域の信号に対して補正係数を乗算することによって、レンジ方向における結像の位置ずれを補正する。
 位置ずれ補正処理部18の内部メモリには、反射パルスとして用いられるパルスのチャープレートの数だけ補正係数が記憶されている。チャープレートの数が、例えば、Ch(Chは、2以上の整数である)であれば、Ch個の補正係数が、位置ずれ補正処理部18の内部メモリに記憶されている。
 位置ずれ補正処理部18は、K個の2次元周波数領域の信号に対して、それぞれの補正係数を乗算する。
 位置ずれ補正処理部18は、2次元周波数領域の信号と補正係数とを乗算した信号として、(K×Ch)個の乗算信号を2次元逆フーリエ変換部19に出力する。
 2次元逆フーリエ変換部19は、例えば、図2に示す2次元逆フーリエ変換回路37によって実現される。
 2次元逆フーリエ変換部19は、位置ずれ補正処理部18から出力された(K×Ch)個の乗算信号のそれぞれを2次元時間領域の信号に変換する。2次元時間領域の信号は、レンジ時間領域の信号と、アジマス時間領域の信号とを含む信号である。
 2次元逆フーリエ変換部19は、(K×Ch)個の2次元時間領域の信号を抽出結合部20に出力する。
 抽出結合部20は、例えば、図2に示す抽出結合回路38によって実現される。
 2次元逆フーリエ変換部19から出力されたそれぞれの2次元時間領域の信号は、Ch個の補正係数のうちのいずれか1つの補正係数が乗算された信号である。また、それぞれの2次元時間領域の信号は、チャープレートが互いに異なる複数の反射パルスに係る信号を含んでいる。したがって、2次元時間領域の信号に含まれている複数の反射パルスに係る信号のうち、乗算されている補正係数に係るチャープレートと同じチャープレートを有する反射パルスに係る信号は、位置ずれ補正処理部18によって、レンジ方向における結像の位置ずれが適正に補正がされている。2次元時間領域の信号に含まれている複数の反射パルスに係る信号のうち、乗算されている補正係数に係るチャープレートと異なるチャープレートを有する反射パルスに係る信号は、位置ずれ補正処理部18によって、レンジ方向における結像の位置ずれが適正に補正されていない。
 抽出結合部20は、それぞれの2次元時間領域の信号の中から、乗算されている補正係数に係るチャープレートと同じチャープレートを有する反射パルスに係る信号を抽出する。
 抽出結合部20は、(K×Ch)個の2次元時間領域の信号から抽出した反射パルスに係る信号のうち、k番目のビームに係る複数の信号を互いに結合させることによって、k番目のビームに係る結合後の信号を生成する。
 抽出結合部20は、K個の結合後の信号をドップラー周波数回復部21に出力する。
 ドップラー周波数回復部21は、例えば、図2に示すドップラー周波数回復回路39によって実現される。
 ドップラー周波数回復部21は、抽出結合部20から出力されたそれぞれの結合後の信号に対して、ドップラー周波数除去部16により除去されたドップラー中心周波数のうち、観測ビームのアジマス時間中心におけるドップラー中心周波数を回復させる。
 ドップラー周波数回復部21は、K個のドップラー中心周波数回復後の信号をビーム傾斜除去部23に出力する。
 信号結合部22は、ビーム傾斜除去部23、アジマスフーリエ変換部24、ビーム合成部25、アジマス逆フーリエ変換部26、ビーム傾斜回復部27及び信号結合処理部28を備えている。
 信号結合部22は、位置ずれ補正部15による補正処理後の複数のビームを繰り返し合成し、複数の合成後の信号をアジマス時間方向に結合させる。
 即ち、信号結合部22は、位置ずれ補正部15による補正処理後のそれぞれのビームの傾斜を除去してから、傾斜除去後の複数のビームにおけるドップラー周波数領域の信号を繰り返し合成する。
 信号結合部22は、それぞれの合成後の信号に傾斜を付与し、傾斜付与後の複数の合成後の信号をアジマス時間方向に結合させる。
 信号結合部22は、結合後の信号を画像再生部29に出力する。
 ビーム傾斜除去部23は、例えば、図2に示すビーム傾斜除去回路40によって実現される。
 ビーム傾斜除去部23は、ドップラー周波数回復部21から出力されたそれぞれのドップラー中心周波数回復後の信号の傾斜を除去する。
 即ち、ビーム傾斜除去部23は、ドップラー周波数回復部21から出力されたそれぞれのドップラー中心周波数回復後の信号に対して、それぞれのアンテナ開口から放射されるレーダビームにおけるビーム照射方向の回転に伴う、ビーム照射範囲のドップラー中心周波数の変化を除去する処理を行う。
 ビーム傾斜除去部23は、K個のドップラー中心周波数変化除去後の信号をアジマスフーリエ変換部24に出力する。
 アジマスフーリエ変換部24は、例えば、図2に示すアジマスフーリエ変換回路41によって実現される。
 アジマスフーリエ変換部24は、ビーム傾斜除去部23から出力されたそれぞれのドップラー中心周波数変化除去後の信号をドップラー周波数領域の信号に変換する。
 アジマスフーリエ変換部24は、K個のドップラー周波数領域の信号をビーム合成部25に出力する。
 ビーム合成部25は、例えば、図2に示すビーム合成回路42によって実現される。
 ビーム合成部25は、アジマスフーリエ変換部24から出力されたK個のドップラー周波数領域の信号を繰り返し合成し、複数の合成後の信号のそれぞれをアジマス逆フーリエ変換部26に出力する。
 アジマス逆フーリエ変換部26は、例えば、図2に示すアジマス逆フーリエ変換回路43によって実現される。
 アジマス逆フーリエ変換部26は、ビーム合成部25から出力されたそれぞれの合成後の信号をアジマス時間領域の信号に変換する。
 アジマス逆フーリエ変換部26は、それぞれのアジマス時間領域の信号をビーム傾斜回復部27に出力する。
 ビーム傾斜回復部27は、例えば、図2に示すビーム傾斜回復回路44によって実現される。
 ビーム傾斜回復部27は、アジマス逆フーリエ変換部26から出力されたそれぞれのアジマス時間領域の信号に対して傾斜を付与する。
 即ち、ビーム傾斜回復部27は、アジマス逆フーリエ変換部26から出力されたそれぞれのアジマス時間領域の信号に対して、それぞれのアンテナ開口から放射されるレーダビームにおけるビーム照射方向の回転に伴う、ビーム照射範囲のドップラー中心周波数の変化を回復させる処理を行う。
 ビーム傾斜回復部27は、それぞれの傾斜付与後の信号を信号結合処理部28に出力する。
 信号結合処理部28は、例えば、図2に示す信号結合処理回路45によって実現される。
 信号結合処理部28は、ビーム傾斜回復部27から出力された複数の傾斜付与後の信号をアジマス時間方向に結合させ、結合後の信号を画像再生部29に出力する。
 画像再生部29は、例えば、図2に示す画像再生回路46によって実現される。
 画像再生部29は、信号結合部22による結合後の信号からSAR画像を再生し、SAR画像を外部に出力する。
 図1では、レーダ信号処理装置2の構成要素であるチャープレート統一部12、信号分割部13、ビーム形成処理部14、ドップラー周波数除去部16、2次元フーリエ変換部17、位置ずれ補正処理部18、2次元逆フーリエ変換部19、抽出結合部20、ドップラー周波数回復部21、ビーム傾斜除去部23、アジマスフーリエ変換部24、ビーム合成部25、アジマス逆フーリエ変換部26、ビーム傾斜回復部27、信号結合処理部28及び画像再生部29のそれぞれが、図2に示すような専用のハードウェアによって実現されるものを想定している。即ち、レーダ信号処理装置2が、チャープレート統一回路31、信号分割回路32、ビーム形成処理回路33、ドップラー周波数除去回路34、2次元フーリエ変換回路35、位置ずれ補正処理回路36、2次元逆フーリエ変換回路37、抽出結合回路38、ドップラー周波数回復回路39、ビーム傾斜除去回路40、アジマスフーリエ変換回路41、ビーム合成回路42、アジマス逆フーリエ変換回路43、ビーム傾斜回復回路44、信号結合処理回路45及び画像再生回路46によって実現されるものを想定している。
 チャープレート統一回路31、信号分割回路32、ビーム形成処理回路33、ドップラー周波数除去回路34、2次元フーリエ変換回路35、位置ずれ補正処理回路36、2次元逆フーリエ変換回路37、抽出結合回路38、ドップラー周波数回復回路39、ビーム傾斜除去回路40、アジマスフーリエ変換回路41、ビーム合成回路42、アジマス逆フーリエ変換回路43、ビーム傾斜回復回路44、信号結合処理回路45及び画像再生回路46のそれぞれは、例えば、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)、又は、これらを組み合わせたものが該当する。
 レーダ信号処理装置2の構成要素は、専用のハードウェアによって実現されるものに限るものではなく、レーダ信号処理装置2が、ソフトウェア、ファームウェア、又は、ソフトウェアとファームウェアとの組み合わせによって実現されるものであってもよい。
 ソフトウェア又はファームウェアは、プログラムとして、コンピュータのメモリに格納される。コンピュータは、プログラムを実行するハードウェアを意味し、例えば、CPU(Central Processing Unit)、中央処理装置、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータ、プロセッサ、あるいは、DSP(Digital Signal Processor)が該当する。
 図3は、レーダ信号処理装置2が、ソフトウェア又はファームウェア等によって実現される場合のコンピュータのハードウェア構成図である。
 レーダ信号処理装置2が、ソフトウェア又はファームウェア等によって実現される場合、チャープレート統一部12、信号分割部13、ビーム形成処理部14、ドップラー周波数除去部16、2次元フーリエ変換部17、位置ずれ補正処理部18、2次元逆フーリエ変換部19、抽出結合部20、ドップラー周波数回復部21、ビーム傾斜除去部23、アジマスフーリエ変換部24、ビーム合成部25、アジマス逆フーリエ変換部26、ビーム傾斜回復部27、信号結合処理部28及び画像再生部29におけるそれぞれの処理手順をコンピュータに実行させるためのプログラムがメモリ51に格納される。そして、コンピュータのプロセッサ52がメモリ51に格納されているプログラムを実行する。
 また、図2では、レーダ信号処理装置2の構成要素のそれぞれが専用のハードウェアによって実現される例を示し、図3では、レーダ信号処理装置2がソフトウェア又はファームウェア等によって実現される例を示している。しかし、これは一例に過ぎず、レーダ信号処理装置2における一部の構成要素が専用のハードウェアによって実現され、残りの構成要素がソフトウェア又はファームウェア等によって実現されるものであってもよい。
 次に、図1に示すレーダ装置の動作について説明する。
 図4は、レーダ信号処理装置2の処理手順であるレーダ信号処理方法を示すフローチャートである。
 図1に示すレーダ装置は、人工衛星、又は、飛行機等のプラットフォームに搭載されており、プラットフォームの移動に伴って、移動する。図1に示すレーダ装置では、プラットフォームが速度Vpltで等速直線運動している。
 アンテナ部1は、アジマス方向に複数のアンテナ開口を有している。
 アンテナ部1は、それぞれのアンテナ開口からパルスを繰り返し空間に放射する。
 それぞれのアンテナ開口から繰り返し放射されるパルスは、チャープレートが変化するパルスである。また、複数のアンテナ開口から繰り返し放射されるパルスは、図5に示す観測ビームを形成する。観測ビームのビーム照射方向は、回転している。
 図5は、アンテナ部1が有している複数のアンテナ開口と、スライディングスポットライトモード観測時の観測ビーム及びビーム形成部11により形成されるビームとを示す説明図である。
 観測ビームは、例えば、スライディングスポットライトモードのレーダビーム、フルスポットライトモードのレーダビーム、又は、TOPSモードのレーダビームである。
 図5には、観測ビームが、スライディングスポットライトモードのレーダビームが表されている。
 図5の例では、アンテナ部1が2つのアンテナ開口を有しており、図中、右側方向に2つのアンテナ開口が移動している。図5の例では、アンテナ部1が2つのアンテナ開口を有している。しかし、これは一例に過ぎず、アンテナ部1が3つ以上のアンテナ開口を有していてもよい。
 図5において、網掛けが施されている領域は、観測ビームであり、斜線が施されている領域は、ビーム形成部11により形成されているビームである。
 図5には、ビーム形成部11により形成されるK本のビームのうち、1本のビームが表記されている。
 ビーム形成部11により形成されるビームにおけるアジマス方向のビーム幅は、観測ビームにおけるアジマス方向のビーム幅よりも狭くなっている。
 それぞれのアンテナ開口から繰り返し放射されたパルスは、目標によって反射される。目標によって反射されたパルスは、反射パルスとして、複数のアンテナ開口のそれぞれに戻ってくる。反射パルスは、チャープレートが変化するパルスである。
 アンテナ部1におけるそれぞれのアンテナ開口は、目標からの反射パルスを受信する。
 アンテナ部1のA/D変換器1aは、受信したそれぞれの反射パルスの受信信号をアナログ信号からデジタル信号に変換し、それぞれのデジタル信号をレーダ信号処理装置2に出力する。
 それぞれのアンテナ開口がパルスを送受信しているとき、プラットフォームが移動することによって、反射パルスの受信信号には、プラットフォームの移動に伴うドップラー周波数(以下「パルス内ドップラー効果)という)が付加される。パルス内ドップラー効果が付与されることによって、それぞれの反射パルスのレンジ結像位置には、ずれが発生する。
 図6は、複数のアンテナ開口を用いて、スライディングスポットライトモードのレーダビームが観測される際の受信信号を示す説明図である。
 図6Aは、複数のアンテナ開口のうちの1つのアンテナ開口によって受信された反射パルスの受信信号のアジマス時間とドップラー周波数との関係を示している。
 図6Bは、図6Aに示す受信信号の1サブアパーチャを示している。
 図6Cは、図6Bに示す1サブアパーチャの拡大図である。
 図6において、横軸は、アジマス時刻η、縦軸は、ドップラー周波数fηを示している。
 実際の受信信号のドップラースペクトルのうち、観測時における反射パルスのPRFを超えた成分は、折り返される。図6Aでは、説明の簡単化のため、折り返しがない状態を表している。
 点線は、点散乱体のドップラー周波数の変化を示している。網掛けが施されている領域は、観測ビームが照射された範囲を示している。観測ビームが照射された範囲のうち、太実線で囲まれている領域は、ビーム形成部11によって形成されたK本のビームの中の、ある1つの方向に形成されたビームの照射範囲を示している。スライディングスポットライトモードの観測では、レーダビームを回転させながら観測を行うため、ビーム形成部11によって形成されるビームの照射範囲も傾いている。
 Fobsは、観測時における反射パルスのPRFであり、Bは、観測ビームの3dBビーム幅から計算される瞬時ドップラー帯域幅である。複数のアンテナ開口を用いる場合、Fobsは、観測ビームの瞬時ドップラー帯域幅Bよりも小さくてもよい。
 Fexは、ビーム合成部25による合成後の信号のPRFである。Fexは、観測ビームの瞬時ドップラー帯域幅B以上である必要がある。即ち、B≦Fexである必要がある。
 Tsubは、ビーム形成部11によって、複数の方向に形成されるビームの瞬時ドップラー帯域幅BBFが、観測時における反射パルスのPRFであるFobsに収まるようなサブアパーチャ時間である。
 チャープレート統一部12は、アンテナ部1のA/D変換器1aから、複数のアンテナ開口のそれぞれによって受信される目標からの反射パルスの受信信号として、デジタル信号を繰り返し取得する。
 チャープレート統一部12は、位置ずれ補正部15による位置ずれの補正処理を可能にするため、それぞれのアンテナ開口に係る複数のデジタル信号のチャープレートを揃える(図4のステップST1)。
 複数のデジタル信号のチャープレートは、どのようなチャープレートに揃えられてもよいため、チャープレート統一部12によって、複数のデジタル信号のチャープレートが任意のチャープレートに揃えられる。
 チャープレート統一部12は、それぞれのアンテナ開口に係る、チャープレートを揃えた後の複数のデジタル信号を信号分割部13に出力する。
 信号分割部13は、チャープレート統一部12から出力されたそれぞれのデジタル信号を取得する。
 信号分割部13は、ビーム形成処理部14により形成されるビームの瞬時ドップラー帯域幅BBFが、観測時における反射パルスのPRFであるFobsよりも小さくなるように、それぞれのデジタル信号をアジマス時間方向に分割する(図4のステップST2)。以下、デジタル信号のアジマス時間方向の分割を「サブアパーチャ分割」という。
 信号分割部13は、分割後のデジタル信号をビーム形成処理部14に出力する。
 ビーム形成処理部14により形成されるビームの瞬時ドップラー帯域幅BBFの中の最大瞬時ドップラー周波数fη,inst,max,BF(η)は、以下の式(1)のように表される。
 また、ビーム形成処理部14により形成されるビームの瞬時ドップラー帯域幅BBFの中の最小瞬時ドップラー周波数fη,inst,min,BF(η)は、以下の式(2)のように表される。

Figure JPOXMLDOC01-appb-I000001
 式(1)及び式(2)において、Vは、実効レーダ速度、Rrcoは、アンテナ開口から、観測ビームの回転中心までの最接近スラントレンジ、θは、観測ビームの3dBビーム幅、θBFは、ビーム形成処理部14により形成されるビームの3dBビーム幅、λは、波長である。
 式(1)及び式(2)におけるそれぞれの波長λとしては、式(1)及び式(2)におけるそれぞれのsin関数の正負に応じて、以下の式(3)及び式(4)に示すように、レンジ帯域幅Bが考慮されている波長λmax、又は、波長λminが用いられる。

Figure JPOXMLDOC01-appb-I000002
 式(3)及び式(4)において、cは、光速、fは送信搬送波周波数である。
 ビーム形成処理部14により形成されるビームの瞬時ドップラー帯域幅BBFが、観測時における反射パルスのPRFであるFobsよりも小さくなるようなサブアパーチャ分割は、以下の式(5)を満足する。換言すると、信号分割部13が、式(5)を満足するサブアパーチャ分割開始時刻ηst[l]及びサブアパーチャ分割終了時刻ηed[l]のそれぞれを求めれば、上記のサブアパーチャ分割を行うことができる。

Figure JPOXMLDOC01-appb-I000003
 式(5)において、lは、サブアパーチャ番号であり、Nsubは、サブアパーチャ分割数である。
 それぞれのサブアパーチャ時間Tsubが揃えられていると、計算効率が高まるため、サブアパーチャ時間Tsubは、以下の式(6)のように決定されていてもよい。

Figure JPOXMLDOC01-appb-I000004
 ビーム形成処理部14は、信号分割部13から、それぞれのアンテナ開口に係る分割後の複数のデジタル信号を取得する。
 ビーム形成処理部14は、それぞれのアンテナ開口に係る分割後の複数のデジタル信号を用いて、DBFを実施することで、K本のビームを形成する(図4のステップST3)。
 ビーム形成処理部14は、K本のビームのそれぞれを所望の方向に指向させるため、所望の方向に係るドップラー中心周波数をそれぞれのビームに付与している。
 ドップラー周波数除去部16は、ビーム形成処理部14がK本のビームを形成すると、それぞれのビームに含まれている周波数のうち、観測ビームのサブアパーチャ中心時刻におけるドップラー中心周波数と、ビーム形成処理部14によってビームに付与された所望の指向方向に係るドップラー中心周波数とを除去する(図4のステップST4)。
 即ち、ドップラー周波数除去部16は、以下の式(7)に示すように、形成したビームに、H[ηsub,i,k]を乗算することによって、それぞれのドップラー中心周波数を除去する。

Figure JPOXMLDOC01-appb-I000005
 式(7)において、fηdc,iは、i番目のサブアパーチャ中心時刻ηdc[i]における観測ビームのドップラー中心周波数である。
 fは、ビームを指向させる際に付与するドップラー中心周波数、ηsubは、サブアパーチャ内のアジマス時刻である。
 それぞれのドップラー中心周波数が除去されることによって、受信信号が、図6Aから図6Bのように変化する。また、それぞれのドップラー中心周波数が除去されることによって、i番目のサブアパーチャのビーム形成後のビーム(例えば、図6Cにおいて、太実線で囲まれている領域)におけるサブアパーチャ中心時刻ηdc[i]のドップラー周波数が0[Hz]に移動する。
 ドップラー周波数除去部16は、K個のドップラー中心周波数除去後のビームを2次元フーリエ変換部17に出力する。
 2次元フーリエ変換部17は、ドップラー周波数除去部16から、K個のドップラー中心周波数除去後のビームを取得する。
 2次元フーリエ変換部17は、それぞれのビームを2次元周波数領域の信号に変換する(図4のステップST5)。2次元周波数領域の信号は、レンジ周波数領域の信号と、ドップラー周波数領域の信号とを含む信号である。ビームを2次元周波数領域の信号に変換する処理自体は、公知の技術であるため詳細な説明を省略する。
 2次元フーリエ変換部17は、K個の2次元周波数領域の信号を位置ずれ補正処理部18に出力する。
 位置ずれ補正処理部18は、2次元フーリエ変換部17から、K個の2次元周波数領域の信号を取得する。以下、2次元周波数領域の信号をFDのように表記する。k=1,・・・,Kである。
 位置ずれ補正処理部18は、K個の2次元周波数領域の信号FDに対して、内部メモリに記憶されているCh個の補正係数hk,ch(ch=1,・・・,Ch)を乗算することによって、レンジ方向における結像の位置ずれを補正する(図4のステップST6)。
 位置ずれ補正処理部18は、2次元周波数領域の信号FDと補正係数hk,chとを乗算した信号として、(K×Ch)個の乗算信号FD×hk,ch(k=1,・・・,K:ch=1,・・・,Ch)を2次元逆フーリエ変換部19に出力する。
 FD×hk,ch(k=1,・・・,K:ch=1,・・・,Ch)
=FD×h1,1,FD×h2,1,・・・,FD×hK,1
FD×h1,2,FD×h2,2,・・・,FD×hK,2
,・・・,
FD×h1,Ch,FD×h2,Ch,・・・,FD×hK,Ch
 2次元逆フーリエ変換部19は、位置ずれ補正処理部18から、(K×Ch)個の乗算信号FD×hk,chを取得する。
 2次元逆フーリエ変換部19は、それぞれの乗算信号FD×hk,chを2次元時間領域の信号TDk,ch(k=1,・・・,K:ch=1,・・・,Ch)に変換する(図4のステップST7)。2次元時間領域の信号TDk,chは、レンジ時間領域の信号と、アジマス時間領域の信号とを含む信号である。乗算信号FD×k,chを2次元時間領域の信号TDk,chに変換する処理自体は、公知の技術であるため詳細な説明を省略する。
 2次元逆フーリエ変換部19は、(K×Ch)個の2次元時間領域の信号TDk,chを抽出結合部20に出力する。
 抽出結合部20は、2次元逆フーリエ変換部19から、(K×Ch)個の2次元時間領域の信号TDk,chを取得する。
 (K×Ch)個の2次元時間領域の信号TDk,chは、Ch個の補正係数hk,1~hk,Chのうちのいずれか1つの補正係数hk,chが乗算された信号である。また、(K×Ch)個の2次元時間領域の信号TDk,chは、以下の式(8)に示すように、チャープレートが互いに異なるCh個の反射パルスに係る信号rk,1,rk,2,・・・,rk,Chを含んでいる。
TDk,ch={rk,1,rk,2,・・・,rk,Ch}       (8)
 したがって、2次元時間領域の信号TDk,chに含まれている反射パルスに係る信号rk,1,rk,2,・・・,rk,Chのうち、乗算されている補正係数hk,chに係るチャープレートと同じチャープレートを有する反射パルスに係る信号は、位置ずれ補正処理部18によって、レンジ方向における結像の位置ずれが適正に補正がされている。反射パルスに係る信号rk,1,rk,2,・・・,rk,Chのうち、乗算されている補正係数hk,chに係るチャープレートと異なるチャープレートを有する反射パルスに係る信号は、位置ずれ補正処理部18によって、レンジ方向における結像の位置ずれが適正に補正されていない。
 抽出結合部20は、(K×Ch)個の2次元時間領域の信号TDk,chのそれぞれから、乗算されている補正係数hk,chに係るチャープレートと同じチャープレートを有する反射パルスに係る信号をrk,chから抽出する。
 即ち、抽出結合部20は、(K×Ch)個の2次元時間領域の信号TDk,chのそれぞれから、結像の位置ずれが適正に補正がされている反射パルスに係る信号をrk,chから抽出する。
 2次元時間領域の信号TDk,chに含まれている反射パルスに係る信号rk,1,rk,2,・・・,rk,Chのうち、乗算されている補正係数hk,chに係るチャープレートと同じチャープレートを有する反射パルスに係る信号が、例えば、chパルスごとに周期的に存在する場合には、各rk,chに含まれるパルスから該当するパルスをchパルスごとに抽出する。
 例えば、Ch=2の場合、チャープ率の異なるパルスを交互に送受信したときに、補正係数hk,1がrk,1に含まれるパルスのうち、奇数パルスを正しく補正できているとすると、抽出結合部20は、rk,1に含まれるパルスのうち、奇数パルスを抽出する。このとき、rk,2は、偶数パルスが補正係数hk,2によって正しい補正ができており、抽出結合部20は、rk,2から偶数パルスを抽出する。どのパルスが、どの補正係数で正しく補正されるかは、送信時にどのようなチャープ率のパルスをどのような順序で送信したかを分かっているので、判断できる。例えば、Ch=2の場合、奇数番目の送信パルスでアップチャープ、偶数パルスでダウンチャープのパルスを送信していれば、アップチャープ用の補正係数で奇数パルスを正しく補正でき、ダウンチャープ用の補正係数で偶数パルスを正しく補正できる。
 抽出結合部20は、(K×Ch)個の2次元時間領域の信号からそれぞれ抽出した反射パルスに係る信号rk,chのうち、k(k=1,・・・,K)番目のビームに係る信号rpickk,1~rpickk,Chを互いに結合させることによって、k番目のビームに係る結合後の信号Uを生成する。
 抽出結合部20は、K個の結合後の信号U(k=1,・・・,K)をドップラー周波数回復部21に出力する。
 ドップラー周波数回復部21は、抽出結合部20から、K個の結合後の信号Uを取得する。
 ドップラー周波数回復部21は、それぞれの結合後の信号Uに対して、ドップラー周波数除去部16により除去されたドップラー中心周波数のうち、観測ビームのアジマス時間中心におけるドップラー中心周波数を回復させる(図4のステップST8)。
 即ち、ドップラー周波数回復部21は、以下の式(9)に示すように、それぞれの結合後の信号Uに対して、H’[ηsub,i,k]を乗算することによって、観測ビームのアジマス時間中心におけるドップラー中心周波数を回復させる。

Figure JPOXMLDOC01-appb-I000006
 観測ビームのアジマス時間中心におけるドップラー中心周波数が回復されることによって、受信信号が、後述する図7Cから図7Dのように変化する。
 ドップラー周波数回復部21は、K個のドップラー中心周波数回復後の信号U’(k=1,・・・,K)をビーム傾斜除去部23に出力する。
 図7は、複数のアンテナ開口を用いて、スライディングスポットライトモードのレーダビームが観測される際の受信信号を示す説明図である。
 図7において、横軸は、アジマス時刻η、縦軸は、ドップラー周波数fηを示している。
 図7Aは、図6Aと同様に、複数のアンテナ開口のうちの1つのアンテナ開口によって受信された反射パルスの受信信号のアジマス時間とドップラー周波数との関係を示している。
 点線は、点散乱体のドップラー周波数の変化を示している。網掛けが施されている領域は、観測ビームが照射された範囲を示している。観測ビームが照射された範囲のうち、太実線で囲まれている領域は、ビーム形成部11によって形成されたK本のビームの中の、ある1つの方向に形成されたビームの照射範囲を示している。スライディングスポットライトモードの観測では、レーダビームを回転させながら観測を行うため、ビーム形成部11によって形成されるビームの照射範囲も傾いている。
 ビームの照射範囲が傾いているままでは、ビーム形成部11により形成されたそれぞれのビームにおけるドップラー周波数領域の信号を切り出して、複数のドップラー周波数領域の信号を合成するビーム合成処理の実施が困難である。
 ビーム傾斜除去部23は、ドップラー周波数回復部21から、K個のドップラー中心周波数回復後の信号U’を取得する。
 ビーム傾斜除去部23は、それぞれのドップラー中心周波数回復後の信号U’の傾斜を除去する(図4のステップST9)。
 即ち、ビーム傾斜除去部23は、それぞれのドップラー中心周波数回復後の信号U’に対して、それぞれのアンテナ開口から放射されるレーダビームにおけるビーム照射方向の回転に伴う、ビーム照射範囲のドップラー中心周波数の変化を除去する処理を行う。
 ビーム傾斜除去部23は、K個のドップラー中心周波数変化除去後の信号G(k=1,・・・,K)をアジマスフーリエ変換部24に出力する。
 以下、ビーム照射範囲のドップラー中心周波数の変化を除去する処理を「デランプ処理」という。
 ビーム傾斜除去部23が、デランプ処理を実施することによって、図7Bに示すように、ビーム形成処理部14によって形成されたビームの照射範囲の傾きが取り除かれる。
 図7Bは、デランプ処理を実施することによって傾きが取り除かれたビームの照射範囲を示している。
 ビーム形成処理部14によって形成されたビームの照射範囲の傾きが取り除かれることによって、当該ビームの瞬時ドップラー帯域幅BBFが、観測時における反射パルスのPRFであるFobsよりも小さくなる。よって、ドップラー周波数領域でのビームの切り出しが可能となる。
 ビーム傾斜除去部23によるデランプ処理は、以下の式(10)に示すデランプ関数Hdrmp[ηsub,i]を、ドップラー中心周波数回復後の信号U’に乗算することで実現できる。

Figure JPOXMLDOC01-appb-I000007
 式(10)において、Rrc[η]は、図8に示すように、アンテナ開口から、観測ビームの回転中心までのアジマス時刻ηにおけるスラントレンジである。
 ηdc[i]は、i番目のサブアパーチャ分割におけるサブアパーチャ処理範囲、iは、サブアパーチャ番号である。
 図8は、スライディングスポットライトモードの観測幾何を示す説明図である。
 Rrc[η]は、以下の式(11)に示すように、観測ビームのスクイント角atan[ηVplf/Rrco]を用いて表される。

Figure JPOXMLDOC01-appb-I000008
 式(11)において、Rrcoは、アンテナ開口から、観測ビームの回転中心までの最接近スラントレンジであり、Rrco[0]=Rrcoである。
 図8において、ηdc,sは、各サブアパーチャの観測領域中心位置の最近接時刻、ηは、ビーム回転中心が最近接となる時刻を基準とした任意散乱点の最近接時刻である。
 θは、観測ビーム指向方向を基準としたビーム形成時のビーム指向方向のスクイント角、Ψc,sは、各サブアパーチャの観測領域中心位置までのスクイント角、R[η]は、任意散乱点のスラントレンジである。
 Rsoは、プラットフォームから地上面までの最接近スラントレンジ、θ[η]は、任意散乱点とプラットフォームとのスクイント角、Rは、任意散乱点の最近接時のスラントレンジである。
 アジマスフーリエ変換部24は、ビーム傾斜除去部23から、K個のドップラー中心周波数変化除去後の信号Gを取得する。
 アジマスフーリエ変換部24は、それぞれのドップラー中心周波数変化除去後の信号Gをドップラー周波数領域の信号DPに変換する(図4のステップST10)。ドップラー中心周波数変化除去後の信号Gをドップラー周波数領域の信号DPに変換する処理自体は、公知の技術であるため詳細な説明を省略する。
 アジマスフーリエ変換部24は、K個のドップラー周波数領域の信号DP(k=1,・・・,K)をビーム合成部25に出力する。
 ビーム合成部25は、アジマスフーリエ変換部24から、K個のドップラー周波数領域の信号DPを取得する。
 ビーム合成部25は、K個のドップラー周波数領域の信号DPの中から、それぞれドップラー周波数幅BCUTを切り出し、切り出したK個のドップラー周波数幅BCUTを合成する。合成後の信号Syをアジマス逆フーリエ変換部26に出力する(図4のステップST11)。
 ビーム合成部25は、アジマスフーリエ変換部24から、K個のドップラー周波数領域の信号DPを取得する毎に、K個のドップラー周波数領域の信号DPの中から、それぞれドップラー周波数幅BCUTで信号を切り出し、切り出したK個のドップラー周波数幅BCUTを合成し、複数の合成後の信号Syをアジマス逆フーリエ変換部26に出力する。
 図7Cは、ビーム合成部25による合成後の信号Syであるビームの照射範囲を示す説明図である。
 図7Cにおいて、実線で囲まれている領域は、ビーム合成部25による合成後の信号Syであるビームの照射範囲を示している。
 アジマス逆フーリエ変換部26は、ビーム合成部25から、複数の合成後の信号Syを取得する。
 アジマス逆フーリエ変換部26は、それぞれの合成後の信号Syをアジマス時間領域の信号AZTに変換する(図4のステップST12)。合成後の信号Syをアジマス時間領域の信号AZTに変換する処理自体は、公知の技術であるため詳細な説明を省略する。
 アジマス逆フーリエ変換部26は、それぞれのアジマス時間領域の信号AZTをビーム傾斜回復部27に出力する。
 ビーム傾斜回復部27は、アジマス逆フーリエ変換部26から、複数のアジマス時間領域の信号AZTを取得する。
 ビーム傾斜回復部27は、図7Dに示すように、それぞれのアジマス時間領域の信号AZTに対して傾斜を付与する(図4のステップST13)。
 即ち、ビーム傾斜回復部27は、それぞれのアジマス時間領域の信号AZTに対して、それぞれのアンテナ開口から放射されるレーダビームにおけるビーム照射方向の回転に伴う、ビーム照射範囲のドップラー中心周波数の変化を回復させるリランプ処理を行う。
 リランプ処理は、式(10)に示すデランプ関数Hdrmp[ηsub,i]の共役複素を、アジマス時間領域の信号AZTに乗算することによって実現することができる。
 ビーム傾斜回復部27は、複数の傾斜付与後の信号AZT’を信号結合処理部28に出力する。
 図7Dは、ビーム傾斜回復部27による傾斜付与後の信号AZT’であるビームの照射範囲を示す説明図である。
 図7Dにおいて、実線で囲まれている領域は、ビーム傾斜回復部27による傾斜付与後の信号AZT’であるビームの照射範囲を示している。
 信号結合処理部28は、ビーム傾斜回復部27から、複数の傾斜付与後の信号AZT’を取得する。
 信号結合処理部28は、複数の傾斜付与後の信号AZT’をアジマス時間方向に結合させ、結合後の信号Unを画像再生部29に出力する(図4のステップST14)。
 画像再生部29は、信号結合部22から、結合後の信号Unを取得する。
 画像再生部29は、結合後の信号UnからSAR画像を再生し、SAR画像を外部に出力する(図4のステップST15)。
 以上の実施の形態1では、プラットフォームの進行方向に並んでいる複数のアンテナ開口によって受信される目標からの反射パルスとして、チャープレートが変化するパルスの受信信号を繰り返し取得し、それぞれのアンテナ開口に係る複数の受信信号のチャープレートを揃えてから、それぞれの受信信号をアジマス時間方向に分割し、複数のアンテナ開口に係る分割後の受信信号を用いて、複数のビームを形成するビーム形成部11と、ビーム形成部11により形成されたそれぞれのビームに対する補正処理として、それぞれのビームにおける2次元周波数領域の信号に対して補正係数を乗算することによって、複数のアンテナ開口により反射パルスが受信されているときに、プラットフォームが移動することに伴って発生する、レンジ方向における結像の位置ずれを補正する位置ずれ補正部15と、位置ずれ補正部15による補正処理後の複数のビームを繰り返し合成し、複数の合成後の信号をアジマス時間方向に結合させる信号結合部22と、信号結合部22による結合後の信号から合成開口レーダ画像を再生する画像再生部29とを備えるように、レーダ信号処理装置2を構成した。したがって、レーダ信号処理装置2は、複数のアンテナ開口のそれぞれによって受信される反射パルスとして、チャープレートが変化するパルスが用いられることによるアジマスアンビギュイティの発生を抑えることができる。
 なお、本開示は、実施の形態の任意の構成要素の変形、もしくは実施の形態の任意の構成要素の省略が可能である。
 本開示は、合成開口レーダ画像を再生するレーダ信号処理装置及びレーダ信号処理方法に適している。
 1 アンテナ部、1a A/D変換器、2 レーダ信号処理装置、11 ビーム形成部、12 チャープレート統一部、13 信号分割部、14 ビーム形成処理部、15 位置ずれ補正部、16 ドップラー周波数除去部、17 2次元フーリエ変換部、18 位置ずれ補正処理部、19 2次元逆フーリエ変換部、20 抽出結合部、21 ドップラー周波数回復部、22 信号結合部、23 ビーム傾斜除去部、24 アジマスフーリエ変換部、25 ビーム合成部、26 アジマス逆フーリエ変換部、27 ビーム傾斜回復部、28 信号結合処理部、29 画像再生部、31 チャープレート統一回路、32 信号分割回路、33 ビーム形成処理回路、34 ドップラー周波数除去回路、35 2次元フーリエ変換回路、36 位置ずれ補正処理回路、37 2次元逆フーリエ変換回路、38 抽出結合回路、39 ドップラー周波数回復回路、40 ビーム傾斜除去回路、41 アジマスフーリエ変換回路、42 ビーム合成回路、43 アジマス逆フーリエ変換回路、44 ビーム傾斜回復回路、45 信号結合処理回路、46 画像再生回路、51 メモリ、52 プロセッサ。

Claims (6)

  1.  プラットフォームの進行方向に並んでいる複数のアンテナ開口によって受信される目標からの反射パルスとして、チャープレートが変化するパルスの受信信号を繰り返し取得し、それぞれのアンテナ開口に係る複数の受信信号のチャープレートを揃えてから、それぞれの受信信号をアジマス時間方向に分割し、前記複数のアンテナ開口に係る分割後の受信信号を用いて、複数のビームを形成するビーム形成部と、
     前記ビーム形成部により形成されたそれぞれのビームに対する補正処理として、それぞれのビームにおける2次元周波数領域の信号に対して補正係数を乗算することによって、前記複数のアンテナ開口により反射パルスが受信されているときに、前記プラットフォームが移動することに伴って発生する、レンジ方向における結像の位置ずれを補正する位置ずれ補正部と、
     前記位置ずれ補正部による補正処理後の複数のビームを繰り返し合成し、複数の合成後の信号をアジマス時間方向に結合させる信号結合部と、
     前記信号結合部による結合後の信号から合成開口レーダ画像を再生する画像再生部と
     を備えたレーダ信号処理装置。
  2.  それぞれのアンテナ開口によって受信される前記目標からの反射パルスは、
     それぞれのアンテナ開口から繰り返し放射されたのち、前記目標によって反射されたパルスであり、
     それぞれのアンテナ開口から繰り返し放射されるパルスが形成するレーダビームは、ビーム照射方向が回転するレーダビームであることを特徴とする請求項1記載のレーダ信号処理装置。
  3.  前記ビーム形成部は、
     それぞれのビームのドップラー帯域幅がパルス繰返し周波数よりも小さくなるように、それぞれの受信信号をアジマス時間方向に分割することを特徴とする請求項2記載のレーダ信号処理装置。
  4.  前記信号結合部は、
     前記位置ずれ補正部による補正処理後のそれぞれのビームの傾斜を除去してから、傾斜除去後の複数のビームにおけるドップラー周波数領域の信号を繰り返し合成し、それぞれの合成後の信号に対して前記傾斜を付与し、傾斜付与後の複数の合成後の信号をアジマス時間方向に結合させることを特徴とする請求項2記載のレーダ信号処理装置。
  5.  それぞれのアンテナ開口から繰り返し放射されるパルスが形成するレーダビームは、スライディングスポットライトモードのレーダビーム、フルスポットライトモードのレーダビーム、又は、TOPS(Terrain Observation by Progressive Scan)モードのレーダビームであることを特徴とする請求項2記載のレーダ信号処理装置。
  6.  ビーム形成部が、プラットフォームの進行方向に並んでいる複数のアンテナ開口によって受信される目標からの反射パルスとして、チャープレートが変化するパルスの受信信号を繰り返し取得し、それぞれのアンテナ開口に係る複数の受信信号のチャープレートを揃えてから、それぞれの受信信号をアジマス時間方向に分割し、前記複数のアンテナ開口に係る分割後の受信信号を用いて、複数のビームを形成し、
     位置ずれ補正部が、前記ビーム形成部により形成されたそれぞれのビームに対する補正処理として、それぞれのビームにおける2次元周波数領域の信号に対して補正係数を乗算することによって、前記複数のアンテナ開口により反射パルスが受信されているときに、前記プラットフォームが移動することに伴って発生する、レンジ方向における結像の位置ずれを補正し、
     信号結合部が、前記位置ずれ補正部による補正処理後の複数のビームを繰り返し合成し、複数の合成後の信号をアジマス時間方向に結合させ、
     画像再生部が、前記信号結合部による結合後の信号から合成開口レーダ画像を再生する
     レーダ信号処理方法。
PCT/JP2020/027910 2020-07-17 2020-07-17 レーダ信号処理装置及びレーダ信号処理方法 WO2022014052A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2020/027910 WO2022014052A1 (ja) 2020-07-17 2020-07-17 レーダ信号処理装置及びレーダ信号処理方法
JP2022536103A JPWO2022014052A1 (ja) 2020-07-17 2020-07-17

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/027910 WO2022014052A1 (ja) 2020-07-17 2020-07-17 レーダ信号処理装置及びレーダ信号処理方法

Publications (1)

Publication Number Publication Date
WO2022014052A1 true WO2022014052A1 (ja) 2022-01-20

Family

ID=79554610

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/027910 WO2022014052A1 (ja) 2020-07-17 2020-07-17 レーダ信号処理装置及びレーダ信号処理方法

Country Status (2)

Country Link
JP (1) JPWO2022014052A1 (ja)
WO (1) WO2022014052A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010223811A (ja) * 2009-03-24 2010-10-07 Mitsubishi Electric Corp 画像レーダ装置及び信号処理装置
JP2011169869A (ja) * 2010-02-22 2011-09-01 Mitsubishi Electric Corp レーダ信号処理装置
CN103969644A (zh) * 2013-01-31 2014-08-06 中国人民解放军国防科学技术大学 一种多通道调频连续波sar成像方法
JP2015219016A (ja) * 2014-05-14 2015-12-07 三菱電機株式会社 画像レーダ装置
JP6011746B1 (ja) * 2015-12-03 2016-10-19 三菱電機株式会社 合成開口レーダ装置および信号処理装置
WO2017195297A1 (ja) * 2016-05-11 2017-11-16 三菱電機株式会社 レーダ処理装置
JP6687297B1 (ja) * 2018-12-28 2020-04-22 三菱電機株式会社 レーダ信号処理装置及びレーダ信号処理方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010223811A (ja) * 2009-03-24 2010-10-07 Mitsubishi Electric Corp 画像レーダ装置及び信号処理装置
JP2011169869A (ja) * 2010-02-22 2011-09-01 Mitsubishi Electric Corp レーダ信号処理装置
CN103969644A (zh) * 2013-01-31 2014-08-06 中国人民解放军国防科学技术大学 一种多通道调频连续波sar成像方法
JP2015219016A (ja) * 2014-05-14 2015-12-07 三菱電機株式会社 画像レーダ装置
JP6011746B1 (ja) * 2015-12-03 2016-10-19 三菱電機株式会社 合成開口レーダ装置および信号処理装置
WO2017195297A1 (ja) * 2016-05-11 2017-11-16 三菱電機株式会社 レーダ処理装置
JP6687297B1 (ja) * 2018-12-28 2020-04-22 三菱電機株式会社 レーダ信号処理装置及びレーダ信号処理方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHEN, Q. ET AL.: "Investigation of multichannel sliding spotlight SAR for ultrahigh-resolution and wide-swath imaging", IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, vol. 10, no. 6, November 2013 (2013-11-01), pages 1339 - 1343, XP011529517, DOI: 10.1109/LGRS.2013.2240650 *
MITTERMAYER, J. ET AL.: "Spotlight SAR data processing using the frequency scaling algorithm", IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, vol. 37, no. 5, September 1999 (1999-09-01), pages 2198 - 2214, XP011021386, DOI: 10.1109/36.789617 *

Also Published As

Publication number Publication date
JPWO2022014052A1 (ja) 2022-01-20

Similar Documents

Publication Publication Date Title
Reigber et al. Extended wavenumber-domain synthetic aperture radar focusing with integrated motion compensation
US7397418B1 (en) SAR image formation with azimuth interpolation after azimuth transform
Hawkins Synthetic Aperture Imaging Algorithms: with application to wide bandwidth sonar
US20210405183A1 (en) Method and apparatus for capturing the surroundings
US7145498B2 (en) Efficient autofocus method for swath SAR
US11016169B2 (en) Method and system for reducing interference caused by phase noise in a radar system
JP5542615B2 (ja) レーダ画像処理装置
JP2737570B2 (ja) 合成開口レーダ装置
JPH0727021B2 (ja) 合成開口レーダ装置
US7551119B1 (en) Flight path-driven mitigation of wavefront curvature effects in SAR images
CN106842200A (zh) 一种双基合成孔径雷达成像方法和装置
JPH01503087A (ja) 開口合成
Palmer et al. ISAR imaging using an emulated multistatic radar system
CN115421134B (zh) 一种雷达的速度解模糊的方法、装置及毫米波雷达
JP5106323B2 (ja) レーダ画像再生装置
CN104280733A (zh) 一种合成孔径雷达成像方法、设备及系统
CN109597070A (zh) 一种螺旋扫描式弧形阵列微波成像的方法及装置
JP4541120B2 (ja) レーダ装置
WO2022014052A1 (ja) レーダ信号処理装置及びレーダ信号処理方法
KR101016862B1 (ko) 장거리 역합성 개구면 레이더 영상을 생성하는 방법 및 장치
CN106093942A (zh) 一种考虑斜视影响的高分辨率星载sar脉冲压缩方法
RU2429990C1 (ru) Многофункциональная радиолокационная станция высокого разрешения с активной фазированной решеткой для пилотируемых и беспилотных летательных аппаратов
JPH10232282A (ja) 合成開口レーダ装置および移動目標検出方法
JP3649565B2 (ja) 合成開口レーダ装置
JPWO2020136871A1 (ja) レーダ信号処理装置及びレーダ信号処理方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20945424

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022536103

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20945424

Country of ref document: EP

Kind code of ref document: A1