WO2011113278A1 - 一种多系统、多频段的rfid天线 - Google Patents

一种多系统、多频段的rfid天线 Download PDF

Info

Publication number
WO2011113278A1
WO2011113278A1 PCT/CN2010/077921 CN2010077921W WO2011113278A1 WO 2011113278 A1 WO2011113278 A1 WO 2011113278A1 CN 2010077921 W CN2010077921 W CN 2010077921W WO 2011113278 A1 WO2011113278 A1 WO 2011113278A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
pad
chip
insulating layer
band rfid
Prior art date
Application number
PCT/CN2010/077921
Other languages
English (en)
French (fr)
Inventor
王勇
赵宇航
Original Assignee
上海集成电路研发中心有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201010128871.3A external-priority patent/CN101789543B/zh
Priority claimed from CN2010101873878A external-priority patent/CN102064377A/zh
Priority claimed from CN2010202613430U external-priority patent/CN201845863U/zh
Application filed by 上海集成电路研发中心有限公司 filed Critical 上海集成电路研发中心有限公司
Priority to US13/634,244 priority Critical patent/US8823597B2/en
Publication of WO2011113278A1 publication Critical patent/WO2011113278A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/2208Supports; Mounting means by structural association with other equipment or articles associated with components used in interrogation type services, i.e. in systems for information exchange between an interrogator/reader and a tag/transponder, e.g. in Radio Frequency Identification [RFID] systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/2283Supports; Mounting means by structural association with other equipment or articles mounted in or on the surface of a semiconductor substrate as a chip-type antenna or integrated with other components into an IC package
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/28Combinations of substantially independent non-interacting antenna units or systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q7/00Loop antennas with a substantially uniform current distribution around the loop and having a directional radiation pattern in a plane perpendicular to the plane of the loop

Definitions

  • the present invention relates to the field of integrated circuit manufacturing technologies, and in particular, to a multi-system, multi-band RFID antenna.
  • the antenna is a device that receives or radiates the power of the front-end RF signal in the form of electromagnetic waves. It is an interface device between the circuit and the space, which is used to realize the conversion of the guided wave and the free space wave energy.
  • the antenna is divided into two categories: an electronic tag antenna and a reader antenna, which respectively bear the functions of receiving energy and transmitting energy.
  • Current RFID systems are mainly concentrated in low frequency (LF, 125kHz ⁇ 134kHz), high frequency (HF, 13.56MHz), ultra high frequency (UHF, 860-960MHz) and microwave (MW, 2.45GHz, 5.8GHz) frequency bands, different work
  • the principle and design of the RFID system antenna in the frequency band are fundamentally different.
  • the gain and impedance characteristics of the RFID antenna affect the range of the RFID system.
  • the operating frequency band of the RFID system in turn has certain requirements on the antenna size and radiation loss. Therefore, the design of the RFID antenna is related to the success of the entire RFID system.
  • Near-field antenna For low-frequency (125kHz ⁇ 134kHz) and high-frequency (13.56MHz) frequency bands, the system works in the near field of the antenna. The energy required for the tag is radiated near the field by the coupling line of the reader through inductive coupling. Obtained, the working mode is inductive coupling. Because the problem of electromagnetic wave propagation is not actually involved in the near field, the antenna design is relatively simple, and the utility model generally uses a low-cost wire-type antenna.
  • a coil antenna is essentially a resonant circuit. At a specified operating frequency, when the induced impedance is equal to the impedance of the capacitor, the coil antenna resonates.
  • Far-field antenna For ultra-high frequency (860MHz ⁇ 960MHz) and microwave frequency band (2.45GHz, 5.8GHz), the reader antenna should provide energy for the tag or wake up the active tag, working distance is far, usually located in the reader antenna The far field. According to the calculation formula of the far-field antenna, the electric field strength and the magnetic field strength are attenuated with the distance of the distance, and the electric field and the magnetic field are perpendicular to each other and perpendicular to the propagation direction.
  • the Poynting vector is a real number, and the electromagnetic field radiates energy outward in the form of electromagnetic waves. At this time, the antenna design has a great influence on the system performance, and the dipole type or the child has a patch antenna.
  • a dipole antenna also called a symmetrical vibrator antenna, consists of two straight conductors of the same thickness and equal length. The signal is fed from the two endpoints in the middle, and a certain current distribution is generated on the arms of the dipole. This current distribution excites the electromagnetic field in the space around the antenna.
  • a zigzag-shaped folded dipole antenna is used in an RFID electronic tag.
  • the existing RFID technology has a single application and is technically difficult. Therefore, the working frequency band of the RFID chip is often only one type, and only one frequency band antenna corresponds to it.
  • the field of mobile communications has begun to integrate RFID into a three-in-one development attempt for communication, identity, and electronic payment. Therefore, the future development of RFID technology will be toward more label products. Development of imaging, RFID multi-system integration applications. In this way, the design and manufacture of multi-system, multi-band RFID antennas is imminent. Summary of the invention
  • the present invention provides a multi-system, multi-band RFID antenna to provide a plurality of antennas of different frequency bands to meet the requirements of different applications.
  • the present invention provides a multi-system, multi-band RFID antenna including an upper antenna and at least one external antenna; the on-chip antenna is disposed above the chip, and the external antenna is disposed on the chip External; the chip is provided with a pad, and the on-chip antenna and the external antenna are both connected to the pad.
  • the multi-system, multi-band RFID antenna further includes: a first insulating layer on the chip, the chip is provided with a first pad and a second pad; a layer on the first insulating layer, wherein the second insulating layer is provided with the on-chip antenna and third and fourth pads; wherein the third pad and the first pad Electrically connecting, the fourth pad is electrically connected to the second pad; the on-chip antenna is a wire-type antenna, and two ends thereof are respectively connected to the third pad and the fourth pad, The three pads are located outside the line, and the fourth pads are located in the turns; the two ends of each of the external antennas are respectively connected to the third and fourth pads.
  • the on-chip antenna includes an on-chip antenna first metal layer and an on-chip antenna second metal layer
  • the multi-system, multi-band RFID antenna further includes: a first insulation layer, located in the chip The chip is provided with a first pad and a second pad; a second insulating layer is disposed on the first insulating layer, and a first metal layer of the on-chip antenna is disposed in the second insulating layer; a third insulating layer on the second insulating layer; a fourth insulating layer on the third insulating layer, wherein the fourth insulating layer is provided with the second metal layer and the third pad of the on-chip antenna a fourth pad; wherein the third pad is electrically connected to the first pad, the fourth pad is electrically connected to the second pad; and the second metal layer of the on-chip antenna is a spiral ⁇ , the third pad and the fourth pad are both located outside the wire, one end of the spiral wire is connected to the third pad, and one end of the spiral wire passes through the on-chip
  • the operating frequency of the on-chip antenna is high frequency, ultra high frequency or microwave; the operating frequency of the external antenna is low frequency, high frequency, ultra high frequency or child wave.
  • the multi-system, multi-band RFID antenna of the present invention has the beneficial effects that the multi-system, multi-band RFID antenna provided by the present invention comprises an on-chip antenna directly connected to the chip, and one or more and third and fourth pads.
  • the connected external antenna, the on-chip antenna and the external antenna each have their own operating frequencies, and the frequency can be exchanged within the set range, so that the chip can provide an appropriate antenna for different frequency band applications of different systems. Good for future RFID more The need for system integration applications.
  • FIG. 1 is a schematic diagram of a multi-system, multi-band RFID antenna according to a first embodiment of the present invention.
  • FIG. 2 is a schematic diagram of an on-chip antenna in a multi-system, multi-band RFID antenna according to a first embodiment of the present invention.
  • FIG. 3 is a top plan view showing an on-chip antenna of a multi-system, multi-band RFID antenna according to a second embodiment of the present invention.
  • Figure 4 is a cross-sectional view taken along line A-A of Figure 3;
  • FIG. 5 is a schematic diagram showing the overall structure of a multi-system, multi-band RFID antenna according to a second embodiment of the present invention.
  • FIG. 6 is a top plan view showing an on-chip antenna of a multi-system, multi-band RFID antenna according to a third embodiment of the present invention.
  • Figure 7 is a cross-sectional view taken along line B-B of Figure 6.
  • FIG. 8 is a schematic diagram showing the overall structure of a multi-system, multi-band RFID antenna according to a third embodiment of the present invention. detailed description
  • the multi-system, multi-band RFID antenna of the present invention comprises an upper antenna and at least one external antenna, the on-chip antenna is disposed above the chip, the external antenna is disposed outside the chip, and the outer surface of the chip is disposed A pad is connected, and the on-chip antenna and the external antenna are connected to the chip through the connection pad.
  • the multi-system, multi-band RFID antenna of the present invention is intended to provide a selection of antennas in a variety of different frequency bands to accommodate different application requirements.
  • the working frequency band of the on-chip antenna may be selected from high frequency, ultra high frequency or microwave, and the working frequency band of the on-chip antenna is usually set as a default frequency band; the working frequency band of the external antenna may select low frequency, high frequency, ultra high frequency or microwave.
  • the number of external antennas can be 1, 2 or 3, and the working frequency band of the on-chip antenna is different from the working frequency band of the external antenna. For example, when the on-chip antenna uses the ultra-high frequency band, the working frequency band of the external antenna can be at the low frequency.
  • the operating frequency bands of multiple external antennas are also different.
  • the external antenna may be a coil antenna, a dipole antenna or a patch antenna.
  • the operating frequency is low frequency or high frequency; In the case of a polar antenna, the operating frequency is ultra-high frequency or high frequency; when the external antenna is a patch antenna, the operating frequency is ultra-high frequency or microwave.
  • the structural differences of the RFID antennas in different embodiments of the present invention are better demonstrated, the following three
  • the structure of the on-chip antenna plus two external antennas is adopted, and the on-chip antenna adopts a spiral antenna, and operates in the frequency band; the two off-chip antennas respectively use the line antenna and the dipole Sub-type antennas, operating in the high frequency and ultra high frequency bands, respectively.
  • Embodiment 1 illustrates the number of external antennas and recombine the operating frequency bands of the on-chip antenna and the external antenna. For this reason, these variations will not be described again.
  • the multi-system, multi-band RFID antenna of the present invention includes an upper antenna 15 (for the sake of clarity of the drawing, the structure of the on-chip antenna is collapsed in FIG. 1) and two external antennas 16 and 17;
  • the on-chip antenna 15 is directly formed on the outer surface of the RFID chip 10.
  • the on-chip antenna 15 is directly fabricated on the outer surface of the RFID chip 10 by using a single damascene process.
  • the outer surface of the RFID chip 10 is provided with two connection pads 40a, 40b, and the two ends of the on-chip antenna 15 are soldered to the two connection pads 40a, 40b, respectively;
  • the on-chip antenna 15 has a default operating frequency band.
  • the default operating frequency of the on-chip antenna 15 is 2.45 GHz, which belongs to the child wave band;
  • the external antenna 16 is formed on the outside of the RFID chip 10.
  • the external antenna 16 is a dipole antenna, and the ⁇ is formed by a straight wire.
  • the two ends of the dipole antenna are respectively soldered to two.
  • connection pads 40a, 40b in other embodiments, different shapes of dipole antennas may be used, and the dipole antennas are soldered to the connection pads 40a, 40b.
  • the external antenna 16 operates at a frequency of 915 MHz and belongs to the UHF UHF segment;
  • the external antenna 17 is also formed on the outside of the RFID chip 10. The two ends of the external antenna 17 are respectively soldered on the two connection pads 40a and 40b. In this embodiment, the external antenna 17 is a wire. Type antenna, the line antenna has an operating frequency of 13.56 MHz, belonging to a high frequency HF section;
  • the external antennas 16 and 17 are customized for the RFID chip 10.
  • the RFID chip 10 automatically responds to the frequency specified by the external antenna 16 or 17 according to its internal clock.
  • FIG. 2 is a schematic structural diagram of the on-chip antenna 15 in the embodiment, where the on-chip antenna 15 uses a helical antenna;
  • the size of the outer diameter of the on-chip antenna 15 is determined by the size of the RFID chip 10. When the on-chip antenna 15 is designed, the maximum size that can be tolerated is often taken.
  • the on-chip antenna 15 The outer diameters (R1, R2) are slightly smaller than the outer diameter of the RFID chip 10 (i.e., L1 and L2 in Fig. 2).
  • the multi-system, multi-band RFID antenna can operate at 2.45 GHz ⁇ 915 MHz and 13.56 MHz.
  • the multi-system, multi-band RFID antenna has three working frequency bands of microwave, ultra-high frequency and high frequency, and the chip 10 with the multi-system and multi-band RFID antenna can satisfy 2.45 GHz.
  • the working frequency of the three frequencies of 915MHz and 13.56MHz in this way, the chip 10 can provide an appropriate antenna for the correct frequency band application at any interaction frequency in the above frequency range.
  • a specific electronic tag or reader/writer of the multi-system, multi-band RFID antenna of the present embodiment can be applied to both short-range recognition and long-distance recognition.
  • Specific embodiment 2 :
  • FIG. 3 is a schematic top plan view of an on-chip antenna of a multi-system, multi-band RFID antenna according to a second embodiment of the present invention.
  • the RFID chip 10 and the on-chip antenna 15 located on the chip 10 can be seen in the figure.
  • the RFID antenna includes: a first insulating layer 11; Located on the RFID chip 10, the RFID chip 10 is provided with two pads, respectively a first pad 20a and a second pad (not shown); a second insulating layer 12, located in the first insulation On the layer 11, the on-chip antenna 15 is located in the second insulating layer 12, and the second insulating layer 12 is further provided with two pads, which are a third pad 40a and a fourth pad respectively (not shown)
  • the third pad 40a and the first pad 20a correspond to each other in a vertical direction
  • the fourth pad and the second pad correspond to each other in a vertical direction
  • the third pad 40a is electrically connected to the first pad 20a through a first connection via 30a formed in the first insulating layer 11, and the fourth pad passes through a second formed in
  • the above multi-system, multi-band RFID antenna manufacturing method comprises the following steps:
  • a first insulating layer 11 is deposited on the RFID chip 10.
  • the first insulating layer 11 is an oxide layer having a thickness ranging from 0.5 micrometers to 15 micrometers. Preferably, the first insulating layer 11 has a thickness of 6 micrometers.
  • the first chip 20a and the second pad are preset on the RFID chip 10;
  • first insulating layer 11 is etched until the first pad 20a and the second pad are respectively exposed to form the first connection channel 30a and the second connection channel, in each of the connection channels Filled with metal inside;
  • a second insulating layer 12 is deposited on the first insulating layer 11.
  • the second insulating layer 12 is an oxide layer having a thickness ranging from 0.5 micrometers to 15 micrometers.
  • the second insulating layer 12 is Thickness is 6 microns;
  • an on-chip antenna 15 is formed in the second insulating layer 12, and the thickness of the on-chip antenna 15 is the same as the thickness of the second insulating layer 12, which is also 6 micrometers, and the operating frequency of the on-chip antenna 15 is due to the single damascene process.
  • a third pad 40a and a fourth pad are formed in the second insulating layer 12,
  • the on-chip antenna 15, and the material of the third pad 40a and the fourth pad are both aluminum or copper, and the third pad 40a and the fourth pad and the first pad 20a and the second pad - Vertically corresponding, that is, the third pad 40a and the first pad 20a are respectively located at two ends of the first connection channel 30a, and the fourth pad and the second pad are respectively located at two ends of the second connection channel, thereby
  • the electrical connection is made by connecting the metal filled in the channel.
  • the working frequency of the external antenna may be a high frequency (13.56 MHZ ultra-high frequency (915MHZ) or microwave ( 2.45GHZ or 5.8GHZ), the external antenna is a wire-type antenna, a dipole antenna or a child-mounted patch antenna, and the wire-type antenna operates at 13.56MHZ.
  • the operating frequency of the dipole antenna is 915MHZ, 2.45GHZ or 5.8GHZ
  • the operating frequency of the patch antenna is 915MHZ, 2.45GHZ or 5.8GHZ.
  • FIG. 5 is a schematic overall structural view of a multi-system, multi-band RFID antenna according to a second embodiment, in which an RFID chip 10, an on-chip antenna 15 and two external antennas 16, 17 can be seen, and the on-chip antenna 15 is a spiral.
  • a ⁇ antenna the two ends of which are respectively connected to the third pad 40a and the fourth pad 40b, wherein the third pad 40a is located outside the turn, the fourth pad 40b is located in the turn; the external antenna 16, 17 Both are connected to the third and fourth pads 40a, 40b.
  • the operating frequency of the on-chip antenna 15 is a baby wave (2.45 GHz), and the two external antennas 16, 17 customized for the RFID chip work.
  • the frequencies are ultra high frequency (915 MHz) and high frequency (13.56 MHz), respectively, and these external antennas 16, 17 are connected to the pads 40a, 40b, which will be easily applied to the surface of the chip 10.
  • the multi-system, multi-band RFID antenna of the embodiment is composed of three antennas having different frequency bands ( 13.56 MHz, 915 MHz, 2.45 GHz), and the chip with the RFID antenna can meet the working requirements of the three frequency bands. In this way, the chip can provide the appropriate antenna for the correct frequency band application at any crossover frequency within the above range.
  • the above-mentioned on-chip antenna can be made of copper, and the on-chip antenna is realized by a plurality of single damascene.
  • the on-chip antenna can be used in an inductively coupled helical helium antenna, and its operating frequency is in the 2.45 GHz band.
  • the on-chip antenna is directly fabricated on the chip, and its outer diameter is determined by the size of the chip. Generally, when designing the on-chip antenna structure, the maximum size that can be tolerated is ensured that the outer diameter of the on-chip antenna spiral turns is slightly smaller than the chip. The outer diameter can be.
  • Two external antennas are fabricated after the on-chip antenna is completed. The external antenna is connected to the third and fourth pads and will be easily applied to the chip surface.
  • the two external antennas in this embodiment are customized for the chip, and for a chip with a unique antenna, it will respond to the frequency corresponding to the antenna. Based on the internal clock, the chip automatically responds to the frequency specified by the external antenna.
  • the two external antennas in the embodiment have operating frequencies of 13.56 MHz and 915 MHz, respectively.
  • the type of 13.56MHz external antenna is the line
  • the ⁇ -type antenna, the type of 915MHz external antenna is a dipole type antenna.
  • FIG. 6 is a schematic top plan view of an on-chip antenna of a multi-system, multi-band RFID antenna according to a third embodiment of the present invention, which is different from the first two embodiments in that the on-chip antenna in this embodiment
  • the structure of the multi-system, multi-band RFID antenna of this embodiment will be described in detail below with reference to FIG.
  • the RFID antenna includes: a first insulating layer 11 disposed on the RFID chip 10, and the RFID chip 10 is provided with two pads, respectively a pad (not shown) and a second pad 20b; a second insulating layer 12 on the first insulating layer 11; an on-chip antenna first metal layer 15a on the first insulating layer 11 And the on-chip antenna first metal layer 15a is located in the second insulating layer 12; the third insulating layer 13 is located on the second insulating layer 12; the fourth insulating layer 14 is located in the third insulating layer 13; an on-chip antenna second metal layer 15b, that is, a spiral turns, is located in the fourth insulating layer 14, and a third pad (not shown) and a portion are further disposed in the fourth insulating layer 14.
  • pads 40b, the third pads and the first pads, the fourth pads 40b and the second pads 20b are corresponding in a vertical direction, and the third pads are respectively connected by a First connection channels of the first insulating layer 11, the second insulating layer 12 and the third insulating layer 13 are connected to the first pad, the The fourth pad 40b is connected to the second pad 20b via a second connection channel respectively connecting the first insulating layer 11, the second insulating layer 12 and the third insulating layer 13, the first connecting channel and the first connecting channel
  • the two connecting channels are filled with a metal material.
  • the first connecting channel is formed by connecting three first connecting sub-channels respectively formed in the first insulating layer 11, the second insulating layer 12 and the third insulating layer 13; the second connecting channel
  • the three second connection sub-channels 31b, 32b, and 33b respectively formed in the first insulating layer 11, the second insulating layer 12, and the third insulating layer 13 are connected to each other.
  • the channel ports of the three connection sub-channels may be completely connected (as shown in FIG. 7) or alternately connected to each other as long as the first pad and the third pad, the second pad 20b and the fourth pad 40b are made It can be turned on between.
  • the third connecting channel 15c is located in the third insulating layer 13, the second antenna layer 15b of the on-chip antenna, that is, the spiral wire, and one end of the wire passes through the third connecting channel 15c and the first metal of the on-chip antenna
  • the layers 15a are connected, and the third connecting passage 15c is filled with a metal material.
  • the first insulating layer 11, the second insulating layer 12, the third insulating layer 13, and the fourth insulating layer 14 are each an oxide layer, and each insulating layer has a thickness of 0.5 ⁇ m to 15 ⁇ m.
  • the on-chip antenna first metal layer 15a, the on-chip antenna second metal layer 15b, the first connection channel, the second connection channel and the third connection channel 15c, and the third pad and the fourth pad 40b are made of aluminum. Or copper.
  • the on-chip antenna operates at a high frequency ( 13.56 MHz ), an ultra high frequency (915 MHz ) or a microwave ( 2.45 GHz or 5.8 GHz ).
  • a plurality of external antennas are connected to the third and fourth pads 40a, 40b, and the number of the external antennas is 1, 2, or 3.
  • the external antenna operates at a high frequency (13.56 MHz), super High frequency (915MHz) or microwave ( 2.45GHz or 5.8GHz), the external antenna is a wire antenna, a dipole antenna or a patch antenna, and the wire antenna has an operating frequency of 13.56 MHz.
  • the operating frequency of the dipole antenna is 915 MHz, 2.45 GHz or 5.8 GHz
  • the operating frequency of the child patch antenna is 915 MHz, 2.45 GHz or 5.8 GHz.
  • FIG. 8 is a schematic diagram showing the overall structure of a multi-system, multi-band RFID antenna according to a third embodiment of the present invention, in which an RFID chip 10 is shown for connecting third and fourth pads 40a and 40b of an external antenna, An on-chip antenna (including a first on-chip antenna metal layer 15a, a second on-chip antenna metal layer 15b, and a connection channel 15c) over the RFID chip 10, and two external antennas 16 and 17 customized for the RFID chip.
  • the on-chip antenna operates at 2.45 GHz
  • the external antenna operates at 915 MHz and 13.56 MHz, respectively.
  • the multi-system, multi-band RFID antenna of the embodiment is composed of three antennas having different frequency bands ( 13.56 MHz, 915 MHz, 2.45 GHz), and the chip with the RFID antenna can meet the working requirements of the three frequency bands. In this way, the chip can provide the appropriate antenna for the correct frequency band application at any crossover frequency within the above range.
  • the on-chip antenna can be made of copper. After several times, a single Damascus is used to realize the on-chip antenna.
  • the on-chip antenna is often used in an inductively coupled line-type antenna.
  • the operating frequency is in the 2.45 GHz band.
  • the on-chip antenna is Directly fabricated on the chip, the outer diameter is determined by the size of the chip. Generally, when designing the on-chip antenna structure, the maximum size that can be tolerated is ensured, and the outer diameter of the spiral antenna of the on-chip antenna is slightly smaller than the outer diameter of the chip. can.
  • Two external antennas are fabricated after the on-chip antenna is completed. The external antenna is connected to the third and fourth pads and will be easily applied to the chip surface.
  • the two external antennas in this embodiment are customized for the chip, and for a chip with a unique antenna, it will respond to the frequency corresponding to the antenna. Based on the internal clock, the chip automatically responds to the frequency specified by the external antenna.
  • the two external antennas in the embodiment have an operating frequency of 13.56 MHz and 915 MHz, respectively.
  • the 13.56 MHz external antenna type is a wire-type antenna
  • the 915 MHz external antenna type is a dipole type antenna.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Description

一种多系统、 多频段的 RFID天线
技术领域
本发明涉及集成电路制造技术领域, 尤其涉及一种多系统、 多频段的 RFID天线。
背景技术
天线是一种以电磁波形式把前端射频信号功率接收或辐射出去的装置, 是电路与空间的 界面器件, 用来实现导行波与自由空间波能量的转化。 在 RFID 系统中, 天线分为电子标签 天线和读写器天线两大类, 分别承担接收能量和发射能量的作用。 当前的 RFID 系统主要集 中在低频 (LF, 125kHz ~ 134kHz )、 高频 (HF, 13.56MHz )、 超高频 (UHF, 860-960MHz ) 和微波(MW, 2.45GHz, 5.8GHz )频段, 不同工作频段的 RFID系统天线的原理和设计有着 根本上的不同。 RFID天线的增益和阻抗特性会对 RFID 系统的作用距离等产生影响, RFID 系统的工作频段反过来对天线尺寸以及辐射损耗有一定要求。 所以 RFID天线设计的好坏关 系到整个 RFID系统的成功与否。
近场天线: 对于低频( 125kHz ~ 134kHz )和高频( 13.56MHz )频段, 系统工作在天线的 近场, 标签所需的能量都是通过电感耦合方式由读写器的耦合线圏辐射近场获得, 工作方式 为电感耦合。 因为在近场实际上不涉及电磁波传播的问题, 天线设计比较筒单, 一般釆用工 艺筒单、 成本低廉的线圏型天线。 线圏型天线实质上就是一个谐振电路, 在指定的工作频率 上, 当感应阻抗等于电容阻抗的时候, 线圏天线就会产生谐振。
远场天线: 对于超高频( 860MHz ~ 960MHz )和微波频段(2.45GHz、 5.8GHz ), 读写器 天线要为标签提供能量或唤醒有源标签, 工作距离较远, 一般位于读写器天线的远场。 根据 远场天线的计算公式可知, 电场强度和磁场强度随距离的一次方衰减, 电场和磁场方向相互 垂直, 且都垂直于传播方向。 波印廷矢量为实数, 电磁场以电磁波形式向外辐射能量。 此时, 天线设计对系统性能影响较大, 多釆用偶极子型或孩 ί带贴片天线。 偶极子天线, 也称为对称 振子天线, 由两段同样粗细和等长的直导线排成一条直线构成。信号从中间的两个端点馈入, 在偶极子的两臂上将产生一定的电流分布,这种电流分布就会在天线周围空间激发起电磁场。 一般在 RFID电子标签中使用的是曲折型的折合偶极子天线。
现有的 RFID技术, 由于应用较为单一, 且技术上较为困难, 因此 RFID芯片的工作频段 往往只有一种, 且只有一种频段的天线与之对应。 移动通信领域开始将 RFID整合为通信、 身份识别、 电子支付三合一的发展尝试。 因此, 未来 RFID技术的发展将会朝着标签产品多 样化、 RFID多系统集成应用等方向发展。 这样, 设计并制造多系统、 多频段的 RFID天线迫 在眉睫。 发明内容
为了解决现有 RFID天线的工作频段以及应用单一的问题, 本发明提供一种多系统、 多 频段的 RFID天线, 以提供多种不同频段天线的选择, 以适应不同应用场合的要求。
为了达到上述的目的, 本发明提供一种多系统、 多频段的 RFID天线, 其包括一片上天 线和至少一外部天线; 所述片上天线设置在芯片上方, 所述外部天线设置在所述芯片的外部; 所述芯片设有焊盘, 所述片上天线和外部天线均与所述焊盘连接。
在本发明的一实施例中, 上述多系统、 多频段的 RFID天线还包括: 第一绝缘层, 位于 所述芯片上, 所述芯片设有第一焊盘和第二焊盘; 第二绝缘层, 位于所述第一绝缘层上, 所 述第二绝缘层内设有所述片上天线以及第三焊盘和第四焊盘; 其中, 所述第三焊盘与所述第 一焊盘电连接, 所述第四焊盘与所述第二焊盘电连接; 所述片上天线为线圏型天线, 其两端 分别与所述第三焊盘和第四焊盘连接, 所述第三焊盘位于线圏外, 所述第四焊盘位于线圏内; 每个所述外部天线的两端分别与所述第三焊盘和第四焊盘连接。
在本发明的另一实施例中, 所述片上天线包括片上天线第一金属层和片上天线第二金属 层, 上述多系统、 多频段的 RFID天线还包括: 第一绝缘层, 位于所述芯片上, 所述芯片设 有第一焊盘和第二焊盘; 第二绝缘层, 位于所述第一绝缘层上, 所述第二绝缘层内设有所述 片上天线第一金属层; 第三绝缘层, 位于所述第二绝缘层上; 第四绝缘层, 位于所述第三绝 缘层上, 所述第四绝缘层内设有所述片上天线第二金属层以及第三焊盘和第四焊盘; 其中, 所述第三焊盘与所述第一焊盘电连接, 所述第四焊盘与所述第二焊盘电连接; 所述片上天线 第二金属层为螺旋线圏, 所述第三焊盘和第四焊盘均位于线圏外, 所述螺旋线圏线圏外的一 端与所述第三焊盘连接, 所述螺旋线圏线圏内的一端通过所述片上天线第一金属层与所述第 四焊盘电连接; 每个所述外部天线的两端分别与所述第三焊盘和第四焊盘连接。
所述片上天线的工作频率为高频、 超高频或微波; 所述外部天线的工作频率为低频、 高 频、 超高频或孩 i波。
本发明多系统、多频段的 RFID天线的有益效果为:本发明提供的多系统、多频段的 RFID 天线包括一个直接和芯片相连的片上天线, 以及一个或多个和第三、 第四焊盘相连的外部天 线, 片上天线和外部天线均设有各自的工作频率, 并且可在所设定的范围内进行频率的交互, 从而使得该芯片能为不同系统的不同频段应用提供适当的天线, 能很好地满足未来 RFID 多 系统集成应用的需要。 附图说明
本发明的多系统、 多频段的 RFID天线由以下的实施例及附图给出。
图 1是本发明第一实施例的多系统、 多频段的 RFID天线的示意图。
图 2是本发明第一实施例的多系统、 多频段的 RFID天线中片上天线的示意图。
图 3是本发明第二实施例的多系统、 多频段的 RFID天线中片上天线的俯视结构示意图。 图 4是图 3中的 A-A剖视图。
图 5是本发明第二实施例的多系统、 多频段的 RFID天线的整体结构示意图。
图 6是本发明第三实施例的多系统、 多频段的 RFID天线中片上天线的俯视结构示意图。 图 7是图 6中的 B-B剖视图。
图 8是本发明第三实施例的多系统、 多频段的 RFID天线的整体结构示意图。 具体实施方式
以下将通过三个具体实施例并结合附图对本发明的多系统、 多频段的 RFID天线作进一 步的详细描述。
本发明多系统、 多频段的 RFID天线包括一片上天线和至少一外部天线, 所述片上天线 设置在芯片的上方, 所述外部天线设置在所述芯片的外部, 该芯片的外表面上设有连接焊盘 ( pad ), 所述片上天线和外部天线均通过所述连接焊盘与所述芯片连接。
本发明的多系统、 多频段的 RFID天线, 旨在提供多种不同频段天线的选择, 以适应不 同应用场合的要求。 所述片上天线的工作频段可选择高频、 超高频或微波, 通常将片上天线 的工作频段设为默认频段; 所述外部天线的工作频段可选择低频、 高频、 超高频或微波。 外 部天线的数量可以为 1个、 2个或 3个, 并且片上天线的工作频段与外部天线的工作频段不 相同, 例如当片上天线釆用了超高频段时, 外部天线的工作频段可在低频、 高频或微波中选 择, 一般情况下, 多个外部天线的工作频段也各不相同。 所述外部天线可以是线圏型天线、 偶极子型天线或孩 ί带贴片天线, 所述外部天线为线圏型天线时, 其工作频率为低频或高频; 所述外部天线为偶极子型天线时, 其工作频率为超高频或孩 ί波; 所述外部天线为孩 ί带贴片天 线时, 其工作频率为超高频或微波。
为了便于结构的对照, 更好地展现本发明不同实施例中 RFID天线的结构差异, 以下三 个具体实施例均釆用了片上天线加两个外部天线的结构, 并且片上天线釆用螺旋线圏天线, 工作在孩 ί波频段; 两个片外天线分别釆用线圏型天线和偶极子型天线, 分别工作在高频和超 高频段。
然而, 本领域的技术人员可以容易地改变外部天线的数量, 并对片上天线、 外部天线的 工作频段加以重新组合, 为此, 对这些变化例将不再作——描述。 具体实施例一:
参见图 1 , 本发明多系统、 多频段的 RFID天线包括一片上天线 15 (为了附图清楚, 图 1 中筒化了片上天线的结构)和两个外部天线 16和 17;
所述片上天线 15直接制作于 RFID芯片 10的外表面上, 本实施例中, 所述片上天线 15 釆用工艺后处理方式, 利用单大马士革工艺直接制作在所述 RFID芯片 10的外表面上;
所述 RFID芯片 10的外表面上设有两个连接焊盘 40a、 40b, 所述片上天线 15的两端分 别焊接在两个连接焊盘 40a、 40b上;
所述片上天线 15具有默认工作频段, 本实施例中, 所述片上天线 15的默认工作频率为 2.45GHz, 属于孩 ί波频段;
所述外部天线 16制作于所述 RFID芯片 10的外部, 本实施例中, 所述外部天线 16为偶 极子天线, 釆用直导线构成, 该偶极子天线的两端分别焊接在两个连接焊盘 40a、 40b上, 于 其它实施例中, 也可釆用不同形状的偶极子天线, 并将该偶极子天线焊接在连接焊盘 40a、 40b上。 所述外部天线 16的工作频率为 915MHz, 属于超高频 UHF段;
所述外部天线 17亦制作于所述 RFID芯片 10的外部, 所述外部天线 17的两端分别焊接 在两个连接焊盘 40a、 40b上, 本实施例中, 所述外部天线 17为线圏型天线, 该线圏型天线 的工作频率为 13.56MHz, 属于高频 HF段;
所述外部天线 16和 17是为所述 RFID芯片 10定制的, RFID系统工作时,所述 RFID芯 片 10才艮据其内部时钟自动响应所述外部天线 16或 17所指定的频率。
图 2所示为本实施例中所述片上天线 15的结构示意图, 所述片上天线 15釆用螺旋线圏 天线;
所述片上天线 15外径(即图 2中的 R1和 R2 )的尺寸由所述 RFID芯片 10的大小决定, 设计所述片上天线 15时, 往往取能容忍的最大尺寸, 所述片上天线 15的外径(Rl、 R2 )略 小于所述 RFID芯片 10的外径(即图 2中的 L1和 L2 )。
本实施例中,所述多系统、多频段的 RFID天线可工作在 2.45GHz ^ 915MHz和 13.56MHz 三个频率上, 也就是说, 该多系统、 多频段的 RFID天线同时具有微波、 超高频和高频三种 工作频段,具有该多系统、多频段的 RFID天线的芯片 10能满足 2.45GHz、 915MHz和 13.56MHz 三个频率的工作需求, 通过这种方式, 该芯片 10在上述频率范围内的任何交互频率, 都能为 正确的频段应用提供适当的天线。
釆用本实施例多系统、 多频段的 RFID天线的某一特定电子标签或读写器既可适用于近 距离识别, 又可适用于远距离识别。 具体实施例二:
首先, 请参考图 3 , 图 3为本发明第二实施例的多系统、 多频段的 RFID天线中片上天线 的俯视结构示意图, 图中可以看到 RFID芯片 10、 位于芯片 10上的片上天线 15 , 以及与片 上天线 15相连的第三焊盘 40a和第四焊盘 40b, 其中, 该片上天线 15是一线圏型天线, 其 线圏外的一端连接至第三焊盘 40a, 线圏内的一端连接至第四焊盘 40b。
图 4为图 3中的 A-A剖视图, 其显示了本发明第二实施例的多系统、 多频段的 RFID天 线的部分剖面结构, 从图上可以看到, RFID天线包括: 第一绝缘层 11 , 位于 RFID芯片 10 上, 所述 RFID芯片 10设置有两个焊盘, 分别为第一焊盘 20a和第二焊盘(图中未示出); 第二绝缘层 12, 位于所述第一绝缘层 11上; 片上天线 15 , 位于所述第二绝缘层 12内, 所述 第二绝缘层 12内还设置有两个焊盘, 分别为第三焊盘 40a和第四焊盘(图中未示出), 其中, 所述第三焊盘 40a与所述第一焊盘 20a在垂直方向上相互对应, 所述第四焊盘与所述第二焊 盘在垂直方向上相互对应,并且所述第三焊盘 40a通过形成于第一绝缘层 11内的第一连接通 道 30a与所述第一焊盘 20a电连接, 所述第四焊盘通过形成于第一绝缘层 11内的第二连接通 道(图中未示出) 与所述第二焊盘电连接, 所述第一连接通道 30a和第二连接通道内均填充 金属; 以及多个外部天线 (图中未示出)分别与所述第三焊盘 40a和第四焊盘相连。
上述多系统、 多频段的 RFID天线的制作方法包括以下步骤:
首先, 在 RFID芯片 10上淀积第一绝缘层 11 , 所述第一绝缘层 11为氧化层, 其厚度的 范围为 0.5微米至 15微米, 优选的, 第一绝缘层 11的厚度为 6微米, 其中, 所述 RFID芯片 10上预先设置有第一焊盘 20a和第二焊盘;
随后, 刻蚀部分所述第一绝缘层 11直至分别露出所述第一焊盘 20a和第二焊盘, 以形成 所述第一连接通道 30a和第二连接通道, 在每个所述连接通道内均填充金属;
接着, 在所述第一绝缘层 11上淀积第二绝缘层 12, 所述第二绝缘层 12为氧化层, 其厚 度的范围为 0.5微米至 15微米, 优选的, 第二绝缘层 12的厚度为 6微米; 然后, 在所述第二绝缘层 12 内制作片上天线 15 , 由于釆用单大马士革工艺, 所述片上 天线 15的厚度同第二绝缘层 12的厚度, 也为 6微米, 片上天线 15的工作频率可以是高频 ( 13.56MHZ ), 超高频 (915MHZ )或微波( 2.45 GHZ或 5.8GHZ ), 同时, 在所述第二绝缘 层 12内制作第三焊盘 40a和第四焊盘,所述片上天线 15 , 以及第三焊盘 40a和第四焊盘的材 料同为铝或者铜, 所述第三焊盘 40a和第四焊盘与所述第一焊盘 20a和第二焊盘——垂直对 应, 即所述第三焊盘 40a和第一焊盘 20a分别位于第一连接通道 30a的两端, 所述第四焊盘 和第二焊盘分别位于第二连接通道的两端, 从而通过连接通道内填充的金属形成电相连。
最后, 将多个外部天线与所述第三焊盘 40a和第四焊盘相连, 所述外部天线数量为 1个、 2个或 3个, 所述外部天线的工作频率可以是高频(13.56MHZ 超高频(915MHZ )或微波 ( 2.45GHZ或 5.8GHZ ), 所述外部天线为线圏型天线、 偶极子型天线或孩 ί带贴片天线, 线圏 型天线的工作频率为 13.56MHZ,偶极子型天线的工作频率为 915MHZ、 2.45GHZ或 5.8GHZ, 孩 ί带贴片天线的工作频率为 915MHZ、 2.45GHZ或 5.8GHZ。
图 5为第二实施例的多系统、多频段的 RFID天线的整体结构示意图,图中可以看到 RFID 芯片 10、 片上天线 15以及两个外部天线 16、 17, 所述片上天线 15为螺旋线圏天线, 其两端 分别连接至第三焊盘 40a和第四焊盘 40b, 其中, 所述第三焊盘 40a位于线圏外, 所述第四焊 盘 40b位于线圏内; 外部天线 16、 17均和第三、 第四焊盘 40a、 40b相连, 于本实施例中, 该片上天线 15的工作频率是孩 ί波(2.45GHz ), 为 RFID芯片定制的两个外部天线 16、 17的 工作频率分别是超高频 (915MHz )和高频 (13.56MHz ), 这些外部天线 16、 17被连接到焊 盘 40a、 40b, 将很容易应用于芯片 10表面。
本实施例的多系统、 多频段的 RFID天线, 由三种具有不同频段( 13.56MHz、 915MHz、 2.45GHz )的天线所组成, 而具有该 RFID天线的芯片能满足此三种频段的工作需求, 通过这 种方式, 该芯片在上述范围内的任何交互频率, 都能为正确的频段应用提供适当的天线。
上述片上天线可釆用铜制成工艺, 经过多次单大马士革实现片上天线的制作。 片上天线 可以釆用电感耦合方式工作的螺旋线圏天线, 其工作频率釆用 2.45GHz频段。 片上天线是直 接制作在芯片之上的, 其外径尺寸由芯片的大小所决定, 通常在设计片上天线结构时, 取能 容忍的最大尺寸, 只要保证片上天线螺旋线圏的外径略小于芯片的外径即可。 两个外部天线, 是在完成片上天线后再制作的, 外部天线被连接到第三和第四焊盘, 将很容易应用于芯片表 面。 本实施例中的两个外部天线是为芯片定制的, 对具有特有天线的芯片来说, 将对与天线 对应的频率产生响应。 根据内部时钟, 芯片会自动响应外部天线所指定的频率。 实施例中的 两个外部天线, 工作频率分别是 13.56MHz和 915MHz。 13.56MHz外部天线的类型是釆用线 圏型的天线, 915MHz外部天线的类型是釆用偶极子型的天线。 具体实施例三:
首先, 请参考图 6, 图 6为本发明第三实施例的多系统、 多频段的 RFID天线中片上天线 的俯视结构示意图, 与前两个实施例不同的是, 本实施例中的片上天线由片上天线第一金属 层 15a、 片上天线第二金属层 15b和第三连接通道 15c构成, 其中, 该片上天线第二金属层 15b为螺旋线圏, 其线圏外的一端和第三焊盘 40a直接相连, 线圏内的一端通过第三连接通 道 15c和片上天线第一金属层 15a连接至第四焊盘 40b。下面结合图 7详细说明本实施例的多 系统、 多频段的 RFID天线的结构。
图 7为图 6中的 B-B剖视图, 从图上可以看到, RFID天线包括: 包括: 第一绝缘层 11 , 位于 RFID芯片 10上, 所述 RFID芯片 10设置有两个焊盘, 分别为第一焊盘(图中未示出) 和第二焊盘 20b; 第二绝缘层 12, 位于所述第一绝缘层 11上; 片上天线第一金属层 15a, 位 于所述第一绝缘层 11上, 且所述片上天线第一金属层 15a位于所述第二绝缘层 12内; 第三 绝缘层 13 , 位于所述第二绝缘层 12上; 第四绝缘层 14, 位于所述第三绝缘层 13上; 片上天 线第二金属层 15b, 即螺旋线圏, 位于所述第四绝缘层 14内, 所述第四绝缘层 14内还设置 有第三焊盘(图中未示出)和第四焊盘 40b, 所述第三焊盘和第一焊盘、 所述第四焊盘 40b 和第二焊盘 20b在垂直方向——对应, 且所述第三焊盘通过一分别连通所述第一绝缘层 11、 第二绝缘层 12和第三绝缘层 13的第一连接通道与所述第一焊盘相连, 所述第四焊盘 40b通 过一分别连通所述第一绝缘层 11、 第二绝缘层 12和第三绝缘层 13的第二连接通道与所述第 二焊盘相连 20b, 所述第一连接通道和第二连接通道内均填充金属材料。 具体的, 所述第一 连接通道由分别形成于第一绝缘层 11、 第二绝缘层 12和第三绝缘层 13中的三个第一连接子 通道相互连接而成; 所述第二连接通道由分别形成于第一绝缘层 11、 第二绝缘层 12和第三 绝缘层 13中的三个第二连接子通道 31b、 32b、 33b相互连接而成。 其中, 三个连接子通道的 通道口可以完全相连(如图 7所示的形态)或者相互交错相连, 只要使第一焊盘和第三焊盘、 第二焊盘 20b和第四焊盘 40b之间能够导通即可。 所述第三连接通道 15c位于第三绝缘层 13 内, 所述片上天线第二金属层 15b, 即螺旋线圏, 线圏内的一端通过所述第三连接通道 15c 与所述片上天线第一金属层 15a相连, 所述第三连接通道 15c内填充金属材料。 所述第一绝 缘层 11、 第二绝缘层 12、 第三绝缘层 13和第四绝缘层 14均为氧化层, 各绝缘层的厚度为 0.5微米 ~ 15微米。 所述片上天线第一金属层 15a、 片上天线第二金属层 15b, 第一连接通道、 第二连接通道和第三连接通道 15c, 以及第三焊盘和第四焊盘 40b的材料同为铝或者铜。 所述片上天线的工作频率为高频( 13.56MHz )、 超高频(915MHz )或微波( 2.45GHz或 5.8GHz )。 多个外部天线和所述第三、 第四焊盘 40a、 40b相连, 所述外部天线数量为 1个、 2 个或 3个,所述外部天线的工作频率为高频( 13.56MHz )、超高频( 915MHz )或微波( 2.45GHz 或 5.8GHz ), 所述外部天线为线圏型天线、 偶极子型天线或孩 ί带贴片天线, 所述线圏型天线 的工作频率为 13.56MHz, 所述偶极子型天线的工作频率为 915MHz、 2.45GHz或 5.8GHz, 所 述孩 ί带贴片天线的工作频率为 915MHz、 2.45GHz或 5.8GHz。
图 8为本发明第三实施例的多系统、 多频段的 RFID天线的整体结构示意图, 图中画出 了 RFID芯片 10, 用于连接外部天线的第三、 第四焊盘 40a和 40b, 制作于 RFID芯片 10之 上的片上天线 (包括第一片上天线金属层 15a、 第二片上天线金属层 15b和连接通道 15c ), 以及为 RFID芯片定制的两个外部天线 16和 17。 该片上天线的工作频率是 2.45GHz, 外部天 线的工作频率分别是 915MHz和 13.56MHz,这些外部天线被连接到第三、第四焊盘 40a、 40b, 将很容易应用于芯片表面。
本实施例的多系统、 多频段的 RFID天线, 由三种具有不同频段( 13.56MHz、 915MHz、 2.45GHz )的天线所组成, 而具有该 RFID天线的芯片能满足此三种频段的工作需求, 通过这 种方式, 该芯片在上述范围内的任何交互频率, 都能为正确的频段应用提供适当的天线。
该片上天线可釆用铜制成工艺, 经过多次单大马士革实现片上天线的制作, 片上天线往 往釆用电感耦合方式工作的线圏型天线, 其工作频率釆用 2.45GHz频段, 片上天线是直接制 作在芯片之上的, 其外径尺寸由芯片的大小所决定, 通常在设计片上天线结构时, 取能容忍 的最大尺寸, 保证片上天线螺旋线圏的外径略小于芯片的外径即可。 两个外部天线, 是在完 成片上天线后再制作的, 外部天线被连接到第三、 第四焊盘, 将很容易应用于芯片表面。 本 实施例中的两个外部天线是为芯片定制的, 对具有特有天线的芯片来说, 将对与天线对应的 频率产生响应。 根据内部时钟, 芯片会自动响应外部天线所指定的频率。 实施例中的两个外 部天线, 工作频率分别是 13.56MHz和 915MHz, 13.56MHz外部天线的类型是釆用线圏型的 天线, 915MHz外部天线的类型是釆用偶极子型的天线。 虽然本发明已以较佳实施例揭露如上, 然其并非用以限定本发明。 本发明所属技术领域 中具有通常知识者, 在不脱离本发明的精神和范围内, 当可作各种的更动与润饰。 因此, 本 发明的保护范围当视权利要求书所界定者为准。

Claims

权利要求
1、 一种多系统、 多频段的 RFID天线, 其特征在于, 包括一片上天线和至少一外部天线; 所述片上天线设置在芯片上方, 所述外部天线设置在所述芯片的外部; 所述芯片设有焊盘, 所述片上天线和外部天线均与所述焊盘连接。
2、 根据权利要求 1所述的多系统、 多频段的 RFID天线, 其特征在于, 还包括: 第一绝缘层, 位于所述芯片上, 所述芯片设有第一焊盘和第二焊盘;
第二绝缘层, 位于所述第一绝缘层上, 所述第二绝缘层内设有所述片上天线以及第三焊 盘和第四焊盘;
其中, 所述第三焊盘与所述第一焊盘电连接, 所述第四焊盘与所述第二焊盘电连接; 所述片上天线为线圏型天线, 其两端分别与所述第三焊盘和第四焊盘连接, 所述第三焊 盘位于线圏外, 所述第四焊盘位于线圏内;
每个所述外部天线的两端分别与所述第三焊盘和第四焊盘连接。
3、 根据权利要求 2所述的多系统、 多频段的 RFID天线, 其特征在于, 所述第三焊盘通 过形成于第一绝缘层内的第一连接通道与所述第一焊盘电连接, 所述第四焊盘通过形成于第 一绝缘层内的第二连接通道与所述第二焊盘电连接。
4、 根据权利要求 2所述的多系统、 多频段的 RFID天线, 其特征在于, 所述第一绝缘层 和第二绝缘层均为氧化层, 各绝缘层的厚度为 0.5微米 ~ 15微米。
5、 根据权利要求 1所述的多系统、 多频段的 RFID天线, 其特征在于, 所述片上天线包 括片上天线第一金属层和片上天线第二金属层, 所述的多系统、 多频段的 RFID天线还包括: 第一绝缘层, 位于所述芯片上, 所述芯片设有第一焊盘和第二焊盘;
第二绝缘层, 位于所述第一绝缘层上, 所述第二绝缘层内设有所述片上天线第一金属层; 第三绝缘层, 位于所述第二绝缘层上;
第四绝缘层, 位于所述第三绝缘层上, 所述第四绝缘层内设有所述片上天线第二金属层 以及第三焊盘和第四焊盘;
其中, 所述第三焊盘与所述第一焊盘电连接, 所述第四焊盘与所述第二焊盘电连接; 所述片上天线第二金属层为螺旋线圏, 所述第三焊盘和第四焊盘均位于线圏外, 所述螺 旋线圏线圏外的一端与所述第三焊盘连接 , 所述螺旋线圏线圏内的一端通过所述片上天线第 一金属层与所述第四焊盘电连接;
每个所述外部天线的两端分别与所述第三焊盘和第四焊盘连接。
6、根据权利要求 5所述的多系统、 多频段的 RFID天线, 其特征在于, 所述第一绝缘层、 第二绝缘层、 第三绝缘层和第四绝缘层均为氧化层, 各绝缘层的厚度为 0.5 4 米~ 15孩 ί米。
7、 根据权利要求 5所述的多系统、 多频段的 RFID天线, 其特征在于, 所述第三焊盘通 过一分别连通所述第一绝缘层、 第二绝缘层和第三绝缘层的第一连接通道与所述第一焊盘相 连, 所述第四焊盘通过一分别连通所述第一绝缘层、 第二绝缘层和第三绝缘层的第二连接通 道与所述第二焊盘相连, 所述第一连接通道和第二连接通道内均填充金属材料。
8、 根据权利要求 7所述的多系统、 多频段的 RFID天线, 其特征在于, 所述第一连接通 道由分别形成于第一绝缘层、 第二绝缘层和第三绝缘层中的三个第一连接子通道相互连接而 成; 所述第二连接通道由分别形成于第一绝缘层、 第二绝缘层和第三绝缘层中的三个第二连 接子通道相互连接而成。
9、 根据权利要求 8所述的多系统、 多频段的 RFID天线, 其特征在于, 所述的三个第一 连接子通道, 各通道口完全相连或者相互交错相连; 所述的三个第二连接子通道, 各通道口 完全相连或者相互交错相连。
10、 根据权利要求 7所述的多系统、 多频段的 RFID天线, 其特征在于, 所述片上天线 第一金属层与所述第二连接通道相连; 所述第三绝缘层内还设有第三连接通道, 所述螺旋线 圏线圏内的一端通过所述第三连接通道与所述片上天线第一金属层相连; 所述第三连接通道 内填充金属材料。
11、 根据权利要求 1、 2或 5所述的多系统、 多频段的 RFID天线, 其特征在于, 所述片 上天线的外径略小于所述芯片的外径。
12、 根据权利要求 1、 2或 5所述的多系统、 多频段的 RFID天线, 其特征在于, 所述片 上天线的工作频段与所述外部天线的工作频段不相同。
13、 根据权利要求 1、 2或 5所述的多系统、 多频段的 RFID天线, 其特征在于, 所述片 上天线的工作频率为高频、 超高频或微波。
14、 根据权利要求 1、 2或 5所述的多系统、 多频段的 RFID天线, 其特征在于, 所述片 上天线的材料为铝或铜。
15、 根据权利要求 1、 2或 5所述的多系统、 多频段的 RFID天线, 其特征在于, 所述片 上天线的厚度为 0.5微米 ~ 15微米。
16、 根据权利要求 1、 2或 5所述的多系统、 多频段的 RFID天线, 其特征在于, 所述外 部天线的工作频率为低频、 高频、 超高频或微波。
17、 根据权利要求 1、 2或 5所述的多系统、 多频段的 RFID天线, 其特征在于, 所述外 部天线的数量为 1个、 2个或 3个。
18、 根据权利要求 1、 2或 5所述的多系统、 多频段的 RFID天线, 其特征在于, 所述外 部天线为线圏型天线、 偶极子型天线或孩 ί带贴片天线。
19、 根据权利要求 18所述的多系统、 多频段的 RFID天线, 其特征在于, 所述外部天线 为线圏型天线时, 其工作频率为低频或高频; 所述外部天线为偶极子型天线时, 其工作频率 为超高频或微波; 所述外部天线为微带贴片天线时, 其工作频率为超高频或微波。
PCT/CN2010/077921 2010-03-19 2010-10-20 一种多系统、多频段的rfid天线 WO2011113278A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/634,244 US8823597B2 (en) 2010-03-19 2010-10-20 Multi-system multi-band RFID antenna

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN201010128871.3A CN101789543B (zh) 2010-03-19 2010-03-19 多系统、多频段的rfid天线
CN201010128871.3 2010-03-19
CN2010101873878A CN102064377A (zh) 2010-05-28 2010-05-28 Rfid天线制作方法及其结构
CN201010187387.8 2010-05-28
CN2010202613430U CN201845863U (zh) 2010-07-16 2010-07-16 一种多系统多频段的rfid天线
CN201020261343.0 2010-07-16

Publications (1)

Publication Number Publication Date
WO2011113278A1 true WO2011113278A1 (zh) 2011-09-22

Family

ID=44648433

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/077921 WO2011113278A1 (zh) 2010-03-19 2010-10-20 一种多系统、多频段的rfid天线

Country Status (2)

Country Link
US (1) US8823597B2 (zh)
WO (1) WO2011113278A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011113278A1 (zh) * 2010-03-19 2011-09-22 上海集成电路研发中心有限公司 一种多系统、多频段的rfid天线
US10909440B2 (en) * 2013-08-22 2021-02-02 Texas Instruments Incorporated RFID tag with integrated antenna
JP6347607B2 (ja) * 2013-12-27 2018-06-27 キヤノン株式会社 電子機器
US9582750B2 (en) * 2014-12-22 2017-02-28 Avery Dennison Retail Information Services, Llc RFID devices with multi-frequency antennae
TWI601229B (zh) * 2015-12-25 2017-10-01 韋僑科技股份有限公司 無線射頻識別裝置及其製造方法
TWI621993B (zh) 2016-12-19 2018-04-21 韋僑科技股份有限公司 無線射頻識別感測與記錄裝置及其製造方法
US11489847B1 (en) * 2018-02-14 2022-11-01 Nokomis, Inc. System and method for physically detecting, identifying, and diagnosing medical electronic devices connectable to a network

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1884889A2 (en) * 2006-07-28 2008-02-06 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
CN101281613A (zh) * 2008-05-28 2008-10-08 坤远电子(上海)有限公司 电子标签
US20090027204A1 (en) * 2007-07-25 2009-01-29 Oki Printed Circuits Co., Ltd. RFID tag having a transmitter/receiver exposed from an insulator surface and a method for manufacturing the same
CN101447603A (zh) * 2008-12-19 2009-06-03 上海集成电路研发中心有限公司 一种rfid芯片上的具有渐进式结构的天线
CN101506428A (zh) * 2006-09-18 2009-08-12 泰克斯蒂尔玛股份公司 射频识别织物标签
CN101789543A (zh) * 2010-03-19 2010-07-28 上海集成电路研发中心有限公司 多系统、多频段的rfid天线

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005076358A1 (en) * 2004-02-06 2005-08-18 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing thin film integrated circuit, and element substrate
US7452786B2 (en) * 2004-06-29 2008-11-18 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing thin film integrated circuit, and element substrate
JP2007086863A (ja) * 2005-09-20 2007-04-05 Fuji Xerox Co Ltd 非接触icタグ、非接触icタグを備えた部材のパッケージ及び非接触icタグを備えた部材を用いる装置
EP2372756A1 (en) * 2007-03-13 2011-10-05 Semiconductor Energy Laboratory Co, Ltd. Semiconductor device and manufacturing method thereof
US8412290B2 (en) * 2008-10-16 2013-04-02 Atif SHAMIM Miniaturized, low power, wireless transmitter and receiver with on-chip antenna, and wireless coupling of on-chip and off-chip antenna
WO2011113278A1 (zh) * 2010-03-19 2011-09-22 上海集成电路研发中心有限公司 一种多系统、多频段的rfid天线

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1884889A2 (en) * 2006-07-28 2008-02-06 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
CN101506428A (zh) * 2006-09-18 2009-08-12 泰克斯蒂尔玛股份公司 射频识别织物标签
US20090027204A1 (en) * 2007-07-25 2009-01-29 Oki Printed Circuits Co., Ltd. RFID tag having a transmitter/receiver exposed from an insulator surface and a method for manufacturing the same
CN101281613A (zh) * 2008-05-28 2008-10-08 坤远电子(上海)有限公司 电子标签
CN101447603A (zh) * 2008-12-19 2009-06-03 上海集成电路研发中心有限公司 一种rfid芯片上的具有渐进式结构的天线
CN101789543A (zh) * 2010-03-19 2010-07-28 上海集成电路研发中心有限公司 多系统、多频段的rfid天线

Also Published As

Publication number Publication date
US20130002502A1 (en) 2013-01-03
US8823597B2 (en) 2014-09-02

Similar Documents

Publication Publication Date Title
WO2011113278A1 (zh) 一种多系统、多频段的rfid天线
US8400231B2 (en) High-frequency coupler and communication device
EP2251934B1 (en) Wireless ic device and wireless communication system
JP4518211B2 (ja) 複合アンテナ
JP3148168U (ja) 無線icデバイス
US8424769B2 (en) Antenna and RFID device
JP5928188B2 (ja) アンテナおよびrfidタグ
CN102576939B (zh) 天线及无线ic器件
CN101789543B (zh) 多系统、多频段的rfid天线
CN102804497B (zh) 无线通信装置
CN202205889U (zh) 一种应用于非金属表面的微波频段rfid标签天线
US20190325285A1 (en) Method of Using Shielded RFID Straps with RFID Tag Designs
CN105470627A (zh) 一种双频智能标签天线
CN106910986B (zh) 一种多谐振超宽带nfc天线系统
US20120086526A1 (en) Wireless ic device and coupling method for power feeding circuit and radiation plate
JP5051211B2 (ja) 無線通信装置
CN105373826B (zh) 一种双频智能标签
CN202259665U (zh) 用于rfid陶基电子标签的标签天线
US20130082894A1 (en) Integrated antenna and method for operating integrated antenna device
CN207199838U (zh) 一种基于金属环境下的双面螺旋nfc天线
CN205159514U (zh) 一种双频智能标签天线
CN107679612A (zh) 一种防拆双频rfid标签及其制作方法
JP2012085234A (ja) 伝送システム及び伝送装置
CN206595381U (zh) 一种多谐振超宽带nfc天线系统
CN201845863U (zh) 一种多系统多频段的rfid天线

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10847747

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13634244

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10847747

Country of ref document: EP

Kind code of ref document: A1