WO2022010032A1 - Smart heat-resistant fusion laminator - Google Patents

Smart heat-resistant fusion laminator Download PDF

Info

Publication number
WO2022010032A1
WO2022010032A1 PCT/KR2020/012013 KR2020012013W WO2022010032A1 WO 2022010032 A1 WO2022010032 A1 WO 2022010032A1 KR 2020012013 W KR2020012013 W KR 2020012013W WO 2022010032 A1 WO2022010032 A1 WO 2022010032A1
Authority
WO
WIPO (PCT)
Prior art keywords
horizontal plate
laminator
chamber
smart heat
resistant fusion
Prior art date
Application number
PCT/KR2020/012013
Other languages
French (fr)
Korean (ko)
Inventor
이성웅
Original Assignee
지니코딩에듀(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 지니코딩에듀(주) filed Critical 지니코딩에듀(주)
Publication of WO2022010032A1 publication Critical patent/WO2022010032A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/118Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using filamentary material being melted, e.g. fused deposition modelling [FDM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/205Means for applying layers
    • B29C64/209Heads; Nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/245Platforms or substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/25Housings, e.g. machine housings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/364Conditioning of environment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing

Definitions

  • the present invention relates to a smart heat-resistant fusion laminator capable of expanding the range of material selection and outputting more durable output.
  • 3D printers have been developed in various ways since the method of making three-dimensional objects by solidifying plastic liquids was first proposed by 3D Systems in the United States in the early 1980s.
  • nylon and metal materials are now used as output materials for 3D printers, and with increased precision, they are also used as equipment to produce customized medical devices.
  • 3D printers are largely divided into FDM (Fused Deposition Modeling), SLA (Stereolithography Apparatus), SLS (Selective Laser Simtering), and DLP (Direct Light Processing) methods according to the method of creating three-dimensional printouts.
  • FDM Freused Deposition Modeling
  • SLA Stepolithography Apparatus
  • SLS Selective Laser Simtering
  • DLP Direct Light Processing
  • the FDM method is a method of laminating plastic filaments such as PLA (Poly Latic Acid) or ABS (Acryontrie Butadiene Styrene) by melting them in the printer head. More specifically, it creates a three-dimensional shape by stacking the melted and ejected plastic filaments in layers of 0.01 to 0.08 mm thinner than paper.
  • PLA Poly Latic Acid
  • ABS Advanced Chemical Butadiene Styrene
  • the FDM type 3D printer consists of a printer head that melts and discharges the output material, a bed on which the discharged output material is accumulated, and a driving unit for moving the print head and the bed.
  • a two-dimensional print is created by moving the print head and bed along the x-axis and y-axis to print the output material.
  • a three-dimensional output having a height in the z-axis is created.
  • the printing principle of the FDM-type 3D printer is to create a three-dimensional shape of a desired shape by repeating the above operation.
  • the FDM type 3D printer as described above is a well-known technology in the prior art, and Korean Patent Publication No. 10-2009-0119904 "Method for creating a three-dimensional object using a modified ABS material" and Korean Patent Publication No. 10-2015-0089240 arc "3D printer” and the like.
  • the manual prosthetic leg manufacturing process requires cumbersome processes using gypsum, such as the process of cutting the user's application part, manufacturing the frame, and manufacturing the socket that fits the frame.
  • the existing FDM-type 3D printer has a narrow selection of filaments as an output material due to the limitations of nozzles, beds, and internal temperatures (mostly printing using PLA and ABS filaments). Due to the nature of the output method of stacking layers, the bonding strength is somewhat low (as shown in FIG. 4, the layer below hardens before the next layer goes up, the bonding strength between layers decreases.) The durability of the final output is weak.
  • the present invention has been devised to solve the problems of the prior art as described above, and it is an object of the present invention to provide a smart heat-resistant fusion laminator capable of outputting an output with improved durability and a wider selection of materials.
  • the present invention is a smart heat-resistant fusion laminator comprising a nozzle unit for melting and discharging the output material, and a bed on which the output material discharged from the nozzle unit is stacked: the nozzle unit and the bed A plurality of fixing walls disposed to form a part of the polygonal shape positioned inside to form a chamber with one side open, a door wall provided for opening and closing the open side of the chamber, the chamber a lower horizontal plate blocking the lower portion, and an upper horizontal plate blocking the upper portion of the chamber;
  • Each of the door wall, the lower horizontal plate, and the upper horizontal plate is a form in which an insulating material and another metal plate are sequentially stacked on one surface of a metal plate;
  • Each of the wall for fixing is in the form of sequentially stacked insulators and metal plates on both sides around the hot wire coil layer on which the hot wire coil is disposed; is characterized by
  • the nozzle part has a water cooling type cooling structure.
  • the present invention can provide a smart heat-resistant fusion laminator that can expand the selection of materials and output an output with improved durability.
  • FIG. 1 is a side conceptual view of a smart heat-resistant fusion laminator according to an embodiment of the present invention
  • Figure 2 is a conceptual view of the reference cross-section A-A of Figure 1;
  • FIG. 3 is a conceptual diagram of a lamination fusion method according to an embodiment of the present invention.
  • FIG. 4 is a conceptual diagram of an output method of an FDM printer according to the prior art.
  • FIG. 1 is a schematic side view of a smart heat-resistant fusion laminator according to an embodiment of the present invention
  • FIG. 2 is a schematic cross-sectional view AA of FIG. 1
  • FIG. 3 is a conceptual diagram of a lamination fusion method according to an embodiment of the present invention. .
  • This embodiment relates to a chamber type 3D printer (hereinafter referred to as "smart heat-resistant fusion laminator”.).
  • a polygonal cylinder shape is formed by the door wall 120 and the plurality of fixing walls 110 .
  • the plurality of fixing walls 110 are arranged to form a part of a polygonal tubular shape while forming a chamber shape with one side open.
  • the three fixing walls 110 are arranged to form a part of the rectangular cylinder shape.
  • the door wall 120 is provided to open and close one open side of the chamber.
  • One side of the door wall 120 is hinged to any one of the fixing walls 110 to open and close one open side of the chamber.
  • a chamber in the form of a square column is formed by the three fixing walls 110 and the door walls 120 .
  • the lower part of the chamber is blocked by the lower horizontal plate 130
  • the upper part of the chamber is blocked by the upper horizontal plate 140 .
  • a chamber that is a closed space by the lower horizontal plate 130, the door wall 120, the plurality of fixing walls 110, and the upper horizontal plate 140 can be formed, and the smart heat-resistant fusion inside the chamber
  • the main driving part of the laminator is arranged.
  • a nozzle unit for melting and discharging the output material and a bed on which the output material discharged from the nozzle unit is accumulated are located inside the chamber.
  • a driving means for moving the nozzle unit or the bed is also located inside the chamber.
  • each of the door wall 120 , the lower horizontal plate 130 , and the upper horizontal plate 140 has a form in which the insulating material 102 and the other metal plate 103 are sequentially stacked on one surface of the metal plate 101 .
  • the door wall 120, the lower horizontal plate 130, and the upper horizontal plate 140, respectively, are insulated on one surface of the metal plate 101 and the other metal plate 101.
  • another insulating material 102, and another metal plate 101 are sequentially stacked.
  • the insulating material 102 may adopt a glass wool insulating material.
  • each of the fixing walls 110 has a form in which the heat insulating material 102 and the metal plate 101 are respectively stacked on both sides around the hot wire coil layer 103 on which the hot wire coil is disposed.
  • the insulating material 102 may adopt a glass wool insulating material.
  • the temperature inside the chamber can be maintained at 80° C. to 100° C. by the heat emitted from the hot wire coil layer 103 of the fixing wall 110 .
  • a prosthetic leg body having the same strength or durability as a conventional manual prosthetic leg product can be output.
  • the nozzle part has a water cooling type cooling structure.
  • the nozzle part is designed to withstand a maximum temperature of 600 ° C.
  • a water-cooled cooling structure is introduced to prevent the filament from flowing down caused by high-temperature output and to increase the life expectancy of the nozzle. .
  • the present invention can be used as a 3D printer that has a wide selection of materials and can improve the durability of printed products.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Toxicology (AREA)

Abstract

The present invention relates to a smart heat-resistant fusion laminator capable of expanding the range of choices of materials and outputting printed matter with improved durability, the smart heat-resistant fusion laminator comprising: a plurality of fixing walls in the form of polygonal cylinders in which a nozzle unit and a bed are disposed; a door wall which covers open portions of the fixing walls; a lower horizontal plate; and an upper horizontal plate, wherein each of the door wall, the lower horizontal plate, and the upper horizontal plate has a form in which an insulating material and a metal plate are laminated in order on one surface of another metal plate, and each of the fixing walls has a form in which an insulating material and a metal plate are laminated in order on both sides around a hot wire coil layer on which a hot wire coil is disposed.

Description

스마트 내열 융합 적층기Smart Heat Resistant Fusion Laminator
본 발명은 재료 선택의 폭을 넓히고 내구성이 더욱 향상된 출력물을 출력할 수 있는 스마트 내열 융합 적층기에 관한 것이다.The present invention relates to a smart heat-resistant fusion laminator capable of expanding the range of material selection and outputting more durable output.
1980년대 초반, 미국 3D Systems사(社)에 의해 플라스틱 액체를 굳혀서 입체적인 형상의 물건을 만드는 방식이 최초로 제시된 이후 3D 프린터는 다양한 방식으로 발전해왔다. 플라스틱 소재에 국한되었던 초기 단계에서 발전하여 현재 나일론과 금속 소재도 3D 프린터의 출력 원료로 사용되고 있으며, 더욱 정밀도가 높아져 맞춤형 의료기를 생산하기 위한 장비로도 사용되고 있다.In the early 1980s, 3D printers have been developed in various ways since the method of making three-dimensional objects by solidifying plastic liquids was first proposed by 3D Systems in the United States in the early 1980s. Developed from the initial stage limited to plastic materials, nylon and metal materials are now used as output materials for 3D printers, and with increased precision, they are also used as equipment to produce customized medical devices.
3D 프린터는 입체적인 형상의 출력물을 만들어내는 방법에 따라 크게 FDM(Fused Deposition Modeling), SLA(Stereolithography Apparatus), SLS(Selective Laser Simtering), DLP(Direct Light Processing) 방식으로 나뉜다.3D printers are largely divided into FDM (Fused Deposition Modeling), SLA (Stereolithography Apparatus), SLS (Selective Laser Simtering), and DLP (Direct Light Processing) methods according to the method of creating three-dimensional printouts.
상기의 다양한 3D 프린팅 방식 중 3D Systems사(社)에 의해 1986년에 개발된 SLA 방식과 Stratasys사(社)에 의해 1989년에 개발된 FDM 방식이 가장 일반적으로 사용되고 있으며, 특히 FDM 방식의 3D 프린터는 그 구조가 간단하고 가격이 저렴하여 교육용과 개인용으로도 널리 사용되고 있다.Among the above various 3D printing methods, the SLA method developed in 1986 by 3D Systems and the FDM method developed in 1989 by Stratasys are the most commonly used. Because of its simple structure and low price, it is widely used for educational and personal purposes.
FDM 방식은 PLA(Poly Latic Acid) 또는 ABS(Acryontrie Butadiene Styrene) 등의 플라스틱 필라멘트를 프린터 헤드에서 녹여서 적층하는 방식이다. 더 구체적으로는 용융되어 분출된 플라스틱 필라멘트를 종이보다 얇은 0.01~0.08mm의 층으로 겹겹이 쌓아 입체적인 형상을 만들어내는 것이다.The FDM method is a method of laminating plastic filaments such as PLA (Poly Latic Acid) or ABS (Acryontrie Butadiene Styrene) by melting them in the printer head. More specifically, it creates a three-dimensional shape by stacking the melted and ejected plastic filaments in layers of 0.01 to 0.08 mm thinner than paper.
일반적으로 FDM 방식의 3D 프린터는 출력재료를 용융시켜 토출하는 프린터헤드와 토출된 출력재료가 쌓이게 되는 베드 그리고 프린터헤드와 베드를 이동시키기 위한 구동부로 이루어진다.In general, the FDM type 3D printer consists of a printer head that melts and discharges the output material, a bed on which the discharged output material is accumulated, and a driving unit for moving the print head and the bed.
3차원 직교 좌표계에서 x축과 y축으로 프린터헤드와 베드를 이동시켜 출력재료를 인쇄하면 2차원의 출력물이 만들어진다. 상기의 상태에서 z축으로 프린터헤드 또는 베드를 이동하여 기존의 출력물 위에 새로운 층이 형성되도록 인쇄하면 z축으로 높이를 가진 3차원 출력물이 만들어진다. 상기 작업을 반복하여 원하는 형태의 입체적인 형상을 만들어내는 것이 상기 FDM 방식의 3D 프린터의 인쇄 원리이다.In a three-dimensional Cartesian coordinate system, a two-dimensional print is created by moving the print head and bed along the x-axis and y-axis to print the output material. In the above state, if the print head or bed is moved in the z-axis to print a new layer on top of the existing output, a three-dimensional output having a height in the z-axis is created. The printing principle of the FDM-type 3D printer is to create a three-dimensional shape of a desired shape by repeating the above operation.
상기와 같은 FDM 방식의 3D 프린터는 종래에 널리 알려진 기술로서, 대한민국 공개특허번호 제10-2009-0119904호 "변성 ABS 물질을 이용한 3차원 물체 생성 방법"과 대한민국 공개특허번호 제10-2015-0089240호 "3D 프린터" 등이 있다.The FDM type 3D printer as described above is a well-known technology in the prior art, and Korean Patent Publication No. 10-2009-0119904 "Method for creating a three-dimensional object using a modified ABS material" and Korean Patent Publication No. 10-2015-0089240 arc "3D printer" and the like.
한편, 현재 제작되는 대부분의 의족의 경우 모든 과정이 수작업으로 이루어진다고 할 수 있으며, 수작업으로 인하여 제작 소요기간이 길고 제작과정에서 수정이 필요한 경우 수정이 어려워 다시 제작하여야 하는 번거로움이 있다.On the other hand, in the case of most of the currently manufactured prosthetic legs, all processes are performed manually, and due to the manual work, the production period is long, and when correction is required in the manufacturing process, it is difficult to modify it, so it is inconvenient to produce it again.
즉 수작업 의족 제작 과정은, 사용자의 적용 부위의 본을 뜨고 틀을 제작하고 그 틀에 맞는 소켓을 제작하는 과정 등의 석고를 이용한 번거로운 과정들이 필요하다.That is, the manual prosthetic leg manufacturing process requires cumbersome processes using gypsum, such as the process of cutting the user's application part, manufacturing the frame, and manufacturing the socket that fits the frame.
이와 같은 의족 제작을 위하여 3D 프린터를 이용한다면 기존 의족 제작 수작업 과정에서 발생하는 문제를 해결하고 사용자와 제작자 간의 부담을 줄여 의족시장의 새로운 활로를 확보할 수 있을 것이다.If a 3D printer is used to produce such a prosthetic leg, it will be possible to secure a new avenue in the prosthetic leg market by resolving the problems that occur in the existing manual prosthetic manufacturing process and reducing the burden between users and manufacturers.
그러나 기존 FDM 방식의 3D 프린터는 노즐, 베드, 내부 온도의 한계로 인하여 출력재료인 필라멘트 선택의 폭이 좁으며(PLA, ABS 필라멘트를 이용한 출력이 주를 이룸), 이와 같이 선택의 폭이 좁은 필라멘트의 출력물은 층과 층을 쌓는 출력 방식의 특성상 접합력이 다소 떨어져(도 4과 같이, 다음 레이어가 올라가기 전에 아래 레이어가 굳어버리면서 레이어와 레이어간 접합력이 저하됨.) 최종 출력물의 내구성이 약하다.However, the existing FDM-type 3D printer has a narrow selection of filaments as an output material due to the limitations of nozzles, beds, and internal temperatures (mostly printing using PLA and ABS filaments). Due to the nature of the output method of stacking layers, the bonding strength is somewhat low (as shown in FIG. 4, the layer below hardens before the next layer goes up, the bonding strength between layers decreases.) The durability of the final output is weak.
이와 같은 종래의 FDM 방식의 문제로 인하여, 3D 프린터로 의족을 제작한다면 출력된 의족의 내구성이 약하고 언제 파손될 지 모르기 때문에, 사용자의 체중을 버티면서 일상 생활에서 계속 사용되어야 하는 의족 등에는 적용하기 적절하지 않다.Due to the problem of the conventional FDM method, if a 3D printer is used to produce a prosthetic leg, the printed prosthetic leg is weak in durability and you do not know when it will be damaged. don't
본 발명은 상기와 같은 종래 기술의 문제점을 해결하기 위하여 안출된 것으로서, 재료 선택의 폭을 넓히고 내구성이 더욱 향상된 출력물을 출력할 수 있는 스마트 내열 융합 적층기를 제공하고자 한다.The present invention has been devised to solve the problems of the prior art as described above, and it is an object of the present invention to provide a smart heat-resistant fusion laminator capable of outputting an output with improved durability and a wider selection of materials.
상기의 과제를 해결하기 위하여 본 발명은, 출력재료를 용융시켜 토출하는 노즐부, 상기 노즐부로부터 토출된 출력재료가 쌓이게 되는 베드를 포함하여 이루어지는 스마트 내열 융합 적층기에 있어서 : 상기 노즐부 및 상기 베드가 내부에 위치되는 다각통 형태의 일부를 형성하도록 배치되어 일측면이 개방된 챔버를 형성하는 복수의 고정용 벽체, 상기 챔버의 개방된 일측면을 개폐하기 위하여 마련되는 도어용 벽체, 상기 챔버의 하부를 막는 하부 수평판, 상기 챔버의 상부를 막는 상부 수평판을 포함하여 이루어지며 ; 상기 도어용 벽체와 상기 하부 수평판과 상기 상부 수평판 각각은, 금속판의 일면에 단열재 및 다른 금속판이 순차적으로 적층된 형태이며 ; 상기 고정용 벽체 각각은 열선 코일이 배치된 열선 코일층을 중심으로 양측에 단열재 및 금속판이 순차적으로 적층된 형태인 것 ; 을 특징으로 한다.In order to solve the above problems, the present invention is a smart heat-resistant fusion laminator comprising a nozzle unit for melting and discharging the output material, and a bed on which the output material discharged from the nozzle unit is stacked: the nozzle unit and the bed A plurality of fixing walls disposed to form a part of the polygonal shape positioned inside to form a chamber with one side open, a door wall provided for opening and closing the open side of the chamber, the chamber a lower horizontal plate blocking the lower portion, and an upper horizontal plate blocking the upper portion of the chamber; Each of the door wall, the lower horizontal plate, and the upper horizontal plate is a form in which an insulating material and another metal plate are sequentially stacked on one surface of a metal plate; Each of the wall for fixing is in the form of sequentially stacked insulators and metal plates on both sides around the hot wire coil layer on which the hot wire coil is disposed; is characterized by
상기에 있어서, 상기 노즐부는 수냉식 냉각 구조를 가지는 것이 바람직하다.In the above, it is preferable that the nozzle part has a water cooling type cooling structure.
상기와 같이 본 발명은, 재료 선택의 폭을 넓히고 내구성이 더욱 향상된 출력물을 출력할 수 있는 스마트 내열 융합 적층기를 제공할 수 있다.As described above, the present invention can provide a smart heat-resistant fusion laminator that can expand the selection of materials and output an output with improved durability.
또한 이와 같은 본 발명의 스마트 내열 융합 적층기에 의하여 실사용이 가능하도록 충분한 내구성을 가진 의족을 출력할 수 있다.In addition, it is possible to output a prosthetic leg having sufficient durability to enable practical use by the smart heat-resistant fusion laminator of the present invention.
이에 의하여 의족 등의 출력 과정을 단순화 시킬 수 있으며, 출력물이 사용자에게 맞지 않을 경우에도 수정 출력이 매우 용이하다.Thereby, the process of printing prosthetic legs, etc. can be simplified, and correction printing is very easy even when the output does not fit the user.
또한 기존 의족 제작 시 이용되는 석고 틀은 1회성으로 사용되는 반면, 3D 스캐너를 통하여 환부를 스캔하는 방식은 파일로 저장되기 때문에 의족 교체시기에 석고틀을 다시 제작하는 번거로움과 시간을 단축시킬 수 있다.In addition, while the plaster mold used in the production of the existing prosthesis is used only once, the method of scanning the affected area through a 3D scanner is saved as a file, so it can reduce the hassle and time of re-creating the plaster mold at the time of replacing the prosthetic leg. have.
따라서 의족 제작에 따른 제작자의 피로도를 줄이며, 수작업으로 인한 높은 제작 단가를 낮출 수 있으며, 사용자의 교체 비용 부담을 줄이고 제작자의 판매 이익률을 높일 수 있다.Therefore, it is possible to reduce the fatigue of the manufacturer due to the production of the prosthetic leg, to lower the high manufacturing cost due to manual work, to reduce the burden of replacement cost for the user, and to increase the sales profit rate of the manufacturer.
도 1은 본 발명의 일 실시예에 의한 스마트 내열 융합 적층기의 측면 개념도,1 is a side conceptual view of a smart heat-resistant fusion laminator according to an embodiment of the present invention;
도 2는 도 1의 A-A 기준 단면 개념도.Figure 2 is a conceptual view of the reference cross-section A-A of Figure 1;
도 3은 본 발명의 일 실시예에 의한 적층융합방식의 개념도,3 is a conceptual diagram of a lamination fusion method according to an embodiment of the present invention;
도 4는 종래의 기술에 의한 FDM 프린터의 출력 방식의 개념도.4 is a conceptual diagram of an output method of an FDM printer according to the prior art.
아래에서는 첨부한 도면을 참조하여 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예를 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 그리고 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 부여하였다.DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings so that those of ordinary skill in the art can easily carry out the present invention. However, the present invention may be embodied in several different forms and is not limited to the embodiments described herein. And in order to clearly explain the present invention in the drawings, parts irrelevant to the description are omitted, and similar reference numerals are given to similar parts throughout the specification.
명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다.Throughout the specification, when a part "includes" a certain element, it means that other elements may be further included, rather than excluding other elements, unless otherwise stated.
도 1은 본 발명의 일 실시예에 의한 스마트 내열 융합 적층기의 측면 개념도이며, 도 2는 도 1의 A-A 기준 단면 개념도이며, 도 3은 본 발명의 일 실시예에 의한 적층융합방식의 개념도이다.1 is a schematic side view of a smart heat-resistant fusion laminator according to an embodiment of the present invention, FIG. 2 is a schematic cross-sectional view AA of FIG. 1, and FIG. 3 is a conceptual diagram of a lamination fusion method according to an embodiment of the present invention. .
본 실시예는 챔버 형태의 3D 프린터(이하 "스마트 내열 융합 적층기"라고 함.)에 관한 것이다.This embodiment relates to a chamber type 3D printer (hereinafter referred to as "smart heat-resistant fusion laminator".).
챔버 형태를 구성하기 위하여 도어용 벽체(120)와 복수의 고정용 벽체(110)에 의하여 다각통 형태를 형성한다.In order to configure the chamber shape, a polygonal cylinder shape is formed by the door wall 120 and the plurality of fixing walls 110 .
복수의 고정용 벽체(110)는 일측면이 개방된 챔버 형태를 형성하면서 다각 통 형태의 일부를 형성하도록 배치된다.The plurality of fixing walls 110 are arranged to form a part of a polygonal tubular shape while forming a chamber shape with one side open.
본 실시예에서 3개의 고정용 벽체(110)는 사각통 형태의 일부를 형성하도록 배치된다.In this embodiment, the three fixing walls 110 are arranged to form a part of the rectangular cylinder shape.
도어용 벽체(120)는, 챔버의 개방된 일측면을 개폐하기 위하여 마련된다.The door wall 120 is provided to open and close one open side of the chamber.
도어용 벽체(120)는 일측이 어느 하나의 고정용 벽체(110)에 힌지 형태로 결합되어 챔버의 개방된 일측면을 개폐하게 된다.One side of the door wall 120 is hinged to any one of the fixing walls 110 to open and close one open side of the chamber.
따라서 3개의 고정용 벽체(110)와 도어용 벽체(120)에 의하여 사각 기둥 형태의 챔버가 형성된다.Accordingly, a chamber in the form of a square column is formed by the three fixing walls 110 and the door walls 120 .
챔버의 하부는 하부 수평판(130)에 의하여 막히며, 챔버의 상부는 상부 수평판(140)에 의하여 막히게 된다.The lower part of the chamber is blocked by the lower horizontal plate 130 , and the upper part of the chamber is blocked by the upper horizontal plate 140 .
이와 같이 하부 수평판(130), 도어용 벽체(120), 복수의 고정용 벽체(110), 상부 수평판(140)에 의하여 밀폐된 공간인 챔버를 형성할 수 있으며, 챔버 내부에 스마트 내열 융합 적층기의 주요 구동부가 배치된다.In this way, a chamber that is a closed space by the lower horizontal plate 130, the door wall 120, the plurality of fixing walls 110, and the upper horizontal plate 140 can be formed, and the smart heat-resistant fusion inside the chamber The main driving part of the laminator is arranged.
즉 출력재료를 용융시켜 토출하는 노즐부 및 노즐부로부터 토출된 출력재료가 쌓이게 되는 베드 등이 챔버 내부에 위치된다.That is, a nozzle unit for melting and discharging the output material and a bed on which the output material discharged from the nozzle unit is accumulated are located inside the chamber.
아울러 노즐부 내지 베드를 이동시키기 위한 구동수단 등도 챔버 내부에 위치된다.In addition, a driving means for moving the nozzle unit or the bed is also located inside the chamber.
한편 도어용 벽체(120)와 하부 수평판(130)과 상부 수평판(140) 각각은, 금속판(101)의 일면에 단열재(102) 및 다른 금속판(103)이 순차적으로 적층된 형태이다.Meanwhile, each of the door wall 120 , the lower horizontal plate 130 , and the upper horizontal plate 140 has a form in which the insulating material 102 and the other metal plate 103 are sequentially stacked on one surface of the metal plate 101 .
본 실시예에서 단열 효과를 높이기 위하여, 도어용 벽체(120)와 하부 수평판(130)과 상부 수평판(140) 각각은, 금속판(101)의 일면에 단열재(102) 및 다른 금속판(101), 다른 단열재(102), 또다른 금속판(101)이 순차적으로 적층된 형태이다.In order to increase the heat insulation effect in this embodiment, the door wall 120, the lower horizontal plate 130, and the upper horizontal plate 140, respectively, are insulated on one surface of the metal plate 101 and the other metal plate 101. , another insulating material 102, and another metal plate 101 are sequentially stacked.
여기에서 단열재(102)는 글라스울 단열재를 채택할 수 있다.Here, the insulating material 102 may adopt a glass wool insulating material.
한편 고정용 벽체(110) 각각은, 열선 코일이 배치된 열선 코일층(103)을 중심으로 양측에 단열재(102) 및 금속판(101)이 각각 적층된 형태이다.On the other hand, each of the fixing walls 110 has a form in which the heat insulating material 102 and the metal plate 101 are respectively stacked on both sides around the hot wire coil layer 103 on which the hot wire coil is disposed.
여기에서 단열재(102)는 글라스울 단열재를 채택할 수 있다.Here, the insulating material 102 may adopt a glass wool insulating material.
따라서 고정용 벽체(110)의 열선 코일층(103)으로부터 발산되는 열에 의하여 챔버 내부의 온도를 80℃~100℃로 유지할 수 있다.Therefore, the temperature inside the chamber can be maintained at 80° C. to 100° C. by the heat emitted from the hot wire coil layer 103 of the fixing wall 110 .
이에 의하여 ABS(Acrylonitrile-Butadiene-Stryene), PLA(Poly Lactic Acid)를 비롯한 PETG(PolyEthylene Terephthalate Glycol), 카본, 울템 등 고온을 요구하는 필라멘트 등과 같이 선택의 폭이 다양하게 되어 다양한 재료를 출력할 수 있다.As a result, the choice of filaments requiring high temperatures such as ABS (Acrylonitrile-Butadiene-Stryene), PLA (Poly Lactic Acid), PETG (PolyEthylene Terephthalate Glycol), carbon, Ultem, etc. have.
또한 고온 환경에서의 출력으로 인하여, 도 3과 같이 새로운 레이어가 올라가기 전에 아래의 레이어가 굳는 현상을 방지할 수 있어 레이어간 접합력이 증가되어 출력되는 제품의 내구성이 향상될 수 있다. In addition, due to the output in a high temperature environment, it is possible to prevent the layer below from hardening before the new layer is raised as shown in FIG. 3 , so that the bonding force between the layers is increased, thereby improving the durability of the outputted product.
따라서 본 발명의 하나의 출력물로서, 기존 수작업에 의한 의족 제품과 동일한 강도 내지 내구성을 가질 수 있는 의족 바디를 출력할 수 있다.Therefore, as an output of the present invention, a prosthetic leg body having the same strength or durability as a conventional manual prosthetic leg product can be output.
한편 노즐부는 수냉식 냉각 구조를 가지는 것이 바람직하다.On the other hand, it is preferable that the nozzle part has a water cooling type cooling structure.
본 실시예에서 노즐부는 최대 600℃이내의 온도를 버틸 수 있도록 설계하며, 이러한 설계에도 불구하고 고온 출력으로 인하여 발생하는 필라멘트 흘러내림 등을 예방하고 노즐의 기대 수명을 높이기 위하여 수냉식 냉각 구조를 도입하였다.In this embodiment, the nozzle part is designed to withstand a maximum temperature of 600 ° C. Despite this design, a water-cooled cooling structure is introduced to prevent the filament from flowing down caused by high-temperature output and to increase the life expectancy of the nozzle. .
전술한 본 발명의 설명은 예시를 위한 것이며, 본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것일 뿐 한정적이 아닌 것으로 이해되어야만 한다. 예를 들어, 단일형으로 설명되어 있는 각 구성 요소는 분산되어 실시될 수도 있으며, 마찬가지로 분산된 것으로 설명되어 있는 구성 요소들도 결합된 형태로 실시될 수 있다.The above description of the present invention is for illustration, and those of ordinary skill in the art to which the present invention pertains can understand that it can be easily modified into other specific forms without changing the technical spirit or essential features of the present invention. will be. Therefore, it should be understood that the embodiments described above are illustrative in all respects and not restrictive. For example, each component described as a single type may be implemented in a dispersed form, and likewise components described as distributed may be implemented in a combined form.
본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.The scope of the present invention is indicated by the following claims rather than the above detailed description, and all changes or modifications derived from the meaning and scope of the claims and their equivalent concepts should be interpreted as being included in the scope of the present invention. do.
본 발명은 재료 선택의 폭이 넓고 출력물의 내구성을 향상시킬 수 있는 3D 프린터로서 이용될 수 있다.The present invention can be used as a 3D printer that has a wide selection of materials and can improve the durability of printed products.

Claims (2)

  1. 출력재료를 용융시켜 토출하는 노즐부, 상기 노즐부로부터 토출된 출력재료가 쌓이게 되는 베드를 포함하여 이루어지는 스마트 내열 융합 적층기에 있어서 : In a smart heat-resistant fusion laminator comprising a nozzle unit for melting and discharging the output material, and a bed on which the output material discharged from the nozzle unit is stacked:
    상기 노즐부 및 상기 베드가 내부에 위치되는 다각통 형태의 일부를 형성하도록 배치되어 일측면이 개방된 챔버를 형성하는 복수의 고정용 벽체, 상기 챔버의 개방된 일측면을 개폐하기 위하여 마련되는 도어용 벽체, 상기 챔버의 하부를 막는 하부 수평판, 상기 챔버의 상부를 막는 상부 수평판을 포함하여 이루어지며 ;A plurality of fixing walls disposed to form a part of a polygonal cylinder shape in which the nozzle unit and the bed are located to form a chamber with one side open, a door provided to open and close the one side open side of the chamber a wall for use, a lower horizontal plate blocking the lower portion of the chamber, and an upper horizontal plate blocking the upper portion of the chamber;
    상기 도어용 벽체와 상기 하부 수평판과 상기 상부 수평판 각각은, 금속판의 일면에 단열재 및 다른 금속판이 순차적으로 적층된 형태이며 ;Each of the door wall, the lower horizontal plate, and the upper horizontal plate is a form in which an insulating material and another metal plate are sequentially stacked on one surface of a metal plate;
    상기 고정용 벽체 각각은 열선 코일이 배치된 열선 코일층을 중심으로 양측에 단열재 및 금속판이 순차적으로 적층된 형태인 것 ; 을 특징으로 하는 스마트 내열 융합 적층기.Each of the wall for fixing is in the form of sequentially stacked insulators and metal plates on both sides around the hot wire coil layer on which the hot wire coil is disposed; Smart heat-resistant fusion laminating machine, characterized by.
  2. 제 1 항에 있어서, The method of claim 1,
    상기 노즐부는 수냉식 냉각 구조를 가지는 것을 특징으로 하는 스마트 내열 융합 적층기.Smart heat-resistant fusion laminator, characterized in that the nozzle unit has a water-cooled cooling structure.
PCT/KR2020/012013 2020-07-09 2020-09-07 Smart heat-resistant fusion laminator WO2022010032A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20200084466 2020-07-09
KR10-2020-0084466 2020-07-09

Publications (1)

Publication Number Publication Date
WO2022010032A1 true WO2022010032A1 (en) 2022-01-13

Family

ID=79553306

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/012013 WO2022010032A1 (en) 2020-07-09 2020-09-07 Smart heat-resistant fusion laminator

Country Status (1)

Country Link
WO (1) WO2022010032A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170274454A1 (en) * 2014-05-15 2017-09-28 Asia America Industrial Manufacture Inc. Extruded metal flow 3d printer
KR101878233B1 (en) * 2017-09-28 2018-07-13 세인스틸 주식회사 Thermal shrinkage Casing having internal heating member, Thermal shrinkage Seat having internal heating member and method for manufacturing thereof
US20180200955A1 (en) * 2015-07-15 2018-07-19 Apium Additive Technologies Gmbh 3-d printing device
KR20200071830A (en) * 2018-11-30 2020-06-22 박성호 Three-Dimensional Structure Output Device for High-Melting Super Engineering Plastics with Water-Cooled Nozzles
KR20200071804A (en) * 2018-11-30 2020-06-22 주식회사 와이테크 3d printer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170274454A1 (en) * 2014-05-15 2017-09-28 Asia America Industrial Manufacture Inc. Extruded metal flow 3d printer
US20180200955A1 (en) * 2015-07-15 2018-07-19 Apium Additive Technologies Gmbh 3-d printing device
KR101878233B1 (en) * 2017-09-28 2018-07-13 세인스틸 주식회사 Thermal shrinkage Casing having internal heating member, Thermal shrinkage Seat having internal heating member and method for manufacturing thereof
KR20200071830A (en) * 2018-11-30 2020-06-22 박성호 Three-Dimensional Structure Output Device for High-Melting Super Engineering Plastics with Water-Cooled Nozzles
KR20200071804A (en) * 2018-11-30 2020-06-22 주식회사 와이테크 3d printer

Similar Documents

Publication Publication Date Title
US10836100B2 (en) Sterile environment for additive manufacturing
CN110049838A (en) Increasing material manufacturing with the supply of thermal flexure material
CN110023010A (en) Stress relaxation in the part of increasing material manufacturing
WO2017045541A1 (en) Three-dimensional printer and printing method therefor
WO2020091368A1 (en) Multiple nozzle three-dimensional printing system and three-dimensional bio-printing method using same
EP3504047B1 (en) Baffle doors for additive manufacturing system
WO2022010032A1 (en) Smart heat-resistant fusion laminator
WO2015126165A1 (en) Method for forming stereoscopic pattern using adhesive fabric
US11046009B2 (en) System and method for malware detection in additive manufactured parts
WO2001038061A1 (en) Process of making a three-dimensional object
CN106041083B (en) For manufacturing the scanning system, method and three-dimensional body manufacturing equipment of three-dimensional body
CN204451221U (en) Three dimensional model printing system
CN106608044A (en) Apparatus for manufacturing three-dimensional objects
CN105881907A (en) Colorful printing mechanism of 3D printer
US20180345650A1 (en) Method of additive manufacturing an internal wave sparse structure with varying geometry for localized tunable structural properties throughout a part
CN107164305A (en) A kind of external class brain tissue and its construction method
WO2021256756A1 (en) Nozzle device for fdm-type 3d printer
Conrad et al. Tool changing 3D printer for rapid prototyping of advanced soft robotic elements
Reizabal et al. MEWron: An open-source melt electrowriting platform
US20220314542A1 (en) 3d printer with self-supporting thermal isolator
WO2021076115A1 (en) Generation of modified model data for three-dimensional printers
CN108527839B (en) 3D printing method and 3D printer for crystalline polymer
CN106163999B (en) The manufacturing device and optical element forming set of molds of optical element
CN106346778A (en) Three-dimensional full-color composite printing device
WO2019078639A1 (en) Printer device using acoustic levitation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20944321

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20944321

Country of ref document: EP

Kind code of ref document: A1