WO2022012322A1 - 一种信道状态信息反馈方法及装置 - Google Patents

一种信道状态信息反馈方法及装置 Download PDF

Info

Publication number
WO2022012322A1
WO2022012322A1 PCT/CN2021/103120 CN2021103120W WO2022012322A1 WO 2022012322 A1 WO2022012322 A1 WO 2022012322A1 CN 2021103120 W CN2021103120 W CN 2021103120W WO 2022012322 A1 WO2022012322 A1 WO 2022012322A1
Authority
WO
WIPO (PCT)
Prior art keywords
pdsch
transmission mode
time
terminal
overlap
Prior art date
Application number
PCT/CN2021/103120
Other languages
English (en)
French (fr)
Inventor
苏昕
Original Assignee
大唐移动通信设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大唐移动通信设备有限公司 filed Critical 大唐移动通信设备有限公司
Priority to EP21842632.8A priority Critical patent/EP4184994A4/en
Priority to US18/016,330 priority patent/US20230292167A1/en
Publication of WO2022012322A1 publication Critical patent/WO2022012322A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0026Transmission of channel quality indication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/022Site diversity; Macro-diversity
    • H04B7/026Co-operative diversity, e.g. using fixed or mobile stations as relays
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/063Parameters other than those covered in groups H04B7/0623 - H04B7/0634, e.g. channel matrix rank or transmit mode selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports

Definitions

  • the present disclosure relates to the field of wireless communication technologies, and in particular, to a method and apparatus for feeding back channel state information.
  • each Transmission Reference Point can be divided into several relatively independent antenna panels, so the shape and number of ports of the entire array can be flexibly adjusted according to deployment scenarios and business needs.
  • the antenna panel or TRP (hereinafter, the antenna panel and TRP are collectively referred to as TRP) can also be connected by optical fibers for more flexible distributed deployment, improving edge coverage and improving edge spectrum utilization through cooperative transmission between TRPs Efficiency or edge transfer rate.
  • PDSCHs Physical Downlink Shared Channels
  • M-DCI Multi-Downlink Control Information
  • each TRP can be independently scheduled, and can independently measure and report channel state information (Channel Statement Information, CSI), which has high flexibility, but the reported CSI cannot reflect the PDSCH transmission situation.
  • CSI Channel State Information
  • Embodiments of the present disclosure provide a channel state information feedback method and apparatus, so that CSI can reflect PDSCH transmission conditions.
  • a first aspect provides a CSI feedback method, comprising: a terminal sending capability information of the terminal to a network device; the terminal measuring a downlink reference signal sent by the network device to obtain measurement information, and based on the capability In the PDSCH transmission mode corresponding to the information, the measurement information is calculated to obtain the CSI for feedback; the terminal sends the CSI to the network device.
  • the CSI for feedback is obtained by calculating the measurement information based on the PDSCH transmission mode corresponding to the capability information, including: PDSCH corresponding to the capability information based on a default configuration In the transmission mode, CSI for feedback is obtained by calculating the measurement information.
  • the CSI for feedback is obtained by calculating the measurement information based on the PDSCH transmission mode corresponding to the capability information configured by default, including: if the capability information indicates that the terminal Supporting that at least two PDSCH overlap in the time domain and do not overlap in the frequency domain, the measurement information is calculated based on the first PDSCH transmission mode configured by default to obtain CSI for feedback; wherein, the first PDSCH transmission mode It is a transmission mode in which at least two PDSCHs overlap in the time domain and do not overlap in the frequency domain.
  • the CSI for feedback is obtained by calculating the measurement information based on the PDSCH transmission mode corresponding to the capability information configured by default, including:
  • the first PDSCH transmission mode based on the default configuration or the default The configured second PDSCH transmission mode or the default configured first PDSCH transmission mode and the second PDSCH mode, calculate the measurement information to obtain the CSI for feedback, or obtain the CSI for feedback from the default configured first PDSCH transmission mode and the second PDSCH transmission mode Selecting at least one of the transmission modes, and calculating the measurement information to obtain CSI for feedback;
  • the first PDSCH transmission based on the default configuration way to calculate the measurement information to obtain CSI for feedback;
  • the first PDSCH transmission mode is: a transmission mode in which at least two PDSCHs overlap in the time domain and do not overlap in the frequency domain;
  • the second PDSCH transmission mode is: at least two PDSCHs completely overlap in the time-frequency and frequency domains transmission mode; when the measurement information is calculated based on the first PDSCH transmission mode and the second PDSCH transmission mode to obtain the CSI for feedback, the CSI for feedback is obtained based on the first PDSCH transmission mode and the second PDSCH transmission mode, respectively.
  • the transmission method calculates the measurement information to obtain CSI for feedback.
  • the CSI for feedback is obtained by calculating the measurement information based on the PDSCH transmission mode corresponding to the capability information configured by default, including:
  • the capability information indicates that the terminal supports at least two PDSCHs that overlap in the time domain and do not overlap in the frequency domain, and supports or does not support at least two PDSCHs with partially overlapping time-frequency resources, the first PDSCH transmission based on the default configuration method, calculating the measurement information to obtain CSI for feedback;
  • the measurement information is calculated to obtain Feedback CSI, or select at least one item from the first PDSCH transmission mode and the second PDSCH transmission mode configured by default, and calculate the measurement information to obtain the CSI for feedback;
  • the measurement information is calculated based on the first PDSCH transmission mode configured by default to obtain the CSI for feedback;
  • the first PDSCH transmission mode is: a transmission mode in which at least two PDSCHs overlap in the time domain and do not overlap in the frequency domain;
  • the second PDSCH transmission mode is: at least two PDSCHs completely overlap in the time-frequency and frequency domains transmission mode;
  • the measurement information is calculated based on the first PDSCH transmission mode and the second PDSCH transmission mode to obtain the CSI for feedback, the CSI for feedback is obtained based on the first PDSCH transmission mode and the second PDSCH transmission mode respectively.
  • CSI for feedback is obtained by calculating the measurement information.
  • the calculating the measurement information based on the PDSCH transmission mode corresponding to the capability information to obtain the CSI for feedback includes: according to the indication of the network device, based on the The PDSCH transmission mode corresponding to the capability information, and the CSI for feedback is obtained by calculating the measurement information.
  • calculating the measurement information based on the PDSCH transmission mode corresponding to the capability information according to the indication of the network device to obtain the CSI for feedback includes: receiving the network The indication information sent by the device, the indication information is used to indicate the PDSCH transmission mode on which the terminal calculates CSI, and the PDSCH transmission mode indicated by the indication information matches the capability information of the terminal; The indicated PDSCH transmission mode, and the CSI for feedback is obtained by calculating the measurement information.
  • the CSI for feedback is obtained by calculating the measurement information based on the PDSCH transmission mode corresponding to the capability information according to the indication of the network device, including:
  • the capability information indicates that the terminal supports at least two PDSCHs that overlap in the time domain and do not overlap in the frequency domain, and that the time-frequency resources supporting at least two PDSCHs completely overlap, the first PDSCH indicated by the indication information
  • the transmission mode or the second PDSCH transmission mode indicated by the indication information or the first PDSCH transmission mode and the second PDSCH mode indicated by the indication information, the CSI for feedback is obtained by calculating the measurement information, or from Select at least one of the first PDSCH transmission mode and the second PDSCH transmission mode indicated by the indication information, and calculate the measurement information to obtain CSI for feedback;
  • the first indication based on the indication information A PDSCH transmission mode calculates the measurement information to obtain CSI for feedback;
  • the first PDSCH transmission mode is: a transmission mode in which at least two PDSCHs overlap in the time domain and do not overlap in the frequency domain;
  • the second PDSCH transmission mode is: at least two PDSCHs completely overlap in the time-frequency and frequency domains transmission mode; when the measurement information is calculated based on the first PDSCH transmission mode and the second PDSCH transmission mode to obtain the CSI for feedback, the CSI for feedback is obtained based on the first PDSCH transmission mode and the second PDSCH transmission mode, respectively.
  • the transmission method calculates the measurement information to obtain CSI for feedback.
  • the CSI for feedback is obtained by calculating the measurement information based on the PDSCH transmission mode corresponding to the capability information according to the indication of the network device, including: if the capability The information indicates that the terminal supports at least two PDSCHs that overlap in the time domain and do not overlap in the frequency domain, and supports or does not support partial overlap of the time-frequency resources of at least two PDSCHs, then transmit the first PDSCH based on the indication information. method, calculating the measurement information to obtain CSI for feedback;
  • the capability information indicates that the terminal supports at least two PDSCHs that overlap in the time domain and do not overlap in the frequency domain, and that the time-frequency resources that support or do not support at least two PDSCHs partially overlap, and that support at least two PDSCHs
  • the time-frequency resources completely overlap, then based on the first PDSCH transmission mode indicated by the indication information or the second PDSCH transmission mode configured by default, or based on the first PDSCH transmission mode and the second PDSCH mode indicated by the indication information, for
  • the measurement information is calculated to obtain the CSI for feedback, or at least one item is selected from the first PDSCH transmission mode and the second PDSCH transmission mode configured by default, and the measurement information is calculated to obtain the CSI for feedback;
  • the measurement information is calculated based on the first PDSCH transmission mode indicated by the indication information to obtain the CSI for feedback;
  • the first PDSCH transmission mode is: a transmission mode in which at least two PDSCHs overlap in the time domain and do not overlap in the frequency domain;
  • the second PDSCH transmission mode is: at least two PDSCHs completely overlap in the time-frequency and frequency domains transmission mode; when the measurement information is calculated based on the first PDSCH transmission mode and the second PDSCH transmission mode to obtain the CSI for feedback, the CSI for feedback is obtained based on the first PDSCH transmission mode and the second PDSCH transmission mode, respectively.
  • the transmission method calculates the measurement information to obtain CSI for feedback.
  • calculating the measurement information based on the PDSCH transmission mode corresponding to the capability information according to the indication of the network device to obtain the CSI for feedback includes: receiving the network PDSCH resource allocation information sent by the device, the PDSCH resource allocation information is used to indicate the time-frequency resources of at least two PDSCHs, and the PDSCH resource allocation information matches the capability information sent by the terminal; based on the PDSCH resource allocation information For the corresponding PDSCH transmission mode, the CSI for feedback is obtained by calculating the measurement information.
  • the measurement information is calculated based on the PDSCH transmission mode corresponding to the PDSCH resource allocation information to obtain CSI for feedback, including: if the capability information indicates that the terminal supports at least two The PDSCH overlaps in the time domain and does not overlap in the frequency domain, then according to the first PDSCH time-frequency resource indicated by the PDSCH resource allocation information, the measurement information is calculated based on the corresponding PDSCH transmission mode to obtain the CSI for feedback; wherein , the first PDSCH time-frequency resource is: at least two PDSCH overlap in the time domain and do not overlap in the frequency domain; the PDSCH transmission mode corresponding to the first PDSCH time-frequency resource is: at least two PDSCH overlap in the time domain and non-overlapping transmission methods in the frequency domain.
  • the measurement information is calculated based on the PDSCH transmission mode corresponding to the PDSCH resource allocation information to obtain CSI for feedback, including: if the capability information indicates that the terminal supports at least two The PDSCH overlaps in the time domain and does not overlap in the frequency domain, and the time-frequency resources supporting at least two PDSCHs completely overlap, then the first PDSCH time-frequency resource or the second PDSCH time-frequency resource indicated by the PDSCH resource allocation information corresponds to the the PDSCH transmission mode, and calculate the measurement information to obtain the CSI for feedback;
  • the indication based on the PDSCH resource allocation information The PDSCH transmission mode corresponding to the first PDSCH time-frequency resource is calculated, and the CSI for feedback is obtained by calculating the measurement information;
  • the first PDSCH time-frequency resource is a transmission mode in which at least two PDSCHs overlap in the time domain and do not overlap in the frequency domain
  • the PDSCH transmission mode corresponding to the first PDSCH time-frequency resource is: at least two PDSCH transmission modes A transmission mode that overlaps in the time domain and does not overlap in the frequency domain
  • the second PDSCH time-frequency resource is that the time-frequency resources of at least two PDSCH completely overlap
  • the PDSCH transmission mode corresponding to the second PDSCH time-frequency resource is: A transmission method in which at least two PDSCHs completely overlap in the time-frequency and frequency domains.
  • the measurement information is calculated to obtain CSI for feedback, including:
  • the measurement information is calculated to obtain Feedback CSI
  • the measurement information is calculated to obtain the CSI for feedback;
  • the measurement information is calculated to obtain the CSI for feedback;
  • the measurement information is calculated based on the PDSCH transmission mode corresponding to the first PDSCH time-frequency resource indicated by the PDSCH resource allocation information to obtain the CSI for feedback;
  • the capability information indicates that the terminal supports at least two PDSCHs that overlap in the time domain and do not overlap in the frequency domain, and the time-frequency resources that support at least two PDSCHs partially overlap, then based on the PDSCH resource allocation information indicated the PDSCH transmission mode corresponding to the first PDSCH time-frequency resource or the third PDSCH time-frequency resource, and calculating the measurement information to obtain CSI for feedback;
  • the capability information indicates that the terminal supports at least two PDSCHs that overlap in the time domain and do not overlap in the frequency domain, and does not support partial overlap of the time-frequency resources of at least two PDSCHs, then based on the PDSCH resource allocation information indicated The PDSCH transmission mode corresponding to the first PDSCH time-frequency resource, the CSI for feedback is obtained by calculating the measurement information;
  • the first PDSCH time-frequency resource is: at least two PDSCHs overlap in the time domain and do not overlap in the frequency domain
  • the PDSCH transmission mode corresponding to the first PDSCH time-frequency resource is: at least two PDSCHs in the time domain A transmission mode that overlaps and does not overlap in the frequency domain
  • the second PDSCH time-frequency resource is that the time-frequency resources of at least two PDSCH completely overlap
  • the PDSCH transmission mode corresponding to the second PDSCH time-frequency resource is: at least two The PDSCH transmission mode completely overlaps in the time-frequency and frequency domains
  • the third PDSCH time-frequency resource is: at least two PDSCH partially overlap in the time domain
  • the PDSCH transmission mode corresponding to the third PDSCH time-frequency resource is: at least A transmission method in which two PDSCHs overlap in the time domain and do not overlap in the frequency domain.
  • the calculating the measurement information to obtain the CSI for feedback includes: if the terminal uses at least two beams to receive downlink reference signals, calculating the measurement information to obtain the CSI for feedback.
  • the CSI for feedback is calculated based on receiving the at least two PDSCHs using the beams corresponding to the at least two downlink reference signal resources; if the terminal uses one beam to receive the downlink reference signal, the When the measurement information is calculated to obtain the CSI for feedback, one of the at least two downlink reference signal resources is selected, and the at least two PDSCHs are received based on using the beam corresponding to the selected downlink reference signal resource, or based on using other The beam receives the at least two PDSCHs and calculates CSI for feedback.
  • a CSI feedback method including:
  • the network device receives the capability information of the terminal sent by the terminal;
  • the network device receives the CSI sent by the terminal, where the CSI is obtained by the terminal calculating the measurement information of the downlink reference signal based on the PDSCH transmission mode corresponding to the capability information.
  • the method further includes: according to the capability information of the terminal, the network device instructs the terminal to determine the CSI for feedback based on the PDSCH transmission mode corresponding to the capability information.
  • the network device instructs, according to the capability information of the terminal, the terminal to determine the CSI for feedback based on the PDSCH transmission mode corresponding to the capability information, including: the network device sends the information to the terminal.
  • the terminal sends indication information, where the indication information is used to indicate the PDSCH transmission mode on which the terminal calculates CSI, and the PDSCH transmission mode indicated by the indication information matches the capability information of the terminal.
  • the network device sends indication information to the terminal, where the indication information is used to indicate the PDSCH transmission mode on which the terminal calculates the CSI, including:
  • the capability information indicates that the terminal supports at least two PDSCHs that overlap in the time domain and do not overlap in the frequency domain, and that the time-frequency resources supporting at least two PDSCHs completely overlap, send an indication for indicating the first PDSCH transmission mode information, or send the indication information for indicating the second PDSCH transmission mode, or send the indication information for indicating the first PDSCH transmission mode and the second PDSCH mode; or, if the capability information indicates that the terminal supports at least two The PDSCHs overlap in the time domain and do not overlap in the frequency domain, and if the time-frequency resources of at least two PDSCHs do not support complete overlap, the indication information for indicating the first PDSCH transmission mode is sent.
  • the first PDSCH transmission mode is: a transmission mode in which at least two PDSCHs overlap in the time domain and do not overlap in the frequency domain; the second PDSCH transmission mode is: at least two PDSCHs completely overlap in the time-frequency and frequency domains mode of transmission.
  • the network device sends indication information to the terminal, where the indication information is used to indicate the PDSCH transmission mode on which the terminal calculates the CSI, including:
  • the capability information indicates that the terminal supports at least two PDSCHs that overlap in the time domain and do not overlap in the frequency domain, and supports or does not support partial overlap of time-frequency resources of at least two PDSCHs, sending a signal for indicating the first PDSCH transmission Instructions for the method;
  • the indication information for indicating the first PDSCH transmission mode or for indicating the second PDSCH transmission mode or for indicating the first PDSCH transmission mode and the second PDSCH mode is sent;
  • the indication information for indicating the first PDSCH transmission mode is sent;
  • the first PDSCH transmission mode is: a transmission mode in which at least two PDSCHs overlap in the time domain and do not overlap in the frequency domain; the second PDSCH transmission mode is: at least two PDSCHs completely overlap in the time-frequency and frequency domains mode of transmission.
  • the sending, by the network device, the indication information to the terminal includes: the network device sending dedicated signaling to the terminal, where the dedicated signaling carries the indication information; or, the The network device sends dynamic signaling to the terminal, and the dynamic signaling carries the indication information; or, the network device sends a dedicated signaling carrying the first indication information to the terminal, and the PDSCH transmission mode changes
  • the dynamic signaling carrying the second indication information is sent to the terminal; wherein, the first indication information is used to indicate the PDSCH transmission mode set, and the second indication information is used to indicate the PDSCH transmission mode set.
  • One PDSCH transmission mode, the PDSCH transmission mode set includes at least a first PDSCH transmission mode and a second PDSCH transmission mode.
  • the first PDSCH transmission mode is: a transmission mode in which at least two PDSCHs overlap in the time domain and do not overlap in the frequency domain; the second PDSCH transmission mode is: at least two PDSCHs completely overlap in the time-frequency and frequency domains mode of transmission.
  • the network device instructs, according to the capability information of the terminal, the terminal to determine the CSI for feedback based on the PDSCH transmission mode corresponding to the capability information, including: the network device sends the information to the terminal.
  • the terminal sends PDSCH resource allocation information, where the PDSCH resource allocation information is used to indicate time-frequency resources of at least two PDSCHs, and the PDSCH resource allocation information matches the capability information sent by the terminal.
  • the network device sends PDSCH resource allocation information to the terminal, where the PDSCH resource allocation information is used to indicate time-frequency resources of at least two PDSCHs, including: if the capability information indicates the If the terminal supports that at least two PDSCHs overlap in the time domain and do not overlap in the frequency domain, the terminal sends PDSCH resource allocation information for indicating the first PDSCH time-frequency resource to the terminal.
  • the first PDSCH time-frequency resource is: at least two PDSCHs overlap in the time domain and do not overlap in the frequency domain; the PDSCH transmission mode corresponding to the first PDSCH time-frequency resource is: at least two PDSCHs in the time domain Transmission methods that overlap and do not overlap in the frequency domain.
  • the network device sends PDSCH resource allocation information to the terminal, where the PDSCH resource allocation information is used to indicate time-frequency resources of at least two PDSCHs, including: if the capability information indicates the If the terminal supports at least two PDSCHs that overlap in the time domain and do not overlap in the frequency domain, and supports that the time-frequency resources of at least two PDSCHs completely overlap, the terminal sends a time-frequency resource indicating the first PDSCH or the second PDSCH to the terminal.
  • PDSCH resource allocation information of frequency resources or, if the capability information indicates that the terminal supports at least two PDSCHs that overlap in the time domain and do not overlap in the frequency domain, and does not support at least two PDSCHs whose time-frequency resources completely overlap, then Send PDSCH resource allocation information for indicating the first PDSCH time-frequency resource to the terminal.
  • the first PDSCH time-frequency resource is a transmission mode in which at least two PDSCHs overlap in the time domain and do not overlap in the frequency domain
  • the PDSCH transmission mode corresponding to the first PDSCH time-frequency resource is: at least two PDSCH transmission modes A transmission mode that overlaps in the time domain and does not overlap in the frequency domain
  • the second PDSCH time-frequency resource is that the time-frequency resources of at least two PDSCH completely overlap
  • the PDSCH transmission mode corresponding to the second PDSCH time-frequency resource is: A transmission method in which at least two PDSCHs completely overlap in the time-frequency and frequency domains.
  • the network device sends PDSCH resource allocation information to the terminal, where the PDSCH resource allocation information is used to indicate time-frequency resources of at least two PDSCHs, including:
  • the capability information indicates that the terminal supports at least two PDSCHs that overlap in the time domain and do not overlap in the frequency domain, the time-frequency resources supporting at least two PDSCHs partially overlap, and the time-frequency resources supporting at least two PDSCHs are completely overlapping, then send the PDSCH resource allocation information for indicating the first PDSCH time-frequency resource, the second PDSCH time-frequency resource allocation or the third time-frequency resource allocation to the terminal;
  • the capability information indicates that the terminal supports at least two PDSCHs that overlap in the time domain and do not overlap in the frequency domain, does not support partial overlap of time-domain resources of at least two PDSCHs, and supports time-frequency resources of at least two PDSCHs Completely overlapping, sending PDSCH resource allocation information for indicating the allocation of the first PDSCH time-frequency resource or the second time-frequency resource to the terminal;
  • the capability information indicates that the terminal supports at least two PDSCHs that overlap in the time domain and do not overlap in the frequency domain, the time-frequency resources that support at least two PDSCHs partially overlap, and the time-frequency resources that do not support at least two PDSCHs Completely overlapping, sending PDSCH resource allocation information for indicating the allocation of the first PDSCH time-frequency resource or the third time-frequency resource to the terminal;
  • the capability information indicates that the terminal supports at least two PDSCHs that overlap in the time domain and do not overlap in the frequency domain, does not support partial overlap of time-domain resources of at least two PDSCHs, and does not support time-frequency resources of at least two PDSCHs If the resources completely overlap, send PDSCH resource allocation information for indicating the first PDSCH time-frequency resource to the terminal;
  • the capability information indicates that the terminal supports at least two PDSCHs that overlap in the time domain and do not overlap in the frequency domain, and the time-frequency resources supporting at least two PDSCHs partially overlap, send a message to the terminal indicating the first PDSCH resource allocation information of a PDSCH time-frequency resource or a third PDSCH time-frequency resource;
  • the capability information indicates that the terminal supports at least two PDSCHs that overlap in the time domain and do not overlap in the frequency domain, and does not support partial overlap of the time-frequency resources of at least two PDSCHs, send a message to the terminal indicating the first PDSCH resource allocation information of PDSCH time-frequency resources;
  • the first PDSCH time-frequency resource is: at least two PDSCHs overlap in the time domain and do not overlap in the frequency domain
  • the PDSCH transmission mode corresponding to the first PDSCH time-frequency resource is: at least two PDSCHs in the time domain A transmission mode that overlaps and does not overlap in the frequency domain
  • the second PDSCH time-frequency resource is that the time-frequency resources of at least two PDSCH completely overlap
  • the PDSCH transmission mode corresponding to the second PDSCH time-frequency resource is: at least two The PDSCH transmission mode completely overlaps in the time-frequency and frequency domains
  • the third PDSCH time-frequency resource is: at least two PDSCH partially overlap in the time domain
  • the PDSCH transmission mode corresponding to the third PDSCH time-frequency resource is: at least A transmission method in which two PDSCHs overlap in the time domain and do not overlap in the frequency domain.
  • a terminal comprising: a sending module configured to send capability information of the terminal to a network device; a processing module configured to obtain measurement information by measuring a downlink reference signal sent by the network device, And based on the PDSCH transmission mode corresponding to the capability information, the measurement information is calculated to obtain CSI for feedback; the sending module is further configured to send the CSI to the network device.
  • a network device comprising: a receiving module configured to receive capability information of the terminal sent by the terminal; the receiving module further configured to receive CSI sent by the terminal, where the CSI is The terminal calculates the measurement information of the downlink reference signal based on the PDSCH transmission mode corresponding to the capability information.
  • a terminal including: a processor, a memory, and a transceiver; the transceiver, which receives and transmits data under the control of the processor; the memory, stores computer instructions; and the processor, for reading the computer instructions to perform the method according to any one of the above first aspects.
  • a network device including: a processor, a memory, and a transceiver; the transceiver performs data reception and transmission under the control of the processor; the memory stores computer instructions; the processor , which is used to read the computer instructions and execute the method according to any one of the above second aspects.
  • a computer-readable storage medium stores computer-executable instructions, the computer-executable instructions are used to cause a computer to execute any one of the above-mentioned first aspects.
  • the measurement information can be calculated based on the PDSCH transmission mode corresponding to the capability information reported by the terminal to be used for feedback.
  • CSI because when calculating CSI, the terminal can use the matching CSI calculation method to calculate the CSI based on the PDSCH transmission mode corresponding to its own capabilities, so the calculated CSI matches the PDSCH transmission mode supported by the terminal, Therefore, the calculated CSI can reflect the PDSCH transmission situation of the terminal.
  • FIG. 1 exemplarily shows a schematic flowchart of a CSI feedback method implemented by a terminal side in an embodiment of the present disclosure
  • FIG. 2 exemplarily shows a schematic flowchart of a CSI feedback method implemented by a network side in an embodiment of the present disclosure
  • FIG. 3 exemplarily shows a schematic structural diagram of a terminal in an embodiment of the present disclosure
  • FIG. 4 exemplarily shows a schematic structural diagram of a network device in an embodiment of the present disclosure
  • FIG. 5 exemplarily shows a schematic structural diagram of a terminal in another embodiment of the present disclosure
  • FIG. 6 exemplarily shows a schematic structural diagram of a network device in another embodiment of the present disclosure.
  • a network device is a device that provides wireless communication functions for the terminal, including but not limited to: gNB in 5G, radio network controller (RNC), node B (node B, NB) , base station controller (BSC), base transceiver station (base transceiver station, BTS), home base station (for example, home evolved nodeB, or home node B, HNB), baseband unit (BaseBand Unit, BBU), transmission point (transmitting and receiving point, TRP), transmitting point (transmitting point, TP), mobile switching center, etc.
  • RNC radio network controller
  • node B node B
  • BSC base station controller
  • BTS base transceiver station
  • home base station for example, home evolved nodeB, or home node B, HNB
  • baseband unit BaseBand Unit
  • the base station in the present disclosure may also be a device that provides wireless communication functions for terminals in other communication systems that may appear in the future.
  • a terminal is a device that can provide users with voice and/or data connectivity.
  • the terminal device includes a handheld device with a wireless connection function, a vehicle-mounted device, and the like.
  • terminal devices can be: mobile phones (mobile phones), tablet computers, notebook computers, PDAs, mobile Internet devices (MIDs), wearable devices, virtual reality (virtual reality, VR) devices, augmented reality (augmented reality (AR) equipment, wireless terminals in industrial control, wireless terminals in self-driving, wireless terminals in smart grid, wireless terminals in transportation safety A wireless terminal, a wireless terminal in a smart city, or a wireless terminal in a smart home, etc.
  • the embodiments of the present disclosure provide a channel state information feedback method and apparatus, so that the CSI can reflect the PDSCH transmission situation.
  • the terminal after the terminal obtains the measurement information by measuring the downlink reference signal sent by the network device, it can calculate the measurement information based on the PDSCH transmission mode corresponding to the capability information reported by the terminal to obtain the measurement information for feedback.
  • CSI because when calculating CSI, the terminal can use the matching CSI calculation method to calculate CSI based on the PDSCH transmission mode corresponding to its own capabilities, so that the calculated CSI matches the PDSCH transmission mode supported by the terminal, thereby The calculated CSI can be made to reflect the PDSCH transmission situation of the terminal.
  • the capability of the terminal refers to the capability of the terminal to support the PDSCH transmission mode or the PDSCH resource allocation mode, that is, the terminal capability may indicate the PDSCH transmission mode or PDSCH resource allocation mode supported by the terminal.
  • the following abilities may be included:
  • capability A For a terminal that supports M-DCI, it needs to support at least two PDSCH resource allocation methods or PDSCH transmission methods that completely overlap or partially overlap in the time domain but do not overlap in the frequency domain.
  • the terminal may further support or not support at least two PDSCH resource allocation methods or PDSCH transmission methods in which the time-frequency resources of the PDSCH completely overlap, which are respectively referred to as capability B1 and capability B2, where:
  • Capability B1 On the basis of the basic capability (capability A), support at least two PDSCH resource allocation methods or PDSCH transmission methods in which the time-frequency resources of at least two PDSCHs completely overlap;
  • Capability B2 On the basis of the basic capability (capability A), a PDSCH resource allocation mode or PDSCH transmission mode in which the time-frequency resources of at least two PDSCHs completely overlap is not supported.
  • the terminal may further support or not support the PDSCH resource allocation or PDSCH transmission mode in which the time-frequency resources of at least two PDSCHs partially overlap, which are respectively referred to as capability C1 to capability C6 ,in:
  • Capability C1 On the basis of the basic capability (capability A), support a PDSCH resource allocation mode or a PDSCH transmission mode in which the time-frequency resources of at least two PDSCHs partially overlap;
  • Capability C2 On the basis of the basic capability (capability A), the PDSCH resource allocation mode or PDSCH transmission mode in which the time-frequency resources of at least two PDSCHs partially overlap is not supported;
  • Capability C3 On the basis of capability B1, support a PDSCH resource allocation mode or a PDSCH transmission mode in which the time-frequency resources of at least two PDSCHs partially overlap;
  • Capability C4 On the basis of capability B1, it does not support PDSCH resource allocation or PDSCH transmission in which the time-frequency resources of at least two PDSCHs partially overlap;
  • Capability C5 On the basis of capability B2, support a PDSCH resource allocation mode or a PDSCH transmission mode in which the time-frequency resources of at least two PDSCHs partially overlap;
  • Capability C6 On the basis of capability B2, a PDSCH resource allocation mode or PDSCH transmission mode in which the time-frequency resources of at least two PDSCHs partially overlap is not supported.
  • the capability of the terminal refers to the capability of the terminal to support the PDSCH transmission mode or the PDSCH resource allocation mode, that is, it is used to indicate the supported PDSCH transmission mode or PDSCH resource allocation mode. Therefore, the capability information sent by the terminal is the same as that of the terminal. There is a corresponding relationship between the PDSCH transmission mode and the PDSCH resource allocation mode.
  • the terminal may calculate the detected measurement information according to the PDSCH transmission mode corresponding to the reported capability information, thereby obtaining the CSI for feedback.
  • the terminal capability and the PDSCH transmission mode (or the corresponding PDSCH resource allocation mode) based on which CSI is calculated:
  • Capability A corresponds to the first PDSCH transmission method (or the first PDSCH resource allocation method).
  • the measured measurement information may be calculated according to the first PDSCH transmission mode to obtain the CSI for feedback.
  • the first PDSCH transmission mode is: a transmission mode in which at least two PDSCHs overlap in the time domain and do not overlap in the frequency domain.
  • the capability B1 corresponds to the first PDSCH transmission mode, or to the second PDSCH transmission mode (or the corresponding PDSCH resource allocation mode), or to the first PDSCH transmission mode and the second PDSCH transmission mode.
  • the measured measurement information may be calculated according to the first PDSCH transmission mode to obtain the CSI for feedback, or the measured measurement information may be calculated according to the second PDSCH transmission mode.
  • the CSI used for feedback is obtained by calculation, or the CSI used for feedback can be obtained by calculating the measured measurement information according to the first PDSCH transmission mode and the second PDSCH transmission mode respectively.
  • the second PDSCH transmission mode is: a transmission mode in which at least two PDSCHs completely overlap in time-frequency and frequency domains.
  • the capability B2 corresponds to the first PDSCH transmission mode.
  • the measured measurement information may be calculated according to the first PDSCH transmission mode to obtain the CSI for feedback.
  • the capability C1 corresponds to the first PDSCH transmission mode.
  • the measured measurement information can be calculated according to the first PDSCH transmission mode to obtain the CSI for feedback.
  • the capability C2 corresponds to the first PDSCH transmission mode.
  • the measured measurement information may be calculated according to the first PDSCH transmission mode to obtain the CSI for feedback.
  • the capability C3 corresponds to the first PDSCH transmission mode, or to the second PDSCH transmission mode, or to the first PDSCH transmission mode and the second PDSCH transmission mode.
  • the measured measurement information may be calculated according to the first PDSCH transmission mode to obtain the CSI for feedback, or the measured measurement information may be calculated according to the second PDSCH transmission mode.
  • the CSI used for feedback is obtained by calculation, or the CSI used for feedback can be obtained by calculating the measured measurement information according to the first PDSCH transmission mode and the second PDSCH transmission mode respectively.
  • the capability C4 corresponds to the first PDSCH transmission mode, or to the second PDSCH transmission mode, or to the first PDSCH transmission mode and the second PDSCH transmission mode.
  • the measured measurement information may be calculated according to the first PDSCH transmission mode to obtain the CSI for feedback, or the measured measurement information may be calculated according to the second PDSCH transmission mode.
  • the CSI used for feedback is obtained by calculation, or the CSI used for feedback can be obtained by calculating the measured measurement information according to the first PDSCH transmission mode and the second PDSCH transmission mode respectively.
  • the capability C5 corresponds to the first PDSCH transmission mode.
  • the measured measurement information may be calculated according to the first PDSCH transmission mode to obtain the CSI for feedback.
  • Capability C6 corresponds to the first PDSCH transmission mode.
  • the measured measurement information can be calculated according to the first PDSCH transmission mode to obtain the CSI for feedback.
  • FIG. 1 exemplarily shows a schematic flowchart of a CSI feedback method implemented by a terminal side in an embodiment of the present disclosure. As shown in the figure, the flowchart may include the following steps:
  • S101 The terminal sends capability information of the terminal to a network device.
  • the capability information of the terminal may be indication information for identifying the capability of the terminal, for example, several bits may be used to identify the capability of the terminal, wherein different values of these bits correspond to different terminal capabilities.
  • the terminal can report its own capability information when the cell accesses, or send the capability information of the terminal to the network device in other cases where the terminal capability needs to be reported.
  • the terminal measures the downlink reference signal sent by the network device to obtain measurement information, and calculates the measurement information based on the PDSCH transmission mode corresponding to the capability information of the terminal to obtain CSI for feedback.
  • the downlink reference signal may specifically be CSI-RS, and the terminal may perform measurement according to the CSI-RS resource configured on the case side to obtain measurement information.
  • the downlink reference signal may also be other reference signals that can be used for channel state measurement, which is not limited in this embodiment of the present disclosure.
  • the CSI used for feedback may include at least one of PMI (Precoding Matrix Indicator, precoding matrix indication), RI (RANK Indicator, rank indication), and CRI (CSI-RS resource indication, CSI-RS resource indication) A sort of.
  • PMI Precoding Matrix Indicator, precoding matrix indication
  • RI Radio Resource indicator
  • CRI CSI-RS resource indication, CSI-RS resource indication
  • the PDSCH transmission mode on which the terminal calculates CSI may include a first PDSCH transmission mode and a second PDSCH transmission mode.
  • the terminal may calculate CSI based on the first PDSCH transmission mode (that is, use the assumption of the first PDSCH transmission mode to calculate CSI), or calculate CSI based on the second PDSCH (that is, use the assumption of the second PDSCH transmission mode to calculate CSI) , or calculate the CSI based on the first PDSCH transmission mode and the second PDSCH transmission mode respectively.
  • the implementation manner of the terminal calculating CSI based on the first PDSCH transmission mode may be: the terminal calculates the CSI for each PDSCH independently, that is, when calculating the CSI for any one PDSCH, the interference caused by other PDSCHs is not considered.
  • An implementation manner for the terminal to calculate the CSI based on the second PDSCH transmission mode may be: when the terminal calculates the CSI for each PDSCH, the signals of other PDSCHs are processed as interference.
  • S103 The terminal sends the calculated CSI to the network device.
  • the terminal may calculate CSI based on receiving PDSCH using one beam or multiple beams according to specific conditions.
  • the terminal uses at least two beams to receive downlink reference signals, when calculating the measurement information to obtain CSI for feedback, the terminal receives at least two downlink reference signal resources based on the beams corresponding to the at least two downlink reference signal resources. Two PDSCHs, calculating CSI for feedback.
  • the terminal uses one beam to receive the downlink reference signal, when calculating the measurement information to obtain the CSI for feedback, select one from at least two downlink reference signal resources, and select one of the downlink reference signal resources based on the use of the selected downlink reference signal.
  • the beam corresponding to the reference signal resource receives the at least two PDSCHs, or calculates CSI for feedback based on receiving the at least two PDSCHs using other beams.
  • the terminal can use two typeD QCLs (QCL is the English abbreviation of Quasi Co-Location, that is, quasi-co-location, which can be understood as beams) for reception at the same time, when calculating CSI, based on the use of two
  • the type D QCL corresponding to the CSI-RS resource receives different PDSCHs to calculate the CSI; if the terminal cannot use the two type D QCLs to receive the two PDSCHs at the same time, when calculating the CSI, it can choose independently based on the use of the two CSI-RS resources.
  • One of the corresponding typeD QCLs is received, or CSI is calculated based on receiving using other typeD QCLs.
  • the terminal can use two typeD QCLs to receive two PDSCHs at the same time, the CSI is calculated based on receiving different PDSCHs using the type D QCLs corresponding to the two CSI-RS resources when calculating CSI; if the terminal It is not possible to use two typeD QCLs to receive two PDSCHs at the same time.
  • the terminal can autonomously choose to receive PDSCHs based on the typeD QCL corresponding to one of the two CSI-RS resources, or based on the use of other typeD QCLs. The PDSCH is received to calculate the CSI.
  • FIG. 2 exemplarily shows a schematic flowchart of a CSI feedback method implemented by a network side in an embodiment of the present disclosure.
  • the network device is configured with M-DCI transmission.
  • control resource set Control Resource set, CORESET
  • CORESET pool index there are two different CORESETPoolIndex (CORESET pool index), that is, some CORESETs are associated with a CORESETPoolIndex value (such as 0), and the other CORESETs are Associated with another CORESETPoolIndex value (eg 1) for scheduling different PDSCHs.
  • the network device configures downlink reference signal (eg, CSI-RS) resources used for CSI measurement. Specifically, the following two ways can be used to configure:
  • CSI-RS downlink reference signal
  • Manner 1 Configure at least two CSI-RS resources, which are respectively used to measure channel information of different TRPs.
  • different TRPs correspond to different PDSCHs, that is, different TRPs transmit or schedule different PDSCHs.
  • Mode 2 Configure multiple CSI-RS resources for each TRP, wherein at least one CSI-RS resource is used to measure its channel information, and another CSI-RS resource is used to measure the interference caused by the transmission of another TRP.
  • different CSI-RS ports may correspond to different layers to measure interference.
  • CSI-RS resources can also be configured to measure other interference and noise.
  • the process may include the following steps:
  • S201 The network device receives capability information of the terminal sent by the terminal.
  • the network device receives the CSI sent by the terminal, where the CSI is obtained by the terminal calculating the measurement information of the downlink reference signal based on the PDSCH transmission mode corresponding to the capability information sent by the terminal.
  • the network device may instruct the terminal to calculate the CSI based on the PDSCH transmission mode corresponding to its capability information.
  • the network device may instruct the terminal to calculate the CSI based on the PDSCH transmission mode corresponding to its capability information.
  • the measurement information can be calculated based on the PDSCH transmission mode corresponding to the capability information reported by the terminal to be used for feedback.
  • CSI can be calculated according to the scheduling mode (ie PDSCH transmission mode) that the terminal may use, so that the channel quality in the case of M-DCI transmission can be more accurately reflected, and PMI, RI, Channel state information such as CRI is used for feedback.
  • the corresponding relationship between the terminal capability and the PDSCH transmission mode may be pre-configured or pre-agreed, for example, the above-mentioned corresponding relationship may be configured by default.
  • the terminal may calculate the detected measurement information based on the default configured PDSCH transmission mode corresponding to the capability information of the terminal to obtain CSI for feedback.
  • the following takes the default configuration of the corresponding relationship between the terminal capability and the PDSCH transmission mode as an example to illustrate the implementation process of the terminal calculating the measurement information based on the PDSCH transmission mode corresponding to the terminal's capability information to obtain CSI for feedback. Specifically, the following situations may be included:
  • Case 1-1 The system is configured by default with the correspondence between the terminal capability A and the first PDSCH transmission mode. If in S101, the capability information sent by the terminal indicates that the terminal has capability A, then the terminal calculates the measurement information according to the first PDSCH transmission mode corresponding to capability A based on the above-mentioned correspondence in the default configuration to obtain CSI for feedback.
  • Case 1-2 The system is configured by default with the corresponding relationship between the terminal capability B1 and the first PDSCH transmission mode. If in S101, the capability information sent by the terminal indicates that the terminal has capability B1, the terminal calculates the measurement information according to the first PDSCH transmission mode corresponding to capability A based on the above-mentioned correspondence in the default configuration to obtain CSI for feedback.
  • the system may also be configured with a corresponding relationship between the terminal capability B1 and the second PDSCH transmission mode by default. If in S101, the capability information sent by the terminal indicates that the terminal has capability B1, then the terminal calculates the measurement information according to the above-mentioned corresponding relationship in the default configuration and according to the second PDSCH transmission mode corresponding to capability A to obtain CSI for feedback.
  • the system may also be configured with a corresponding relationship between the terminal capability B1 and the first PDSCH transmission mode and the second PDSCH transmission mode by default. If in S101, the capability information sent by the terminal indicates that the terminal has capability B1, then the terminal, based on the above-mentioned correspondence in the default configuration, transmits the first PDSCH transmission based on the first PDSCH transmission mode and the second PDSCH transmission mode corresponding to the capability B1, respectively. mode and the second PDSCH transmission mode calculate the measurement information to obtain CSI for feedback.
  • the system is configured with the correspondence between the terminal capability B1 and the first PDSCH transmission mode and the second PDSCH transmission mode by default, and the terminal can select the default configuration from the first PDSCH transmission mode corresponding to the capability B1 and the second PDSCH transmission mode by itself. At least one of the second PDSCH transmission modes is selected, and the measurement information is calculated based on the selected PDSCH transmission mode to obtain CSI for feedback.
  • the CSI is calculated based on the first PDSCH transmission mode; if the terminal selects the second PDSCH transmission mode, the CSI is calculated based on the second PDSCH transmission mode; if the terminal selects the first PDSCH transmission mode and For the second PDSCH transmission mode, the CSI is calculated based on the first PDSCH transmission mode and the second PDSCH transmission mode, respectively.
  • Situation 1-3 The system is configured with the corresponding relationship between the terminal capability B2 and the first PDSCH transmission mode by default. If in S101, the capability information sent by the terminal indicates that the terminal has capability B2, the terminal calculates the measurement information based on the above-mentioned corresponding relationship in the default configuration and according to the first PDSCH transmission mode corresponding to capability B2 to obtain CSI for feedback.
  • Scenario 1-4 The system is configured with the corresponding relationship between the terminal capability C1 and the first PDSCH transmission mode by default. If in S101, the capability information sent by the terminal indicates that the terminal has capability C1, the terminal calculates the measurement information according to the first PDSCH transmission mode corresponding to the capability C1 based on the above-mentioned correspondence in the default configuration to obtain CSI for feedback.
  • Scenario 1-5 The system is configured with the correspondence between the terminal capability C2 and the first PDSCH transmission mode by default. If in S101, the capability information sent by the terminal indicates that the terminal has capability C2, then the terminal calculates the measurement information based on the above-mentioned corresponding relationship in the default configuration and according to the first PDSCH transmission mode corresponding to capability C2 to obtain CSI for feedback.
  • Cases 1-6 The system is configured with the correspondence between the terminal capability C3 and the first PDSCH transmission mode by default. If in S101, the capability information sent by the terminal indicates that the terminal has capability C3, then the terminal calculates the measurement information based on the above-mentioned corresponding relationship in the default configuration and according to the first PDSCH transmission mode corresponding to capability C3 to obtain CSI for feedback.
  • the system may also be configured with a corresponding relationship between the terminal capability C3 and the second PDSCH transmission mode by default. If in S101, the capability information sent by the terminal indicates that the terminal has capability C3, the terminal calculates the measurement information based on the above-mentioned corresponding relationship in the default configuration and according to the second PDSCH transmission mode corresponding to capability C3 to obtain CSI for feedback.
  • the system may also be configured with a corresponding relationship between the terminal capability C3 and the first PDSCH transmission mode and the second PDSCH transmission mode by default. If in S101, the capability information sent by the terminal indicates that the terminal has the capability C3, then the terminal is based on the above-mentioned corresponding relationship of the default configuration, according to the first PDSCH transmission mode and the second PDSCH transmission mode corresponding to the capability C3, respectively, based on the first PDSCH transmission mode and the second PDSCH transmission mode calculate the measurement information to obtain CSI for feedback.
  • the system is configured with the corresponding relationship between the terminal capability C3 and the first PDSCH transmission mode and the second PDSCH transmission mode by default, and the terminal can automatically select the first PDSCH transmission mode and the first PDSCH transmission mode corresponding to the capability B1 configured by default. At least one of the second PDSCH transmission modes is selected, and the measurement information is calculated based on the selected PDSCH transmission mode to obtain CSI for feedback.
  • the CSI is calculated based on the first PDSCH transmission mode; if the terminal selects the second PDSCH transmission mode, the CSI is calculated based on the second PDSCH transmission mode; if the terminal selects the first PDSCH transmission mode and For the second PDSCH transmission mode, the CSI is calculated based on the first PDSCH transmission mode and the second PDSCH transmission mode, respectively.
  • Scenario 1-7 The system is configured with the correspondence between the terminal capability C4 and the first PDSCH transmission mode by default. If in S101, the capability information sent by the terminal indicates that the terminal has capability C4, the terminal calculates the measurement information based on the above-mentioned corresponding relationship in the default configuration and according to the first PDSCH transmission mode corresponding to capability C4 to obtain CSI for feedback.
  • the system may also be configured with a corresponding relationship between the terminal capability C4 and the second PDSCH transmission mode by default. If in S101, the capability information sent by the terminal indicates that the terminal has capability C4, the terminal calculates the measurement information based on the above-mentioned corresponding relationship in the default configuration and according to the second PDSCH transmission mode corresponding to capability C4 to obtain CSI for feedback.
  • the system may also be configured with a corresponding relationship between the terminal capability C4 and the first PDSCH transmission mode and the second PDSCH transmission mode by default. If in S101, the capability information sent by the terminal indicates that the terminal has the capability C4, then the terminal is based on the above-mentioned corresponding relationship of the default configuration, according to the first PDSCH transmission mode and the second PDSCH transmission mode corresponding to the capability C4, respectively, based on the first PDSCH transmission mode and the second PDSCH transmission mode calculate the measurement information to obtain CSI for feedback.
  • the system is configured by default with the corresponding relationship between the terminal capability C4 and the first PDSCH transmission mode and the second PDSCH transmission mode, and the terminal can automatically select the first PDSCH transmission mode and the first PDSCH transmission mode corresponding to the capability B1 configured by default. At least one of the second PDSCH transmission modes is selected, and the measurement information is calculated based on the selected PDSCH transmission mode to obtain CSI for feedback.
  • the CSI is calculated based on the first PDSCH transmission mode; if the terminal selects the second PDSCH transmission mode, the CSI is calculated based on the second PDSCH transmission mode; if the terminal selects the first PDSCH transmission mode and For the second PDSCH transmission mode, the CSI is calculated based on the first PDSCH transmission mode and the second PDSCH transmission mode, respectively.
  • Cases 1-8 The system is configured with the corresponding relationship between the terminal capability C5 and the first PDSCH transmission mode by default. If in S101, the capability information sent by the terminal indicates that the terminal has capability C5, the terminal calculates the measurement information based on the above-mentioned corresponding relationship in the default configuration and according to the first PDSCH transmission mode corresponding to capability C5 to obtain CSI for feedback.
  • Cases 1-9 The system is configured with the correspondence between the terminal capability C6 and the first PDSCH transmission mode by default. If in S101, the capability information sent by the terminal indicates that the terminal has capability C6, then the terminal calculates the measurement information based on the above-mentioned correspondence in the default configuration and according to the first PDSCH transmission mode corresponding to capability C6 to obtain CSI for feedback.
  • the network device may, according to the capability information reported by the terminal, instruct the terminal to calculate the CSI based on the PDSCH transmission mode corresponding to the capability information.
  • the terminal may calculate the detected measurement information based on the PDSCH transmission mode matching the capability reported by the terminal according to the instruction of the network side to obtain the CSI for feedback.
  • the network device may send indication information to the terminal, and use the indication information to indicate the PDSCH transmission mode based on which the terminal calculates the CSI.
  • the indication information may be information of several bits, and different values of these bits correspond to different PDSCH transmission modes.
  • the network device may send dedicated signaling to the terminal, where the dedicated signaling carries the above-mentioned indication information, thereby sending the indication information to the terminal.
  • the dedicated signaling may be RRC (Radio Resource Control, radio resource control) signaling.
  • the network device may send dynamic signaling to the terminal, where the dynamic signaling carries the above-mentioned indication information.
  • the dynamic signaling may be DCI or MAC CE (Media Access Control-Control Element, Media Access Control-Control Element).
  • the network device may send dedicated signaling carrying the first indication information to the terminal, and send dynamic signaling carrying the second indication information to the terminal when the PDSCH transmission mode changes.
  • the first indication information is used to indicate the PDSCH transmission mode set (including at least the first PDSCH transmission mode and the second PDSCH transmission mode), and the second indication information is used to indicate one PDSCH transmission mode in the PDSCH transmission mode set.
  • the network device may send PDSCH resource allocation information to the terminal, and use the PDSCH resource allocation information to indicate the time-frequency resources of at least two PDSCHs, and the PDSCH resource allocation information is consistent with the capability information sent by the terminal. match, so that the terminal calculates the CSI based on the corresponding PDSCH transmission mode when calculating the CSI.
  • the network device may send time domain and frequency domain resource allocation indications of the two PDSCHs through DCIs (Downlink Control Information, downlink control information) corresponding to different CORESETPoolindexes for calculation and measurement of CSI.
  • DCIs Downlink Control Information, downlink control information
  • the following describes an implementation process in which the terminal calculates the measurement information to obtain CSI for feedback based on the PDSCH transmission mode corresponding to the capability information of the terminal by taking the network device sending the indication information as an example. Specifically, the following situations may be included:
  • Scenario 2-1 If the capability information reported by the terminal indicates that the terminal has capability B1, the indication information sent by the network device to the terminal indicates the first PDSCH transmission mode, and the terminal, based on the first PDSCH transmission mode indicated by the indication information, measures the measurement The information is calculated to obtain CSI for feedback.
  • the indication information sent by the network device to the terminal indicates the second PDSCH transmission mode, and the terminal is based on the second PDSCH transmission mode indicated by the indication information,
  • the measurement information is calculated to obtain CSI for feedback.
  • the indication information sent by the network device to the terminal indicates the first PDSCH transmission mode and the second PDSCH transmission mode
  • the terminal according to the indication information indicates the first PDSCH transmission mode and the second PDSCH transmission mode.
  • the measurement information is calculated to obtain CSI for feedback.
  • the indication information sent by the network device to the terminal indicates the first PDSCH transmission mode and the second PDSCH transmission mode, and the terminal can automatically obtain the information from the indication information. At least one of the indicated first PDSCH transmission mode and the second PDSCH transmission mode is selected, and the measurement information is calculated based on the selected PDSCH transmission mode to obtain CSI for feedback.
  • the CSI is calculated based on the first PDSCH transmission mode; if the terminal selects the second PDSCH transmission mode, the CSI is calculated based on the second PDSCH transmission mode; if the terminal selects the first PDSCH transmission mode and For the second PDSCH transmission mode, the CSI is calculated based on the first PDSCH transmission mode and the second PDSCH transmission mode, respectively.
  • Scenario 2-2 If the capability information reported by the terminal indicates that the terminal has capability B2, the indication information sent by the network device to the terminal indicates the first PDSCH transmission mode, and the terminal, based on the first PDSCH transmission mode indicated by the indication information, measures the measurement The information is calculated to obtain CSI for feedback.
  • Scenario 2-3 If the capability information reported by the terminal indicates that the terminal has the capability C1, the indication information sent by the network device to the terminal indicates the first PDSCH transmission mode, and the terminal, based on the first PDSCH transmission mode indicated by the indication information, measures the measurement The information is calculated to obtain CSI for feedback.
  • Scenario 2-4 If the capability information reported by the terminal indicates that the terminal has the capability C2, the indication information sent by the network device to the terminal indicates the first PDSCH transmission mode, and the terminal, based on the first PDSCH transmission mode indicated by the indication information, measures the measurement The information is calculated to obtain CSI for feedback.
  • Scenario 2-5 If the capability information reported by the terminal indicates that the terminal has the capability C3, the indication information sent by the network device to the terminal indicates the first PDSCH transmission mode, and the terminal, based on the first PDSCH transmission mode indicated by the indication information, measures the measurement The information is calculated to obtain CSI for feedback.
  • the indication information sent by the network device to the terminal indicates the second PDSCH transmission mode, and the terminal is based on the second PDSCH transmission mode indicated by the indication information,
  • the measurement information is calculated to obtain CSI for feedback.
  • the indication information sent by the network device to the terminal indicates the first PDSCH transmission mode and the second PDSCH transmission mode
  • the terminal according to the indication information indicates the first PDSCH transmission mode and the second PDSCH transmission mode.
  • the measurement information is calculated to obtain CSI for feedback.
  • the indication information sent by the network device to the terminal indicates the first PDSCH transmission mode and the second PDSCH transmission mode, and the terminal can automatically obtain the information from the indication information. At least one of the indicated first PDSCH transmission mode and the second PDSCH transmission mode is selected, and the measurement information is calculated based on the selected PDSCH transmission mode to obtain CSI for feedback.
  • the CSI is calculated based on the first PDSCH transmission mode; if the terminal selects the second PDSCH transmission mode, the CSI is calculated based on the second PDSCH transmission mode; if the terminal selects the first PDSCH transmission mode and For the second PDSCH transmission mode, the CSI is calculated based on the first PDSCH transmission mode and the second PDSCH transmission mode, respectively.
  • Scenario 2-6 If the capability information reported by the terminal indicates that the terminal has the capability C4, the indication information sent by the network device to the terminal indicates the first PDSCH transmission mode, and the terminal, based on the first PDSCH transmission mode indicated by the indication information, measures the measurement The information is calculated to obtain CSI for feedback.
  • the indication information sent by the network device to the terminal indicates the second PDSCH transmission mode, and the terminal is based on the second PDSCH transmission mode indicated by the indication information,
  • the measurement information is calculated to obtain CSI for feedback.
  • the indication information sent by the network device to the terminal indicates the first PDSCH transmission mode and the second PDSCH transmission mode, and the terminal according to the indication information indicated For the first PDSCH transmission mode and the second PDSCH transmission mode, based on the first PDSCH transmission mode and the second PDSCH transmission mode, respectively, the measurement information is calculated to obtain CSI for feedback.
  • the indication information sent by the network device to the terminal indicates the first PDSCH transmission mode and the second PDSCH transmission mode, and the terminal can automatically obtain the information from the indication information. At least one of the indicated first PDSCH transmission mode and the second PDSCH transmission mode is selected, and the measurement information is calculated based on the selected PDSCH transmission mode to obtain CSI for feedback.
  • the CSI is calculated based on the first PDSCH transmission mode; if the terminal selects the second PDSCH transmission mode, the CSI is calculated based on the second PDSCH transmission mode; if the terminal selects the first PDSCH transmission mode and For the second PDSCH transmission mode, the CSI is calculated based on the first PDSCH transmission mode and the second PDSCH transmission mode, respectively.
  • Scenario 2-7 If the capability information reported by the terminal indicates that the terminal has the capability C5, the indication information sent by the network device to the terminal indicates the first PDSCH transmission mode, and the terminal, based on the first PDSCH transmission mode indicated by the indication information, measures the measurement The information is calculated to obtain CSI for feedback.
  • Scenario 2-8 If the capability information reported by the terminal indicates that the terminal has the capability C6, the indication information sent by the network device to the terminal indicates the first PDSCH transmission mode, and the terminal, based on the first PDSCH transmission mode indicated by the indication information, measures the measurement The information is calculated to obtain CSI for feedback.
  • the following takes the example that the network device sends PDSCH resource allocation information to the terminal to describe the implementation process of the terminal calculating the measurement information based on the PDSCH transmission mode corresponding to the capability information of the terminal to obtain CSI for feedback. Specifically, the following situations may be included:
  • Case 3-1 If the capability information reported by the terminal indicates that the terminal has capability A, the PDSCH resource allocation information sent by the network device to the terminal indicates the first PDSCH time-frequency resource. For PDSCH time-frequency resources, the measurement information is calculated based on the corresponding PDSCH transmission mode to obtain CSI for feedback.
  • the first PDSCH time-frequency resource is: at least two PDSCHs overlap in the time domain and do not overlap in the frequency domain; the PDSCH transmission mode corresponding to the first PDSCH time-frequency resource is: at least two PDSCHs overlap in the time domain and are in the frequency domain.
  • Scenario 3-2 If the capability information reported by the terminal indicates that the terminal has capability B1, the PDSCH resource allocation information sent by the network device to the terminal indicates the first PDSCH time-frequency resource. For PDSCH time-frequency resources, the measurement information is calculated based on the corresponding PDSCH transmission mode to obtain CSI for feedback.
  • the PDSCH resource allocation information sent by the network device to the terminal indicates the second PDSCH time-frequency resource, and accordingly, the terminal according to the PDSCH resource allocation information indicates For the second PDSCH time-frequency resource, CSI for feedback is obtained by calculating the measurement information based on the corresponding PDSCH transmission mode.
  • the second PDSCH time-frequency resources are at least two PDSCH time-frequency resources that completely overlap
  • the PDSCH transmission mode corresponding to the second PDSCH time-frequency resources is: a transmission mode in which at least two PDSCHs completely overlap in time-frequency and frequency domains.
  • Scenario 3-3 If the capability information reported by the terminal indicates that the terminal has capability B2, the PDSCH resource allocation information sent by the network device to the terminal indicates the first PDSCH time-frequency resource. For PDSCH time-frequency resources, the measurement information is calculated based on the corresponding PDSCH transmission mode to obtain CSI for feedback.
  • Case 3-4 If the capability information reported by the terminal indicates that the terminal has the capability C1, the PDSCH resource allocation information sent by the network device to the terminal indicates the first PDSCH time-frequency resource. For PDSCH time-frequency resources, the measurement information is calculated based on the corresponding PDSCH transmission mode to obtain CSI for feedback.
  • the PDSCH resource allocation information sent by the network device to the terminal indicates the third PDSCH time-frequency resource.
  • CSI for feedback is obtained by calculating the measurement information based on the corresponding PDSCH transmission mode.
  • the third PDSCH time-frequency resource is: at least two PDSCHs partially overlap in the time domain
  • the PDSCH transmission mode corresponding to the third PDSCH time-frequency resource is: a transmission mode in which the at least two PDSCHs overlap in the time domain and do not overlap in the frequency domain.
  • Case 3-5 If the capability information reported by the terminal indicates that the terminal has the capability C2, the PDSCH resource allocation information sent by the network device to the terminal indicates the first PDSCH time-frequency resource. For PDSCH time-frequency resources, the measurement information is calculated based on the corresponding PDSCH transmission mode to obtain CSI for feedback.
  • Case 3-6 If the capability information reported by the terminal indicates that the terminal has the capability C3, the PDSCH resource allocation information sent by the network device to the terminal indicates the first PDSCH time-frequency resource. For PDSCH time-frequency resources, the measurement information is calculated based on the corresponding PDSCH transmission mode to obtain CSI for feedback.
  • the PDSCH resource allocation information sent by the network device to the terminal indicates the second PDSCH time-frequency resource.
  • CSI for feedback is obtained by calculating the measurement information based on the corresponding PDSCH transmission mode.
  • the PDSCH resource allocation information sent by the network device to the terminal indicates the third PDSCH time-frequency resource.
  • CSI for feedback is obtained by calculating the measurement information based on the corresponding PDSCH transmission mode.
  • the related description of the first PDSCH time-frequency resource and the corresponding PDSCH transmission mode the related description of the second PDSCH time-frequency resource and the corresponding PDSCH transmission mode, and the related description of the third PDSCH time-frequency resource and the corresponding PDSCH transmission mode , see the previous description.
  • Case 3-7 If the capability information reported by the terminal indicates that the terminal has the capability C4, the PDSCH resource allocation information sent by the network device to the terminal indicates the first PDSCH time-frequency resource. For PDSCH time-frequency resources, the measurement information is calculated based on the corresponding PDSCH transmission mode to obtain CSI for feedback.
  • the PDSCH resource allocation information sent by the network device to the terminal indicates the third PDSCH time-frequency resource.
  • CSI for feedback is obtained by calculating the measurement information based on the corresponding PDSCH transmission mode.
  • Case 3-8 If the capability information reported by the terminal indicates that the terminal has the capability C5, the PDSCH resource allocation information sent by the network device to the terminal indicates the first PDSCH time-frequency resource. For PDSCH time-frequency resources, the measurement information is calculated based on the corresponding PDSCH transmission mode to obtain CSI for feedback.
  • the PDSCH resource allocation information sent by the network device to the terminal indicates the second PDSCH time-frequency resource, and accordingly, the terminal according to the PDSCH resource allocation information indicates For the second PDSCH time-frequency resource, CSI for feedback is obtained by calculating the measurement information based on the corresponding PDSCH transmission mode.
  • Case 3-9 If the capability information reported by the terminal indicates that the terminal has the capability C6, the PDSCH resource allocation information sent by the network device to the terminal indicates the first PDSCH time-frequency resource. For PDSCH time-frequency resources, the measurement information is calculated based on the corresponding PDSCH transmission mode to obtain CSI for feedback.
  • an embodiment of the present disclosure also provides a terminal, which can implement the method on the terminal side in the foregoing embodiments.
  • the terminal can implement the functions implemented by the terminal in FIG. 1 .
  • the terminal may include: a receiving module 301, a processing module 302, and a sending module 303, wherein:
  • a sending module 303 configured to send capability information of the terminal to a network device
  • the processing module 302 is configured to measure the downlink reference signal sent by the network device to obtain measurement information, and based on the PDSCH transmission mode corresponding to the capability information, calculate the measurement information to obtain CSI for feedback;
  • the sending module 303 is further configured to send the CSI to the network device.
  • the terminal provided by the embodiment of the present disclosure can implement all the method steps implemented by the above method embodiment, and can achieve the same technical effect, and the same technical effect as the method embodiment in this embodiment will not be discussed here. Parts and beneficial effects are described in detail.
  • an embodiment of the present disclosure further provides a network device, which can implement the method on the network device side in the foregoing embodiments.
  • FIG. 4 it is a schematic structural diagram of a network device according to an embodiment of the present disclosure, where the network device can implement the functions implemented by the terminal in FIG. 2 .
  • the terminal may include: a receiving module 401, a processing module 402, and a sending module 403, wherein:
  • a receiving module 401 configured to receive capability information of the terminal sent by the terminal;
  • the receiving module 401 is further configured to receive the CSI sent by the terminal, where the CSI is obtained by the terminal calculating the measurement information of the downlink reference signal based on the PDSCH transmission mode corresponding to the capability information.
  • the network device provided by the embodiment of the present disclosure can implement all the method steps implemented by the above method embodiment, and can achieve the same technical effect, and the same as the method embodiment in this embodiment is not repeated here.
  • the parts and beneficial effects will be described in detail.
  • an embodiment of the present disclosure further provides a terminal, which can implement the method on the terminal side in the foregoing embodiments.
  • the terminal may include: a processor 501 , a memory 502 , a transceiver 503 and a bus interface 504 .
  • the processor 501 is responsible for managing the bus architecture and general processing, and the memory 502 may store data used by the processor 501 in performing operations.
  • the transceiver 503 is used to receive and transmit data under the control of the processor 501 .
  • the bus architecture may include any number of interconnected buses and bridges, in particular one or more processors represented by processor 501 and various circuits of memory represented by memory 502 linked together.
  • the bus architecture may also link together various other circuits, such as peripherals, voltage regulators, and power management circuits, which are well known in the art and, therefore, will not be described further herein.
  • the bus interface provides the interface.
  • the processor 501 is responsible for managing the bus architecture and general processing, and the memory 502 may store data used by the processor 501 in performing operations.
  • the processes disclosed in the embodiments of the present disclosure may be applied to the processor 501 or implemented by the processor 501 .
  • each step of the signal processing flow can be completed by an integrated logic circuit of hardware in the processor 501 or an instruction in the form of software.
  • the processor 501 may be a general-purpose processor, a digital signal processor, an application-specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, a discrete hardware component, and may implement or execute the embodiments of the present disclosure.
  • a general purpose processor may be a microprocessor or any conventional processor or the like.
  • the steps of the method disclosed in conjunction with the embodiments of the present disclosure may be directly embodied as executed by a hardware processor, or executed by a combination of hardware and software modules in the processor.
  • the software modules may be located in random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, registers and other storage media mature in the art.
  • the storage medium is located in the memory 502, and the processor 501 reads the information in the memory 502, and completes the steps of the signal processing flow in combination with its hardware.
  • the processor 501 is configured to read computer instructions in the memory 502 and execute the functions implemented by the terminal in the embodiments of the present disclosure.
  • an embodiment of the present disclosure also provides a network device.
  • the network device may implement the functions on the network device side in the foregoing embodiments.
  • the network device may include: a processor 601 , a memory 602 , a transceiver 603 and a bus interface 604 .
  • the processor 601 is responsible for managing the bus architecture and general processing, and the memory 602 may store data used by the processor 601 in performing operations.
  • the transceiver 603 is used to receive and transmit data under the control of the processor 601 .
  • the bus architecture may include any number of interconnected buses and bridges, in particular one or more processors represented by processor 601 and various circuits of memory represented by memory 602 linked together.
  • the bus architecture may also link together various other circuits, such as peripherals, voltage regulators, and power management circuits, which are well known in the art and, therefore, will not be described further herein.
  • the bus interface provides the interface.
  • the processor 601 is responsible for managing the bus architecture and general processing, and the memory 602 may store data used by the processor 601 in performing operations.
  • the processes disclosed in the embodiments of the present disclosure may be applied to the processor 601 or implemented by the processor 601 .
  • each step of the signal processing flow can be completed by an integrated logic circuit of hardware in the processor 601 or an instruction in the form of software.
  • the processor 601 may be a general-purpose processor, a digital signal processor, an application-specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, or a discrete hardware component, and may implement or execute the embodiments of the present disclosure.
  • a general purpose processor may be a microprocessor or any conventional processor or the like.
  • the steps of the methods disclosed in conjunction with the embodiments of the present disclosure may be directly embodied as executed by a hardware processor, or executed by a combination of hardware and software modules in the processor.
  • the software module may be located in random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, registers and other storage media mature in the art.
  • the storage medium is located in the memory 602, and the processor 601 reads the information in the memory 602, and completes the steps of the signal processing flow in combination with its hardware.
  • the processor 601 is configured to read computer instructions in the memory 602 and execute the functions implemented by the terminal in the embodiments of the present disclosure.
  • the above-mentioned network device provided in the embodiments of the present invention can implement all the method steps implemented by the network device in the above-mentioned method embodiments, and can achieve the same technical effect, and the related The same parts and beneficial effects of the method embodiments will be described in detail.
  • Embodiments of the present disclosure further provide a computer-readable storage medium, where the computer-readable storage medium stores computer-executable instructions, and the computer-executable instructions are used to cause the computer to execute the method executed by the terminal in the foregoing embodiments.
  • Embodiments of the present disclosure further provide a computer-readable storage medium, where the computer-readable storage medium stores computer-executable instructions, and the computer-executable instructions are used to cause the computer to execute the method executed by the network device in the foregoing embodiments.
  • embodiments of the present disclosure may be provided as a method, system, or computer program product. Accordingly, the present disclosure may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present disclosure may take the form of a computer program product embodied on one or more computer-usable storage media (including, but not limited to, disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein.
  • computer-usable storage media including, but not limited to, disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing apparatus to function in a particular manner, such that the instructions stored in the computer-readable memory result in an article of manufacture comprising instruction means, the instructions
  • the apparatus implements the functions specified in the flow or flow of the flowcharts and/or the block or blocks of the block diagrams.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开公开了一种信道状态信息反馈方法及装置。本公开中,终端向网络设备发送所述终端的能力信息;所述终端对所述网络设备发送的下行参考信号进行测量得到测量信息,并基于与所述能力信息对应的PDSCH传输方式,对所述测量信息进行计算得到用于反馈的CSI;所述终端向所述网络设备发送所述CSI。

Description

一种信道状态信息反馈方法及装置
相关申请的交叉引用
本申请要求在2020年07月15日提交中国专利局、申请号为202010682922.0、申请名称为“一种信道状态信息反馈方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及无线通信技术领域,尤其涉及一种信道状态信息反馈方法及装置。
背景技术
为了改善小区边缘的覆盖,在服务区内提供更为均衡的服务质量,多点协作在新空口(New Radio,NR)系统中是一种重要的技术手段。从网络形态角度考虑,以大量的分布式接入点+基带集中处理的方式进行网络部署,将更加有利于提供均衡的用户体验速率,并且显著降低越区切换带来的时延和信令开销。随着频段的升高,从保证网络覆盖的角度出发,也需要相对密集的接入点部署。
在高频段,随着有源天线设备集成度的提高,将更加倾向于采用模块化的有源天线阵列。每个传输点(Transmission Reference Point,TRP)的天线阵可以被分为若干相对独立的天线面板,因此整个阵面的形态和端口数都可以随部署场景与业务需求进行灵活的调整。而天线面板或TRP(以下将天线面板和TRP合称为TRP)之间也可以由光纤连接,进行更为灵活的分布式部署,通过TRP之间的协作传输来改善边缘覆盖,提升边缘频谱利用效率或边缘传输速率。
在一种多点协作方案中,可利用多个物理下行链路控制信道(Physical Downlink Control Channel,PDCCH)分别调度各自的物理下行链路共享信道 (Physical Downlink Shared Channel,PDSCH),该方案称为M-DCI(Multi-Downlink Control Information)方案。这种方案中,各TRP可独立调度,独立进行信道状态信息(Channel Statement Information,CSI)测量和上报,具有较高的灵活性,但所上报的CSI无法反映PDSCH传输情况。
发明内容
本公开实施例提供一种信道状态信息反馈方法及装置,使得CSI可以反映PDSCH传输情况。
第一方面,提供一种CSI反馈方法,包括:终端向网络设备发送所述终端的能力信息;所述终端对所述网络设备发送的下行参考信号进行测量得到测量信息,并基于与所述能力信息对应的PDSCH传输方式,对所述测量信息进行计算得到用于反馈的CSI;所述终端向所述网络设备发送所述CSI。
在一些可能的实现方式中,所述基于与所述能力信息对应的PDSCH传输方式,对所述测量信息进行计算得到用于反馈的CSI,包括:基于默认配置的与所述能力信息对应的PDSCH传输方式,对所述测量信息进行计算得到用于反馈的CSI。
在一些可能的实现方式中,所述基于默认配置的与所述能力信息对应的PDSCH传输方式,对所述测量信息进行计算得到用于反馈的CSI,包括:若所述能力信息指示所述终端支持至少两个PDSCH在时域重叠且在频域不重叠,则基于默认配置的第一PDSCH传输方式,对所述测量信息进行计算得到用于反馈的CSI;其中,所述第一PDSCH传输方式为:至少两个PDSCH在时域重叠且在频域不重叠的传输方式。
在一些可能的实现方式中,所述基于默认配置的与所述能力信息对应的PDSCH传输方式,对所述测量信息进行计算得到用于反馈的CSI,包括:
若所述能力信息指示所述终端支持至少两个PDSCH在时域重叠且在频域不重叠,以及支持至少两个PDSCH的时频资源完全重叠,则基于默认配置的第一PDSCH传输方式或默认配置的第二PDSCH传输方式或默认配置的第 一PDSCH传输方式和第二PDSCH方式,对所述测量信息进行计算得到用于反馈的CSI,或者从默认配置的第一PDSCH传输方式和第二PDSCH传输方式中选择至少一项,对所述测量信息进行计算得到用于反馈的CSI;
或者,若所述能力信息指示所述终端支持至少两个PDSCH在时域重叠且在频域不重叠,以及不支持至少两个PDSCH的时频资源完全重叠,则基于默认配置的第一PDSCH传输方式对所述测量信息进行计算得到用于反馈的CSI;
其中,所述第一PDSCH传输方式为:至少两个PDSCH在时域重叠且在频域不重叠的传输方式;所述第二PDSCH传输方式为:至少两个PDSCH在时频和频域完全重叠的传输方式;基于所述第一PDSCH传输方式和所述第二PDSCH传输方式对所述测量信息进行计算得到用于反馈的CSI时,分别基于所述第一PDSCH传输方式和所述第二PDSCH传输方式对所述测量信息进行计算得到用于反馈的CSI。
在一些可能的实现方式中,所述基于默认配置的与所述能力信息对应的PDSCH传输方式,对所述测量信息进行计算得到用于反馈的CSI,包括:
若所述能力信息指示所述终端支持至少两个PDSCH在时域重叠且在频域不重叠,以及支持或不支持至少两个PDSCH的时频资源部分重叠,则基于默认配置的第一PDSCH传输方式,对所述测量信息进行计算得到用于反馈的CSI;
或者,若所述能力信息指示所述终端支持至少两个PDSCH在时域重叠且在频域不重叠,且支持或不支持至少两个PDSCH的时频资源部分重叠,以及支持至少两个PDSCH的时频资源完全重叠,则基于默认配置的第一PDSCH传输方式或默认配置的第二PDSCH传输方式或默认配置的第一PDSCH传输方式和第二PDSCH方式,对所述测量信息进行计算得到用于反馈的CSI,或者从默认配置的第一PDSCH传输方式和第二PDSCH传输方式中选择至少一项,对所述测量信息进行计算得到用于反馈的CSI;
或者,若所述能力信息指示所述终端支持至少两个PDSCH在时域重叠且在频域不重叠,且不支持至少两个PDSCH的时频资源部分重叠,以及不支持 至少两个PDSCH的时频资源完全重叠,则基于默认配置的第一PDSCH传输方式对所述测量信息进行计算得到用于反馈的CSI;
其中,所述第一PDSCH传输方式为:至少两个PDSCH在时域重叠且在频域不重叠的传输方式;所述第二PDSCH传输方式为:至少两个PDSCH在时频和频域完全重叠的传输方式;基于所述第一PDSCH传输方式以及第二PDSCH传输方式对所述测量信息进行计算得到用于反馈的CSI时,分别基于所述第一PDSCH传输方式和所述第二PDSCH传输方式对所述测量信息进行计算得到用于反馈的CSI。
在一些可能的实现方式中,所述基于与所述能力信息对应的PDSCH传输方式,对所述测量信息进行计算得到用于反馈的CSI,包括:根据所述网络设备的指示,基于与所述能力信息对应的PDSCH传输方式,对所述测量信息进行计算得到用于反馈的CSI。
在一些可能的实现方式中,所述根据所述网络设备的指示,基于与所述能力信息对应的PDSCH传输方式,对所述测量信息进行计算得到用于反馈的CSI,包括:接收所述网络设备发送的指示信息,所述指示信息用于指示终端计算CSI时所基于的PDSCH传输方式,所述指示信息所指示的PDSCH传输方式与所述终端的能力信息相匹配;基于所述指示信息所指示的PDSCH传输方式,对所述测量信息进行计算得到用于反馈的CSI。
在一些可能的实现方式中,所述根据所述网络设备的指示,基于与所述能力信息对应的PDSCH传输方式,对所述测量信息进行计算得到用于反馈的CSI,包括:
若所述能力信息指示所述终端支持至少两个PDSCH在时域重叠且在频域不重叠,以及支持至少两个PDSCH的时频资源完全重叠,则基于所述指示信息所指示的第一PDSCH传输方式或所述指示信息所指示的第二PDSCH传输方式或所述指示信息所指示的第一PDSCH传输方式和第二PDSCH方式,对所述测量信息进行计算得到用于反馈的CSI,或者从所述指示信息所指示的第一PDSCH传输方式和第二PDSCH传输方式中选择至少一项,对所述测量 信息进行计算得到用于反馈的CSI;
或者,若所述能力信息指示所述终端支持至少两个PDSCH在时域重叠且在频域不重叠,以及不支持至少两个PDSCH的时频资源完全重叠,则基于所述指示信息指示的第一PDSCH传输方式对所述测量信息进行计算得到用于反馈的CSI;
其中,所述第一PDSCH传输方式为:至少两个PDSCH在时域重叠且在频域不重叠的传输方式;所述第二PDSCH传输方式为:至少两个PDSCH在时频和频域完全重叠的传输方式;基于所述第一PDSCH传输方式和所述第二PDSCH传输方式对所述测量信息进行计算得到用于反馈的CSI时,分别基于所述第一PDSCH传输方式和所述第二PDSCH传输方式对所述测量信息进行计算得到用于反馈的CSI。
在一些可能的实现方式中,所述根据所述网络设备的指示,基于与所述能力信息对应的PDSCH传输方式,对所述测量信息进行计算得到用于反馈的CSI,包括:若所述能力信息指示所述终端支持至少两个PDSCH在时域重叠且在频域不重叠,以及支持或不支持至少两个PDSCH的时频资源部分重叠,则基于所述指示信息所指示的第一PDSCH传输方式,对所述测量信息进行计算得到用于反馈的CSI;
或者,若所述能力信息指示所述终端支持至少两个PDSCH在时域重叠且在频域不重叠,且支持或不支持至少两个PDSCH的时频资源部分重叠,以及支持至少两个PDSCH的时频资源完全重叠,则基于所述指示信息所指示的第一PDSCH传输方式或默认配置的第二PDSCH传输方式或基于所述指示信息所指示的第一PDSCH传输方式和第二PDSCH方式,对所述测量信息进行计算得到用于反馈的CSI,或者从默认配置的第一PDSCH传输方式和第二PDSCH传输方式中选择至少一项,对所述测量信息进行计算得到用于反馈的CSI;
或者,若所述能力信息指示所述终端支持至少两个PDSCH在时域重叠且在频域不重叠,且不支持至少两个PDSCH的时频资源部分重叠,以及不支持 至少两个PDSCH的时频资源完全重叠,则基于所述指示信息所指示的第一PDSCH传输方式,对所述测量信息进行计算得到用于反馈的CSI;
其中,所述第一PDSCH传输方式为:至少两个PDSCH在时域重叠且在频域不重叠的传输方式;所述第二PDSCH传输方式为:至少两个PDSCH在时频和频域完全重叠的传输方式;基于所述第一PDSCH传输方式和所述第二PDSCH传输方式对所述测量信息进行计算得到用于反馈的CSI时,分别基于所述第一PDSCH传输方式和所述第二PDSCH传输方式对所述测量信息进行计算得到用于反馈的CSI。
在一些可能的实现方式中,所述根据所述网络设备的指示,基于与所述能力信息对应的PDSCH传输方式,对所述测量信息进行计算得到用于反馈的CSI,包括:接收所述网络设备发送的PDSCH资源分配信息,所述PDSCH资源分配信息用于指示至少两个PDSCH的时频资源,所述PDSCH资源分配信息与所述终端发送的能力信息相匹配;基于所述PDSCH资源分配信息对应的PDSCH传输方式,对所述测量信息进行计算得到用于反馈的CSI。
在一些可能的实现方式中,基于所述PDSCH资源分配信息对应的PDSCH传输方式,对所述测量信息进行计算得到用于反馈的CSI,包括:若所述能力信息指示所述终端支持至少两个PDSCH在时域重叠且在频域不重叠,则根据所述PDSCH资源分配信息指示的第一PDSCH时频资源,基于对应的PDSCH传输方式对所述测量信息进行计算得到用于反馈的CSI;其中,所述第一PDSCH时频资源为:至少两个PDSCH在时域重叠且在频域不重叠;与所述第一PDSCH时频资源对应的PDSCH传输方式为:至少两个PDSCH在时域重叠且在频域不重叠的传输方式。
在一些可能的实现方式中,基于所述PDSCH资源分配信息对应的PDSCH传输方式,对所述测量信息进行计算得到用于反馈的CSI,包括:若所述能力信息指示所述终端支持至少两个PDSCH在时域重叠且在频域不重叠,以及支持至少两个PDSCH的时频资源完全重叠,则基于所述PDSCH资源分配信息指示的第一PDSCH时频资源或第二PDSCH时频资源所对应的PDSCH传输 方式,对所述测量信息进行计算得到用于反馈的CSI;
或者,若所述能力信息指示所述终端支持至少两个PDSCH在时域重叠且在频域不重叠,以及不支持至少两个PDSCH的时频资源完全重叠,则基于所述PDSCH资源分配信息指示的第一PDSCH时频资源所对应的PDSCH传输方式,对所述测量信息进行计算得到用于反馈的CSI;
其中,所述第一PDSCH时频资源为:至少两个PDSCH在时域重叠且在频域不重叠的传输方式,与所述第一PDSCH时频资源对应的PDSCH传输方式为:至少两个PDSCH在时域重叠且在频域不重叠的传输方式;所述第二PDSCH时频资源为至少两个PDSCH的时频资源完全重叠,与所述第二PDSCH时频资源对应的PDSCH传输方式为:至少两个PDSCH在时频和频域完全重叠的传输方式。
在一些可能的实现方式中,基于所述PDSCH资源分配信息对应的PDSCH传输方式,对所述测量信息进行计算得到用于反馈的CSI,包括:
若所述能力信息指示所述终端支持至少两个PDSCH在时域重叠且在频域不重叠,支持至少两个PDSCH的时频资源部分重叠,以及支持至少两个PDSCH的时频资源完全重叠,则基于所述PDSCH资源分配信息指示的第一PDSCH时频资源、第二PDSCH时频资源分配情况或第三时频资源分配情况所对应的PDSCH传输方式,对所述测量信息进行计算得到用于反馈的CSI;
或者,若所述能力信息指示所述终端支持至少两个PDSCH在时域重叠且在频域不重叠,不支持至少两个PDSCH的时域资源部分重叠,以及支持至少两个PDSCH的时频资源完全重叠,则基于所述PDSCH资源分配信息指示的第一PDSCH时频资源或第二时频资源分配情况所对应的PDSCH传输方式,对所述测量信息进行计算得到用于反馈的CSI;
或者,若所述能力信息指示所述终端支持至少两个PDSCH在时域重叠且在频域不重叠,支持至少两个PDSCH的时频资源部分重叠,以及不支持至少两个PDSCH的时频资源完全重叠,则基于所述PDSCH资源分配信息指示的第一PDSCH时频资源或第三时频资源分配情况所对应的PDSCH传输方式, 对所述测量信息进行计算得到用于反馈的CSI;
或者,若所述能力信息指示所述终端支持至少两个PDSCH在时域重叠且在频域不重叠,不支持至少两个PDSCH的时域资源部分重叠,以及不支持至少两个PDSCH的时频资源完全重叠,则基于所述PDSCH资源分配信息指示的第一PDSCH时频资源所对应的PDSCH传输方式,对所述测量信息进行计算得到用于反馈的CSI;
或者,若所述能力信息指示所述终端支持至少两个PDSCH在时域重叠且在频域不重叠,以及支持至少两个PDSCH的时频资源部分重叠,则基于所述PDSCH资源分配信息指示的第一PDSCH时频资源或第三PDSCH时频资源所对应的PDSCH传输方式,对所述测量信息进行计算得到用于反馈的CSI;
或者,若所述能力信息指示所述终端支持至少两个PDSCH在时域重叠且在频域不重叠,不支持至少两个PDSCH的时频资源部分重叠,则基于所述PDSCH资源分配信息指示的第一PDSCH时频资源所对应的PDSCH传输方式,对所述测量信息进行计算得到用于反馈的CSI;
其中,所述第一PDSCH时频资源为:至少两个PDSCH在时域重叠且在频域不重叠,与所述第一PDSCH时频资源对应的PDSCH传输方式为:至少两个PDSCH在时域重叠且在频域不重叠的传输方式;所述第二PDSCH时频资源为至少两个PDSCH的时频资源完全重叠,与所述第二PDSCH时频资源对应的PDSCH传输方式为:至少两个PDSCH在时频和频域完全重叠的传输方式;所述第三PDSCH时频资源为:至少两个PDSCH在时域部分重叠,与所述第三PDSCH时频资源对应的PDSCH传输方式为:至少两个PDSCH在时域重叠且在频域不重叠的传输方式。
在一些可能的实现方式中,所述对所述测量信息进行计算得到用于反馈的CSI,包括:若所述终端使用至少两个波束接收下行参考信号,则在对所述测量信息进行计算得到用于反馈的CSI时,基于使用至少两个下行参考信号资源对应的波束接收所述至少两个PDSCH,计算用于反馈的CSI;若所述终端使用一个波束接收下行参考信号,则在对所述测量信息进行计算得到用于 反馈的CSI时,从至少两个下行参考信号资源中选择一个,并基于使用选择的下行参考信号资源所对应的波束接收所述至少两个PDSCH,或者基于使用其他波束接收所述至少两个PDSCH,计算用于反馈的CSI。
第二方面,提供一种CSI反馈方法,包括:
网络设备接收终端发送的所述终端的能力信息;
所述网络设备接收所述终端发送的CSI,所述CSI是所述终端基于与所述能力信息对应的PDSCH传输方式,对下行参考信号的测量信息进行计算得到的。
在一些可能的实现方式中,还包括:所述网络设备根据所述终端的能力信息,指示所述终端基于与所述能力信息对应的PDSCH传输方式确定用于反馈的CSI。
在一些可能的实现方式中,所述网络设备根据所述终端的能力信息,指示所述终端基于与所述能力信息对应的PDSCH传输方式确定用于反馈的CSI,包括:所述网络设备向所述终端发送指示信息,所述指示信息用于指示终端计算CSI时所基于的PDSCH传输方式,所述指示信息所指示的PDSCH传输方式与所述终端的能力信息相匹配。
在一些可能的实现方式中,所述网络设备向所述终端发送指示信息,所述指示信息用于指示终端计算CSI时所基于的PDSCH传输方式,包括:
若所述能力信息指示所述终端支持至少两个PDSCH在时域重叠且在频域不重叠,以及支持至少两个PDSCH的时频资源完全重叠,则发送用于指示第一PDSCH传输方式的指示信息,或发送用于指示第二PDSCH传输方式的指示信息,或发送用于指示第一PDSCH传输方式和第二PDSCH方式的指示信息;或者,若所述能力信息指示所述终端支持至少两个PDSCH在时域重叠且在频域不重叠,以及不支持至少两个PDSCH的时频资源完全重叠,则发送用于指示第一PDSCH传输方式的指示信息。其中,所述第一PDSCH传输方式为:至少两个PDSCH在时域重叠且在频域不重叠的传输方式;所述第二PDSCH传输方式为:至少两个PDSCH在时频和频域完全重叠的传输方式。
在一些可能的实现方式中,所述网络设备向所述终端发送指示信息,所述指示信息用于指示终端计算CSI时所基于的PDSCH传输方式,包括:
若所述能力信息指示所述终端支持至少两个PDSCH在时域重叠且在频域不重叠,以及支持或不支持至少两个PDSCH的时频资源部分重叠,则发送用于指示第一PDSCH传输方式的指示信息;
或者,若所述能力信息指示所述终端支持至少两个PDSCH在时域重叠且在频域不重叠,且支持或不支持至少两个PDSCH的时频资源部分重叠,以及支持至少两个PDSCH的时频资源完全重叠,则发送用于指示第一PDSCH传输方式或用于指示第二PDSCH传输方式或用于指示第一PDSCH传输方式和第二PDSCH方式的指示信息;
或者,若所述能力信息指示所述终端支持至少两个PDSCH在时域重叠且在频域不重叠,且不支持至少两个PDSCH的时频资源部分重叠,以及不支持至少两个PDSCH的时频资源完全重叠,则发送用于指示第一PDSCH传输方式的指示信息;
其中,所述第一PDSCH传输方式为:至少两个PDSCH在时域重叠且在频域不重叠的传输方式;所述第二PDSCH传输方式为:至少两个PDSCH在时频和频域完全重叠的传输方式。
在一些可能的实现方式中,所述网络设备向所述终端发送指示信息,包括:所述网络设备向所述终端发送专用信令,所述专用信令携带所述指示信息;或者,所述网络设备向所述终端发送动态信令,所述动态信令携带所述指示信息;或者,所述网络设备向所述终端发送携带第一指示信息的专用信令,并在PDSCH传输方式发生变化时,向所述终端发送携带第二指示信息的动态信令;其中,所述第一指示信息用于指示PDSCH传输方式集合,所述第二指示信息用于指示所述PDSCH传输方式集合中的一个PDSCH传输方式,所述PDSCH传输方式集合中至少包括第一PDSCH传输方式和第二PDSCH传输方式。其中,所述第一PDSCH传输方式为:至少两个PDSCH在时域重叠且在频域不重叠的传输方式;所述第二PDSCH传输方式为:至少两个 PDSCH在时频和频域完全重叠的传输方式。
在一些可能的实现方式中,所述网络设备根据所述终端的能力信息,指示所述终端基于与所述能力信息对应的PDSCH传输方式确定用于反馈的CSI,包括:所述网络设备向所述终端发送PDSCH资源分配信息,所述PDSCH资源分配信息用于指示至少两个PDSCH的时频资源,所述PDSCH资源分配信息与所述终端发送的能力信息相匹配。
在一些可能的实现方式中,所述网络设备向所述终端发送PDSCH资源分配信息,所述PDSCH资源分配信息用于指示至少两个PDSCH的时频资源,包括:若所述能力信息指示所述终端支持至少两个PDSCH在时域重叠且在频域不重叠,则向所述终端发送用于指示第一PDSCH时频资源的PDSCH资源分配信息。其中,所述第一PDSCH时频资源为:至少两个PDSCH在时域重叠且在频域不重叠;与所述第一PDSCH时频资源对应的PDSCH传输方式为:至少两个PDSCH在时域重叠且在频域不重叠的传输方式。
在一些可能的实现方式中,所述网络设备向所述终端发送PDSCH资源分配信息,所述PDSCH资源分配信息用于指示至少两个PDSCH的时频资源,包括:若所述能力信息指示所述终端支持至少两个PDSCH在时域重叠且在频域不重叠,以及支持至少两个PDSCH的时频资源完全重叠,则向所述终端发送用于指示第一PDSCH时频资源或第二PDSCH时频资源的PDSCH资源分配信息;或者,若所述能力信息指示所述终端支持至少两个PDSCH在时域重叠且在频域不重叠,以及不支持至少两个PDSCH的时频资源完全重叠,则向所述终端发送用于指示第一PDSCH时频资源的PDSCH资源分配信息。其中,所述第一PDSCH时频资源为:至少两个PDSCH在时域重叠且在频域不重叠的传输方式,与所述第一PDSCH时频资源对应的PDSCH传输方式为:至少两个PDSCH在时域重叠且在频域不重叠的传输方式;所述第二PDSCH时频资源为至少两个PDSCH的时频资源完全重叠,与所述第二PDSCH时频资源对应的PDSCH传输方式为:至少两个PDSCH在时频和频域完全重叠的传输方式。
在一些可能的实现方式中,所述网络设备向所述终端发送PDSCH资源分配信息,所述PDSCH资源分配信息用于指示至少两个PDSCH的时频资源,包括:
若所述能力信息指示所述终端支持至少两个PDSCH在时域重叠且在频域不重叠,支持至少两个PDSCH的时频资源部分重叠,以及支持至少两个PDSCH的时频资源完全重叠,则向所述终端发送用于指示第一PDSCH时频资源、第二PDSCH时频资源分配情况或第三时频资源分配情况的PDSCH资源分配信息;
或者,若所述能力信息指示所述终端支持至少两个PDSCH在时域重叠且在频域不重叠,不支持至少两个PDSCH的时域资源部分重叠,以及支持至少两个PDSCH的时频资源完全重叠,则向所述终端发送用于指示第一PDSCH时频资源或第二时频资源分配情况的PDSCH资源分配信息;
或者,若所述能力信息指示所述终端支持至少两个PDSCH在时域重叠且在频域不重叠,支持至少两个PDSCH的时频资源部分重叠,以及不支持至少两个PDSCH的时频资源完全重叠,则向所述终端发送用于指示第一PDSCH时频资源或第三时频资源分配情况的PDSCH资源分配信息;
或者,若所述能力信息指示所述终端支持至少两个PDSCH在时域重叠且在频域不重叠,不支持至少两个PDSCH的时域资源部分重叠,以及不支持至少两个PDSCH的时频资源完全重叠,则向所述终端发送用于指示第一PDSCH时频资源的PDSCH资源分配信息;
或者,若所述能力信息指示所述终端支持至少两个PDSCH在时域重叠且在频域不重叠,以及支持至少两个PDSCH的时频资源部分重叠,则向所述终端发送用于指示第一PDSCH时频资源或第三PDSCH时频资源的PDSCH资源分配信息;
或者,若所述能力信息指示所述终端支持至少两个PDSCH在时域重叠且在频域不重叠,不支持至少两个PDSCH的时频资源部分重叠,则向所述终端发送用于指示第一PDSCH时频资源的PDSCH资源分配信息;
其中,所述第一PDSCH时频资源为:至少两个PDSCH在时域重叠且在频域不重叠,与所述第一PDSCH时频资源对应的PDSCH传输方式为:至少两个PDSCH在时域重叠且在频域不重叠的传输方式;所述第二PDSCH时频资源为至少两个PDSCH的时频资源完全重叠,与所述第二PDSCH时频资源对应的PDSCH传输方式为:至少两个PDSCH在时频和频域完全重叠的传输方式;所述第三PDSCH时频资源为:至少两个PDSCH在时域部分重叠,与所述第三PDSCH时频资源对应的PDSCH传输方式为:至少两个PDSCH在时域重叠且在频域不重叠的传输方式。
第三方面,提供一种终端,包括:发送模块,被配置为向网络设备发送所述终端的能力信息;处理模块,被配置为对所述网络设备发送的下行参考信号进行测量得到测量信息,并基于与所述能力信息对应的PDSCH传输方式,对所述测量信息进行计算得到用于反馈的CSI;所述发送模块,进一步被配置为向所述网络设备发送所述CSI。
第四方面,提供一种网络设备,包括:接收模块,被配置为接收终端发送的所述终端的能力信息;所述接收模块,被进一步配置为接收所述终端发送的CSI,所述CSI是所述终端基于与所述能力信息对应的PDSCH传输方式,对下行参考信号的测量信息进行计算得到的。
第五方面,提供一种终端,包括:处理器、存储器、收发机;所述收发机,在处理器的控制下进行数据的接收和发送;所述存储器,存储计算机指令;所述处理器,用于读取所述计算机指令,执行如上述第一方面中任一项所述的方法。
第六方面,提供一种网络设备,包括:处理器、存储器、收发机;所述收发机,在处理器的控制下进行数据的接收和发送;所述存储器,存储计算机指令;所述处理器,用于读取所述计算机指令,执行如上述第二方面中任一项所述的方法。
第七方面,提供一种计算机可读存储介质,所述计算机可读存储介质存储有计算机可执行指令,所述计算机可执行指令用于使计算机执行如上述第 一方面中任一项所述的方法,或者上述第二方面中任一项所述的方法。
本公开的上述实施例中,终端对网络设备发送的下行参考信号进行测量得到测量信息后,可基于与该终端上报的能力信息所对应的PDSCH传输方式,对该测量信息进行计算得到用于反馈的CSI,由于在计算CSI时,终端可基于与自己的能力对应的PDSCH传输方式,采用相匹配的CSI计算方法来计算CSI,因此使得计算得到的CSI与终端所支持的PDSCH传输方式相匹配,从而可以使得计算得到的CSI反映该终端的PDSCH传输情况。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对本公开实施例中所需要使用的附图作简单地介绍,显而易见地,下面所介绍的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1示例性示出了本公开实施例中终端侧实现的CSI反馈方法的流程示意图;
图2示例性示出了本公开实施例中网络侧实现的CSI反馈方法的流程示意图;
图3示例性示出了本公开实施例中终端的结构示意图;
图4示例性示出了本公开实施例中网络设备的结构示意图;
图5示例性示出了本公开另外的实施例中的终端的结构示意图;
图6示例性示出了本公开另外的实施例中网络设备的结构示意图。
具体实施方式
为了使本公开的目的、技术方案和优点更加清楚,下面将结合附图对本公开作进一步地详细描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本公开保护的 范围。
以下对本公开实施例中的部分用语进行解释说明,以便于本领域技术人员理解。
(1)本公开实施例中,名词“网络”和“系统”经常交替使用,但本领域的技术人员可以理解其含义。
(2)本公开实施例中术语“多个”是指两个或两个以上,其它量词与之类似。
(3)“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。
(4)网络设备,是一种为所述终端提供无线通信功能的设备,包括但不限于:5G中的gNB、无线网络控制器(radio network controller,RNC)、节点B(node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved nodeB,或home node B,HNB)、基带单元(BaseBand Unit,BBU)、传输点(transmitting and receiving point,TRP)、发射点(transmitting point,TP)、移动交换中心等。本公开中的基站还可以是未来可能出现的其他通信系统中为终端提供无线通信功能的设备。
(5)终端,是一种可以向用户提供语音和/或数据连通性的设备。例如,终端设备包括具有无线连接功能的手持式设备、车载设备等。目前,终端设备可以是:手机(mobile phone)、平板电脑、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备,虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备、工业控制(industrial control)中的无线终端、无人驾驶(self-driving)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端,或智慧家庭(smart home)中的无线终端等。
本公开实施例提供了一种信道状态信息反馈方法及装置,使得CSI可以 反映PDSCH传输情况。本公开的实施例中,终端对网络设备发送的下行参考信号进行测量得到测量信息后,可基于与该终端上报的能力信息所对应的PDSCH传输方式,对该测量信息进行计算得到用于反馈的CSI,由于在计算CSI时,终端可基于与自己的能力对应的PDSCH传输方式,采用相匹配的CSI计算方法来计算CSI,因此使得计算得到的CSI与终端所支持的PDSCH传输方式相匹配,从而可以使得计算得到的CSI反映该终端的PDSCH传输情况。
本公开实施例中,终端的能力是指终端对PDSCH传输方式或PDSCH资源分配方式的支持能力,即,终端能力可指示该终端所支持的PDSCH传输方式或PDSCH资源分配方式。具体可包括以下几种能力:
基本能力(以下描述为能力A):对于支持M-DCI的终端,其需要支持至少两个PDSCH在时域完全重叠或部分重叠,而在频域不重叠的PDSCH资源分配方式或PDSCH传输方式。
在上述能力A的基础之上,终端可进一步支持或不支持至少两个PDSCH的时频资源完全重叠的PDSCH资源分配方式或PDSCH传输方式,分别称为能力B1和能力B2,其中:
能力B1:在基本能力(能力A)的基础上,支持至少两个PDSCH的时频资源完全重叠的PDSCH资源分配方式或PDSCH传输方式;
能力B2:在基本能力(能力A)的基础上,不支持至少两个PDSCH的时频资源完全重叠的PDSCH资源分配方式或PDSCH传输方式。
在上述能力A、能力B1或能力B2的基础之上,终端可进一步支持或不支持至少两个PDSCH的时频资源部分重叠的PDSCH资源分配方式或PDSCH传输方式,分别称为能力C1至能力C6,其中:
能力C1:在基本能力(能力A)的基础上,支持至少两个PDSCH的时频资源部分重叠的PDSCH资源分配方式或PDSCH传输方式;
能力C2:基本能力(能力A)的基础上,不支持至少两个PDSCH的时频资源部分重叠的PDSCH资源分配方式或PDSCH传输方式;
能力C3:在能力B1的基础上,支持至少两个PDSCH的时频资源部分重叠的PDSCH资源分配方式或PDSCH传输方式;
能力C4:在能力B1的基础上,不支持至少两个PDSCH的时频资源部分重叠的PDSCH资源分配方式或PDSCH传输方式;
能力C5:在能力B2的基础上,支持至少两个PDSCH的时频资源部分重叠的PDSCH资源分配方式或PDSCH传输方式;
能力C6:在能力B2的基础上,不支持至少两个PDSCH的时频资源部分重叠的PDSCH资源分配方式或PDSCH传输方式。
由于本公开实施例中,终端的能力是指终端对PDSCH传输方式或PDSCH资源分配方式的支持能力,即用于指示所支持的PDSCH传输方式或PDSCH资源分配方式,因此,终端发送的能力信息与PDSCH传输方式或PDSCH资源分配方式存在对应关系。终端可以根据与其上报的能力信息所对应的PDSCH传输方式,对检测到的测量信息进行计算,从而得到用于反馈的CSI。
本公开实施例中,终端能力与计算CSI时所基于的PDSCH传输方式(或对应的PDSCH资源分配方式)之间存在如下对应关系:
能力A与第一PDSCH传输方式(或第一PDSCH资源分配方式)对应。终端上报能力A的情况下,在计算CSI时,可根据第一PDSCH传输方式对测量得到的测量信息进行计算得到用于反馈的CSI。其中,第一PDSCH传输方式为:至少两个PDSCH在时域重叠且在频域不重叠的传输方式。
能力B1与第一PDSCH传输方式对应,或者与第二PDSCH传输方式(或对应的PDSCH资源分配方式)对应,或者与第一PDSCH传输方式和第二PDSCH传输方式对应。终端上报能力B1的情况下,在计算CSI时,可根据第一PDSCH传输方式对测量得到的测量信息进行计算得到用于反馈的CSI,或者可根据第二PDSCH传输方式对测量得到的测量信息进行计算得到用于反馈的CSI,或者可分别根据第一PDSCH传输方式和第二PDSCH传输方式对测量得到的测量信息进行计算得到用于反馈的CSI。其中,第二PDSCH传输方式为:至少两个PDSCH在时频和频域完全重叠的传输方式。
能力B2与第一PDSCH传输方式对应。终端上报能力B2的情况下,在计算CSI时,可根据第一PDSCH传输方式对测量得到的测量信息进行计算得到用于反馈的CSI。
能力C1与第一PDSCH传输方式对应。终端上报能力C1的情况下,在计算CSI时,可根据第一PDSCH传输方式对测量得到的测量信息进行计算得到用于反馈的CSI。
能力C2与第一PDSCH传输方式对应。终端上报能力C2的情况下,在计算CSI时,可根据第一PDSCH传输方式对测量得到的测量信息进行计算得到用于反馈的CSI。
能力C3与第一PDSCH传输方式对应,或者与第二PDSCH传输方式对应,或者与第一PDSCH传输方式和第二PDSCH传输方式对应。终端上报能力C3的情况下,在计算CSI时,可根据第一PDSCH传输方式对测量得到的测量信息进行计算得到用于反馈的CSI,或者可根据第二PDSCH传输方式对测量得到的测量信息进行计算得到用于反馈的CSI,或者可分别根据第一PDSCH传输方式和第二PDSCH传输方式对测量得到的测量信息进行计算得到用于反馈的CSI。
能力C4与第一PDSCH传输方式对应,或者与第二PDSCH传输方式对应,或者与第一PDSCH传输方式和第二PDSCH传输方式对应。终端上报能力C4的情况下,在计算CSI时,可根据第一PDSCH传输方式对测量得到的测量信息进行计算得到用于反馈的CSI,或者可根据第二PDSCH传输方式对测量得到的测量信息进行计算得到用于反馈的CSI,或者可分别根据第一PDSCH传输方式和第二PDSCH传输方式对测量得到的测量信息进行计算得到用于反馈的CSI。
能力C5与第一PDSCH传输方式对应。终端上报能力C5的情况下,在计算CSI时,可根据第一PDSCH传输方式对测量得到的测量信息进行计算得到用于反馈的CSI。
能力C6与第一PDSCH传输方式对应。终端上报能力C6的情况下,在 计算CSI时,可根据第一PDSCH传输方式对测量得到的测量信息进行计算得到用于反馈的CSI。
下面结合附图对本公开实施例进行描述。
图1示例性示出了本公开实施例中终端侧实现的CSI反馈方法的流程示意图,如图所示,该流程可包括如下步骤:
S101:终端向网络设备发送终端的能力信息。
该步骤中,终端的能力信息可以是用于标识终端能力的指示信息,比如可以用若干比特来标识终端的能力,其中,这些比特的不同取值对应不同的终端能力。
终端可以在小区接入时上报自己的能力信息,或者在其他需要上报终端能力的情况下向网络设备发送该终端的能力信息。
S102:终端对网络设备发送的下行参考信号进行测量得到测量信息,并基于与该终端的能力信息对应的PDSCH传输方式,对该测量信息进行计算得到用于反馈的CSI。
其中,所述下行参考信号具体可以是CSI-RS,终端可根据案例侧配置的CSI-RS资源进行测量,以得到测量信息。所述下行参考信号也可以是其他能够用于信道状态测量的参考信号,本公开实施例对此不做限制。
其中,所述用于反馈的CSI,可包括PMI(Precoding Matrix Indicator,预编码矩阵指示)、RI(RANK Indicator,秩指示)、CRI(CSI-RS resource indication,CSI-RS资源指示)中的至少一种。
本公开实施例中,终端计算CSI时所基于的PDSCH传输方式,可包括第一PDSCH传输方式和第二PDSCH传输方式。根据具体情况,终端可以基于第一PDSCH传输方式计算CSI(即采用第一PDSCH传输方式的假设来计算CSI),或者基于第二PDSCH计算CSI(即采用第二PDSCH传输方式的假设来计算CSI),或者分别基于第一PDSCH传输方式和第二PDSCH传输方式计算CSI。
其中,终端基于第一PDSCH传输方式计算CSI的实现方式可以是:终端 独立计算针对每个PDSCH的CSI,即计算针对其中任何一个PDSCH的CSI时,不考虑其他PDSCH带来的干扰。
终端基于第二PDSCH传输方式计算CSI的实现方式可以是:终端在计算针对每个PDSCH的CSI时,将其他PDSCH的信号按照干扰处理。
S103:终端向网络设备发送计算得到的CSI。
在一些实施例中,终端可以根据具体情况,基于使用一个波束或多个波束接收PDSCH来计算CSI。
具体地,在一些实施例中,如果终端使用至少两个波束接收下行参考信号,则在对测量信息进行计算得到用于反馈的CSI时,基于使用至少两个下行参考信号资源对应的波束接收至少两个PDSCH,计算用于反馈的CSI。
在另一些实施例中,如果终端使用一个波束接收下行参考信号,则在对测量信息进行计算得到用于反馈的CSI时,从至少两个下行参考信号资源中选择一个,并基于使用选择的下行参考信号资源所对应的波束接收所述至少两个PDSCH,或者基于使用其他波束接收所述至少两个PDSCH,计算用于反馈的CSI。
举例来说,如果两个PDSCH的资源在时域重叠、在频域不重叠,则这两个PDSCH之间不存在相互干扰。在FR2频段区域,如果终端可以同时使用两个typeD QCL(QCL是Quasi Co-Location的英文简称,即准共址,这里可以理解为波束)进行接收,则在计算CSI时,分别基于使用两个CSI-RS资源对应的type D QCL接收不同的PDSCH来计算CSI;如果终端不能同时使用两个typeD QCL对两个PDSCH进行接收,则计算CSI时,可以自主选择基于使用两个CSI-RS资源中的一个对应的typeD QCL进行接收,或者基于使用其他的typeD QCL进行接收,来计算CSI。
再举例来说,如果两个PDSCH的资源完全重叠,则两个PDSCH之间存在干扰。在FR2频段区域,如果终端可以同时使用两个typeD QCL对两个PDSCH进行接收,则在计算CSI时分别基于使用两个CSI-RS资源对应的type D QCL接收不同的PDSCH来计算CSI;如果终端不能同时使用两个typeD  QCL对两个PDSCH进行接收,则终端计算CSI时,可以自主选择基于使用两个CSI-RS资源中的一个对应的typeD QCL对PDSCH进行接收,或者基于使用其他的typeD QCL对PDSCH进行接收,来计算CSI。
图2示例性示出了本公开实施例中网络侧实现的CSI反馈方法的流程示意图。
在网络侧,网络设备配置了M-DCI传输。例如:在为终端配置的控制资源集(Control Resource set,CORESET)中,存在两种不同的CORESETPoolIndex(CORESET池索引),即部分CORESET被关联到一个CORESETPoolIndex取值(如0),另一部分CORESET被关联到另一个CORESETPoolIndex取值(如1),以用于调度不同的PDSCH。
网络设备对CSI测量使用的下行参考信号(如CSI-RS)资源进行配置。具体可采用以下两种方式进行配置:
方式1:配置至少两个CSI-RS资源,分别用以测量不同TRP的信道信息。其中,不同的TRP对应不同的PDSCH,即不同的TRP发送或调度不同的PDSCH。
方式2:对于每个TRP配置多个CSI-RS资源,其中至少一个CSI-RS资源用以测量其信道信息,另外的CSI-RS资源用以测量另一个TRP传输引起的干扰。其中,不同的CSI-RS端口可对应不同的层,以用来测量干扰。
进一步的,还可配置其他CSI-RS资源,用以测量其他的干扰及噪声。
如图所示,该流程可包括如下步骤:
S201:网络设备接收终端发送的所述终端的能力信息。
S202:网络设备接收该终端发送的CSI,该CSI是该终端基于与其发送的能力信息对应的PDSCH传输方式,对下行参考信号的测量信息进行计算得到的。
本公开的一些实施例中,网络设备可以指示终端基于与其能力信息对应的PDSCH传输方式来计算CSI,具体实现方式请参见下文描述。
本公开的上述实施例中,终端对网络设备发送的下行参考信号进行测量 得到测量信息后,可基于与该终端上报的能力信息所对应的PDSCH传输方式,对该测量信息进行计算得到用于反馈的CSI。在CSI的计算过程中,可根据终端可能采用的调度方式(即PDSCH传输方式)来计算CSI,从而能够更准确地体现M-DCI传输情况下的信道质量,并更加准确地选择PMI、RI、CRI等用于反馈的信道状态信息。
在本公开的一些实施例中,终端能力与PDSCH传输方式(或PDSCH资源分配方式)之间的对应关系,可以预先配置或预先约定,比如可以对上述对应关系进行默认配置。这种情况下,终端可以基于默认配置的与该终端的能力信息对应的PDSCH传输方式,对检测到的测量信息进行计算得到用于反馈的CSI。
下面以默认配置终端能力与PDSCH传输方式之间的对应关系为例,说明终端基于与该终端的能力信息对应的PDSCH传输方式,对该测量信息进行计算得到用于反馈的CSI的实现过程。具体可包括以下几种情况:
情况1-1:系统默认配置有终端能力A与第一PDSCH传输方式之间的对应关系。如果在S101中,终端发送的能力信息指示终端具有能力A,则终端基于默认配置的上述对应关系,根据与能力A对应的第一PDSCH传输方式,对测量信息进行计算得到用于反馈的CSI。
情况1-2:系统默认配置有终端能力B1与第一PDSCH传输方式之间的对应关系。如果在S101中,终端发送的能力信息指示终端具有能力B1,则终端基于默认配置的上述对应关系,根据与能力A对应的第一PDSCH传输方式,对测量信息进行计算得到用于反馈的CSI。
系统也可默认配置有终端能力B1与第二PDSCH传输方式之间的对应关系。如果在S101中,终端发送的能力信息指示终端具有能力B1,则终端基于默认配置的上述对应关系,根据与能力A对应的第二PDSCH传输方式,对测量信息进行计算得到用于反馈的CSI。
系统也可默认配置有终端能力B1与第一PDSCH传输方式和第二PDSCH传输方式之间的对应关系。如果在S101中,终端发送的能力信息指示终端具 有能力B1,则终端基于默认配置的上述对应关系,根据与能B1对应的第一PDSCH传输方式和第二PDSCH传输方式,分别基于第一PDSCH传输方式和第二PDSCH传输方式对测量信息进行计算得到用于反馈的CSI。
在另一些实施例中,系统默认配置有终端能力B1与第一PDSCH传输方式和第二PDSCH传输方式之间的对应关系,终端可以自行从默认配置的与能力B1对应的第一PDSCH传输方式和第二PDSCH传输方式中至少选择一项,并基于所选择的PDSCH传输方式对测量信息进行计算得到用于反馈的CSI。具体地,如果终端选择第一PDSCH传输方式,则基于第一PDSCH传输方式计算CSI;如果终端选择第二PDSCH传输方式,则基于第二PDSCH传输方式计算CSI;如果终端选择第一PDSCH传输方式和第二PDSCH传输方式,则分别基于第一PDSCH传输方式和第二PDSCH传输方式计算CSI。
情况1-3:系统默认配置有终端能力B2与第一PDSCH传输方式之间的对应关系。如果在S101中,终端发送的能力信息指示终端具有能力B2,则终端基于默认配置的上述对应关系,根据与能力B2对应的第一PDSCH传输方式,对测量信息进行计算得到用于反馈的CSI。
情况1-4:系统默认配置有终端能力C1与第一PDSCH传输方式之间的对应关系。如果在S101中,终端发送的能力信息指示终端具有能力C1,则终端基于默认配置的上述对应关系,根据与能力C1对应的第一PDSCH传输方式,对测量信息进行计算得到用于反馈的CSI。
情况1-5:系统默认配置有终端能力C2与第一PDSCH传输方式之间的对应关系。如果在S101中,终端发送的能力信息指示终端具有能力C2,则终端基于默认配置的上述对应关系,根据与能力C2对应的第一PDSCH传输方式,对测量信息进行计算得到用于反馈的CSI。
情况1-6:系统默认配置有终端能力C3与第一PDSCH传输方式之间的对应关系。如果在S101中,终端发送的能力信息指示终端具有能力C3,则终端基于默认配置的上述对应关系,根据与能力C3对应的第一PDSCH传输方式,对测量信息进行计算得到用于反馈的CSI。
系统也可默认配置有终端能力C3与第二PDSCH传输方式之间的对应关系。如果在S101中,终端发送的能力信息指示终端具有能力C3,则终端基于默认配置的上述对应关系,根据与能力C3对应的第二PDSCH传输方式,对测量信息进行计算得到用于反馈的CSI。
系统也可默认配置有终端能力C3与第一PDSCH传输方式和第二PDSCH传输方式之间的对应关系。如果在S101中,终端发送的能力信息指示终端具有能力C3,则终端基于默认配置的上述对应关系,根据与能C3对应的第一PDSCH传输方式和第二PDSCH传输方式,分别基于第一PDSCH传输方式和第二PDSCH传输方式对测量信息进行计算得到用于反馈的CSI。
在另一些实施例中,系统默认配置有终端能力C3与第一PDSCH传输方式和第二PDSCH传输方式之间的对应关系,终端可以自行从默认配置的与能力B1对应的第一PDSCH传输方式和第二PDSCH传输方式中至少选择一项,并基于所选择的PDSCH传输方式对测量信息进行计算得到用于反馈的CSI。具体地,如果终端选择第一PDSCH传输方式,则基于第一PDSCH传输方式计算CSI;如果终端选择第二PDSCH传输方式,则基于第二PDSCH传输方式计算CSI;如果终端选择第一PDSCH传输方式和第二PDSCH传输方式,则分别基于第一PDSCH传输方式和第二PDSCH传输方式计算CSI。
情况1-7:系统默认配置有终端能力C4与第一PDSCH传输方式之间的对应关系。如果在S101中,终端发送的能力信息指示终端具有能力C4,则终端基于默认配置的上述对应关系,根据与能力C4对应的第一PDSCH传输方式,对测量信息进行计算得到用于反馈的CSI。
系统也可默认配置有终端能力C4与第二PDSCH传输方式之间的对应关系。如果在S101中,终端发送的能力信息指示终端具有能力C4,则终端基于默认配置的上述对应关系,根据与能力C4对应的第二PDSCH传输方式,对测量信息进行计算得到用于反馈的CSI。
系统也可默认配置有终端能力C4与第一PDSCH传输方式和第二PDSCH传输方式之间的对应关系。如果在S101中,终端发送的能力信息指示终端具 有能力C4,则终端基于默认配置的上述对应关系,根据与能C4对应的第一PDSCH传输方式和第二PDSCH传输方式,分别基于第一PDSCH传输方式和第二PDSCH传输方式对测量信息进行计算得到用于反馈的CSI。
在另一些实施例中,系统默认配置有终端能力C4与第一PDSCH传输方式和第二PDSCH传输方式之间的对应关系,终端可以自行从默认配置的与能力B1对应的第一PDSCH传输方式和第二PDSCH传输方式中至少选择一项,并基于所选择的PDSCH传输方式对测量信息进行计算得到用于反馈的CSI。具体地,如果终端选择第一PDSCH传输方式,则基于第一PDSCH传输方式计算CSI;如果终端选择第二PDSCH传输方式,则基于第二PDSCH传输方式计算CSI;如果终端选择第一PDSCH传输方式和第二PDSCH传输方式,则分别基于第一PDSCH传输方式和第二PDSCH传输方式计算CSI。
情况1-8:系统默认配置有终端能力C5与第一PDSCH传输方式之间的对应关系。如果在S101中,终端发送的能力信息指示终端具有能力C5,则终端基于默认配置的上述对应关系,根据与能力C5对应的第一PDSCH传输方式,对测量信息进行计算得到用于反馈的CSI。
情况1-9:系统默认配置有终端能力C6与第一PDSCH传输方式之间的对应关系。如果在S101中,终端发送的能力信息指示终端具有能力C6,则终端基于默认配置的上述对应关系,根据与能力C6对应的第一PDSCH传输方式,对测量信息进行计算得到用于反馈的CSI。
在本申请的一些实施例中,网络设备可根据终端上报的能力信息,指示该终端基于与该能力信息对应的PDSCH传输方式计算CSI。终端可以根据网络侧的指示,基于与终端上报的能力相匹配的PDSCH传输方式,对检测到的测量信息进行计算得到用于反馈的CSI。
其中,在一些实施例中,网络设备可向终端发送指示信息,通过该指示信息来指示终端计算CSI时所基于的PDSCH传输方式。比如,该指示信息可以是若干比特的信息,这些比特的不同取值对应于不同的PDSCH传输方式。
例如,网络设备可向终端发送专用信令,所述专用信令携带上述指示信 息,从而将该指示信息发送给终端。其中,该专用信令可以是RRC(Radio Resource Control,无线资源控制)信令。
再例如,网络设备可向终端发送动态信令,所述动态信令携带上述指示信息。其中,该动态信令可以是DCI,也可以是MAC CE(Media Access Control-Control Element,媒体接入控制-控制单元)。
再例如,网络设备可向终端发送携带第一指示信息的专用信令,并在PDSCH传输方式发生变化时,向该终端发送携带第二指示信息的动态信令。其中,第一指示信息用于指示PDSCH传输方式集合(至少包括第一PDSCH传输方式和第二PDSCH传输方式),第二指示信息用于指示PDSCH传输方式集合中的一个PDSCH传输方式。
在另一些实施例中,网络设备可以向终端发送PDSCH资源分配信息,通过该所述PDSCH资源分配信息来指示至少两个PDSCH的时频资源,所述PDSCH资源分配信息与终端发送的能力信息相匹配,从而使得终端在计算CSI时基于相应的PDSCH传输方式计算CSI。
例如,网络设备可通过不同CORESETPoolindex对应的DCI(Downlink Control Information,下行链路控制信息)发送两个PDSCH的时域和频域资源分配指示,用于CSI的计算和测量。
下面以网络设备发送指示信息为例,说明终端基于与该终端的能力信息对应的PDSCH传输方式,对该测量信息进行计算得到用于反馈的CSI的实现过程。具体可包括以下几种情况:
情况2-1:如果终端上报的能力信息指示终端具备能力B1,则网络设备向终端发送的指示信息指示第一PDSCH传输方式,则终端基于该指示信息所指示的第一PDSCH传输方式,对测量信息进行计算得到用于反馈的CSI。
在另一些实施例中,如果终端上报的能力信息指示终端具备能力B1,则网络设备向终端发送的指示信息指示第二PDSCH传输方式,则终端基于该指示信息所指示的第二PDSCH传输方式,对测量信息进行计算得到用于反馈的CSI。
在另一些实施例中,如果终端上报的能力信息指示终端具备能力B1,则网络设备向终端发送的指示信息指示第一PDSCH传输方式和第二PDSCH传输方式,则终端根据该指示信息所指示的第一PDSCH传输方式和第二PDSCH传输方式,分别基于第一PDSCH传输方式和第二PDSCH传输方式,对测量信息进行计算得到用于反馈的CSI。
在另一些实施例中,如果终端上报的能力信息指示终端具备能力B1,则网络设备向终端发送的指示信息指示第一PDSCH传输方式和第二PDSCH传输方式,则终端可以自行从该指示信息所指示的第一PDSCH传输方式和第二PDSCH传输方式中至少选择一项,并基于所选择的PDSCH传输方式对测量信息进行计算得到用于反馈的CSI。具体地,如果终端选择第一PDSCH传输方式,则基于第一PDSCH传输方式计算CSI;如果终端选择第二PDSCH传输方式,则基于第二PDSCH传输方式计算CSI;如果终端选择第一PDSCH传输方式和第二PDSCH传输方式,则分别基于第一PDSCH传输方式和第二PDSCH传输方式计算CSI。
情况2-2:如果终端上报的能力信息指示终端具备能力B2,则网络设备向终端发送的指示信息指示第一PDSCH传输方式,则终端基于该指示信息所指示的第一PDSCH传输方式,对测量信息进行计算得到用于反馈的CSI。
情况2-3:如果终端上报的能力信息指示终端具备能力C1,则网络设备向终端发送的指示信息指示第一PDSCH传输方式,则终端基于该指示信息所指示的第一PDSCH传输方式,对测量信息进行计算得到用于反馈的CSI。
情况2-4:如果终端上报的能力信息指示终端具备能力C2,则网络设备向终端发送的指示信息指示第一PDSCH传输方式,则终端基于该指示信息所指示的第一PDSCH传输方式,对测量信息进行计算得到用于反馈的CSI。
情况2-5:如果终端上报的能力信息指示终端具备能力C3,则网络设备向终端发送的指示信息指示第一PDSCH传输方式,则终端基于该指示信息所指示的第一PDSCH传输方式,对测量信息进行计算得到用于反馈的CSI。
在另一些实施例中,如果终端上报的能力信息指示终端具备能力C3,则 网络设备向终端发送的指示信息指示第二PDSCH传输方式,则终端基于该指示信息所指示的第二PDSCH传输方式,对测量信息进行计算得到用于反馈的CSI。
在另一些实施例中,如果终端上报的能力信息指示终端具备能力C3,则网络设备向终端发送的指示信息指示第一PDSCH传输方式和第二PDSCH传输方式,则终端根据该指示信息所指示的第一PDSCH传输方式和第二PDSCH传输方式,分别基于第一PDSCH传输方式和第二PDSCH传输方式,对测量信息进行计算得到用于反馈的CSI。
在另一些实施例中,如果终端上报的能力信息指示终端具备能力C3,则网络设备向终端发送的指示信息指示第一PDSCH传输方式和第二PDSCH传输方式,则终端可以自行从该指示信息所指示的第一PDSCH传输方式和第二PDSCH传输方式中至少选择一项,并基于所选择的PDSCH传输方式对测量信息进行计算得到用于反馈的CSI。具体地,如果终端选择第一PDSCH传输方式,则基于第一PDSCH传输方式计算CSI;如果终端选择第二PDSCH传输方式,则基于第二PDSCH传输方式计算CSI;如果终端选择第一PDSCH传输方式和第二PDSCH传输方式,则分别基于第一PDSCH传输方式和第二PDSCH传输方式计算CSI。
情况2-6:如果终端上报的能力信息指示终端具备能力C4,则网络设备向终端发送的指示信息指示第一PDSCH传输方式,则终端基于该指示信息所指示的第一PDSCH传输方式,对测量信息进行计算得到用于反馈的CSI。
在另一些实施例中,如果终端上报的能力信息指示终端具备能力C4,则网络设备向终端发送的指示信息指示第二PDSCH传输方式,则终端基于该指示信息所指示的第二PDSCH传输方式,对测量信息进行计算得到用于反馈的CSI。
在另一些实施例中,如果终端上报的能力信息指示终端具备能力C4,则网络设备向终端发送的指示信息指示第一PDSCH传输方式和第二PDSCH传输方式,则终端根据该指示信息所指示的第一PDSCH传输方式和第二PDSCH 传输方式,分别基于第一PDSCH传输方式和第二PDSCH传输方式,对测量信息进行计算得到用于反馈的CSI。
在另一些实施例中,如果终端上报的能力信息指示终端具备能力C4,则网络设备向终端发送的指示信息指示第一PDSCH传输方式和第二PDSCH传输方式,则终端可以自行从该指示信息所指示的第一PDSCH传输方式和第二PDSCH传输方式中至少选择一项,并基于所选择的PDSCH传输方式对测量信息进行计算得到用于反馈的CSI。具体地,如果终端选择第一PDSCH传输方式,则基于第一PDSCH传输方式计算CSI;如果终端选择第二PDSCH传输方式,则基于第二PDSCH传输方式计算CSI;如果终端选择第一PDSCH传输方式和第二PDSCH传输方式,则分别基于第一PDSCH传输方式和第二PDSCH传输方式计算CSI。
情况2-7:如果终端上报的能力信息指示终端具备能力C5,则网络设备向终端发送的指示信息指示第一PDSCH传输方式,则终端基于该指示信息所指示的第一PDSCH传输方式,对测量信息进行计算得到用于反馈的CSI。
情况2-8:如果终端上报的能力信息指示终端具备能力C6,则网络设备向终端发送的指示信息指示第一PDSCH传输方式,则终端基于该指示信息所指示的第一PDSCH传输方式,对测量信息进行计算得到用于反馈的CSI。
下面以网络设备向终端发送PDSCH资源分配信息为例,说明终端基于与该终端的能力信息对应的PDSCH传输方式,对该测量信息进行计算得到用于反馈的CSI的实现过程。具体可包括以下几种情况:
情况3-1:如果终端上报的能力信息指示终端具备能力A,则网络设备向终端发送的PDSCH资源分配信息指示第一PDSCH时频资源,相应的,终端根据该PDSCH资源分配信息指示的第一PDSCH时频资源,基于对应的PDSCH传输方式对测量信息进行计算得到用于反馈的CSI。
其中,第一PDSCH时频资源为:至少两个PDSCH在时域重叠且在频域不重叠;与第一PDSCH时频资源对应的PDSCH传输方式为:至少两个PDSCH在时域重叠且在频域不重叠的传输方式。
情况3-2:如果终端上报的能力信息指示终端具备能力B1,则网络设备向终端发送的PDSCH资源分配信息指示第一PDSCH时频资源,相应的,终端根据该PDSCH资源分配信息指示的第一PDSCH时频资源,基于对应的PDSCH传输方式对测量信息进行计算得到用于反馈的CSI。
在另一些实施例中,如果终端上报的能力信息指示终端具备能力B1,则网络设备向终端发送的PDSCH资源分配信息指示第二PDSCH时频资源,相应的,终端根据该PDSCH资源分配信息指示的第二PDSCH时频资源,基于对应的PDSCH传输方式对测量信息进行计算得到用于反馈的CSI。
其中,第一PDSCH时频资源以及对应的PDSCH传输方式的相关说明,请参见前文描述。第二PDSCH时频资源为至少两个PDSCH的时频资源完全重叠,与第二PDSCH时频资源对应的PDSCH传输方式为:至少两个PDSCH在时频和频域完全重叠的传输方式。
情况3-3:如果终端上报的能力信息指示终端具备能力B2,则网络设备向终端发送的PDSCH资源分配信息指示第一PDSCH时频资源,相应的,终端根据该PDSCH资源分配信息指示的第一PDSCH时频资源,基于对应的PDSCH传输方式对测量信息进行计算得到用于反馈的CSI。
其中,第一PDSCH时频资源以及对应的PDSCH传输方式的相关说明,请参见前文描述。
情况3-4:如果终端上报的能力信息指示终端具备能力C1,则网络设备向终端发送的PDSCH资源分配信息指示第一PDSCH时频资源,相应的,终端根据该PDSCH资源分配信息指示的第一PDSCH时频资源,基于对应的PDSCH传输方式对测量信息进行计算得到用于反馈的CSI。
在另一些实施例中,如果终端上报的能力信息指示终端具备能力C1,则网络设备向终端发送的PDSCH资源分配信息指示第三PDSCH时频资源,相应的,终端根据该PDSCH资源分配信息指示的第一PDSCH时频资源,基于对应的PDSCH传输方式对测量信息进行计算得到用于反馈的CSI。
其中,第一PDSCH时频资源以及对应的PDSCH传输方式的相关说明, 请参见前文描述。第三PDSCH时频资源为:至少两个PDSCH在时域部分重叠,与第三PDSCH时频资源对应的PDSCH传输方式为:至少两个PDSCH在时域重叠且在频域不重叠的传输方式。
情况3-5:如果终端上报的能力信息指示终端具备能力C2,则网络设备向终端发送的PDSCH资源分配信息指示第一PDSCH时频资源,相应的,终端根据该PDSCH资源分配信息指示的第一PDSCH时频资源,基于对应的PDSCH传输方式对测量信息进行计算得到用于反馈的CSI。
其中,第一PDSCH时频资源以及对应的PDSCH传输方式的相关说明,请参见前文描述。
情况3-6:如果终端上报的能力信息指示终端具备能力C3,则网络设备向终端发送的PDSCH资源分配信息指示第一PDSCH时频资源,相应的,终端根据该PDSCH资源分配信息指示的第一PDSCH时频资源,基于对应的PDSCH传输方式对测量信息进行计算得到用于反馈的CSI。
在另一些实施例中,如果终端上报的能力信息指示终端具备能力C3,则网络设备向终端发送的PDSCH资源分配信息指示第二PDSCH时频资源,相应的,终端根据该PDSCH资源分配信息指示的第二PDSCH时频资源,基于对应的PDSCH传输方式对测量信息进行计算得到用于反馈的CSI。
在另一些实施例中,如果终端上报的能力信息指示终端具备能力C3,则网络设备向终端发送的PDSCH资源分配信息指示第三PDSCH时频资源,相应的,终端根据该PDSCH资源分配信息指示的第三PDSCH时频资源,基于对应的PDSCH传输方式对测量信息进行计算得到用于反馈的CSI。
其中,第一PDSCH时频资源以及对应的PDSCH传输方式的相关说明,第二PDSCH时频资源以及对应的PDSCH传输方式的相关说明,以及第三PDSCH时频资源以及对应的PDSCH传输方式的相关说明,请参见前文描述。
情况3-7:如果终端上报的能力信息指示终端具备能力C4,则网络设备向终端发送的PDSCH资源分配信息指示第一PDSCH时频资源,相应的,终端根据该PDSCH资源分配信息指示的第一PDSCH时频资源,基于对应的 PDSCH传输方式对测量信息进行计算得到用于反馈的CSI。
在另一些实施例中,如果终端上报的能力信息指示终端具备能力C3,则网络设备向终端发送的PDSCH资源分配信息指示第三PDSCH时频资源,相应的,终端根据该PDSCH资源分配信息指示的第三PDSCH时频资源,基于对应的PDSCH传输方式对测量信息进行计算得到用于反馈的CSI。
其中,第一PDSCH时频资源以及对应的PDSCH传输方式的相关说明,以及第三PDSCH时频资源以及对应的PDSCH传输方式的相关说明,请参见前文描述。
情况3-8:如果终端上报的能力信息指示终端具备能力C5,则网络设备向终端发送的PDSCH资源分配信息指示第一PDSCH时频资源,相应的,终端根据该PDSCH资源分配信息指示的第一PDSCH时频资源,基于对应的PDSCH传输方式对测量信息进行计算得到用于反馈的CSI。
在另一些实施例中,如果终端上报的能力信息指示终端具备能力C5,则网络设备向终端发送的PDSCH资源分配信息指示第二PDSCH时频资源,相应的,终端根据该PDSCH资源分配信息指示的第二PDSCH时频资源,基于对应的PDSCH传输方式对测量信息进行计算得到用于反馈的CSI。
其中,第一PDSCH时频资源以及对应的PDSCH传输方式的相关说明,第二PDSCH时频资源以及对应的PDSCH传输方式的相关说明,请参见前文描述。
情况3-9:如果终端上报的能力信息指示终端具备能力C6,则网络设备向终端发送的PDSCH资源分配信息指示第一PDSCH时频资源,相应的,终端根据该PDSCH资源分配信息指示的第一PDSCH时频资源,基于对应的PDSCH传输方式对测量信息进行计算得到用于反馈的CSI。
其中,第一PDSCH时频资源以及对应的PDSCH传输方式的相关说明,请参见前文描述。
基于相同的技术构思,本公开实施例还提供了一种终端,能够实现前述实施例中终端侧的方法。
参见图3,为本公开实施例提供的终端的结构示意图,该终端可实现图1中终端所实现的功能。如图所示,该终端可包括:接收模块301、处理模块302、发送模块303,其中:
发送模块303,被配置为向网络设备发送所述终端的能力信息;
处理模块302,被配置为对所述网络设备发送的下行参考信号进行测量得到测量信息,并基于与所述能力信息对应的PDSCH传输方式,对所述测量信息进行计算得到用于反馈的CSI;
发送模块303,进一步被配置为向所述网络设备发送所述CSI。
在此需要说明的是,本公开实施例提供的终端,能够实现上述方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
基于相同的技术构思,本公开实施例还提供了一种网络设备,能够实现前述实施例中网络设备侧的方法。
参见图4,为本公开实施例提供的网络设备的结构示意图,该网络设备可实现图2中终端所实现的功能。如图所示,该终端可包括:接收模块401、处理模块402、发送模块403,其中:
接收模块401,被配置为接收终端发送的所述终端的能力信息;
接收模块401,被进一步配置为接收所述终端发送的CSI,所述CSI是所述终端基于与所述能力信息对应的PDSCH传输方式,对下行参考信号的测量信息进行计算得到的。
在此需要说明的是,本公开实施例提供的网络设备,能够实现上述方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
基于相同的技术构思,本公开实施例还提供了一种终端,能够实现前述实施例中终端侧的方法。
参见图5,为本公开实施例提供的终端的结构示意图。如图所示,该终端可包括:处理器501、存储器502、收发机503以及总线接口504。
处理器501负责管理总线架构和通常的处理,存储器502可以存储处理器501在执行操作时所使用的数据。收发机503用于在处理器501的控制下接收和发送数据。
总线架构可以包括任意数量的互联的总线和桥,具体由处理器501代表的一个或多个处理器和存储器502代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。处理器501负责管理总线架构和通常的处理,存储器502可以存储处理器501在执行操作时所使用的数据。
本公开实施例揭示的流程,可以应用于处理器501中,或者由处理器501实现。在实现过程中,信号处理流程的各步骤可以通过处理器501中的硬件的集成逻辑电路或者软件形式的指令完成。处理器501可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,可以实现或者执行本公开实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本公开实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器502,处理器501读取存储器502中的信息,结合其硬件完成信号处理流程的步骤。
具体地,处理器501,用于读取存储器502中的计算机指令并执行本公开实施例中终端实现的功能。
在此需要说明的是,本发明实施例提供的上述终端,能够实现上述方法实施例中终端所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
基于相同的技术构思,本公开实施例还提供了一种网络设备。该网络设 备可以实现前述实施例中网络设备侧的功能。
参见图6,为本公开实施例提供的网络设备的结构示意图。如图所示,该网络设备可包括:处理器601、存储器602、收发机603以及总线接口604。
处理器601负责管理总线架构和通常的处理,存储器602可以存储处理器601在执行操作时所使用的数据。收发机603用于在处理器601的控制下接收和发送数据。
总线架构可以包括任意数量的互联的总线和桥,具体由处理器601代表的一个或多个处理器和存储器602代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。处理器601负责管理总线架构和通常的处理,存储器602可以存储处理器601在执行操作时所使用的数据。
本公开实施例揭示的流程,可以应用于处理器601中,或者由处理器601实现。在实现过程中,信号处理流程的各步骤可以通过处理器601中的硬件的集成逻辑电路或者软件形式的指令完成。处理器601可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,可以实现或者执行本公开实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本公开实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器602,处理器601读取存储器602中的信息,结合其硬件完成信号处理流程的步骤。
具体地,处理器601,用于读取存储器602中的计算机指令并执行本公开实施例中终端实现的功能。
在此需要说明的是,本发明实施例提供的上述网络设备,能够实现上述 方法实施例中网络设备所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
本公开实施例还提供了一种计算机可读存储介质,计算机可读存储介质存储有计算机可执行指令,计算机可执行指令用于使计算机执行上述实施例中终端所执行的方法。
本公开实施例还提供了一种计算机可读存储介质,计算机可读存储介质存储有计算机可执行指令,计算机可执行指令用于使计算机执行上述实施例中网络设备所执行的方法。
本领域内的技术人员应明白,本公开的实施例可提供为方法、系统、或计算机程序产品。因此,本公开可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本公开可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本公开是参照根据本公开的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图 一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本公开进行各种改动和变型而不脱离本公开的精神和范围。这样,倘若本公开的这些修改和变型属于本公开权利要求及其等同技术的范围之内,则本公开也意图包含这些改动和变型在内。

Claims (24)

  1. 一种信道状态信息CSI反馈方法,其特征在于,包括:
    终端向网络设备发送所述终端的能力信息;
    所述终端对所述网络设备发送的下行参考信号进行测量得到测量信息,并基于与所述能力信息对应的物理下行链路共享信道PDSCH传输方式,对所述测量信息进行计算得到用于反馈的CSI;
    所述终端向所述网络设备发送所述CSI。
  2. 如权利要求1所述的方法,其特征在于,所述基于与所述能力信息对应的PDSCH传输方式,对所述测量信息进行计算得到用于反馈的CSI,包括:
    若所述能力信息指示所述终端支持至少两个PDSCH在时域重叠且在频域不重叠,则基于第一PDSCH传输方式,对所述测量信息进行计算得到用于反馈的CSI;或者
    若所述能力信息指示所述终端支持至少两个PDSCH在时域重叠且在频域不重叠,以及支持至少两个PDSCH的时频资源完全重叠,则基于第一PDSCH传输方式和/或第二PDSCH传输方式,对所述测量信息进行计算得到用于反馈的CSI;或者
    若所述能力信息指示所述终端支持至少两个PDSCH在时域重叠且在频域不重叠,以及不支持至少两个PDSCH的时频资源完全重叠,则基于第一PDSCH传输方式对所述测量信息进行计算得到用于反馈的CSI;或者
    若所述能力信息指示所述终端支持至少两个PDSCH在时域重叠且在频域不重叠,且不支持至少两个PDSCH的时频资源部分重叠,以及不支持至少两个PDSCH的时频资源完全重叠,则基于第一PDSCH传输方式对所述测量信息进行计算得到用于反馈的CSI;
    其中,所述第一PDSCH传输方式为:至少两个PDSCH在时域重叠且在频域不重叠的传输方式;所述第二PDSCH传输方式为:至少两个PDSCH在时频和频域完全重叠的传输方式;基于所述第一PDSCH传输方式以及第二 PDSCH传输方式对所述测量信息进行计算得到用于反馈的CSI时,分别基于所述第一PDSCH传输方式和所述第二PDSCH传输方式对所述测量信息进行计算得到用于反馈的CSI。
  3. 如权利要求2所述的方法,其特征在于,所述基于与所述能力信息对应的PDSCH传输方式,对所述测量信息进行计算得到用于反馈的CSI,包括:
    根据默认配置或者所述网络设备发送的指示信息,基于与所述能力信息对应的PDSCH传输方式,对所述测量信息进行计算得到用于反馈的CSI;其中,所述默认配置和所述指示信息用于指示终端计算CSI时所基于的PDSCH传输方式,所述指示信息所指示的PDSCH传输方式与所述终端的能力信息相匹配。
  4. 如权利要求1所述的方法,其特征在于,所述基于与所述能力信息对应的PDSCH传输方式,对所述测量信息进行计算得到用于反馈的CSI,包括:
    接收所述网络设备发送的PDSCH资源分配信息,所述PDSCH资源分配信息用于指示至少两个PDSCH的时频资源,所述PDSCH资源分配信息与所述终端发送的能力信息相匹配;
    基于所述PDSCH资源分配信息对应的PDSCH传输方式,对所述测量信息进行计算得到用于反馈的CSI。
  5. 如权利要求4所述的方法,其特征在于,基于所述PDSCH资源分配信息对应的PDSCH传输方式,对所述测量信息进行计算得到用于反馈的CSI,包括:
    若所述能力信息指示所述终端支持至少两个PDSCH在时域重叠且在频域不重叠,则根据所述PDSCH资源分配信息指示的第一PDSCH时频资源,基于对应的PDSCH传输方式对所述测量信息进行计算得到用于反馈的CSI;或者
    若所述能力信息指示所述终端支持至少两个PDSCH在时域重叠且在频域不重叠,以及支持至少两个PDSCH的时频资源完全重叠,则基于所述PDSCH资源分配信息指示的第一PDSCH时频资源或第二PDSCH时频资源 所对应的PDSCH传输方式,对所述测量信息进行计算得到用于反馈的CSI;或者
    若所述能力信息指示所述终端支持至少两个PDSCH在时域重叠且在频域不重叠,以及不支持至少两个PDSCH的时频资源完全重叠,则基于所述PDSCH资源分配信息指示的第一PDSCH时频资源所对应的PDSCH传输方式,对所述测量信息进行计算得到用于反馈的CSI;或者
    若所述能力信息指示所述终端支持至少两个PDSCH在时域重叠且在频域不重叠,支持至少两个PDSCH的时频资源部分重叠,以及支持至少两个PDSCH的时频资源完全重叠,则基于所述PDSCH资源分配信息指示的第一PDSCH时频资源、第二PDSCH时频资源分配情况或第三时频资源分配情况所对应的PDSCH传输方式,对所述测量信息进行计算得到用于反馈的CSI;或者
    若所述能力信息指示所述终端支持至少两个PDSCH在时域重叠且在频域不重叠,不支持至少两个PDSCH的时域资源部分重叠,以及支持至少两个PDSCH的时频资源完全重叠,则基于所述PDSCH资源分配信息指示的第一PDSCH时频资源或第二时频资源分配情况所对应的PDSCH传输方式,对所述测量信息进行计算得到用于反馈的CSI;或者
    若所述能力信息指示所述终端支持至少两个PDSCH在时域重叠且在频域不重叠,支持至少两个PDSCH的时频资源部分重叠,以及不支持至少两个PDSCH的时频资源完全重叠,则基于所述PDSCH资源分配信息指示的第一PDSCH时频资源或第三时频资源分配情况所对应的PDSCH传输方式,对所述测量信息进行计算得到用于反馈的CSI;或者
    若所述能力信息指示所述终端支持至少两个PDSCH在时域重叠且在频域不重叠,不支持至少两个PDSCH的时域资源部分重叠,以及不支持至少两个PDSCH的时频资源完全重叠,则基于所述PDSCH资源分配信息指示的第一PDSCH时频资源所对应的PDSCH传输方式,对所述测量信息进行计算得到用于反馈的CSI;或者
    若所述能力信息指示所述终端支持至少两个PDSCH在时域重叠且在频域不重叠,以及支持至少两个PDSCH的时频资源部分重叠,则基于所述PDSCH资源分配信息指示的第一PDSCH时频资源或第三PDSCH时频资源所对应的PDSCH传输方式,对所述测量信息进行计算得到用于反馈的CSI;或者
    若所述能力信息指示所述终端支持至少两个PDSCH在时域重叠且在频域不重叠,不支持至少两个PDSCH的时频资源部分重叠,则基于所述PDSCH资源分配信息指示的第一PDSCH时频资源所对应的PDSCH传输方式,对所述测量信息进行计算得到用于反馈的CSI;
    其中,所述第一PDSCH时频资源为:至少两个PDSCH在时域重叠且在频域不重叠,与所述第一PDSCH时频资源对应的PDSCH传输方式为:至少两个PDSCH在时域重叠且在频域不重叠的传输方式;所述第二PDSCH时频资源为至少两个PDSCH的时频资源完全重叠,与所述第二PDSCH时频资源对应的PDSCH传输方式为:至少两个PDSCH在时频和频域完全重叠的传输方式;所述第三PDSCH时频资源为:至少两个PDSCH在时域部分重叠,与所述第三PDSCH时频资源对应的PDSCH传输方式为:至少两个PDSCH在时域重叠且在频域不重叠的传输方式。
  6. 如权利要求1所述的方法,其特征在于,所述对所述测量信息进行计算得到用于反馈的CSI,包括:
    若所述终端使用至少两个波束接收下行参考信号,则在对所述测量信息进行计算得到用于反馈的CSI时,基于使用至少两个下行参考信号资源对应的波束接收所述至少两个PDSCH,计算用于反馈的CSI;
    若所述终端使用一个波束接收下行参考信号,则在对所述测量信息进行计算得到用于反馈的CSI时,从至少两个下行参考信号资源中选择一个,并基于使用选择的下行参考信号资源所对应的波束接收所述至少两个PDSCH,或者基于使用其他波束接收所述至少两个PDSCH,计算用于反馈的CSI。
  7. 一种信道状态信息CSI反馈方法,其特征在于,包括:
    网络设备接收终端发送的所述终端的能力信息;
    所述网络设备接收所述终端发送的CSI,所述CSI是所述终端基于与所述能力信息对应的物理下行链路共享信道PDSCH传输方式,对下行参考信号的测量信息进行计算得到的。
  8. 如权利要求7所述的方法,其特征在于,还包括:
    所述网络设备根据所述终端的能力信息,指示所述终端基于与所述能力信息对应的PDSCH传输方式确定用于反馈的CSI。
  9. 如权利要求8所述的方法,其特征在于,所述网络设备根据所述终端的能力信息,指示所述终端基于与所述能力信息对应的PDSCH传输方式确定用于反馈的CSI,包括:
    所述网络设备向所述终端发送指示信息,所述指示信息用于指示终端计算CSI时所基于的PDSCH传输方式,所述指示信息所指示的PDSCH传输方式与所述终端的能力信息相匹配。
  10. 如权利要求9所述的方法,其特征在于,所述网络设备向所述终端发送指示信息,所述指示信息用于指示终端计算CSI时所基于的PDSCH传输方式,包括:
    若所述能力信息指示所述终端支持至少两个PDSCH在时域重叠且在频域不重叠,以及支持至少两个PDSCH的时频资源完全重叠,则发送用于指示第一PDSCH传输方式和/或第二PDSCH传输方式的指示信息;或者
    若所述能力信息指示所述终端支持至少两个PDSCH在时域重叠且在频域不重叠,以及不支持至少两个PDSCH的时频资源完全重叠,则发送用于指示第一PDSCH传输方式的指示信息;或者
    若所述能力信息指示所述终端支持至少两个PDSCH在时域重叠且在频域不重叠,且不支持至少两个PDSCH的时频资源部分重叠,以及不支持至少两个PDSCH的时频资源完全重叠,则发送用于指示第一PDSCH传输方式的指示信息;
    其中,所述第一PDSCH传输方式为:至少两个PDSCH在时域重叠且在 频域不重叠的传输方式;所述第二PDSCH传输方式为:至少两个PDSCH在时频和频域完全重叠的传输方式。
  11. 如权利要求9所述的方法,其特征在于,所述网络设备向所述终端发送指示信息,包括:
    所述网络设备向所述终端发送专用信令,所述专用信令携带所述指示信息;或者
    所述网络设备向所述终端发送动态信令,所述动态信令携带所述指示信息;或者
    所述网络设备向所述终端发送携带第一指示信息的专用信令,并在PDSCH传输方式发生变化时,向所述终端发送携带第二指示信息的动态信令;其中,所述第一指示信息用于指示PDSCH传输方式集合,所述第二指示信息用于指示所述PDSCH传输方式集合中的一个PDSCH传输方式,所述PDSCH传输方式集合中至少包括第一PDSCH传输方式和第二PDSCH传输方式;
    其中,所述第一PDSCH传输方式为:至少两个PDSCH在时域重叠且在频域不重叠的传输方式;所述第二PDSCH传输方式为:至少两个PDSCH在时频和频域完全重叠的传输方式。
  12. 如权利要求8所述的方法,其特征在于,所述网络设备根据所述终端的能力信息,指示所述终端基于与所述能力信息对应的PDSCH传输方式确定用于反馈的CSI,包括:
    所述网络设备向所述终端发送PDSCH资源分配信息,所述PDSCH资源分配信息用于指示至少两个PDSCH的时频资源,所述PDSCH资源分配信息与所述终端发送的能力信息相匹配。
  13. 如权利要求12所述的方法,其特征在于,所述网络设备向所述终端发送PDSCH资源分配信息,所述PDSCH资源分配信息用于指示至少两个PDSCH的时频资源,包括:
    若所述能力信息指示所述终端支持至少两个PDSCH在时域重叠且在频域不重叠,则向所述终端发送用于指示第一PDSCH时频资源的PDSCH资源 分配信息;或者
    若所述能力信息指示所述终端支持至少两个PDSCH在时域重叠且在频域不重叠,以及支持至少两个PDSCH的时频资源完全重叠,则向所述终端发送用于指示第一PDSCH时频资源或第二PDSCH时频资源的PDSCH资源分配信息;或者
    若所述能力信息指示所述终端支持至少两个PDSCH在时域重叠且在频域不重叠,以及不支持至少两个PDSCH的时频资源完全重叠,则向所述终端发送用于指示第一PDSCH时频资源的PDSCH资源分配信息;或者
    若所述能力信息指示所述终端支持至少两个PDSCH在时域重叠且在频域不重叠,支持至少两个PDSCH的时频资源部分重叠,以及支持至少两个PDSCH的时频资源完全重叠,则向所述终端发送用于指示第一PDSCH时频资源、第二PDSCH时频资源分配情况或第三时频资源分配情况的PDSCH资源分配信息;或者
    若所述能力信息指示所述终端支持至少两个PDSCH在时域重叠且在频域不重叠,不支持至少两个PDSCH的时域资源部分重叠,以及支持至少两个PDSCH的时频资源完全重叠,则向所述终端发送用于指示第一PDSCH时频资源或第二时频资源分配情况的PDSCH资源分配信息;或者
    若所述能力信息指示所述终端支持至少两个PDSCH在时域重叠且在频域不重叠,支持至少两个PDSCH的时频资源部分重叠,以及不支持至少两个PDSCH的时频资源完全重叠,则向所述终端发送用于指示第一PDSCH时频资源或第三时频资源分配情况的PDSCH资源分配信息;或者
    若所述能力信息指示所述终端支持至少两个PDSCH在时域重叠且在频域不重叠,不支持至少两个PDSCH的时域资源部分重叠,以及不支持至少两个PDSCH的时频资源完全重叠,则向所述终端发送用于指示第一PDSCH时频资源的PDSCH资源分配信息;或者
    若所述能力信息指示所述终端支持至少两个PDSCH在时域重叠且在频域不重叠,以及支持至少两个PDSCH的时频资源部分重叠,则向所述终端发 送用于指示第一PDSCH时频资源或第三PDSCH时频资源的PDSCH资源分配信息;或者
    若所述能力信息指示所述终端支持至少两个PDSCH在时域重叠且在频域不重叠,不支持至少两个PDSCH的时频资源部分重叠,则向所述终端发送用于指示第一PDSCH时频资源的PDSCH资源分配信息;
    其中,所述第一PDSCH时频资源为:至少两个PDSCH在时域重叠且在频域不重叠,与所述第一PDSCH时频资源对应的PDSCH传输方式为:至少两个PDSCH在时域重叠且在频域不重叠的传输方式;所述第二PDSCH时频资源为至少两个PDSCH的时频资源完全重叠,与所述第二PDSCH时频资源对应的PDSCH传输方式为:至少两个PDSCH在时频和频域完全重叠的传输方式;所述第三PDSCH时频资源为:至少两个PDSCH在时域部分重叠,与所述第三PDSCH时频资源对应的PDSCH传输方式为:至少两个PDSCH在时域重叠且在频域不重叠的传输方式。
  14. 一种终端,其特征在于,包括:
    发送模块,被配置为向网络设备发送所述终端的能力信息;
    处理模块,被配置为对所述网络设备发送的下行参考信号进行测量得到测量信息,并基于与所述能力信息对应的物理下行链路共享信道PDSCH传输方式,对所述测量信息进行计算得到用于反馈的信道状态信息CSI;
    所述发送模块,进一步被配置为向所述网络设备发送所述CSI。
  15. 如权利要求14所述的终端,其特征在于,所述处理模块具体用于:
    若所述能力信息指示所述终端支持至少两个PDSCH在时域重叠且在频域不重叠,则基于第一PDSCH传输方式,对所述测量信息进行计算得到用于反馈的CSI;或者
    若所述能力信息指示所述终端支持至少两个PDSCH在时域重叠且在频域不重叠,以及支持至少两个PDSCH的时频资源完全重叠,则基于第一PDSCH传输方式和/或第二PDSCH传输方式,对所述测量信息进行计算得到用于反馈的CSI;或者
    若所述能力信息指示所述终端支持至少两个PDSCH在时域重叠且在频域不重叠,以及不支持至少两个PDSCH的时频资源完全重叠,则基于第一PDSCH传输方式对所述测量信息进行计算得到用于反馈的CSI;或者
    若所述能力信息指示所述终端支持至少两个PDSCH在时域重叠且在频域不重叠,且不支持至少两个PDSCH的时频资源部分重叠,以及不支持至少两个PDSCH的时频资源完全重叠,则基于第一PDSCH传输方式对所述测量信息进行计算得到用于反馈的CSI;
    其中,所述第一PDSCH传输方式为:至少两个PDSCH在时域重叠且在频域不重叠的传输方式;所述第二PDSCH传输方式为:至少两个PDSCH在时频和频域完全重叠的传输方式;基于所述第一PDSCH传输方式以及第二PDSCH传输方式对所述测量信息进行计算得到用于反馈的CSI时,分别基于所述第一PDSCH传输方式和所述第二PDSCH传输方式对所述测量信息进行计算得到用于反馈的CSI。
  16. 如权利要求14所述的终端,其特征在于,所述处理模块具体用于:
    接收所述网络设备发送的PDSCH资源分配信息,所述PDSCH资源分配信息用于指示至少两个PDSCH的时频资源,所述PDSCH资源分配信息与所述终端发送的能力信息相匹配;
    基于所述PDSCH资源分配信息对应的PDSCH传输方式,对所述测量信息进行计算得到用于反馈的CSI。
  17. 一种网络设备,其特征在于,包括:
    接收模块,被配置为接收终端发送的所述终端的能力信息;
    所述接收模块,被进一步配置为接收所述终端发送的信道状态信息CSI,所述CSI是所述终端基于与所述能力信息对应的物理下行链路共享信道PDSCH传输方式,对下行参考信号的测量信息进行计算得到的。
  18. 如权利要求17所述的网络设备,其特征在于,还包括指示模块用于:
    所述网络设备根据所述终端的能力信息,指示所述终端基于与所述能力信息对应的PDSCH传输方式确定用于反馈的CSI。
  19. 如权利要求18所述的网络设备,其特征在于,所述指示模块具体用于:
    所述网络设备向所述终端发送指示信息,所述指示信息用于指示终端计算CSI时所基于的PDSCH传输方式,所述指示信息所指示的PDSCH传输方式与所述终端的能力信息相匹配。
  20. 如权利要求19所述的网络设备,其特征在于,所述指示模块具体用于:
    若所述能力信息指示所述终端支持至少两个PDSCH在时域重叠且在频域不重叠,以及支持至少两个PDSCH的时频资源完全重叠,则发送用于指示第一PDSCH传输方式和/或第二PDSCH传输方式的指示信息;或者
    若所述能力信息指示所述终端支持至少两个PDSCH在时域重叠且在频域不重叠,以及不支持至少两个PDSCH的时频资源完全重叠,则发送用于指示第一PDSCH传输方式的指示信息;或者
    若所述能力信息指示所述终端支持至少两个PDSCH在时域重叠且在频域不重叠,且不支持至少两个PDSCH的时频资源部分重叠,以及不支持至少两个PDSCH的时频资源完全重叠,则发送用于指示第一PDSCH传输方式的指示信息;
    其中,所述第一PDSCH传输方式为:至少两个PDSCH在时域重叠且在频域不重叠的传输方式;所述第二PDSCH传输方式为:至少两个PDSCH在时频和频域完全重叠的传输方式。
  21. 如权利要求18所述的网络设备,其特征在于,所述指示模块具体用于:
    所述网络设备向所述终端发送PDSCH资源分配信息,所述PDSCH资源分配信息用于指示至少两个PDSCH的时频资源,所述PDSCH资源分配信息与所述终端发送的能力信息相匹配。
  22. 一种终端,其特征在于,包括:处理器、存储器、收发机;
    所述收发机,在处理器的控制下进行数据的接收和发送;
    所述存储器,存储计算机指令;
    所述处理器,用于读取所述计算机指令,执行如权利要求1-6中任一项所述的方法。
  23. 一种网络设备,其特征在于,包括:处理器、存储器、收发机;
    所述收发机,在处理器的控制下进行数据的接收和发送;
    所述存储器,存储计算机指令;
    所述处理器,用于读取所述计算机指令,执行如权利要求7-13中任一项所述的方法。
  24. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机可执行指令,所述计算机可执行指令用于使计算机执行如权利要求1-6中任一项所述的方法,或者7-13中任一项所述的方法。
PCT/CN2021/103120 2020-07-15 2021-06-29 一种信道状态信息反馈方法及装置 WO2022012322A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21842632.8A EP4184994A4 (en) 2020-07-15 2021-06-29 METHOD AND APPARATUS FOR RETURNING CHANNEL STATE INFORMATION
US18/016,330 US20230292167A1 (en) 2020-07-15 2021-06-29 Method and apparatus for feeding back channel state information

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010682922.0A CN113949481B (zh) 2020-07-15 2020-07-15 一种信道状态信息反馈方法及装置
CN202010682922.0 2020-07-15

Publications (1)

Publication Number Publication Date
WO2022012322A1 true WO2022012322A1 (zh) 2022-01-20

Family

ID=79326177

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/103120 WO2022012322A1 (zh) 2020-07-15 2021-06-29 一种信道状态信息反馈方法及装置

Country Status (4)

Country Link
US (1) US20230292167A1 (zh)
EP (1) EP4184994A4 (zh)
CN (1) CN113949481B (zh)
WO (1) WO2022012322A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220376758A1 (en) * 2021-05-24 2022-11-24 Samsung Electronics Co., Ltd. Method and apparatus for user selection in distributed mimo

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105794142A (zh) * 2013-10-07 2016-07-20 诺基亚通信公司 用于增强的接收机的干扰估计资源定义和使用
WO2019099659A1 (en) * 2017-11-15 2019-05-23 Idac Holdings, Inc. Beam management in a wireless network
CN110661556A (zh) * 2018-06-29 2020-01-07 华为技术有限公司 发送和接收信道状态信息的方法和通信装置
CN110830215A (zh) * 2018-08-10 2020-02-21 华为技术有限公司 用于上报csi的方法和装置
CN110995329A (zh) * 2012-03-16 2020-04-10 华为技术有限公司 用于参考信号和csi反馈的系统和方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5356339B2 (ja) * 2010-09-03 2013-12-04 シャープ株式会社 端末装置、基地局装置、通信システムおよび通信方法
CN104579585B (zh) * 2013-10-16 2018-12-11 电信科学技术研究院 一种信道状态信息的传输方法及设备
CN106664192B (zh) * 2015-01-30 2020-12-01 韩国电子通信研究院 用于配置csi-rs天线端口的端口编号的方法和设备
US10236951B2 (en) * 2015-04-10 2019-03-19 Lg Electronics Inc. Method for reporting channel state information in wireless communication system and device therefor
CN109560842B (zh) * 2017-09-23 2021-02-12 华为技术有限公司 一种信道状态信息的测量方法及相关设备
CN111328130B (zh) * 2018-12-14 2022-04-01 大唐移动通信设备有限公司 一种信号接收方法、发送方法、终端和网络侧设备
CN111277300B (zh) * 2018-12-18 2021-10-01 维沃移动通信有限公司 信息传输方法、终端及网络设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110995329A (zh) * 2012-03-16 2020-04-10 华为技术有限公司 用于参考信号和csi反馈的系统和方法
CN105794142A (zh) * 2013-10-07 2016-07-20 诺基亚通信公司 用于增强的接收机的干扰估计资源定义和使用
WO2019099659A1 (en) * 2017-11-15 2019-05-23 Idac Holdings, Inc. Beam management in a wireless network
CN110661556A (zh) * 2018-06-29 2020-01-07 华为技术有限公司 发送和接收信道状态信息的方法和通信装置
CN110830215A (zh) * 2018-08-10 2020-02-21 华为技术有限公司 用于上报csi的方法和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4184994A4 *

Also Published As

Publication number Publication date
US20230292167A1 (en) 2023-09-14
EP4184994A1 (en) 2023-05-24
EP4184994A4 (en) 2024-01-17
CN113949481B (zh) 2023-04-18
CN113949481A (zh) 2022-01-18

Similar Documents

Publication Publication Date Title
CN110880958B (zh) 一种射频参数的上报方法及装置
JP6336596B2 (ja) 集中仮想スケジューラ、リアルスケジューラ、スケジューリングシステム、方法、及びプログラム
WO2019029461A1 (zh) 一种csi的反馈及其控制方法、装置
WO2020001517A1 (zh) 一种通信方法及装置
CN113271671B (zh) 波束管理方法及相关装置
WO2020001607A1 (zh) 数据加扰方法及相关设备
JP6437094B2 (ja) 発見信号伝送方法、セル発見方法及び装置
WO2020001452A1 (zh) 一种能力上报的方法及装置
JP2016197851A (ja) ユーザ装置、及び能力情報通知方法
US20220014250A1 (en) Channel state information measurement method and apparatus and network side device
WO2019214355A1 (zh) 一种确定rrm测量配置的方法及设备
WO2022012322A1 (zh) 一种信道状态信息反馈方法及装置
WO2021129229A1 (zh) 一种通信方法和装置
WO2021047485A1 (zh) 一种传输方法、终端设备以及网络设备
CN111435846B (zh) 一种信道状态信息上报方法、终端和网络侧设备
CN112055985B (zh) 用于调度多个活动带宽部分的单阶段下行链路控制信息设计
US20230062005A1 (en) Method and device for transmitting control information
WO2021197473A1 (zh) 一种信号传输方法和设备
US20230071462A1 (en) Control information communication method and device
US20160044698A1 (en) Base station, terminal, and scheduling method
WO2019214469A1 (zh) 一种参考信号传输方法及通信设备
CN109818711B (zh) 一种bundling大小确定方法、用户终端和网络侧设备
TWI834162B (zh) 信號傳輸方法、裝置、終端及基地台
WO2022206504A1 (zh) Csi反馈方法、相关设备及可读存储介质
WO2023179412A1 (zh) 多面板通信方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21842632

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021842632

Country of ref document: EP

Effective date: 20230215