WO2022067956A1 - 摄像光学镜头 - Google Patents

摄像光学镜头 Download PDF

Info

Publication number
WO2022067956A1
WO2022067956A1 PCT/CN2020/126276 CN2020126276W WO2022067956A1 WO 2022067956 A1 WO2022067956 A1 WO 2022067956A1 CN 2020126276 W CN2020126276 W CN 2020126276W WO 2022067956 A1 WO2022067956 A1 WO 2022067956A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
curvature
imaging optical
focal length
ttl
Prior art date
Application number
PCT/CN2020/126276
Other languages
English (en)
French (fr)
Inventor
陈佳
Original Assignee
诚瑞光学(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 诚瑞光学(深圳)有限公司 filed Critical 诚瑞光学(深圳)有限公司
Publication of WO2022067956A1 publication Critical patent/WO2022067956A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/64Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having more than six components
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0045Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/02Telephoto objectives, i.e. systems of the type + - in which the distance from the front vertex to the image plane is less than the equivalent focal length
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0025Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical correction, e.g. distorsion, aberration

Definitions

  • the invention relates to the field of optical lenses, in particular to an imaging optical lens suitable for portable terminal equipment such as smart phones and digital cameras, as well as imaging devices such as monitors and PC lenses.
  • the lenses traditionally mounted on mobile phone cameras mostly use three-piece, four-piece, or even five-piece or six-piece lens structures.
  • the pixel area of the photosensitive device is continuously reduced, and the system's requirements for imaging quality are constantly improving, and the eight-piece lens structure gradually appears in the lens design.
  • the eight-piece lens has good optical performance, its optical power, lens spacing and lens shape setting are still unreasonable to a certain extent, resulting in the lens structure having good optical performance, it cannot meet the requirements of large aperture, Long focal length, ultra-thin design requirements.
  • the purpose of the present invention is to provide an imaging optical lens, which has good optical performance and meets the design requirements of large aperture, long focal length, and ultra-thinning.
  • an embodiment of the present invention provides an imaging optical lens, the imaging optical lens includes in sequence from the object side to the image side: a first lens having a positive refractive power, a second lens, and a third lens , the fourth lens, the fifth lens, the sixth lens, the seventh lens and the eighth lens;
  • the total optical length of the imaging optical lens is TTL
  • the focal length of the imaging optical lens is f
  • the focal length of the second lens is f2
  • the central radius of curvature of the object side of the third lens is R5
  • the central radius of curvature of the image side surface of the third lens is R6, and satisfies the following relationship: 0.95 ⁇ f/TTL; -4.00 ⁇ f2/f ⁇ -2.00; -20.00 ⁇ (R5+R6)/(R5-R6) ⁇ -3.00.
  • the focal length of the fourth lens is f4 and satisfies the following relationship: -1.50 ⁇ f4/f ⁇ -0.85.
  • the focal length of the first lens is f1
  • the central radius of curvature of the object side of the first lens is R1
  • the central radius of curvature of the image side of the first lens is R2
  • the axis of the first lens is The upper thickness is d1 and satisfies the following relationship: 0.28 ⁇ f1/f ⁇ 1.12; -2.62 ⁇ (R1+R2)/(R1-R2) ⁇ -0.41; 0.06 ⁇ d1/TTL ⁇ 0.18.
  • the focal length of the third lens is f3
  • the on-axis thickness of the third lens is d5, and the following relational expressions are satisfied: 0.83 ⁇ f3/f ⁇ 26.16; 0.04 ⁇ d5/TTL ⁇ 0.13.
  • the central radius of curvature of the object side of the fourth lens is R7
  • the central radius of curvature of the image side of the fourth lens is R8,
  • the on-axis thickness of the fourth lens is d7, and the following relationship is satisfied : 0.68 ⁇ (R7+R8)/(R7-R8) ⁇ 3.78; 0.02 ⁇ d7/TTL ⁇ 0.06.
  • the focal length of the fifth lens is f5, the central radius of curvature of the object side of the fifth lens is R9, the central radius of curvature of the image side of the fifth lens is R10, and the axis of the fifth lens is R10.
  • the upper thickness is d9 and satisfies the following relationship: 0.86 ⁇ f5/f ⁇ 3.20; -0.28 ⁇ (R9+R10)/(R9-R10) ⁇ 0.29; 0.04 ⁇ d9/TTL ⁇ 0.12.
  • the focal length of the sixth lens is f6, the central radius of curvature of the object side of the sixth lens is R11, the central radius of curvature of the image side of the sixth lens is R12, and the axis of the sixth lens is R12.
  • the upper thickness is d11 and satisfies the following relationship: -23.24 ⁇ f6/f ⁇ 33.09; -23.59 ⁇ (R11+R12)/(R11-R12) ⁇ 65.50; 0.03 ⁇ d11/TTL ⁇ 0.11.
  • the focal length of the seventh lens is f7
  • the central radius of curvature of the object side of the seventh lens is R13
  • the central radius of curvature of the image side of the seventh lens is R14
  • the axis of the seventh lens is R14.
  • the upper thickness is d13 and satisfies the following relationship: -11.55 ⁇ f7/f ⁇ 47.14; -14.31 ⁇ (R13+R14)/(R13-R14) ⁇ 204.30; 0.03 ⁇ d13/TTL ⁇ 0.08.
  • the focal length of the eighth lens is f8, the central radius of curvature of the object side of the eighth lens is R15, the central radius of curvature of the image side of the eighth lens is R16, and the axis of the eighth lens is R16.
  • the upper thickness is d15, and satisfies the following relationship: -2.20 ⁇ f8/f ⁇ -0.51; 0.21 ⁇ (R15+R16)/(R15-R16) ⁇ 1.16; 0.03 ⁇ d15/TTL ⁇ 0.10.
  • FIG. 1 is a schematic structural diagram of an imaging optical lens according to a first embodiment of the present invention
  • Fig. 2 is the axial aberration schematic diagram of the imaging optical lens shown in Fig. 1;
  • FIG. 3 is a schematic diagram of the magnification chromatic aberration of the imaging optical lens shown in FIG. 1;
  • FIG. 4 is a schematic diagram of field curvature and distortion of the imaging optical lens shown in FIG. 1;
  • FIG. 5 is a schematic structural diagram of an imaging optical lens according to a second embodiment of the present invention.
  • Fig. 6 is the axial aberration schematic diagram of the imaging optical lens shown in Fig. 5;
  • FIG. 7 is a schematic diagram of the magnification chromatic aberration of the imaging optical lens shown in FIG. 5;
  • FIG. 8 is a schematic diagram of field curvature and distortion of the imaging optical lens shown in FIG. 5;
  • FIG. 9 is a schematic structural diagram of an imaging optical lens according to a third embodiment of the present invention.
  • Fig. 10 is a schematic diagram of axial aberration of the imaging optical lens shown in Fig. 9;
  • FIG. 11 is a schematic diagram of the magnification chromatic aberration of the imaging optical lens shown in FIG. 9;
  • FIG. 12 is a schematic diagram of field curvature and distortion of the imaging optical lens shown in FIG. 9 .
  • FIG. 1 is a schematic structural diagram of an imaging optical lens 10 according to a first embodiment of the present invention.
  • the imaging optical lens 10 includes eight lenses. Specifically, the imaging optical lens 10, from the object side to the image side, sequentially includes: an aperture S1, a first lens L1, a second lens L2, a third lens L3, a fourth lens L4, a fifth lens L5, a sixth lens Lens L6, seventh lens L7, eighth lens L8.
  • Optical elements such as an optical filter GF may be provided between the eighth lens L8 and the image plane Si.
  • the first lens L1 has a positive refractive power
  • the second lens L2 has a negative refractive power
  • the third lens L3 has a positive refractive power
  • the fourth lens L4 has a negative refractive power
  • the fifth lens L5 has a positive refractive power
  • the sixth lens L6 has positive refractive power
  • the seventh lens L7 has positive refractive power
  • the eighth lens L8 has negative refractive power.
  • the first lens L1 has a positive refractive power, which contributes to improving the performance of the optical system. It can be understood that, in other embodiments, the third lens L3 , the fourth lens L4 , the fifth lens L5 , the sixth lens L6 , the seventh lens L7 and the eighth lens L8 may also have other refractive powers.
  • the first lens L1 is made of plastic material
  • the second lens L2 is made of plastic material
  • the third lens L3 is made of plastic material
  • the fourth lens L4 is made of plastic material
  • the fifth lens L5 is made of plastic material
  • the sixth lens L6 is made of plastic material It is made of plastic material
  • the seventh lens L7 is made of plastic material
  • the eighth lens L8 is made of plastic material.
  • each lens may also be made of other materials.
  • the total optical length of the imaging optical lens 10 is defined as TTL
  • the focal length of the imaging optical lens 10 is f
  • the focal length of the second lens L2 is f2
  • the object side of the third lens L3 is f2.
  • the central radius of curvature is R5, and the central radius of curvature of the image side surface of the third lens L3 is R6, which satisfies the following relationship:
  • the relational expression (1) specifies the ratio of the focal length f of the imaging optical lens 10 to the total optical length TTL of the imaging optical lens 10.
  • the relational expression (1) satisfies the condition, in the case of the same length, the imaging optical lens 10 has a longer length. focal length.
  • the relational expression (2) specifies the ratio of the focal length f2 of the second lens L2 to the focal length f of the imaging optical lens 10, which can effectively balance the spherical aberration and field curvature of the system.
  • the relational formula (3) specifies the shape of the third lens L3, and within the range of the relational formula (3), the degree of deflection of the light passing through the lens can be eased, and aberrations can be effectively reduced.
  • the focal length of the fourth lens L4 is defined as f4, and the following relationship is satisfied: -1.50 ⁇ f4/f ⁇ -0.85, which specifies the ratio of the focal length f4 of the fourth lens L4 to the focal length f of the imaging optical lens 10, through the focal length
  • -1.46 ⁇ f4/f ⁇ -0.88 which specifies the ratio of the focal length f4 of the fourth lens L4 to the focal length f of the imaging optical lens 10 through the focal length
  • the following relationship is satisfied: -1.46 ⁇ f4/f ⁇ -0.88.
  • the object side surface of the first lens L1 is a convex surface at the paraxial position
  • the image side surface is a concave surface at the paraxial position
  • the focal length of the imaging optical lens 10 as f
  • the focal length of the first lens L1 as f1
  • the focal length of the first lens L1 as f1
  • the first lens L1 has an appropriate positive refractive power, which is conducive to reducing the system aberration, and is also conducive to the development of the lens toward ultra-thinning.
  • 0.44 ⁇ f1/f ⁇ 0.90 is satisfied.
  • the central radius of curvature of the object side surface of the first lens L1 is R1
  • the central radius of curvature of the image side surface of the first lens L1 is R2, which satisfy the following relationship: -2.62 ⁇ (R1+R2)/(R1-R2) ⁇ -0.41
  • the shape of the first lens L1 is reasonably controlled, so that the first lens L1 can effectively correct the spherical aberration of the system.
  • -1.64 ⁇ (R1+R2)/(R1-R2) ⁇ -0.51 is satisfied.
  • the on-axis thickness of the first lens L1 is d1
  • the total optical length of the imaging optical lens 10 is TTL, which satisfies the following relational formula: 0.06 ⁇ d1/TTL ⁇ 0.18, within the range of the conditional formula, it is beneficial to realize ultra-thinning.
  • 0.10 ⁇ d1/TTL ⁇ 0.15 is satisfied.
  • the object side surface of the second lens L2 is concave at the paraxial position, and the image side surface is concave at the paraxial position.
  • the central radius of curvature of the object side of the second lens L2 is R3, and the central radius of curvature of the image side of the second lens L2 is R4, which satisfy the following relationship: -1.83 ⁇ (R3+R4)/(R3-R4) ⁇ 0.21, which specifies the shape of the second lens L2.
  • -1.14 ⁇ (R3+R4)/(R3-R4) ⁇ 0.17 is satisfied.
  • the on-axis thickness of the second lens L2 is d3, and the total optical length of the imaging optical lens 10 is TTL, which satisfies the following relational formula: 0.01 ⁇ d3/TTL ⁇ 0.04, within the range of the conditional formula, it is beneficial to realize ultra-thinning .
  • 0.02 ⁇ d3/TTL ⁇ 0.04 is satisfied.
  • the object side surface of the third lens L3 is a convex surface at the paraxial position
  • the image side surface is a concave surface at the paraxial position
  • the focal length of the imaging optical lens 10 is defined as f, and the focal length of the third lens is f3, which satisfies the following relationship: 0.83 ⁇ f3/f ⁇ 26.16, through the reasonable distribution of optical power, the system has better imaging quality and lower sensitivity. Preferably, 1.32 ⁇ f3/f ⁇ 20.93 is satisfied.
  • the axial thickness of the third lens L3 is d5, and the total optical length of the imaging optical lens 10 is TTL, which satisfies the following relational formula: 0.04 ⁇ d5/TTL ⁇ 0.13, within the range of the conditional formula, it is beneficial to realize ultra-thinning .
  • 0.06 ⁇ d5/TTL ⁇ 0.10 is satisfied.
  • the object side surface of the fourth lens L4 is a convex surface at the paraxial position
  • the image side surface is a concave surface at the paraxial position
  • the central radius of curvature of the object side of the fourth lens L4 is R7
  • the central radius of curvature of the image side of the fourth lens L4 is R8, and the following relationship is satisfied: 0.68 ⁇ (R7+R8)/(R7-R8) ⁇ 3.78, the shape of the fourth lens L4 is specified, and when it is within the range, with the development of ultra-thinning, it is beneficial to correct problems such as aberrations of the off-axis picture angle.
  • 1.08 ⁇ (R7+R8)/(R7-R8) ⁇ 3.02 is satisfied.
  • the axial thickness of the fourth lens L4 is d7, and the total optical length of the imaging optical lens 10 is TTL, which satisfies the following relational formula: 0.02 ⁇ d7/TTL ⁇ 0.06, within the range of the conditional formula, it is beneficial to realize ultra-thinning .
  • 0.03 ⁇ d7/TTL ⁇ 0.05 is satisfied.
  • the object side surface of the fifth lens L5 is convex at the paraxial position, and the image side surface is convex at the paraxial position.
  • the focal length of the imaging optical lens 10 is defined as f, and the focal length of the fifth lens L5 is f5, which satisfies the following relationship: 0.86 ⁇ f5/f ⁇ 3.20, the limitation on the fifth lens L5 can effectively make the imaging optical lens
  • the light angle of 10 is flat, reducing tolerance sensitivity. Preferably, 1.37 ⁇ f5/f ⁇ 2.56 is satisfied.
  • the central radius of curvature of the object side of the fifth lens L5 is R9
  • the central radius of curvature of the image side of the fifth lens L5 is R10
  • the following relationship is satisfied: -0.28 ⁇ (R9+R10)/(R9-R10) ⁇ 0.29
  • the shape of the fifth lens L5 is specified, and when it is within the range, along with the progress of ultra-thinning, it is beneficial to correct problems such as aberrations of the off-axis picture angle.
  • -0.17 ⁇ (R9+R10)/(R9-R10) ⁇ 0.23 is satisfied.
  • the on-axis thickness of the fifth lens L5 is d9, and the total optical length of the imaging optical lens 10 is TTL, which satisfies the following relational formula: 0.04 ⁇ d9/TTL ⁇ 0.12, within the range of the conditional formula, it is beneficial to realize ultra-thinning .
  • 0.06 ⁇ d9/TTL ⁇ 0.10 is satisfied.
  • the object side surface of the sixth lens L6 is a concave surface at the paraxial position, and the image side surface is a convex surface at the paraxial position.
  • the focal length of the imaging optical lens 10 is defined as f, and the focal length of the sixth lens L6 is f6, which satisfies the following relationship: -23.24 ⁇ f6/f ⁇ 33.09, through the reasonable distribution of the focal power, the system has a better high imaging quality and lower sensitivity.
  • -14.52 ⁇ f6/f ⁇ 26.47 is satisfied.
  • the central radius of curvature of the object side surface of the sixth lens is R11
  • the central radius of curvature of the image side surface of the sixth lens is R12
  • the following relationship is satisfied: -23.59 ⁇ (R11+R12)/(R11-R12) ⁇ 65.50
  • the shape of the sixth lens L6 is specified, and within the range of conditions, along with the development of ultra-thinning, it is beneficial to correct problems such as aberrations of off-axis picture angles.
  • -14.74 ⁇ (R11+R12)/(R11-R12) ⁇ 52.40 is satisfied.
  • the axial thickness of the sixth lens L6 is d11, and the total optical length of the imaging optical lens 10 is TTL, which satisfies the following relational formula: 0.03 ⁇ d11/TTL ⁇ 0.11, within the range of the conditional formula, it is beneficial to realize ultra-thinning .
  • 0.04 ⁇ d11/TTL ⁇ 0.09 is satisfied.
  • the object side surface of the seventh lens L7 is a concave surface at the paraxial position
  • the image side surface is a convex surface at the paraxial position
  • the focal length of the imaging optical lens 10 as f
  • the focal length of the seventh lens L7 as f7, which satisfies the following relational formula: -11.55 ⁇ f7/f ⁇ 47.14, within the range of the conditional expression, through the reasonable distribution of optical power , so that the system has better imaging quality and lower sensitivity.
  • -7.22 ⁇ f7/f ⁇ 37.71 is satisfied.
  • the central radius of curvature of the object side of the seventh lens L7 is R13, and the central radius of curvature of the image side of the seventh lens L7 is R14, which satisfy the following relationship: -14.31 ⁇ (R13+R14)/(R13-R14) ⁇ 204.30, the shape of the seventh lens L7 is specified.
  • the shape of the seventh lens L7 is within the range of conditions, with the development of ultra-thinning, it is beneficial to correct problems such as aberrations of the off-axis picture angle.
  • -8.94 ⁇ (R13+R14)/(R13-R14) ⁇ 163.44 is satisfied.
  • the axial thickness of the seventh lens L7 is d13, and the optical total length of the imaging optical lens 10 is TTL, which satisfies the following relational formula: 0.03 ⁇ d13/TTL ⁇ 0.08, within the range of the conditional formula, is conducive to realizing ultra-thinning .
  • 0.04 ⁇ d13/TTL ⁇ 0.07 is satisfied.
  • the object side surface of the eighth lens L8 is concave at the paraxial position, and the image side surface is concave at the paraxial position.
  • the focal length of the imaging optical lens 10 is defined as f, and the focal length of the eighth lens L8 is f8, which satisfies the following relationship: -2.20 ⁇ f8/f ⁇ -0.51. Best image quality and lower sensitivity. Preferably, -1.38 ⁇ f8/f ⁇ -0.64 is satisfied.
  • the central radius of curvature of the object side surface of the eighth lens L8 is R15
  • the central radius of curvature of the image side surface of the eighth lens L8 is R16, which satisfy the following relationship: 0.21 ⁇ (R15+R16)/(R15-R16) ⁇ 1.16 , which specifies the shape of the eighth lens L8.
  • the shape of the eighth lens L8 is within the condition range, it is beneficial to correct problems such as aberration of the off-axis picture angle with the progress of ultra-thinning.
  • 0.34 ⁇ (R15+R16)/(R15-R16) ⁇ 0.93 is satisfied.
  • the on-axis thickness of the eighth lens L8 is d15, and the total optical length of the imaging optical lens 10 is TTL, which satisfies the following relational formula: 0.03 ⁇ d15/TTL ⁇ 0.10, within the range of the conditional formula, it is beneficial to realize ultra-thinning .
  • 0.05 ⁇ d15/TTL ⁇ 0.08 is satisfied.
  • the first lens L1, the second lens L2, the third lens L3, the fourth lens L4, the fifth lens L5, the sixth lens L6, the seventh lens L7 and the eighth lens L8 The surface shape of the object side and image side can also be set to other concave and convex distributions.
  • the image height of the imaging optical lens 10 is IH
  • the focal length of the imaging optical lens 10 is f, which satisfies the following relationship: f/IH ⁇ 2.56.
  • the imaging optical lens 10 has a long focal length.
  • the aperture value of the imaging optical lens 10 is FNO, and satisfies the following relationship: FNO ⁇ 2.01, so that the imaging optical lens 10 has a large aperture.
  • the image height of the imaging optical lens 10 is IH
  • the total optical length of the imaging optical lens 10 is TTL
  • the focal length of the imaging optical lens 10 is f
  • the combined focal length of the first lens L1 and the second lens L2 is f12, which satisfies the following relationship: 0.34 ⁇ f12/f ⁇ 1.34, under the condition within the scope of the formula, the aberration and distortion of the imaging optical lens 10 can be eliminated, the back focal length of the imaging optical lens 10 can be suppressed, and the miniaturization of the imaging lens system group can be maintained.
  • 0.54 ⁇ f12/f ⁇ 1.07 is satisfied.
  • the imaging optical lens 10 can meet the design requirements of large aperture, long focal length, and ultra-thinning while having good optical performance; according to the characteristics of the imaging optical lens 10, the imaging optical lens 10 is especially suitable for Mobile phone camera lens assembly and WEB camera lens composed of high-pixel CCD, CMOS and other imaging elements.
  • the imaging optical lens 10 of the present invention will be described below by way of examples.
  • the symbols described in each example are as follows.
  • the unit of focal length, on-axis distance, center curvature radius, on-axis thickness, inflection point position, and stagnation point position is mm.
  • TTL total optical length (the on-axis distance from the object side of the first lens L1 to the image plane Si), in mm;
  • Aperture value FNO refers to the ratio of the effective focal length of the imaging optical lens to the diameter of the entrance pupil.
  • an inflection point and/or a stagnation point may also be set on the object side and/or the image side of the lens to meet high-quality imaging requirements.
  • an inflection point and/or a stagnation point may also be set on the object side and/or the image side of the lens to meet high-quality imaging requirements.
  • Table 1 and Table 2 show design data of the imaging optical lens 10 according to the first embodiment of the present invention.
  • R the radius of curvature at the center of the optical surface
  • R1 the central radius of curvature of the object side surface of the first lens L1;
  • R2 the central curvature radius of the image side surface of the first lens L1;
  • R3 the central radius of curvature of the object side surface of the second lens L2;
  • R4 the central curvature radius of the image side surface of the second lens L2;
  • R5 the central radius of curvature of the object side surface of the third lens L3;
  • R6 the central curvature radius of the image side surface of the third lens L3;
  • R7 the central curvature radius of the object side surface of the fourth lens L4;
  • R8 the central curvature radius of the image side surface of the fourth lens L4;
  • R9 the central curvature radius of the object side surface of the fifth lens L5;
  • R10 the central curvature radius of the image side surface of the fifth lens L5;
  • R11 the central curvature radius of the object side surface of the sixth lens L6;
  • R12 the central curvature radius of the image side surface of the sixth lens L6;
  • R13 the central curvature radius of the object side surface of the seventh lens L7;
  • R14 the central curvature radius of the image side surface of the seventh lens L7;
  • R15 the central curvature radius of the object side surface of the eighth lens L8;
  • R16 the central curvature radius of the image side surface of the eighth lens L8;
  • R17 the central curvature radius of the object side of the optical filter GF
  • R18 The central curvature radius of the image side of the optical filter GF
  • d the on-axis thickness of the lens, the on-axis distance between the lenses
  • d0 the on-axis distance from the aperture S1 to the object side surface of the first lens L1;
  • d2 the on-axis distance from the image side of the first lens L1 to the object side of the second lens L2;
  • d4 the on-axis distance from the image side of the second lens L2 to the object side of the third lens L3;
  • d6 the on-axis distance from the image side of the third lens L3 to the object side of the fourth lens L4;
  • d10 the on-axis distance from the image side of the fifth lens L5 to the object side of the sixth lens L6;
  • d11 the on-axis thickness of the sixth lens L6;
  • d12 the on-axis distance from the image side of the sixth lens L6 to the object side of the seventh lens L7;
  • d14 the on-axis distance from the image side of the seventh lens L7 to the object side of the eighth lens L8;
  • d16 the on-axis distance from the image side of the eighth lens L8 to the object side of the optical filter GF;
  • d17 On-axis thickness of optical filter GF
  • nd the refractive index of the d-line
  • nd1 the refractive index of the d-line of the first lens L1;
  • nd2 the refractive index of the d-line of the second lens L2;
  • nd3 the refractive index of the d-line of the third lens L3;
  • nd4 the refractive index of the d-line of the fourth lens L4;
  • nd5 the refractive index of the d-line of the fifth lens L5;
  • nd6 the refractive index of the d-line of the sixth lens L6;
  • nd7 the refractive index of the d-line of the seventh lens L7;
  • nd8 the refractive index of the d-line of the eighth lens L8;
  • ndg the refractive index of the d-line of the optical filter GF
  • vg Abbe number of optical filter GF.
  • Table 2 shows aspherical surface data of each lens in the imaging optical lens 10 according to the first embodiment of the present invention.
  • k is the conic coefficient
  • A4, A6, A8, A10, A12, A14, A16, A18, and A20 are aspheric coefficients.
  • x is the vertical distance of the point on the aspheric curve from the optical axis
  • y is the aspheric depth.
  • the aspherical surface shown in the above formula (4) is used as the aspherical surface of each lens surface.
  • the present invention is not limited to the aspheric polynomial form represented by the formula (4).
  • Table 3 and Table 4 show the design data of the inflection point and the stagnation point of each lens in the imaging optical lens 10 according to the first embodiment of the present invention.
  • P1R1 and P1R2 respectively represent the object side and image side of the first lens L1
  • P2R1 and P2R2 respectively represent the object side and image side of the second lens L2
  • P3R1 and P3R2 respectively represent the object side and the image side of the third lens L3
  • P4R1 and P4R2 represent the object side and image side of the fourth lens L4 respectively
  • P5R1 and P5R2 represent the object side and the image side of the fifth lens L5 respectively
  • P6R1 and P6R2 respectively represent the object side and the image side of the sixth lens L6,
  • P7R1, P7R2 represents the object side and the image side of the seventh lens L7, respectively
  • P8R1 and P8R2 represent the object side and the image side of the eighth lens L8, respectively.
  • the corresponding data in the column of "invagination point position” is the vertical distance from the inflexion point set on the surface of each lens to the optical axis of the imaging optical lens 10 .
  • the corresponding data in the column of "stagnation point position” is the vertical distance from the stagnation point set on the surface of each lens to the optical axis of the imaging optical lens 10.
  • FIG. 2 and 3 respectively show schematic diagrams of axial aberration and chromatic aberration of magnification after light with wavelengths of 656 nm, 587 nm, 546 nm, 486 nm and 436 nm passes through the imaging optical lens 10 of the first embodiment.
  • FIG. 4 shows a schematic diagram of the field curvature and distortion of light with a wavelength of 546 nm after passing through the imaging optical lens 10 of the first embodiment.
  • the field curvature S in FIG. 4 is the field curvature in the sagittal direction, and T is the field curvature in the meridional direction. .
  • Table 13 shows the values corresponding to various numerical values in each of the first, second, and third embodiments and the parameters specified in the conditional expressions.
  • the first embodiment satisfies each conditional expression.
  • the entrance pupil diameter ENPD of the imaging optical lens 10 is 4.481 mm
  • the image height IH of the full field of view is 3.500 mm
  • the FOV in the diagonal direction is 42.10°.
  • the imaging optical lens 10 It meets the design requirements of large aperture, long focal length and ultra-thinness, and its on-axis and off-axis chromatic aberrations are fully corrected, and it has excellent optical characteristics.
  • the second embodiment is basically the same as the first embodiment, the meanings of symbols are the same as those of the first embodiment, and only the differences are listed below.
  • FIG. 5 is a schematic structural diagram of the imaging optical lens 20 according to the second embodiment of the present invention.
  • the image side surface of the first lens L1 is convex at the paraxial position.
  • Tables 5 and 6 show design data of the imaging optical lens 20 according to the second embodiment of the present invention.
  • Table 6 shows aspherical surface data of each lens in the imaging optical lens 20 according to the second embodiment of the present invention.
  • Tables 7 and 8 show the inflection point and stagnation point design data of each lens in the imaging optical lens 20 according to the second embodiment of the present invention.
  • FIG. 6 and 7 respectively show schematic diagrams of axial aberration and chromatic aberration of magnification after light with wavelengths of 656 nm, 587 nm, 546 nm, 486 nm and 436 nm passes through the imaging optical lens 20 of the second embodiment.
  • FIG. 8 shows a schematic diagram of field curvature and distortion after light with a wavelength of 546 nm passes through the imaging optical lens 20 of the second embodiment.
  • the field curvature S in FIG. 8 is the field curvature in the sagittal direction, and T is the field curvature in the meridional direction.
  • the second embodiment satisfies each conditional expression.
  • the entrance pupil diameter ENPD of the imaging optical lens 20 is 4.482 mm
  • the full field of view image height IH is 3.500 mm
  • the field of view angle FOV in the diagonal direction is 42.10°.
  • the imaging optical lens 20 It meets the design requirements of large aperture, long focal length and ultra-thinness, and its on-axis and off-axis chromatic aberrations are fully corrected, and it has excellent optical characteristics.
  • the third embodiment is basically the same as the first embodiment, the meanings of symbols are the same as those of the first embodiment, and only the differences are listed below.
  • FIG. 9 is a schematic structural diagram of the imaging optical lens 30 according to the third embodiment of the present invention.
  • the sixth lens L6 has negative refractive power
  • the seventh lens L7 has negative refractive power
  • the first lens L1 has an image side surface It is convex at the paraxial position.
  • Table 9 and Table 10 show design data of the imaging optical lens 30 according to the third embodiment of the present invention.
  • Table 10 shows aspherical surface data of each lens in the imaging optical lens 30 according to the third embodiment of the present invention.
  • Table 11 and Table 12 show the inflection point and stagnation point design data of each lens in the imaging optical lens 30 according to the third embodiment of the present invention.
  • FIG. 10 and 11 respectively show schematic diagrams of axial aberration and chromatic aberration of magnification after light with wavelengths of 656 nm, 587 nm, 546 nm, 486 nm and 436 nm passes through the imaging optical lens 30 of the third embodiment.
  • FIG. 12 shows a schematic diagram of field curvature and distortion after light with a wavelength of 546 nm passes through the imaging optical lens 30 of the third embodiment.
  • the field curvature S in FIG. 12 is the field curvature in the sagittal direction, and T is the field curvature in the meridional direction.
  • Table 13 lists the numerical values corresponding to each conditional expression in the present embodiment according to the above-mentioned conditional expression. Obviously, the present embodiment satisfies the above-mentioned conditional expression.
  • the entrance pupil diameter ENPD of the imaging optical lens 30 is 4.481 mm
  • the full field of view image height IH is 3.500 mm
  • the field of view angle FOV in the diagonal direction is 42.25°.
  • the imaging optical lens 30 It meets the design requirements of large aperture, long focal length and ultra-thinness, and its on-axis and off-axis chromatic aberrations are fully corrected, and it has excellent optical characteristics.
  • Example 2 Example 3 f/TTL 0.96 0.98 0.98 f2/f -3.99 -3.01 -2.01 (R5+R6)/(R5-R6) -3.01 -9.66 -19.98 f 8.963 8.965 8.963 f1 6.719 5.056 4.971 f2 -35.805 -27.029 -17.998 f3 14.841 79.483 156.313 f4 -8.064 -8.907 -12.693 f5 19.139 19.103 15.378 f6 127.485 197.772 -104.149 f7 25.101 281.743 -51.775 f8 -6.894 -9.009 -9.877 f12 7.997 6.016 6.523 FNO 2.00 2.00 2.00 TTL 9.355 9.129 9.126 IH 3.500 3.500 3.500 FOV 42.10° 42.10° 42.25°

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

本发明涉及光学镜头领域,公开了一种摄像光学镜头,所述摄像光学镜头自物侧至像侧依序包括:具有正屈折力的第一透镜,第二透镜,第三透镜,第四透镜,第五透镜,第六透镜,第七透镜以及第八透镜;其中,所述摄像光学镜头的光学总长为TTL,所述摄像光学镜头的焦距为f,所述第二透镜的焦距为f2,所述第三透镜的物侧面的中心曲率半径为R5,所述第三透镜的像侧面的中心曲率半径为R6,且满足下列关系式:0.95≤f/TTL;-4.00≤f2/f≤-2.00;-20.00≤(R5+R6)/(R5-R6)≤-3.00。本发明提供的摄像光学镜头具有良好光学性能的同时,还满足大光圈、长焦距、超薄化的设计要求。

Description

摄像光学镜头 技术领域
本发明涉及光学镜头领域,特别涉及一种适用于智能手机、数码相机等手提终端设备,以及监视器、PC镜头等摄像装置的摄像光学镜头。
背景技术
近年来,随着智能手机的兴起,小型化摄影镜头的需求日渐提高,而一般摄影镜头的感光器件不外乎是感光耦合器件(Charge Coupled Device,CCD)或互补性氧化金属半导体器件(Complementary Metal-OxideSemiconductor Sensor,CMOS Sensor)两种,且由于半导体制造工艺技术的精进,使得感光器件的像素尺寸缩小,再加上现今电子产品以功能佳且轻薄短小的外型为发展趋势,因此,具备良好成像品质的小型化摄像镜头俨然成为目前市场上的主流。
为获得较佳的成像品质,传统搭载于手机相机的镜头多采用三片式、四片式甚至是五片式、六片式透镜结构。然而,随着技术的发展以及用户多样化需求的增多,在感光器件的像素面积不断缩小,且系统对成像品质的要求不断提高的情况下,八片式透镜结构逐渐出现在镜头设计当中,常见的八片式透镜虽然已经具有较好的光学性能,但是其光焦度、透镜间距和透镜形状设置仍然具有一定的不合理性,导致透镜结构在具有良好光学性能的同时,无法满足大光圈、长焦距、超薄化的设计要求。
发明内容
针对上述问题,本发明的目的在于提供一种摄像光学镜头,其具有良好光学性能的同时,满足大光圈、长焦距、超薄化的设计要求。
为解决上述技术问题,本发明的实施方式提供了一种摄像光学镜头,所述摄像光学镜头自物侧至像侧依序包括:具有正屈折力的第一透镜,第二透镜,第三透镜,第四透镜,第五透镜,第六透镜,第七透镜以及第八透镜;
其中,所述摄像光学镜头的光学总长为TTL,所述摄像光学镜头的焦距为f,所述第二透镜的焦距为f2,所述第三透镜的物侧面的中心曲率半径为R5,所述第三透镜的像侧面的中心曲率半径为R6,且满足下列关系式:0.95≤f/TTL;-4.00≤f2/f≤-2.00;-20.00≤(R5+R6)/(R5-R6)≤-3.00。
优选地,所述第四透镜的焦距为f4,且满足下列关系式:-1.50≤f4/f≤-0.85。
优选地,所述第一透镜的焦距为f1,所述第一透镜的物侧面的中心曲率半径为R1,所述第一透镜的像侧面的中心曲率半径为R2,所述 第一透镜的轴上厚度为d1,且满足下列关系式:0.28≤f1/f≤1.12;-2.62≤(R1+R2)/(R1-R2)≤-0.41;0.06≤d1/TTL≤0.18。
优选地,所述第二透镜的物侧面的中心曲率半径为R3,所述第二透镜的像侧面的中心曲率半径为R4,所述第二透镜的轴上厚度为d3,且满足下列关系式:-1.83≤(R3+R4)/(R3-R4)≤0.21;0.01≤d3/TTL≤0.04。
优选地,所述第三透镜的焦距为f3,所述第三透镜的轴上厚度为d5,且满足下列关系式:0.83≤f3/f≤26.16;0.04≤d5/TTL≤0.13。
优选地,所述第四透镜的物侧面的中心曲率半径为R7,所述第四透镜的像侧面的中心曲率半径为R8,所述第四透镜的轴上厚度为d7,且满足下列关系式:0.68≤(R7+R8)/(R7-R8)≤3.78;0.02≤d7/TTL≤0.06。
优选地,所述第五透镜的焦距为f5,所述第五透镜的物侧面的中心曲率半径为R9,所述第五透镜的像侧面的中心曲率半径为R10,所述第五透镜的轴上厚度为d9,且满足下列关系式:0.86≤f5/f≤3.20;-0.28≤(R9+R10)/(R9-R10)≤0.29;0.04≤d9/TTL≤0.12。
优选地,所述第六透镜的焦距为f6,所述第六透镜的物侧面的中心曲率半径为R11,所述第六透镜的像侧面的中心曲率半径为R12,所述第六透镜的轴上厚度为d11,且满足下列关系式:-23.24≤f6/f≤33.09;-23.59≤(R11+R12)/(R11-R12)≤65.50;0.03≤d11/TTL≤0.11。
优选地,所述第七透镜的焦距为f7,所述第七透镜的物侧面的中心曲率半径为R13,所述第七透镜的像侧面的中心曲率半径为R14,所述第七透镜的轴上厚度为d13,且满足下列关系式:-11.55≤f7/f≤47.14;-14.31≤(R13+R14)/(R13-R14)≤204.30;0.03≤d13/TTL≤0.08。
优选地,所述第八透镜的焦距为f8,所述第八透镜的物侧面的中心曲率半径为R15,所述第八透镜的像侧面的中心曲率半径为R16,所述第八透镜的轴上厚度为d15,且满足下列关系式:-2.20≤f8/f≤-0.51;0.21≤(R15+R16)/(R15-R16)≤1.16;0.03≤d15/TTL≤0.10。
本发明的有益效果在于:本发明的摄像光学镜头具有优秀的光学特性,且具有大光圈、长焦距、超薄化的特性,尤其适用于由高像素用的CCD、CMOS等摄像元件构成的手机摄像镜头组件和WEB摄像镜头。
附图说明
为了更清楚地说明本发明实施方式中的技术方案,下面将对实施方式描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图,其中:
图1是本发明第一实施方式的摄像光学镜头的结构示意图;
图2是图1所示摄像光学镜头的轴向像差示意图;
图3是图1所示摄像光学镜头的倍率色差示意图;
图4是图1所示摄像光学镜头的场曲及畸变示意图;
图5是本发明第二实施方式的摄像光学镜头的结构示意图;
图6是图5所示摄像光学镜头的轴向像差示意图;
图7是图5所示摄像光学镜头的倍率色差示意图;
图8是图5所示摄像光学镜头的场曲及畸变示意图;
图9是本发明第三实施方式的摄像光学镜头的结构示意图;
图10是图9所示摄像光学镜头的轴向像差示意图;
图11是图9所示摄像光学镜头的倍率色差示意图;
图12是图9所示摄像光学镜头的场曲及畸变示意图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明的各实施方式进行详细的阐述。然而,本领域的普通技术人员可以理解,在本发明各实施方式中,为了使读者更好地理解本发明而提出了许多技术细节。但是,即使没有这些技术细节和基于以下各实施方式的种种变化和修改,也可以实现本发明所要求保护的技术方案。
(第一实施方式)
参考附图,本发明提供了一种摄像光学镜头10。图1所示为本发明第一实施方式的摄像光学镜头10的结构示意图,该摄像光学镜头10包括八片透镜。具体的,所述摄像光学镜头10,由物侧至像侧依序包括:光圈S1、第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6、第七透镜L7、第八透镜L8。第八透镜L8和像面Si之间可设置有光学过滤片(filter)GF等光学元件。
在本实施方式中,第一透镜L1具有正屈折力,第二透镜L2具有负屈折力,第三透镜L3具有正屈折力,第四透镜L4具有负屈折力,第五透镜L5具有正屈折力,第六透镜L6具有正屈折力,第七透镜L7具有正屈折力,第八透镜L8具有负屈折力。在本实施方式中,第一透镜L1具有正屈折力,有助于提高光学系统性能。可以理解的是,在其他实施例中,第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6、第七透镜L7和第八透镜L8也可以具有其他屈折力。
在本实施方式中,第一透镜L1为塑料材质,第二透镜L2为塑料材质,第三透镜L3为塑料材质,第四透镜L4为塑料材质,第五透镜L5为塑料材质,第六透镜L6为塑料材质,第七透镜L7为塑料材质,第八透镜L8为塑料材质。在其他实施例中,各透镜也可以是其他材质。
在本实施方式中,定义所述摄像光学镜头10的光学总长为TTL,所述摄像光学镜头10的焦距为f,所述第二透镜L2的焦距为f2,所述第三透镜L3物侧面的中心曲率半径为R5,所述第三透镜L3像侧面的中心曲率半径为R6,满足下列关系式:
0.95≤f/TTL;(1)
-4.00≤f2/f≤-2.00;(2)
-20.00≤(R5+R6)/(R5-R6)≤-3.00。(3)
关系式(1)规定了摄像光学镜头10的焦距f与摄像光学镜头10的光学总长TTL的比值,关系式(1)满足条件时,在同样长度的情况下,摄像光学镜头10具有更长的焦距。
关系式(2)规定了第二透镜L2的焦距f2与摄像光学镜头10的焦距f的比值,可以有效地平衡系统的球差以及场曲量。
关系式(3)规定了第三透镜L3的形状,在关系式(3)范围内可以缓和光线经过镜片的偏折程度,有效减小像差。
定义所述第四透镜L4的焦距为f4,且满足下列关系式:-1.50≤f4/f≤-0.85,规定了第四透镜L4的焦距f4与摄像光学镜头10的焦距f的比值,通过焦距的合理分配,使得系统具有较佳的成像品质和较低的敏感性。优选地,满足下列关系式:-1.46≤f4/f≤-0.88。
本实施方式中,第一透镜L1的物侧面于近轴处为凸面,像侧面于近轴处为凹面。
定义所述摄像光学镜头10的焦距为f,所述第一透镜L1的焦距为f1,满足下列关系式:0.28≤f1/f≤1.12,规定了第一透镜L1的焦距与整体焦距f的比值。在规定的范围内时,第一透镜L1具有适当的正屈折力,有利于减小系统像差,同时有利于镜头向超薄化发展。优选地,满足0.44≤f1/f≤0.90。
所述第一透镜L1物侧面的中心曲率半径为R1,所述第一透镜L1像侧面的中心曲率半径为R2,满足下列关系式:-2.62≤(R1+R2)/(R1-R2)≤-0.41,合理控制第一透镜L1的形状,使得第一透镜L1能够有效地校正系统球差。优选地,满足-1.64≤(R1+R2)/(R1-R2)≤-0.51。
所述第一透镜L1的轴上厚度为d1,摄像光学镜头10的光学总长为TTL,满足下列关系式:0.06≤d1/TTL≤0.18,在条件式范围内,有利于实现超薄化。优选地,满足0.10≤d1/TTL≤0.15。
本实施方式中,第二透镜L2的物侧面于近轴处为凹面,像侧面于近轴处为凹面。
所述第二透镜L2物侧面的中心曲率半径为R3,所述第二透镜L2像侧面的中心曲率半径为R4,满足下列关系式:-1.83≤(R3+R4)/(R3-R4)≤0.21,规定了第二透镜L2的形状,在范围内时,随着镜头向超薄化发展,有利于补正轴上色像差问题。优选地,满足-1.14≤(R3+R4)/(R3-R4)≤0.17。
所述第二透镜L2的轴上厚度为d3,所述摄像光学镜头10的光学总长为TTL,满足下列关系式:0.01≤d3/TTL≤0.04,在条件式范围内,有利于实现超薄化。优选地,满足0.02≤d3/TTL≤0.04。
本实施方式中,第三透镜L3的物侧面于近轴处为凸面,像侧面于近轴处为凹面。
定义所述摄像光学镜头10的焦距为f,所述第三透镜的焦距为f3, 满足下列关系式:0.83≤f3/f≤26.16,通过光焦度的合理分配,使得系统具有较佳的成像品质和较低的敏感性。优选地,满足1.32≤f3/f≤20.93。
所述第三透镜L3的轴上厚度为d5,所述摄像光学镜头10的光学总长为TTL,满足下列关系式:0.04≤d5/TTL≤0.13,在条件式范围内,有利于实现超薄化。优选地,满足0.06≤d5/TTL≤0.10。
本实施方式中,第四透镜L4的物侧面于近轴处为凸面,像侧面于近轴处为凹面。
所述第四透镜L4物侧面的中心曲率半径为R7,以及所述第四透镜L4像侧面的中心曲率半径为R8,且满足下列关系式:0.68≤(R7+R8)/(R7-R8)≤3.78,规定了第四透镜L4的形状,在范围内时,随着超薄化的发展,有利于补正轴外画角的像差等问题。优选地,满足1.08≤(R7+R8)/(R7-R8)≤3.02。
所述第四透镜L4的轴上厚度为d7,所述摄像光学镜头10的光学总长为TTL,满足下列关系式:0.02≤d7/TTL≤0.06,在条件式范围内,有利于实现超薄化。优选地,满足0.03≤d7/TTL≤0.05。
本实施方式中,第五透镜L5的物侧面于近轴处为凸面,像侧面于近轴处为凸面。
定义所述摄像光学镜头10的焦距为f,所述第五透镜L5的焦距为f5,满足下列关系式:0.86≤f5/f≤3.20,对第五透镜L5的限定可有效的使得摄像光学镜头10的光线角度平缓,降低公差敏感度。优选地,满足1.37≤f5/f≤2.56。
所述第五透镜L5物侧面的中心曲率半径为R9,所述第五透镜L5像侧面的中心曲率半径为R10,且满足下列关系式:-0.28≤(R9+R10)/(R9-R10)≤0.29,规定了第五透镜L5的形状,在范围内时,随着超薄化的发展,有利于补正轴外画角的像差等问题。优选地,满足-0.17≤(R9+R10)/(R9-R10)≤0.23。
所述第五透镜L5的轴上厚度为d9,所述摄像光学镜头10的光学总长为TTL,满足下列关系式:0.04≤d9/TTL≤0.12,在条件式范围内,有利于实现超薄化。优选地,满足0.06≤d9/TTL≤0.10。
本实施方式中,第六透镜L6的物侧面于近轴处为凹面,像侧面于近轴处为凸面。
定义所述摄像光学镜头10的焦距为f,所述第六透镜L6的焦距为f6,满足下列关系式:-23.24≤f6/f≤33.09,通过光焦度的合理分配,使得系统具有较佳的成像品质和较低的敏感性。优选地,满足-14.52≤f6/f≤26.47。
所述第六透镜的物侧面的中心曲率半径为R11,所述第六透镜的像侧面的中心曲率半径为R12,且满足下列关系式:-23.59≤(R11+R12)/(R11-R12)≤65.50,规定的是第六透镜L6的形状,在条件范 围内时,随着超薄化发展,有利于补正轴外画角的像差等问题。优选地,满足-14.74≤(R11+R12)/(R11-R12)≤52.40。
所述第六透镜L6的轴上厚度为d11,所述摄像光学镜头10的光学总长为TTL,满足下列关系式:0.03≤d11/TTL≤0.11,在条件式范围内,有利于实现超薄化。优选地,满足0.04≤d11/TTL≤0.09。
本实施方式中,所述第七透镜L7的物侧面于近轴处为凹面,像侧面于近轴处为凸面。
定义所述摄像光学镜头10的焦距为f,所述第七透镜L7的焦距为f7,满足下列关系式:-11.55≤f7/f≤47.14,在条件式范围内,通过光焦度的合理分配,使得系统具有较佳的成像品质和较低的敏感性。优选地,满足-7.22≤f7/f≤37.71。
所述第七透镜L7物侧面的中心曲率半径为R13,所述第七透镜L7像侧面的中心曲率半径为R14,满足下列关系式:-14.31≤(R13+R14)/(R13-R14)≤204.30,规定了第七透镜L7的形状,在条件范围内时,随着超薄化发展,有利于补正轴外画角的像差等问题。优选地,满足-8.94≤(R13+R14)/(R13-R14)≤163.44。
所述第七透镜L7的轴上厚度为d13,所述摄像光学镜头10的光学总长为TTL,满足下列关系式:0.03≤d13/TTL≤0.08,在条件式范围内,有利于实现超薄化。优选地,满足0.04≤d13/TTL≤0.07。
本实施方式中,所述第八透镜L8的物侧面于近轴处为凹面,像侧面于近轴处为凹面。
定义所述摄像光学镜头10的焦距为f,所述第八透镜L8的焦距为f8,满足下列关系式:-2.20≤f8/f≤-0.51,通过光焦度的合理分配,使得系统具有较佳的成像品质和较低的敏感性。优选地,满足-1.38≤f8/f≤-0.64。
所述第八透镜L8物侧面的中心曲率半径为R15,所述第八透镜L8像侧面的中心曲率半径为R16,满足下列关系式:0.21≤(R15+R16)/(R15-R16)≤1.16,规定了第八透镜L8的形状,在条件范围内时,随着超薄化发展,有利于补正轴外画角的像差等问题。优选地,满足0.34≤(R15+R16)/(R15-R16)≤0.93。
所述第八透镜L8的轴上厚度为d15,所述摄像光学镜头10的光学总长为TTL,满足下列关系式:0.03≤d15/TTL≤0.10,在条件式范围内,有利于实现超薄化。优选地,满足0.05≤d15/TTL≤0.08。
可以理解的是,在其他实施方式中,第一透镜L1,第二透镜L2,第三透镜L3,第四透镜L4,第五透镜L5,第六透镜L6,第七透镜L7和第八透镜L8的物侧面和像侧面的面型也可设置为其他凹、凸分布情况。
本实施方式中,所述摄像光学镜头10的像高为IH,所述摄像光学镜头10的焦距为f,满足下列关系式:f/IH≥2.56。从而使得摄像光学 镜头10具有长焦距。
在实施方式中,所述摄像光学镜头10的光圈值为FNO,且满足下列关系式:FNO≤2.01,从而使得摄像光学镜头10具有大光圈。
本实施方式中,所述摄像光学镜头10的像高为IH,所述摄像光学镜头10的光学总长为TTL,且满足下列关系式:TTL/IH≤2.68,从而有利于实现超薄化。
本实施方式中,所述摄像光学镜头10的焦距为f,所述第一透镜L1与所述第二透镜L2的组合焦距为f12,满足下列关系式:0.34≤f12/f≤1.34,在条件式范围内,可消除所述摄像光学镜头10的像差与歪曲,且可压制摄像光学镜头10后焦距,维持影像镜片系统组小型化。优选的,满足0.54≤f12/f≤1.07。
当满足上述关系时,使得摄像光学镜头10具有良好光学性能的同时,能够满足大光圈、长焦距、超薄化的设计要求;根据该摄像光学镜头10的特性,该摄像光学镜头10尤其适用于由高像素用的CCD、CMOS等摄像元件构成的手机摄像镜头组件和WEB摄像镜头。
下面将用实例进行说明本发明的摄像光学镜头10。各实例中所记载的符号如下所示。焦距、轴上距离、中心曲率半径、轴上厚度、反曲点位置、驻点位置的单位为mm。
TTL:光学总长(第一透镜L1的物侧面到像面Si的轴上距离),单位为mm;
光圈值FNO:是指摄像光学镜头的有效焦距和入瞳直径的比值。
优选的,所述透镜的物侧面和/或像侧面上还可以设置有反曲点和/或驻点,以满足高品质的成像需求,具体的可实施方案,参下所述。
表1、表2示出本发明第一实施方式的摄像光学镜头10的设计数据。
【表1】
Figure PCTCN2020126276-appb-000001
Figure PCTCN2020126276-appb-000002
其中,各符号的含义如下。
S1:光圈;
R:光学面中心处的曲率半径;
R1:第一透镜L1的物侧面的中心曲率半径;
R2:第一透镜L1的像侧面的中心曲率半径;
R3:第二透镜L2的物侧面的中心曲率半径;
R4:第二透镜L2的像侧面的中心曲率半径;
R5:第三透镜L3的物侧面的中心曲率半径;
R6:第三透镜L3的像侧面的中心曲率半径;
R7:第四透镜L4的物侧面的中心曲率半径;
R8:第四透镜L4的像侧面的中心曲率半径;
R9:第五透镜L5的物侧面的中心曲率半径;
R10:第五透镜L5的像侧面的中心曲率半径;
R11:第六透镜L6的物侧面的中心曲率半径;
R12:第六透镜L6的像侧面的中心曲率半径;
R13:第七透镜L7的物侧面的中心曲率半径;
R14:第七透镜L7的像侧面的中心曲率半径;
R15:第八透镜L8的物侧面的中心曲率半径;
R16:第八透镜L8的像侧面的中心曲率半径;
R17:光学过滤片GF的物侧面的中心曲率半径;
R18:光学过滤片GF的像侧面的中心曲率半径;
d:透镜的轴上厚度、透镜之间的轴上距离;
d0:光圈S1到第一透镜L1的物侧面的轴上距离;
d1:第一透镜L1的轴上厚度;
d2:第一透镜L1的像侧面到第二透镜L2的物侧面的轴上距离;
d3:第二透镜L2的轴上厚度;
d4:第二透镜L2的像侧面到第三透镜L3的物侧面的轴上距离;
d5:第三透镜L3的轴上厚度;
d6:第三透镜L3的像侧面到第四透镜L4的物侧面的轴上距离;
d7:第四透镜L4的轴上厚度;
d8:第四透镜L4的像侧面到第五透镜L5的物侧面的轴上距离;
d9:第五透镜L5的轴上厚度;
d10:第五透镜L5的像侧面到第六透镜L6的物侧面的轴上距离;
d11:第六透镜L6的轴上厚度;
d12:第六透镜L6的像侧面到第七透镜L7的物侧面的轴上距离;
d13:第七透镜L7的轴上厚度;
d14:第七透镜L7的像侧面到第八透镜L8的物侧面的轴上距离;
d15:第八透镜L8的轴上厚度;
d16:第八透镜L8的像侧面到光学过滤片GF的物侧面的轴上距离;
d17:光学过滤片GF的轴上厚度;
d18:光学过滤片GF的像侧面到像面Si的轴上距离;
nd:d线的折射率;
nd1:第一透镜L1的d线的折射率;
nd2:第二透镜L2的d线的折射率;
nd3:第三透镜L3的d线的折射率;
nd4:第四透镜L4的d线的折射率;
nd5:第五透镜L5的d线的折射率;
nd6:第六透镜L6的d线的折射率;
nd7:第七透镜L7的d线的折射率;
nd8:第八透镜L8的d线的折射率;
ndg:光学过滤片GF的d线的折射率;
vd:阿贝数;
v1:第一透镜L1的阿贝数;
v2:第二透镜L2的阿贝数;
v3:第三透镜L3的阿贝数;
v4:第四透镜L4的阿贝数;
v5:第五透镜L5的阿贝数;
v6:第六透镜L6的阿贝数;
v7:第七透镜L7的阿贝数;
v8:第八透镜L8的阿贝数;
vg:光学过滤片GF的阿贝数。
表2示出本发明第一实施方式的摄像光学镜头10中各透镜的非球面数据。
【表2】
Figure PCTCN2020126276-appb-000003
Figure PCTCN2020126276-appb-000004
其中,k是圆锥系数,A4、A6、A8、A10、A12、A14、A16、A18、A20是非球面系数。
y=(x 2/R)/{1+[1-(k+1)(x 2/R 2)] 1/2}+A4x 4+A6x 6+A8x 8+A10x 10+A12x 12+A14x 14+A16x 16+A18x 18+A20x 20        (4)
其中,x是非球面曲线上的点与光轴的垂直距离,y是非球面深度。(非球面上距离光轴为x的点,与相切于非球面光轴上顶点的切面两者间的垂直距离)。
为方便起见,各个透镜面的非球面使用上述公式(4)中所示的非球面。但是,本发明不限于该公式(4)表示的非球面多项式形式。
表3、表4示出本发明第一实施方式的摄像光学镜头10中各透镜的反曲点以及驻点设计数据。其中,P1R1、P1R2分别代表第一透镜L1的物侧面和像侧面,P2R1、P2R2分别代表第二透镜L2的物侧面和像侧面,P3R1、P3R2分别代表第三透镜L3的物侧面和像侧面,P4R1、P4R2分别代表第四透镜L4的物侧面和像侧面,P5R1、P5R2分别代表第五透镜L5的物侧面和像侧面,P6R1、P6R2分别代表第六透镜L6的物侧面和像侧面,P7R1、P7R2分别代表第七透镜L7的物侧面和像侧面,P8R1、P8R2分别代表第八透镜L8的物侧面和像侧面。“反曲点位置”栏位对应数据为各透镜表面所设置的反曲点到摄像光学镜头10光轴的垂直距离。“驻点位置”栏位对应数据为各透镜表面所设置的驻 点到摄像光学镜头10光轴的垂直距离。
【表3】
  反曲点个数 反曲点位置1 反曲点位置2
P1R1 0 / /
P1R2 0 / /
P2R1 1 0.255 /
P2R2 1 2.025 /
P3R1 0 / /
P3R2 2 1.125 1.445
P4R1 2 1.665 1.835
P4R2 0 / /
P5R1 2 0.705 1.205
P5R2 0 / /
P6R1 0 / /
P6R2 1 1.925 /
P7R1 1 2.165 /
P7R2 2 0.735 1.375
P8R1 1 2.245 /
P8R2 2 0.705 2.745
【表4】
  驻点个数 驻点位置1
P1R1 0 /
P1R2 0 /
P2R1 1 0.455
P2R2 0 /
P3R1 0 /
P3R2 0 /
P4R1 0 /
P4R2 0 /
P5R1 0 /
P5R2 0 /
P6R1 0 /
P6R2 0 /
P7R1 0 /
P7R2 0 /
P8R1 1 2.745
P8R2 1 1.395
图2、图3分别示出了波长为656nm、587nm、546nm、486nm及436nm的光经过第一实施方式的摄像光学镜头10后的轴向像差以及倍率色差示意图。图4则示出了波长为546nm的光经过第一实施方式的摄像光学镜头10后的场曲及畸变示意图,图4的场曲S是弧矢方向的场曲,T是子午方向的场曲。
后出现的表13示出各实施方式一、二、三中各种数值与条件式中已规定的参数所对应的值。
如表13所示,第一实施方式满足各条件式。
在本实施方式中,所述摄像光学镜头10的入瞳直径ENPD为4.481mm,全视场像高IH为3.500mm,对角线方向的视场角FOV为42.10°,所述摄像光学镜头10满足大光圈、长焦距、超薄化的设计要求,其轴上、轴外色像差被充分补正,且具有优秀的光学特征。
(第二实施方式)
第二实施方式与第一实施方式基本相同,符号含义与第一实施方式相同,以下只列出不同点。
图5所示为本发明第二实施方式的摄像光学镜头20的结构示意图,本实施方式中,第一透镜L1像侧面于近轴处为凸面。
表5、表6示出本发明第二实施方式的摄像光学镜头20的设计数据。
【表5】
Figure PCTCN2020126276-appb-000005
表6示出本发明第二实施方式的摄像光学镜头20中各透镜的非球面数据。
【表6】
Figure PCTCN2020126276-appb-000006
Figure PCTCN2020126276-appb-000007
表7、表8示出本发明第二实施方式的摄像光学镜头20中各透镜的反曲点以及驻点设计数据。
【表7】
  反曲点个数 反曲点位置1 反曲点位置2
P1R1 0 / /
P1R2 1 0.585 /
P2R1 1 0.365 /
P2R2 1 1.895 /
P3R1 1 1.975 /
P3R2 0 / /
P4R1 2 1.605 1.755
P4R2 0 / /
P5R1 2 0.825 1.105
P5R2 0 / /
P6R1 1 1.785 /
P6R2 1 1.875 /
P7R1 1 2.025 /
P7R2 2 0.735 1.435
P8R1 1 2.345 /
P8R2 2 0.655 2.765
【表8】
  驻点个数 驻点位置1
P1R1 0 /
P1R2 1 1.055
P2R1 1 0.665
P2R2 0 /
P3R1 0 /
P3R2 0 /
P4R1 0 /
P4R2 0 /
P5R1 0 /
P5R2 0 /
P6R1 0 /
P6R2 0 /
P7R1 0 /
P7R2 0 /
P8R1 0 /
P8R2 1 1.255
图6、图7分别示出了波长为656nm、587nm、546nm、486nm及436nm的光经过第二实施方式的摄像光学镜头20后的轴向像差以及倍率色差示意图。图8则示出了波长为546nm的光经过第二实施方式的摄像光学镜头20后的场曲及畸变示意图。图8的场曲S是弧矢方向的场曲,T是子午方向的场曲。
如表13所示,第二实施方式满足各条件式。
在本实施方式中,所述摄像光学镜头20的入瞳直径ENPD为4.482mm,全视场像高IH为3.500mm,对角线方向的视场角FOV为42.10°,所述摄像光学镜头20满足大光圈、长焦距、超薄化的设计要求,其轴上、轴外色像差被充分补正,且具有优秀的光学特征。
(第三实施方式)
第三实施方式与第一实施方式基本相同,符号含义与第一实施方式相同,以下只列出不同点。
图9所示为本发明第三实施方式的摄像光学镜头30的结构示意图,在本实施方式中,第六透镜L6具有负屈折力,第七透镜L7具有负屈折力,第一透镜L1像侧面于近轴处为凸面。
表9、表10示出本发明第三实施方式的摄像光学镜头30的设计数据。
【表9】
Figure PCTCN2020126276-appb-000008
Figure PCTCN2020126276-appb-000009
表10示出本发明第三实施方式的摄像光学镜头30中各透镜的非球面数据。
【表10】
Figure PCTCN2020126276-appb-000010
Figure PCTCN2020126276-appb-000011
表11、表12示出本发明第三实施方式的摄像光学镜头30中各透镜的反曲点以及驻点设计数据。
【表11】
  反曲点个数 反曲点位置1 反曲点位置2
P1R1 0 / /
P1R2 1 0.615 /
P2R1 1 0.565 /
P2R2 0 / /
P3R1 0 / /
P3R2 0 / /
P4R1 2 1.635 1.805
P4R2 0 / /
P5R1 2 0.725 1.195
P5R2 0 / /
P6R1 1 1.795 /
P6R2 1 1.765 /
P7R1 1 1.945 /
P7R2 0 / /
P8R1 1 2.265 /
P8R2 2 0.575 2.665
【表12】
  驻点个数 驻点位置1
P1R1 0 /
P1R2 1 1.085
P2R1 1 1.025
P2R2 0 /
P3R1 0 /
P3R2 0 /
P4R1 0 /
P4R2 0 /
P5R1 0 /
P5R2 0 /
P6R1 0 /
P6R2 1 1.965
P7R1 0 /
P7R2 0 /
P8R1 0 /
P8R2 1 1.065
图10、图11分别示出了波长为656nm、587nm、546nm、486nm及436nm的光经过第三实施方式的摄像光学镜头30后的轴向像差以及倍率色差示意图。图12则示出了波长为546nm的光经过第三实施方式的摄像光学镜头30后的场曲及畸变示意图。图12的场曲S是弧矢方向的场曲,T是子午方向的场曲。
以下表13按照上述条件式列出了本实施方式中对应各条件式的数值。显然,本实施方式满足上述的条件式。
在本实施方式中,所述摄像光学镜头30的入瞳直径ENPD为4.481mm,全视场像高IH为3.500mm,对角线方向的视场角FOV为42.25°,所述摄像光学镜头30满足大光圈、长焦距、超薄化的设计要求,其轴上、轴外色像差被充分补正,且具有优秀的光学特征。
【表13】
参数及条件式 实施例1 实施例2 实施例3
f/TTL 0.96 0.98 0.98
f2/f -3.99 -3.01 -2.01
(R5+R6)/(R5-R6) -3.01 -9.66 -19.98
f 8.963 8.965 8.963
f1 6.719 5.056 4.971
f2 -35.805 -27.029 -17.998
f3 14.841 79.483 156.313
f4 -8.064 -8.907 -12.693
f5 19.139 19.103 15.378
f6 127.485 197.772 -104.149
f7 25.101 281.743 -51.775
f8 -6.894 -9.009 -9.877
f12 7.997 6.016 6.523
FNO 2.00 2.00 2.00
TTL 9.355 9.129 9.126
IH 3.500 3.500 3.500
FOV 42.10° 42.10° 42.25°
本领域的普通技术人员可以理解,上述各实施方式是实现本发明的具体实施方式,而在实际应用中,可以在形式上和细节上对其作各种改变,而不偏离本发明的精神和范围。

Claims (10)

  1. 一种摄像光学镜头,其特征在于,所述摄像光学镜头自物侧至像侧依序包括:具有正屈折力的第一透镜,第二透镜,第三透镜,第四透镜,第五透镜,第六透镜,第七透镜以及第八透镜;其中,所述摄像光学镜头的光学总长为TTL,所述摄像光学镜头的焦距为f,所述第二透镜的焦距为f2,所述第三透镜的物侧面的中心曲率半径为R5,所述第三透镜的像侧面的中心曲率半径为R6,且满足下列关系式:
    0.95≤f/TTL;
    -4.00≤f2/f≤-2.00;
    -20.00≤(R5+R6)/(R5-R6)≤-3.00。
  2. 根据权利要求1所述的摄像光学镜头,其特征在于,所述第四透镜的焦距为f4,且满足下列关系式:
    -1.50≤f4/f≤-0.85。
  3. 根据权利要求1所述的摄像光学镜头,其特征在于,所述第一透镜的焦距为f1,所述第一透镜的物侧面的中心曲率半径为R1,所述第一透镜的像侧面的中心曲率半径为R2,所述第一透镜的轴上厚度为d1,且满足下列关系式:
    0.28≤f1/f≤1.12;
    -2.62≤(R1+R2)/(R1-R2)≤-0.41;
    0.06≤d1/TTL≤0.18。
  4. 根据权利要求1所述的摄像光学镜头,其特征在于,所述第二透镜的物侧面的中心曲率半径为R3,所述第二透镜的像侧面的中心曲率半径为R4,所述第二透镜的轴上厚度为d3,且满足下列关系式:
    -1.83≤(R3+R4)/(R3-R4)≤0.21;
    0.01≤d3/TTL≤0.04。
  5. 根据权利要求1所述的摄像光学镜头,其特征在于,所述第三透镜的焦距为f3,所述第三透镜的轴上厚度为d5,且满足下列关系式:
    0.83≤f3/f≤26.16;
    0.04≤d5/TTL≤0.13。
  6. 根据权利要求1所述的摄像光学镜头,其特征在于,所述第四透镜的物侧面的中心曲率半径为R7,所述第四透镜的像侧面的中心曲率半径为R8,所述第四透镜的轴上厚度为d7,且满足下列关系式:
    0.68≤(R7+R8)/(R7-R8)≤3.78;
    0.02≤d7/TTL≤0.06。
  7. 根据权利要求1所述的摄像光学镜头,其特征在于,所述第五透镜的焦距为f5,所述第五透镜的物侧面的中心曲率半径为R9,所述第五透镜的像侧面的中心曲率半径为R10,所述第五透镜的轴上厚度为d9,且满足下列关系式:
    0.86≤f5/f≤3.20;
    -0.28≤(R9+R10)/(R9-R10)≤0.29;
    0.04≤d9/TTL≤0.12。
  8. 根据权利要求1所述的摄像光学镜头,其特征在于,所述第六透镜的焦距为f6,所述第六透镜的物侧面的中心曲率半径为R11,所述第六透镜的像侧面的中心曲率半径为R12,所述第六透镜的轴上厚度为d11,且满足下列关系式:
    -23.24≤f6/f≤33.09;
    -23.59≤(R11+R12)/(R11-R12)≤65.50;
    0.03≤d11/TTL≤0.11。
  9. 根据权利要求1所述的摄像光学镜头,其特征在于,所述第七透镜的焦距为f7,所述第七透镜的物侧面的中心曲率半径为R13,所述第七透镜的像侧面的中心曲率半径为R14,所述第七透镜的轴上厚度为d13,且满足下列关系式:
    -11.55≤f7/f≤47.14;
    -14.31≤(R13+R14)/(R13-R14)≤204.30;
    0.03≤d13/TTL≤0.08。
  10. 根据权利要求1所述的摄像光学镜头,其特征在于,所述第八透镜的焦距为f8,所述第八透镜的物侧面的中心曲率半径为R15,所述第八透镜的像侧面的中心曲率半径为R16,所述第八透镜的轴上厚度为d15,且满足下列关系式:
    -2.20≤f8/f≤-0.51;
    0.21≤(R15+R16)/(R15-R16)≤1.16;
    0.03≤d15/TTL≤0.10。
PCT/CN2020/126276 2020-09-29 2020-11-03 摄像光学镜头 WO2022067956A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011046636.1 2020-09-29
CN202011046636.1A CN112180543B (zh) 2020-09-29 2020-09-29 摄像光学镜头

Publications (1)

Publication Number Publication Date
WO2022067956A1 true WO2022067956A1 (zh) 2022-04-07

Family

ID=73945734

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/126276 WO2022067956A1 (zh) 2020-09-29 2020-11-03 摄像光学镜头

Country Status (4)

Country Link
US (1) US20220099939A1 (zh)
JP (1) JP6894568B1 (zh)
CN (1) CN112180543B (zh)
WO (1) WO2022067956A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112180544B (zh) * 2020-09-29 2022-07-12 常州市瑞泰光电有限公司 摄像光学镜头
CN112230376B (zh) * 2020-10-30 2021-10-01 诚瑞光学(苏州)有限公司 摄像光学镜头
CN114442277B (zh) * 2022-01-28 2024-04-02 浙江舜宇光学有限公司 光学成像镜头
CN114924390B (zh) * 2022-06-13 2024-01-12 广东旭业光电科技股份有限公司 一种高清取像镜头及电子设备
CN117406399B (zh) * 2023-12-14 2024-03-26 江西联益光学有限公司 光学镜头

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5892626A (en) * 1996-02-08 1999-04-06 Minolta Co., Ltd. Zoom lens system
JP2013195637A (ja) * 2012-03-19 2013-09-30 Ricoh Co Ltd 結像レンズ、撮像装置および情報装置
CN110471168A (zh) * 2019-08-19 2019-11-19 瑞声通讯科技(常州)有限公司 摄像光学镜头
CN112180541A (zh) * 2020-09-29 2021-01-05 常州市瑞泰光电有限公司 摄像光学镜头

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107831588B (zh) * 2017-11-29 2019-11-26 浙江舜宇光学有限公司 光学成像镜头
CN108227145A (zh) * 2017-12-29 2018-06-29 玉晶光电(厦门)有限公司 光学成像镜头
CN108445610B (zh) * 2018-06-05 2023-05-26 浙江舜宇光学有限公司 光学成像镜片组
CN115061266A (zh) * 2018-06-26 2022-09-16 三星电机株式会社 光学成像系统
CN209044167U (zh) * 2018-08-02 2019-06-28 浙江舜宇光学有限公司 光学成像镜头
CN108919464B (zh) * 2018-08-06 2023-08-04 浙江舜宇光学有限公司 光学成像镜片组
CN208705549U (zh) * 2018-08-06 2019-04-05 浙江舜宇光学有限公司 光学成像镜片组
CN209215716U (zh) * 2018-11-27 2019-08-06 浙江舜宇光学有限公司 光学成像透镜组
CN117741916A (zh) * 2018-11-27 2024-03-22 浙江舜宇光学有限公司 光学成像透镜组
US11226473B2 (en) * 2018-12-28 2022-01-18 Samsung Electro-Mechanics Co., Ltd. Optical imaging system including eight lenses of +++−+−+−, −++−+++− or +−+−++−− refractive powers
CN210605169U (zh) * 2019-08-15 2020-05-22 南昌欧菲精密光学制品有限公司 光学系统、取像模组及电子装置
CN211086748U (zh) * 2019-08-26 2020-07-24 浙江舜宇光学有限公司 光学成像镜头
JP7416587B2 (ja) * 2019-09-03 2024-01-17 東京晨美光学電子株式会社 撮像レンズ
CN211293428U (zh) * 2019-12-05 2020-08-18 浙江舜宇光学有限公司 光学成像镜头
CN111077643B (zh) * 2019-12-23 2021-09-28 诚瑞光学(常州)股份有限公司 摄像光学镜头
CN111142220B (zh) * 2019-12-23 2021-09-24 诚瑞光学(常州)股份有限公司 摄像光学镜头
CN111142223B (zh) * 2019-12-23 2021-09-24 诚瑞光学(常州)股份有限公司 摄像光学镜头
CN112180544B (zh) * 2020-09-29 2022-07-12 常州市瑞泰光电有限公司 摄像光学镜头
CN112180542B (zh) * 2020-09-29 2022-07-12 常州市瑞泰光电有限公司 摄像光学镜头
CN112230375B (zh) * 2020-10-30 2021-10-01 诚瑞光学(苏州)有限公司 摄像光学镜头
CN112099200B (zh) * 2020-11-02 2021-01-29 瑞泰光学(常州)有限公司 摄像光学镜头

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5892626A (en) * 1996-02-08 1999-04-06 Minolta Co., Ltd. Zoom lens system
JP2013195637A (ja) * 2012-03-19 2013-09-30 Ricoh Co Ltd 結像レンズ、撮像装置および情報装置
CN110471168A (zh) * 2019-08-19 2019-11-19 瑞声通讯科技(常州)有限公司 摄像光学镜头
CN112180541A (zh) * 2020-09-29 2021-01-05 常州市瑞泰光电有限公司 摄像光学镜头

Also Published As

Publication number Publication date
US20220099939A1 (en) 2022-03-31
CN112180543B (zh) 2021-12-14
CN112180543A (zh) 2021-01-05
JP6894568B1 (ja) 2021-06-30
JP2022056297A (ja) 2022-04-08

Similar Documents

Publication Publication Date Title
WO2022052273A1 (zh) 摄像光学镜头
WO2022048000A1 (zh) 摄像光学镜头
WO2022047981A1 (zh) 摄像光学镜头
WO2022067958A1 (zh) 摄像光学镜头
WO2022067956A1 (zh) 摄像光学镜头
WO2022082929A1 (zh) 摄像光学镜头
WO2022067954A1 (zh) 摄像光学镜头
WO2022088252A1 (zh) 摄像光学镜头
WO2022057033A1 (zh) 摄像光学镜头
WO2022077603A1 (zh) 摄像光学镜头
WO2022088356A1 (zh) 摄像光学镜头
WO2022077620A1 (zh) 摄像光学镜头
WO2022067947A1 (zh) 摄像光学镜头
WO2022088250A1 (zh) 摄像光学镜头
WO2022067950A1 (zh) 摄像光学镜头
WO2022067943A1 (zh) 摄像光学镜头
WO2022067949A1 (zh) 摄像光学镜头
WO2022057042A1 (zh) 摄像光学镜头
WO2022067948A1 (zh) 摄像光学镜头
WO2022077621A1 (zh) 摄像光学镜头
WO2022052263A1 (zh) 摄像光学镜头
WO2022077600A1 (zh) 摄像光学镜头
WO2022088363A1 (zh) 摄像光学镜头
WO2022088253A1 (zh) 摄像光学镜头
WO2022088251A1 (zh) 摄像光学镜头

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20955976

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20955976

Country of ref document: EP

Kind code of ref document: A1