WO2022012381A1 - 一种数据传输方法及装置 - Google Patents

一种数据传输方法及装置 Download PDF

Info

Publication number
WO2022012381A1
WO2022012381A1 PCT/CN2021/104772 CN2021104772W WO2022012381A1 WO 2022012381 A1 WO2022012381 A1 WO 2022012381A1 CN 2021104772 W CN2021104772 W CN 2021104772W WO 2022012381 A1 WO2022012381 A1 WO 2022012381A1
Authority
WO
WIPO (PCT)
Prior art keywords
sequence
data
sent
preamble
sequences
Prior art date
Application number
PCT/CN2021/104772
Other languages
English (en)
French (fr)
Inventor
于天航
王坚
张公正
李榕
王俊
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP21842640.1A priority Critical patent/EP4167626A4/en
Publication of WO2022012381A1 publication Critical patent/WO2022012381A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/3405Modifications of the signal space to increase the efficiency of transmission, e.g. reduction of the bit error rate, bandwidth, or average power
    • H04L27/3416Modifications of the signal space to increase the efficiency of transmission, e.g. reduction of the bit error rate, bandwidth, or average power in which the information is carried by both the individual signal points and the subset to which the individual points belong, e.g. using coset coding, lattice coding, or related schemes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/3405Modifications of the signal space to increase the efficiency of transmission, e.g. reduction of the bit error rate, bandwidth, or average power
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present application relates to the field of communication technologies, and in particular, to a data transmission method and apparatus.
  • the transmitting end of the fifth generation (5th-Generation, 5G) mobile communication system will use higher frequency bands, larger bandwidths, and more antennas to achieve ultra-high-speed data transmission, such as , which can reach a transmission rate of 10G bits per second.
  • the channel estimation at the receiving end is a key technology to realize the wireless communication system, that is, whether the receiving end can obtain relatively accurate channel information, so as to correctly demodulate the transmitted signal, is an important indicator to measure the performance of a wireless communication system. Since the power consumption of the analog-to-digital converter (ADC) that converts the analog signal to the digital signal at the receiving end increases exponentially with the sampling accuracy of the ADC, for wireless headphones or wearable devices, etc. For devices with lower power consumption, it is an urgent problem to achieve more accurate channel estimation and signal synchronization through a lower-precision ADC.
  • ADC analog-to-digital converter
  • the transmitting end may use the Golay complementary sequence as the preamble sequence, and the receiving end performs channel estimation according to the received preamble sequence.
  • a non-periodic autocorrelation Gray complementary sequence is used as the preamble sequence
  • the preamble sequence is composed of ⁇ 1, -1 ⁇
  • the modulation method is ⁇ /2-Binary Phase Shift Keying (Binary Phase Shift Keying, BPSK) modulation
  • the constellation point of the modulated preamble sequence is located on the coordinate axis of the constellation diagram
  • the constellation point includes the real part and the imaginary part of the preamble sequence.
  • the transmitting end sends a preamble sequence through the channel, and the receiving end performs an operation according to the received preamble sequence and the preconfigured sequence, so that channel estimation and signal synchronization can be performed.
  • the modulation mode of the subsequent data sent by the sender is 4-Quadrature Amplitude Modulation (QAM)
  • the constellation diagram of 4QAM is shown in FIG.
  • the amplitude is not equal to the amplitude of the transmitted data.
  • the receiving end needs to adjust according to the amplitude of the received preamble sequence, quantized as matching level value. Therefore, when a low-precision ADC is used at the receiving end, a large quantization error will be introduced.
  • the receiving end when the receiving end adopts a 1-bit ADC, the receiving end will quantize the received signal into two level values ⁇ V, -V ⁇ , and for the amplitude value 0 of the preamble sequence, it will be randomly quantized into a level value. V or -V results in a large quantization noise, thereby reducing the channel estimation accuracy and causing a large channel estimation error.
  • the present application provides a data transmission method and device, which can reduce the quantization error of a low-precision ADC when processing a preamble sequence, improve the channel estimation precision and accuracy of a low-power device, and optimize the performance of a communication system.
  • a first aspect provides a data transmission method, the method comprising: a first device determining a first sequence and a second sequence according to a signal modulation method and a preconfigured sequence of data to be sent, wherein the first sequence and the second sequence are Gray Complementary sequence, the amplitudes of the real part and the imaginary part of the elements in the first sequence and the second sequence are the same as the amplitudes of the real part and/or the imaginary part of some elements in the sequence corresponding to the data to be sent; the first device outputs the preamble sequence, the leader sequence includes the first sequence and the second sequence.
  • the first device can determine the preamble sequence according to the signal modulation mode of the data to be sent, so that the amplitudes of the real part and the imaginary part of the preamble sequence sent by the transmitting end are the real values of some elements in the sequence corresponding to the data to be sent.
  • the amplitude of the part and/or the imaginary part is the same, so that after the receiving end receives the preamble sequence, the low-precision ADC at the receiving end can quantify to a closer value when converting the analog signal to the digital signal, and will not
  • the amplitude of the preamble sequence is quite different from the amplitude of the received data part, resulting in a large quantization error. Therefore, the quantization error can be reduced, the channel estimation precision and accuracy of the low-power consumption device can be improved, and the performance of the communication system can be improved.
  • the signal modulation manner of the data to be sent includes 4-quadrature amplitude modulation QAM or 16QAM.
  • the signal modulation mode of the data to be sent by the first device can be 4QAM or 16QAM
  • the second device can determine the selection and design of the preamble sequence according to the modulation mode, so that the real part and the imaginary part of the preamble sequence are equal.
  • the amplitude can fall within the amplitude range of the 4QAM or 16QAM modulated signal, which reduces the quantization error of the low-precision ADC at the receiving end and improves the channel estimation accuracy of the low-power device.
  • the amplitudes of the real part and the imaginary part of the elements in the first sequence and the second sequence include: and Among them, E represents the signal power of the data to be sent.
  • the first device may design the first sequence and the second sequence in the preamble sequence such that the magnitudes of the real part and the imaginary part of the elements are and The amplitudes of the real part and the imaginary part of the data part are the same, so that the accuracy of channel estimation at the receiving end can be improved.
  • the amplitudes of the real part and the imaginary part of the elements in the first sequence and the second sequence include: and Among them, E represents the signal power of the data to be sent.
  • the amplitudes of the real part and the imaginary part of the digital signal after 16QAM modulation include: and Therefore, the first device may design the first sequence and the second sequence in the preamble sequence such that the magnitudes of the real part and the imaginary part of the elements are and The amplitudes of the real part and the imaginary part of the data part are the same, so that the accuracy of channel estimation at the receiving end can be improved.
  • the power of the preamble sequence is equal to the signal power of the data to be sent.
  • the transmitting end needs to make the power of the preamble sequence equal to the signal power of the data to be sent, and the power of the digital signal is equal to the sum of the squares of the amplitudes of the elements in the sequence corresponding to the digital signal in a certain period of time divided by The number of elements in the sequence, therefore, the power of the preamble sequence of the first device is equal to the signal power of the data to be sent, that is, the amplitude of the real part and the imaginary part of the preamble sequence of the first device and the sequence corresponding to the data to be sent
  • the real and/or imaginary parts of some elements in are of the same magnitude.
  • the first device determines the first sequence and the second sequence according to the signal modulation mode of the data to be sent and the preconfigured sequence, Specifically, it includes: the first device performs the preconfigured third sequence and the fourth sequence respectively on The binary phase shift keying BPSK modulation and After the phase shift of , the first sequence and the second sequence are obtained, wherein k is an odd number, and the third sequence and the fourth sequence are Golay complementary sequences.
  • the constellation diagram may be as shown in FIG. 2 . Therefore, the first device may convert the original preamble shown in FIG. 1 . sequence BPSK modulation and After the phase offset of The real parts and/or imaginary parts of some elements have the same amplitude, so that the channel estimation accuracy at the receiving end can be improved.
  • the nth element in the above-mentioned first sequence satisfies:
  • the nth element in the second sequence satisfies:
  • a n represents a n-th element of the first sequence
  • B n denotes the n-th element of the second sequence
  • a n represents the n-th element of the third sequence
  • b n represents the n-th element of the fourth sequence.
  • the first device may perform adjustment operations on the pre-configured original Gray complementary sequence according to the above formula, to obtain the first sequence and the second sequence satisfying the position of the 4QAM constellation point, and the first sequence and the second sequence as The preamble sequence can improve the channel estimation accuracy of the receiving end.
  • the first device determines the first sequence and the second sequence according to the signal modulation mode of the data to be sent and the preconfigured sequence, Specifically, it includes: the first device performs the preconfigured third sequence and the fourth sequence respectively on The first sequence and the second sequence are obtained after the phase shift of , where k is an odd number, and the third sequence and the fourth sequence are Golay complementary sequences.
  • the first device may also perform the original Golay complementary sequence.
  • the constellation diagram of 4QAM as shown in Figure 2 is obtained after the phase offset of and/or the magnitude of the imaginary part is the same, so that the channel estimation accuracy at the receiving end can be improved.
  • the nth element in the above-mentioned first sequence satisfies:
  • the nth element in the second sequence satisfies:
  • a n represents a n-th element of the first sequence
  • B n denotes the n-th element of the second sequence
  • a n represents the n-th element of the third sequence
  • b n represents the n-th element of the fourth sequence.
  • the first device may perform adjustment operations on the pre-configured original Gray complementary sequence according to the above formula, to obtain the first sequence and the second sequence satisfying the position of the 4QAM constellation point, and the first sequence and the second sequence as The preamble sequence can improve the channel estimation accuracy of the receiving end.
  • the first device determines the first sequence and the second sequence according to the signal modulation mode of the data to be sent and the preconfigured sequence, which specifically includes: The first device performs operations according to the preconfigured third sequence and the fourth sequence to obtain the first sequence, and the first device performs operations according to the preconfigured third sequence and the fourth sequence to obtain the second sequence, the third sequence and the fourth sequence
  • the sequence is the Gray complement.
  • the first device may perform a joint operation on the preconfigured third sequence and the fourth sequence to obtain the first sequence and the second sequence, so that the amplitudes of the real part and the imaginary part of the preamble sequence output by the first device are The value is the same as the amplitude of the real part and/or the imaginary part of some elements in the sequence corresponding to the data to be sent, so that the channel estimation accuracy of the receiving end can be improved.
  • the nth element in the above-mentioned first sequence satisfies:
  • the nth element in the second sequence satisfies:
  • a n represents a n-th element of the first sequence
  • B n denotes the n-th element of the second sequence
  • a n denotes an n-th element of the third sequence
  • b n represents the n-th element of the fourth sequence
  • k is an integer.
  • the first device may perform adjustment operations on the pre-configured original Gray complementary sequence according to the above formula, to obtain the first sequence and the second sequence satisfying the position of the 4QAM constellation point, and the first sequence and the second sequence as The preamble sequence can improve the channel estimation accuracy of the receiving end.
  • the nth element in the first sequence satisfies:
  • the nth element in the second sequence satisfies:
  • a n represents a n-th element of the first sequence
  • B n denotes the n-th element of the second sequence
  • a n denotes an n-th element of the third sequence
  • b n represents the n-th element of the fourth sequence
  • k is an integer.
  • the first device may perform adjustment operations on the pre-configured original Gray complementary sequence according to the above formula, to obtain the first sequence and the second sequence satisfying the position of the 16QAM constellation point, and use the first sequence and the second sequence as The preamble sequence can improve the channel estimation accuracy of the receiving end.
  • the third sequence and the fourth sequence include elements 1 and -1 arranged in a preset order.
  • a data transmission method comprising: a second device receives a preamble sequence; the second device performs blind detection on the preamble sequence, and determines a first sequence and a second sequence from a plurality of preconfigured sequences according to the preamble sequence , wherein the first sequence and the second sequence are pre-configured Golay complementary sequences; the second device performs channel estimation according to the first sequence, the second sequence and the preamble sequence.
  • the receiving end after receiving the preamble sequence, can perform blind detection according to the received preamble sequence and multiple locally pre-configured sequences, so as to determine the original preamble sequence sent by the transmitting end.
  • the original preamble sequence includes the first sequence.
  • the receiving end can perform channel estimation according to the received preamble sequence, the first sequence and the second sequence, so as to improve the accuracy of the channel estimation at the receiving end.
  • the second device performs blind detection on the preamble sequence, and determines the first sequence and the second sequence from the preconfigured sequence according to the preamble sequence, specifically including: the preamble sequence includes the third sequence and the fourth sequence, The second device performs a cross-correlation operation on the third sequence and the multiple pre-configured sequences respectively, and/or the second device performs a cross-correlation operation on the fourth sequence respectively with the multiple pre-configured sequences to obtain multiple correlation sequences; the second device The first sequence and the second sequence are determined from the plurality of correlated sequences.
  • the second device performs a cross-correlation operation one by one from the preconfigured sequences according to the preamble sequence, and determines the sequence pair with the highest correlation as the first sequence and the second sequence according to the cross-correlation characteristic of the Gray sequence.
  • the second device determines The pre-configured sequence 1 and the pre-configured sequence 2 are the first sequence and the second sequence, respectively, wherein the pre-configured sequence 1 and the pre-configured sequence 2 are one of the multiple pre-configured sequences.
  • the second device performs channel estimation according to the first sequence, the second sequence and the preamble sequence, which specifically includes: the preamble sequence includes a third sequence and a fourth sequence, and the second device performs channel estimation according to the first sequence and the first sequence.
  • the third sequence performs cross-correlation operation to obtain the fifth sequence
  • the second device performs the cross-correlation operation according to the second sequence and the fourth sequence to obtain the sixth sequence
  • the second device obtains the sixth sequence according to the The number of elements obtains the channel parameter sequence for data transmission between the first device and the second device.
  • the second device may calculate the channel parameter sequence according to the received preamble sequence and the preamble sequence sent by the original sender. Since the amplitude of the real part and/or imaginary part of the preamble sequence sent by the sender is the same as that of the data part, the channel parameters obtained by the receiver according to the preamble sequence and the channel parameters obtained according to the data part are basically the same. The receiving end of the power consumption will not generate a large error due to the quantization of the digital signal, the accuracy of the channel estimation is improved, and the performance of the communication system is also improved accordingly.
  • the nth element H n included in the channel parameter sequence satisfies: Among them, A n ' represents the n-th element of the third sequence, C n represents the n-th element of the first sequence, D n represents the n-th element of the second sequence, and B n ' represents the n-th element of the fourth sequence elements, N represents the number of elements in the third sequence, Represents a cross-correlation operation.
  • a data transmission device comprising: a processing module configured to determine a first sequence and a second sequence according to a signal modulation mode and a preconfigured sequence of data to be sent, wherein the first sequence and the second sequence are is a Gray complementary sequence, and the amplitudes of the real part and imaginary part of the elements in the first sequence and the second sequence are the same as the amplitudes of the real part and/or imaginary part of some elements in the sequence corresponding to the data to be sent; the output module, It is used to output the preamble sequence, and the preamble sequence includes the first sequence and the second sequence.
  • the signal modulation manner of the data to be sent includes 4-quadrature amplitude modulation QAM or 16QAM.
  • the amplitudes of the real part and the imaginary part of the elements in the first sequence and the second sequence include: and Among them, E represents the signal power of the data to be sent.
  • the amplitudes of the real part and the imaginary part of the elements in the first sequence and the second sequence include: and Among them, E represents the signal power of the data to be sent.
  • the power of the preamble sequence is equal to the signal power of the data to be sent.
  • the first device determines the first sequence and the second sequence according to the signal modulation mode of the data to be sent and the preconfigured sequence, Specifically, it includes: the first device performs the preconfigured third sequence and the fourth sequence respectively on The binary phase shift keying BPSK modulation and After the phase shift of , the first sequence and the second sequence are obtained, wherein k is an odd number, and the third sequence and the fourth sequence are Golay complementary sequences.
  • the first device determines the first sequence and the second sequence according to the signal modulation mode of the data to be sent and the preconfigured sequence, Specifically, it includes: the first device performs the preconfigured third sequence and the fourth sequence respectively on The first sequence and the second sequence are obtained after the phase shift of , where k is an odd number, and the third sequence and the fourth sequence are Golay complementary sequences.
  • the first device determines the first sequence and the second sequence according to the signal modulation mode of the data to be sent and the preconfigured sequence, which specifically includes: The first device performs operations according to the preconfigured third sequence and the fourth sequence to obtain the first sequence, and the first device performs operations according to the preconfigured third sequence and the fourth sequence to obtain the second sequence, the third sequence and the fourth sequence
  • the sequence is the Gray complement.
  • the third sequence and the fourth sequence include elements 1 and -1 arranged in a preset order.
  • a fourth aspect provides a data transmission device, the device includes a receiving module for receiving a preamble sequence; a processing module for performing blind detection on the preamble sequence, and determining a first sequence and a pre-configured sequence according to the preamble sequence.
  • the second sequence wherein the first sequence and the second sequence are pre-configured Golay complementary sequences; the processing module is further configured to perform channel estimation according to the first sequence, the second sequence and the preamble sequence.
  • the second device performs blind detection on the preamble sequence, and determines the first sequence and the second sequence from the preconfigured sequence according to the preamble sequence, specifically including: the preamble sequence includes the third sequence and the fourth sequence, The second device performs a cross-correlation operation on the third sequence and the multiple pre-configured sequences respectively, and/or the second device performs a cross-correlation operation on the fourth sequence respectively with the multiple pre-configured sequences to obtain multiple correlation sequences; the second device The first sequence and the second sequence are determined from the plurality of correlated sequences.
  • the second device determines The pre-configured sequence 1 and the pre-configured sequence 2 are the first sequence and the second sequence, respectively, wherein the pre-configured sequence 1 and the pre-configured sequence 2 are one of the multiple pre-configured sequences.
  • the second device performs channel estimation according to the first sequence, the second sequence and the preamble sequence, which specifically includes: the preamble sequence includes a third sequence and a fourth sequence, and the second device performs channel estimation according to the first sequence and the first sequence.
  • the third sequence performs cross-correlation operation to obtain the fifth sequence
  • the second device performs the cross-correlation operation according to the second sequence and the fourth sequence to obtain the sixth sequence
  • the second device obtains the sixth sequence according to the The number of elements obtains the channel parameter sequence for data transmission between the first device and the second device.
  • the nth element H n included in the channel parameter sequence satisfies: Among them, A n ' represents the n-th element of the third sequence, C n represents the n-th element of the first sequence, D n represents the n-th element of the second sequence, and B n ' represents the n-th element of the fourth sequence elements, N represents the number of elements in the third sequence, Represents a cross-correlation operation.
  • an electronic device comprising: a processor and a transmission interface; wherein the processor is configured to execute instructions stored in a memory, so as to implement the method described in any one of the above-mentioned first aspects. method described.
  • an electronic device comprising: a processor and a transmission interface; wherein the processor is configured to execute instructions stored in a memory, so as to implement any one of the above-mentioned second aspects. method described.
  • a computer-readable storage medium is provided, and instructions are stored in the computer-readable storage medium, and when the instructions are executed by a computer or a processor, the computer or the processor can execute the above-mentioned The method of any one of the first aspects.
  • a computer-readable storage medium wherein instructions are stored in the computer-readable storage medium, and when the instructions are executed by a computer or a processor, the computer or the processor can execute the above-mentioned The method of any one of the second aspects.
  • a computer program product may include program instructions, when the computer program product is run on a computer, the computer may execute the method described in any one of the above-mentioned first aspects.
  • a computer program product may include program instructions, when the computer program product is run on a computer, the computer may execute the method described in any one of the above-mentioned second aspects.
  • a communication system comprising the apparatus described in the above third aspect and the apparatus described in the above fourth aspect.
  • any of the data transmission devices, electronic devices, computer-readable storage media and computer program products provided above can be used to execute the corresponding methods provided above, and therefore, the beneficial effects that can be achieved.
  • the beneficial effects in the corresponding methods provided above can be referred to, and details are not repeated here.
  • FIG. 1 is a schematic diagram of a constellation point position of a preamble sequence provided by an embodiment of the present application
  • FIG. 2 is a schematic diagram of a constellation point position of a data part under a 4QAM modulation mode provided by an embodiment of the present application;
  • FIG. 3 is a schematic diagram of the architecture of a communication system provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of the result of performing a cross-correlation operation on a Gray complementary sequence provided in an embodiment of the present application
  • FIG. 5 is a schematic flowchart of a data transmission method provided by an embodiment of the present application.
  • FIG. 6 is a schematic diagram of a constellation point position of a data part under a 16QAM modulation mode provided by an embodiment of the present application
  • FIG. 7 is a schematic flowchart of another data transmission method provided by an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a data transmission apparatus according to an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of another data transmission apparatus provided by an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of a chip system according to an embodiment of the present application.
  • first and second are only used for descriptive purposes, and should not be construed as indicating or implying relative importance or implicitly indicating the number of indicated technical features.
  • a feature defined as “first”, “second” may expressly or implicitly include one or more of that feature.
  • plural means two or more.
  • the present application can be applied to wireless communication systems such as 5G and satellite communication.
  • the system architecture is shown in FIG. 3 , and the system may include a base station and at least one terminal.
  • a wireless communication system may generally be composed of cells, and each cell may include a base station (Base Station, BS), and the base station provides communication services to multiple mobile stations (Mobile Station, MS).
  • the base station includes a baseband unit (Baseband Unit, BBU) and a remote radio unit (Remote Radio Unit, RRU).
  • BBU Baseband Unit
  • RRU Remote Radio Unit
  • the BBU and RRU can be placed in different places. For example, the RRU is far away and placed in a high-traffic area, the BBU is placed in the central computer room, or the BBU and RRU can also be placed in the same computer room. In addition, the BBU and RRU can also be different components under one rack.
  • the wireless communication systems mentioned in the solution of the present invention include but are not limited to: Narrow Band-Internet of Things (NB-IoT), Global System for Mobile Communications (GSM), enhanced data rate GSM Evolution System (Enhanced Data rate for GSM Evolution, EDGE), Wideband Code Division Multiple Access (WCDMA), Code Division Multiple Access 2000 (Code Division Multiple Access, CDMA2000), Time Division Synchronous Code Division Multiple Access System (Time Division-Synchronization Code Division Multiple Access, TD-SCDMA), Long Term Evolution (Long Term Evolution, LTE), three major application scenarios of the next-generation 5G mobile communication system eMBB, URLLC and eMTC and wireless fidelity system (Wireless Fidelity, WiFi).
  • NB-IoT Narrow Band-Internet of Things
  • GSM Global System for Mobile Communications
  • EDGE Enhanced Data rate for GSM Evolution, EDGE
  • WCDMA Wideband Code Division Multiple Access
  • CDMA2000 Code Division Multiple Access 2000
  • Time Division Synchronous Code Division Multiple Access System Time Division-Synch
  • the base station in this application is a device deployed in a wireless access network to provide wireless communication functions for MSs, and may include various forms of macro base stations, micro base stations (also called small cells), relay stations, and access points. Wait.
  • the names of devices with base station functions may be different.
  • LTE systems it is called an evolved NodeB (evolved NodeB, eNB or eNodeB).
  • eNB evolved NodeB
  • eNodeB evolved NodeB
  • Node B 3rd Generation
  • the above-mentioned apparatuses for providing wireless communication functions for MSs are collectively referred to as network equipment or base stations or BSs.
  • the terminals involved in the solution of this application may include various handheld devices with wireless communication functions, vehicle-mounted devices, wearable devices, computing devices, or other processing devices connected to wireless modems.
  • the terminal can be specifically a subscriber unit (subscriber unit), a cellular phone (cellular phone), a smart phone (smart phone), a wireless data card, a personal digital assistant (Personal Digital Assistant, PDA) computer, a tablet computer, a wireless modem, Handheld devices, laptop computers, machine type communication (Machine Type Communication, MTC) terminals, etc.
  • the base station will first send a preamble sequence, so that the terminal can adjust the automatic gain control (AGC) according to the received preamble sequence, and perform channel estimation according to the preamble sequence. sync with the signal. Specifically, the terminal may perform AGC adjustment according to the received preamble sequence, and quantize it to a corresponding level value. And the terminal can calculate the correlation function according to the received preamble sequence and the pre-configured sequence, so that the channel parameters for communication can be obtained according to the correlation function. Then, the terminal can correctly demodulate the transmitted signal according to the channel parameters, so as to realize effective and accurate communication.
  • AGC automatic gain control
  • the role of AGC is to use different gains to adjust the analog signals of different strengths, so that the final output signal amplitude is maintained at the same standard.
  • the AGC can adaptively control the gain of the signal link by detecting the signal amplitude, and when the signal amplitude of the circuit changes, the AGC can adjust the output signal amplitude to a stable value.
  • a Golay sequence can generally be used as a preamble sequence, for example, the preamble sequence may include two complementary Golay sequences sent alternately.
  • the Gray sequence may be a sequence with a certain length and specific autocorrelation.
  • the Golay sequence may include a sequence of elements 1 and -1.
  • Gray sequences with lengths of 32 bits, 64 bits, 128 bits, 256 bits or 512 bits.
  • the 32-position Golay complementary sequence can be:
  • a 32 [1, 1, -1, 1, -1, 1, 1, 1, 1, -1, -1, 1, -1, -1, 1, 1, 1, 1, -1, -1, 1, -1, 1, -1, -1, -1, 1, 1, 1, 1];
  • b 32 [-1,-1,1,-1,1,-1,-1,-1,1,1,-1,1,1,-1,-1,-1,- 1, 1, -1, 1, -1, -1, -1, -1, -1, 1, -1, 1, 1, 1].
  • the 64-bit Gray complement can be:
  • a 64 [-1,-1,1,-1,1,-1,-1,-1,1,1,-1,1,1,-1,-1,-1,- 1, 1, -1, 1, -1, -1, -1, -1, 1, -1, -1, 1, 1, 1, 1, -1, -1, 1, -1, 1 , 1 , -1, -1, 1, 1, -1, 1, 1, -1, 1, -1, 1 , -1, -1, 1, 1, -1, 1, 1, 1, 1, 1, 1, -1, 1, -1, 1, 1, 1, 1, 1, 1, 1, -1, 1, 1, -1, -1, -1];
  • b 64 [1, 1, -1, 1, -1, 1, 1, 1, 1, -1, -1, 1, -1, -1, 1, 1, 1, 1, 1, 1, -1, 1 , -1, 1, 1, 1, 1, 1, 1, 1, -1, 1, 1, 1, -1, -1, -1, -1, 1, -1, 1, -1, -1, - 1, 1, 1, -1, 1, 1, -1, -1, -1, 1, 1, -1, 1, -1, 1, 1, 1, 1, 1, 1, 1, -1, 1, 1 , -1, -1].
  • the 128-position Gray complement can be:
  • a 128 [1, 1, -1, -1, -1, -1, -1, -1, 1, -1, 1, 1, 1, -1, -1, 1, 1, 1, 1, 1, -1, 1, -1, 1, 1, 1, -1, 1, -1, 1, 1, 1, -1, 1, -1, 1, 1, 1, -1, 1, -1, 1, 1, 1, -1, 1, -1, 1, 1, 1, -1, 1, 1, -1, 1, 1, 1, -1, 1, 1, 1, -1, 1, 1, 1, -1, 1, 1, 1, -1, 1, 1, -1, 1, 1, -1, 1, 1, -1, 1, -1, -1, -1, -1, -1, -1, 1, -1, 1, 1, 1, 1, -1
  • Golay complementary sequences are merely exemplary common forms, which are not specifically limited in this application, and those skilled in the art can design them according to the design requirements of the communication system.
  • the Golay sequence has ideal aperiodic autocorrelation. For example, if the Golay sequence is a sequence a N and a sequence b N , then the ith element a(i) in the sequence a N and the ith element in the sequence b N b(i) satisfies the following formula:
  • R a (k) represents the correlation sequence obtained by performing the autocorrelation operation on the sequence a N
  • R b (k) represents the correlation sequence obtained by performing the autocorrelation operation on the sequence b N
  • R ab (k) represents the correlation sequence R a (k) and R b (k) correlation sequence obtained by summing
  • N denotes the sequence length sequence of a N and b N, i.e. the sequence number and sequence of a N b elements N
  • a * ( i) represents the ith element of the conjugate sequence of the sequence a N
  • b* (i) represents the ith element of the conjugate sequence of the sequence b N.
  • the autocorrelation sequence of the Golay complementary sequence with autocorrelation properties may be as shown in the left panel of FIG. 4 , including obvious peaks, such as shock peaks.
  • the correlation sequence obtained by the cross-correlation operation between this sequence and other sequences can be as shown in the right graph in Fig. 4, and there is no obvious peak value. Therefore, the ideal autocorrelation of the Golay sequence determines that it can be used for accurate time-domain channel estimation.
  • the IEEE 802.11ay standard uses the Golay sequence as the preamble sequence for time-domain channel estimation.
  • An embodiment of the present application provides a data transmission method, which is applied to communication between a first device and a second device.
  • the first device may be the transmitting end
  • the second device may be the receiving end
  • the first device may be the processing chip of the transmitting end device
  • the second device may be the processing chip of the receiving end device, which is not covered in this application Specific restrictions.
  • the first device can generate a Gray complementary sequence as a preamble sequence, and send the preamble sequence to the second device, and the preamble sequence is consistent with the amplitude of the data subsequently sent by the first device, so that when the receiving end adopts a low-precision ADC, No large quantization error will be generated, and the accuracy of the channel estimation precision will be improved.
  • the data transmission method provided by the embodiment of the present application is described.
  • the method can be applied to the first device.
  • the method may include the following steps.
  • the first device determines the first sequence and the second sequence according to the signal modulation mode and the preconfigured sequence of the data to be sent, and the amplitudes of the real part and the imaginary part of the elements in the first sequence and the second sequence are the same as those to be sent by the first device
  • the real part and/or the imaginary part of some elements in the sequence corresponding to the data have the same magnitude.
  • the data to be sent refers to the data to be output after the first device outputs the preamble sequence.
  • the data may include configuration data or service data, etc., and is the payload data payload for communication and transmission between the first device and the second device. Specifically, it may be a digital signal generated after the first device digitally encodes and modulates the configuration data or the service data, and the digital signal may be a complex number sequence including complex number elements.
  • the sequence corresponding to the data to be sent of the first device is related to the coding mode and signal modulation mode of the data to be sent, that is, under different signal modulation modes, the sequence corresponding to the data to be sent is different; In the encoding mode, the sequences corresponding to the data to be sent are different.
  • schematic diagrams of sequence constellation points corresponding to data to be sent under several different signal modulation modes will be exemplarily introduced, and details are not repeated here.
  • the first device in order to ensure the communication effect between the first device and the second device and overcome the problem of long-distance signal transmission, the first device needs to transfer the signal spectrum to a high-frequency channel through modulation for transmission. Therefore, the process of loading the signal to be sent to the high-frequency signal is called modulation.
  • modulation In practical applications, whether it is an analog signal or a digital signal, there are usually three most basic modulation methods: amplitude modulation, frequency modulation and phase modulation.
  • the signal modulation mode of the data to be sent by the first device may specifically refer to the amplitude modulation technology for the data.
  • Quadrature Amplitude Modulation (QAM, Quadrature Amplitude Modulation) modulation, 8QAM and 16QAM, etc.
  • the sequence of data to be sent after 4QAM modulation is located on the constellation point diagram.
  • the data part signal can usually adopt the modulation mode of 4QAM or 16QAM. Therefore, in the following embodiments of this application, the modulation mode of 4QAM or 16QAM will be used as an example to describe the application in detail.
  • the specific method for designing the preamble sequence in the embodiment does not constitute a certain limitation to the protection scope of the present application. That is to say, the specific modulation manner of the data part is not specifically limited in the embodiments of the present application, which will not be described in detail below.
  • a skilled person can represent a digital signal by a complex number sequence, the sequence includes a plurality of complex number elements, and each complex number element can be mapped to the coordinates of a constellation point in the constellation diagram. Therefore, the constellation diagram is used as a schematic diagram to intuitively represent the digital signal in the field of digital communication, that is, the digital signal is intuitively represented on the complex plane and the relationship between the signals.
  • the constellation diagram can express the mapping of digital modulation completely and clearly. relation.
  • the above sequence corresponding to the data to be sent is the complex number sequence corresponding to the payload to be sent.
  • the constellation diagram is a coordinate, including the abscissa I and the ordinate Q, the distance between the constellation point corresponding to the digital signal and the coordinate origin O represents the amplitude a of the digital signal, and the constellation point corresponding to the digital signal and the coordinate origin
  • the angle between the connecting line of O and the abscissa I represents the phase ⁇ of the digital signal.
  • the component corresponding to the projection of the digital signal to the I axis is the amplitude of the real part of the digital signal, also called the in-phase component; the component projected to the Q axis is the amplitude of the imaginary part of the digital signal, also called the quadrature component.
  • each digital signal needs 2 binary bits to represent it.
  • These four digital signals fall within the unit circle, which are constellation points, and the positions of different constellation points are also different according to the amplitude and phase.
  • the bit information of the digital signal is modulated to the position of the corresponding constellation point by a certain signal modulation method.
  • the first device may determine the first sequence and the second sequence according to the preconfigured sequence, where the first sequence and the second sequence are Golay complementary sequences, that is to say, the first sequence is automatically The sum of the autocorrelation sequence of the correlation sequence and the second sequence exhibits a relatively high correlation.
  • the first device may directly determine the first sequence and the second sequence from the preconfigured groups of Gray complementary sequences according to the signal modulation mode of the data to be sent, or the first device may also determine the first sequence and the second sequence according to the signal modulation mode of the data to be sent.
  • the signal modulation mode of the data, the first sequence and the second sequence are generated according to the pre-configured original Golay complementary sequence.
  • the first device is pre-configured, and when it is determined that the signal modulation mode of the data to be sent is mode 1, the first device can process the original Gray sequence according to algorithm 1 to obtain the first sequence and the second sequence. Therefore, the first apparatus can transmit the first sequence and the second sequence as preamble sequences for channel estimation.
  • the first device determines that the signal modulation mode of the data to be sent is mode 2
  • the first device can process the original Gray sequence according to algorithm 2
  • the obtained first sequence (1) and second sequence (2) can also be used as preambles
  • the sequence is used for channel estimation.
  • the power of the preamble sequence is equal to the signal power of the data to be sent.
  • the signal power of the preamble sequence at the transmitting end is equal to the signal power of the data to be sent, and the power of the digital signal is calculated according to the amplitude of the digital signal.
  • the digital sequence includes N elements in the observed unit time, and each element corresponds to an amplitude.
  • the signal power of the digital signal is the amplitude of the elements in the digital sequence in the unit time period. The sum of squares is divided by the number of elements N.
  • the magnitudes of the real part and the imaginary part of the elements in the first sequence and the second sequence are the same as the magnitudes of the real part and/or the imaginary part of some elements in the sequence corresponding to the data to be sent by the first device.
  • This application does not specifically limit this, and several possible specific generation methods of the first sequence and the second sequence will be exemplarily introduced later, which will not be repeated here.
  • the sequence corresponding to the data to be sent refers to the data sequence included in the valid data output by the first device after the first device outputs the preamble data, and the sequence may include numerical values arranged in a certain order to indicate certain configuration information Or the business data requested by the user.
  • the first device outputs a preamble sequence, where the preamble sequence includes a first sequence and a second sequence.
  • the first device outputs a preamble sequence
  • the preamble sequence may be a first sequence and a second sequence arranged in sequence.
  • the preamble sequence output by the first device may be the first sequence, the second sequence, the first sequence, the second sequence, etc. arranged in sequence.
  • the first device configures a preamble sequence with the same amplitude as the real part and the imaginary part of the data part to be sent according to the signal modulation mode of the data to be sent, so that the receiving end can make the receiving end according to the received data.
  • the preamble sequence is used for channel estimation. Due to certain noise and interference in the communication channel, it cannot be guaranteed that the preamble sequence received by the receiver is exactly the same as the real and imaginary parts of the received data. The corresponding amplitudes of the two parts are roughly the same. Therefore, the low-precision ADC at the receiving end uses the preamble sequence to adjust the AGC and converts the analog signal to the digital signal without introducing a large quantization error. Compared with the prior art, the channel estimation error is smaller, and the precision and accuracy of the channel estimation can be effectively improved.
  • the signal modulation mode of the data to be sent of the first device may be 4QAM.
  • the coordinates of the constellation points of the four digital signals under 4QAM modulation are: and Therefore, the magnitudes of the real and imaginary parts of a digital signal under 4QAM modulation include and Then the magnitudes of the real and imaginary parts of the elements in the first and second sequences may include: and
  • the signal power is proportional to the square of the amplitude of the elements in the sequence. Therefore, in a possible implementation manner, the signal modulation mode of the data to be sent of the first device is 4QAM.
  • the magnitudes of the real and imaginary parts of the elements in the first and second sequences may include: and Among them, E represents the signal power of the data to be sent.
  • the constellation points of the sequence of data to be sent under 16QAM modulation are located on the constellation diagram, and the coordinates of the constellation points of the 16 digital signals are: Therefore, the magnitudes of the real and imaginary parts of the digital signal under 16QAM modulation include and Then the magnitudes of the real and imaginary parts of the elements in the first and second sequences may include: and
  • the signal modulation mode of the data to be sent of the first device can be 16QAM
  • the amplitudes of the real part and the imaginary part of the elements in the first sequence and the second sequence include:
  • E represents the signal power of the data to be sent.
  • the first device may process the preconfigured sequence according to the signal modulation mode of the data to be sent to generate the first sequence and
  • the second sequence may specifically include:
  • the preconfigured sequences include the original Golay complementary sequences: the third sequence and the fourth sequence.
  • the third sequence and the fourth sequence may include elements 1 and -1 arranged in a preset order.
  • the first device may perform the preconfigured third sequence and the fourth sequence respectively.
  • BPSK Binary Phase Shift Keying
  • the nth element in the first sequence satisfies:
  • the nth element in the second sequence satisfies:
  • a n represents a n-th element of the first sequence
  • B n denotes the n-th element of the second sequence
  • a n represents the n-th element of the third sequence
  • b n represents the n-th element of the fourth sequence.
  • the preamble sequence is designed and generated by the above-mentioned embodiments of the present application, and the constellation diagram of the preamble sequence is consistent with the constellation diagram of the 4QAM modulated signal. Therefore, when the receiver uses a low-precision ADC for digital-to-analog conversion processing, the amplitude mismatch between the real part/imaginary part of the preamble sequence and the data part, and the phase mismatch in the calculation of the equivalent channel can be avoided, thereby improving the channel estimation accuracy. , to improve system performance.
  • the first device may further perform the preconfigured third sequence and the fourth sequence respectively on The first sequence and the second sequence are obtained after the phase shift of , where k is an odd number, and the third sequence and the fourth sequence are Golay complementary sequences.
  • the nth element in the first sequence satisfies:
  • the nth element in the second sequence satisfies:
  • a n represents a n-th element of the first sequence
  • B n denotes the n-th element of the second sequence
  • a n represents the n-th element of the third sequence
  • b n represents the n-th element of the fourth sequence.
  • k may take a value of 1, that is, the first device may perform the preconfigured third sequence a n and the fourth sequence b n respectively.
  • the phase offset of obtains the first sequence A n and the second sequence B n , namely: Corresponds to the constellation point, when the coordinates of a n (1, -1) may be obtained as the coordinates of A n
  • k may take a value of -3, that is, the first device may perform the preconfigured third sequence a n and the fourth sequence b n respectively.
  • the phase offset of obtains the first sequence A n and the second sequence B n , namely: Corresponds to the constellation point, when the coordinates of a n (1, -1) may be obtained as the coordinates of A n
  • the first device is designed to obtain the first sequence and the second sequence according to the two preconfigured sequences, respectively.
  • the first device may also perform joint design according to two preconfigured original Golay complementary sequences to obtain the first sequence and the second sequence. That is, when the signal modulation mode of the data to be sent is 4QAM or 16QAM, the first device determines the first sequence and the second sequence according to the signal modulation mode of the data to be sent and the preconfigured sequence, and the first device can determine the first sequence and the second sequence according to the preconfigured third sequence.
  • the first sequence is obtained by performing operations on the fourth sequence, and the first device may perform operations on the preconfigured third sequence and the fourth sequence to obtain the second sequence.
  • the third sequence and the fourth sequence are preconfigured Golay complementary sequences.
  • the nth element in the first sequence can satisfy:
  • the nth element in the second sequence satisfies:
  • a n represents a n-th element of the first sequence
  • B n denotes the n-th element of the second sequence
  • a n represents the n-th element of the third sequence
  • b n represents the n-th element of the fourth sequence.
  • the nth element in the first sequence satisfies:
  • the nth element in the second sequence satisfies:
  • a n represents a n-th element of the first sequence
  • B n denotes the n-th element of the second sequence
  • a n represents the n-th element of the third sequence
  • b n represents the n-th element of the fourth sequence.
  • the nth element in the first sequence may satisfy:
  • the nth element in the second sequence satisfies:
  • the nth element in the first sequence satisfies:
  • the nth element in the second sequence satisfies:
  • the design method for constructing a preamble sequence provided in this application, those skilled in the art can select a matching Gray complementary sequence as the preamble according to the signal modulation mode of the data to be sent by the transmitting end Sequence, or the Golay complementary sequence that matches the signal modulation mode of the data to be sent can be designed online according to the original preconfigured local Golay complementary sequence and the above-mentioned design algorithm provided in this application as the preamble sequence. Therefore, the amplitudes of the real part and the imaginary part of the preamble sequence sent by the sender are consistent with the amplitudes of the real part and the imaginary part of the sequence corresponding to the data to be sent.
  • the low-precision ADC on the receiving end has a small quantization error when quantizing the analog signal to the digital signal, which can effectively improve the precision and accuracy of the channel estimation and improve the performance of the communication system.
  • the data transmission method provided by the embodiment of the present application is introduced, and the method can be applied to the second device.
  • the method may specifically include the following steps.
  • S701 The second device receives the preamble sequence.
  • the second device receives the preamble sequence sent by the first device in the foregoing embodiment, and the preamble sequence may be one of several possible design manners of the preamble sequence provided in the foregoing embodiment.
  • the second apparatus performs blind detection on the preamble sequence, and determines the first sequence and the second sequence from a plurality of preconfigured sequences according to the preamble sequence.
  • the second device is locally preconfigured with multiple Golay complementary sequences, and the first sequence and the second sequence may be preconfigured Golay complementary sequences.
  • the second device may perform blind detection on the received preamble sequence, that is, determine the specific configuration of the preamble sequence sent by the first device according to the preamble sequence from a plurality of preconfigured sequences according to the correlation of the sequences.
  • the second apparatus may perform a cross-correlation operation between the received preamble sequences and multiple locally preconfigured sequences one by one, and determine the first sequence and the second sequence according to the correlation.
  • the amplitude of the real part/imaginary part of the data part sent by the sender is the same as that of the preamble sequence sent by the sender, the preamble sequence sent by the sender and the data sent by the sender are transmitted through the channel, and there will be certain signals. interference and noise, therefore, the preamble sequence and data received by the receiver are not necessarily exactly the same as those originally sent by the transmitter, but are usually roughly the same. Therefore, the amplitude of the real part/imaginary part of the preamble sequence received by the receiver The magnitude of the real/imaginary part of the value and the data part is approximately the same.
  • S703 The second apparatus performs channel estimation according to the first sequence, the second sequence and the preamble sequence.
  • the second device may perform channel estimation according to the first sequence, the second sequence and the preamble sequence to obtain the channel parameter sequence.
  • the principle of performing channel estimation may refer to the aforementioned formula (1), formula (2) and formula (3).
  • the preamble sequence sent by the first device includes sequence A n and sequence B n
  • the channel parameter sequence is represented as H n
  • the preamble sequences A n and B n are transmitted through the channel
  • the preamble sequence received by the second device includes sequence A n ' and sequence B n ', then sequence A n ' and sequence B n ' satisfy:
  • a n ' A n ⁇ H n
  • B n ' B n ⁇ H n .
  • represents the convolution operation between sequences.
  • the correlation sequence R AB satisfies:
  • the channel estimate is in, Represents a cross-correlation operation between sequences.
  • the receiving end can judge the preamble sequence adopted by the transmitting end by means of blind detection, so that the modulation mode of the data part can be judged according to the preamble sequence.
  • the first device and the second device are pre-configured such that when the data to be sent by the first device adopts 4QAM modulation, the first device adopts sequence 1 and sequence 2 as the preamble sequences; when the data to be sent by the first device adopts 16QAM modulation , the first device uses sequence 3 and sequence 4 as preamble sequences.
  • the second device can perform blind detection on the received sequence 1' and sequence 2. ' Perform cross-correlation operations with locally pre-configured sequence 1, sequence 2, sequence 3 and sequence 4 respectively, and determine the sequence with the best correlation according to the obtained correlation function, namely sequence 1 and sequence 2, which are determined as the first Preamble format for device design.
  • the transmitting end can use preamble sequences of different structures, and implicitly use the preamble sequences to indicate the modulation mode of the data part. Therefore, the receiving end can determine the type of the preamble sequence sent by the transmitting end by blindly detecting the received preamble sequence, thereby determining the modulation mode of the data part sent by the transmitting end; at the same time, the channel estimation is completed according to the received preamble sequence.
  • Step1 The second device performs a cross-correlation operation on the third sequence and multiple pre-configured sequences respectively, and/or the second device performs a cross-correlation operation on the fourth sequence and multiple pre-configured sequences, respectively, to obtain multiple correlation sequences.
  • the second device may perform a cross-correlation operation on one of the Golay sequences included in the preamble sequence and a locally preconfigured sequence one by one to obtain a corresponding correlation sequence.
  • the second device may perform a cross-correlation operation between the third sequence and the multiple preconfigured sequences, or the second device may further perform a cross-correlation operation between the fourth sequence and the multiple preconfigured sequences, or the second device may also The third sequence and the fourth sequence are respectively subjected to a cross-correlation operation with a plurality of preconfigured sequences.
  • Step2 The second device determines the first sequence and the second sequence according to the multiple correlation sequences.
  • the locally pre-configured sequence of the second device includes a pre-configured sequence 1, a pre-configured sequence 2, a pre-configured sequence 3, and a pre-configured sequence 4. Then, the second device may perform a cross-correlation operation on the third sequence and the fourth sequence with the above-mentioned four preconfigured sequences, respectively, to obtain multiple correlation sequences.
  • a ' represents a third sequence
  • B' represents the fourth sequence
  • a 1 represents a pre-arranged sequence 1
  • a 2 represents a sequence of pre-configured 2
  • a 3 represents a sequence of pre-configured 3
  • a 4 represents a sequence of four pre-configured.
  • the multiple correlation sequences obtained by blind detection can be: The first sequence and the second sequence in the pre-configured sequence 1, the pre-configured sequence 2, the pre-configured sequence 3 and the pre-configured sequence 4 are determined according to the correlation values in the above-mentioned multiple correlation sequences.
  • the second device may further sum up multiple correlation sequences obtained by performing cross-correlation operations on the third sequence and the fourth sequence with multiple pre-configured sequences respectively, and further determine according to the obtained correlation sequences.
  • first sequence and second sequence Exemplarily, that is, according to the above-obtained R A1 , R A2 , R A3 , R A4 , R B1 , R B2 , R B3 and R B4 , the sequence summation operation is performed in pairs.
  • the second device may determine, according to the obtained sequence correlation, a group of sequences with the highest correlation value, that is, the first sequence and the second sequence, that is, the pair of original preamble sequences sent by the sender.
  • pre-configured sequence 1 is one of multiple pre-configured sequences of the second device
  • pre-configured sequence 2 is also one of multiple pre-configured sequences of the second device.
  • the correlation sequence obtained by the cross-correlation operation between the third sequence and the pre-configured sequence 1 plus the cross-correlation operation between the fourth sequence and the pre-configured sequence 2 has the highest correlation, and the second device determines that the pre-configured sequence 1 and the pre-configured sequence 2 are respectively for the first sequence and the second sequence.
  • the second device when the preamble sequence includes the third sequence and the fourth sequence, in the above step S703, the second device performs channel estimation according to the first sequence, the second sequence and the preamble sequence, which may specifically include:
  • Step 1 The second device performs a cross-correlation operation on the first sequence and the third sequence to obtain a fifth sequence, and the second device performs a cross-correlation operation on the second sequence and the fourth sequence to obtain a sixth sequence.
  • a n ′ represents the nth element of the third sequence
  • C n represents the nth element of the first sequence
  • D n represents the nth element of the second sequence
  • B n ′ represents the nth element of the fourth sequence.
  • Step 2 The second device obtains a channel parameter sequence for data transmission between the first device and the second device according to the number of elements in the fifth sequence, the sixth sequence and the third sequence.
  • the nth element H n included in the channel parameter sequence satisfies:
  • the receiving end can perform blind detection according to the received preamble sequence and the locally pre-configured sequence, and determine that the pair of Gray sequences with the highest correlation is the type of the preamble sequence sent by the transmitting end, so that the receiving end
  • the channel parameter of the channel estimation can be obtained by performing an operation on the determined Gray sequence and the received preamble sequence. Since the amplitude of the preamble sequence and the data part sent by the sender is the same, even if the transmission of the preamble sequence and the data part through the channel will cause certain interference or noise, the difference between the preamble sequence and the data part received by the receiver
  • the magnitudes are also substantially identical, or at least partially identical. Therefore, when the ADC at the receiving end quantizes the digital signal, the quantization is more accurate, and a large quantization error will not be introduced, so that the accuracy of channel estimation is correspondingly improved, and the performance of communication transmission is improved.
  • An embodiment of the present application further provides a data transmission apparatus.
  • the apparatus 800 may include a processing module 801 and an output module 802 .
  • the processing module 801 may be configured to determine the first sequence and the second sequence according to the signal modulation mode and preconfigured sequence of the data to be sent.
  • the first sequence and the second sequence are Golay complementary sequences, and the magnitudes of the real and imaginary parts of the elements in the first sequence and the second sequence are the real parts and/or imaginary values of some elements in the sequence corresponding to the data to be sent.
  • the amplitudes of the parts are the same.
  • the output module 802 can be used to output a preamble sequence, the preamble sequence includes a first sequence and a second sequence.
  • the signal modulation manner of the data to be sent includes 4-quadrature amplitude modulation QAM or 16QAM.
  • the amplitudes of the real part and the imaginary part of the elements in the first sequence and the second sequence include: and Among them, E represents the signal power of the data to be sent.
  • the amplitudes of the real part and the imaginary part of the elements in the first sequence and the second sequence include: and Among them, E represents the signal power of the data to be sent.
  • the power of the preamble sequence is equal to the signal power of the data to be sent.
  • the first device determines the first sequence and the second sequence according to the signal modulation mode of the data to be sent and the preconfigured sequence, Specifically, it includes: the first device performs the preconfigured third sequence and the fourth sequence respectively on The binary phase shift keying BPSK modulation and After the phase shift of , the first sequence and the second sequence are obtained, wherein k is an odd number, and the third sequence and the fourth sequence are Golay complementary sequences.
  • the first device determines the first sequence and the second sequence according to the signal modulation mode of the data to be sent and the preconfigured sequence, Specifically, it includes: the first device performs the preconfigured third sequence and the fourth sequence respectively on The first sequence and the second sequence are obtained after the phase shift of , where k is an odd number, and the third sequence and the fourth sequence are Golay complementary sequences.
  • the first device determines the first sequence and the second sequence according to the signal modulation mode of the data to be sent and the preconfigured sequence, specifically including: The first device performs operations according to the preconfigured third sequence and the fourth sequence to obtain the first sequence, and the first device performs operations according to the preconfigured third sequence and the fourth sequence to obtain the second sequence, the third sequence and the fourth sequence
  • the sequence is the Gray complement.
  • the third sequence and the fourth sequence include elements 1 and -1 arranged in a preset order.
  • an embodiment of the present application further provides a data transmission apparatus.
  • the apparatus 900 includes a receiving module 901 and a processing module 902 .
  • the receiving module 901 may be configured to receive the preamble sequence.
  • the processing module 902 may be configured to perform blind detection on the preamble sequence, and determine the first sequence and the second sequence from a plurality of preconfigured sequences according to the preamble sequence. Wherein, the first sequence and the second sequence are preconfigured Golay complementary sequences.
  • the processing module 902 can also be used to perform channel estimation according to the first sequence, the second sequence and the preamble sequence.
  • the second device performs blind detection on the preamble sequence, and determines the first sequence and the second sequence from the preconfigured sequence according to the preamble sequence, specifically including: the preamble sequence includes the third sequence and the fourth sequence, The second device performs a cross-correlation operation on the third sequence and the multiple pre-configured sequences respectively, and/or the second device performs a cross-correlation operation on the fourth sequence respectively with the multiple pre-configured sequences to obtain multiple correlation sequences; the second device The first sequence and the second sequence are determined from the plurality of correlated sequences.
  • the second device determines The pre-configured sequence 1 and the pre-configured sequence 2 are the first sequence and the second sequence, respectively, wherein the pre-configured sequence 1 and the pre-configured sequence 2 are one of the multiple pre-configured sequences.
  • the second device performs channel estimation according to the first sequence, the second sequence and the preamble sequence, which specifically includes: the preamble sequence includes a third sequence and a fourth sequence, and the second device performs channel estimation according to the first sequence and the first sequence.
  • the third sequence performs cross-correlation operation to obtain the fifth sequence
  • the second device performs the cross-correlation operation according to the second sequence and the fourth sequence to obtain the sixth sequence
  • the second device obtains the sixth sequence according to the The number of elements obtains the channel parameter sequence for data transmission between the first device and the second device.
  • the nth element H n included in the channel parameter sequence satisfies: Among them, A n ' represents the n-th element of the third sequence, C n represents the n-th element of the first sequence, D n represents the n-th element of the second sequence, and B n ' represents the n-th element of the fourth sequence elements, N represents the number of elements in the third sequence, Represents a cross-correlation operation.
  • the above-mentioned output module may be a transmitter, which may include an antenna and a radio frequency circuit, etc.
  • the processing module may be a processor, such as a baseband chip.
  • the sending module may be a radio frequency unit
  • the processing module may be a processor.
  • the sending module may be an output interface of the chip system
  • the processing module may be a processor of the chip system, such as a central processing unit (central processing unit, CPU) and the like.
  • the apparatus may be presented in the form of dividing each functional module in an integrated manner.
  • Module herein may refer to specific circuits, processors and memory executing one or more software or firmware programs, integrated logic circuits, and/or other devices that may provide the functions described above.
  • the data transmission device can take the form shown in FIG. 10 below.
  • FIG. 10 is a schematic structural diagram of an exemplary electronic device 1000 shown in an embodiment of the present application.
  • the electronic device 1000 may be the first device or the second device in the above-mentioned embodiment, and is used to perform the data transmission in the above-mentioned embodiment. method.
  • the electronic device 1000 may include at least one processor 1001 , a communication line 1002 and a memory 1003 .
  • the processor 1001 may be a general-purpose central processing unit (CPU), a microprocessor, an application-specific integrated circuit (ASIC), or one or more integrated circuits.
  • CPU central processing unit
  • ASIC application-specific integrated circuit
  • the communication line 1002 may include a path for transferring information between the aforementioned components, which may be, for example, a bus.
  • Memory 1003 may be read-only memory (ROM) or other types of static storage devices that can store static information and instructions, random access memory (RAM), or other types of information and instructions It can also be an electrically erasable programmable read-only memory (EEPROM), a compact disc read-only memory (CD-ROM) or other optical disk storage, CD-ROM storage (including compact discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.), magnetic disk storage media or other magnetic storage devices, or capable of carrying or storing desired program code in the form of instructions or data structures and capable of being executed by a computer Access any other medium without limitation.
  • the memory may exist independently and be connected to the processor through communication line 1002 .
  • the memory can also be integrated with the processor.
  • the memory provided by the embodiments of the present application is generally a non-volatile memory.
  • the memory 1003 is used for storing computer program instructions involved in executing the solutions of the embodiments of the present application, and the execution is controlled by the processor 1001 .
  • the processor 1001 is configured to execute the computer program instructions stored in the memory 1003, thereby implementing the methods provided by the embodiments of the present application.
  • the computer program instructions in the embodiments of the present application may also be referred to as application program codes, which are not specifically limited in the embodiments of the present application.
  • the processor 1001 may include one or more CPUs, such as CPU0 and CPU1 in FIG. 10 .
  • the electronic device 1000 may include multiple processors, such as the processor 1001 and the processor 1007 in FIG. 10 . These processors can be single-core (single-CPU) processors or multi-core (multi-CPU) processors.
  • a processor herein may refer to one or more devices, circuits, and/or processing cores for processing data (eg, computer program instructions).
  • the electronic device 1000 may further include a communication interface 1004 .
  • the electronic device can send and receive data through the communication interface 1004, or communicate with other devices or a communication network.
  • the communication interface 1004 can be an Ethernet interface, a radio access network (RAN), a wireless local area (wireless local area) interface. networks, WLAN) or USB interface, etc.
  • RAN radio access network
  • WLAN wireless local area
  • USB USB interface
  • the electronic device 1000 may further include an output device 1005 and an input device 1006 .
  • the output device 1005 is in communication with the processor 1001 and can display information in a variety of ways.
  • the output device 1005 may be a liquid crystal display (LCD), a light emitting diode (LED) display device, a cathode ray tube (CRT) display device, or a projector (projector) Wait.
  • the input device 1006 is in communication with the processor 1001 and can receive user input in a variety of ways.
  • the input device 1006 may be a mouse, a keyboard, a touch screen device, a sensor device, or the like.
  • the electronic device 1000 may be a desktop computer, a portable computer, a network server, a PDA (personal digital assistant, PDA), a mobile phone, a tablet computer, a wireless terminal device, an embedded device, a smart camera, or a equipment of similar structure.
  • PDA personal digital assistant
  • This embodiment of the present application does not limit the type of the electronic device 1000 .
  • the processor 1001 in FIG. 10 may cause the electronic device 1000 to execute the methods in the above method embodiments by invoking the computer program instructions stored in the memory 1003 .
  • each processing module in FIG. 8 or FIG. 9 may be implemented by the processor 1001 in FIG. 10 calling computer program instructions stored in the memory 1003 .
  • the function/implementation process of the processing module 801 in FIG. 8 can be implemented by the processor 1001 in FIG. 10 calling the computer-executed instructions stored in the memory 1003 .
  • the function/implementation process of the processing module 902 in FIG. 9 can be implemented by the processor 1001 in FIG. 10 calling the computer-executed instructions stored in the memory 1003 .
  • a computer-readable storage medium including instructions is also provided, and the above-mentioned instructions can be executed by the processor 1001 of the electronic device 1000 to complete the data transmission method of the above-mentioned embodiment. Therefore, the technical effects that can be obtained can be referred to the above method embodiments, which will not be repeated here.
  • the above-mentioned embodiments it may be implemented in whole or in part by software, hardware, firmware or any combination thereof.
  • a software program it can be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions.
  • the computer program instructions When the computer program instructions are loaded and executed on a computer, the procedures or functions according to the embodiments of the present application are generated in whole or in part.
  • the computer may be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • FIG. 11 is a schematic structural diagram of a chip according to an embodiment of the present application.
  • the chip 1100 includes one or more processors 1101 and an interface circuit 1102 .
  • the chip 1100 may further include a bus 1103 .
  • the processor 1101 may be an integrated circuit chip with signal processing capability. In the implementation process, each step of the above-mentioned method may be completed by an integrated logic circuit of hardware in the processor 1101 or an instruction in the form of software.
  • the above-mentioned processor 1101 may be a general purpose processor, a digital communicator (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components .
  • DSP digital communicator
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • a general purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the interface circuit 1102 is used for sending or receiving data, instructions or information.
  • the processor 1101 can use the data, instructions or other information received by the interface circuit 1102 to perform processing, and can send the processing completion information through the interface circuit 1102 .
  • the chip 1100 further includes a memory, which may include a read-only memory and a random access memory, and provides operation instructions and data to the processor.
  • a part of the memory may also include non-volatile random access memory (Non-Volatile Random Access Memory, NVRAM).
  • NVRAM non-Volatile Random Access Memory
  • the memory stores executable software modules or data structures
  • the processor may execute corresponding operations by calling operation instructions stored in the memory (the operation instructions may be stored in the operating system).
  • the chip 1100 may be used in the data transmission device (including the first device and the second device) involved in the embodiments of the present application.
  • the interface circuit 1102 may be used to output the execution result of the processor 1101 .
  • processor 1101 and the interface circuit 1102 can be implemented by hardware design, software design, or a combination of software and hardware, which is not limited here.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种数据传输方法及装置,能够减小低精度的ADC在处理前导序列时的量化误差,提高低功耗设备的信道估计精度和准确度,优化通信系统的性能。该方法包括:第一装置根据待发送数据的信号调制方式和预配置序列确定第一序列和第二序列,其中,第一序列与第二序列为格雷互补序列,第一序列和第二序列中元素的实部和虚部的幅值与待发送数据对应的序列中的部分元素的实部和/或虚部的幅值相同;第一装置输出前导序列,前导序列包括第一序列和第二序列。

Description

一种数据传输方法及装置
本申请要求于2020年07月15日提交国家知识产权局、申请号为202010682134.1、申请名称为“一种数据传输方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种数据传输方法及装置。
背景技术
随着通信网络的不断演进,第五代(5th-Generation,5G)移动通信系统的发送端将采用更高的频带,更大的带宽、更多的天线来实现超高速率的数据传输,例如,可以达到每秒10G比特级的传输速率。而接收端的信道估计是实现无线通信系统的一项关键技术,即接收端能否获得较为精准的信道信息,从而可以正确地解调出发射信号,是衡量一个无线通信系统性能的重要指标。由于接收端进行模拟信号到数字信号转换的模数转换器(Analog-to-digital Converter,ADC)的功耗是随着ADC的采样精度呈指数型增长的,因此对于无线耳机或者可穿戴设备等功耗较低的设备,想要通过较低精度的ADC实现较为精准的信道估计和信号同步等是目前亟待解决的问题。
在现有技术中,发送端可以使用格雷互补序列作为前导序列,接收端根据接收到的前导序列进行信道估计。例如,IEEE 802.11ay标准中,采用非周期自相关的格雷互补序列作为前导序列,前导序列由{1,-1}组成,调制方式为π/2-二进制相移键控(Binary Phase Shift Keying,BPSK)调制,调制后的前导序列的星座点位于星座图的坐标轴上,星座点包括前导序列的实部和虚部,例如图1示出的实部和虚部的幅度值包括{-1,0,1}。接着,发送端通过信道发送前导序列,接收端根据接收到的前导序列与预配置序列进行运算,从而可以进行信道估计和信号同步。
但是,当发送端后续发送数据的调制方式为4-正交幅度调制(Quadrature Amplitude Modulation,QAM)时,如图2所示为4QAM的星座图,可知上述技术方案中发送端发送的前导序列的幅值与发送数据的幅值不相等。此时,为了使前导序列的信号功率与发送数据的信号功率相等,而信号功率是与信号中序列的幅值正相关的,接收端需要根据接收到的前导序列的幅值进行调整,量化为匹配的电平值。因此,当接收端采用低精度的ADC时,会引入较大的量化误差。示例性的,当接收端采用1比特位的ADC时,接收端会将接收信号量化为两个电平值{V,-V},对于前导序列的幅值0,会被随机量化为电平V或者-V,造成较大的量化噪声,从而导致信道估计精度降低,信道估计的误差较大。
发明内容
本申请提供一种数据传输方法及装置,能够减小低精度的ADC在处理前导序列时的量化误差,提高低功耗设备的信道估计精度和准确度,优化通信系统的性能。
为达到上述目的,本申请采用如下技术方案:
第一方面,提供一种数据传输方法,该方法包括:第一装置根据待发送数据的信号调制方式和预配置序列确定第一序列和第二序列,其中,第一序列与第二序列为格雷互补序列,第一序列和第二序列中元素的实部和虚部的幅值与待发送数据对应的序列中的部分元素的实部和/或虚部的幅值相同;第一装置输出前导序列,前导序列包括第一序列和第二序列。
上述技术方案中,第一装置可以根据待发送数据的信号调制方式确定前导序列,使得发送端发送的前导序列的实部和虚部的幅值与待发送数据对应的序列中的部分元素的实部和/或虚部的幅值相同,从而接收端接收到该前导序列后,接收端的低精度ADC在进行模拟信号到数字信号的转换时,可以量化到更为接近的数值上,不会由于前导序列的幅值与接收到的数据部分幅值相差比较大,而产生较大的量化误差。从而能够减小量化误差,提高低功耗设备的信道估计精度和准确度,提高通信系统的性能。
在一种可能的设计方式中,待发送数据的信号调制方式包括4-正交幅度调制QAM或16QAM。
上述可能的实现方式中,第一装置待发送数据的信号调制方式可以为4QAM或16QAM,第二装置可以根据该调制方式确定前导序列的选择和设计,从而使得前导序列的实部和虚部的幅值能够落在4QAM或者16QAM调制后信号的幅值范围中,减小接收端的低精度ADC的量化误差,提高低功耗设备的信道估计准确度。
在一种可能的设计方式中,当待发送数据的信号调制方式为4QAM时,第一序列和第二序列中元素的实部和虚部的幅值包括:
Figure PCTCN2021104772-appb-000001
Figure PCTCN2021104772-appb-000002
其中,E表示待发送数据的信号功率。
上述可能的实现方式中,由于4QAM调制后数字信号的实部和虚部的幅值包括:
Figure PCTCN2021104772-appb-000003
Figure PCTCN2021104772-appb-000004
因此,第一装置可以将前导序列中第一序列和第二序列设计为,元素的实部和虚部的幅值为
Figure PCTCN2021104772-appb-000005
Figure PCTCN2021104772-appb-000006
与数据部分的实部和虚部的幅值相同,从而能够提高接收端进行信道估计的准确度。
在一种可能的设计方式中,当待发送数据的信号调制方式为16QAM时,第一序列和第二序列中元素的实部和虚部的幅值包括:
Figure PCTCN2021104772-appb-000007
Figure PCTCN2021104772-appb-000008
其中,E表示待发送数据的信号功率。
上述可能的实现方式中,由于16QAM调制后数字信号的实部和虚部的幅值包括:
Figure PCTCN2021104772-appb-000009
Figure PCTCN2021104772-appb-000010
因此,第一装置可以将前导序列中第一序列和第二序列设计为,元素的实部和虚部的幅值为
Figure PCTCN2021104772-appb-000011
Figure PCTCN2021104772-appb-000012
与数据部分的实部和虚部的幅值相同,从而能够提高接收端进行信道估计的准确度。
在一种可能的设计方式中,前导序列的功率与待发送数据的信号功率相等。
上述可能的实现方式中,发送端需要使得前导序列的功率与待发送数据的信号功率相等,而数字信号的功率等于一定时间周期内,数字信号对应的序列中元素的幅值 的平方和除以序列中元素的个数,因此,第一装置的前导序列的功率与待发送数据的信号功率相等,即表示第一装置的前导序列的实部和虚部的幅值与待发送数据对应的序列中的部分元素的实部和/或虚部的幅值相同。
在一种可能的设计方式中,当第一装置输出的待发送数据的信号调制方式为4QAM时,第一装置根据待发送数据的信号调制方式和预配置序列确定第一序列和第二序列,具体包括:第一装置分别对预配置的第三序列和第四序列进行
Figure PCTCN2021104772-appb-000013
的二进制相移键控BPSK调制和
Figure PCTCN2021104772-appb-000014
的相位偏移后,得到第一序列和第二序列,其中,k为奇数,第三序列与第四序列为格雷互补序列。
上述可能的实现方式中,当第一装置输出的待发送数据的信号调制方式为4QAM时,星座图可以为如图2所示的,因此,第一装置可以将如图1所示的原始前导序列进行
Figure PCTCN2021104772-appb-000015
的BPSK调制和
Figure PCTCN2021104772-appb-000016
的相位偏移之后,即将星座点调制到位于图2所示的4QAM的星座点位置,即使得第一装置输出的前导序列的实部和虚部的幅值与待发送数据对应的序列中的部分元素的实部和/或虚部的幅值相同,从而能够提高接收端的信道估计准确度。
在一种可能的设计方式中,上述的第一序列中的第n个元素满足:
Figure PCTCN2021104772-appb-000017
第二序列中的第n个元素满足:
Figure PCTCN2021104772-appb-000018
其中,A n表示第一序列的第n个元素,B n表示第二序列的第n个元素,a n表示第三序列的第n个元素,b n表示第四序列的第n个元素。
上述可能的实现方式中,第一装置可以对预先配置的原始格雷互补序列根据上述公式进行调整运算,得到满足4QAM星座点位置的第一序列和第二序列,将第一序列和第二序列作为前导序列,从而能够提高接收端的信道估计准确度。
在一种可能的设计方式中,当第一装置输出的待发送数据的信号调制方式为4QAM时,第一装置根据待发送数据的信号调制方式和预配置序列确定第一序列和第二序列,具体包括:第一装置分别对预配置的第三序列和第四序列进行
Figure PCTCN2021104772-appb-000019
的相位偏移后得到第一序列和第二序列,其中,k为奇数,第三序列与第四序列为格雷互补序列。
上述可能的实现方式中,第一装置还可以对原始的格雷互补序列进行
Figure PCTCN2021104772-appb-000020
的相位偏移后得到如图2所示的4QAM的星座图,从而使得第一装置输出的前导序列的实部和虚部的幅值与待发送数据对应的序列中的部分元素的实部和/或虚部的幅值相同,从而能够提高接收端的信道估计准确度。
在一种可能的设计方式中,上述的第一序列中的第n个元素满足:
Figure PCTCN2021104772-appb-000021
第二序列中的第n个元素满足:
Figure PCTCN2021104772-appb-000022
其中,A n表示第一序列的第n个元素,B n表示第二序列的第n个元素,a n表示第三序列的第n个元素,b n表示第四序列的第n个元素。
上述可能的实现方式中,第一装置可以对预先配置的原始格雷互补序列根据上述公式进行调整运算,得到满足4QAM星座点位置的第一序列和第二序列,将第一序列和第二序列作为前导序列,从而能够提高接收端的信道估计准确度。
在一种可能的设计方式中,当待发送数据的信号调制方式为4QAM或者16QAM时,第一装置根据待发送数据的信号调制方式和预配置序列确定第一序列和第二序列,具体包括:第一装置根据预配置的第三序列和第四序列进行运算得到第一序列,以及,第一装置根据预配置的第三序列和第四序列进行运算得到第二序列,第三序列与第四序列为格雷互补序列。
上述可能的实现方式中,第一装置可以对预先配置的第三序列和第四序列进行联合运算得到第一序列和第二序列,使得第一装置输出的前导序列的实部和虚部的幅值与待发送数据对应的序列中的部分元素的实部和/或虚部的幅值相同,从而能够提高接收端的信道估计准确度。
在一种可能的设计方式中,当待发送数据的信号调制方式为4QAM时,上述的第一序列中的第n个元素满足:
Figure PCTCN2021104772-appb-000023
第二序列中的第n个元素满足:
Figure PCTCN2021104772-appb-000024
其中,A n表示第一序列的第n个元素,B n表示第二序列的第n个元素,a n表示第三序列的第n个元素,b n表示第四序列的第n个元素,k为整数。
上述可能的实现方式中,第一装置可以对预先配置的原始格雷互补序列根据上述公式进行调整运算,得到满足4QAM星座点位置的第一序列和第二序列,将第一序列和第二序列作为前导序列,从而能够提高接收端的信道估计准确度。
在一种可能的设计方式中,当待发送数据的信号调制方式为16QAM时,第一序列中的第n个元素满足:
Figure PCTCN2021104772-appb-000025
第二序列中的第n个元素满足:
Figure PCTCN2021104772-appb-000026
其中,A n表示第一序列的第n个元素,B n表示第二序列的第n个元素,a n表示第三序列的第n个元素,b n表示第四序列的第n个元素,k为整数。
上述可能的实现方式中,第一装置可以对预先配置的原始格雷互补序列根据上述公式进行调整运算,得到满足16QAM星座点位置的第一序列和第二序列,将第一序列和第二序列作为前导序列,从而能够提高接收端的信道估计准确度。
在一种可能的设计方式中,第三序列和第四序列包括按预设顺序排列的元素1和-1。
第二方面,提供一种数据传输方法,该方法包括:第二装置接收前导序列;第二装置对前导序列进行盲检,根据前导序列从多个预配置序列中确定第一序列和第二序列,其中,第一序列和第二序列为预先配置的格雷互补序列;第二装置根据第一序列、第二序列与前导序列进行信道估计。
上述技术方案中,接收端接收到前导序列之后,可以根据接收到的前导序列与本地预先配置的多个序列进行盲检,从而确定发送端发送的原始前导序列,例如原始前导序列包括第一序列和第二序列,则接收端可以根据接收到的前导序列、第一序列和第二序列进行信道估计,提高接收端的信道估计的准确度。
在一种可能的设计方式中,第二装置对前导序列进行盲检,根据前导序列从预配 置序列中确定第一序列和第二序列,具体包括:前导序列包括第三序列和第四序列,第二装置将第三序列分别与多个预配置序列进行互相关运算,和/或第二装置将第四序列分别与多个预配置序列进行互相关运算,得到多个相关序列;第二装置根据多个相关序列确定第一序列和第二序列。
上述可能的实现方式中,第二装置根据前导序列从预配置序列中逐个进行互相关运算,根据格雷序列的互相关特性确定相关性最高的序列对为第一序列和第二序列。
在一种可能的设计方式中,若第三序列与预配置序列1进行互相关运算加上第四序列与预配置序列2进行互相关运算得到的相关序列的相关性最高,则第二装置确定预配置序列1和预配置序列2分别为第一序列和第二序列,其中,预配置序列1和预配置序列2为多个预配置序列中的一个。
在一种可能的设计方式中,第二装置根据第一序列、第二序列与前导序列进行信道估计,具体包括:前导序列包括第三序列和第四序列,第二装置根据第一序列与第三序列进行互相关运算得到第五序列,以及,第二装置根据第二序列与第四序列进行互相关运算得到第六序列;第二装置根据第五序列、第六序列以及第三序列中的元素个数得到第一装置和第二装置之间进行数据传输的信道参数序列。
上述可能的实现方式中,基于格雷互补序列的互相关特性,第二装置可以根据接收到的前导序列和原始发送端发送的前导序列计算出信道参数序列。由于发送端发送的前导序列与数据部分的实部和/或虚部的幅值是一样的,因此,接收端根据前导序列得到的信道参数和根据数据部分得到的信道参数是基本一致的,低功耗的接收端不会由于数字信号的量化而产生较大的误差,信道估计的准确度提高,通信系统的性能也相应提高。
在一种可能的设计方式中,信道参数序列中包括的第n个元素H n满足:
Figure PCTCN2021104772-appb-000027
其中,A n′表示第三序列的第n个元素,C n表示第一序列的第n个元素,D n表示第二序列的第n个元素,B n′表示第四序列的第n个元素,N表示第三序列中的元素个数,
Figure PCTCN2021104772-appb-000028
表示互相关运算。
第三方面,提供一种数据传输装置,该装置包括:处理模块,用于根据待发送数据的信号调制方式和预配置序列确定第一序列和第二序列,其中,第一序列与第二序列为格雷互补序列,第一序列和第二序列中元素的实部和虚部的幅值与待发送数据对应的序列中的部分元素的实部和/或虚部的幅值相同;输出模块,用于输出前导序列,前导序列包括第一序列和第二序列。
在一种可能的设计方式中,待发送数据的信号调制方式包括4-正交幅度调制QAM或16QAM。
在一种可能的设计方式中,当待发送数据的信号调制方式为4QAM时,第一序列和第二序列中元素的实部和虚部的幅值包括:
Figure PCTCN2021104772-appb-000029
Figure PCTCN2021104772-appb-000030
其中,E表示待发送数据的信号功率。
在一种可能的设计方式中,当待发送数据的信号调制方式为16QAM时,第一序列和第二序列中元素的实部和虚部的幅值包括:
Figure PCTCN2021104772-appb-000031
Figure PCTCN2021104772-appb-000032
其中,E表示待发送数据的信号功率。
在一种可能的设计方式中,前导序列的功率与待发送数据的信号功率相等。
在一种可能的设计方式中,当第一装置输出的待发送数据的信号调制方式为4QAM时,第一装置根据待发送数据的信号调制方式和预配置序列确定第一序列和第二序列,具体包括:第一装置分别对预配置的第三序列和第四序列进行
Figure PCTCN2021104772-appb-000033
的二进制相移键控BPSK调制和
Figure PCTCN2021104772-appb-000034
的相位偏移后,得到第一序列和第二序列,其中,k为奇数,第三序列与第四序列为格雷互补序列。
在一种可能的设计方式中,当第一装置输出的待发送数据的信号调制方式为4QAM时,第一装置根据待发送数据的信号调制方式和预配置序列确定第一序列和第二序列,具体包括:第一装置分别对预配置的第三序列和第四序列进行
Figure PCTCN2021104772-appb-000035
的相位偏移后得到第一序列和第二序列,其中,k为奇数,第三序列与第四序列为格雷互补序列。
在一种可能的设计方式中,当待发送数据的信号调制方式为4QAM或者16QAM时,第一装置根据待发送数据的信号调制方式和预配置序列确定第一序列和第二序列,具体包括:第一装置根据预配置的第三序列和第四序列进行运算得到第一序列,以及,第一装置根据预配置的第三序列和第四序列进行运算得到第二序列,第三序列与第四序列为格雷互补序列。
在一种可能的设计方式中,第三序列和第四序列包括按预设顺序排列的元素1和-1。
第四方面,提供一种数据传输装置,该装置包括接收模块,用于接收前导序列;处理模块,用于对前导序列进行盲检,根据前导序列从多个预配置序列中确定第一序列和第二序列,其中,第一序列和第二序列为预先配置的格雷互补序列;该处理模块,还用于根据第一序列、第二序列与前导序列进行信道估计。
在一种可能的设计方式中,第二装置对前导序列进行盲检,根据前导序列从预配置序列中确定第一序列和第二序列,具体包括:前导序列包括第三序列和第四序列,第二装置将第三序列分别与多个预配置序列进行互相关运算,和/或第二装置将第四序列分别与多个预配置序列进行互相关运算,得到多个相关序列;第二装置根据多个相关序列确定第一序列和第二序列。
在一种可能的设计方式中,若第三序列与预配置序列1进行互相关运算加上第四序列与预配置序列2进行互相关运算得到的相关序列的相关性最高,则第二装置确定预配置序列1和预配置序列2分别为第一序列和第二序列,其中,预配置序列1和预配置序列2为多个预配置序列中的一个。
在一种可能的设计方式中,第二装置根据第一序列、第二序列与前导序列进行信道估计,具体包括:前导序列包括第三序列和第四序列,第二装置根据第一序列与第三序列进行互相关运算得到第五序列,以及,第二装置根据第二序列与第四序列进行互相关运算得到第六序列;第二装置根据第五序列、第六序列以及第三序列中的元素个数得到第一装置和第二装置之间进行数据传输的信道参数序列。
在一种可能的设计方式中,信道参数序列中包括的第n个元素H n满足:
Figure PCTCN2021104772-appb-000036
其中,A n′表示第三序列的第n个元素,C n表示第一序列的第n个元素,D n表示第二序列的第n个元素,B n′表示第四序列的第n个元素,N表示第 三序列中的元素个数,
Figure PCTCN2021104772-appb-000037
表示互相关运算。
第五方面,提供一种电子设备,该电子设备包括:处理器和传输接口;其中,所述处理器被配置为执行存储在存储器中的指令,以实现如上述第一方面中任一项所述的方法。
第六方面,提供一种电子设备,该电子设备包括:处理器和传输接口;其中,所述处理器被配置为执行存储在存储器中的指令,以实现如上述第二方面中任一项所述的方法。
第七方面,提供一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当所述指令由计算机或处理器执行时,使得所述计算机或所述处理器能够执行如上述第一方面中任一项所述的方法。
第八方面,提供一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当所述指令由计算机或处理器执行时,使得所述计算机或所述处理器能够执行如上述第二方面中任一项所述的方法。
第九方面,提供一种计算机程序产品,该计算机程序产品可以包括程序指令,当该计算机程序产品在计算机上运行时,使得计算机可以执行上述上述第一方面中任一项所述的方法。
第十方面,提供一种计算机程序产品,该计算机程序产品可以包括程序指令,当该计算机程序产品在计算机上运行时,使得计算机可以执行上述上述第二方面中任一项所述的方法。
第十一方面,提供一种通信系统,该通信系统包括如上述第三方面中所述的装置和如上述第四方面中所述的装置。
可以理解地,上述提供的任一种数据传输装置、电子设备、计算机可读存储介质和计算机程序产品,均可以用于执行上文所提供的对应的方法,因此,其所能达到的有益效果可参考上文所提供的对应的方法中的有益效果,此处不再赘述。
附图说明
图1为本申请实施例提供的一种前导序列的星座点位置示意图;
图2为本申请实施例提供的一种4QAM调制方式下的数据部分的星座点位置示意图;
图3为本申请实施例提供的一种通信系统的架构示意图;
图4为本申请实施例提供的一种格雷互补序列进行互相关运算的结果示意图;
图5为本申请实施例提供的一种数据传输方法的流程示意图;
图6为本申请实施例提供的一种16QAM调制方式下的数据部分的星座点位置示意图;
图7为本申请实施例提供的另一种数据传输方法的流程示意图;
图8为本申请实施例提供的一种数据传输装置的结构示意图;
图9为本申请实施例提供的另一种数据传输装置的结构示意图;
图10为本申请实施例提供的一种电子设备的结构示意图;
图11为本申请实施例提供的一种芯片系统的结构示意图。
具体实施方式
以下,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以 明示或者隐含地包括一个或者更多个该特征。在本实施例的描述中,除非另有说明,“多个”的含义是两个或两个以上。
需要说明的是,本申请中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其他实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
首先,对本申请实施例的实施环境和应用场景进行简单介绍。
本申请可以应用于5G、卫星通信等无线通信系统中,系统架构如图3所示,该系统可以包括基站和至少一个终端。
需要说明的是,无线通信系统通常可以由小区组成,每个小区可以包含一个基站(Base Station,BS),基站向多个移动台(Mobile Station,MS)提供通信服务。其中基站包含基带单元(Baseband Unit,BBU)和远端射频单元(Remote Radio Unit,RRU)。BBU和RRU可以放置在不同的地方,例如:RRU配置较远,放置于高话务量的区域,BBU放置于中心机房,或者BBU和RRU也可以放置在同一机房。此外,BBU和RRU也可以为一个机架下的不同部件。
本发明方案提及的无线通信系统包括但不限于:窄带物联网系统(Narrow Band-Internet of Things,NB-IoT)、全球移动通信系统(Global System for Mobile Communications,GSM)、增强型数据速率GSM演进系统(Enhanced Data rate for GSM Evolution,EDGE)、宽带码分多址系统(Wideband Code Division Multiple Access,WCDMA)、码分多址2000系统(Code Division Multiple Access,CDMA2000)、时分同步码分多址系统(Time Division-Synchronization Code Division Multiple Access,TD-SCDMA),长期演进系统(Long Term Evolution,LTE)、下一代5G移动通信系统的三大应用场景eMBB,URLLC和eMTC以及无线保真系统(Wireless Fidelity,WiFi)。
其中,本申请中的基站是一种部署在无线接入网中为MS提供无线通信功能的装置,可以包括各种形式的宏基站,微基站(也称为小站),中继站,接入点等。在采用不同的无线接入技术的系统中,具备基站功能的设备的名称可能会有所不同,例如,在LTE系统中,称为演进的节点B(evolved NodeB,eNB或者eNodeB),在第三代(3rd Generation,3G)系统中,称为节点B等。为方便描述,本申请所有实施例中,上述为MS提供无线通信功能的装置统称为网络设备或基站或BS。
本申请方案中所涉及到的终端可以包括各种具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其它处理设备。所述终端具体可以是用户单元(subscriber unit)、蜂窝电话(cellular phone)、智能手机(smart phone)、无线数据卡、个人数字助理(Personal Digital Assistant,PDA)电脑、平板型电脑、无线调制解调器、手持设备、膝上型电脑(laptop computer)、机器类型通信(Machine Type Communication,MTC)终端等。
基于上述的通信系统,基站向终端发送数据之前,基站会先发送前导序列,使得终端可以根据接收到的前导序列进行自动增益控制(Automatic Gain Control,AGC)的调整,并且根据前导序列进行信道估计和信号同步。具体可以为终端根据接收到的前导序列进行AGC调整,量化到相应的电平值。并且终端可以根据接收到的前导序列与预先配置的序列计算相关函数,从而可以根据相关函数得到进行通信的信道参数。然后,终端能够根据信道参数正确地解调出发射信号,实现有效且精准的通信。
其中,AGC的作用是可以针对不同强度的模拟信号使用不同的增益进行调整,使得最终输出的信号幅度维持在同一标准。具体的,AGC可以通过检测信号幅度来自适应控制信号链路的增益,在电路的信号幅度发生变化时,AGC可以使其输出信号幅度调整到稳定值。
在现有技术中,通常可以采用格雷序列作为前导序列,例如,前导序列可以包括两个交替发送的互补的格雷序列。其中,格雷序列可以为一定长度的、具体自相关性的序列。示例性的,格雷序列可以包括元素1和-1的序列。现有的通信系统中,常用的有32位、64位、128位、256位或者512位等长度的格雷序列。
示例性的,32位的格雷互补序列可以为:
a 32=[1,1,-1,1,-1,1,1,1,-1,-1,1,-1,-1,1,1,1,-1,-1,1,-1,1,-1,-1,-1,-1,-1,1,-1,-1,1,1,1];
b 32=[-1,-1,1,-1,1,-1,-1,-1,1,1,-1,1,1,-1,-1,-1,-1,-1,1,-1,1,-1,-1,-1,-1,-1,1,-1,-1,1,1,1]。
示例性的,64位的格雷互补序列可以为:
a 64=[-1,-1,1,-1,1,-1,-1,-1,1,1,-1,1,1,-1,-1,-1,-1,-1,1,-1,1,-1,-1,-1,-1,-1,1,-1,-1,1,1,1,-1,-1,1,-1,1,-1,-1,-1,1,1,-1,1,1,-1,-1,-1,1,1,-1,1,-1,1,1,1,1,1,-1,1,1,-1,-1,-1];
b 64=[1,1,-1,1,-1,1,1,1,-1,-1,1,-1,-1,1,1,1,1,1,-1,1,-1,1,1,1,1,1,-1,1,1,-1,-1,-1,-1,-1,1,-1,1,-1,-1,-1,1,1,-1,1,1,-1,-1,-1,1,1,-1,1,-1,1,1,1,1,1,-1,1,1,-1,-1,-1]。
示例性的,128位的格雷互补序列可以为:
a 128=[1,1,-1,-1,-1,-1,-1,-1,-1,1,-1,1,1,-1,-1,1,1,1,-1,-1,1,1,1,1,-1,1,-1,1,-1,1,1,-1,-1,-1,1,1,1,1,1,1,1,-1,1,-1,-1,1,1,-1,1,1,-1,-1,1,1,1,1,-1,1,-1,1,-1,1,1,-1,1,1,-1,-1,-1,-1,-1,-1,-1,1,-1,1,1,-1,-1,1,1,1,-1,-1,1,1,1,1,-1,1,-1,1,-1,1,1,-1,1,1,-1,-1,-1,-1,-1,-1,-1,1,-1,1,1,-1,-1,1,-1,-1,1,1,-1,-1,-1,-1,1,-1,1,-1,1,-1,-1,1];
b 128=[-1,-1,1,1,1,1,1,1,1,-1,1,-1,-1,1,1,-1,-1,-1,1,1,-1,-1,-1,-1,1,-1,1,-1,1,-1,-1,1,1,1,-1,-1,-1,-1,-1,-1,-1,1,-1,1,1,-1,-1,1,-1,-1,1,1,-1,-1,-1,-1,1,-1,1,-1,1,-1,-1,1,1,1,-1,-1,-1,-1,-1,-1,-1,1,-1,1,1,-1,-1,1,1,1,-1,-1,1,1,1,1,-1,1,-1,1,-1,1,1,-1,1,1,-1,-1,-1,-1,-1,-1,-1,1,-1,1,1,-1,-1,1,-1,-1,1,1,-1,-1,-1,-1,1,-1,1,-1,1,-1,-1,1]。
需要说明的是,上述的格雷互补序列仅仅是示例性的几种常用形式,本申请对此不做具体限定,本领域技术人员可以根据通信系统的设计需要进行设计。
其中,格雷序列具有理想的非周期自相关性,例如,格雷序列为序列a N和序列b N,则序列a N中的第i个元素a(i)和序列b N中的第i个元素b(i)满足如下公式:
R ab(k)=R a(k)+R b(k)=2Nδ(k)                                       公式(1)
Figure PCTCN2021104772-appb-000038
Figure PCTCN2021104772-appb-000039
δ(k)=1,k=0
δ(k)=0,k≠0
其中,R a(k)表示对序列a N进行自相关运算得到的相关序列,R b(k)表示对序列b N进行自相关运算得到的相关序列,R ab(k)表示对相关序列R a(k)和R b(k)进行求和后得到的相关序列,N表示序列a N和序列b N的序列长度,也即序列a N和序列b N中元素的个数,a *(i)表示序列a N的共轭序列的第i个元素,b *(i)表示序列b N的共轭序列的第i个元素。
示例性的,如图4所示,具有自相关特性的格雷互补序列的自相关序列可以为图4中的左图中所示的,包括明显的峰值,如冲击峰。而该序列与其他序列进行互相关运算得到的相关序列可以如图4中的右图所示的,没有明显的峰值。因此,格雷序列这种理想的自相关性,决定了其可以用于精准的时域信道估计,目前IEEE 802.11ay标准中即使用格雷序列作为前导序列进行时域信道估计。
本申请实施例提供一种数据传输方法,应用于第一装置和第二装置之间进行通信。其中,第一装置可以为发送端,第二装置可以为接收端,或者,第一装置可以为发送端设备的处理芯片,第二装置可以为接收端设备的处理芯片,本申请对此不做具体限定。第一装置可以通过生成格雷互补序列作为前导序列,并向第二装置发送该前导序列,该前导序列与第一装置后续发送数据的幅值保持一致,从而当接收端采用低精度的ADC时,不会产生较大的量化误差,提高信道估计精度的准确度。
首先,先从发送端的角度,阐述本申请实施例提供的数据传输方法。该方法可以应用于第一装置。如图5所示,该方法可以包括如下步骤。
S501:第一装置根据待发送数据的信号调制方式和预配置序列确定第一序列和第二序列,第一序列与第二序列中元素的实部和虚部的幅值与第一装置待发送数据对应的序列中的部分元素的实部和/或虚部的幅值相同。
其中,待发送数据是指第一装置在输出前导序列之后,后续将要输出的数据,数据可以包括配置数据或者业务数据等,是第一装置与第二装置之间进行通信传输的负载数据payload。具体可以是第一装置对配置数据或者业务数据进行数字编码和调制之后生成的数字信号,该数字信号可以为包括复数元素的复数序列。
因此,第一装置的待发送数据对应的序列与所述待发送数据的编码方式和信号调制方式相关,即在不同的信号调制方式下,待发送数据对应的序列是不同的;在不同 的数字编码方式下,待发送数据对应的序列是不同的。在后续的实施例中将会示例性的介绍几种不同信号调制方式下待发送数据对应的序列星座点的示意图,此处不再赘述。
需要说明的是,为了保证第一装置和第二装置之间的通信效果,克服远距离信号传输问题,第一装置需要通过调制将信号频谱搬移到高频信道中进行传输。因此,将待发送的信号加载到高频信号的过程就叫调制,在实际应用中,无论模拟信号还是数字信号,通常有三种最基本的调制方法:调幅、调频和调相。
在本申请中,针对于接收端配置的是低精度ADC的处理能力来说,第一装置对待发送数据的信号调制方式具体可以指对数据的幅度调制技术,示例性的,可以包括4-正交幅度调制(QAM,Quadrature Amplitude Modulation)调制、8QAM和16QAM等,如图2所示为4QAM调制后待发送数据的序列位于星座图上的星座点示意。
需要说明的是,在实际应用中,数据部分信号通常可以采用4QAM或者16QAM的调制方式,因此,在本申请的下述实施例中,将以4QAM或者16QAM的调制方式作为示例,详细阐述本申请实施例中设计前导序列的具体方法,但这并不对本申请的保护范围构成一定限制。也就是说,本申请的实施例中对数据部分的具体调制方式并不做具体限定,下文对此将不再赘述。
可以知道,在数字通信领域中通常可以将数字信号用复数进行表示,即a(i)=a 0+ja 1=a*e jπθ,其中,a 0表示数字信号的实部,a 1数字信号的虚部,a表示数字信号的幅度,θ表示数字信号的相位。
通常技术人员可以通过复数序列来表示数字信号,该序列中包括多个复数元素,每一个复数元素可以映射到星座图中的一个星座点的坐标。因此,星座图即作为数字通信领域中直观的表示数字信号的示意图,也就是将数字信号在复平面上直观的表示信号以及信号之间的关系,星座图可以完整、清晰得表达数字调制的映射关系。上述的待发送数据对应的序列即为待发送payload对应的复数序列。
如图1所示的,星座图就是一个坐标,包括横坐标I和纵坐标Q,数字信号对应的星座点与坐标原点O的距离表示数字信号的幅度a,数字信号对应的星座点与坐标原点O的连线与横坐标I的夹角表示数字信号的相位θ。相应于数字信号投影到I轴的分量即为数字信号实部的幅值,也叫同相分量;投影到Q轴的分量即为数字信号虚部的幅值,也叫正交分量。具体地说,4QAM调制的数字信号有4个,等于2的2次方,因此每个数字信号需要2个二进制比特位来代表才够用。这4个数字信号就落在单位圆内,即为星座点,根据幅度和相位的不同星座点的位置也不同。通过一定的信号调制方式将数字信号的比特信息调制到对应的星座点的位置。
基于上述的待发送数据的信号调制方式,第一装置可以根据预配置序列确定第一序列与第二序列,其中,第一序列与第二序列为格雷互补序列,也就是说第一序列的自相关序列与第二序列的自相关序列的和呈现比较高的相关性。
需要说明的是,第一装置可以根据待发送数据的信号调制方式,直接从预配置好的多组格雷互补序列中确定出第一序列与第二序列,或者,第一装置还可以根据待发送数据的信号调制方式,根据预先配置的原始格雷互补序列生成第一序列和第二序列。
例如,第一装置预先配置好,当确定待发送数据的信号调制方式为方式一时,第 一装置可以对原始格雷序列根据算法一进行处理,得到第一序列和第二序列。从而第一装置可以将第一序列和第二序列作为前导序列进行传输,用于信道估计。当第一装置确定待发送数据的信号调制方式为方式二时,第一装置可以对原始格雷序列根据算法二进行处理,得到的第一序列(1)和第二序列(2)同样可以作为前导序列用于信道估计。
在一种可能的实施方式中,前导序列的功率与待发送数据的信号功率相等。
需要说明的是,通常发送端的前导序列的信号功率和待发送数据的信号功率是相等的,而数字信号的功率是根据数字信号的幅值进行计算得到的。具体的,一段数字信号,在观测的单位时间内数字序列包括有N个元素,每个元素对应一个幅值,则该数字信号的信号功率即为单位时间段内,数字序列中元素的幅值的平方和除以元素个数N。
例如,上述的序列a 128的信号功率可以根据上述计算得到,平均功率E=1。
其中,第一序列与第二序列中元素的实部和虚部的幅值与第一装置待发送数据对应的序列中的部分元素的实部和/或虚部的幅值相同。本申请对此不作具体限定,后面将示例性的介绍几种可能的第一序列和第二序列的具体生成方式,此处不再赘述。
其中,待发送数据对应的序列是指第一装置输出前导数据之后,第一装置输出的有效数据所包括的数据序列,该序列可以包括按照一定顺序依次排列的数值,用于指示一定的配置信息或者用户请求的业务数据。
S502:第一装置输出前导序列,前导序列包括第一序列和第二序列。
第一装置输出前导序列,该前导序列可以为依次排列的第一序列和第二序列。例如,第一装置输出的前导序列可以为依次排列的第一序列、第二序列、第一序列、第二序列等。
通过上述本申请所提供的实施方式,第一装置根据待发送数据的信号调制方式,通过配置与待发送数据部分的实部和虚部对应幅值相同的前导序列,从而使得接收端根据接收到的前导序列进行信道估计。由于通信信道存在一定的噪声和干扰,不能保证接收端接收到的前导序列与接收数据的实部和虚部对应幅值完全相同,但接收端接收到的前导序列与接收数据的实部和虚部对应幅值是大致相同的,因此,接收端的低精度ADC利用前导序列进行AGC调整,并进行模拟信号到数字信号的转换时,不会引入较大的量化误差。相较现有技术,信道估计误差较小,能够有效提高信道估计的精度和准确度。
在一种可能的实施方式中,第一装置的待发送数据的信号调制方式可以为4QAM,示例性的,如图2所示,4QAM调制下的4个数字信号的星座点的坐标分别为:
Figure PCTCN2021104772-appb-000040
Figure PCTCN2021104772-appb-000041
Figure PCTCN2021104772-appb-000042
因此,4QAM调制下数字信号的实部和虚部的幅值包括
Figure PCTCN2021104772-appb-000043
Figure PCTCN2021104772-appb-000044
则第一序列和第二序列中元素的实部和虚部的幅值可以包括:
Figure PCTCN2021104772-appb-000045
Figure PCTCN2021104772-appb-000046
进一步的,根据上述信号功率的计算方法可知,信号功率与序列中元素的幅值的 平方成正比,因此,在一种可能的实施方式中,第一装置的待发送数据的信号调制方式为4QAM时,第一序列和第二序列中元素的实部和虚部的幅值可以包括:
Figure PCTCN2021104772-appb-000047
Figure PCTCN2021104772-appb-000048
其中,E表示待发送数据的信号功率。
在另一种可能的实施方式中,示例性的,如图6所示为16QAM调制下待发送数据的序列位于星座图上的星座点示意,这16个数字信号的星座点的坐标分别为:
Figure PCTCN2021104772-appb-000049
Figure PCTCN2021104772-appb-000050
Figure PCTCN2021104772-appb-000051
Figure PCTCN2021104772-appb-000052
因此,16QAM调制下数字信号的实部和虚部的幅值包括
Figure PCTCN2021104772-appb-000053
Figure PCTCN2021104772-appb-000054
则第一序列和第二序列中元素的实部和虚部的幅值可以包括:
Figure PCTCN2021104772-appb-000055
Figure PCTCN2021104772-appb-000056
进一步的,在一种实施方式中,第一装置的待发送数据的信号调制方式可以为16QAM时,第一序列和第二序列中元素的实部和虚部的幅值包括:
Figure PCTCN2021104772-appb-000057
Figure PCTCN2021104772-appb-000058
其中,E表示待发送数据的信号功率。
在一种可能的实施方式中,当第一装置输出的待发送数据的信号调制方式为4QAM时,第一装置可以根据待发送数据的信号调制方式,根据预配置序列进行处理生成第一序列和第二序列,具体可以包括:
预配置序列包括原始的格雷互补序列:第三序列与第四序列。第三序列和第四序列可以包括按预设顺序排列的元素1和-1。
第一装置可以分别对预配置的第三序列和第四序列进行
Figure PCTCN2021104772-appb-000059
的二进制相移键控(Binary Phase Shift Keying,BPSK)调制和
Figure PCTCN2021104772-appb-000060
的相位偏移后,得到第一序列和第二序列。其中,k为奇数。
具体的,第一序列中的第n个元素满足:
Figure PCTCN2021104772-appb-000061
第二序列中的第n个元素满足:
Figure PCTCN2021104772-appb-000062
其中,A n表示第一序列的第n个元素,B n表示第二序列的第n个元素,a n表示第三序列的第n个元素,b n表示第四序列的第n个元素。
通过本申请的上述实施方式设计生成前导序列,前导序列的星座图与4QAM调制信号的星座图一致。从而可以避免接收端采用低精度ADC进行数模转换处理时,前导序列与数据部分的实部/虚部的幅值不匹配,以及计算等效信道相位不匹配的问题,从而能够提升信道估计精度,提升系统性能。
在另一种可能的实施方式中,当待发送数据的信号调制方式为4QAM时,第一装置还可以分别对预配置的第三序列和第四序列进行
Figure PCTCN2021104772-appb-000063
的相位偏移后得到第一序列和第二序列,其中,k为奇数,第三序列与第四序列为格雷互补序列。
具体的,第一序列中的第n个元素满足:
Figure PCTCN2021104772-appb-000064
第二序列中的第n个元素满足:
Figure PCTCN2021104772-appb-000065
其中,A n表示第一序列的第n个元素,B n表示第二序列的第n个元素,a n表示第三序列的第n个元素,b n表示第四序列的第n个元素。
示例性的,k可以取值为1,即第一装置可以分别对预配置的第三序列a n和第四序列b n进行
Figure PCTCN2021104772-appb-000066
的相位偏移,得到第一序列A n和第二序列B n,即:
Figure PCTCN2021104772-appb-000067
Figure PCTCN2021104772-appb-000068
对应到星座点上,当a n的坐标为(1,-1),则可得A n的坐标为
Figure PCTCN2021104772-appb-000069
Figure PCTCN2021104772-appb-000070
示例性的,k可以取值为-3,即第一装置可以分别对预配置的第三序列a n和第四序列b n进行
Figure PCTCN2021104772-appb-000071
的相位偏移,得到第一序列A n和第二序列B n,即:
Figure PCTCN2021104772-appb-000072
Figure PCTCN2021104772-appb-000073
对应到星座点上,当a n的坐标为(1,-1),则可得A n的坐标为
Figure PCTCN2021104772-appb-000074
Figure PCTCN2021104772-appb-000075
另外,上述的实施例中,第一装置是根据预配置的两个序列分别设计得到第一序列和第二序列。在另一种可能的实施方式中,第一装置还可以根据预配置的两个原始的格雷互补序列进行联合设计得到第一序列和第二序列。即当待发送数据的信号调制方式为4QAM或者16QAM时,第一装置根据待发送数据的信号调制方式和预配置序列确定第一序列和第二序列,第一装置可以根据预配置的第三序列和第四序列进行运算得到第一序列,以及,第一装置可以根据预配置的第三序列和第四序列进行运算得到第二序列。其中,第三序列与第四序列为预先配置的格雷互补序列。
具体的,当待发送数据的信号调制方式为4QAM时,第一序列中的第n个元素可以满足:
Figure PCTCN2021104772-appb-000076
第二序列中的第n个元素满足:
Figure PCTCN2021104772-appb-000077
其中,A n表示第一序列的第n个元素,B n表示第二序列的第n个元素,a n表示第三序列的第n个元素,b n表示第四序列的第n个元素。
根据上述方法设计的序列A n和序列B n仍然满足格雷互补序列的自相关特性,因此,接收端进行信道估计的方法和效果不受影响。且所设计的前导序列的星座图与4QAM 调制的数字信号的星座图是一致的。
另外,也可以对上述所设计的序列A n和序列B n同时增加±kπ/2或者±kπ的相位旋转得到第一序列和第二序列,作为前导序列。其中,k为整数。
具体的,第一序列中的第n个元素满足:
Figure PCTCN2021104772-appb-000078
第二序列中的第n个元素满足:
Figure PCTCN2021104772-appb-000079
其中,A n表示第一序列的第n个元素,B n表示第二序列的第n个元素,a n表示第三序列的第n个元素,b n表示第四序列的第n个元素。
在另一可能的实施方式中,当待发送数据的信号调制方式为16QAM时,第一序列中的第n个元素可以满足:
Figure PCTCN2021104772-appb-000080
第二序列中的第n个元素满足:
Figure PCTCN2021104772-appb-000081
根据上述方法设计的序列A n和序列B n仍然满足格雷互补序列的自相关特性,因此,接收端进行信道估计的方法和效果不受影响。且所设计的前导序列的星座点与16QAM调制的数字信号的星座点存在部分一致的。
同理,也可以对上述所设计的序列A n和序列B n同时增加±kπ/2或者±kπ的相位旋转得到第一序列和第二序列,作为前导序列。其中,k为整数。
具体的,第一序列中的第n个元素满足:
Figure PCTCN2021104772-appb-000082
第二序列中的第n个元素满足:
Figure PCTCN2021104772-appb-000083
通过本申请提供的上述几种可能的实施方式,以及根据本申请提供的构造前导序列的设计方法,本领域技术人员可以根据发送端待发送数据的信号调制方式,选择匹配的格雷互补序列作为前导序列,或者可以根据本地预先配置的原始格雷互补序列和上述本申请提供的设计算法,在线设计出与待发送数据的信号调制方式匹配的格雷互补序列作为前导序列。从而,发送端发送的前导序列的实部部分和虚部部分的幅值,与待发送数据对应的序列的部分实部部分和虚部部分的幅值是一致的。接收端上的低精度的ADC在进行模拟信号到数字信号的量化时,量化误差较小,从而能够有效提高信道估计的精度和准确度,提升通信系统的性能。
接下来,从接收端的角度,来介绍本申请实施例提供的数据传输方法,该方法可以应用于第二装置。如图7所示,该方法具体可以包括以下步骤。
S701:第二装置接收前导序列。
第二装置接收到上述实施例中第一装置发送的前导序列,该前导序列可以为上述实施例提供的前导序列的几种可能的设计方式中的一种。
S702:第二装置对前导序列进行盲检,根据前导序列从多个预配置序列中确定第一序列和第二序列。
其中,第二装置本地预先配置有多个格雷互补序列,第一序列和第二序列可以为预先配置的格雷互补序列。
具体的,第二装置可以对接收到的前导序列进行盲检,即根据前导序列从多个预配置序列中根据序列的相关性,确定第一装置发送的前导序列的具体配置。具体的,第二装置可以将接收到的前导序列逐个与本地预配置的多个序列进行互相关操作,根据相关性确定第一序列和第二序列。
需要说明的,由于发送端发送的前导序列与发送端发送的数据部分的实部/虚部的幅值相同,发送端发送的前导序列与发送端发送的数据经过信道传输,会存在一定的信号干扰和噪声,因此,接收端接收到的前导序列和数据与发送端原始发送的不一定完全相同,通常会是大致相同的,因此,接收端接收到的前导序列的实部/虚部的幅值和数据部分的实部/虚部的幅值是大致相同的。
S703:第二装置根据第一序列、第二序列与前导序列进行信道估计。
第二装置可以根据第一序列、第二序列与前导序列进行信道估计,得到信道参数序列。具体的,进行信道估计的原理可以参照前述的公式(1)、公式(2)和公式(3)。
示例性的,第一装置发送的前导序列包括序列A n和序列B n,信道参数序列表示为H n,前导序列A n和B n经过信道传输,第二装置接收到的前导序列包括序列A n′和序列B n′,则序列A n′和序列B n′满足:
A n′=A n×H n,B n′=B n×H n。其中,×表示序列之间的卷积运算。
根据前述的格雷互补序列的自相关特性可知,相关序列R AB满足:
Figure PCTCN2021104772-appb-000084
因此,信道估计为
Figure PCTCN2021104772-appb-000085
其中,
Figure PCTCN2021104772-appb-000086
表示序列之间的互相关运算。
通过本申请的上述实施方式,接收端可以通过盲检的方式,判断发送端所采用的前导序列,从而可以根据前导序列判断数据部分的调制方式。例如,第一装置和第二装置之间预先配置为,当第一装置待发送数据采用4QAM调制时,第一装置采用序列1和序列2作为前导序列;当第一装置待发送数据采用16QAM调制时,第一装置采用序列3和序列4作为前导序列。当接收端接收到第一装置发送的前导序列之后,例如,接收到的前导序列包括序列1′和序列2′,第二装置可以通过盲检的方式,将接收到的序列1′和序列2′分别与本地预先配置好的序列1、序列2、序列3和序列4进行互相关操作,根据得到的相关函数,确定相关性最好的序列,即为序列1和序列2,确定为第一装置设计的前导序列格式。
因此,通过本申请的上述实施方式,发送端可以利用不同构造的前导序列,隐式地通过前导序列用于指示数据部分的调制方式。从而使得接收端可以通过对接收到的前导序列进行盲检,确定出发送端发送的前导序列类型,从而确定发送端发送的数据部分的调制方式;同时根据接收到的前导序列完成信道估计。
在一种实施方式中,第二装置接收到的前导序列可以包括第三序列和第四序列,则上述的步骤S702中,第二装置对前导序列进行盲检,根据前导序列从预配置序列中确定第一序列和第二序列,具体可以包括:
Step1:第二装置将第三序列分别与多个预配置序列进行互相关运算,和/或第二装 置将第四序列分别与多个预配置序列进行互相关运算,得到多个相关序列。
由于格雷互补序列可以是两个互补的序列对,第二装置可以将前导序列中包括的其中一个格雷序列与本地预先配置的序列逐个进行互相关操作,得到对应的相关序列。例如,第二装置可以将第三序列分别与多个预配置序列进行互相关运算,或者第二装置还可以将第四序列分别与多个预配置序列进行互相关运算,或者第二装置还可以将第三序列与第四序列分别与多个预配置序列进行互相关运算。
Step2:第二装置根据多个相关序列确定第一序列和第二序列。
由上述介绍的格雷序列的自相关特性可知,格雷互补序列包括的两个序列分别进行自相关得到的相关序列之和会得到比较高的相关值,因此,可以根据进行互相关得到的多个相关序列的相关性高低,确定第一序列和第二序列。
示例性的,第二装置本地预先配置的序列包括预配置序列1、预配置序列2、预配置序列3和预配置序列4。则第二装置可以将第三序列和第四序列分别与上述四个预配置序列进行互相关运算,得到多个相关序列。例如,可以用A′表示第三序列,B′表示第四序列,A 1表示预配置序列1,A 2表示预配置序列2,A 3表示预配置序列3,A 4表示预配置序列4。
则盲检得到的多个相关序列分别可以为:
Figure PCTCN2021104772-appb-000087
Figure PCTCN2021104772-appb-000088
根据上述的多个相关序列中的相关值确定预配置序列1、预配置序列2、预配置序列3和预配置序列4中的第一序列和第二序列。
在一种实施方式中,第二装置还可以将第三序列和第四序列分别与多个预配置序列进行互相关运算得到的多个相关序列两两分别求和,根据得到的相关序列进一步确定第一序列和第二序列。示例性的,也就是根据上述得到的R A1、R A2、R A3、R A4、R B1、R B2、R B3和R B4两两进行序列求和的运算。具体的,第二装置可以根据得到的序列相关中相关值最高的一组序列,即确定为第一序列和第二序列,也就是发送端发送的原始前导序列对。
例如,预配置序列1为第二装置的多个预配置序列中的一个,预配置序列2也为第二装置的多个预配置序列中的一个。第三序列与预配置序列1进行互相关运算加上第四序列与预配置序列2进行互相关运算得到的相关序列的相关性最高,则第二装置确定预配置序列1和预配置序列2分别为第一序列和第二序列。
在一种实施方式中,当前导序列包括第三序列和第四序列时,上述的步骤S703中,第二装置根据第一序列、第二序列与前导序列进行信道估计,具体可以包括:
步骤1:第二装置根据第一序列与第三序列进行互相关运算得到第五序列,以及,第二装置根据第二序列与第四序列进行互相关运算得到第六序列。
示例性的,A n′表示第三序列的第n个元素,C n表示第一序列的第n个元素,D n表示第二序列的第n个元素,B n′表示第四序列的第n个元素,则第五序列的第n个元素满足:
Figure PCTCN2021104772-appb-000089
第六序列的第n个元素满足:
Figure PCTCN2021104772-appb-000090
其中,
Figure PCTCN2021104772-appb-000091
表示互相关运算。
步骤2:第二装置根据第五序列、第六序列以及第三序列中的元素个数得到第一装置和第二装置之间进行数据传输的信道参数序列。
具体的,根据上述参数,可以得到信道参数序列中包括的第n个元素H n满足:
Figure PCTCN2021104772-appb-000092
根据本申请提供的上述实施方式,接收端可以根据接收到的前导序列与本地预先配置的序列进行盲检,确定相关性最高的格雷序列对即为发送端发送的前导序列的类型,从而接收端可以根据确定的格雷序列与接收到的前导序列进行运算,得到信道估计的信道参数。由于发送端发送的前导序列与数据部分的幅值是相同的,因此,即使前导序列与数据部分经过信道的传输会产生一定的干扰或者噪声的影响,接收端接收到的前导序列和数据部分的幅值也是基本一致的,或者,至少是部分一致的。从而接收端的ADC在对数字信号进行量化的时候,量化较为精准,不会引入较大的量化误差,从而信道估计的准确度也相应提高,提高了通信传输的性能。
本申请实施例还提供一种数据传输装置,如图8所示,该装置800可以包括处理模块801和输出模块802。
其中,处理模块801可以用于根据待发送数据的信号调制方式和预配置序列确定第一序列和第二序列。其中,第一序列与第二序列为格雷互补序列,第一序列和第二序列中元素的实部和虚部的幅值与待发送数据对应的序列中的部分元素的实部和/或虚部的幅值相同。
输出模块802可以用于输出前导序列,前导序列包括第一序列和第二序列。
在一种可能的设计方式中,待发送数据的信号调制方式包括4-正交幅度调制QAM或16QAM。
在一种可能的设计方式中,当待发送数据的信号调制方式为4QAM时,第一序列和第二序列中元素的实部和虚部的幅值包括:
Figure PCTCN2021104772-appb-000093
Figure PCTCN2021104772-appb-000094
其中,E表示待发送数据的信号功率。
在一种可能的设计方式中,当待发送数据的信号调制方式为16QAM时,第一序列和第二序列中元素的实部和虚部的幅值包括:
Figure PCTCN2021104772-appb-000095
Figure PCTCN2021104772-appb-000096
其中,E表示待发送数据的信号功率。
在一种可能的设计方式中,前导序列的功率与待发送数据的信号功率相等。
在一种可能的设计方式中,当第一装置输出的待发送数据的信号调制方式为4QAM时,第一装置根据待发送数据的信号调制方式和预配置序列确定第一序列和第二序列,具体包括:第一装置分别对预配置的第三序列和第四序列进行
Figure PCTCN2021104772-appb-000097
的二进制相移键控BPSK调制和
Figure PCTCN2021104772-appb-000098
的相位偏移后,得到第一序列和第二序列,其中,k为奇数,第三序列与第四序列为格雷互补序列。
在一种可能的设计方式中,当第一装置输出的待发送数据的信号调制方式为4QAM时,第一装置根据待发送数据的信号调制方式和预配置序列确定第一序列和第二序列,具体包括:第一装置分别对预配置的第三序列和第四序列进行
Figure PCTCN2021104772-appb-000099
的相位偏移后得到第一序列和第二序列,其中,k为奇数,第三序列与第四序列为格雷互补序列。
在一种可能的设计方式中,当待发送数据的信号调制方式为4QAM或者16QAM 时,第一装置根据待发送数据的信号调制方式和预配置序列确定第一序列和第二序列,具体包括:第一装置根据预配置的第三序列和第四序列进行运算得到第一序列,以及,第一装置根据预配置的第三序列和第四序列进行运算得到第二序列,第三序列与第四序列为格雷互补序列。
在一种可能的设计方式中,第三序列和第四序列包括按预设顺序排列的元素1和-1。
另外,本申请实施例还提供一种数据传输装置,如图9所示,该装置900包括接收模块901和处理模块902。
其中,接收模块901可以用于接收前导序列。
处理模块902可以用于对前导序列进行盲检,根据前导序列从多个预配置序列中确定第一序列和第二序列。其中,第一序列和第二序列为预先配置的格雷互补序列。
该处理模块902还可以用于根据第一序列、第二序列与前导序列进行信道估计。
在一种可能的设计方式中,第二装置对前导序列进行盲检,根据前导序列从预配置序列中确定第一序列和第二序列,具体包括:前导序列包括第三序列和第四序列,第二装置将第三序列分别与多个预配置序列进行互相关运算,和/或第二装置将第四序列分别与多个预配置序列进行互相关运算,得到多个相关序列;第二装置根据多个相关序列确定第一序列和第二序列。
在一种可能的设计方式中,若第三序列与预配置序列1进行互相关运算加上第四序列与预配置序列2进行互相关运算得到的相关序列的相关性最高,则第二装置确定预配置序列1和预配置序列2分别为第一序列和第二序列,其中,预配置序列1和预配置序列2为多个预配置序列中的一个。
在一种可能的设计方式中,第二装置根据第一序列、第二序列与前导序列进行信道估计,具体包括:前导序列包括第三序列和第四序列,第二装置根据第一序列与第三序列进行互相关运算得到第五序列,以及,第二装置根据第二序列与第四序列进行互相关运算得到第六序列;第二装置根据第五序列、第六序列以及第三序列中的元素个数得到第一装置和第二装置之间进行数据传输的信道参数序列。
在一种可能的设计方式中,信道参数序列中包括的第n个元素H n满足:
Figure PCTCN2021104772-appb-000100
其中,A n′表示第三序列的第n个元素,C n表示第一序列的第n个元素,D n表示第二序列的第n个元素,B n′表示第四序列的第n个元素,N表示第三序列中的元素个数,
Figure PCTCN2021104772-appb-000101
表示互相关运算。
可以理解的,当上述装置是电子设备时,上述输出模块可以是发送器,可以包括天线和射频电路等,处理模块可以是处理器,例如基带芯片等。当上述装置是具有上述第一装置或者第二装置功能的部件时,发送模块可以是射频单元,处理模块可以是处理器。当上述装置是芯片系统时,发送模块可以是芯片系统的输出接口、处理模块可以是芯片系统的处理器,例如:中央处理单元(central processing unit,CPU)等。
需要说明的是,上述的装置800中具体的执行过程和实施例可以参照上述方法实施例中第一装置执行的步骤和相关的描述,上述的装置900中具体的执行过程和实施例可以参照上述方法实施例中第二装置执行的步骤和相关的描述,所解决的技术问题和带来的技术 效果也可以参照前述实施例所述的内容,此处不再一一赘述。
在本实施例中,该装置可以采用集成的方式划分各个功能模块的形式来呈现。这里的“模块”可以指特定电路、执行一个或多个软件或固件程序的处理器和存储器、集成逻辑电路、和/或其他可以提供上述功能的器件。在一个简单的实施例中,本领域的技术人员可以想到该数据传输装置可以采用如下图10所示的形式。
图10为本申请实施例示出的一种示例性的电子设备1000的结构示意图,该电子设备1000可以为上述实施方式中的第一装置或者第二装置,用于执行上述实施方式中的数据传输方法。如图10所示,该电子设备1000可以包括至少一个处理器1001,通信线路1002以及存储器1003。
处理器1001可以是一个通用中央处理器(central processing unit,CPU),微处理器,特定应用集成电路(application-specific integrated circuit,ASIC),或一个或多个集成电路。
通信线路1002可包括一条通路,在上述组件之间传送信息,该通信线路例如可以是总线。
存储器1003可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器可以是独立存在,通过通信线路1002与处理器相连接。存储器也可以和处理器集成在一起。本申请实施例提供的存储器通常为非易失性存储器。其中,存储器1003用于存储执行本申请实施例的方案所涉及的计算机程序指令,并由处理器1001来控制执行。处理器1001用于执行存储器1003中存储的计算机程序指令,从而实现本申请实施例提供的方法。
可选的,本申请实施例中的计算机程序指令也可以称之为应用程序代码,本申请实施例对此不作具体限定。
在具体实现中,作为一种实施例,处理器1001可以包括一个或多个CPU,例如图10中的CPU0和CPU1。
在具体实现中,作为一种实施例,电子设备1000可以包括多个处理器,例如图10中的处理器1001和处理器1007。这些处理器可以是单核(single-CPU)处理器,也可以是多核(multi-CPU)处理器。这里的处理器可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。
在具体实现中,作为一种实施例,电子设备1000还可以包括通信接口1004。电子设备可以通过通信接口1004收发数据,或者与其他设备或通信网络通信,该通信接口1004例如可以为以太网接口,无线接入网接口(radio access network,RAN),无线局域网接口(wireless local area networks,WLAN)或者USB接口等。
在具体实现中,作为一种实施例,电子设备1000还可以包括输出设备1005和输入设备1006。输出设备1005和处理器1001通信,可以以多种方式来显示信息。例如,输出设 备1005可以是液晶显示器(liquid crystal display,LCD),发光二级管(light emitting diode,LED)显示设备,阴极射线管(cathode ray tube,CRT)显示设备,或投影仪(projector)等。输入设备1006和处理器1001通信,可以以多种方式接收用户的输入。例如,输入设备1006可以是鼠标、键盘、触摸屏设备或传感设备等。
在具体实现中,电子设备1000可以是台式机、便携式电脑、网络服务器、掌上电脑(personal digital assistant,PDA)、移动手机、平板电脑、无线终端设备、嵌入式设备、智能摄像头或有图10中类似结构的设备。本申请实施例不限定电子设备1000的类型。
在一些实施例中,图10中的处理器1001可以通过调用存储器1003中存储的计算机程序指令,使得电子设备1000执行上述方法实施例中的方法。
示例性的,图8或者图9中的各处理模块的功能/实现过程可以通过图10中的处理器1001调用存储器1003中存储的计算机程序指令来实现。例如,图8中的处理模块801的功能/实现过程可以通过图10中的处理器1001调用存储器1003中存储的计算机执行指令来实现。图9中的处理模块902的功能/实现过程可以通过图10中的处理器1001调用存储器1003中存储的计算机执行指令来实现。
在示例性实施例中,还提供了一种包括指令的计算机可读存储介质,上述指令可由电子设备1000的处理器1001执行以完成上述实施例的数据传输方法。因此其所能获得的技术效果可参考上述方法实施例,在此不再赘述。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件程序实现时,可以全部或部分地以计算机程序产品的形式来实现。该计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机程序指令时,全部或部分地产生按照本申请实施例的流程或功能。计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。
图11为本申请实施例提供的一种芯片的结构示意图。芯片1100包括一个或多个处理器1101以及接口电路1102。可选的,所述芯片1100还可以包含总线1103。
其中,处理器1101可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过处理器1101中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器1101可以是通用处理器、数字通信器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或者其它可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
接口电路1102用于数据、指令或者信息的发送或者接收。处理器1101可以利用接口电路1102接收的数据、指令或者其它信息,进行加工,可以将加工完成信息通过接口电路1102发送出去。
可选的,芯片1100还包括存储器,存储器可以包括只读存储器和随机存取存储器,并向处理器提供操作指令和数据。存储器的一部分还可以包括非易失性随机存取存储器(Non-Volatile Random Access Memory,NVRAM)。
可选的,存储器存储了可执行软件模块或者数据结构,处理器可以通过调用存储器存储的操作指令(该操作指令可存储在操作系统中),执行相应的操作。
可选的,芯片1100可以使用在本申请实施例涉及的数据传输装置(包括第一装置和第 二装置)中。可选的,接口电路1102可用于输出处理器1101的执行结果。关于本申请的一个或多个实施例提供的通信方法可参考前述各个实施例,这里不再赘述。
需要说明的,处理器1101、接口电路1102各自对应的功能既可以通过硬件设计实现,也可以通过软件设计来实现,还可以通过软硬件结合的方式来实现,这里不作限制。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本申请的其它实施方案。本申请旨在涵盖本申请的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本申请的一般性原理并包括本申请未公开的本技术领域中的公知常识或惯用技术手段。
最后应说明的是:以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何在本申请揭露的技术范围内的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (40)

  1. 一种数据传输方法,其特征在于,所述方法包括:
    第一装置根据待发送数据的信号调制方式和预配置序列确定第一序列和第二序列,其中,所述第一序列与所述第二序列为格雷互补序列,所述第一序列和所述第二序列中元素的实部和虚部的幅值与所述待发送数据对应的序列中的部分元素的实部和/或虚部的幅值相同;
    所述第一装置输出前导序列,所述前导序列包括所述第一序列和所述第二序列。
  2. 根据权利要求1所述的方法,其特征在于,所述待发送数据的信号调制方式包括4-正交幅度调制QAM或16QAM。
  3. 根据权利要求2所述的方法,其特征在于,当所述待发送数据的信号调制方式为4QAM时,所述第一序列和所述第二序列中元素的实部和虚部的幅值包括:
    Figure PCTCN2021104772-appb-100001
    Figure PCTCN2021104772-appb-100002
    其中,E表示所述待发送数据的信号功率。
  4. 根据权利要求2所述的方法,其特征在于,当所述待发送数据的信号调制方式为16QAM时,所述第一序列和所述第二序列中元素的实部和虚部的幅值包括:
    Figure PCTCN2021104772-appb-100003
    Figure PCTCN2021104772-appb-100004
    其中,E表示所述待发送数据的信号功率。
  5. 根据权利要求1-4任一项所述的方法,其特征在于,所述前导序列的功率与所述待发送数据的信号功率相等。
  6. 根据权利要求2所述的方法,其特征在于,当所述第一装置输出的所述待发送数据的信号调制方式为4QAM时,所述第一装置根据待发送数据的信号调制方式和预配置序列确定第一序列和第二序列,具体包括:
    所述第一装置分别对预配置的第三序列和第四序列进行
    Figure PCTCN2021104772-appb-100005
    的二进制相移键控BPSK调制和
    Figure PCTCN2021104772-appb-100006
    的相位偏移后,得到所述第一序列和所述第二序列,其中,所述k为奇数,所述第三序列与所述第四序列为格雷互补序列。
  7. 根据权利要求2所述的方法,其特征在于,当所述第一装置输出的所述待发送数据的信号调制方式为4QAM时,所述第一装置根据待发送数据的信号调制方式和预配置序列确定第一序列和第二序列,具体包括:
    所述第一装置分别对预配置的第三序列和第四序列进行
    Figure PCTCN2021104772-appb-100007
    的相位偏移后得到所述第一序列和所述第二序列,其中,所述k为奇数,所述第三序列与所述第四序列为格雷互补序列。
  8. 根据权利要求2所述的方法,其特征在于,当所述待发送数据的信号调制方式为4QAM或者16QAM时,所述第一装置根据待发送数据的信号调制方式和预配置序列确定第一序列和第二序列,具体包括:
    所述第一装置根据预配置的第三序列和第四序列进行运算得到所述第一序列,以及,
    所述第一装置根据预配置的所述第三序列和所述第四序列进行运算得到所述第二 序列,所述第三序列与所述第四序列为格雷互补序列。
  9. 根据权利要求6-8任一项所述的方法,其特征在于,所述第三序列和所述第四序列包括按预设顺序排列的元素1和-1。
  10. 根据权利要求6所述的方法,其特征在于,所述第一序列中的第n个元素满足:
    Figure PCTCN2021104772-appb-100008
    所述第二序列中的第n个元素满足:
    Figure PCTCN2021104772-appb-100009
    其中,A n表示所述第一序列的第n个元素,B n表示所述第二序列的第n个元素,a n表示所述第三序列的第n个元素,b n表示所述第四序列的第n个元素。
  11. 根据权利要求7所述的方法,其特征在于,所述第一序列中的第n个元素满足:
    Figure PCTCN2021104772-appb-100010
    所述第二序列中的第n个元素满足:
    Figure PCTCN2021104772-appb-100011
    其中,A n表示所述第一序列的第n个元素,B n表示所述第二序列的第n个元素,a n表示所述第三序列的第n个元素,b n表示所述第四序列的第n个元素。
  12. 根据权利要求8所述的方法,其特征在于,当所述待发送数据的信号调制方式为4QAM时,所述第一序列中的第n个元素满足:
    Figure PCTCN2021104772-appb-100012
    所述第二序列中的第n个元素满足:
    Figure PCTCN2021104772-appb-100013
    其中,A n表示所述第一序列的第n个元素,B n表示所述第二序列的第n个元素,a n表示所述第三序列的第n个元素,b n表示所述第四序列的第n个元素,k为整数。
  13. 根据权利要求8所述的方法,其特征在于,当所述待发送数据的信号调制方式为16QAM时,所述第一序列中的第n个元素满足:
    Figure PCTCN2021104772-appb-100014
    所述第二序列中的第n个元素满足:
    Figure PCTCN2021104772-appb-100015
    其中,A n表示所述第一序列的第n个元素,B n表示所述第二序列的第n个元素,a n表示所述第三序列的第n个元素,b n表示所述第四序列的第n个元素,k为整数。
  14. 一种数据传输方法,其特征在于,所述方法包括:
    第二装置接收前导序列;
    所述第二装置对所述前导序列进行盲检,根据所述前导序列从多个预配置序列中确定第一序列和第二序列,其中,所述第一序列和所述第二序列为预先配置的格雷互补序列;
    所述第二装置根据所述第一序列、所述第二序列与所述前导序列进行信道估计。
  15. 根据权利要求14所述的方法,其特征在于,所述第二装置对所述前导序列进行盲检,根据所述前导序列从预配置序列中确定第一序列和第二序列,具体包括:
    所述前导序列包括第三序列和第四序列,所述第二装置将所述第三序列分别与所述多个预配置序列进行互相关运算,和/或所述第二装置将所述第四序列分别与所述多 个预配置序列进行互相关运算,得到多个相关序列;
    所述第二装置根据所述多个相关序列确定所述第一序列和所述第二序列。
  16. 根据权利要求15所述的方法,其特征在于,若所述第三序列与预配置序列1进行互相关运算加上所述第四序列与预配置序列2进行互相关运算得到的相关序列的相关性最高,则所述第二装置确定预配置序列1和预配置序列2分别为所述第一序列和所述第二序列,其中,所述预配置序列1和所述预配置序列2为所述多个预配置序列中的一个。
  17. 根据权利要求14-16任一项所述的方法,其特征在于,所述第二装置根据所述第一序列、所述第二序列与所述前导序列进行信道估计,具体包括:
    所述前导序列包括第三序列和第四序列,所述第二装置根据所述第一序列与所述第三序列进行互相关运算得到第五序列,以及,所述第二装置根据所述第二序列与所述第四序列进行互相关运算得到第六序列;
    所述第二装置根据所述第五序列、所述第六序列以及所述第三序列中的元素个数得到第一装置和所述第二装置之间进行数据传输的信道参数序列。
  18. 根据权利要求17所述的方法,其特征在于,所述信道参数序列中包括的第n个元素H n满足:
    Figure PCTCN2021104772-appb-100016
    其中,A n′表示所述第三序列的第n个元素,C n表示所述第一序列的第n个元素,D n表示所述第二序列的第n个元素,B n′表示所述第四序列的第n个元素,N表示所述第三序列中的元素个数,
    Figure PCTCN2021104772-appb-100017
    表示互相关运算。
  19. 一种数据传输装置,其特征在于,所述装置包括:
    处理模块,用于根据待发送数据的信号调制方式和预配置序列确定第一序列和第二序列,其中,所述第一序列与所述第二序列为格雷互补序列,所述第一序列和所述第二序列中元素的实部和虚部的幅值与所述待发送数据对应的序列中的部分元素的实部和/或虚部的幅值相同;
    输出模块,用于输出前导序列,所述前导序列包括所述第一序列和所述第二序列。
  20. 根据权利要求19所述的装置,其特征在于,所述待发送数据的信号调制方式包括4-正交幅度调制QAM或16QAM。
  21. 根据权利要求20所述的装置,其特征在于,当所述待发送数据的信号调制方式为4QAM时,所述第一序列和所述第二序列中元素的实部和虚部的幅值包括:
    Figure PCTCN2021104772-appb-100018
    Figure PCTCN2021104772-appb-100019
    其中,E表示所述待发送数据的信号功率。
  22. 根据权利要求20所述的装置,其特征在于,当所述待发送数据的信号调制方式为16QAM时,所述第一序列和所述第二序列中元素的实部和虚部的幅值包括:
    Figure PCTCN2021104772-appb-100020
    Figure PCTCN2021104772-appb-100021
    其中,E表示所述待发送数据的信号功率。
  23. 根据权利要求19-22任一项所述的装置,其特征在于,所述前导序列的功率与所述待发送数据的信号功率相等。
  24. 根据权利要求20所述的装置,其特征在于,当所述待发送数据的信号调制方 式为4QAM时,所述处理模块,具体用于:
    分别对预配置的第三序列和第四序列进行
    Figure PCTCN2021104772-appb-100022
    的二进制相移键控BPSK调制和
    Figure PCTCN2021104772-appb-100023
    的相位偏移后,得到所述第一序列和所述第二序列,其中,所述k为奇数,所述第三序列与所述第四序列为格雷互补序列。
  25. 根据权利要求20所述的装置,其特征在于,当所述待发送数据的信号调制方式为4QAM时,所述处理模块,具体用于:
    分别对预配置的第三序列和第四序列进行
    Figure PCTCN2021104772-appb-100024
    的相位偏移后得到所述第一序列和所述第二序列,其中,所述k为奇数,所述第三序列与所述第四序列为格雷互补序列。
  26. 根据权利要求20所述的装置,其特征在于,当所述待发送数据的信号调制方式为4QAM或者16QAM时,所述处理模块,具体用于:
    根据预配置的第三序列和第四序列进行运算得到所述第一序列,以及,
    根据预配置的所述第三序列和所述第四序列进行运算得到所述第二序列,所述第三序列与所述第四序列为格雷互补序列。
  27. 根据权利要求24-26任一项所述的装置,其特征在于,所述第三序列和所述第四序列包括按预设顺序排列的元素1和-1。
  28. 根据权利要求24所述的装置,其特征在于,所述第一序列中的第n个元素满足:
    Figure PCTCN2021104772-appb-100025
    所述第二序列中的第n个元素满足:
    Figure PCTCN2021104772-appb-100026
    其中,A n表示所述第一序列的第n个元素,B n表示所述第二序列的第n个元素,a n表示所述第三序列的第n个元素,b n表示所述第四序列的第n个元素。
  29. 根据权利要求25所述的装置,其特征在于,所述第一序列中的第n个元素满足:
    Figure PCTCN2021104772-appb-100027
    所述第二序列中的第n个元素满足:
    Figure PCTCN2021104772-appb-100028
    其中,A n表示所述第一序列的第n个元素,B n表示所述第二序列的第n个元素,a n表示所述第三序列的第n个元素,b n表示所述第四序列的第n个元素。
  30. 根据权利要求26所述的装置,其特征在于,当所述待发送数据的信号调制方式为4QAM时,所述第一序列中的第n个元素满足:
    Figure PCTCN2021104772-appb-100029
    所述第二序列中的第n个元素满足:
    Figure PCTCN2021104772-appb-100030
    其中,A n表示所述第一序列的第n个元素,B n表示所述第二序列的第n个元素,a n表示所述第三序列的第n个元素,b n表示所述第四序列的第n个元素,k为整数。
  31. 根据权利要求26所述的装置,其特征在于,当所述待发送数据的信号调制方式为16QAM时,所述第一序列中的第n个元素满足:
    Figure PCTCN2021104772-appb-100031
    所述第二序列中的第n个元素满足:
    Figure PCTCN2021104772-appb-100032
    其中,A n表示所述第一序列的第n个元素,B n表示所述第二序列的第n个元素,a n表示所述第三序列的第n个元素,b n表示所述第四序列的第n个元素,k为整数。
  32. 一种数据传输装置,其特征在于,所述装置包括:
    接收模块,用于接收前导序列;
    处理模块,用于对所述前导序列进行盲检,根据所述前导序列从多个预配置序列中确定第一序列和第二序列,其中,所述第一序列和所述第二序列为预先配置的格雷互补序列;
    所述处理模块,还用于根据所述第一序列、所述第二序列与所述前导序列进行信道估计。
  33. 根据权利要求32所述的装置,其特征在于,所述前导序列包括第三序列和第四序列,所述处理模块,具体用于:将所述第三序列分别与所述多个预配置序列进行互相关运算,和/或所述第二装置将所述第四序列分别与所述多个预配置序列进行互相关运算,得到多个相关序列;
    根据所述多个相关序列确定所述第一序列和所述第二序列。
  34. 根据权利要求32所述的装置,其特征在于,若所述第三序列与预配置序列1进行互相关运算加上所述第四序列与预配置序列2进行互相关运算得到的相关序列的相关性最高,则所述处理模块用于确定预配置序列1和预配置序列2分别为所述第一序列和所述第二序列,其中,所述预配置序列1和所述预配置序列2为所述多个预配置序列中的一个。
  35. 根据权利要求32-34任一项所述的装置,其特征在于,所述前导序列包括第三序列和第四序列,所述处理模块,具体用于:
    根据所述第一序列与所述第三序列进行互相关运算得到第五序列,以及,所述第二装置根据所述第二序列与所述第四序列进行互相关运算得到第六序列;
    根据所述第五序列、所述第六序列以及所述第三序列中的元素个数得到第一装置和第二装置之间进行数据传输的信道参数序列。
  36. 根据权利要求35所述的装置,其特征在于,所述信道参数序列中包括的第n个元素H n满足:
    Figure PCTCN2021104772-appb-100033
    其中,A n′表示所述第三序列的第n个元素,C n表示所述第一序列的第n个元素,D n表示所述第二序列的第n个元素,B n′表示所述第四序列的第n个元素,N表示所述第三序列中的元素个数,
    Figure PCTCN2021104772-appb-100034
    表示互相关运算。
  37. 一种电子设备,其特征在于,所述电子设备包括:
    处理器和传输接口;
    其中,所述处理器被配置为执行存储在存储器中的指令,以实现如权利要求1至13或者14-18中任一项所述的方法。
  38. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有指 令,当所述指令由计算机或处理器执行时,使得所述计算机或所述处理器能够执行如权利要求1至13或者14-18中任一项所述的方法。
  39. 一种计算机程序产品,其特征在于,所述计算机程序产品可以包括程序指令,当所述计算机程序产品在计算机上运行时,使得所述计算机可以执行如权利要求1至13或者14-18中任一项所述的方法。
  40. 一种通信系统,其特征在于,所述通信系统包括如权利要求19-31中任一项所述的装置和如权利要求32-36中任一项所述的装置。
PCT/CN2021/104772 2020-07-15 2021-07-06 一种数据传输方法及装置 WO2022012381A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP21842640.1A EP4167626A4 (en) 2020-07-15 2021-07-06 DATA TRANSMISSION METHOD AND DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010682134.1A CN113950069A (zh) 2020-07-15 2020-07-15 一种数据传输方法及装置
CN202010682134.1 2020-07-15

Publications (1)

Publication Number Publication Date
WO2022012381A1 true WO2022012381A1 (zh) 2022-01-20

Family

ID=79326212

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/104772 WO2022012381A1 (zh) 2020-07-15 2021-07-06 一种数据传输方法及装置

Country Status (3)

Country Link
EP (1) EP4167626A4 (zh)
CN (1) CN113950069A (zh)
WO (1) WO2022012381A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024124403A1 (zh) * 2022-12-13 2024-06-20 华为技术有限公司 一种序列传输方法及装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050036481A1 (en) * 2002-03-07 2005-02-17 Naftali Chayat Hierarchical preamble constructions for OFDMA based on complementary sequences
CN101048961A (zh) * 2004-10-29 2007-10-03 三星电子株式会社 用于控制正交频分多址通信系统中关于自适应天线系统的前导码序列的发送功率的设备和方法
CN107182118A (zh) * 2017-07-21 2017-09-19 深圳市华慧能节能科技有限公司 一种用于多用户多天线无线通信系统功率分配的方法及设备

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100770912B1 (ko) * 2003-06-16 2007-10-26 삼성전자주식회사 직교 주파수 분할 다중 방식을 사용하는 통신 시스템에서프리앰블 시퀀스 생성 장치 및 방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050036481A1 (en) * 2002-03-07 2005-02-17 Naftali Chayat Hierarchical preamble constructions for OFDMA based on complementary sequences
CN101048961A (zh) * 2004-10-29 2007-10-03 三星电子株式会社 用于控制正交频分多址通信系统中关于自适应天线系统的前导码序列的发送功率的设备和方法
CN107182118A (zh) * 2017-07-21 2017-09-19 深圳市华慧能节能科技有限公司 一种用于多用户多天线无线通信系统功率分配的方法及设备

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CHANGHO SUH; CHAN-SOO HWANG; HOKYU CHOI: "Preamble Design for Channel Estimation in MIMO-OFDM Systems", GLOBECOM '03. IEEE GLOBAL TELECOMMUNICATIONS CONFERENCE, vol. 1, 1 December 2003 (2003-12-01), pages 317 - 321, XP010677895, DOI: 10.1109/GLOCOM.2003.1258253 *
See also references of EP4167626A4
WOLF MIKE; CHEEMA SHER ALI; HAARDT MARTIN: "Synchronization and Channel Estimation for Optical Block-transmission Systems with IM/DD", 2016 18TH INTERNATIONAL CONFERENCE ON TRANSPARENT OPTICAL NETWORKS (ICTON), 10 July 2016 (2016-07-10), pages 1 - 5, XP032949845, ISSN: 2161-2064, DOI: 10.1109/ICTON.2016.7550318 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024124403A1 (zh) * 2022-12-13 2024-06-20 华为技术有限公司 一种序列传输方法及装置

Also Published As

Publication number Publication date
EP4167626A1 (en) 2023-04-19
EP4167626A4 (en) 2024-01-03
CN113950069A (zh) 2022-01-18

Similar Documents

Publication Publication Date Title
US11025393B2 (en) Wireless communication method, wireless communications apparatus, and wireless communications system
WO2016119105A1 (zh) 极化Polar码的生成方法和设备
WO2018177161A1 (zh) 一种相位调整方法、相关设备和通信系统
WO2017124844A1 (zh) 确定极化码传输块大小的方法和通信设备
CN112995083A (zh) 一种信息传输方法和装置
CN106664266B (zh) 电子设备以及用于低功率操作的方法
US11838878B2 (en) Methods and units of a base station system for handling a signal for transmission over a fronthaul link between the units
WO2019170161A1 (zh) 通知信道质量的方法和装置
WO2022012381A1 (zh) 一种数据传输方法及装置
US11632139B2 (en) Efficient transfer of IQ sample data
WO2022022516A1 (zh) 无线通信的方法和装置
KR20200011711A (ko) I/q 캘리브레이션 방법 및 그 장치
WO2018027939A1 (zh) 数据传输的方法及其网络设备
WO2021087986A1 (zh) 一种调制和编码方案配置方法及装置
WO2022077517A1 (zh) 一种通信方法和装置
WO2022033448A1 (zh) 一种数据传输的方法及装置
EP3902154A1 (en) Data transmission method and apparatus
WO2021244403A1 (zh) 一种信号发送方法、信号接收方法与相关装置
WO2022077510A1 (zh) 一种解调参考信号dmrs的资源确定方法和通信装置
US12021671B2 (en) Communication device for performing differential phase shift keying based on a plurality of previous signals and operating method thereof
WO2023246422A1 (zh) 数据处理方法和数据处理装置
WO2024113114A1 (zh) 通信方法及相关装置
WO2022111220A1 (zh) 一种数据传输方法和装置以及系统
WO2024000125A1 (en) Access point station, non-access point station, and wireless communication method
RU2776782C2 (ru) Устройство и способ обработки сигнала на основе последовательности

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21842640

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021842640

Country of ref document: EP

Effective date: 20230112

NENP Non-entry into the national phase

Ref country code: DE