WO2022012609A1 - 一种测量反馈方法及装置 - Google Patents

一种测量反馈方法及装置 Download PDF

Info

Publication number
WO2022012609A1
WO2022012609A1 PCT/CN2021/106403 CN2021106403W WO2022012609A1 WO 2022012609 A1 WO2022012609 A1 WO 2022012609A1 CN 2021106403 W CN2021106403 W CN 2021106403W WO 2022012609 A1 WO2022012609 A1 WO 2022012609A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
noise ratio
information
terminal device
mcs
Prior art date
Application number
PCT/CN2021/106403
Other languages
English (en)
French (fr)
Inventor
王晓娜
管鹏
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2022012609A1 publication Critical patent/WO2022012609A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/336Signal-to-interference ratio [SIR] or carrier-to-interference ratio [CIR]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0057Physical resource allocation for CQI
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria

Definitions

  • the present application relates to the field of mobile communication technologies, and in particular, to a measurement feedback method and device.
  • the network device needs to obtain the channel-state information (CSI) between the terminal device and the network device, so as to perform uplink or downlink according to the CSI. Resource scheduling for data transmission.
  • the terminal device can report the MCS it supports to the network device through the channel-quality indicator (CQI) quantization value, and the network device can introduce the channel between the measurement time and the scheduling time according to the channel-quality indicator (CQI).
  • CQI channel-quality indicator
  • MCs channel-state information
  • the present application provides a measurement feedback method and apparatus for optimizing the channel measurement and feedback mechanism to improve the channel quality accuracy predicted by network equipment.
  • the present application provides a measurement feedback method, which can be performed by a terminal device or a component of a terminal device (eg, a chip, a processor, and/or a transceiver, etc.).
  • the terminal device can receive the reference signal (reference signal, RS) resource configuration from the network device.
  • the RS configuration can be used for the terminal equipment to perform RS resource channel measurement (or channel measurement, pilot signal measurement, and the terminal equipment can obtain channel measurement results through channel measurement).
  • the terminal device may determine the CQI quantization value according to the RS resource channel measurement, or in other words, the terminal device may determine the CQI quantization value according to the measurement result of the RS resource channel measurement, wherein the CQI quantization value may include first information, and the first information may characterize the terminal
  • the device uses the signal-to-noise ratio margin of a specific-order MCS for data transmission (in other words, the first information may represent the signal-to-noise ratio margin of the specific-order MCS that the terminal device uses for downlink data transmission), and/or represents the signal-to-noise ratio margin recommended by the terminal device.
  • the MCS used for data transmission in multi-user pairing in other words, the MCS used for downlink data transmission in which it is recommended that terminal equipment participate in multi-user pairing).
  • the terminal device may send the CQI quantization value to the network device.
  • the channel measurement and feedback mechanism can be optimized, and the channel quality accuracy predicted by the network device can be improved.
  • multiple users refer to multiple terminal devices.
  • the terminal equipment performs multi-user pairing transmission, including the terminal equipment participating in the multi-user pairing transmission.
  • the terminal device can obtain the signal-to-noise ratio of downlink transmission according to the RS resource channel measurement, and according to the downlink transmission
  • the signal-to-noise ratio determines the signal-to-noise ratio margin, and determines the first information according to the signal-to-noise ratio margin, where the signal-to-noise ratio margin is the signal-to-noise ratio of downlink transmission and the signal-to-noise ratio required for downlink transmission to adopt the MCS of the specific order difference between the ratios.
  • the downlink transmission SNR is obtained by measuring the RS resource channel.
  • the terminal device may determine the SNR margin according to the measurement result of the RS resource channel measurement, where the measurement result may include the downlink transmission SNR, and the terminal device may determine the SNR margin according to the downlink transmission SNR,
  • the first information is determined according to the signal-to-noise ratio margin, where the signal-to-noise ratio margin is the difference between the downlink transmission signal-to-noise ratio and the signal-to-noise ratio required by the downlink transmission using the MCS of the specific order.
  • the indication of the signal-to-noise ratio margin can be realized through the first information, so as to optimize the CSI feedback mechanism.
  • the terminal device may determine the first information through a set algorithm according to the signal-to-noise ratio margin.
  • the terminal device may determine the MCS index corresponding to the margin interval to which the SNR margin belongs as the first information, or quantize the SNR margin as the first information, or quantify the SNR margin to which the SNR margin belongs.
  • the set value corresponding to the margin interval of is determined as the first information, so as to realize flexible indication of the signal-to-noise ratio margin. With this design, the flexibility of CQI quantization value feedback can be improved.
  • the specific-order MCS is the highest-order MCS supported by the terminal device, or the specific-order MCS is preset, or the MCS recommended for the downlink data transmission of the terminal device (or, the MCS recommended by the terminal device) MCS used for downlink data transmission).
  • the specific-order MCS can be set by means of protocol definition or pre-configuration.
  • the terminal device may determine that the terminal device participates in the RS resource channel measurement according to the measurement result of the RS resource configuration.
  • the signal-to-noise ratio value of the multi-user paired downlink data transmission, and the first information is determined according to the signal-to-noise ratio value.
  • the terminal equipment can be supported to determine the signal-to-noise ratio value of the multi-user paired downlink data transmission, which is used to determine the CQI quantization value to optimize the CSI feedback mechanism.
  • the terminal device may determine the transmission power of the multi-user paired downlink data (or referred to as the transmission power of the terminal device for multi-user paired downlink data transmission), and determine the signal-to-noise ratio according to the transmission power In other words, the terminal device may determine the signal-to-noise ratio value of the terminal device participating in the multi-user paired downlink data transmission according to the transmission power of the multi-user paired downlink data.
  • the transmission power of the multi-user paired downlink data is P is the total transmit power of the network equipment
  • M is the number of ports included in the paired user interference pilot resource
  • M is an integer
  • RI is the downlink data transmission determined by the terminal equipment according to the RS resource channel measurement. rank.
  • M>0 represents MU transmission.
  • the transmission power of the multi-user paired downlink data may be determined according to the RS resource configuration.
  • the terminal device may determine the first information through a set algorithm according to the signal-to-noise ratio value.
  • the terminal device may determine the MCS index corresponding to the signal-to-noise ratio interval to which the signal-to-noise ratio value belongs as the first information, or quantize the signal-to-noise ratio value as the first information, or quantify the signal-to-noise ratio value as the first information
  • the set value corresponding to the signal-to-noise ratio interval to which the value belongs is determined as the first information.
  • an embodiment of the present application provides a communication apparatus, where the communication apparatus can be used to execute a process performed by a terminal device in the first aspect or any possible design of the first aspect.
  • the communication device can implement the functions in the above-mentioned methods in the form of software modules.
  • the communication device may include a communication module and a processing module that are coupled to each other, wherein the communication module may be used to support the communication device to communicate, and the processing module may be used by the communication device to perform processing operations, such as generating data and information to be sent. or messages, or processing received signals to obtain data, information or messages.
  • the communication module may be used to support the communication device to communicate
  • the processing module may be used by the communication device to perform processing operations, such as generating data and information to be sent. or messages, or processing received signals to obtain data, information or messages.
  • the communication module may be configured to receive the RS resource configuration from the network device.
  • the processing module may be configured to perform RS resource channel measurement according to the RS configuration.
  • the processing module may further determine the CQI quantization value according to the RS resource channel measurement, wherein the CQI quantization value may include first information, and the first information may represent the signal-to-noise ratio margin of the terminal equipment using a specific order of MCS for downlink data transmission, and/or , which represents the MCS adopted by the proposed terminal equipment to participate in the downlink data transmission of multi-user pairing.
  • the communication module may send the CQI quantization value to the network device.
  • the processing module can obtain the downlink transmission signal-to-noise ratio according to the measurement result of the RS resource channel measurement, and The signal-to-noise ratio margin is determined according to the downlink transmission signal-to-noise ratio, and the first information is determined according to the signal-to-noise ratio margin.
  • the signal-to-noise ratio margin is the difference between the signal-to-noise ratio of the downlink transmission and the signal-to-noise ratio required for the downlink transmission to adopt the MCS transmission of a specific order.
  • the processing module may determine the first information through a set algorithm according to the signal-to-noise ratio margin.
  • the processing module may determine the MCS index corresponding to the margin interval to which the SNR margin belongs as the first information, or quantize the SNR margin as the first information, or quantify the SNR margin to which the SNR margin belongs.
  • the set value corresponding to the margin interval of is determined as the first information, so as to realize flexible indication of the signal-to-noise ratio margin.
  • the specific-order MCS is the highest-order MCS supported or set by the terminal device, or the MCS recommended for the downlink data transmission of the terminal device.
  • the processing module may determine, according to RS resource channel measurement, that the terminal device participates in the multi-user pairing downlink data transmission The signal-to-noise ratio value, and the first information is determined according to the signal-to-noise ratio value.
  • the processing module may determine the transmission power of the multi-user paired downlink data, and determine the signal-to-noise ratio value of the terminal equipment participating in the multi-user paired downlink data transmission according to the transmission power.
  • the transmission power of the multi-user paired downlink data can be expressed as P is the total transmit power of the network equipment, M is the number of ports included in the paired user interference pilot resource, M is an integer, and M ⁇ 0, RI is the downlink data transmission determined by the terminal equipment according to the RS resource channel measurement. rank.
  • the terminal device may determine the first information through a set algorithm according to the signal-to-noise ratio value.
  • the processing module may determine the MCS index corresponding to the signal-to-noise ratio interval to which the signal-to-noise ratio value belongs as the first information, or quantize the signal-to-noise ratio value as the first information, or, quantify the signal-to-noise ratio value as the first information
  • the set value corresponding to the signal-to-noise ratio interval to which the value belongs is determined as the first information.
  • an embodiment of the present application provides a communication device, where the communication device includes a processor, and when the processor executes a computer program in a memory, the method according to the first aspect is executed.
  • an embodiment of the present application provides a communication device, the communication device includes a processor and a memory, the memory is used for storing computer-executed instructions; the processor is used for executing the computer-executed instructions stored in the memory, to cause the communication device to perform the corresponding method as shown in the first aspect.
  • an embodiment of the present application provides a communication device, the communication device includes a processor, a memory, and a transceiver, where the transceiver is used for receiving a signal or sending a signal; the memory is used for storing a program code; The processor is configured to call the program code from the memory to execute the method of the first aspect.
  • an embodiment of the present application provides a communication device, the communication device includes a processor and an interface circuit, the interface circuit is configured to receive code instructions and transmit them to the processor; the processor runs the Code instructions to perform the corresponding method as shown in the first aspect.
  • embodiments of the present application provide a computer-readable storage medium, where the computer-readable storage medium is used to store instructions, and when the instructions are executed, the method described in the first aspect is implemented.
  • embodiments of the present application provide a computer program product including instructions, which, when the instructions are executed, enable the method described in the first aspect to be implemented.
  • the present application provides a chip or a chip system including a chip, and the chip may include a processor.
  • the chip may also include a memory (or storage module) and/or a communication interface (or communication module).
  • the chip can be used to perform the method described in the first aspect and any possible designs of the first aspect above.
  • the chip system may be composed of the above-mentioned chips, or may include the above-mentioned chips and other discrete devices, such as a memory (or a storage module) and/or a communication interface (or a communication module). It should be understood that when the method of the first aspect is implemented by a chip, the sending action in the first aspect corresponds to the output action of the chip, and the receiving action in the first aspect corresponds to the input action of the chip.
  • FIG. 1 is a schematic diagram of the architecture of a communication system provided by an embodiment of the present application.
  • FIG. 2a is a schematic diagram of the architecture of another communication system provided by an embodiment of the present application.
  • FIG. 2b is a schematic diagram of the architecture of another communication system provided by an embodiment of the present application.
  • FIG. 3 is a schematic flowchart of a measurement feedback method provided by an embodiment of the present application.
  • FIG. 5 is a schematic flowchart of another measurement feedback method provided by an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of another communication apparatus provided by an embodiment of the present application.
  • the measurement feedback method provided in this embodiment of the present application may be applied to a wireless communication system, and the wireless communication system may include a terminal device 101 and a network device 102 .
  • the above wireless communication system is applicable to both a low frequency scenario (sub 6G) and a high frequency scenario (above 6G).
  • Application scenarios of the wireless communication system include, but are not limited to, fifth-generation systems, new radio (NR) communication systems, or future evolved public land mobile network (PLMN) systems, and the like.
  • NR new radio
  • PLMN public land mobile network
  • the terminal device 101 shown above may be a user equipment (UE), a terminal (terminal), an access terminal, a terminal unit, a terminal station, a mobile station (mobile station, MS), a remote station, a remote terminal, a mobile terminal ( mobile terminal), wireless communication equipment, terminal agent or terminal equipment, etc.
  • the terminal device 101 may have a wireless transceiver function, which can communicate with one or more network devices of one or more communication systems (eg, wireless communication), and accept network services provided by the network devices, where the network devices include but not
  • the network device 102 is limited to the illustration.
  • the terminal device 101 may be a cellular phone, a cordless phone, a session initiation protocol (SIP) phone, a wireless local loop (WLL) station, a personal digital assistant (PDA) device, Handheld devices with wireless communication functions, computing devices or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, terminal devices in future 5G networks or terminal devices in future evolved PLMN networks, etc.
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistant
  • the terminal device 101 can be deployed on land, including indoor or outdoor, handheld or vehicle; the terminal device 101 can also be deployed on water (such as ships, etc.); the terminal device 101 can also be deployed in the air (such as aircraft, balloons and satellites) superior).
  • the terminal device 101 may specifically be a mobile phone (mobile phone), a tablet computer (pad), a computer with a wireless transceiver function, a virtual reality (virtual reality, VR) terminal, an augmented reality (augmented reality, AR) terminal, an industrial control (industrial control) wireless terminal in control), wireless terminal in self-driving, wireless terminal in remote medical, wireless terminal in smart grid, wireless terminal in transportation safety Terminals, wireless terminals in smart cities, wireless terminals in smart homes, etc.
  • the terminal device 101 may also be a communication chip with a communication module, a vehicle with a communication function, or an in-vehicle device (such as an in-vehicle communication device, an in-vehicle communication chip) or the like.
  • the network device 102 may be an access network device (or an access network point).
  • the access network device refers to a device that provides a network access function, such as a radio access network (radio access network, RAN) base station, and the like.
  • the network device 102 may specifically include a base station (base station, BS), or include a base station and a radio resource management device for controlling the base station, and the like.
  • the network device 102 may also include a relay station (relay device), an access point, a base station in a future 5G network, a base station in a future evolved PLMN network, or an NR base station, and the like.
  • the network device 102 may be a wearable device or a vehicle-mounted device.
  • the network device 102 may also be a communication chip with a communication module.
  • the network device 102 includes but is not limited to: a next-generation base station (g nodeB, gNB) in 5G, an evolved node B (evolved node B, eNB) in an LTE system, a radio network controller (radio network controller, RNC) , wireless controller, base station controller (BSC), home base station (for example, home evolved nodeB, or home node B, HNB), baseband unit (baseBand unit, BBU), transmission point (transmitting point) under the CRAN system and receiving point, TRP), transmitting point (transmitting point, TP) or mobile switching center, etc.
  • the network equipment 102 may also include base stations in future 6G or newer mobile communication systems.
  • data or control signaling may also be transmitted by a network device to a single or multiple terminal devices, or as shown in FIG. 2b, data may be transmitted by multiple network devices to a single terminal device or control signaling.
  • the terminal device and the network device shown in FIG. 2a or 2b reference may be made to the description of the aforementioned terminal device 101 and the network device 102.
  • the following takes the system shown in FIG. 1 as an example to describe the manner in which the terminal device reports the MCS supported by the terminal device in the prior art.
  • the terminal device 101 After the terminal device 101 accesses the cell of the network device 102, it will perform channel state measurement (or RS resource channel measurement, channel measurement, pilot signal measurement) according to the channel state information reference signal (CSI-RS). etc.), and according to the measurement result, the modulation and coding capability it supports is reported to the network device 102 through a channel-quality indicator (channel-quality indicator, CQI) quantization value.
  • CSI-RS channel state information reference signal
  • the terminal device 101 when the terminal device 101 performs the channel-state information (CSI) measurement, if it is determined that the actual measured single-stream or multi-stream signal-to-noise ratio after combining the codeword-level signal-to-noise ratio is greater than that of data transmission, the highest-order modulation is used.
  • the signal-to-noise ratio threshold required by the coding mode (modulation and code scheme, MCS), the CQI quantization value is determined as the indication information of the highest-order MCS.
  • the signal-to-noise ratio (or signal-to-noise ratio value) described in this application may be a signal-to-noise ratio (SNR) or a signal-to-interference-and-noise ratio (signal-to-interference-and-noise ratio). ratio, SINR).
  • SNR signal-to-noise ratio
  • SINR signal-to-interference-and-noise ratio
  • the signal-to-noise ratio and MCS mapping table is predefined for the terminal device, the mapping table is an implementation problem of the terminal device, and the mapping relationship of the table may be different for different terminal devices.
  • the SNR threshold corresponding to MCS-10% block error rate (BLER) is shown in Table 1.
  • the CQI quantization value can be determined as the index of the highest-order MCS, that is, the MCS Index 28, or the indication information of MCS index 28.
  • the CQI quantization value can be determined as
  • the network device 102 when configuring the RS resources for CSI measurement, the network device 102 will configure a power offset for the PDSCH and CSI-RS resources.
  • the terminal device 101 needs to consider the powerControlOffset, and convert the received energy of the CSI-RS effective signal into PDSCH Valid signal received energy to estimate CSI information of PDSCH.
  • powerControlOffset can indicate the linear difference between PDSCH and CSI-RS transmit power. After the terminal device 101 measures the SNR under the CSI-RS transmit power, it can add the value indicated by powerControlOffset to the SNR to obtain the PDSCH transmit power. SNR for estimating MCS.
  • the network device 102 After the network device 102 obtains the CQI quantization value reported by the terminal device 101, in the actual scheduling process, it usually takes into account the time-varying characteristics of the channel introduced between the measurement time and the scheduling time, and the introduction of multi-user (multiple users, MU) pairings.
  • Factors such as pairing interference, the difference between the user CSI measurement weight vector and the data transmission weight vector (hereinafter these factors may be referred to as MCS adjustment factors), adjust the MCS reported by the terminal device 101 through CQI quantization to decide the final user level The MCS used for data transmission.
  • the terminal device 101 reports a certain MCS through the CQI quantized value, but in a high SNR scenario, there is often a gap between the SNR actually measured by the terminal device and the SNR threshold corresponding to the MCS. There is a certain margin, which is unknowable to the network device 102, resulting in a deviation between the downlink data transmission channel quality estimated by the network device 102 based on the MCS reported by the terminal device and the real channel quality, thereby affecting system performance;
  • the signal-to-noise ratio measurement result of the terminal device 101 is obtained based on the CSI-RS transmission power, and does not consider the situation of multi-user pairing.
  • the network equipment needs to allocate the transmit power of PDSCH carrying data among multiple paired users, so the transmit power of PDSCH of terminal equipment 101 will decrease relative to the transmit power of CSI-RS, An error in the MCS suggested by the terminal device 101 will also cause the downlink data transmission channel quality estimated by the network device 102 based on the MCS reported by the terminal device to deviate from the actual channel quality, thereby affecting system performance.
  • the embodiment of the present application provides a measurement feedback method, so as to optimize the CSI measurement and feedback mechanism in the prior art and improve the MCS determination accuracy.
  • the measurement feedback method may include the following processes:
  • the terminal device 101 receives the RS resource configuration from the network device 102 .
  • the RS resource configuration may be carried in the pilot configuration and/or the measurement reporting configuration.
  • the RS resource configuration may be used for the terminal device 101 to perform RS resource channel measurement.
  • the RS resource configuration includes a CSI-RS (or other RS) resource configuration, and the terminal device 101 performs CSI measurement according to the CSI-RS.
  • the terminal device 101 performs RS resource channel measurement according to the RS resource configuration.
  • the terminal device 101 determines the CQI quantization value according to the RS resource channel measurement.
  • the CQI quantization value includes first information, and the first information is used to characterize the signal-to-noise ratio margin of the downlink data transmission of the terminal device 101 using a modulation and coding method of a specific order, and/or, the first information is used to characterize the terminal device 101
  • the modulation and coding scheme adopted by the proposed downlink data transmission and the signal-to-noise ratio margin of the modulation and coding scheme, and/or the first information is used to characterize the downlink data of the terminal equipment suggested by the terminal equipment 101 to participate in multi-user pairing The modulation and coding method used for transmission.
  • the CQI quantization value includes at least the first information, and may also include information such as the modulation and coding method recommended by the terminal device 101 for downlink data transmission determined by the conventional method adopted in the prior art, which is not specifically limited here.
  • the terminal device 101 may obtain the signal-to-noise ratio of the downlink data channel according to the RS resource channel measurement, and determine the first information according to the signal-to-noise ratio.
  • the first information determined here may indicate the signal-to-noise ratio margin relative to the signal-to-noise ratio when the terminal device 101 adopts a modulation and coding manner of a specific order.
  • the first information may indicate that the signal-to-noise ratio is based on pilot resources Configure the difference between the measured actual signal-to-noise ratio of the downlink data transmission channel and the signal-to-noise ratio required by the downlink data transmission using the modulation and coding mode of a specific order.
  • the first information may indicate the modulation and coding scheme used by the terminal device 101 for downlink data transmission and the signal-to-noise ratio margin of the modulation and coding scheme.
  • the first information may indicate that the terminal equipment 101 is advised to use downlink data for downlink data.
  • the downlink transmission signal-to-noise ratio may include a signal-to-noise ratio value of downlink data transmission when the terminal device 101 participates in multi-user pairing, and the terminal device 101 may determine the first information according to the signal-to-noise ratio value.
  • multi-user pairing means that data transmission of multiple terminal devices is carried on the same time-frequency domain resource.
  • the base station side can decide which terminal devices to perform multi-user pairing based on factors such as the number of terminal devices to be transmitted in the cell, the amount of data to be transmitted by the terminal devices, the available time-frequency domain resources in the cell, the channel quality of the terminal devices, and the array structure on the base station side. transmission.
  • the first information may be determined according to the signal-to-noise ratio of downlink data transmission when the terminal device 101 participates in multi-user pairing.
  • the terminal device 101 may determine the downlink data transmission signal when the terminal device participates in the multi-user pairing according to the transmission power of the downlink data in the multi-user pairing (or referred to as the transmission power of the downlink data transmission in which the terminal device performs multi-user pairing).
  • Noise ratio where the transmission power of multi-user paired downlink data is related to the number of paired layers.
  • the specific power distribution scheme between streams or users may adopt algorithms such as average distribution and water injection distribution. For example, if the average power distribution between streams is adopted, the transmit power that the terminal device 101 refers to when determining the signal-to-noise ratio is 1/n times the transmit power of the CSI-RS.
  • the terminal device 101 sends the CQI quantization value to the network device 102.
  • the terminal device 101 can feed back to the network device 102 the signal-to-noise ratio margin of a specific-order modulation and coding scheme for downlink data transmission, and the network device 102 can additionally consider the anti-interference capability brought about by the signal-to-noise ratio margin, and increase cell-level pairing The number of user layers, or when deciding the actual modulation and coding method for user downlink data transmission, better match the real channel capability of the terminal equipment, thereby improving the system capacity.
  • the terminal device 101 can feed back the modulation and coding mode recommended for downlink data transmission when the terminal device participates in multi-user pairing, and instruct the base station side to select a more appropriate modulation and coding mode to send downlink data, thereby improving system capacity.
  • the terminal device 101 can carry the first information in the CQI quantization value when performing CSI feedback by preset methods such as configuration by the network device 102, decision by the terminal device 101, or protocol definition, and The terminal device 101 can be made to determine the content represented by the first information by means of the configuration of the network device 102, the decision of the terminal device 101, or the definition of a protocol.
  • the content represented by the first information includes the signal-to-noise ratio margin of the modulation and coding mode of a specific order adopted by the terminal device 101 for downlink data transmission, and/or the modulation and coding mode proposed by the terminal device 101 for downlink data transmission and the modulation and coding mode adopted by the terminal device 101.
  • one way when configured by the network device 102 is that the network device 102 uses radio resource control (radio resource control, RRC) signaling to quantify the first information included in the CQI.
  • the way (which can be used to indicate whether to carry the first information information, and/or indicating the content represented by the first information) and the CSI measurement configuration are sent to the terminal device 101;
  • another way is that the network device 102 uses a media access control-control element (media access control-control element, MAC -CE) signaling, sending the quantization method of the first information included in the CQI together with the indication information for activating the semi-static CSI measurement to the terminal device 101;
  • another method is to use downlink control information (download control information, DCI) ) signaling, indicating the quantization mode of the first information included in the CQI together with the indication information for activating the aperiodic CSI measurement to the terminal device 101 .
  • DCI download control information
  • One way when the decision is made by the terminal device 101 is, if the downlink channel SNR estimated by the terminal device 101 based on the CSI measurement is greater than the highest-order modulation and coding mode (or preset, protocol-defined or determined by the terminal device 101) supported by the terminal device 101.
  • the first information is carried in the CQI quantization value, and the content represented by the first information can be preset or configured by the network device 102; otherwise, If the signal-to-noise ratio of the downlink channel estimated by the terminal device 101 based on the CSI measurement is less than the highest modulation and coding scheme supported by the terminal equipment 101 (or a preset, protocol-defined or other specific-order modulation and coding scheme indicated by the network equipment 102 ) When the corresponding signal-to-noise ratio is used, the CQI quantization value is determined in the existing manner, that is, the CQI quantization value does not carry the first information.
  • the terminal device 101 can determine the first information according to the process shown in FIG. 4 below.
  • the terminal device 101 performs downlink pilot signal measurement based on the pilot resource configuration configured by the network device 102, and estimates one or more of the following information: downlink pilot transmission useful signal channel matrix, paired interference signal channel matrix, adjacent cells and The noise floor interferes with the received energy, and the specific channel estimation and energy measurement methods are implemented by terminal equipment algorithms, which are not restricted in the embodiments of the present application, and the existing determination methods can be used.
  • the terminal device 101 determines a rank (rank index, RI) and a precoding matrix indicator (precoding matrix index) for downlink data transmission according to the measured useful signal channel matrix, paired interference signal channel matrix, adjacent cells and noise floor interference received energy , PMI).
  • rank index rank index
  • precoding matrix indicator precoding matrix index
  • the terminal device 101 can determine the codeword-level SNR of user downlink data transmission based on the RI and PMI, and the specific calculation method of the codeword-level SNR is not restricted in the present invention, and the existing determination method can be adopted.
  • the terminal device 101 determines the signal-to-noise ratio margin according to the difference between the codeword-level signal-to-noise ratio of the user's downlink data transmission and the signal-to-noise ratio required to use a specific-order MCS compared to downlink data transmission.
  • the specific-order MCS may be indicated by the network device 102, or stored in the terminal device 101 in a pre-configured or protocol-defined manner.
  • the specific-order MCS is the highest-order MCS supported by the terminal device 101. Taking Table 1 as an example, the specific-order MCS is the MCS whose index is 28, or other MCSs.
  • the specific order MCS may include the proposed MCS for downlink data transmission. If the codeword-level SNR detected by the terminal device 101 is 25dB, according to Table 1, it is suggested that the MCS used for downlink data transmission is the MCS with an index of 28.
  • the terminal device 101 may determine the first information based on the signal-to-noise ratio margin, and use it as part or all of the information of the CQI quantization value, or in other words, the CQI quantization value includes the first information.
  • the terminal device 101 may determine the first information through a set algorithm according to the signal-to-noise ratio margin.
  • the terminal device 101 may determine the MCS index corresponding to the margin interval to which the SNR margin belongs as the first information, or directly determine the SNR margin
  • the first information is obtained by quantization, or the set value corresponding to the margin interval to which the signal-to-noise ratio margin belongs is determined as the first information.
  • the margin interval to which the signal-to-noise ratio margin belongs may be determined according to the mapping table between the signal-to-noise ratio and the MCS.
  • the mapping table is as shown in Table 1.
  • the SNR threshold corresponding to the MCS index 28 is 20.1.
  • the margin interval to which the SNR belongs can be [20.1, + ⁇ ).
  • An example way of determining the first information is to query the SNR and MCS mapping table according to the signal-to-noise ratio margin, and use the MCS index (or index indication information) obtained by the query as the first information.
  • the SNR and MCS mapping table can be referred to as shown in Table 1.
  • the terminal device 101 can use the MCS index 13 as the first information.
  • the terminal device 101 can quantize the absolute value of the SNR margin according to the effective value norm indicated by the MCS to obtain the first information, and/or can calculate the SNR margin
  • the first information is obtained by quantization (eg rounding).
  • the terminal device 101 can use 4 as the first information .
  • deltSNR ⁇ 28dB 28 may be used as the first information
  • deltSNR ⁇ 0 0 may be used as the first information.
  • the terminal device 101 may determine the set value corresponding to the margin interval to which the SNR margin belongs as the first information, and/or may determine the SNR margin Quantified as first information.
  • the first information may also be determined by rounding the signal-to-noise ratio margin, performing function calculation, or the like.
  • the manner of determining the first information according to the signal-to-noise ratio margin may be configured by the network device 102 or determined in a pre-configured or protocol-defined manner, wherein the network device 102 can also learn to determine the first information according to the signal-to-noise ratio margin.
  • the information method is used to parse the first information reported by the terminal device 101 .
  • the terminal device 101 may send the CQI quantization value to the network device 102.
  • the CQI quantization value may include the first information, and may also include indication information of the MCS recommended for downlink data transmission.
  • the MCS proposed for downlink data transmission can be determined in an existing manner.
  • the CQI quantization value may include indication information of the MCS proposed for downlink data transmission, and the first information determined based on the MCS proposed for downlink data transmission. .
  • the network device 102 may determine the signal-to-noise ratio margin according to the first information reported by the terminal device 101, and decide the actual modulation and coding mode adopted by the terminal device for downlink data transmission according to the signal-to-noise ratio margin.
  • the signal-to-noise ratio margin and the specific-order MCS determine the real signal-to-noise ratio of the downlink channel, and consider the interference between paired users, the difference between the paired user weighting vector and the CSI measurement weighting vector, and the transmission power of the terminal equipment after pairing.
  • Factors such as the difference between the CSI measurement reference powers and the channel time-varying characteristics caused by the inconsistent CSI measurement time and data transmission time determine the actual modulation and coding method used by the terminal equipment for downlink data transmission.
  • the network device 102 may adjust the MCS used for the proposed downlink data transmission reported by the terminal device 101 through the CQI quantization value (the MCS is, for example, the MCS determined by the terminal device 101 according to the downlink transmission signal-to-noise ratio), for example, according to the signal-to-noise ratio
  • the margin and the signal-to-noise ratio value corresponding to the MCS determine the downlink transmission signal-to-noise ratio actually measured by the terminal device 101, and decide the actual modulation and coding mode adopted by the terminal device for downlink data transmission according to the downlink transmission signal-to-noise ratio;
  • the downlink transmission signal-to-noise ratio actually measured and obtained by the terminal device 101 is determined according to the specific order MCS and the signal-to-noise ratio margin, and the actual modulation and coding mode adopted by the terminal device for downlink data transmission is decided according to the downlink transmission signal-to-noise ratio.
  • the network device 102 may determine the signal-to-noise ratio margin according to the manner in which the terminal device 101 determines the first information and the manner of the response. For example, if the first information is obtained by querying the SNR and MCS mapping table, the network device 102 may also query the SNR and MCS mapping table, and determine the signal-to-noise ratio margin according to the first information.
  • the actual MCS for downlink data transmission determined by the network device 102 and the MCS quantized by the CQI reported by the terminal device 101 may be set to MCS of different levels.
  • the above CQI quantization value can be either a broadband level (quantized to the same CQI value for the full bandwidth) or a subband level (the full bandwidth is divided into multiple subbands, and each subband corresponds to a CQI quantization value).
  • the terminal device can feed back the signal-to-noise ratio margin using a specific-order modulation and coding method to the network device, and the network device can additionally consider the anti-interference capability brought about by the signal-to-noise ratio margin, and increase cell-level pairing The number of user layers, or when deciding the actual modulation and coding method for user downlink data transmission, better match the real channel capability of the terminal equipment, thereby improving the system capacity.
  • the terminal device 101 may determine the signal-to-noise ratio of downlink data transmission when determining Consider the allocation of transmit power by the network device 102 for multi-user paired transmissions.
  • the terminal device 101 can be configured by the network device 102 or defined by the protocol, so that the terminal device 101 can determine the signal-to-noise ratio value according to the transmission power allocation of the network device 102 for multi-user paired transmission, or it can be configured by the network device 102 or defined by the protocol. , let the terminal device 101 determine the calculation of the CQI quantization value in the existing manner.
  • one way when configured by the network device 102 is that the network device 102 sends the configuration information for indicating the calculation mode of the CQI quantization value to the terminal device 101 together with the CSI measurement configuration through RRC signaling; another way is, The network device 102 sends the configuration information for indicating the calculation method of the CQI quantization value together with the instruction information for activating the semi-static or aperiodic CSI measurement to the terminal device 101 through MAC-CE signaling; In the DCI signaling, the configuration information for indicating the calculation method of the CQI quantization value and the indication information for activating the aperiodic CSI measurement are indicated to the terminal device 101 .
  • the RS resource configuration for CSI measurement configured by the network device 102 for the terminal device 101 as defined by the protocol includes one or more of the following information: channel measurement resources (resourcesForChannelMeasurement), channel state Information interference measurement (CSI-interference measurement, CSI-IM) resources (csi-IM-ResourcesForInterference), interference measurement non-zero power channel state information reference signal resources (or, paired user interference pilot resources) (non-zero power channel state information-reference signal, NZP-CSI-RS) resources (NZP-CSI-RS-ResourcesForInterference).
  • channel measurement resources resourcesForChannelMeasurement
  • CSI-IM channel state Information interference measurement
  • CSI-IM-ResourcesForInterference interference measurement non-zero power channel state information reference signal resources (or, paired user interference pilot resources) (non-zero power channel state information-reference signal, NZP-CSI-RS) resources (NZP-CSI-RS-ResourcesForInterference).
  • the interference measurement CSI-IM resources are used to measure inter-cell interference
  • the interference measurement NZP-CSI-RS resources are used to measure intra-cell paired user interference.
  • the terminal device 101 determines the signal-to-noise ratio value according to the transmission power allocation of the network device 102 for multi-user pairing; otherwise, the terminal device 101 follows the current Some methods of determining the CQI quantization value determine the signal-to-noise ratio.
  • the terminal device 101 can determine the first information according to the process shown in FIG. 5 :
  • the terminal device 101 determines the transmission power of the multi-user paired downlink data according to the RS resource configuration.
  • the transmission power of the multi-user paired downlink data can be expressed as p', where, P is the total transmit power of the network device 102 (it can be 1 by default), M is the number of ports included in the paired user interference pilot resource, M is an integer, and M ⁇ 0, RI is the terminal device 101 according to the downlink channel state information CSI measurement The determined rank for downlink data transmission.
  • the terminal device 101 determines, according to the transmission power of the multi-user paired downlink data, the signal-to-noise ratio of the terminal device 101 participating in the multi-user paired downlink data transmission.
  • a calculation method of the SINR for which the terminal device 101 is suggested to participate in the downlink data transmission of multi-user pairing can be expressed as:
  • S is the received pilot signal energy on the time-frequency domain resource carrying the RS signal
  • dletP is the linear difference between the transmit power of the PDSCH and the transmit power of the CSI-RS
  • I is the received paired user interference pilot resource.
  • the total energy of the received pilot signal is the paired user interference
  • N is the signal energy received on the CSI-IM resource, which is the noise floor and adjacent cell interference.
  • the terminal device 101 determines a signal-to-noise ratio value of the downlink data transmission in which the terminal device 101 participates in the multi-user pairing based on the measurement result of the downlink pilot signal measurement.
  • the downlink pilot signal measurement is performed according to the RS resource configuration.
  • the SINR can be expressed as:
  • dletP is the linear difference between the transmit power of PDSCH and the transmit power of CSI-RS
  • I is the total energy of the pilot signal received on the pilot resource carrying the paired user interference, that is, the paired user interference
  • N is the carrier CSI-
  • the signal energy received on the IM resource is the noise floor and adjacent cell interference.
  • the measurement result of downlink pilot signal measurement includes at least RI.
  • the measurement results of RI and SINR may be obtained based on the measurement of the same downlink pilot signal, or may be obtained based on the measurement of different downlink pilot signals.
  • S304 The terminal device 101 combines the stream-level SNR values determined in S301-S302 or S303 into a codeword-level SNR value.
  • S305 The terminal device 101 determines the first information according to the codeword-level signal-to-noise ratio value.
  • the terminal device 101 may determine the first information through a set algorithm according to a codeword-level signal-to-noise ratio value.
  • the terminal device 101 may query the mapping table between the SNR value and the MCS, determine the MCS closest to the actual measured SNR value, and determine the first information as the MCS value.
  • the terminal device 101 may directly quantize the signal-to-noise ratio at the codeword level to obtain the first information.
  • the terminal device 101 may determine the set value corresponding to the signal-to-noise ratio interval to which the codeword-level signal-to-noise ratio belongs as the first information.
  • the terminal device 101 may determine the signal-to-noise ratio margin according to the MCS of the actually measured signal-to-noise ratio value and the specific-order MCS, and determine the first information according to the signal-to-noise ratio margin.
  • the manner of determining the first information according to the signal-to-noise ratio margin reference may be made to the description of determining the first information according to the signal-to-noise ratio margin in this application.
  • the terminal device 101 sends the CQI quantization value to the network device 102.
  • the CQI quantization value includes at least the first information.
  • the network device 102 decides, according to the first information, the actual MCS adopted by the terminal device for downlink data transmission.
  • the network device 102 may determine, according to the first information, the MCS recommended by the terminal device 101 to participate in the downlink data transmission of the multi-user pairing, and determine the MCS actually adopted by the terminal device to participate in the downlink data transmission of the multi-user pairing according to the MCS. .
  • the terminal device 101 can determine the first information by setting an algorithm according to the SNR value, and accordingly, the network device 102 can analyze the first information according to the corresponding algorithm to obtain the SNR value, and analyze the SNR value according to the SNR value.
  • the MCS is obtained, which is the MCS suggested by the terminal device 101 for multi-user pairing data transmission.
  • the terminal device can feedback the modulation and coding method used by the terminal device to participate in the downlink data transmission of multi-user pairing, and instruct the base station side to select a more suitable modulation and coding method to send the downlink data, thereby improving the system capacity.
  • the methods and operations implemented by the terminal device can also be implemented by components (such as chips or circuits) that can be used in the terminal device, and the methods and operations implemented by the network device can also be implemented by A component (eg, chip or circuit) implementation that can be used in a network device.
  • components such as chips or circuits
  • a component eg, chip or circuit
  • each network element such as a transmitter device or a receiver device
  • each network element includes hardware structures and/or software modules corresponding to performing each function in order to implement the above functions.
  • the present application can be implemented in hardware or in the form of a combination of hardware and computer software, with reference to the units and algorithm processes of the examples described in the embodiments disclosed herein. Whether a function is performed by hardware or computer software driving hardware depends on the specific application and design constraints of the technical solution. Skilled artisans may implement the described functionality using different methods for each particular application, but such implementations should not be considered beyond the scope of this application.
  • the transmitting-end device or the receiving-end device may be divided into functional modules according to the foregoing method examples.
  • each functional module may be divided corresponding to each function, or two or more functions may be integrated into one processing module. middle.
  • the above-mentioned integrated modules can be implemented in the form of hardware, or can be implemented in the form of software function modules.
  • the division of modules in the embodiments of the present application is schematic, and is only a logical function division, and there may be other division manners in actual implementation. The following description will be given by using the division of each function module corresponding to each function as an example.
  • the present application further provides a communication device.
  • the communication apparatus can be used to perform the process performed by the terminal device in the above method embodiments.
  • the communication device may include a hardware structure and/or a software module, and implement the above functions in the form of a hardware structure, a software module, or a hardware structure plus a software module. Whether one of the above functions is performed in the form of a hardware structure, a software module, or a hardware structure plus a software module depends on the specific application and design constraints of the technical solution.
  • a communication apparatus may include a communication module 601 and a processing module 602, and the communication module 601 and the processing module 602 are coupled to each other.
  • the communication apparatus 600 can be used to perform the process performed by the terminal device shown in FIG. 3 above.
  • the communication module 601 may be used to support the communication device 600 to communicate, for example, the communication module 601 may include a sending module and/or a receiving module, and the communication module 601 may also be referred to as a communication unit, a communication interface, a transceiver module or a transceiver unit.
  • the communication module 601 may have a data transmission function.
  • the processing module 602 may also be referred to as a processing unit, and may be configured to support the communication apparatus 600 to perform the processing actions of the terminal device in the above method embodiments, including but not limited to: generating data, signaling and data that meet the communication protocol and are sent by the communication module 601. , and/or, process the signal received by the communication module 601 .
  • the communication module 601 may also be called a transceiver unit, and includes a sending unit and/or a receiving unit, which are respectively configured to perform the sending and receiving processes of the terminal device in the above method embodiments.
  • the communication device 600 may implement steps or processes corresponding to the terminal device in the above method embodiments, for example, it may be a terminal device, or a chip or circuit configured in the terminal device.
  • the communication module 601 is configured to perform the transceiving related operations on the terminal device side in the above method embodiments
  • the processing module 602 is configured to perform processing related operations on the terminal device in the above method embodiments.
  • the communication module 601 may be configured to receive the RS resource configuration from the network device.
  • the processing module 602 may be configured to perform RS resource channel measurement according to the RS configuration.
  • the processing module 602 may also determine a CQI quantization value according to the measurement result of the RS resource channel measurement, wherein the CQI quantization value may include first information, and the first information may represent the signal-to-noise ratio margin of the terminal equipment using a specific order of MCS for downlink data transmission , and/or, characterize the MCS adopted by the proposed terminal equipment to participate in the downlink data transmission of multi-user pairing.
  • the communication module 601 can send the CQI quantization value to the network device.
  • the processing module 602 may obtain the downlink transmission signal-to-noise ratio according to the measurement result of the RS resource channel measurement, and determine the signal-to-noise ratio margin according to the downlink transmission signal-to-noise ratio, and determine the first information according to the signal-to-noise ratio margin.
  • the signal-to-noise ratio margin is the difference between the signal-to-noise ratio of the downlink transmission and the signal-to-noise ratio required for the downlink transmission to adopt the MCS transmission of a specific order.
  • the processing module 602 may determine the first information through a set algorithm according to the signal-to-noise ratio margin.
  • the processing module 602 may determine the MCS index corresponding to the margin interval to which the signal-to-noise ratio margin belongs as the first information, or quantize the signal-to-noise ratio margin as the first information, or quantify the signal-to-noise ratio margin as the first information
  • the set value corresponding to the belonging margin interval is determined as the first information, so as to realize flexible indication of the signal-to-noise ratio margin.
  • the specific-order MCS is the highest-order MCS supported or set by the terminal device, or the MCS recommended for the downlink data transmission of the terminal device.
  • the processing module 602 may further determine that the terminal device participates in the multi-user according to the measurement result of the RS resource channel measurement The signal-to-noise ratio value of the paired downlink data transmission, and the first information is determined according to the signal-to-noise ratio value.
  • the processing module 602 may determine the transmission power of the multi-user paired downlink data, and determine the signal-to-noise ratio value of the terminal equipment participating in the multi-user paired downlink data transmission according to the transmission power.
  • the transmission power of the multi-user paired downlink data is P is the total transmit power of the network device
  • M is the number of ports included in the paired user interference pilot resource
  • M is an integer
  • M ⁇ 2 RI is the rank for downlink data transmission determined by the terminal device according to CSI measurement.
  • the processing module 602 may determine the first information through a set algorithm according to the signal-to-noise ratio value.
  • the processing module 602 may determine the MCS index corresponding to the signal-to-noise ratio interval to which the signal-to-noise ratio value belongs as the first information, or quantify the signal-to-noise ratio value as the first information, or, quantify the signal-to-noise ratio value as the first information
  • the set value corresponding to the signal-to-noise ratio interval to which the ratio belongs is determined as the first information.
  • the communication device 700 may include a transceiver 701 , a memory 702 and a processor 703 .
  • the transceiver 701 may be used for communication by a communication device, such as for sending or receiving signals by wire and/or wireless, so as to send and/or receive information, data, messages, and the like.
  • the memory 702 is coupled to the processor 703, and is used for storing programs and data necessary for the communication device 700 to realize various functions.
  • the processor 703 is configured to support the communication apparatus 700 to perform the processing functions performed by the terminal device in the above method, such as determining to generate information, messages sent by the transceiver 701, and/or demodulating the signals received by the transceiver 701 decode and so on.
  • the above memory 702 and processor 703 can be integrated into one body or independent of each other.
  • the transceiver 701 may include a wireless demonstration area, which may be used to support the communication device 700 to receive and transmit signaling and/or data in a wired manner.
  • the transceiver 701 may also be referred to as a transceiver unit or a communication unit.
  • the transceiver 701 may include a wireless transceiver (eg, including a modem and/or an antenna) that may be used to support the communication device 700 to receive and transmit signaling and/or data wirelessly.
  • Transceiver 701, which may also be referred to as a wireless transceiver or wireless communication unit may include a transmitter and a receiver, each of which may be connected to one or more antennas.
  • the processor 703 can be implemented by a processing chip or a processing circuit.
  • transceiver 701 may be used to perform the actions performed by the communication module 601 .
  • the processor 703 may be used to invoke computer programs or instructions in the memory 702 to perform the actions performed by the processing module 602 .
  • the memory 702 and/or the transceiver 701 shown in FIG. 7 may also be connected to the processor 703 of the communication device 700 in an external manner.
  • the communication device 700 includes a processor 703, and the memory 702 and the transceiver 701 are all set in an external manner.
  • the communication device 700 includes a processor 703 and a transceiver 701, and the memory 702 is provided in an external manner.
  • the communication device 700 includes a processor 703 and a memory 702, and the transceiver 701 is set in an external manner.
  • the transceiver 701 may be configured to receive the RS resource configuration from the network device.
  • the processor 703 may be configured to perform RS resource channel measurement according to the RS configuration.
  • the processor 703 may also determine a CQI quantization value according to the measurement result of the RS resource channel measurement, wherein the CQI quantization value may include first information, and the first information may represent the signal-to-noise ratio margin of the terminal device using a specific order of MCS for downlink data transmission , and/or, characterize the MCS adopted by the proposed terminal equipment to participate in the downlink data transmission of multi-user pairing.
  • the transceiver 701 may send the CQI quantization value to the network device.
  • the processor 703 may obtain the downlink transmission signal-to-noise ratio according to the measurement result of the RS resource channel measurement, and determine the signal-to-noise ratio margin according to the downlink transmission signal-to-noise ratio, and determine the first information according to the signal-to-noise ratio margin.
  • the signal-to-noise ratio margin is the difference between the signal-to-noise ratio of the downlink transmission and the signal-to-noise ratio required for the downlink transmission to adopt the MCS transmission of a specific order.
  • the processor 703 may determine the first information through a set algorithm according to the signal-to-noise ratio margin.
  • the processor 703 may determine the MCS index corresponding to the margin interval to which the SNR margin belongs as the first information, or quantize the SNR margin as the first information, or quantify the SNR margin as the first information
  • the set value corresponding to the belonging margin interval is determined as the first information, so as to realize flexible indication of the signal-to-noise ratio margin.
  • the specific-order MCS is the highest-order MCS supported or set by the terminal device, or the MCS recommended for the downlink data transmission of the terminal device.
  • the processor 703 may further determine that the terminal device participates in the multi-user according to the measurement result of the RS resource channel measurement The signal-to-noise ratio value of the paired downlink data transmission, and the first information is determined according to the signal-to-noise ratio value.
  • the processor 703 may determine the transmission power of the multi-user paired downlink data, and determine the signal-to-noise ratio value of the terminal equipment participating in the multi-user paired downlink data transmission according to the transmission power.
  • the transmission power of the multi-user paired downlink data is P is the total transmit power of the network device
  • M is the number of ports included in the paired user interference pilot resource
  • M is an integer
  • M ⁇ 2 RI is the rank for downlink data transmission determined by the terminal device according to CSI measurement.
  • the processor 703 may determine the first information through a set algorithm according to the signal-to-noise ratio value.
  • the processor 703 may determine the MCS index corresponding to the signal-to-noise ratio interval to which the signal-to-noise ratio value belongs as the first information, or quantize the signal-to-noise ratio value as the first information, or, quantify the signal-to-noise ratio value as the first information
  • the set value corresponding to the signal-to-noise ratio interval to which the ratio belongs is determined as the first information.
  • the embodiment of the present application also provides a processing apparatus, including a processor and an interface.
  • the processor can be used to execute the methods in the above method embodiments.
  • the above processing device may be a chip.
  • the processing device may be a field programmable gate array (FPGA), an application specific integrated circuit (ASIC), a system on chip (SoC), or a It is a central processing unit (CPU), a network processor (NP), a digital signal processing circuit (DSP), or a microcontroller (microcontroller unit). , MCU), it can also be a programmable logic device (PLD) or other integrated chips.
  • FPGA field programmable gate array
  • ASIC application specific integrated circuit
  • SoC system on chip
  • MCU microcontroller unit
  • MCU programmable logic device
  • PLD programmable logic device
  • each process of the above method can be completed by a hardware integrated logic circuit in a processor or an instruction in the form of software.
  • the process of the method disclosed in combination with the embodiments of the present application can be directly embodied as being executed by a hardware processor, or executed by a combination of hardware and software modules in the processor.
  • the software modules may be located in random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, registers and other storage media mature in the art.
  • the storage medium is located in the memory, and the processor reads the computer program, instructions, information and/or data in the memory, and completes the process of the above method in combination with its hardware. To avoid repetition, detailed description is omitted here.
  • processor in this embodiment of the present application may be an integrated circuit chip, which has a signal processing capability.
  • each process of the foregoing method embodiments may be completed by an integrated logic circuit of hardware in a processor or an instruction in the form of software.
  • the aforementioned processors may be general purpose processors, digital signal processors (DSPs), application specific integrated circuits (ASICs), field programmable gate arrays (FPGAs) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components .
  • DSPs digital signal processors
  • ASICs application specific integrated circuits
  • FPGAs field programmable gate arrays
  • the methods, steps, and logic block diagrams disclosed in the embodiments of this application can be implemented or executed.
  • a general purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the process of the method disclosed in combination with the embodiments of the present application can be directly embodied as being executed by a hardware decoding processor, or executed by a combination of hardware and software modules in the decoding processor.
  • the software modules may be located in random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, registers and other storage media mature in the art.
  • the storage medium is located in the memory, and the processor reads the information in the memory, and completes the process of the above method in combination with its hardware.
  • the memory in this embodiment of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be read-only memory (ROM), programmable read-only memory (PROM), erasable programmable read-only memory (EPROM), electrically programmable Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • Volatile memory may be random access memory (RAM), which acts as an external cache.
  • RAM random access memory
  • DRAM dynamic random access memory
  • SDRAM synchronous DRAM
  • SDRAM double data rate synchronous dynamic random access memory
  • ESDRAM enhanced synchronous dynamic random access memory
  • SLDRAM synchronous link dynamic random access memory
  • direct rambus RAM direct rambus RAM
  • the present application also provides a computer program product, the computer program product includes: computer program code, when the computer program code is run on a computer, the computer is made to execute the embodiment shown in FIG. 3 .
  • the present application further provides a computer-readable medium, where program codes are stored in the computer-readable medium, and when the program codes are run on a computer, the computer is made to execute the embodiment shown in FIG. 3 .
  • the present application further provides a system, which includes the aforementioned one or more terminal devices and one or more network devices.
  • the above-mentioned embodiments it may be implemented in whole or in part by software, hardware, firmware or any combination thereof.
  • software it can be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions. When the computer instructions are loaded and executed on a computer, all or part of the processes or functions described in the embodiments of the present application are generated.
  • the computer may be a general purpose computer, special purpose computer, computer network, or other programmable device.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be downloaded from a website site, computer, server, or data center Transmission to another website site, computer, server, or data center by wire (eg, coaxial cable, optical fiber, digital subscriber line, DSL) or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server, data center, etc. that includes an integration of one or more available media.
  • the available media may be magnetic media (eg, floppy disks, hard disks, magnetic tapes), optical media (eg, high-density digital video discs (DVDs)), or semiconductor media (eg, solid state discs, SSD)) etc.
  • the network equipment in each of the above apparatus embodiments corresponds to the terminal equipment and the network equipment or terminal equipment in the method embodiments, and corresponding modules or units perform corresponding processes, for example, the communication unit (transceiver) performs the receiving or sending in the method embodiments. process, other processes other than sending and receiving can be performed by the processing unit (processor). For functions of specific units, reference may be made to corresponding method embodiments.
  • the number of processors may be one or more.
  • a component may be, but is not limited to, a process running on a processor, a processor, an object, an executable, a thread of execution, a program, and/or a computer.
  • an application running on a computing device and the computing device may be components.
  • One or more components may reside within a process and/or thread of execution, and a component may be localized on one computer and/or distributed between two or more computers.
  • these components can execute from various computer readable media having various data structures stored thereon.
  • a component may, for example, be based on a signal having one or more data packets (eg, data from two components interacting with another component between a local system, a distributed system, and/or a network, such as the Internet interacting with other systems via signals) Communicate through local and/or remote processes.
  • data packets eg, data from two components interacting with another component between a local system, a distributed system, and/or a network, such as the Internet interacting with other systems via signals
  • the disclosed systems, devices and methods may be implemented in other manners.
  • the apparatus embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the functions, if implemented in the form of software functional units and sold or used as independent products, may be stored in a computer-readable storage medium.
  • the technical solution of the present application can be embodied in the form of a software product in essence, or the part that contributes to the prior art or the part of the technical solution.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the processes of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (ROM), random access memory (RAM), magnetic disk or optical disk and other media that can store program codes .

Abstract

本申请提供一种测量反馈方法及装置,由终端设备向网络设备反馈采用特定阶调制编码方式的信噪比余量,网络设备可以额外考虑信噪比余量所带来的抗干扰能力,增加小区级配对用户层数,或在决策用户下行数据传输的实际调制编码方式时,更好的匹配终端设备真实信道能力,从而提升系统容量。此外,针对多用户配对场景,终端设备可反馈建议终端设备参与多用户配对的下行数据传输采用的调制编码方式,指导基站侧选择更合适的调制编码方式发送下行数据,从而提升系统容量。

Description

一种测量反馈方法及装置
相关申请的交叉引用
本申请要求在2020年07月15日提交中国专利局、申请号为202010683214.9、申请名称为“一种测量反馈方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及移动通信技术领域,尤其涉及一种测量反馈方法及装置。
背景技术
在目前的移动通信系统(如第五代移动通信系统,5G)中,网络设备需要获取终端设备与网络设备之间的信道状态信息(channel-state information,CSI),从而根据CSI进行上行或下行数据传输的资源调度。在目前的CSI测量和反馈机制中,终端设备可通过信道质量指示(channel-quality indicator,CQI)量化值将其支持的MCS上报给网络设备,由网络设备根据测量时刻与调度时刻间引入的信道时变特性、多用户配对引入的配对干扰、用户CSI测量加权向量与数据传输加权向量的差异性等因素,对终端设备通过CQI量化上报的MCS进行调整,以决策最终的用户级数据传输所采用的MCS。
然而,在目前的CSI测量和反馈机制下,终端设备上报的MCS所表征的信道质量与真实信道质量存在一定的误差,导致网络设备基于终端设备上报的MCS预测的信道质量精度受限。
发明内容
本申请提供一种测量反馈方法及装置,用以优化信道测量和反馈机制,以提高网络设备预测的信道质量精度。
第一方面,本申请提供一种测量反馈方法,该方法可由终端设备或终端设备的组件(如芯片、处理器和/或收发器等等)执行。
根据该方法,终端设备可接收来自于网络设备的参考信号(reference signal,RS)资源配置。该RS配置可用于终端设备进行RS资源信道测量(或称信道测量、导频信号测量,终端设备可通过信道测量获得信道测量结果)。终端设备可根据RS资源信道测量确定CQI量化值,或者说,终端设备可根据RS资源信道测量的测量结果确定CQI量化值,其中,该CQI量化值可包括第一信息,第一信息可表征终端设备进行数据传输采用特定阶MCS的信噪比余量(或者说,第一信息可表征终端设备进行下行数据传输采用特定阶MCS的信噪比余量),和/或,表征终端设备建议的进行多用户配对的数据传输采用的MCS(或者说,表征建议终端设备参与多用户配对的下行数据传输采用的MCS)。终端设备可向该网络设备发送该CQI量化值。
采用以上方法,可优化信道测量和反馈机制,提高网络设备预测的信道质量精度。
应理解,本申请中多用户是指多个终端设备。终端设备进行多用户配对传输,包括终端设备参与多用户配对传输。
在一种可能的设计中,第一信息用于表征终端设备下行数据传输采用特定阶MCS的信噪比余量时,终端设备可根据RS资源信道测量获取下行传输信噪比,并根据下行传输信噪比确定信噪比余量,并根据该信噪比余量确定第一信息,其中,该信噪比余量为下行传输信噪比与下行传输采用该特定阶MCS所需要的信噪比之间的差值。下行传输信噪比通过RS资源信道测量获得。
或者说,终端设备可根据RS资源信道测量的测量结果确定信噪比余量,其中,该测量结果可包括下行传输信噪比,终端设备可根据下行传输信噪比确定信噪比余量,并根据该信噪比余量确定第一信息,其中,该信噪比余量为下行传输信噪比与下行传输采用该特定阶MCS所需要的信噪比之间的差值。
采用该设计,能够通过第一信息实现信噪比余量的指示,以优化CSI反馈机制。
在一种可能的设计中,终端设备可根据信噪比余量通过设定的算法确定第一信息。
具体的,终端设备可将信噪比余量所属的余量区间对应的MCS索引确定为第一信息,或者,将信噪比余量量化为第一信息,或者,将信噪比余量所属的余量区间对应的设定值确定为第一信息,以实现信噪比余量的灵活指示。采用该设计,可提高CQI量化值反馈的灵活性。
在一种可能的设计中,特定阶MCS为终端设备支持的最高阶MCS,或者特定阶MCS为预设定的,或是建议终端设备的下行数据传输采用的MCS(或称,终端设备建议的下行数据传输采用的MCS)。其中,特定阶MCS为可通过协议定义或者预配置等方式设定。
在一种可能的设计中,在第一信息用于表征终端设备建议的进行多用户配对的数据传输采用的MCS时,终端设备可根据RS资源配置进行RS资源信道测量的测量结果确定终端设备参与多用户配对的下行数据传输的信噪比值,并根据该信噪比值确定第一信息。采用该方法,可支持终端设备确定多用户配对下行数据传输的信噪比值,用于确定CQI量化值以优化CSI反馈机制。
在一种可能的设计中,终端设备可确定多用户配对下行数据的发送功率(或称为,终端设备进行多用户配对的下行数据传输的发送功率),并根据该发送功率确定该信噪比值,或者说,终端设备可根据多用户配对下行数据的发送功率确定终端设备参与多用户配对的下行数据传输的信噪比值。其中,该多用户配对下行数据的发送功率为
Figure PCTCN2021106403-appb-000001
P为网络设备的总发送功率,M为配对用户干扰导频资源所包含的端口数,M为整数,且M≥0,RI为终端设备根据RS资源信道测量所确定的用于下行数据传输的秩。其中,M=0表征单用户(single users,SU)传输,M>0表征MU传输。
示例性的,多用户配对下行数据的发送功率可根据RS资源配置确定。
在一种可能的设计中,终端设备可根据信噪比值通过设定的算法确定第一信息。
具体的,终端设备可将该信噪比值所属的信噪比区间对应的MCS索引确定为该第一信息,或者,将该信噪比值量化为第一信息,或者,将该信噪比值所属的信噪比区间对应的设定值确定为该第一信息。采用该设计,可提高CQI量化值反馈的灵活性。
第二方面,本申请实施例提供一种通信装置,该通信装置可用于执行上述第一方面或第一方面的任一可能的设计中由终端设备执行的过程。该通信装置可通过软件模块的形式来实现上述各方法中的各功能。
在由软件模块构成时,通信装置可包括相互耦合的通信模块以及处理模块,其中,通信模块可用于支持通信装置进行通信,处理模块可用于通信装置执行处理操作,如生成需要发送的数据、信息或消息,或对接收的信号进行处理以得到数据、信息或消息。
具体的,该通信装置中,通信模块可用于接收来自于网络设备的RS资源配置。处理模块可用于根据该RS配置进行RS资源信道测量。处理模块还可根据RS资源信道测量确定CQI量化值,其中,该CQI量化值可包括第一信息,第一信息可表征终端设备下行数据传输采用特定阶MCS的信噪比余量,和/或,表征建议终端设备参与多用户配对的下行数据传输采用的MCS。通信模块可向该网络设备发送该CQI量化值。
在一种可能的设计中,第一信息用于表征终端设备下行数据传输采用特定阶MCS的信噪比余量时,处理模块可根据RS资源信道测量的测量结果获取下行传输信噪比,并根据下行传输信噪比确定信噪比余量,并根据该信噪比余量确定第一信息。其中,信噪比余量为下行传输信噪比与下行传输采用特定阶MCS传输所需要的信噪比之间的差值。
在一种可能的设计中,处理模块可根据信噪比余量通过设定的算法确定第一信息。
具体的,处理模块可将信噪比余量所属的余量区间对应的MCS索引确定为第一信息,或者,将信噪比余量量化为第一信息,或者,将信噪比余量所属的余量区间对应的设定值确定为第一信息,以实现信噪比余量的灵活指示。
在一种可能的设计中,特定阶MCS为终端设备支持的最高阶MCS或设定的,或是建议终端设备的下行数据传输采用的MCS。
在一种可能的设计中,在第一信息用于表征终端设备建议的进行多用户配对的数据传输采用的MCS时,处理模块可根据RS资源信道测量确定终端设备参与多用户配对的下行数据传输的信噪比值,并根据该信噪比值确定第一信息。
在一种可能的设计中,处理模块可确定多用户配对下行数据的发送功率,并根据该发送功率确定终端设备参与多用户配对的下行数据传输的信噪比值。其中,该多用户配对下行数据的发送功率可表示为
Figure PCTCN2021106403-appb-000002
P为网络设备的总发送功率,M为配对用户干扰导频资源所包含的端口数,M为整数,且M≥0,RI为终端设备根据RS资源信道测量所确定的用于下行数据传输的秩。
在一种可能的设计中,终端设备可根据信噪比值通过设定的算法确定第一信息。
具体的,处理模块可将该信噪比值所属的信噪比区间对应的MCS索引确定为该第一信息,或者,将该信噪比值量化为第一信息,或者,将该信噪比值所属的信噪比区间对应的设定值确定为该第一信息。
第三方面,本申请实施例提供一种通信装置,所述通信装置包括处理器,当所述处理器执行存储器中的计算机程序时,如第一方面所述的方法被执行。
第四方面,本申请实施例提供一种通信装置,所述通信装置包括处理器和存储器,所述存储器用于存储计算机执行指令;所述处理器用于执行所述存储器所存储的计算机执行指令,以使所述通信装置执行如第一方面中所示的相应的方法。
第五方面,本申请实施例提供一种通信装置,所述通信装置包括处理器、存储器和收发器,所述收发器,用于接收信号或者发送信号;所述存储器,用于存储程序代码;所述处理器,用于从所述存储器调用所述程序代码执行如第一方面所述的方法。
第六方面,本申请实施例提供一种通信装置,所述通信装置包括处理器和接口电路,所述接口电路,用于接收代码指令并传输至所述处理器;所述处理器运行所述代码指令以执行如第一方面所示的相应的方法。
第七方面,本申请实施例提供一种计算机可读存储介质,所述计算机可读存储介质用于存储指令,当所述指令被执行时,使得第一方面所述的方法被实现。
第八方面,本申请实施例提供一种包括指令的计算机程序产品,当所述指令被执行时,使得第一方面所述的方法被实现。
第九方面,本申请提供一种芯片或包含芯片的芯片系统,该芯片可包括处理器。该芯片还可以包括存储器(或存储模块)和/或通信接口(或通信模块)。该芯片可用于执行上述第一方面及上述第一方面可能的设计中的任意一种可能的设计中所述的方法。该芯片系统可以由上述芯片构成,也可以包含上述芯片和其他分立器件,如存储器(或存储模块)和/或通信接口(或通信模块)。应理解,在通过芯片实施第一方面所述方法时,第一方面中的发送动作对应芯片的输出动作,第一方面中的接收动作对应芯片的输入动作。
上述第二方面至第九方面中的有益效果可以参考对第一方面及其可能的设计中所述方法的有益效果的描述。
附图说明
图1为本申请实施例提供的一种通信系统的架构示意图;
图2a为本申请实施例提供的另一种通信系统的架构示意图;
图2b为本申请实施例提供的另一种通信系统的架构示意图;
图3为本申请实施例提供的一种测量反馈方法的流程示意图;
图4为本申请实施例提供的另一种测量反馈方法的流程示意图;
图5为本申请实施例提供的另一种测量反馈方法的流程示意图;
图6为本申请实施例提供的一种通信装置的结构示意图;
图7为本申请实施例提供的另一种通信装置的结构示意图。
具体实施方式
为了使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请作进一步地详细描述。方法实施例中的具体操作方法也可以应用于装置实施例或系统实施例中。
如图1所示,本申请实施例提供的测量反馈方法可应用于无线通信系统,该无线通信系统可以包括终端设备101以及网络设备102。
应理解,以上无线通信系统既可适用于低频场景(sub 6G),也可适用于高频场景(above6G)。无线通信系统的应用场景包括但不限于第五代系统、新无线(new radio,NR)通信系统或未来的演进的公共陆地移动网络(public land mobile network,PLMN)系统等。
以上所示终端设备101可以是用户设备(user equipment,UE)、终端(terminal)、接入终端、终端单元、终端站、移动台(mobile station,MS)、远方站、远程终端、移动终端(mobile terminal)、无线通信设备、终端代理或终端设备等。该终端设备101可具备无线收发功能,其能够与一个或多个通信系统的一个或多个网络设备进行通信(如无线通信),并接受网络设备提供的网络服务,这里的网络设备包括但不限于图示网络设备102。
其中,终端设备101可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字处理(personal digital assistant,PDA)设备、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、未来5G网络中的终端装置或者未来演进的PLMN网络中的终端装置等。
另外,终端设备101可以部署在陆地上,包括室内或室外、手持或车载;终端设备101也可以部署在水面上(如轮船等);终端设备101还可以部署在空中(例如飞机、气球和卫星上等)。该终端设备101具体可以是手机(mobile phone)、平板电脑(pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端、增强现实(augmented reality,AR)终端、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等。终端设备101也可以是具有通信模块的通信芯片,也可以是具有通信功能的车辆,或者车载设备(如车载通信装置,车载通信芯片)等。
网络设备102可以是接入网设备(或称接入网站点)。其中,接入网设备是指有提供网络接入功能的设备,如无线接入网(radio access network,RAN)基站等等。网络设备102具体可包括基站(base station,BS),或包括基站以及用于控制基站的无线资源管理设备等。该网络设备102还可包括中继站(中继设备)、接入点以及未来5G网络中的基站、未来演进的PLMN网络中的基站或者NR基站等。网络设备102可以是可穿戴设备或车载设备。网络设备102也可以是具有通信模块的通信芯片。
比如,网络设备102包括但不限于:5G中的下一代基站(g nodeB,gNB)、LTE系统中的演进型节点B(evolved node B,eNB)、无线网络控制器(radio network controller,RNC)、CRAN系统下的无线控制器、基站控制器(base station controller,BSC)、家庭基站(例如,home evolved nodeB,或home node B,HNB)、基带单元(baseBand unit,BBU)、传输点(transmitting and receiving point,TRP)、发射点(transmitting point,TP)或移动交换中心等。网络设备102还可包括未来6G或更新的移动通信系统中的基站。
此外,如图2a所示,在本申请实施例中还可由网络设备向单个或多个终端设备传输数据或控制信令,或者如图2b所示,可由多个网络设备向单个终端设备传输数据或控制信令。其中,图2a或图2b所示的终端设备以及网络设备的说明,可参照前述终端设备101以及网络设备102的说明。
下面以图1所示的系统为例,说明现有技术中终端设备上报其支持的MCS的方式。
终端设备101在接入网络设备102的小区后,会根据信道状态信息参考信号(channel state information reference signal,CSI-RS)进行信道状态测量(或称RS资源信道测量、信道测量、导频信号测量等),并根据测量结果通过信道质量指示(channel-quality indicator,CQI)量化值将其支持的调制编码能力上报给网络设备102。
其中,终端设备101在进行信道状态信息(channel-state information,CSI)测量时,若确定实际测量的单流或多流信噪比合并后的码字级信噪比大于数据传输采用最高阶调制编码方式(modulation and code scheme,MCS)所需要的信噪比门限,则将CQI量化值确定为最高阶MCS的指示信息。应理解,本申请所述的信噪比(或信噪比值)可以是信号与噪声比(signal-to-noise ratio,SNR)或信号与干扰噪声比(signal-to-interference-and-noise ratio,SINR)。其中,信噪比与MCS映射表为终端设备预定义,该映射表为终端设备实现问题,不同终端设备该表映射关系可能不同。
假设UE支持的最高调制方式为64正交振幅调制(quadrature amplitude modulation,QAM),MCS-10%误码率(block error rate,BLER)对应的SNR门限如表1所示。
Figure PCTCN2021106403-appb-000003
表1
如表1所示,当终端设备101检测的码字级SNR大于20.1dB(即最高阶MCS对应的SNR),例如为25dB,则CQI量化值可确定为最高阶MCS的索引(index)即MCS索引28,或MCS索引28的指示信息。若终端设备101实际测量的码字级SNR为5.5,达到某个MCS对应的信噪比门限(5.4),但未达到更高阶MCS对应的信噪比门限,则可将CQI量化值确定为该信噪比到达的MCS的指示信息,例如CQI量化值为MCS索引14。
另外,考虑到CSI-RS发送功率与实际承载数据的PDSCH发送功率的差异性,网络设备102在配置用于CSI测量的RS资源时,会配置一个用于表示PDSCH与CSI-RS资源功率偏移量的功率控制偏移(powerControlOffset)参数并下发给终端设备101,终端设备101在量化基于CSI-RS测到的信道质量时,需考虑powerControlOffset,将CSI-RS有效信号接收能量折算成PDSCH的有效信号接收能量,以估计PDSCH的CSI信息。比如,powerControlOffset可指示PDSCH与CSI-RS发送功率的线性差值,终端设备101在测量得到CSI-RS发送功率下的SNR后,可在该SNR基础上加上powerControlOffset指示的值获得PDSCH发送功率下的SNR,用于估计MCS。
网络设备102在获取到终端设备101上报的CQI量化值后,在实际的调度过程中,通常会考虑到测量时刻与调度时刻间引入的信道时变特性、多用户(multiple users,MU)配对引入的配对干扰、用户CSI测量加权向量与数据传输加权向量的差异性等因素(以下可简称这些因素为MCS调整因素),对终端设备101通过CQI量化上报的MCS进行调整,以决策最终的用户级数据传输所采用的MCS。
因此在目前的MCS确定方式中,终端设备101通过CQI量化值上报某个MCS,但在高信噪比场景下,终端设备实际测量的信噪比与该MCS对应的信噪比门限之间往往存在一定的余量,这部分余量对于网络设备102来说是不可知的,导致网络设备102基于终端设备上报MCS推测的下行数据传输信道质量与真实信道质量存在偏差,从而影响系统性能;
此外,终端设备101的信噪比测量结果是基于CSI-RS发送功率获得的,未考虑多用户配对的情形,而若采用多用户配对进行数据传输(或称,终端设备参与多用户配对传输、针对终端设备的多用户配对传输),网络设备需要对多个配对用户之间的承载数据的PDSCH的发送功率进行分配,因此终端设备101的PDSCH的发送功率相对于CSI-RS发送功率会下降,终端设备101建议的MCS存在误差,也会导致网络设备102基于终端设备上报MCS推测的下行数据传输信道质量与真实信道质量存在偏差,从而影响系统性能。
本申请实施例提供一种测量反馈方法,以优化现有技术中的CSI测量和反馈机制,提 高MCS的确定精度。
如图3所示,以执行主体是图1所示终端设备101和网络设备102为例,本申请实施例提供的测量反馈方法可包括以下过程:
S101:终端设备101接收来自于网络设备102的RS资源配置。
其中,RS资源配置可承载于导频配置和/或测量上报配置中。
RS资源配置可用于终端设备101进行RS资源信道测量,比如,RS资源配置包括CSI-RS(或其他RS)的资源配置,由终端设备101根据CSI-RS进行CSI测量。
S102:终端设备101根据该RS资源配置进行RS资源信道测量。
S103:终端设备101根据RS资源信道测量确定CQI量化值。其中,CQI量化值包括第一信息,该第一信息用于表征该终端设备101下行数据传输采用特定阶调制编码方式的信噪比余量,和/或,该第一信息用于表征终端设备101建议的下行数据传输所采用的调制编码方式及采用该调制编码方式的信噪比余量,和/或,该第一信息用于表征终端设备101建议的终端设备参与多用户配对的下行数据传输所采用的调制编码方式。
具体的,CQI量化值至少包括第一信息,此外,还可包括现有技术所采用的常规方式确定的终端设备101建议下行数据传输所采用的调制编码方式等信息,这里不做具体限定。
示例性的,终端设备101可根据RS资源信道测量获得下行数据信道信噪比,根据该信噪比确定第一信息。
在一种可能的示例中,这里确定的第一信息可指示该信噪比相对于终端设备101采用特定阶调制编码方式时的信噪比余量,比如,第一信息可指示基于导频资源配置测量的下行数据传输信道的实际信噪比相比下行数据传输采用特定阶调制编码方式所需要的信噪比之间的差值。
在另外的示例中,第一信息可指示终端设备101建议下行数据传输所采用的调制编码方式及采用该调制编码方式的信噪比余量,比如,第一信息可指示建议终端设备101下行数据传输采用的调制编码方式,以及指示基于导频资源配置测量的实际信噪比相比下行数据传输采用建议的调制编码方式所需要的信噪比之间的差值。
在另外的示例中,下行传输信噪比可包括终端设备101参与多用户配对时的下行数据传输的信噪比值,终端设备101可根据该信噪比值确定第一信息。
其中,多用户配对即同一时频域资源上承载多个终端设备的数据传输。通常,基站侧可基于小区内待传输终端设备数量、终端设备待传输数据量、小区内可用时频域资源、终端设备信道质量、基站侧阵列结构等因素,决策对哪些终端设备进行多用户配对传输。
其中,该第一信息可根据终端设备101参与多用户配对时的下行数据传输的信噪比确定。示例性的,终端设备101可根据多用户配对下行数据的发送功率(或称为,终端设备进行多用户配对的下行数据传输的发送功率)确定终端设备参与多用户配对时的下行数据传输的信噪比,其中,多用户配对下行数据的发送功率与配对层数有关。比如,配对层数为n时(即相同时频域资源同时承载n流数据传输),由包括终端设备101在内的x(x<=n)个终端设备的下行数据共享网络设备102总的发送功率。其中,具体的流间或用户间的功率分配方案可采用平均分配、注水分配等算法。举例说明,若采用流间功率平均分配,则终端设备101在确定信噪比时参照的发送功率为1/n倍的CSI-RS发送功率。
S104:终端设备101向网络设备102发送该CQI量化值。
采用以上方法,能够提高网络设备预测的信道质量精度。其中,终端设备101能够向 网络设备102反馈下行数据传输采用特定阶调制编码方式的信噪比余量,网络设备102可以额外考虑信噪比余量所带来的抗干扰能力,增加小区级配对用户层数,或在决策用户下行数据传输的实际调制编码方式时,更好的匹配终端设备真实信道能力,从而提升系统容量。此外,针对多用户配对场景,终端设备101可反馈终端设备参与多用户配对时建议下行数据传输所采用的调制编码方式,指导基站侧选择更合适的调制编码方式发送下行数据,从而提升系统容量。
应理解,以上图3所示流程中,可由网络设备102配置、由终端设备101决策或由协议定义等预设方式令终端设备101在进行CSI反馈时在CQI量化值中携带第一信息,以及可由网络设备102配置、由终端设备101决策或由协议定义等方式令终端设备101确定第一信息所表征的内容。第一信息所表征的内容包括,该终端设备101下行数据传输采用特定阶调制编码方式的信噪比余量,和/或,终端设备101建议下行数据传输所采用的调制编码方式及采用该调制编码方式的信噪比余量,和/或,终端设备101建议终端设备参与多用户配对的下行数据传输所采用的调制编码方式。
比如,由网络设备102配置时的一种方式是,网络设备102通过无线资源控制(radio resource control,RRC)信令,将CQI所包含的第一信息的量化方式(可用于指示是否携带第一信息,和/或指示第一信息所表征的内容)与CSI测量配置一起发送给终端设备101;另一种方式是,网络设备102通过媒体访问控制-控制元素(media access control-control element,MAC-CE)信令,将CQI所包含的第一信息的量化方式与用于激活半静态CSI测量的指示信息一起发送给终端设备101;另一种方式是通过下行控制信息(download control information,DCI)信令,将CQI所包含的第一信息的量化方式与用于激活非周期性CSI测量的指示信息一起指示给终端设备101。
由终端设备101决策时的一种方式是,若终端设备101基于CSI测量预估的下行信道信噪比大于终端设备101所支持的最高阶调制编码方式(或预设的、协议定义的或由网络设备102指示的其他特定阶的调制编码方式)所对应的信噪比时,则在CQI量化值中携带第一信息,第一信息表征的内容可以预设或者由网络设备102配置;否则,若终端设备101基于CSI测量预估的下行信道信噪比小于终端设备101所支持的最高调制编码方式(或预设的、协议定义的或由网络设备102指示的其他特定阶的调制编码方式)所对应的信噪比时,则采用现有方式确定CQI量化值,也就是说,CQI量化值中不携带第一信息。
在S103一种可能的示例中,若第一信息用于表征该终端设备101下行数据传输采用特定阶调制编码方式的信噪比余量,则终端设备101可根据以下图4所示过程确定第一信息:
S201:终端设备101基于网络设备102配置的导频资源配置进行下行导频信号测量,估计以下信息的一种或多种:下行导频传输有用信号信道矩阵、配对干扰信号信道矩阵、邻区及底噪干扰接收能量,具体的信道估计、能量测量方式为终端设备算法实现,在本申请实施例中不做约束,可采用现有确定方式。
S202:终端设备101根据测量的有用信号信道矩阵、配对干扰信号信道矩阵、邻区及底噪干扰接收能量确定用于下行数据传输的秩(rank index,RI)和预编码矩阵指示(precoding matrix index,PMI)。具体的确定RI和PMI的方式在本申请实施例中不做约束,可采用现有确定方式。
S203:终端设备101可基于RI和PMI,确定用户下行数据传输码字级信噪比,具体 的码字级信噪比的计算方式本发明不做约束,可采用现有的确定方式。
S204:终端设备101根据用户下行数据传输码字级信噪比于相比下行数据传输采用特定阶MCS所需要的信噪比之间的差值,确定信噪比余量。
其中,特定阶MCS可由网络设备102指示,或者通过预配置或协议定义的方式存储在终端设备101中。比如,特定阶MCS为终端设备101支持的最高阶MCS,以表1为例,特定阶MCS为索引为28的MCS,或者是其他的MCS。
此外,特定阶MCS可包括建议下行数据传输所采用的MCS。若终端设备101检测得到的码字级SNR为25dB,根据表1,建议下行数据传输所采用的MCS为索引为28的MCS。
S205:终端设备101可基于信噪比余量确定第一信息,并作为CQI量化值的部分或全部信息,或者说,CQI量化值包括第一信息。
其中,终端设备101可根据信噪比余量通过设定的算法确定第一信息。
具体来说,在根据信噪比余量确定第一信息时,终端设备101可将信噪比余量所属的余量区间对应的MCS索引确定为第一信息,或将信噪比余量直接量化获得第一信息,或将信噪比余量所属的余量区间对应的设定值确定为第一信息。
其中,信噪比余量所属的余量区间可根据信噪比与MCS之间的映射表确定。该映射表比如表1所示,MCS索引28对应的SNR门限为20.1,则终端设备101确定的SNR大于20.1时,可为该SNR所属的余量区间为[20.1,+∞)。
一种举例的确定第一信息的方式为,根据信噪比余量查询SNR与MCS映射表,将查询得到的MCS索引(或索引的指示信息)作为第一信息。其中,SNR与MCS映射表可参照表1所示。
以特定阶MCS的索引为28为例,若终端设备101检测得到的码字级SNR为25dB,则信噪比余量(可表示为deltSNR)为25-20.1dB=3.9dB,根据表1,3.9dB对应的MCS为13,则终端设备101可将MCS索引13作为第一信息。
另一种举例的确定第一信息的方式为,终端设备101可按照MCS指示的有效取值范量化信噪比余量绝对值,获得第一信息,和/或,可将信噪比余量量化(比如取整)获得第一信息。
比如,以特定阶MCS的索引为28为例,若终端设备101检测得到的码字级SNR为25dB,则deltSNR=3.9dB,3.9直接量化为4,则终端设备101可将4作为第一信息。此外,若deltSNR≥28dB,则可将28作为第一信息,若deltSNR≤0,则可将0作为第一信息。
另一种举例的确定第一信息的方式为,终端设备101可将信噪比余量所属的余量区间对应的设定值确定为第一信息,和/或,可将信噪比余量量化为第一信息。
举例来说,CQI所包含的第一信息量化为4比特(bit),有效量化量范围为[-7dB~8dB],量化精度为1dB;若deltSNR≥=8dB,则第一信息为8;若deltSNR≤-7dB,则第一信息为-7;若-7dB≤deltSNR≤8dB,则对信噪比余量就近取整进行量化上报,比如,deltSNR=3.9dB,3.9取整为4,则终端设备101可将4作为第一信息。
此外,也可通过对信噪比余量取整、进行函数计算等方式确定第一信息。
应理解,以上根据信噪比余量确定第一信息的方式为举例说明,不应理解为确定第一信息的方式以举例为限。
此外应理解,根据信噪比余量确定第一信息的方式可由网络设备102配置或通过预配置或由协议定义的方式确定,其中,网络设备102同样可获知根据信噪比余量确定第一信 息的方式,用于对终端设备101上报的第一信息进行解析。
S206:终端设备101可向网络设备102发送该CQI量化值。
其中,CQI量化值可包括第一信息,还可包括下行数据传输所建议的MCS的指示信息。建议下行数据传输所采用的MCS可采用现有方式确定,比如,CQI量化值可包括建议下行数据传输所采用的MCS的指示信息,以及基于该建议下行数据传输所采用的MCS确定的第一信息。
S207:网络设备102可根据终端设备101上报的第一信息确定信噪比余量,根据信噪比余量决策终端设备下行数据传输采用的实际调制编码方式。
并根据信噪比余量和特定阶MCS确定下行信道真实信噪比,并考虑配对用户之间的干扰、配对后用户加权向量与CSI测量加权向量的差异性、配对后终端设备的发送功率与CSI测量参考功率之间的差异性、CSI测量时刻与数据传输时刻不一致引入的信道时变特性等因素,决策终端设备下行数据传输采用的实际调制编码方式。比如,网络设备102可对终端设备101通过CQI量化值上报的建议的下行数据传输采用的MCS进行调整(该MCS例如终端设备101根据下行传输信噪比确定的MCS),比如,根据信噪比余量和该MCS对应的信噪比值确定终端设备101实际测量获得的下行传输信噪比,根据该下行传输信噪比决策终端设备下行数据传输采用的实际调制编码方式;或由网络设备102根据特定阶MCS以及该信噪比余量确定终端设备101实际测量获得的下行传输信噪比,根据该下行传输信噪比决策终端设备下行数据传输采用的实际调制编码方式。
其中,在根据第一信息确定信噪比余量时,网络设备102可根据终端设备101确定第一信息的方式,根据响应的方式确定信噪比余量。举例来说,第一信息查询SNR与MCS映射表获得,则网络设备102也可查询SNR与MCS映射表,根据第一信息确定信噪比余量。
应理解,根据网络设备102确定的下行数据传输实际的MCS与终端设备101上报的CQI量化的MCS可以设置为不同阶的MCS。
此外应理解,以上CQI量化值即可以是宽带级(针对全带宽量化为同一个CQI值)也可以是子带级(全带宽分为多个子带,每子带对应于一个CQI量化值)。
示例性的,以上有关码字级SNR的描述,都是基于PDSCH与CSI-RS资源功率偏移量powerControlOffset=0的假设进行的;当PDSCH与CSI-RS资源功率偏移量powerControlOffset≠0时,在确定CQI量化值时需要对基于CSI测量获取的SNR换算为PDSCH的SNR,并根据PDSCH的SNR确定信噪比余量;举例说明,假设powerControlOffset=2dB,基于CSI测量获取的SNR=10dB,则对应的PDSCH的SNR=(10+2)=12dB。
采用以上图4所示过程,终端设备能够向网络设备反馈采用特定阶调制编码方式的信噪比余量,网络设备可以额外考虑信噪比余量所带来的抗干扰能力,增加小区级配对用户层数,或在决策用户下行数据传输的实际调制编码方式时,更好的匹配终端设备真实信道能力,从而提升系统容量。
在S103的另一种可能的示例中,若第一信息用于表征终端设备101参与多用户配对时建议下行数据传输所采用的调制编码方式,则终端设备101可在确定下行数据传输信噪比时考虑网络设备102针对多用户配对传输的发送功率的分配。
示例性的,可通过网络设备102配置或者通过协议定义,令终端设备101根据网络设 备102针对多用户配对传输的发送功率分配确定信噪比值,或者,可通过网络设备102配置或者通过协议定义,令终端设备101按照现有的方式确定CQI量化值的计算。
其中,由网络设备102配置时的一种方式是,网络设备102通过RRC信令将用于指示CQI量化值计算方式的配置信息与CSI测量配置一起发送给终端设备101;另一种方式是,网络设备102通过MAC-CE信令,将用于指示CQI量化值计算方式的配置信息与用于激活半静态或非周期性CSI测量的指示信息一起发送给终端设备101;另一种方式是通过DCI信令,将用于指示CQI量化值计算方式的配置信息与用于激活非周期性CSI测量的指示信息一起指示给终端设备101。
由协议规定时的一种方式是,由协议定义在网络设备102为终端设备101配置的用于CSI测量的RS资源配置包含如下信息的一种或多种:信道测量资源(resourcesForChannelMeasurement)、信道状态信息干扰测量(CSI-interference measurement,CSI-IM)资源(csi-IM-ResourcesForInterference)、干扰测量非零功率信道状态信息参考信号资源(或称,配对用户干扰导频资源)(non-zero power channel state information-reference signal,NZP-CSI-RS)资源(NZP-CSI-RS-ResourcesForInterference)。其中,干扰测量CSI-IM资源用于测量小区间干扰,干扰测量NZP-CSI-RS资源用于测小区内配对用户干扰。当RS资源配置包含配对用户干扰导频资源(nzp-CSI-RS-ResourcesForInterference时,由终端设备101根据网络设备102针对多用户配对的发送功率分配确定信噪比值;否则,终端设备101按照现有的确定CQI量化值的方式确定信噪比。
具体来说,若第一信息用于表征终端设备101参与多用户配对时建议下行数据传输所采用的调制编码方式,则终端设备101可根据图5所示过程确定第一信息:
S301:终端设备101根据RS资源配置确定多用户配对下行数据的发送功率。
具体的,多用户配对下行数据的发送功率可表示为p′,其中,
Figure PCTCN2021106403-appb-000004
P为网络设备102总发送功率(可默认为1),M为配对用户干扰导频资源所包含的端口数,M为整数,且M≥0,RI为终端设备101根据下行信道状态信息CSI测量所确定的用于下行数据传输的秩。
S302:终端设备101根据多用户配对下行数据的发送功率确定终端设备101参与多用户配对的下行数据传输的信噪比。
具体的,以SINR为例,建议终端设备101参与多用户配对的下行数据传输的SINR的一种计算方式可表示为:
Figure PCTCN2021106403-appb-000005
另一种计算方式可表示为:
Figure PCTCN2021106403-appb-000006
其中,S为承载RS信号的时频域资源上接收到的导频信号能量,dletP为PDSCH的发送功率与CSI-RS的发送功率的线性差值,I为承载配对用户干扰导频资源上接收到的导频信号总能量,即为配对用户干扰,N为承载CSI-IM资源上接收到的信号能量,即为底噪及邻区干扰。
或者,以上S301和S302所示过程可替换为S303:
S303:终端设备101基于下行导频信号测量的测量结果确定终端设备101参与多用户配对的下行数据传输的信噪比值。其中,下行导频信号测量根据RS资源配置进行。
其中,以该信噪比值为SINR为例,SINR可表示为:
Figure PCTCN2021106403-appb-000007
其中,dletP为PDSCH的发送功率与CSI-RS的发送功率的线性差值,I为承载配对用户干扰导频资源上接收到的导频信号总能量,即为配对用户干扰,N为承载CSI-IM资源上接收到的信号能量,即为底噪及邻区干扰。
举例来说,假设resourcesForChannelMeasurement为2port-RS配置,nzp-CSI-RS-ResourcesForInterference为8port RS配置,终端设备101为下行数据传输选择的RI=1,powerControlOffset=3dB,UE接收到的有用信号能量S=80,配对用户总的干扰能量
Figure PCTCN2021106403-appb-000008
邻区与底噪总能量N=0.3。
Figure PCTCN2021106403-appb-000009
SINR_dB=10*log10(sinr)=16.99(dB)。
应理解,下行导频信号测量的测量结果至少包括RI。其中,RI与SINR的测量结果可以基于相同下行导频信号测量获取,也可以是基于不同下行导频信号测量获取。
S304:终端设备101将S301-S302或S303确定的流级信噪比值合并为码字级信噪比值。
S305:终端设备101根据码字级信噪比值确定第一信息。
其中,终端设备101可根据码字级信噪比值通过设定的算法确定第一信息。
具体来说,S305的一种可能的实现方式中,终端设备101可查询信噪比值与MCS之间的映射表,确定最接近实际测量信噪比值的MCS,将第一信息确定为该信噪比值对应的MCS索引或者该信噪比值对应的MCS索引的指示信息。
另一种确定第一信息的方式中,终端设备101可将码字级信噪比直接量化,获得第一信息。
另一种确定第一信息的方式中,终端设备101可将码字级信噪比所属的信噪比区间对应的设定值确定为第一信息。
在S305另一种可能的实现方式中,终端设备101可根据实际测量信噪比值的MCS以及特定阶MCS确定信噪比余量,并根据信噪比余量确定第一信息。其中,根据信噪比余量确定第一信息的方式可参照本申请中根据信噪比余量确定第一信息时的说明。
一种举例的实现方式为,确定的SINR=25,特定阶MCS的索引为表1所示的MCS索引28,则终端设备101可确定deltSINR=3.9,查询表1确定3.9dB对应的MCS索引为13,则可将13作为第一信息。
S306:终端设备101向网络设备102发送CQI量化值。该CQI量化值至少包括第一信息。
S307:网络设备102根据该第一信息决策终端设备下行数据传输采用的实际MCS。
具体的,网络设备102可根据该第一信息确定终端设备101建议的终端设备参与多用户配对的下行数据传输采用的MCS,根据该MCS决策终端设备参与多用户配对的下行数据传输实际采用的MCS。
应理解,终端设备101可根据该信噪比值通过设定算法确定第一信息,相应地,网络设备102可根据对应的算法解析第一信息获得信噪比值,根据该信噪比值解析获得MCS,该MCS即终端设备101建议的进行多用户配对数据传输采用的MCS。
采用图5所示过程,针对多用户配对场景,终端设备可反馈建议终端设备参与多用户 配对的下行数据传输采用的调制编码方式,指导基站侧选择更合适的调制编码方式发送下行数据,从而提升系统容量。
本文中描述的各个实施例可以为独立的方案,也可以根据内在逻辑进行组合,这些方案都落入本申请的保护范围中。
可以理解的是,上述各个方法实施例中,由终端设备实现的方法和操作,也可以由可用于终端设备的部件(例如芯片或者电路)实现,由网络设备实现的方法和操作,也可以由可用于网络设备的部件(例如芯片或者电路)实现。
上述主要从各个交互的角度对本申请实施例提供的方案进行了介绍。可以理解的是,各个网元,例如发射端设备或者接收端设备,为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法过程,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对发射端设备或者接收端设备进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以使用硬件的形式实现,也可以使用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。下面以使用对应各个功能划分各个功能模块为例进行说明。
以上,结合图3至图5说明了本申请实施例提供的方法。以下,将结合图6至图7说明本申请实施例提供的通信装置。应理解,装置实施例的描述与方法实施例的描述相互对应,因此,未详细描述的内容可以参见上文方法实施例,为了简洁,这里不再赘述。
基于相同的构思,为了实现上述本申请实施例提供的方法中的各功能,本申请还提供一种通信装置。该通信装置可用于执行以上方法实施例中由终端设备执行的过程。该通信装置可以包括硬件结构和/或软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能以硬件结构、软件模块、还是硬件结构加软件模块的方式来执行,取决于技术方案的特定应用和设计约束条件。
如图6所示,本申请实施例提供的一种通信装置可以包括通信模块601以及处理模块602,以上通信模块601以及处理模块602之间相互耦合。该通信装置600可用于执行以上图3中所示的由终端设备执行的过程。该通信模块601可用于支持通信装置600进行通信,比如,通信模块601可包括发送模块和/或接收模块,通信模块601也可被称为通信单元、通信接口、收发模块或收发单元。通信模块601可具备数据传输功能。处理模块602也可被称为处理单元,可用于支持该通信装置600执行上述方法实施例中终端设备的处理动作,包括但不限于:生成由通信模块601发送的满足通信协议的数据、信令,和/或,对通信模块601接收的信号进行处理。
例如:通信模块601也可以称为收发单元,包括发送单元和/或接收单元,分别用于执行上文方法实施例中终端设备的发送和接收的过程。
在一种可能的设计中,该通信设备600可实现对应于上文方法实施例中的终端设备执行的步骤或者流程,例如,可以为终端设备,或者配置于终端设备中的芯片或电路。通信 模块601用于执行上文方法实施例中终端设备侧的收发相关操作,处理模块602用于执行上文方法实施例中终端设备的处理相关操作。
具体的,通信模块601可用于接收来自于网络设备的RS资源配置。处理模块602可用于根据该RS配置进行RS资源信道测量。处理模块602还可根据RS资源信道测量的测量结果确定CQI量化值,其中,该CQI量化值可包括第一信息,第一信息可表征终端设备下行数据传输采用特定阶MCS的信噪比余量,和/或,表征建议终端设备参与多用户配对的下行数据传输采用的MCS。通信模块601可向该网络设备发送该CQI量化值。
在一种可能的设计中,第一信息用于表征终端设备下行数据传输采用特定阶MCS的信噪比余量时,处理模块602可根据RS资源信道测量的测量结果获取下行传输信噪比,并根据下行传输信噪比确定信噪比余量,并根据该信噪比余量确定第一信息。其中,信噪比余量为下行传输信噪比与下行传输采用特定阶MCS传输所需要的信噪比之间的差值。
在一种可能的设计中,处理模块602可根据信噪比余量通过设定的算法确定第一信息。
具体的,处理模块602可将信噪比余量所属的余量区间对应的MCS索引确定为第一信息,或者,将信噪比余量量化为第一信息,或者,将信噪比余量所属的余量区间对应的设定值确定为第一信息,以实现信噪比余量的灵活指示。
在一种可能的设计中,特定阶MCS为终端设备支持的最高阶MCS或设定的,或是建议终端设备的下行数据传输采用的MCS。
在一种可能的设计中,在第一信息用于表征终端设备建议的进行多用户配对的数据传输采用的MCS时,处理模块602还可根据RS资源信道测量的测量结果确定终端设备参与多用户配对的下行数据传输的信噪比值,并根据该信噪比值确定第一信息。
在一种可能的设计中,处理模块602可确定多用户配对下行数据的发送功率,并根据该发送功率确定终端设备参与多用户配对的下行数据传输的信噪比值。其中,该多用户配对下行数据的发送功率为
Figure PCTCN2021106403-appb-000010
P为网络设备的总发送功率,M为配对用户干扰导频资源所包含的端口数,M为整数,且M≥2,RI为终端设备根据CSI测量所确定的用于下行数据传输的秩。
在一种可能的设计中,处理模块602可根据信噪比值通过设定的算法确定第一信息。
具体的,处理模块602可将该信噪比值所属的信噪比区间对应的MCS索引确定为该第一信息,或者,将该信噪比值量化为第一信息,或者,将该信噪比值所属的信噪比区间对应的设定值确定为该第一信息。
应理解,上述各模块执行上述相应过程的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
此外,另一种可能的实现方式中,若通过硬件组件实现该通信装置,其结构还可如图7所示。为便于理解,图7中仅以手机为例示出了通信装置执行本申请所示方法所必须的结构,本申请并不限制通信装置可具备更多组件。该通信装置700可包括收发器701、存储器702以及处理器703。该收发器701可以用于通信装置进行通信,如用于通过有线和/或无线发送或接收信号,从而进行信息、数据和消息等的发送和/或接收。该存储器702与该处理器703耦合,其用于保存通信装置700实现各功能所必要的程序和数据。该处理器703被配置为支持通信装置700执行上述方法中由终端设备执行的处理功能,如确定生成由收发器701发送的信息、消息,和/或,对收发器701接收的信号进行解调解码等等。以上存储器702以及处理器703可集成于一体也可相互独立。
示例性的,该收发器701可包括无线示范区,可用于支持通信装置700通过有线方式接收和发送信令和/或数据。收发器701也可被称为收发单元或通信单元。或者,该收发器701可包括无线收发器(如包括调制解调器和/或天线),可用于支持通信装置700通过无线方式接收和发送信令和/或数据。收发器701也可被称为无线收发器或无线通信单元,其可包括发射机以及接收机,发射机以及接收机可分别连接至一个或多个天线。
该处理器703可通过处理芯片或处理电路实现。
应理解,以上收发器701可用于执行由通信模块601执行的动作。处理器703可用于调用存储器702中的计算机程序或指令,执行由处理模块602执行的动作。
此外应理解,图7所示的存储器702和/或收发器701也可采用外接的方式连接至通信装置700的处理器703。比如,通信装置700包括处理器703,存储器702以及收发器701均采用外接方式设置。再比如,通信装置700包括处理器703以及收发器701,存储器702采用外接方式设置。再比如,通信装置700包括处理器703以及存储器702,收发器701采用外接方式设置。
具体的,收发器701可用于接收来自于网络设备的RS资源配置。处理器703可用于根据该RS配置进行RS资源信道测量。处理器703还可根据RS资源信道测量的测量结果确定CQI量化值,其中,该CQI量化值可包括第一信息,第一信息可表征终端设备下行数据传输采用特定阶MCS的信噪比余量,和/或,表征建议终端设备参与多用户配对的下行数据传输采用的MCS。收发器701可向该网络设备发送该CQI量化值。
在一种可能的设计中,第一信息用于表征终端设备下行数据传输采用特定阶MCS的信噪比余量时,处理器703可根据RS资源信道测量的测量结果获取下行传输信噪比,并根据下行传输信噪比确定信噪比余量,并根据该信噪比余量确定第一信息。其中,信噪比余量为下行传输信噪比与下行传输采用特定阶MCS传输所需要的信噪比之间的差值。
在一种可能的设计中,处理器703可根据信噪比余量通过设定的算法确定第一信息。
具体的,处理器703可将信噪比余量所属的余量区间对应的MCS索引确定为第一信息,或者,将信噪比余量量化为第一信息,或者,将信噪比余量所属的余量区间对应的设定值确定为第一信息,以实现信噪比余量的灵活指示。
在一种可能的设计中,特定阶MCS为终端设备支持的最高阶MCS或设定的,或是建议终端设备的下行数据传输采用的MCS。
在一种可能的设计中,在第一信息用于表征终端设备建议的进行多用户配对的数据传输采用的MCS时,处理器703还可根据RS资源信道测量的测量结果确定终端设备参与多用户配对的下行数据传输的信噪比值,并根据该信噪比值确定第一信息。
在一种可能的设计中,处理器703可确定多用户配对下行数据的发送功率,并根据该发送功率确定终端设备参与多用户配对的下行数据传输的信噪比值。其中,该多用户配对下行数据的发送功率为
Figure PCTCN2021106403-appb-000011
P为网络设备的总发送功率,M为配对用户干扰导频资源所包含的端口数,M为整数,且M≥2,RI为终端设备根据CSI测量所确定的用于下行数据传输的秩。
在一种可能的设计中,处理器703可根据信噪比值通过设定的算法确定第一信息。
具体的,处理器703可将该信噪比值所属的信噪比区间对应的MCS索引确定为该第一信息,或者,将该信噪比值量化为第一信息,或者,将该信噪比值所属的信噪比区间对应的设定值确定为该第一信息。
应理解,上述各器件执行上述相应过程的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
本申请实施例还提供了一种处理装置,包括处理器和接口。该处理器可用于执行上述方法实施例中的方法。
应理解,上述处理装置可以是一个芯片。例如,该处理装置可以是现场可编程门阵列(field programmable gate array,FPGA),可以是专用集成芯片(application specific integrated circuit,ASIC),还可以是系统芯片(system on chip,SoC),还可以是中央处理器(central processor unit,CPU),还可以是网络处理器(network processor,NP),还可以是数字信号处理电路(digital signal processor,DSP),还可以是微控制器(micro controller unit,MCU),还可以是可编程控制器(programmable logic device,PLD)或其他集成芯片。
在实现过程中,上述方法的各过程可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法的过程可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的计算机程序、指令、信息和/或数据,结合其硬件完成上述方法的过程。为避免重复,这里不再详细描述。
应注意,本申请实施例中的处理器可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各过程可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的过程可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的过程。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
根据本申请实施例提供的方法,本申请还提供一种计算机程序产品,该计算机程序产品包括:计算机程序代码,当该计算机程序代码在计算机上运行时,使得该计算机执行图 3所示实施例中任意一个实施例的方法。
根据本申请实施例提供的方法,本申请还提供一种计算机可读介质,该计算机可读介质存储有程序代码,当该程序代码在计算机上运行时,使得该计算机执行图3所示实施例中任意一个实施例的方法。
根据本申请实施例提供的方法,本申请还提供一种系统,其包括前述的一个或多个终端设备以及一个或多个网络设备。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disc,SSD))等。
上述各个装置实施例中网络设备与终端设备和方法实施例中的网络设备或终端设备对应,由相应的模块或单元执行相应的过程,例如通信单元(收发器)执行方法实施例中接收或发送的过程,除发送、接收外的其它过程可以由处理单元(处理器)执行。具体单元的功能可以参考相应的方法实施例。其中,处理器可以为一个或多个。
在本说明书中使用的术语“部件”、“模块”、“系统”等用于表示计算机相关的实体、硬件、固件、硬件和软件的组合、软件、或执行中的软件。例如,部件可以是但不限于,在处理器上运行的进程、处理器、对象、可执行文件、执行线程、程序和/或计算机。通过图示,在计算设备上运行的应用和计算设备都可以是部件。一个或多个部件可驻留在进程和/或执行线程中,部件可位于一个计算机上和/或分布在两个或更多个计算机之间。此外,这些部件可从在上面存储有各种数据结构的各种计算机可读介质执行。部件可例如根据具有一个或多个数据分组(例如来自与本地系统、分布式系统和/或网络间的另一部件交互的二个部件的数据,例如通过信号与其它系统交互的互联网)的信号通过本地和/或远程进程来通信。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各种说明性逻辑块(illustrative logical block)和步骤(step),能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通 过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分过程。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (15)

  1. 一种测量反馈方法,其特征在于,应用于终端设备,包括:
    根据网络设备配置的RS资源配置进行RS资源信道测量;
    根据所述RS资源信道测量的测量结果确定信道质量指示CQI量化值,所述CQI量化值包括第一信息;
    所述第一信息用于表征所述终端设备进行数据传输采用特定阶调制编码方式MCS的信噪比余量;和/或,
    所述第一信息用于表征所述终端设备建议的进行多用户配对的数据传输采用的MCS;
    向所述网络设备发送所述CQI量化值。
  2. 如权利要求1所述的方法,其特征在于,所述第一信息用于表征所述终端设备进行数据传输采用特定MCS的信噪比余量;
    所述根据所述RS资源信道测量的测量结果确定信道质量指示CQI量化值,包括:
    根据所述RS资源信道测量的测量结果获取信噪比余量,所述信噪比余量为下行传输信噪比与下行传输采用所述特定阶MCS所需要的信噪比之间的差值,所述RS资源信道测量的测量结果包括所述下行传输信噪比;
    根据所述信噪比余量确定所述第一信息。
  3. 如权利要求2所述的方法,其特征在于,所述根据所述信噪比余量确定所述第一信息,包括:
    根据所述信噪比余量通过设定的算法确定所述第一信息。
  4. 如权利要求1-3中任一所述的方法,其特征在于,所述特定阶MCS为所述终端设备支持的最高阶MCS,或者,所述特定阶MCS为设定的,或者,所述特定阶MCS为所述终端设备建议的下行数据传输采用的MCS。
  5. 如权利要求1-4中任一所述的方法,其特征在于,所述第一信息用于表征所述终端设备建议的进行多用户配对的数据传输采用的MCS;
    所述根据所述RS资源信道测量的测量结果确定信道质量指示CQI量化值,包括:
    根据所述RS资源信道测量的测量结果确定所述终端设备进行多用户配对的下行数据传输的信噪比值;
    根据所述信噪比值确定所述第一信息。
  6. 如权利要求5所述的方法,其特征在于,所述根据所述RS资源信道测量的测量结果确定所述终端设备进行多用户配对的下行数据传输的信噪比值,包括:
    根据所述终端设备进行多用户配对的下行数据传输的发送功率确定所述信噪比值;
    其中,所述终端设备进行多用户配对的下行数据传输的发送功率为
    Figure PCTCN2021106403-appb-100001
    P为所述网络设备的总发送功率,M为配对用户干扰导频资源所包含的端口数,M为整数,且M≥0,RI为所述终端设备根据所述RS资源信道测量的测量结果确定的下行数据传输的秩。
  7. 如权利要求5或6所述的方法,其特征在于,所述根据所述信噪比值确定所述第一信息,包括:
    根据所述信噪比值通过设定的算法确定所述第一信息。
  8. 一种通信装置,其特征在于,包括:
    处理模块,用于根据网络设备配置的RS资源配置进行RS资源信道测量,根据所述RS资源信道测量的测量结果确定信道质量指示CQI量化值,所述CQI量化值包括第一信息;
    通信模块,用于向所述网络设备发送所述CQI量化值;
    其中,所述第一信息用于表征所述终端设备进行数据传输采用特定阶MCS的信噪比余量;和/或,
    所述第一信息用于表征所述终端设备建议的进行多用户配对数据传输采用的MCS。
  9. 如权利要求8所述的通信装置,其特征在于,所述第一信息用于表征所述终端设备进行数据传输采用特定阶MCS的信噪比余量;
    所述处理模块具体用于:
    根据所述RS资源信道测量的测量结果获取信噪比余量,所述信噪比余量为下行传输信噪比与下行传输采用所述特定阶MCS传输所需要的信噪比之间的差值,所述RS资源信道测量的测量结果包括所述下行传输信噪比;
    根据所述信噪比余量确定所述第一信息。
  10. 如权利要求8或9所述的通信装置,其特征在于,所述特定阶MCS为所述终端设备支持的最高阶MCS,或者,所述特定阶MCS为设定的,或者,所述特定阶MCS为所述终端设备建议的下行数据传输采用的MCS。
  11. 如权利要求8-10中任一所述的通信装置,其特征在于,所述第一信息用于表征终端设备建议的进行多用户配对的数据传输采用的MCS;
    所述通信模块具体用于:
    根据所述RS资源信道测量的测量结果确定所述终端设备进行多用户配对的数据传输的信噪比值;
    根据所述信噪比值确定所述第一信息。
  12. 如权利要求11所述的通信装置,其特征在于,所述通信模块具体用于:
    根据所述终端设备进行多用户配对的下行数据传输的发送功率确定所述信噪比值;
    其中,所述终端设备进行多用户配对的下行数据传输的发送功率为
    Figure PCTCN2021106403-appb-100002
    P为所述网络设备的总发送功率,M为配对用户干扰导频资源所包含的端口数,M为整数,且M≥0,RI为所述终端设备根据所述RS资源信道测量确定的用于下行数据传输的秩。
  13. 一种计算机可读存储介质,其特征在于,存储有计算机程序或指令,当所述计算机程序或指令在计算机上运行时,使得所述计算机执行如权利要求1-7中任一所述的方法。
  14. 一种计算机程序产品,包括计算机程序代码,其特征在于,所述计算机程序代码在计算机上运行时,使得计算机执行如权利要求1至7中任一项所述的方法。
  15. 一种芯片,其特征在于,包括至少一个处理器和接口;
    所述接口,用于为所述至少一个处理器提供计算机程序、指令或者数据;
    所述至少一个处理器用于执行所述计算机程序或指令,以使得如权利要求1至7中任一项所述的方法被执行。
PCT/CN2021/106403 2020-07-15 2021-07-15 一种测量反馈方法及装置 WO2022012609A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010683214.9A CN113949471A (zh) 2020-07-15 2020-07-15 一种测量反馈方法及装置
CN202010683214.9 2020-07-15

Publications (1)

Publication Number Publication Date
WO2022012609A1 true WO2022012609A1 (zh) 2022-01-20

Family

ID=79326476

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/106403 WO2022012609A1 (zh) 2020-07-15 2021-07-15 一种测量反馈方法及装置

Country Status (2)

Country Link
CN (1) CN113949471A (zh)
WO (1) WO2022012609A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114189317A (zh) * 2022-02-14 2022-03-15 北京宇航系统科技有限公司 一种通信导航遥感深度融合的实现方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116800384B (zh) * 2023-08-24 2023-11-21 荣耀终端有限公司 设备测试方法、测试设备及芯片系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102546094A (zh) * 2010-10-06 2012-07-04 马维尔国际贸易有限公司 用于多用户mimo的增强信道反馈
US20140301238A1 (en) * 2011-11-25 2014-10-09 Lg Electronics Inc. Method and apparatus for measuring channel quality indicator in wireless communication system
CN104243091A (zh) * 2013-06-20 2014-12-24 华为技术有限公司 一种确定调制编码方式的方法及装置
CN104936301A (zh) * 2014-03-21 2015-09-23 普天信息技术有限公司 一种下行频选调度方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102546094A (zh) * 2010-10-06 2012-07-04 马维尔国际贸易有限公司 用于多用户mimo的增强信道反馈
US20140301238A1 (en) * 2011-11-25 2014-10-09 Lg Electronics Inc. Method and apparatus for measuring channel quality indicator in wireless communication system
CN104243091A (zh) * 2013-06-20 2014-12-24 华为技术有限公司 一种确定调制编码方式的方法及装置
CN104936301A (zh) * 2014-03-21 2015-09-23 普天信息技术有限公司 一种下行频选调度方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114189317A (zh) * 2022-02-14 2022-03-15 北京宇航系统科技有限公司 一种通信导航遥感深度融合的实现方法
CN114189317B (zh) * 2022-02-14 2022-04-22 北京宇航系统科技有限公司 一种通信导航遥感深度融合的实现方法

Also Published As

Publication number Publication date
CN113949471A (zh) 2022-01-18

Similar Documents

Publication Publication Date Title
WO2020057383A1 (zh) 数据传输的方法和装置
CN111050390B (zh) 一种上行功率控制方法、终端设备及网络设备
WO2020207269A1 (zh) 干扰测量的方法和装置
CN109586872B (zh) 信道质量信息的上报方法、终端设备和网络设备
WO2020199066A1 (zh) 功率控制方法及相关装置
WO2019047828A1 (zh) 一种数据传输的方法、装置及系统
WO2022012609A1 (zh) 一种测量反馈方法及装置
WO2020029942A1 (zh) 波束测量的方法和装置
US11088738B2 (en) Communication method and network device
WO2020029965A1 (zh) 传输信道状态信息的方法和装置
US11259251B2 (en) Uplink power adjustment for packet data convergence protocol (PDCP) duplication
WO2020155604A1 (zh) 测量上报的方法与装置
WO2024021652A1 (zh) 一种无线通信方法及设备、存储介质
WO2020233500A1 (zh) 一种通信方法及通信装置
WO2020210845A2 (en) Methods and apparatus for power allocation
CN111510935B (zh) 一种上行信号发送方法、接收方法、装置及系统
WO2023016522A1 (zh) 一种通信方法和通信装置
WO2013123850A1 (zh) 一种信息反馈方法及装置、终端
WO2020156514A1 (zh) 测量上报方法和通信装置
WO2021155659A1 (zh) 一种上行参考信号发射方式确定方法、装置及系统
CN109802734B (zh) 一种传输信道质量信息的方法和装置
WO2022041284A1 (zh) 一种通信方法及装置
WO2023138507A1 (zh) 一种通信方法、装置及系统
WO2023273969A1 (zh) 资源测量方法和通信装置
WO2023082154A1 (zh) Csi反馈方案的更新方法、装置、设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21843272

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21843272

Country of ref document: EP

Kind code of ref document: A1