WO2022011741A1 - 摄像光学镜头 - Google Patents

摄像光学镜头 Download PDF

Info

Publication number
WO2022011741A1
WO2022011741A1 PCT/CN2020/104696 CN2020104696W WO2022011741A1 WO 2022011741 A1 WO2022011741 A1 WO 2022011741A1 CN 2020104696 W CN2020104696 W CN 2020104696W WO 2022011741 A1 WO2022011741 A1 WO 2022011741A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
imaging optical
ttl
focal length
curvature
Prior art date
Application number
PCT/CN2020/104696
Other languages
English (en)
French (fr)
Inventor
石荣宝
Original Assignee
诚瑞光学(常州)股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 诚瑞光学(常州)股份有限公司 filed Critical 诚瑞光学(常州)股份有限公司
Publication of WO2022011741A1 publication Critical patent/WO2022011741A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/64Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having more than six components
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0045Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration

Definitions

  • the invention relates to the field of optical lenses, in particular to an imaging optical lens suitable for portable terminal equipment such as smart phones and digital cameras, as well as imaging devices such as monitors and PC lenses.
  • the lenses traditionally mounted on mobile phone cameras mostly use three-piece, four-piece, or even five-piece or six-piece lens structures.
  • the pixel area of the photosensitive device is continuously reduced, and the system's requirements for imaging quality are constantly improving.
  • the seven-piece lens structure gradually appears in the lens design.
  • the seven-piece lens has good optical performance, its optical power, lens spacing and lens shape setting are still unreasonable, resulting in the lens structure having good optical performance, it cannot meet the requirements of large aperture, Long focal length, ultra-thin design requirements.
  • the purpose of the present invention is to provide an imaging optical lens, which can meet the requirements of large aperture, long focal length, and ultra-thinning while obtaining high imaging performance.
  • the imaging optical lens includes a total of seven lenses, and the seven lenses are sequentially from the object side to the image side: a first lens, a second lens with negative refractive power, a third lens, a fourth lens with positive refractive power, a fifth lens with positive refractive power, a sixth lens with negative refractive power, and a fourth lens with negative refractive power seven lenses;
  • the focal length of the first lens is f1
  • the focal length of the sixth lens is f6
  • the focal length of the seventh lens is f7
  • the overall focal length of the imaging optical lens is f
  • the image side of the second lens reaches
  • the on-axis distance of the object side of the third lens is d4
  • the on-axis thickness of the third lens is d5, and the following relationship is satisfied:
  • the radius of curvature of the object side surface of the fifth lens is R9
  • the radius of curvature of the image side surface of the fifth lens is R10
  • the radius of curvature of the object side of the first lens is R1
  • the radius of curvature of the image side of the first lens is R2
  • the on-axis thickness of the first lens is d1
  • the optical The total length is TTL and satisfies the following relation:
  • the focal length of the second lens is f2
  • the radius of curvature of the object side of the second lens is R3
  • the radius of curvature of the image side of the second lens is R4
  • the on-axis thickness of the second lens is is d3
  • the total optical length of the imaging optical lens is TTL, and satisfies the following relationship:
  • the focal length of the third lens is f3
  • the radius of curvature of the object side of the third lens is R5
  • the radius of curvature of the image side of the third lens is R6, and the total optical length of the imaging optical lens is TTL, and satisfy the following relation:
  • the focal length of the fourth lens is f4
  • the radius of curvature of the object side of the fourth lens is R7
  • the radius of curvature of the image side of the fourth lens is R8,
  • the on-axis thickness of the fourth lens is is d7
  • the total optical length of the imaging optical lens is TTL, and satisfies the following relationship:
  • the focal length of the fifth lens is f5
  • the radius of curvature of the object side of the fifth lens is R9
  • the radius of curvature of the image side of the fifth lens is R10
  • the on-axis thickness of the fifth lens is is d9
  • the total optical length of the imaging optical lens is TTL, and satisfies the following relationship:
  • the radius of curvature of the object side of the sixth lens is R11
  • the radius of curvature of the image side of the sixth lens is R12
  • the on-axis thickness of the sixth lens is d11
  • the optical The total length is TTL and satisfies the following relation:
  • the radius of curvature of the object side of the seventh lens is R13
  • the radius of curvature of the image side of the seventh lens is R14
  • the on-axis thickness of the seventh lens is d13
  • the total optical length of the imaging optical lens is TTL and satisfies the following relation:
  • the image height of the imaging optical lens is IH, and satisfies the following relationship: f/IH ⁇ 2.2.
  • the imaging optical lens according to the present invention has good optical performance, and has the characteristics of large aperture, long focal length, and ultra-thinning, and is especially suitable for mobile phones composed of high-pixel CCD, CMOS and other imaging elements Camera lens assembly and WEB camera lens.
  • FIG. 1 is a schematic structural diagram of an imaging optical lens according to a first embodiment of the present invention
  • Fig. 2 is the axial aberration schematic diagram of the imaging optical lens shown in Fig. 1;
  • FIG. 3 is a schematic diagram of the magnification chromatic aberration of the imaging optical lens shown in FIG. 1;
  • FIG. 4 is a schematic diagram of field curvature and distortion of the imaging optical lens shown in FIG. 1;
  • FIG. 5 is a schematic structural diagram of an imaging optical lens according to a second embodiment of the present invention.
  • Fig. 6 is the axial aberration schematic diagram of the imaging optical lens shown in Fig. 5;
  • FIG. 7 is a schematic diagram of the magnification chromatic aberration of the imaging optical lens shown in FIG. 5;
  • FIG. 8 is a schematic diagram of field curvature and distortion of the imaging optical lens shown in FIG. 5;
  • FIG. 9 is a schematic structural diagram of an imaging optical lens according to a third embodiment of the present invention.
  • Fig. 10 is a schematic diagram of axial aberration of the imaging optical lens shown in Fig. 9;
  • FIG. 11 is a schematic diagram of the magnification chromatic aberration of the imaging optical lens shown in FIG. 9;
  • FIG. 12 is a schematic diagram of field curvature and distortion of the imaging optical lens shown in FIG. 9 .
  • FIG. 1 shows an imaging optical lens 10 according to a first embodiment of the present invention, and the imaging optical lens 10 includes a total of seven lenses.
  • the imaging optical lens 10 from the object side to the image side, is: aperture S1, first lens L1, second lens L2, third lens L3, fourth lens L4, fifth lens L5, sixth lens Lens L6 and seventh lens L7.
  • a glass flat plate GF is provided between the seventh lens L7 and the image plane Si, and the glass flat plate GF may be a glass cover plate or an optical filter.
  • the first lens L1 has a positive refractive power
  • the second lens L2 has a negative refractive power
  • the third lens L3 has a positive refractive power
  • the fourth lens L4 has a positive refractive power
  • the fifth lens L5 has a positive refractive power
  • the sixth lens L6 has negative refractive power
  • the seventh lens L7 has negative refractive power.
  • the first lens L1 is made of plastic material
  • the second lens L2 is made of plastic material
  • the third lens L3 is made of plastic material
  • the fourth lens L4 is made of plastic material
  • the fifth lens L5 is made of plastic material
  • the sixth lens L6 is made of plastic material It is made of plastic material
  • the seventh lens L7 is made of plastic material.
  • the overall focal length of the imaging optical lens 10 as f
  • the focal length of the first lens L1 as f1
  • the focal length of the sixth lens L6 as f6
  • the focal length of the seventh lens L7 as f7
  • the image side of the second lens L2 to the
  • the on-axis distance of the object side surface of the third lens L3 is d4
  • the on-axis thickness of the third lens L3 is d5, and the following relationship is satisfied:
  • the relational formula (1) specifies the ratio of the focal length f1 of the first lens L1 to the total focal length f of the system, which helps to improve the imaging performance within the range of the conditional formula.
  • the relational formula (2) specifies the ratio of the focal length f6 of the sixth lens L6 to the focal length f7 of the seventh lens L7, which helps to correct the field curvature of the system and improve the imaging quality within the range of the conditional formula.
  • the relational formula (3) specifies the ratio of the on-axis distance d4 from the image side of the second lens L2 to the object side of the third lens L3 and the on-axis thickness d5 of the third lens L3.
  • d4/d5 satisfies the condition, it is beneficial to Realize the system long focal length characteristic.
  • the curvature radius of the object side surface of the fifth lens L5 is defined as R9
  • the curvature radius of the image side surface of the fifth lens L5 is R10
  • the following relationship is satisfied: 1.50 ⁇ R9/R10 ⁇ 6.00.
  • This relational expression specifies the shape of the fifth lens L5, which helps to reduce the degree of refraction of light in the lens and reduce aberration within the scope of the conditions.
  • the object side surface of the first lens L1 is a convex surface at the paraxial position, and the image side surface thereof is a concave surface at the paraxial position.
  • the radius of curvature of the object side surface of the first lens L1 as R1 and the radius of curvature of the image side surface of the first lens L1 as R2, and satisfy the following relationship: -2.99 ⁇ (R1+R2)/(R1-R2) ⁇ -0.48 .
  • the shape of the first lens L1 is reasonably controlled, so that the first lens L1 can effectively correct the spherical aberration of the system.
  • -1.87 ⁇ (R1+R2)/(R1-R2) ⁇ -0.60 is satisfied.
  • the on-axis thickness of the first lens L1 is defined as d1, and the total optical length of the imaging optical lens 10 is TTL, which satisfies the following relational formula: 0.04 ⁇ d1/TTL ⁇ 0.17.
  • the relational formula 0.04 ⁇ d1/TTL ⁇ 0.17.
  • 0.07 ⁇ d1/TTL ⁇ 0.13 is satisfied.
  • the object side surface of the second lens L2 is a convex surface at the paraxial position, and the image side surface thereof is a concave surface at the paraxial position.
  • the overall focal length of the imaging optical lens 10 is f
  • the focal length of the second lens L2 is defined as f2, which satisfies the following relationship: -3.14 ⁇ f2/f ⁇ -0.52.
  • f2 the focal length of the second lens L2
  • -1.96 ⁇ f2/f ⁇ -0.65 is satisfied.
  • the curvature radius of the object side surface of the second lens L2 is defined as R3, the curvature radius of the image side surface of the second lens L2 is R4, and the following relationship is satisfied: -0.04 ⁇ (R3+R4)/(R3-R4) ⁇ 6.80.
  • This relational expression specifies the shape of the second lens L2. When the shape is within the range, as the lens develops to an ultra-thin and long focal length, it is beneficial to correct the problem of axial chromatic aberration. Preferably, -0.03 ⁇ (R3+R4)/(R3-R4) ⁇ 5.44 is satisfied.
  • the on-axis thickness of the second lens L2 is defined as d3, and the total optical length of the imaging optical lens 10 is TTL, which satisfies the following relational formula: 0.01 ⁇ d3/TTL ⁇ 0.04, within the range of the conditional formula, is conducive to realizing ultra-thinning.
  • 0.02 ⁇ d3/TTL ⁇ 0.03 is satisfied.
  • the object side surface of the third lens L3 is a concave surface at the paraxial position
  • the image side surface of the third lens L3 is a convex surface at the paraxial position
  • the focal length of the overall imaging optical lens 10 is f
  • the focal length of the third lens L3 is defined as f3, which satisfies the following relationship: -12.64 ⁇ f3/f ⁇ 140.61, through the reasonable distribution of focal power, the system has better imaging quality and lower sensitivity.
  • -7.90 ⁇ f3/f ⁇ 112.49 is satisfied.
  • the curvature radius R5 of the object side surface of the third lens L3 and the curvature radius R6 of the image side surface of the third lens L3 are defined to satisfy the following relationship: -0.12 ⁇ (R5+R6)/(R5-R6) ⁇ 78.41.
  • This relational expression specifies the shape of the third lens L3, and within the range specified by the conditional expression, the degree of deflection of light passing through the lens can be relaxed, and aberrations can be effectively reduced.
  • -0.07 ⁇ (R5+R6)/(R5-R6) ⁇ 62.73 is satisfied.
  • the axial thickness of the third lens L3 is d5, and the total optical length of the imaging optical lens 10 is TTL, which satisfies the following relationship: 0.02 ⁇ d5/TTL ⁇ 0.10. Within the range of the relational expression, it is advantageous to achieve ultra-thinning. Preferably, 0.03 ⁇ d5/TTL ⁇ 0.08 is satisfied.
  • the object side surface of the fourth lens L4 is convex at the paraxial position, and the image side surface thereof is convex at the paraxial position.
  • the focal length of the overall imaging optical lens 10 is f
  • the focal length of the fourth lens is defined as f4
  • the following relationship is satisfied: 0.81 ⁇ f4/f ⁇ 122.22.
  • the relational expression specifies the ratio of the focal length of the fourth lens to the focal length of the system, and is helpful to improve the performance of the optical system within the range of the conditional expression. Preferably, 1.29 ⁇ f4/f ⁇ 97.78 is satisfied.
  • the curvature radius of the object side surface of the fourth lens L4 is defined as R7, and the curvature radius of the image side surface of the fourth lens L4 is R8, which satisfy the following relationship: -1.83 ⁇ (R7+R8)/(R7-R8) ⁇ 50.32.
  • This relational expression specifies the shape of the fourth lens L4.
  • the shape of the fourth lens L4 is within the range of conditions, as the ultra-thin and long focal length develops, it is beneficial to correct problems such as aberrations of the off-axis picture angle.
  • -1.14 ⁇ (R7+R8)/(R7-R8) ⁇ 40.26 is satisfied.
  • the axial thickness of the fourth lens L4 is defined as d7, and the optical total length of the imaging optical lens 10 is TTL, which satisfies the following relational formula: 0.03 ⁇ d7/TTL ⁇ 0.10. Within the range of the conditional expression, it is advantageous to achieve ultra-thinning. Preferably, 0.05 ⁇ d7/TTL ⁇ 0.08 is satisfied.
  • the object side surface of the fifth lens L5 is a concave surface at the paraxial position, and the image side surface thereof is a convex surface at the paraxial position.
  • the focal length of the overall imaging optical lens 10 is f
  • the focal length of the fifth lens L5 is defined as f5, which satisfies the following relationship: 1.64 ⁇ f5/f ⁇ 6.62.
  • the limitation of the fifth lens L5 can effectively make the light angle of the imaging lens gentle and reduce the tolerance sensitivity. Preferably, 2.62 ⁇ f5/f ⁇ 5.29 is satisfied.
  • the curvature radius R9 of the object side of the fifth lens L5 and the curvature radius R10 of the image side of the fifth lens L5 are defined to satisfy the following relationship: 0.72 ⁇ (R9+R10)/(R9-R10) ⁇ 7.38.
  • This relational expression specifies the shape of the fifth lens L5, and when the shape is within the condition range, along with the development of the ultra-thin and long focal length, it is beneficial to correct problems such as aberrations of the off-axis picture angle.
  • 1.16 ⁇ (R9+R10)/(R9-R10) ⁇ 5.91 is satisfied.
  • the axial thickness of the fifth lens L5 is defined as d9, and the optical total length of the imaging optical lens 10 is TTL, which satisfies the following relational formula: 0.03 ⁇ d9/TTL ⁇ 0.12, within the range of the conditional formula, it is beneficial to realize ultra-thinning.
  • 0.05 ⁇ d9/TTL ⁇ 0.09 is satisfied.
  • the object side surface of the sixth lens L6 is a convex surface at the paraxial position, and the image side surface thereof is a concave surface at the paraxial position.
  • the focal length of the overall imaging optical lens 10 is f
  • the focal length of the sixth lens L6 is f6, which satisfies the following relationship: -9.44 ⁇ f6/f ⁇ -1.31, through the reasonable distribution of optical power, the system has better imaging quality and lower sensitivity.
  • -5.90 ⁇ f6/f ⁇ -1.64 is satisfied.
  • the curvature radius of the object side surface of the sixth lens L6 is defined as R11, and the curvature radius of the image side surface of the sixth lens L6 is R12, which satisfies the following relationship: -2.98 ⁇ (R11+R12)/(R11-R12) ⁇ 17.35.
  • This relational expression specifies the shape of the sixth lens L6, and when the shape is within the range, as the ultra-thin and long focal length develops, it is beneficial to correct problems such as aberrations of the off-axis picture angle.
  • -1.86 ⁇ (R11+R12)/(R11-R12) ⁇ 13.88 is satisfied.
  • the on-axis thickness of the sixth lens L6 is defined as d11, and the optical total length of the imaging optical lens 10 is TTL, which satisfies the following relational formula: 0.02 ⁇ d11/TTL ⁇ 0.31, which is conducive to realizing ultra-thinning. Preferably, 0.03 ⁇ d11/TTL ⁇ 0.25 is satisfied.
  • the object side surface of the seventh lens L7 is concave at the paraxial position, and the image side surface thereof is concave at the paraxial position.
  • the focal length of the imaging optical lens 10 is f
  • the focal length of the seventh lens L7 is f7, which satisfies the following relationship: -2.60 ⁇ f7/f ⁇ -0.66, through the reasonable distribution of optical power, the system has better imaging quality and lower sensitivity.
  • -1.63 ⁇ f7/f ⁇ -0.82 is satisfied.
  • the curvature radius of the object side surface of the seventh lens L7 is defined as R13, and the curvature radius of the image side surface of the seventh lens L7 is R14, which satisfy the following relationship: 0.18 ⁇ (R13+R14)/(R13-R14) ⁇ 3.21.
  • This relational expression specifies the shape of the seventh lens L7, and when it is within the conditions, as the ultra-thin and long focal length develops, it is beneficial to correct problems such as aberrations in the off-axis picture angle.
  • 0.28 ⁇ (R13+R14)/(R13-R14) ⁇ 2.57 is satisfied.
  • the axial thickness of the seventh lens L7 is defined as d13, and the optical total length of the imaging optical lens 10 is TTL, which satisfies the following relational formula: 0.02 ⁇ d13/TTL ⁇ 0.10. Within the range of the conditional expression, it is advantageous to achieve ultra-thinning. Preferably, 0.03 ⁇ d13/TTL ⁇ 0.08 is satisfied.
  • the image height of the overall imaging optical lens 10 is IH
  • the focal length of the imaging optical lens 10 is f, which satisfies the following relationship: f/IH ⁇ 2.2, thereby achieving a long focal length.
  • the aperture value FNO of the imaging optical lens 10 is less than or equal to 2.20. Large aperture, good imaging performance.
  • the focal length of the imaging optical lens 10 is f
  • the total optical length of the imaging optical lens 10 is TTL, which satisfies the following relationship: TTL/f ⁇ 1.08, thereby achieving ultra-thinning.
  • the focal length of the imaging optical lens 10 is f
  • the combined focal length of the first lens L1 and the second lens L2 is f12, which satisfies the following relationship: 0.54 ⁇ f12/f ⁇ 1.90, within the range of the conditional expression, it can be eliminated
  • the aberration and distortion of the imaging optical lens 10 can suppress the back focal length of the imaging optical lens 10 and maintain the miniaturization of the imaging lens system group.
  • 0.87 ⁇ f12/f ⁇ 1.52 is satisfied.
  • the imaging optical lens 10 can have good optical performance, and can meet the requirements of large aperture, long focal length, and ultra-thinning. Design requirements: According to the characteristics of the optical lens 10, the optical lens 10 is especially suitable for mobile phone camera lens assemblies and WEB camera lenses composed of high-pixel CCD, CMOS and other camera elements.
  • the imaging optical lens 10 of the present invention will be described using an embodiment.
  • the symbols described in each embodiment are as follows.
  • the unit of focal length, on-axis distance, curvature radius, on-axis thickness, position of inflection point and position of stagnation point is mm.
  • TTL total optical length (the on-axis distance from the object side of the first lens L1 to the image plane Si), in mm;
  • Aperture value FNO refers to the ratio of the effective focal length of the imaging optical lens to the diameter of the entrance pupil.
  • an inflection point and/or a stagnation point may also be set on the object side and/or the image side of the lens to meet high-quality imaging requirements.
  • an inflection point and/or a stagnation point may also be set on the object side and/or the image side of the lens to meet high-quality imaging requirements.
  • Table 1 lists the curvature radius of the object side surface and the curvature radius R of the image side surface of the first lens L1 to the seventh lens L7 constituting the imaging optical lens 10 in the first embodiment of the present invention, the on-axis thickness of each lens, and the two adjacent lenses.
  • distance d distance between the units of R and d are both millimeters (mm).
  • R the radius of curvature at the center of the optical surface
  • R1 the radius of curvature of the object side surface of the first lens L1;
  • R2 the radius of curvature of the image side surface of the first lens L1;
  • R3 the radius of curvature of the object side surface of the second lens L2;
  • R4 the radius of curvature of the image side surface of the second lens L2;
  • R5 the radius of curvature of the object side surface of the third lens L3;
  • R6 the curvature radius of the image side surface of the third lens L3;
  • R7 the curvature radius of the object side surface of the fourth lens L4;
  • R8 the curvature radius of the image side surface of the fourth lens L4;
  • R9 the curvature radius of the object side surface of the fifth lens L5;
  • R10 the curvature radius of the image side surface of the fifth lens L5;
  • R11 the radius of curvature of the object side surface of the sixth lens L6;
  • R12 the curvature radius of the image side surface of the sixth lens L6;
  • R13 the radius of curvature of the object side surface of the seventh lens L7;
  • R14 the curvature radius of the image side surface of the seventh lens L7;
  • R15 The curvature radius of the object side of the optical filter GF
  • R16 The curvature radius of the image side of the optical filter GF
  • d the on-axis thickness of the lens, the on-axis distance between the lenses
  • d0 the on-axis distance from the aperture S1 to the object side surface of the first lens L1;
  • d2 the on-axis distance from the image side of the first lens L1 to the object side of the second lens L2;
  • d4 the on-axis distance from the image side of the second lens L2 to the object side of the third lens L3;
  • d6 the on-axis distance from the image side of the third lens L3 to the object side of the fourth lens L4;
  • d10 the on-axis distance from the image side of the fifth lens L5 to the object side of the sixth lens L6;
  • d11 the on-axis thickness of the sixth lens L6;
  • d12 the on-axis distance from the image side of the sixth lens L6 to the object side of the seventh lens L7;
  • d14 the on-axis distance from the image side of the seventh lens L7 to the object side of the optical filter GF;
  • nd the refractive index of the d-line
  • nd1 the refractive index of the d-line of the first lens L1;
  • nd2 the refractive index of the d-line of the second lens L2;
  • nd3 the refractive index of the d-line of the third lens L3;
  • nd4 the refractive index of the d-line of the fourth lens L4;
  • nd5 the refractive index of the d-line of the fifth lens L5;
  • nd6 the refractive index of the d-line of the sixth lens L6;
  • nd7 the refractive index of the d-line of the seventh lens L7;
  • ndg the refractive index of the d-line of the optical filter GF
  • vg Abbe number of optical filter GF.
  • Table 2 shows aspherical surface data of each lens in the imaging optical lens 10 according to the first embodiment of the present invention.
  • k is the conic coefficient
  • A4, A6, A8, A10, A12, A14, A16, A18, and A20 are aspheric coefficients.
  • y (x 2 /R)/[1+ ⁇ 1-(k+1)(x 2 /R 2 ) ⁇ 1/2 ]+A4x 4 +A6x 6 +A8x 8 +A10x 10 +A12x 12 +A14x 14 +A16x 16 +A18x 18 +A20x 20 (4)
  • x is the vertical distance between the point on the aspheric curve and the optical axis
  • y is the aspheric depth (the vertical distance between the point on the aspheric surface that is x from the optical axis and the tangent plane tangent to the vertex on the aspheric optical axis ).
  • the aspherical surface shown in the above formula (4) is used as the aspherical surface of each lens surface.
  • the present invention is not limited to the aspheric polynomial form represented by the formula (4).
  • Table 3 and Table 4 show the design data of the inflection point and the stagnation point of each lens in the imaging optical lens 10 according to the first embodiment of the present invention.
  • P1R1 and P1R2 respectively represent the object side and image side of the first lens L1
  • P2R1 and P2R2 respectively represent the object side and image side of the second lens L2
  • P3R1 and P3R2 respectively represent the object side and the image side of the third lens L3
  • P4R1 and P4R2 represent the object side and image side of the fourth lens L4 respectively
  • P5R1 and P5R2 represent the object side and the image side of the fifth lens L5 respectively
  • P6R1 and P6R2 respectively represent the object side and the image side of the sixth lens L6,
  • P7R1, P7R2 represent the object side and the image side of the seventh lens L7, respectively.
  • the corresponding data in the column of "invagination point position” is the vertical distance from the inflexion point set on the surface of each lens to the optical axis of the imaging optical lens 10 .
  • the corresponding data in the column of "stagnation point position” is the vertical distance from the stagnation point set on the surface of each lens to the optical axis of the imaging optical lens 10 .
  • FIG. 4 shows a schematic diagram of the field curvature and distortion of light with a wavelength of 555 nm after passing through the imaging optical lens 10 of the first embodiment.
  • the field curvature S in FIG. 4 is the field curvature in the sagittal direction, and T is the field in the meridional direction. song.
  • Table 13 shows the values corresponding to various numerical values in each of the first embodiment, the second embodiment, and the third embodiment and the parameters specified in the conditional expressions.
  • the first embodiment satisfies each conditional expression.
  • the entrance pupil diameter ENPD of the imaging optical lens 10 is 4.000 mm
  • the full field of view image height IH is 4.000 mm
  • the field angle FOV in the diagonal direction is 48.67°.
  • the imaging optical lens 10 satisfies the requirements of large aperture, Long focal length, ultra-thin design requirements, its on-axis and off-axis chromatic aberrations are fully corrected, and it has excellent optical characteristics.
  • the second embodiment is basically the same as the first embodiment, the meanings of symbols are the same as those of the first embodiment, and only the differences are listed below.
  • the image side surface of the first lens L1 is convex at the paraxial position.
  • the object side surface of the second lens L2 is concave at the paraxial position.
  • the object side surface of the third lens L3 is a convex surface at the paraxial position.
  • the object side surface of the fourth lens L4 is concave at the paraxial position.
  • the object side surface of the sixth lens L6 is a concave surface at the paraxial position, and the image side surface thereof is a convex surface at the paraxial position.
  • the object side surface of the seventh lens L7 is a convex surface at the paraxial position.
  • Table 5 shows design data of the imaging optical lens 20 according to the second embodiment of the present invention.
  • Table 6 shows aspherical surface data of each lens in the imaging optical lens 20 according to the second embodiment of the present invention.
  • Table 7 and Table 8 show the design data of the inflection point and the stagnation point of each lens in the imaging optical lens 20 according to the second embodiment of the present invention.
  • FIG. 6 and 7 respectively show schematic diagrams of axial aberration and chromatic aberration of magnification after light with wavelengths of 430 nm, 470 nm, 510 nm, 555 nm, 610 nm and 650 nm passes through the imaging optical lens 20 of the second embodiment.
  • FIG. 8 shows a schematic diagram of field curvature and distortion after light with a wavelength of 555 nm passes through the imaging optical lens 20 of the second embodiment.
  • the second embodiment satisfies each conditional expression.
  • the entrance pupil diameter ENPD of the imaging optical lens 20 is 4.000 mm
  • the full field of view image height IH is 4.000 mm
  • the FOV in the diagonal direction is 48.25°.
  • the imaging optical lens 20 satisfies the requirements of large aperture, Long focal length, ultra-thin design requirements, its on-axis and off-axis chromatic aberrations are fully corrected, and it has excellent optical characteristics.
  • the third embodiment is basically the same as the first embodiment, the meanings of symbols are the same as those of the first embodiment, and only the differences are listed below.
  • the object side surface of the third lens L3 is a convex surface at the paraxial position
  • the image side surface of the third lens L3 is a concave surface at the paraxial position
  • the third lens L3 has a negative refractive power.
  • Table 9 shows design data of the imaging optical lens 30 according to the third embodiment of the present invention.
  • Table 10 shows aspherical surface data of each lens in the imaging optical lens 30 according to the third embodiment of the present invention.
  • Table 11 and Table 12 show the inflection point and stagnation point design data of each lens in the imaging optical lens 30 according to the third embodiment of the present invention.
  • FIG. 10 and 11 respectively show schematic diagrams of axial aberration and chromatic aberration of magnification after light with wavelengths of 430 nm, 470 nm, 510 nm, 555 nm, 610 nm and 650 nm passes through the imaging optical lens 30 of the third embodiment.
  • FIG. 12 shows a schematic diagram of field curvature and distortion after light with a wavelength of 555 nm passes through the imaging optical lens 30 of the third embodiment.
  • the entrance pupil diameter ENPD of the imaging optical lens 30 is 4.000 mm
  • the full field of view image height IH is 4.000 mm
  • the FOV in the diagonal direction is 48.37°.
  • the imaging optical lens 30 satisfies the requirements of large aperture, Long focal length, ultra-thin design requirements, its on-axis and off-axis chromatic aberrations are fully corrected, and it has excellent optical characteristics.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

一种摄像光学镜头(10),共包含七片透镜,七片透镜自物侧至像侧依序为:具有正屈折力的第一透镜(L1)、具有负屈折力的第二透镜(L2)、第三透镜(L3)、具有正屈折力的第四透镜(L4)、具有正屈折力的第五透镜(L5)、具有负屈折力的第六透镜(L6)以及具有负屈折力的第七透镜(L7);第一透镜(L1)的焦距为f1,第六透镜(L6)的焦距为f6,第七透镜(L7)的焦距为f7,摄像光学镜头(10)整体的焦距为f,第二透镜(L2)的像侧面到第三透镜(L3)的物侧面的轴上距离为d4,第三透镜(L3)的轴上厚度为d5,且满足下列关系式:0.50≤f1/f≤0.80;1.50≤f6/f7≤5.00;1.20≤d4/d5≤2.00。这种摄像光学镜头(10)具有大光圈、长焦距、超薄化的光学性能。

Description

摄像光学镜头 技术领域
本发明涉及光学镜头领域,特别涉及一种适用于智能手机、数码相机等手提终端设备,以及监视器、PC镜头等摄像装置的摄像光学镜头。
背景技术
近年来,随着智能手机的兴起,小型化摄影镜头的需求日渐提高,而一般摄影镜头的感光器件不外乎是感光耦合器件(Charge Coupled Device,CCD)或互补性氧化金属半导体器件(Complementary Metal-Oxide Semiconductor Sensor,CMOS Sensor)两种,且由于半导体制造工艺技术的精进,使得感光器件的像素尺寸缩小,再加上现今电子产品以功能佳且轻薄短小的外型为发展趋势,因此,具备良好成像品质的小型化摄像镜头俨然成为目前市场上的主流。
为获得较佳的成像品质,传统搭载于手机相机的镜头多采用三片式、四片式甚至是五片式、六片式透镜结构。然而,随着技术的发展以及用户多样化需求的增多,在感光器件的像素面积不断缩小,且系统对成像品质的要求不断提高的情况下,七片式透镜结构逐渐出现在镜头设计当中,常见的七片式透镜虽然已经具有较好的光学性能,但是其光焦度、透镜间距和透镜形状设置仍然具有一定的不合理性,导致透镜结构在具有良好光学性能的同时,无法满足大光圈、长焦距、超薄化的设计要求。
发明内容
针对上述问题,本发明的目的在于提供一种摄像光学镜头,能在获得高成像性能的同时,满足大光圈、长焦距、超薄化的要求。
为解决上述技术问题,本发明的实施方式提供了一种摄像光学镜头,所述摄像光学镜头共包含七片透镜,所述七片透镜自物侧至像侧依序为:具有正屈折力的第一透镜、具有负屈折力的第二透镜、第三透镜、具有正屈折力的第四透镜、具有正屈折力的第五透镜、具有负屈折力的第六透镜以及具有负屈折力的第七透镜;
所述第一透镜的焦距为f1,所述第六透镜的焦距为f6,所述第七透镜的焦距为f7,所述摄像光学镜头整体的焦距为f,所述第二透镜的像侧面到所述第三透镜的物侧面的轴上距离为d4,所述第三透镜的轴上厚度为d5,且满足下列关系式:
0.50≤f1/f≤0.80;
1.50≤f6/f7≤5.00;
1.20≤d4/d5≤2.00。
优选地,所述第五透镜的物侧面的曲率半径为R9,所述第五透镜的像侧面的曲率半径为R10,且满足下列关系式:
1.50≤R9/R10≤6.00。
优选地,所述第一透镜的物侧面的曲率半径为R1,所述第一透镜的像侧面的曲率半径为R2,所述第一透镜的轴上厚度为d1,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
-2.99≤(R1+R2)/(R1-R2)≤-0.48;
0.04≤d1/TTL≤0.17。
优选地,所述第二透镜的焦距为f2,所述第二透镜的物侧面的曲率半径为R3,所述第二透镜的像侧面的曲率半径为R4,所述第二透镜的轴上厚度为d3,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
-3.14≤f2/f≤-0.52;
-0.04≤(R3+R4)/(R3-R4)≤6.80;
0.01≤d3/TTL≤0.04。
优选地,所述第三透镜的焦距为f3,所述第三透镜的物侧面的曲率半径为R5,所述第三透镜的像侧面的曲率半径为R6,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
-12.64≤f3/f≤140.61;
-0.12≤(R5+R6)/(R5-R6)≤78.41;
0.02≤d5/TTL≤0.10。
优选地,所述第四透镜的焦距为f4,所述第四透镜的物侧面的曲率半径为R7,所述第四透镜的像侧面的曲率半径为R8,所述第四透镜的轴上厚度为d7,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
0.81≤f4/f≤122.22;
-1.83≤(R7+R8)/(R7-R8)≤50.32;
0.03≤d7/TTL≤0.10。
优选地,所述第五透镜的焦距为f5,所述第五透镜的物侧面的曲率半径为R9,所述第五透镜的像侧面的曲率半径为R10,所述第五透镜的轴上厚度为d9,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
1.64≤f5/f≤6.62;
0.72≤(R9+R10)/(R9-R10)≤7.38;
0.03≤d9/TTL≤0.12。
优选地,所述第六透镜的物侧面的曲率半径为R11,所述第六透镜的像侧面的曲率半径为R12,所述第六透镜的轴上厚度为d11,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
-9.44≤f6/f≤-1.31;
-2.98≤(R11+R12)/(R11-R12)≤17.35;
0.02≤d11/TTL≤0.31。
优选地,所述第七透镜的物侧面的曲率半径为R13,所述第七透镜的像侧面的曲率半径为R14,所述第七透镜的轴上厚度d13,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
-2.60≤f7/f≤-0.66;
0.18≤(R13+R14)/(R13-R14)≤3.21;
0.02≤d13/TTL≤0.10。
优选地,所述摄像光学镜头的像高为IH,且满足下列关系式:f/IH≥2.2。
本发明的有益效果在于:根据本发明的摄像光学镜头具有良好光学性能,且具有大光圈、长焦距、超薄化的特性,尤其适用于由高像素用的CCD、CMOS等摄像元件构成的手机摄像镜头组件和WEB摄像镜。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图,其中:
图1是本发明第一实施方式的摄像光学镜头的结构示意图;
图2是图1所示摄像光学镜头的轴向像差示意图;
图3是图1所示摄像光学镜头的倍率色差示意图;
图4是图1所示摄像光学镜头的场曲及畸变示意图;
图5是本发明第二实施方式的摄像光学镜头的结构示意图;
图6是图5所示摄像光学镜头的轴向像差示意图;
图7是图5所示摄像光学镜头的倍率色差示意图;
图8是图5所示摄像光学镜头的场曲及畸变示意图;
图9是本发明第三实施方式的摄像光学镜头的结构示意图;
图10是图9所示摄像光学镜头的轴向像差示意图;
图11是图9所示摄像光学镜头的倍率色差示意图;
图12是图9所示摄像光学镜头的场曲及畸变示意图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明的各实施方式进行详细的阐述。然而,本领域的普通技术人员可以理解,在本发明各实施方式中,为了使读者更好地理解本发明而提出了许多技术细节。但是,即使没有这些技术细节和基于以下各实施方式的种种变化和修改,也可以实现本发明所要求保护的技术方案。
(第一实施方式)
参考附图,本发明提供了一种摄像光学镜头10。图1所示为本发明第一实施方式的摄像光学镜头10,该摄像光学镜头10共包含七片透镜。具体的,所述摄像光学镜头10,由物侧至像侧依序为:光圈S1、第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6及第七透镜L7。第七透镜L7与像面Si之间设有玻璃平板GF,玻璃平板GF可以是玻璃盖板,也可以是光学过滤片。
在本实施方式中,第一透镜L1具有正屈折力,第二透镜L2具有负屈折力,第三透镜L3具有正屈折力,第四透镜L4具有正屈折力,第五透镜L5具有正屈折力,第六透镜L6具有负屈折力,第七透镜L7具有负屈折力。
在本实施方式中,第一透镜L1为塑料材质,第二透镜L2为塑料材质,第三透镜L3为塑料材质,第四透镜L4为塑料材质,第五透镜L5为塑料材质,第六透镜L6为塑料材质,第七透镜L7为塑料材质。
在此,定义摄像光学镜头10整体的焦距为f,第一透镜L1的焦距为f1,第六透镜L6的焦距为f6,第七透镜L7的焦距为f7,第二透镜L2的像侧面到第三透镜L3的物侧面的轴上距离为d4,第三透镜L3的轴上厚度为d5,且满足下列关系式:
0.50≤f1/f≤0.80                 (1)
1.50≤f6/f7≤5.00                 (2)
1.20≤d4/d5≤2.00                 (3)
其中,关系式(1)规定了第一透镜L1的焦距f1与系统总焦距f的比值,在条件式范围内 有助于提高成像性能。
关系式(2)规定了第六透镜L6的焦距f6与第七透镜L7的焦距f7的比值,在条件式范围内有助于系统场曲校正,提高成像质量。
关系式(3)规定了第二透镜L2的像侧面到第三透镜L3的物侧面的轴上距离d4与第三透镜L3的轴上厚度d5的比值,当d4/d5满足条件时,有利于实现系统长焦距特性。
定义第五透镜L5的物侧面的曲率半径为R9,第五透镜L5的像侧面的曲率半径为R10,且满足下列关系式:1.50≤R9/R10≤6.00。该关系式规定了第五透镜L5的形状,在条件范围内有助于降低光线在镜片内的折射程度,减小像差。
本实施方式中,第一透镜L1的物侧面于近轴处为凸面,其像侧面于近轴处为凹面。
定义第一透镜L1的物侧面的曲率半径为R1,第一透镜L1的像侧面的曲率半径为R2,且满足下列关系式:-2.99≤(R1+R2)/(R1-R2)≤-0.48。合理控制第一透镜L1的形状,使得第一透镜L1能够有效地校正系统球差。优选地,满足-1.87≤(R1+R2)/(R1-R2)≤-0.60。
定义第一透镜L1的轴上厚度为d1,摄像光学镜头10的光学总长为TTL,满足下列关系式:0.04≤d1/TTL≤0.17。在关系式范围内,有利于实现超薄化。优选地,满足0.07≤d1/TTL≤0.13。
本实施方式中,第二透镜L2的物侧面于近轴处为凸面,其像侧面于近轴处为凹面。
摄像光学镜头10整体的焦距为f,定义第二透镜L2的焦距为f2,满足下列关系式:-3.14≤f2/f≤-0.52。通过将第二透镜L2的负光焦度控制在合理范围,有利于矫正光学系统的像差。优选地,满足-1.96≤f2/f≤-0.65。
定义第二透镜L2的物侧面的曲率半径为R3,第二透镜L2的像侧面的曲率半径为R4,且满足下列关系式:-0.04≤(R3+R4)/(R3-R4)≤6.80。该关系式规定了第二透镜L2的形状,在范围内时,随着镜头向超薄长焦距发展,有利于补正轴上色像差问题。优选地,满足-0.03≤(R3+R4)/(R3-R4)≤5.44。
定义第二透镜L2的轴上厚度为d3,摄像光学镜头10的光学总长为TTL,满足下列关系式:0.01≤d3/TTL≤0.04,在条件式范围内,有利于实现超薄化。优选地,满足0.02≤d3/TTL≤0.03。
本实施方式中,第三透镜L3的物侧面于近轴处为凹面,第三透镜L3的像侧面于近轴处为凸面。
整体摄像光学镜头10的焦距为f,定义第三透镜L3的焦距为f3,满足下列关系式:-12.64≤f3/f≤140.61,通过光焦度的合理分配,使得系统具有较佳的成像品质和较低的敏感 性。优选地,满足-7.90≤f3/f≤112.49。
定义第三透镜L3的物侧面的曲率半径R5,第三透镜L3的像侧面的曲率半径R6,满足下列关系式:-0.12≤(R5+R6)/(R5-R6)≤78.41。该关系式规定了第三透镜L3的形状,在条件式规定范围内,可以缓和光线经过镜片的偏折程度,有效减小像差。优选地,满足-0.07≤(R5+R6)/(R5-R6)≤62.73。
第三透镜L3的轴上厚度为d5,摄像光学镜头10的光学总长为TTL,满足下列关系式:0.02≤d5/TTL≤0.10。在关系式范围内,有利于实现超薄化。优选地,满足0.03≤d5/TTL≤0.08。
本实施方式中,第四透镜L4的物侧面于近轴处为凸面,其像侧面于近轴处为凸面。
整体摄像光学镜头10的焦距为f,定义第四透镜的焦距为f4,且满足下列关系式:0.81≤f4/f≤122.22。该关系式规定了第四透镜焦距与系统焦距的比值,在条件式范围内有助于提高光学系统性能。优选地,满足1.29≤f4/f≤97.78。
定义第四透镜L4的物侧面的曲率半径为R7,第四透镜L4的像侧面的曲率半径为R8,满足下列关系式:-1.83≤(R7+R8)/(R7-R8)≤50.32。该关系式规定了第四透镜L4的形状,在条件范围内时,随着超薄长焦距发展,有利于补正轴外画角的像差等问题。优选地,满足-1.14≤(R7+R8)/(R7-R8)≤40.26。
定义第四透镜L4的轴上厚度为d7,摄像光学镜头10的光学总长为TTL,满足下列关系式:0.03≤d7/TTL≤0.10。在条件式范围内,有利于实现超薄化。优选地,满足0.05≤d7/TTL≤0.08。
本实施方式中,第五透镜L5的物侧面于近轴处为凹面,其像侧面于近轴处为凸面。
整体摄像光学镜头10的焦距为f,定义第五透镜L5的焦距为f5,满足下列关系式:1.64≤f5/f≤6.62。对第五透镜L5的限定可有效的使得摄像镜头的光线角度平缓,降低公差敏感度。优选地,满足2.62≤f5/f≤5.29。
定义第五透镜L5的物侧面的曲率半径R9,第五透镜L5的像侧面的曲率半径R10,满足下列关系式:0.72≤(R9+R10)/(R9-R10)≤7.38。该关系式规定了第五透镜L5的形状,在条件范围内时,随着超薄长焦距发展,有利于补正轴外画角的像差等问题。优选地,满足1.16≤(R9+R10)/(R9-R10)≤5.91。
定义第五透镜L5的轴上厚度为d9,摄像光学镜头10的光学总长为TTL,满足下列关系式:0.03≤d9/TTL≤0.12,在条件式范围内,有利于实现超薄化。优选地,满足0.05≤d9/TTL≤0.09。
本实施方式中,第六透镜L6的物侧面于近轴处为凸面,其像侧面于近轴处为凹面。
整体摄像光学镜头10的焦距为f,第六透镜L6的焦距为f6,满足下列关系式:-9.44≤f6/f≤-1.31,通过光焦度的合理分配,使得系统具有较佳的成像品质和较低的敏感性。优选地,满足-5.90≤f6/f≤-1.64。
定义第六透镜L6的物侧面的曲率半径为R11,第六透镜L6的像侧面的曲率半径为R12,满足下列关系式:-2.98≤(R11+R12)/(R11-R12)≤17.35。该关系式规定了第六透镜L6的形状,在范围内时,随着超薄长焦距发展,有利于补正轴外画角的像差等问题。优选地,满足-1.86≤(R11+R12)/(R11-R12)≤13.88。
定义第六透镜L6的轴上厚度为d11,所述摄像光学镜头10的光学总长为TTL,满足下列关系式:0.02≤d11/TTL≤0.31,有利于实现超薄化。优选地,满足0.03≤d11/TTL≤0.25。
本实施方式中,第七透镜L7的物侧面于近轴处为凹面,其像侧面于近轴处为凹面。
摄像光学镜头10的焦距为f,第七透镜L7的焦距为f7,满足下列关系式:-2.60≤f7/f≤-0.66,通过光焦度的合理分配,使得系统具有较佳的成像品质和较低的敏感性。优选地,满足-1.63≤f7/f≤-0.82。
定义第七透镜L7的物侧面的曲率半径为R13,第七透镜L7的像侧面的曲率半径为R14,满足下列关系式:0.18≤(R13+R14)/(R13-R14)≤3.21。该关系式规定的是第七透镜L7的形状,在条件范围内时,随着超薄长焦距发展,有利于补正轴外画角的像差等问题。优选地,满足0.28≤(R13+R14)/(R13-R14)≤2.57。
定义第七透镜L7的轴上厚度为d13,摄像光学镜头10的光学总长为TTL,满足下列关系式:0.02≤d13/TTL≤0.10。在条件式范围内,有利于实现超薄化。优选地,满足0.03≤d13/TTL≤0.08。
本实施方式中,整体摄像光学镜头10的像高为IH,摄像光学镜头10的焦距为f,满足下列关系式:f/IH≥2.2,从而实现长焦距。
本实施方式中,摄像光学镜头10的光圈值FNO小于或等于2.20。大光圈,成像性能好。
本实施方式中,摄像光学镜头10的焦距为f,摄像光学镜头10的光学总长为TTL,满足下列关系式:TTL/f≤1.08,从而实现超薄化。
本实施方式中,摄像光学镜头10的焦距为f,第一透镜L1与第二透镜L2的组合焦距为f12,满足下列关系式:0.54≤f12/f≤1.90,在条件式范围内,可消除所述摄像光学镜头 10的像差与歪曲,且可压制摄像光学镜头10后焦距,维持影像镜片系统组小型化。优选的,满足0.87≤f12/f≤1.52。
当本发明所述摄像光学镜头10的焦距、各透镜的焦距和曲率半径满足上述关系式时,可以使摄像光学镜头10具有良好光学性能,同时能够满足了大光圈、长焦距、超薄化的设计要求;根据该光学镜头10的特性,该光学镜头10尤其适用于由高像素用的CCD、CMOS等摄像元件构成的手机摄像镜头组件和WEB摄像镜头。
下面将用实施方式进行说明本发明的摄像光学镜头10。各实施方式中所记载的符号如下所示。焦距、轴上距离、曲率半径、轴上厚度、反曲点位置、驻点位置的单位为mm。
TTL:光学总长(第一透镜L1的物侧面到像面Si的轴上距离),单位为mm;
光圈值FNO:是指摄像光学镜头的有效焦距和入瞳直径的比值。
优选的,所述透镜的物侧面和/或像侧面上还可以设置有反曲点和/或驻点,以满足高品质的成像需求,具体的可实施方案,参下所述。
表1列出了本发明第一实施方式中构成摄像光学镜头10的第一透镜L1~第七透镜L7的物侧面曲率半径和像侧面曲率半径R、各透镜的轴上厚度以及相邻两透镜间的距离d、折射率nd及阿贝数vd。需要说明的是,本实施方式中,R与d的单位均为毫米(mm)。
【表1】
Figure PCTCN2020104696-appb-000001
其中,各符号的含义如下。
S1:光圈;
R:光学面中心处的曲率半径;
R1:第一透镜L1的物侧面的曲率半径;
R2:第一透镜L1的像侧面的曲率半径;
R3:第二透镜L2的物侧面的曲率半径;
R4:第二透镜L2的像侧面的曲率半径;
R5:第三透镜L3的物侧面的曲率半径;
R6:第三透镜L3的像侧面的曲率半径;
R7:第四透镜L4的物侧面的曲率半径;
R8:第四透镜L4的像侧面的曲率半径;
R9:第五透镜L5的物侧面的曲率半径;
R10:第五透镜L5的像侧面的曲率半径;
R11:第六透镜L6的物侧面的曲率半径;
R12:第六透镜L6的像侧面的曲率半径;
R13:第七透镜L7的物侧面的曲率半径;
R14:第七透镜L7的像侧面的曲率半径;
R15:光学过滤片GF的物侧面的曲率半径;
R16:光学过滤片GF的像侧面的曲率半径;
d:透镜的轴上厚度、透镜之间的轴上距离;
d0:光圈S1到第一透镜L1的物侧面的轴上距离;
d1:第一透镜L1的轴上厚度;
d2:第一透镜L1的像侧面到第二透镜L2的物侧面的轴上距离;
d3:第二透镜L2的轴上厚度;
d4:第二透镜L2的像侧面到第三透镜L3的物侧面的轴上距离;
d5:第三透镜L3的轴上厚度;
d6:第三透镜L3的像侧面到第四透镜L4的物侧面的轴上距离;
d7:第四透镜L4的轴上厚度;
d8:第四透镜L4的像侧面到第五透镜L5的物侧面的轴上距离;
d9:第五透镜L5的轴上厚度;
d10:第五透镜L5的像侧面到第六透镜L6的物侧面的轴上距离;
d11:第六透镜L6的轴上厚度;
d12:第六透镜L6的像侧面到第七透镜L7的物侧面的轴上距离;
d13:第七透镜L7的轴上厚度;
d14:第七透镜L7的像侧面到光学过滤片GF的物侧面的轴上距离;
d15:光学过滤片GF的轴上厚度;
d16:光学过滤片GF的像侧面到像面Si的轴上距离;
nd:d线的折射率;
nd1:第一透镜L1的d线的折射率;
nd2:第二透镜L2的d线的折射率;
nd3:第三透镜L3的d线的折射率;
nd4:第四透镜L4的d线的折射率;
nd5:第五透镜L5的d线的折射率;
nd6:第六透镜L6的d线的折射率;
nd7:第七透镜L7的d线的折射率;
ndg:光学过滤片GF的d线的折射率;
vd:阿贝数;
v1:第一透镜L1的阿贝数;
v2:第二透镜L2的阿贝数;
v3:第三透镜L3的阿贝数;
v4:第四透镜L4的阿贝数;
v5:第五透镜L5的阿贝数;
v6:第六透镜L6的阿贝数;
v7:第七透镜L7的阿贝数;
vg:光学过滤片GF的阿贝数。
表2示出本发明第一实施方式的摄像光学镜头10中各透镜的非球面数据。
【表2】
Figure PCTCN2020104696-appb-000002
Figure PCTCN2020104696-appb-000003
其中,k是圆锥系数,A4、A6、A8、A10、A12、A14、A16、A18、A20是非球面系数。
y=(x 2/R)/[1+{1-(k+1)(x 2/R 2)} 1/2]+A4x 4+A6x 6+A8x 8+A10x 10+A12x 12+A14x 14+A16x 16+A18x 18+A20x 20     (4)
其中,x是非球面曲线上的点与光轴的垂直距离,y是非球面深度(非球面上距离光轴为x的点,与相切于非球面光轴上顶点的切面两者间的垂直距离)。
为方便起见,各个透镜面的非球面使用上述公式(4)中所示的非球面。但是,本发明不限于该公式(4)表示的非球面多项式形式。
表3、表4示出本发明第一实施方式的摄像光学镜头10中各透镜的反曲点以及驻点设计数据。其中,P1R1、P1R2分别代表第一透镜L1的物侧面和像侧面,P2R1、P2R2分别代表第二透镜L2的物侧面和像侧面,P3R1、P3R2分别代表第三透镜L3的物侧面和像侧面,P4R1、P4R2分别代表第四透镜L4的物侧面和像侧面,P5R1、P5R2分别代表第五透镜L5的物侧面和像侧面,P6R1、P6R2分别代表第六透镜L6的物侧面和像侧面,P7R1、P7R2分别代表第七透镜L7的物侧面和像侧面。“反曲点位置”栏位对应数据为各透镜表面所设置的反曲点到摄像光学镜头10光轴的垂直距离。“驻点位置”栏位对应数据为各透镜表面所设置的驻点到摄像光学镜头10光轴的垂直距离。
【表3】
  反曲点个数 反曲点位置1 反曲点位置2 反曲点位置3
P1R1 0 / / /
P1R2 0 / / /
P2R1 0 / / /
P2R2 0 / / /
P3R1 1 1.575 / /
P3R2 1 1.745 / /
P4R1 2 0.965 1.745  
P4R2 1 2.215 / /
P5R1 0 / / /
P5R2 1 2.605 / /
P6R1 1 0.735 / /
P6R2 2 1.055 3.325 /
P7R1 1 2.125 / /
P7R2 3 0.585 3.245 3.535
【表4】
  驻点个数 驻点位置1
P1R1 0 /
P1R2 0 /
P2R1 0 /
P2R2 0 /
P3R1 0 /
P3R2 0 /
P4R1 0 /
P4R2 0 /
P5R1 0 /
P5R2 0 /
P6R1 1 1.335
P6R2 1 2.325
P7R1 1 3.395
P7R2 1 1.105
图2、图3分别示出了波长为430nm、470nm、510nm、555nm、610nm和650nm的光经过第一实施方式的摄像光学镜头10后的轴向像差以及倍率色差示意图。图4则示出了,波长为555nm的光经过第一实施方式的摄像光学镜头10后的场曲及畸变示意图,图4的场曲S 是弧矢方向的场曲,T是子午方向的场曲。
后出现的表13示出各第一实施方式、第二实施方式、第三实施方式中各种数值与条件式中已规定的参数所对应的值。
如表13所示,第一实施方式满足各条件式。
在本实施方式中,摄像光学镜头10的入瞳直径ENPD为4.000mm,全视场像高IH为4.000mm,对角线方向的视场角FOV为48.67°,摄像光学镜头10满足大光圈、长焦距、超薄化的设计要求,其轴上、轴外色像差被充分补正,且具有优秀的光学特征。
(第二实施方式)
第二实施方式与第一实施方式基本相同,符号含义与第一实施方式相同,以下只列出不同点。
本实施方式中,第一透镜L1像侧面于近轴处为凸面。
本实施方式中,第二透镜L2的物侧面于近轴处为凹面。
本实施方式中,第三透镜L3的物侧面于近轴处为凸面。
本实施方式中,第四透镜L4的物侧面于近轴处为凹面。
本实施方式中,第六透镜L6的物侧面于近轴处为凹面,其像侧面于近轴处为凸面。
本实施方式中,第七透镜L7的物侧面于近轴处为凸面。
表5示出本发明第二实施方式的摄像光学镜头20的设计数据。
【表5】
Figure PCTCN2020104696-appb-000004
Figure PCTCN2020104696-appb-000005
表6示出本发明第二实施方式的摄像光学镜头20中各透镜的非球面数据。
【表6】
Figure PCTCN2020104696-appb-000006
表7、表8示出本发明第二实施方式的摄像光学镜头20中各透镜的反曲点以及驻点设计数据。
【表7】
Figure PCTCN2020104696-appb-000007
Figure PCTCN2020104696-appb-000008
【表8】
  驻点个数 驻点位置1
P1R1 0 /
P1R2 0 /
P2R1 1 1.305
P2R2 0 /
P3R1 0 /
P3R2 0 /
P4R1 1 1.675
P4R2 0 /
P5R1 0 /
P5R2 0 /
P6R1 0 /
P6R2 0 /
P7R1 1 0.775
P7R2 1 1.725
图6、图7分别示出了波长为430nm、470nm、510nm、555nm、610nm和650nm的光经过第二实施方式的摄像光学镜头20后的轴向像差以及倍率色差示意图。图8则示出了,波长为555nm的光经过第二实施方式的摄像光学镜头20后的场曲及畸变示意图。
如表13所示,第二实施方式满足各条件式。
在本实施方式中,摄像光学镜头20的入瞳直径ENPD为4.000mm,全视场像高IH为4.000mm,对角线方向的视场角FOV为48.25°,摄像光学镜头20满足大光圈、长焦距、 超薄化的设计要求,其轴上、轴外色像差被充分补正,且具有优秀的光学特征。
(第三实施方式)
第三实施方式与第一实施方式基本相同,符号含义与第一实施方式相同,以下只列出不同点。
本实施方式中,第三透镜L3的物侧面于近轴处为凸面,第三透镜L3的像侧面于近轴处为凹面。
本实施方式中,第三透镜L3具有负屈折力。
表9示出本发明第三实施方式的摄像光学镜头30的设计数据。
【表9】
Figure PCTCN2020104696-appb-000009
表10示出本发明第三实施方式的摄像光学镜头30中各透镜的非球面数据。
【表10】
Figure PCTCN2020104696-appb-000010
Figure PCTCN2020104696-appb-000011
表11、表12示出本发明第三实施方式的摄像光学镜头30中各透镜的反曲点以及驻点设计数据。
【表11】
  反曲点个数 反曲点位置1 反曲点位置2
P1R1 0 / /
P1R2 0 / /
P2R1 0 / /
P2R2 0 / /
P3R1 2 0.665 1.605
P3R2 2 0.725 1.715
P4R1 0 / /
P4R2 1 2.105 /
P5R1 0 / /
P5R2 1 2.535 /
P6R1 1 0.765 /
P6R2 1 1.165 /
P7R1 1 2.175 /
P7R2 2 0.605 3.335
【表12】
  驻点个数 驻点位置1 驻点位置2
P1R1 0 / /
P1R2 0 / /
P2R1 0 / /
P2R2 0 / /
P3R1 2 1.225 1.815
P3R2 2 1.375 1.915
P4R1 0 / /
P4R2 0 / /
P5R1 0 / /
P5R2 0 / /
P6R1 1 1.645 /
P6R2 1 2.725 /
P7R1 0 / /
P7R2 1 1.225 /
图10、图11分别示出了波长为430nm、470nm、510nm、555nm、610nm和650nm的光经过第三实施方式的摄像光学镜头30后的轴向像差以及倍率色差示意图。图12则示出了,波长为555nm的光经过第三实施方式的摄像光学镜头30后的场曲及畸变示意图。
以下表13按照上述条件式列出了本实施方式中对应各条件式的数值。显然,本实施方式的摄像光学系统满足上述的条件式。
在本实施方式中,摄像光学镜头30的入瞳直径ENPD为4.000mm,全视场像高IH为4.000mm,对角线方向的视场角FOV为48.37°,摄像光学镜头30满足大光圈、长焦距、超薄化的设计要求,其轴上、轴外色像差被充分补正,且具有优秀的光学特征。
【表13】
参数及条件式 第一实施方式 第二实施方式 第三实施方式
f 8.800 8.800 8.800
f1 5.857 4.664 6.688
f2 -10.035 -6.876 -13.831
f3 824.907 20.294 -55.612
f4 23.242 717.032 14.179
f5 28.839 34.413 33.824
f6 -27.969 -17.303 -41.517
f7 -9.597 -11.459 -8.649
f12 10.511 9.535 11.157
FNO 2.20 2.20 2.20
f1/f 0.67 0.53 0.76
f6/f7 2.91 1.51 4.80
d4/d5 1.56 1.21 1.99
TTL 9.502 9.445 9.501
FOV 48.67° 48.25° 48.37°
IH 4.000 4.000 4.000
本领域的普通技术人员可以理解,上述各实施方式是实现本发明的具体实施方式,而在实际应用中,可以在形式上和细节上对其作各种改变,而不偏离本发明的精神和范围。

Claims (10)

  1. 一种摄像光学镜头,其特征在于,所述摄像光学镜头共包含七片透镜,所述七片透镜自物侧至像侧依序为:具有正屈折力的第一透镜、具有负屈折力的第二透镜、第三透镜、具有正屈折力的第四透镜、具有正屈折力的第五透镜、具有负屈折力的第六透镜以及具有负屈折力的第七透镜;
    所述第一透镜的焦距为f1,所述第六透镜的焦距为f6,所述第七透镜的焦距为f7,所述摄像光学镜头整体的焦距为f,所述第二透镜的像侧面到所述第三透镜的物侧面的轴上距离为d4,所述第三透镜的轴上厚度为d5,且满足下列关系式:
    0.50≤f1/f≤0.80;
    1.50≤f6/f7≤5.00;
    1.20≤d4/d5≤2.00。
  2. 根据权利要求1所述的摄像光学镜头,其特征在于,所述第五透镜的物侧面的曲率半径为R9,所述第五透镜的像侧面的曲率半径为R10,且满足下列关系式:
    1.50≤R9/R10≤6.00。
  3. 根据权利要求1所述的摄像光学镜头,其特征在于,所述第一透镜的物侧面的曲率半径为R1,所述第一透镜的像侧面的曲率半径为R2,所述第一透镜的轴上厚度为d1,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
    -2.99≤(R1+R2)/(R1-R2)≤-0.48;
    0.04≤d1/TTL≤0.17。
  4. 根据权利要求1所述的摄像光学镜头,其特征在于,所述第二透镜的焦距为f2,所述第二透镜的物侧面的曲率半径为R3,所述第二透镜的像侧面的曲率半径为R4,所述第二透镜的轴上厚度为d3,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
    -3.14≤f2/f≤-0.52;
    -0.04≤(R3+R4)/(R3-R4)≤6.80;
    0.01≤d3/TTL≤0.04。
  5. 根据权利要求1所述的摄像光学镜头,其特征在于,所述第三透镜的焦距为f3,所述第三透镜的物侧面的曲率半径为R5,所述第三透镜的像侧面的曲率半径为R6,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
    -12.64≤f3/f≤140.61;
    -0.12≤(R5+R6)/(R5-R6)≤78.41;
    0.02≤d5/TTL≤0.10。
  6. 根据权利要求1所述的摄像光学镜头,其特征在于,所述第四透镜的焦距为f4,所述第四透镜的物侧面的曲率半径为R7,所述第四透镜的像侧面的曲率半径为R8,所述第四透镜的轴上厚度为d7,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
    0.81≤f4/f≤122.22;
    -1.83≤(R7+R8)/(R7-R8)≤50.32;
    0.03≤d7/TTL≤0.10。
  7. 根据权利要求1所述的摄像光学镜头,其特征在于,所述第五透镜的焦距为f5,所述第五透镜的物侧面的曲率半径为R9,所述第五透镜的像侧面的曲率半径为R10,所述第五透镜的轴上厚度为d9,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
    1.64≤f5/f≤6.62;
    0.72≤(R9+R10)/(R9-R10)≤7.38;
    0.03≤d9/TTL≤0.12。
  8. 根据权利要求1所述的摄像光学镜头,其特征在于,所述第六透镜的物侧面的曲率半径为R11,所述第六透镜的像侧面的曲率半径为R12,所述第六透镜的轴上厚度为d11,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
    -9.44≤f6/f≤-1.31;
    -2.98≤(R11+R12)/(R11-R12)≤17.35;
    0.02≤d11/TTL≤0.31。
  9. 根据权利要求1所述的摄像光学镜头,其特征在于,所述第七透镜的物侧面的曲率半径为R13,所述第七透镜的像侧面的曲率半径为R14,所述第七透镜的轴上厚度d13,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
    -2.60≤f7/f≤-0.66;
    0.18≤(R13+R14)/(R13-R14)≤3.21;
    0.02≤d13/TTL≤0.10。
  10. 根据权利要求1所述的摄像光学镜头,其特征在于,所述摄像光学镜头的像高为IH,且满足下列关系式:f/IH≥2.2。
PCT/CN2020/104696 2020-07-13 2020-07-25 摄像光学镜头 WO2022011741A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010666139.5A CN111538141B (zh) 2020-07-13 2020-07-13 摄像光学镜头
CN202010666139.5 2020-07-13

Publications (1)

Publication Number Publication Date
WO2022011741A1 true WO2022011741A1 (zh) 2022-01-20

Family

ID=71978400

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/104696 WO2022011741A1 (zh) 2020-07-13 2020-07-25 摄像光学镜头

Country Status (4)

Country Link
US (1) US11892596B2 (zh)
JP (1) JP7105859B2 (zh)
CN (1) CN111538141B (zh)
WO (1) WO2022011741A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023279362A1 (zh) * 2021-07-09 2023-01-12 欧菲光集团股份有限公司 光学系统、取像模组及电子设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5576891A (en) * 1993-04-22 1996-11-19 Ricoh Company, Ltd. Zoom lens using a first lens group having a positive focal length and a second lens group having a negative focal length
CN204832662U (zh) * 2014-10-29 2015-12-02 康达智株式会社 摄像镜头
CN105445907A (zh) * 2015-12-24 2016-03-30 瑞声声学科技(苏州)有限公司 摄像光学系统
CN107664830A (zh) * 2017-11-16 2018-02-06 浙江舜宇光学有限公司 光学成像镜头
CN207799215U (zh) * 2017-12-12 2018-08-31 浙江舜宇光学有限公司 光学成像镜头

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58137813A (ja) * 1982-02-10 1983-08-16 Konishiroku Photo Ind Co Ltd 小型ズ−ムレンズ
JPH03267909A (ja) * 1990-03-19 1991-11-28 Olympus Optical Co Ltd コンパクトなズームレンズ
TWI585448B (zh) * 2014-11-07 2017-06-01 先進光電科技股份有限公司 光學成像系統
US9983387B2 (en) * 2015-12-24 2018-05-29 AAC Technologies Pte. Ltd. Photographic optical system
JP5890948B1 (ja) * 2016-01-07 2016-03-22 エーエーシー テクノロジーズ ピーティーイー リミテッドAac Technologies Pte.Ltd. 撮像レンズ
JP5951913B1 (ja) * 2016-01-08 2016-07-13 エーエーシー テクノロジーズ ピーティーイー リミテッドAac Technologies Pte.Ltd. 撮像レンズ
TWI631382B (zh) * 2017-07-19 2018-08-01 大立光電股份有限公司 攝像系統透鏡組、取像裝置及電子裝置
CN107942490B (zh) * 2017-10-19 2020-02-18 瑞声科技(新加坡)有限公司 摄像光学镜头
CN107861228B (zh) * 2017-10-19 2020-02-18 瑞声科技(新加坡)有限公司 摄像光学镜头
CN107678136B (zh) * 2017-10-19 2020-05-19 瑞声光学解决方案私人有限公司 摄像光学镜头
JP6386156B1 (ja) * 2017-10-19 2018-09-05 エーエーシー テクノロジーズ ピーティーイー リミテッドAac Technologies Pte.Ltd. 撮像光学レンズ
CN107884908B (zh) * 2017-10-19 2020-02-18 瑞声科技(新加坡)有限公司 摄像光学镜头
CN114047604A (zh) * 2017-11-16 2022-02-15 玉晶光电(厦门)有限公司 光学成像镜头
CN108873255B (zh) * 2018-07-09 2023-08-25 浙江舜宇光学有限公司 光学成像系统
JP6814521B2 (ja) * 2018-08-21 2021-01-20 カンタツ株式会社 撮像レンズ
TWI663424B (zh) * 2018-08-23 2019-06-21 大立光電股份有限公司 攝像透鏡系統、取像裝置及電子裝置
TWI657282B (zh) * 2018-09-05 2019-04-21 大立光電股份有限公司 取像透鏡系統、取像裝置及電子裝置
JP6858469B2 (ja) * 2019-01-28 2021-04-14 カンタツ株式会社 撮像レンズ
CN110673309B (zh) * 2019-11-14 2022-01-11 玉晶光电(厦门)有限公司 光学成像镜头
CN112748537A (zh) * 2020-12-29 2021-05-04 常州市瑞泰光电有限公司 摄像光学镜头

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5576891A (en) * 1993-04-22 1996-11-19 Ricoh Company, Ltd. Zoom lens using a first lens group having a positive focal length and a second lens group having a negative focal length
CN204832662U (zh) * 2014-10-29 2015-12-02 康达智株式会社 摄像镜头
CN105445907A (zh) * 2015-12-24 2016-03-30 瑞声声学科技(苏州)有限公司 摄像光学系统
CN107664830A (zh) * 2017-11-16 2018-02-06 浙江舜宇光学有限公司 光学成像镜头
CN207799215U (zh) * 2017-12-12 2018-08-31 浙江舜宇光学有限公司 光学成像镜头

Also Published As

Publication number Publication date
CN111538141A (zh) 2020-08-14
US11892596B2 (en) 2024-02-06
US20220011545A1 (en) 2022-01-13
CN111538141B (zh) 2020-10-20
JP7105859B2 (ja) 2022-07-25
JP2022017155A (ja) 2022-01-25

Similar Documents

Publication Publication Date Title
WO2022067958A1 (zh) 摄像光学镜头
WO2022011739A1 (zh) 摄像光学镜头
WO2022067956A1 (zh) 摄像光学镜头
WO2022067954A1 (zh) 摄像光学镜头
WO2022052258A1 (zh) 摄像光学镜头
WO2022082929A1 (zh) 摄像光学镜头
WO2022057036A1 (zh) 摄像光学镜头
WO2022021512A1 (zh) 摄像光学镜头
WO2022077597A1 (zh) 摄像光学镜头
WO2022067947A1 (zh) 摄像光学镜头
WO2022088250A1 (zh) 摄像光学镜头
WO2022077620A1 (zh) 摄像光学镜头
WO2022067949A1 (zh) 摄像光学镜头
WO2022088252A1 (zh) 摄像光学镜头
WO2022052269A1 (zh) 摄像光学镜头
WO2022088356A1 (zh) 摄像光学镜头
WO2022077595A1 (zh) 摄像光学镜头
WO2022067950A1 (zh) 摄像光学镜头
WO2022067948A1 (zh) 摄像光学镜头
WO2022047979A1 (zh) 摄像光学镜头
WO2022057042A1 (zh) 摄像光学镜头
WO2022011740A1 (zh) 摄像光学镜头
WO2022088363A1 (zh) 摄像光学镜头
WO2022126699A1 (zh) 摄像光学镜头
WO2022057047A1 (zh) 摄像光学镜头

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20945478

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20945478

Country of ref document: EP

Kind code of ref document: A1