WO2022012376A1 - 一种高频双感应天线及其制作方法 - Google Patents

一种高频双感应天线及其制作方法 Download PDF

Info

Publication number
WO2022012376A1
WO2022012376A1 PCT/CN2021/104734 CN2021104734W WO2022012376A1 WO 2022012376 A1 WO2022012376 A1 WO 2022012376A1 CN 2021104734 W CN2021104734 W CN 2021104734W WO 2022012376 A1 WO2022012376 A1 WO 2022012376A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
frequency
contact
chip
frequency antenna
Prior art date
Application number
PCT/CN2021/104734
Other languages
English (en)
French (fr)
Inventor
龚学军
Original Assignee
北京握奇数据股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京握奇数据股份有限公司 filed Critical 北京握奇数据股份有限公司
Publication of WO2022012376A1 publication Critical patent/WO2022012376A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/2208Supports; Mounting means by structural association with other equipment or articles associated with components used in interrogation type services, i.e. in systems for information exchange between an interrogator/reader and a tag/transponder, e.g. in Radio Frequency Identification [RFID] systems
    • H01Q1/2216Supports; Mounting means by structural association with other equipment or articles associated with components used in interrogation type services, i.e. in systems for information exchange between an interrogator/reader and a tag/transponder, e.g. in Radio Frequency Identification [RFID] systems used in interrogator/reader equipment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/2208Supports; Mounting means by structural association with other equipment or articles associated with components used in interrogation type services, i.e. in systems for information exchange between an interrogator/reader and a tag/transponder, e.g. in Radio Frequency Identification [RFID] systems
    • H01Q1/2225Supports; Mounting means by structural association with other equipment or articles associated with components used in interrogation type services, i.e. in systems for information exchange between an interrogator/reader and a tag/transponder, e.g. in Radio Frequency Identification [RFID] systems used in active tags, i.e. provided with its own power source or in passive tags, i.e. deriving power from RF signal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0006Particular feeding systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0087Apparatus or processes specially adapted for manufacturing antenna arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q7/00Loop antennas with a substantially uniform current distribution around the loop and having a directional radiation pattern in a plane perpendicular to the plane of the loop

Definitions

  • the invention relates to the technical field of antennas with a working frequency range of 3-30Mhz high frequency band, in particular to a high frequency dual induction antenna and a manufacturing method thereof.
  • the international standards in contactless smart cards/tags are ISO14443, ISO15693, ISO18000-3, etc., and the antenna design frequency bands of cards and labels using these standards are all high-frequency mid-range 13.56Mhz, and most of the actual products of this frequency band use more than one antenna.
  • the antenna is made of coiled copper wire, or a metal PCB antenna is used.
  • the vast majority of bank cards and transportation cards on the market are made of smart card SE chips welded with copper coil antennas. At present, almost all copper coil antennas in this frequency band are designed as a closed coil of various sizes and shapes. design.
  • the high-frequency antenna has two functions. One is to obtain the corresponding working voltage and current from the reader and provide it to the smart card.
  • the SE module works, and another function is to complete the communication interaction between the card and the reader by receiving and transmitting the corresponding electromagnetic modulation waveform signals.
  • the current non-connected high-frequency coils are a closed copper winding coil (or use a PCB metal coil) with 2 turns to 10 turns (generally, the smaller the size, the more turns).
  • One section is connected to the La end of the antenna interface of the smart card SE module, and the other end of the coil is connected to the Lb end of the antenna interface of the smart card SE module (there is a corresponding matching circuit when the PCB coil antenna is connected to the chip).
  • the purpose of the present invention is to provide a high-frequency dual-inductive antenna and a manufacturing method thereof, which adopts the design of dual high-frequency induction coil antennas to greatly improve the radio frequency performance of the card.
  • a high-frequency dual induction antenna comprising: a main high-frequency antenna and a secondary high-frequency antenna that are intertwined with each other but not connected, wherein the main high-frequency antenna is a peripheral large coil antenna, and the secondary high-frequency antenna is the The small coil antenna in the main high-frequency antenna, the main high-frequency antenna and the secondary high-frequency antenna are wound in the same direction when they are wound from the outer circle to the inner circle, and one end of the main high-frequency antenna is connected to the first side of the chip. A non-contact signal contact is connected, and one end of the secondary high-frequency antenna is connected to the second non-contact signal contact of the chip.
  • the chip is an SE chip
  • one end of the main high-frequency antenna is connected to the La contact of the SE chip
  • one end of the secondary high-frequency antenna is connected to the La contact of the SE chip.
  • the Lb contacts of the SE chip are connected.
  • the main high-frequency antenna and the secondary high-frequency antenna are both wound clockwise or counterclockwise when wound from the outer circle to the inner circle.
  • the main high-frequency antenna and the secondary high-frequency antenna need to be debugged, so that the main high-frequency antenna can be adjusted. It induces and couples with the secondary high-frequency antenna to generate a positive feedback effect, and realizes the positive superposition of various radio frequency parameters.
  • the high-frequency dual-induction antenna includes the following implementations: a copper wire winding method, a PCB board antenna method, and a copper or aluminum etching method.
  • the various radio frequency parameters include: coil inductance, coil resistance, and coil capacitance of the main high-frequency antenna and the secondary high-frequency antenna.
  • the debugging circuit of the high-frequency dual-induction antenna includes: coil inductance, coil resistance, coil capacitance, La contact, Lb contact, chip capacitance and chip resistance, wherein , one end of the coil inductance is connected to one end of the coil resistance, the other end of the coil inductance is connected to one end of the coil capacitance and the Lb contact, and the other end of the coil resistance is connected to the coil capacitance
  • the other end of the chip capacitor is connected to the La contact
  • one end of the chip capacitor is connected to one end of the chip resistor and the La contact
  • the other end of the chip capacitor is connected to the other end of the chip resistor and the La contact. Lb contact connection.
  • the embodiment of the present invention also provides a method for manufacturing a high-frequency dual-inductive antenna, the manufacturing method comprising:
  • step S100 includes:
  • a copper wire is wound from the free end of the main high-frequency antenna in one direction by a winding machine, and then wound in the opposite direction after passing through the La contact and the Lb contact in sequence, and finally from the The free end of the secondary high-frequency antenna ends the winding.
  • step S100 includes:
  • a copper wire is wound counterclockwise from the free end of the main high-frequency antenna through a winding machine, and then wound clockwise after passing through the La contact and the Lb contact in sequence, and finally from the The free end of the sub-HF antenna ends the winding; or
  • a copper wire is wound clockwise from the free end of the main high-frequency antenna through a winding machine, and then is wound counterclockwise after passing through the La contact and the Lb contact in sequence, and finally from the The free end of the secondary high-frequency antenna ends the winding.
  • the invention adopts the design of double high-frequency induction coil antennas, which greatly improves the radio frequency performance of the card; the card adopts the design of double induction antennas, which greatly increases the use range of the CPU card, and the compatibility of the card reader and writer. Stronger; when using the SE chip with poor RF performance, the use of dual-inductance antenna design can overcome the shortcomings of the chip, ensure that the overall RF performance of the card is improved, and make customers feel better; use two coil antennas to connect in series Integrated design, the winding machine is convenient for one finger winding during the production process, which improves the production efficiency and reduces the cost.
  • FIG. 1 is a schematic structural diagram of an existing high-frequency antenna provided in an embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of a high-frequency dual induction antenna provided in an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a design of a high-frequency dual-induction antenna provided in an embodiment of the present invention.
  • FIG. 4 is a schematic flowchart of a method for manufacturing a high-frequency dual-inductive antenna provided in an embodiment of the present invention
  • FIG. 5 is a schematic diagram of the winding of a high-frequency dual-inductive antenna provided in an embodiment of the present invention.
  • the present invention changes the design that one SE chip of the conventional smart card is only connected to one high-frequency antenna, and adopts the design that one SE chip is connected to two high-frequency antennas at the same time.
  • the developed dual-induction high-frequency antenna sample card has greatly improved the non-contact radio frequency parameters. This design technique is also applicable to all antenna design application scenarios in this frequency band (cards, readers, tags, etc.).
  • a high-frequency dual induction antenna includes: a main high-frequency antenna and a secondary high-frequency antenna that are intertwined but not connected to each other, wherein the main high-frequency antenna is a peripheral large coil antenna, and the secondary high-frequency antenna is The small coil antenna in the main high-frequency antenna, the main high-frequency antenna and the secondary high-frequency antenna are wound in the same direction from the outer circle to the inner circle, and one end of the main high-frequency antenna is connected to the first non-contact signal contact of the chip connection, one end of the secondary high-frequency antenna is connected to the second non-contact signal contact of the chip.
  • the chip is an SE chip
  • one end of the main high-frequency antenna is connected to the La contact of the SE chip
  • one end of the secondary high-frequency antenna is connected to the Lb contact of the SE chip.
  • the main high-frequency antenna and the secondary high-frequency antenna are wound from the outer circle to the inner circle, they are both wound clockwise or both are wound counterclockwise.
  • the dual induction antenna design includes the following implementation methods: copper wire winding, PCB board antenna, and antenna design and production methods such as copper or aluminum etching.
  • the key point of the present invention is that the winding mode of the dual high-frequency induction antenna needs to consider the electromagnetic compatibility design.
  • both antennas are designed in the high frequency band, and both are in a card, they are passively obtain the working voltage and current from the high frequency reader, and the electromagnetic compatibility design is very important.
  • the magnetic induction magnetic field should be guaranteed to be in the same direction, so that the induced energy will be superimposed and enhanced.
  • the main high-frequency antenna of the outer ring is wound clockwise from the outer ring to the inside, and the secondary high-frequency antenna is wound clockwise from the outer ring to the inside.
  • both the primary and secondary coils in the secondary coil generate magnetic fields from the outside to the inside, thereby increasing the energy obtained by the secondary coil.
  • the dual-inductive antenna is used to increase the current and voltage induced by the card by 30% compared with the conventional card.
  • the modulation signal generated by the main coil antenna and the modulation signal generated by the secondary coil antenna will have a positive superposition effect.
  • the actual product Test data showed that the card's signal modulation amplitude almost doubled.
  • the two high-frequency antennas In order to obtain good non-contact RF performance for the dual high-frequency inductive antennas, the two high-frequency antennas must be debugged so that the two high-frequency antennas are precisely matched, and the two high-frequency antennas induce and couple each other, thereby generating positive Due to the effect of feedback, various RF parameters form a positive superposition.
  • the specific debugging points are as follows.
  • the main high-frequency antenna and the secondary high-frequency antenna need to be debugged, so that the main high-frequency antenna and the secondary high-frequency antenna can induce and couple with each other to generate positive feedback, and realize various radio frequencies. Positive superposition of parameters.
  • various radio frequency parameters include: coil inductance, coil resistance, and coil capacitance of the main high-frequency antenna and the secondary high-frequency antenna.
  • the debugging circuit of the high-frequency dual induction antenna includes: coil inductance, coil resistance, coil capacitance, La contact, Lb contact, chip capacitance and chip resistance, wherein one end of the coil inductance is connected to one end of the coil resistance, and the coil The other end of the inductor is connected to one end of the coil capacitor and the Lb contact, the other end of the coil resistor is connected to the other end of the coil capacitor and the La contact, one end of the chip capacitor is connected to one end of the chip resistor and the La contact, and the chip capacitor is connected to the La contact. The other end is connected to the other end of the chip resistor and the Lb contact.
  • the debugging circuit diagram of the high-frequency dual-sensing antenna of the present invention is shown.
  • the RF performance of an antenna mainly depends on three parameters, namely coil inductance L coil / coil resistance R coil / coil capacitance C coil .
  • the L coil value of an ordinary single high-frequency closed coil is 2 to 3 microhenries, and its R coil is about 5 ohms, so its Q value is generally between 30 and 50.
  • the dual high-frequency induction antenna of the present invention the L coil value of the main high-frequency antenna is 1.5 to 2 microhenries, and the R coil is about 3 ohms, so that its Q value is generally between 40 and 50.
  • the L coil value is 7 to 9 microhenries, and the R coil is about 12 ohms, so the Q value is generally between 60 and 70. Since the La/Lb contacts of the SE chip are respectively welded to the main and secondary high-frequency antenna coils At one end, the equivalent L coil value of these two antennas is 1.5 to 2 microhenries, and the equivalent R coil is about 10 to 15 ohms, so that the Q value is greatly reduced to between 10 and 15. Therefore, the dual antenna of the present invention
  • the high-frequency induction antenna solves the contradiction between high Q value and narrow bandwidth. Compared with the conventional single high-frequency closed antenna, it has high efficiency and strong compatibility.
  • a method for manufacturing a dual high-frequency induction antenna includes:
  • Step S100 includes:
  • a copper wire is wound from the free end of the main high-frequency antenna in one direction through the winding machine, and then wound in the opposite direction after passing through the La contact and the Lb contact in turn, and finally ends at the free end of the secondary high-frequency antenna. winding.
  • a copper wire is wound counterclockwise from the free end of the main high-frequency antenna by the winding machine, and then wound clockwise after passing through the La contact and the Lb contact in turn, and finally from the secondary high-frequency antenna.
  • the free end ends the winding; or
  • a copper wire is wound clockwise from the free end of the main high-frequency antenna through a winding machine, and then is wound counterclockwise after passing through the La contact and the Lb contact in sequence, and finally from the The free end of the secondary high-frequency antenna ends the winding.
  • the two high-frequency coil antennas can be wound around the fingers in one piece. Once in and out, the winding machine first winds the line with the thick arrow at the bottom, and finally ends with the line with the thick arrow in the middle. As shown in Figure 5.
  • the integrated winding of the antenna is to first connect the connecting end of the main antenna and the La contact of the SE chip and the connecting end of the secondary antenna and the Lb contact of the SE chip together, so that the two high-frequency antennas are connected in series, and the two antennas are connected in series.
  • the coil is welded with the SE chip, the uppermost thin arrow in Figure 4 can be cut into two independent antenna coils by a punching blade.
  • the dual-inductance antenna design can overcome the shortcomings of the chip, ensure that the RF performance of the overall card is improved, and make customers feel better.

Abstract

本发明公开了一种高频双感应天线及其制作方法,天线包括:相互缠绕但不连接的主高频天线和副高频天线,其中,主高频天线为外围的大线圈天线,副高频天线为主高频天线内的小线圈天线,主高频天线和副高频天线从外圈向里圈绕制时朝同一方向绕制,主高频天线的一端与芯片的第一非接信号触点连接,副高频天线的一端与芯片的第二非接信号触点连接。本发明采用双高频感应线圈天线设计,大幅提升了卡片的射频性能;采用双感应天线设计的卡片,大大增加了CPU卡片的使用范围,卡片的读写器兼容性更强;在采用射频性能较差的SE芯片时,采用双感天线设计可以克服芯片的弊端,确保整体卡片的射频性能有所提升,使客户的使用感受更好。

Description

一种高频双感应天线及其制作方法 技术领域
本发明涉及工作频率范围在3-30Mhz高频段的天线技术领域,具体涉及一种高频双感应天线及其制作方法。
背景技术
非接触智能卡/标签中的国际标准有ISO14443,ISO15693,ISO18000-3等,而采用这些标准的卡片和标签的天线设计频段均为高频的中段13.56Mhz,该频段的天线实际产品大多采用一个多圈铜线绕制天线而成,或者采用一个金属PCB天线。如目前市面上绝大多数银行卡和交通卡,都是智能卡SE芯片焊接上铜绕线天线而成,目前几乎所有该频段的铜绕线天线设计均为各种尺寸规格和形状的一个闭合线圈设计。
现在实际应用的金融或交通智能卡高频天线设计大多在一张卡片使用一个高频线圈天线设计,高频天线的作用有两个,一个是从读写器中获取相应的工作电压电流提供给智能SE模块工作,另一个作用是通过接收和发射相应的电磁调制波形的信号完成卡片与读写器的通信交互。如图1所示,目前非接高频线圈都是由2圈到10圈(一般来说尺寸越小圈数越多)的一个闭合铜绕线线圈(或者使用PCB金属线圈),该线圈的一段与智能卡SE模块的天线接口La端连接,线圈的另一端与智能卡SE模块的天线接口Lb端连接(采用PCB线圈天线与芯片相连时有相应的匹配电路)。
现有设计方式的高频天线的卡片或标签,在某些的实际应用环境中,如一些标准要求很高的客户,要求卡片或标签的读写距离很高(8厘米以上),有一些使用设计M1卡标准读写器的项目需要应用CPU卡(M1卡读写器的某些射频指标仅为CPU智能卡读写器的1/10),或者要求使用规格很小的线圈与射频指标比较差的读写器进行通信的应用,以及在某些射频性能指标不佳的智能SE芯片希望获得很好应用感受,在以上的几种应用环境中,现有的常规高频闭合天线设计都无法满足要求,甚至有些项目中无法以实现卡片与读写器之间的正常通信。因此,需要设计一种高频双感应天线用以解决上述问 题。
发明内容
针对现有技术中存在的缺陷,本发明的目的在于提供一种高频双感应天线及其制作方法,采用双高频感应线圈天线设计,大幅提升了卡片的射频性能。
为实现上述目的,本发明采用的技术方案如下:
一种高频双感应天线,包括:相互缠绕但不连接的主高频天线和副高频天线,其中,所述主高频天线为外围的大线圈天线,所述副高频天线为所述主高频天线内的小线圈天线,所述主高频天线和所述副高频天线从外圈向里圈绕制时朝同一方向绕制,所述主高频天线的一端与芯片的第一非接信号触点连接,所述副高频天线的一端与所述芯片的第二非接信号触点连接。
进一步,如上所述的一种高频双感应天线,所述芯片为SE芯片,所述主高频天线的一端与所述SE芯片的La触点连接,所述副高频天线的一端与所述SE芯片的Lb触点连接。
进一步,如上所述的一种高频双感应天线,所述主高频天线和所述副高频天线从外圈向里圈绕制时均为顺时针绕制或者均为逆时针绕制。
进一步,如上所述的一种高频双感应天线,在所述高频双感应天线工作之前,需要对所述主高频天线和所述副高频天线进行调试,使所述主高频天线和所述副高频天线相互感应和耦合进而产生正反馈作用,实现各种射频参数的正叠加。
进一步,如上所述的一种高频双感应天线,所述高频双感应天线包括以下实现方式:铜线绕制方式、PCB板天线方式以及铜或铝蚀刻方式。
进一步,如上所述的一种高频双感应天线,所述各种射频参数包括:所述主高频天线和所述副高频天线的线圈电感、线圈电阻、线圈电容。
进一步,如上所述的一种高频双感应天线,所述高频双感应天线的调试电路包括:线圈电感、线圈电阻、线圈电容、La触点、Lb触点、芯片电容和芯片电阻,其中,所述线圈电感的一端与所述线圈电阻的一端连接,所述线圈电感的另一端与所述线圈电容的一端和所述Lb触点连接,所述线圈电阻的另一端与所述线圈电容的另一端和所述La触点连接,所述芯片电容的一端与所述芯片电阻的一端和所述La触点连接,所述芯片电容的另一端与所述芯片电阻的另一端和所述Lb触点连接。
本发明实施例中还提供了一种高频双感应天线的制作方法,所述制作方法包括:
S100、将主高频天线与SE芯片的La触点的连接端和副高频天线与所述SE芯片的Lb触点的连接端连接在一起绕制,将所述主高频天线和所述副高频天线串联在一起;
S200、在所述主高频天线和所述副高频天线与所述SE芯片焊接时,通过生产冲床刀片将所述La触点与所述Lb触点之间的连线切断,得到相互缠绕但不连接的所述主高频天线和所述副高频天线。
进一步,如上所述的一种高频双感应天线的制作方法,步骤S100包括:
通过绕线机将一根铜线从所述主高频天线的自由端开始朝一个方向绕制,依次经过所述La触点和所述Lb触点后朝反方向绕制,最后从所述副高频天线的自由端结束绕制。
进一步,如上所述的一种高频双感应天线的制作方法,步骤S100包括:
通过绕线机将一根铜线从所述主高频天线的自由端开始朝逆时针绕制,依次经过所述La触点和所述Lb触点后朝顺时针绕制,最后从所述副高频天线的自由端结束绕制;或者
通过绕线机将一根铜线从所述主高频天线的自由端开始朝顺时针绕制,依次经过所述La触点和所述Lb触点后朝逆时针绕制,最后从所述副高频天线的自由端结束绕制。
本发明的有益效果在于:本发明采用双高频感应线圈天线设计,大幅提升了卡片的射频性能;采用双感应天线设计的卡片,大大增加了CPU卡片的使用范围,卡片的读写器兼容性更强;在采用射频性能较差的SE芯片时,采用双感天线设计可以克服芯片的弊端,确保整体卡片的射频性能有所提升,使客户的使用感受更好;采用两个线圈天线进行串联一体设计,在生产过程中绕线机方便进行一次绕指,提高了生产效率,降低了成本。
附图说明
图1为本发明实施例中提供的现有高频天线的结构示意图;
图2为本发明实施例中提供的一种高频双感应天线的结构示意图;
图3为本发明实施例中提供的一种高频双感应天线的设计原理图;
图4为本发明实施例中提供的一种高频双感应天线的制作方法的流程示意图;
图5为本发明实施例中提供的一种高频双感应天线的绕制示意图。
具体实施方式
下面结合说明书附图与具体实施方式对本发明做进一步的详细说明。
本发明一改常规的智能卡一个SE芯片只连接一个高频天线的设计,采用了一个SE芯片同时与两个高频天线连接的设计。研制出来的双感应高频天线样卡在非接触射频参数有较大幅度的提升。该设计技术同样适用所有该频段(卡、读写器、标签等)天线设计应用的场景。
如图2所示,一种高频双感应天线,包括:相互缠绕但不连接的主高频天线和副高频天线,其中,主高频天线为外围的大线圈天线,副高频天线为主高频天线内的小线圈天线,主高频天线和副高频天线从外圈向里圈绕制时 朝同一方向绕制,主高频天线的一端与芯片的第一非接信号触点连接,副高频天线的一端与芯片的第二非接信号触点连接。
优选地,芯片为SE芯片,主高频天线的一端与SE芯片的La触点连接,副高频天线的一端与SE芯片的Lb触点连接。
优选地,主高频天线和副高频天线从外圈向里圈绕制时均为顺时针绕制或者均为逆时针绕制。
优选地,双感应天线设计包含以下实现方式:铜线绕制方式,PCB板天线,以及铜或铝蚀刻等天线设计与生产方式。
本发明重点在于双高频感应天线的绕线方式需要考虑电磁兼容设计。鉴于两个天线均设计在高频波段,并且都处在一张卡片内,都是被动的从高频的读写器处获取工作的电压电流,电磁兼容设计很重要,首先两个天线的电磁感应磁场应该保障为同一个方向,这样感应的能量就会叠加增强。如图2所示,外圈的主高频天线从外圈向里圈绕制时采用顺时针,副高频天线从外圈向里圈绕制时也是采用顺时针,根据电磁原理,当两个线圈产生顺时针电流时,在副线圈里主副线圈都产生从外到里的磁场,从而增加了副线圈获取的能量。通过实际的天线样卡测试,采用双感应天线使卡片感应的电流电压比常规卡片提升30%,同样主线圈天线产生的调制信号与副线圈天线产生的调制信号会产生正叠加效果,实际的产品测试数据表明,卡片的信号调制幅度几乎增加了一倍。
为了使双高频感应天线获得很好的非接射频性能,必须要对两个高频天线进行的调试,使两个高频天线精准匹配,两个高频天线相互感应和耦合,从而产生正反馈的作用,各种射频参数形成正叠加,具体有如下调试要点。
优选地,在高频双感应天线工作之前,需要对主高频天线和副高频天线进行调试,使主高频天线和副高频天线相互感应和耦合进而产生正反馈作用,实现各种射频参数的正叠加。
优选地,各种射频参数包括:主高频天线和副高频天线的线圈电感、线圈电阻、线圈电容。
优选地,高频双感应天线的调试电路包括:线圈电感、线圈电阻、线圈电容、La触点、Lb触点、芯片电容和芯片电阻,其中,线圈电感的一端与 线圈电阻的一端连接,线圈电感的另一端与线圈电容的一端和Lb触点连接,线圈电阻的另一端与线圈电容的另一端和La触点连接,芯片电容的一端与芯片电阻的一端和La触点连接,芯片电容的另一端与芯片电阻的另一端和Lb触点连接。
如图3所示,本发明高频双感应天线的调试电路图。天线的射频性能主要取决于三个参数,即线圈电感L coil/线圈电阻R coil/线圈电容C coil。普通的单高频闭合线圈的L coil值为2到3微亨,而其R coil为5欧左右,这样其Q值一般在30到50之间。而采用本发明的双高频感应天线,主高频天线L coil值为1.5到2微亨,而其R coil为3欧左右,这样其Q值一般在40到50之间,副高频天线L coil值为7到9微亨,而其R coil为12欧左右,这样其Q值一般在60到70之间,由于SE芯片的La/Lb触点分别焊接在主副高频天线线圈的一端,而这个两个天线的等效L coil值为1.5到2微亨,等效R coil为10到15欧左右,这样其Q值大幅下降到10到15之间,因此,本发明的双高频感应天线解决了Q值高与带宽窄的矛盾,与常规单高频闭合天线相比,效率高而且兼容性强。
如图4所示,一种双高频感应天线的制作方法,包括:
S100、将主高频天线与SE芯片的La触点的连接端和副高频天线与SE芯片的Lb触点的连接端连接在一起绕制,将主高频天线和副高频天线串联在一起;
步骤S100包括:
通过绕线机将一根铜线从主高频天线的自由端开始朝一个方向绕制,依次经过La触点和Lb触点后朝反方向绕制,最后从副高频天线的自由端结束绕制。
具体地,通过绕线机将一根铜线从主高频天线的自由端开始朝逆时针绕制,依次经过La触点和Lb触点后朝顺时针绕制,最后从副高频天线的自由端结束绕制;或者
通过绕线机将一根铜线从所述主高频天线的自由端开始朝顺时针绕制,依次经过所述La触点和所述Lb触点后朝逆时针绕制,最后从所述副高频天 线的自由端结束绕制。
S200、在主高频天线和副高频天线与SE芯片焊接时,通过生产冲床刀片将La触点与Lb触点之间的连线切断,得到相互缠绕但不连接的主高频天线和副高频天线。
关于上述双高频感应天线的生产绕指,2个高频线圈天线可以是一体绕指而成的,也就是根据目前绕线机的工作方式,2个天线是一根铜线连体绕指而成,一进一出,绕线机先从最下面的粗箭头的线进行绕制,最后从中间的粗箭头的线结束。如图5所示。
天线一体绕制是先将主天线与SE芯片La触点的连接端和副天线与SE芯片Lb触点的连接端连接在一起绕制,这样两个高频天线串联在一起,在两个天线线圈与SE芯片焊接时,可通过生产冲床刀片将图4中最上面的细箭头处切断为二个各自独立的天线线圈。
本发明的一种双高频感应天线及其制作方法具有以下优点:
(1)采用双高频感应线圈天线设计,大幅提升了卡片的射频性能,如读写距离和交易速度提升明显,能通过更加严格的标准测试。
(2)采用双感应天线设计的卡片,大大增加了CPU卡片的使用范围,卡片的读写器兼容性更强。
(3)在采用射频性能较差的SE芯片时,采用双感天线设计可以克服芯片的弊端,确保整体卡片的射频性能有所提升,使客户的使用感受更好。
(4)采用两个线圈天线进行串联一体设计,在生产过程中绕线机方便进行一次绕指,提高了生产效率,降低了成本。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其同等技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (10)

  1. 一种高频双感应天线,其特征在于,包括:相互缠绕但不连接的主高频天线和副高频天线,其中,所述主高频天线为外围的大线圈天线,所述副高频天线为所述主高频天线内的小线圈天线,所述主高频天线和所述副高频天线从外圈向里圈绕制时朝同一方向绕制,所述主高频天线的一端与芯片的第一非接信号触点连接,所述副高频天线的一端与所述芯片的第二非接信号触点连接。
  2. 根据权利要求1所述的一种高频双感应天线,其特征在于,所述芯片为SE芯片,所述主高频天线的一端与所述SE芯片的La触点连接,所述副高频天线的一端与所述SE芯片的Lb触点连接。
  3. 根据权利要求1所述的一种高频双感应天线,其特征在于,所述主高频天线和所述副高频天线从外圈向里圈绕制时均为顺时针绕制或者均为逆时针绕制。
  4. 根据权利要求2所述的一种高频双感应天线,其特征在于,在所述高频双感应天线工作之前,需要对所述主高频天线和所述副高频天线进行调试,使所述主高频天线和所述副高频天线相互感应和耦合进而产生正反馈作用,实现各种射频参数的正叠加。
  5. 根据权利要求1-4任一项所述的一种高频双感应天线,其特征在于,所述高频双感应天线包括以下实现方式:铜线绕制方式、PCB板天线方式以及铜或铝蚀刻方式。
  6. 根据权利要求4所述的一种高频双感应天线,其特征在于,所述各种射频参数包括:所述主高频天线和所述副高频天线的线圈电感、线圈电阻、线圈电容。
  7. 根据权利要求4所述的一种高频双感应天线,其特征在于,所述高频双感应天线的调试电路包括:线圈电感、线圈电阻、线圈电容、La触点、Lb触点、芯片电容和芯片电阻,其中,所述线圈电感的一端与所述线圈电阻的一端连接,所述线圈电感的另一端与所述线圈电容的一端和所述Lb触点连接,所述线圈电阻的另一端与所述线圈电容的另一端和所述La触点连接,所述芯片电容的一端与所述芯片电阻的一端和所述La触点连接,所述芯片电容的另一端与所述芯片电阻的另一端和所述Lb触点连接。
  8. 一种高频双感应天线的制作方法,应用于权利要求2-6任一项所述的一种高频双感应天线,其特征在于,所述制作方法包括:
    S100、将主高频天线与SE芯片的La触点的连接端和副高频天线与所述SE芯片的Lb触点的连接端连接在一起绕制,将所述主高频天线和所述副高频天线串联在一起;
    S200、在所述主高频天线和所述副高频天线与所述SE芯片焊接时,通过生产冲床刀片将所述La触点与所述Lb触点之间的连线切断,得到相互缠绕但不连接的所述主高频天线和所述副高频天线。
  9. 根据权利要求8所述的一种高频双感应天线的制作方法,其特征在于,步骤S100包括:
    通过绕线机将一根铜线从所述主高频天线的自由端开始朝一个方向绕制,依次经过所述La触点和所述Lb触点后朝反方向绕制,最后从所述副高频天线的自由端结束绕制。
  10. 根据权利要求9所述的一种高频双感应天线的制作方法,其特征在于,步骤S100包括:
    通过绕线机将一根铜线从所述主高频天线的自由端开始朝逆时针绕制,依次经过所述La触点和所述Lb触点后朝顺时针绕制,最后从所述副高频天线的自由端结束绕制;或者
    通过绕线机将一根铜线从所述主高频天线的自由端开始朝顺时针绕制,依次经过所述La触点和所述Lb触点后朝逆时针绕制,最后从所述副高频天线的自由端结束绕制。
PCT/CN2021/104734 2020-07-13 2021-07-06 一种高频双感应天线及其制作方法 WO2022012376A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010667889.4 2020-07-13
CN202010667889.4A CN111952718A (zh) 2020-07-13 2020-07-13 一种高频双感应天线及其制作方法

Publications (1)

Publication Number Publication Date
WO2022012376A1 true WO2022012376A1 (zh) 2022-01-20

Family

ID=73340457

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/104734 WO2022012376A1 (zh) 2020-07-13 2021-07-06 一种高频双感应天线及其制作方法

Country Status (2)

Country Link
CN (1) CN111952718A (zh)
WO (1) WO2022012376A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111952718A (zh) * 2020-07-13 2020-11-17 北京握奇数据股份有限公司 一种高频双感应天线及其制作方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1280103A1 (en) * 2001-07-23 2003-01-29 Shinko Electric Industries Co. Ltd. Non-contact type IC card and flat coil used therein
CN102135816A (zh) * 2010-01-27 2011-07-27 昆盈企业股份有限公司 具双感应线圈的输入装置及其旋转动作输出方法
CN103474749A (zh) * 2013-09-30 2013-12-25 盛华金卡智能科技(深圳)有限公司 一种双界面卡及其制造工艺
JP2015106331A (ja) * 2013-12-02 2015-06-08 凸版印刷株式会社 デュアルicカード
CN105512718A (zh) * 2016-01-08 2016-04-20 上海海鼎无线射频系统有限公司 一种双频rfid标签
CN105654172A (zh) * 2014-12-08 2016-06-08 北京数码视讯科技股份有限公司 一种ic卡及ic卡制作方法
CN111952718A (zh) * 2020-07-13 2020-11-17 北京握奇数据股份有限公司 一种高频双感应天线及其制作方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1280103A1 (en) * 2001-07-23 2003-01-29 Shinko Electric Industries Co. Ltd. Non-contact type IC card and flat coil used therein
CN102135816A (zh) * 2010-01-27 2011-07-27 昆盈企业股份有限公司 具双感应线圈的输入装置及其旋转动作输出方法
CN103474749A (zh) * 2013-09-30 2013-12-25 盛华金卡智能科技(深圳)有限公司 一种双界面卡及其制造工艺
JP2015106331A (ja) * 2013-12-02 2015-06-08 凸版印刷株式会社 デュアルicカード
CN105654172A (zh) * 2014-12-08 2016-06-08 北京数码视讯科技股份有限公司 一种ic卡及ic卡制作方法
CN105512718A (zh) * 2016-01-08 2016-04-20 上海海鼎无线射频系统有限公司 一种双频rfid标签
CN111952718A (zh) * 2020-07-13 2020-11-17 北京握奇数据股份有限公司 一种高频双感应天线及其制作方法

Also Published As

Publication number Publication date
CN111952718A (zh) 2020-11-17

Similar Documents

Publication Publication Date Title
US8424769B2 (en) Antenna and RFID device
US9646242B2 (en) Booster antenna, contactless chip arrangement, antenna structure and chip arrangement
CN101789543B (zh) 多系统、多频段的rfid天线
US10936929B1 (en) RFID integrated circuits with electrical bridges
WO2022012376A1 (zh) 一种高频双感应天线及其制作方法
CN103390797A (zh) 用于超高频读写器的近场天线
CN105470627A (zh) 一种双频智能标签天线
CN105373826B (zh) 一种双频智能标签
WO2011113278A1 (zh) 一种多系统、多频段的rfid天线
CN102509865A (zh) Qsim双频通信天线线贴
CN205159514U (zh) 一种双频智能标签天线
CN206193869U (zh) 一种双频智能标签
CN103474749A (zh) 一种双界面卡及其制造工艺
US20220158667A1 (en) Electronics for use in smart cards and other near field rf communications enabled systems
CN102683841B (zh) 双频通信垂直折叠手机线贴天线
CN205510045U (zh) 非接触式智能通信装置
CN203085759U (zh) 一种完全平面抗金属rfid超高频标签天线
CN208506794U (zh) 一种玻璃封装的小型化叠层双频电子标签
CN204809413U (zh) 射频识别设备
CN103840250B (zh) 一种手机sim卡的感应偶合天线结构
CN203398300U (zh) 用于超高频读写器的近场天线
CN108108774A (zh) 一种基于超高频rfid技术的金属物品电子标签识别方法
CN102723595B (zh) 双频通信线贴天线
CN220020301U (zh) 一种双频智能rfid标签
CN103441334B (zh) 一种用于非接触式通讯的天线结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21842954

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21842954

Country of ref document: EP

Kind code of ref document: A1