WO2022009925A1 - 工作機械の制御装置 - Google Patents

工作機械の制御装置 Download PDF

Info

Publication number
WO2022009925A1
WO2022009925A1 PCT/JP2021/025630 JP2021025630W WO2022009925A1 WO 2022009925 A1 WO2022009925 A1 WO 2022009925A1 JP 2021025630 W JP2021025630 W JP 2021025630W WO 2022009925 A1 WO2022009925 A1 WO 2022009925A1
Authority
WO
WIPO (PCT)
Prior art keywords
swing
command
control device
machine tool
determination unit
Prior art date
Application number
PCT/JP2021/025630
Other languages
English (en)
French (fr)
Inventor
裕樹 熊本
健太 山本
Original Assignee
ファナック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ファナック株式会社 filed Critical ファナック株式会社
Priority to DE112021003694.7T priority Critical patent/DE112021003694T5/de
Priority to JP2022535371A priority patent/JP7509881B2/ja
Priority to US18/004,419 priority patent/US20230333532A1/en
Priority to CN202180048390.8A priority patent/CN115777087A/zh
Publication of WO2022009925A1 publication Critical patent/WO2022009925A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/19Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q15/00Automatic control or regulation of feed movement, cutting velocity or position of tool or work
    • B23Q15/007Automatic control or regulation of feed movement, cutting velocity or position of tool or work while the tool acts upon the workpiece
    • B23Q15/0075Controlling reciprocating movement, e.g. for planing-machine
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/4093Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by part programming, e.g. entry of geometrical information as taken from a technical drawing, combining this with machining and material information to obtain control information, named part programme, for the NC machine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B1/00Methods for turning or working essentially requiring the use of turning-machines; Use of auxiliary equipment in connection with such methods
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/49Nc machine tool, till multiple
    • G05B2219/49055Remove chips from probe, tool by vibration
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/50Machine tool, machine tool null till machine tool work handling
    • G05B2219/50049Control machine as function of position, angle of workpiece

Definitions

  • the present invention relates to a control device for a machine tool.
  • rocking cutting may be applied as a countermeasure against chips such as drilling and turning.
  • chips such as drilling and turning.
  • a technique of superimposing a swing command on a movement command in order to realize swing cutting see, for example, Patent Document 1).
  • this technique it is possible to perform rocking cutting while shredding chips by the superposition command generated by superimposing the swing command on the movement command.
  • a discontinuous superimposition command is generated by superimposing the swing command. Due to such a discontinuous superposition command, the acceleration may change sharply and a shock may occur in the machine tool. If a shock occurs in a machine tool, it may adversely affect the machining accuracy.
  • One aspect of the present disclosure is a control device for a machine tool that processes a tool and a work while relatively swinging, and includes a swing command generator that generates a swing command based on swing conditions, and the swing command generation unit. Generated by superimposing the swing command on the movement command according to the judgment result of the swing start / end determination unit that determines the start / end of the swing based on the motion command and the determination result of the swing start / end determination unit.
  • a control unit for relatively swinging the tool and the work based on the superimposed command is provided, and the swing start / end determination unit has an absolute value of the swing command equal to or less than a specified value. It is a machine tool control device that determines the start / end of rocking in a certain case.
  • a machine tool control device capable of reducing a shock generated in a machine tool in rocking cutting.
  • the swing command means the instantaneous value of the command in a certain swing phase
  • the swing amplitude means the amplitude value of a sine wave or a cosine wave.
  • FIG. 1 is a functional block diagram of a machine tool control device 1 according to the first embodiment of the present disclosure.
  • the machine tool control device 1 according to the present embodiment includes a servo control device 10 and drives and controls a motor 30 that drives a feed shaft.
  • the machine tool control device 1 includes a first adder 11, a swing condition setting unit 12, a swing command generation unit 13, and a swing start / end determination.
  • a unit 14, a second adder 15, a learning controller 16, a third adder 17, and a position / speed control unit 18 are provided.
  • the movement command to the motor 30 generated by the movement command generation unit (not shown) based on the machining conditions is the servo control device 10 described later. It is input to the first adder 11.
  • the first adder 11 calculates the position deviation. Specifically, the first adder 11 calculates a position deviation, which is a difference between the position feedback and the position command based on the position detection by the encoder of the motor 30 of the feed shaft.
  • the rocking condition setting unit 12 sets the rocking condition. Specifically, the swing condition setting unit 12 sets the swing amplitude or the swing amplitude magnification and the swing frequency or the swing frequency magnification.
  • the swing condition including the swing amplitude or the swing amplitude magnification and the swing frequency or the swing frequency magnification is input to the swing command generation unit 13 described later.
  • the swing command generation unit 13 generates a swing command based on the swing condition.
  • the swing command generation unit 13 may obtain the swing command from the swing conditions and processing conditions such as the swing amplitude magnification and the swing frequency magnification, or the swing command from the swing conditions such as the swing amplitude and the swing frequency. You may ask for. Further, the magnification and the condition other than the magnification may be arbitrarily combined. That is, in consideration of application to the case where the swing shaft is stopped, if the swing amplitude and swing frequency are set as they are under the swing conditions, the swing command is issued without using the machining conditions. It can also be generated.
  • the swing start / end determination unit 14 determines the start / end of swing based on the swing command. The determination of the start / end of the swing by the swing start / end determination unit 14 will be described in detail later.
  • the second adder 15 generates a superposition command. Specifically, the second adder 15 generates a superposition command by superimposing the swing command generated by the swing command generation unit 13 on the position deviation calculated by the first adder 11. do.
  • the second adder 15 may be configured to add the swing command generated by the swing command generation unit 13 to the movement command.
  • the swing command generation unit 13 may generate a swing command (speed command)
  • the second adder 15 may be configured to add the swing command to the movement command (speed command).
  • the second adder 15 superimposes the swing command on the position deviation according to the determination result of the swing start / end determination unit 14. That is, when the swing start / end determination unit 14 determines that the swing start is started, the second adder 15 starts superimposing the swing command on the position deviation, and the swing start / end determination unit 14 starts the swing. When it is determined that the motion is completed, the superimposition of the swing command on the position deviation is terminated.
  • the learning controller 16 calculates the correction amount of the superimposition command based on the superimposition command, and corrects the superimposition command by adding the calculated correction amount to the superimposition command by the third adder 17.
  • the learning controller 16 has a memory, stores the swing phase and the correction amount in relation to each other in one cycle or a plurality of swing cycles, and stores the swing operation phase according to the responsiveness of the motor 30.
  • the correction amount stored in the memory is read out at the timing at which the delay can be compensated, and is output to the third adder 17.
  • the correction amount to be output may be calculated from the correction amount close to the swing phase.
  • the higher the swing frequency the larger the position deviation with respect to the swing command. Therefore, by performing the correction by the learning controller 16, it is possible to improve the followability to the periodic swing command. As a result, the followability to the superimposition command is improved, and the shock generated in the machine tool during the rocking cutting process can be reduced. As a result, the processing accuracy can be improved.
  • the position / speed control unit 18 generates a torque command for the motor 30 that drives the feed shaft based on the superposition command after the correction amount is added, and controls the motor 30 by the generated torque command. As a result, machining is performed while the tool and the work are relatively swung.
  • the swing start / end determination unit 14 of the present embodiment determines the start / end of swing when the absolute value of the swing command is equal to or less than the specified value.
  • the specified value is set to, for example, 0 or a value in the vicinity of 0, and may be calculated based on the acceleration.
  • the swing start / end condition is satisfied, it is determined that the swing start / end. For example, it may be determined by a swing amplitude, a movement command, a notification from a host control device that manages a machining program, or an external signal.
  • the swing amplitude or the movement command When judging by the swing amplitude or the movement command, if it is more than the specified value, it may be judged as start, if it is less than the specified value, it may be judged as end, or the specified value for starting / ending judgment may have hysteresis. ..
  • the start (ON) is notified and the end (OFF) is notified.
  • the absolute value of the swing command superimposed on the position deviation is not more than the specified value, it is possible to suppress the generation of the discontinuous superposition command at the start / end of the swing, and it is possible to reduce the shock generated in the machine tool.
  • the swing start / end timing since the swing start / end timing is determined by the swing start / end determination unit 14, the swing start / end timing may deviate from the swing start / end timing specified in the machining program.
  • the swing start / end determination unit 14 may be configured to determine the swing start / end timing so that the amount of deviation from the swing start / end timing specified in the machining program is within a predetermined range. ..
  • FIG. 2 is a diagram showing an example of a movement command, and is a diagram when the movement command is constant.
  • the movement command shown in FIG. 2 has a constant speed, it is a linear command in which time and the amount of movement are in a proportional relationship.
  • FIG. 3 is a diagram showing an example of a swing command, which is a case of a sinusoidal command.
  • FIG. 4 is a diagram showing a superimposition command when the timing of starting / ending the superimposition of the swing command of FIG. 3 with respect to the movement command of FIG. 2 deviates from the swing phase of 0 ° and 180 °. Since the swing command in FIG. 3 is a sine wave, the swing command becomes 0 when the swing phases are 0 ° and 180 °. Therefore, if the timing for starting / ending the superposition of the swing command in FIG. 3 deviates from the swing phase of 0 ° and 180 °, the swing command becomes a value other than 0, and therefore, the superposition start / end as shown in FIG. 4 The command at the end will be discontinuous. In FIG. 4, the portion surrounded by the broken line represents the start / end of superimposition, and it can be seen that a large shock is generated.
  • FIG. 5 is a diagram showing a superposition command when the timing of starting / ending the superposition of the swing command of FIG. 3 with respect to the movement command of FIG. 2 does not deviate from the swing phases of 0 ° and 180 °. be.
  • the timing of starting / ending the superposition of the swing command in FIG. 3 is the swing phase of 0 ° and 180 °
  • the swing command becomes 0, so that the command at the start / end of superimposition is as shown in FIG. It will be continuous and smooth.
  • the portion surrounded by the broken line represents the start / end of superimposition, and it can be seen that the shock is reduced.
  • FIG. 6 is a diagram showing another example of the swing command. Like the swing command shown in FIG. 6, it may be a cosine wave-shaped command and the position of the vertical axis may be offset.
  • FIG. 7 is a diagram showing a superposition command when the timing of starting / ending the superposition of the swing command of FIG. 6 with respect to the movement command of FIG. 2 deviates from the swing phase at which the swing command becomes 0.
  • the swing command in FIG. 6 is a cosine wave and the position of the vertical axis is offset, and as is clear from FIG. 6, the swing command becomes 0 when the swing phase is 0 °. Therefore, if the timing for starting / ending the superposition of the swing command in FIG. 6 deviates from the swing phase of 0 °, the swing command becomes a value other than 0, and therefore, as shown in FIG. 7, at the time of the start / end of superimposition. The command becomes discontinuous. In FIG. 7, the portion surrounded by the broken line represents the start / end of superimposition, and it can be seen that a large shock is generated.
  • FIG. 8 shows a superposition command when the timing of starting / ending the superposition of the swing command of FIG. 6 with respect to the movement command of FIG. 2 does not deviate from the swing phase in which the swing command becomes 0. It is a figure which shows.
  • the timing for starting / ending the superimposition of the superposition of the swing command in FIG. 6 is the swing phase of 0 °, the swing command becomes 0. Therefore, as shown in FIG. 8, the commands at the start / end of superimposition are continuous. It will be smooth.
  • the portion surrounded by the broken line represents the start / end of superimposition, and it can be seen that the shock is reduced.
  • the shock generated in the machine tool can be reduced by starting / stopping the swing at the timing when the swing command is small.
  • the swing start / end determination unit 14 for determining the start / end of the swing based on the swing command is provided, and the swing command is issued according to the determination result of the swing start / end determination unit 14.
  • the configuration is such that the superimposition command is generated by superimposing on the movement command. Further, when the absolute value of the swing command is equal to or less than the specified value, the swing start / end determination unit 14 determines the start / end of the swing.
  • FIG. 9 is a diagram showing a configuration of a machine tool control device 1A according to the second embodiment of the present disclosure.
  • the machine tool control device 1A according to the second embodiment is configured to include a servo control device 10A, and further includes a swing amplitude calculation unit 121 and a swing phase calculation unit 122. It is different from one embodiment.
  • the swing command generation unit 13A corresponds to the swing command generation unit 13 of the first embodiment
  • the swing start / end determination unit 14A corresponds to the swing start / end determination unit 14 of the first embodiment.
  • the other configurations are the same as those in the first embodiment.
  • the swing amplitude calculation unit 121 calculates the swing amplitude based on the swing conditions. For example, the swing amplitude calculation unit 121 calculates the swing amplitude based on the swing amplitude magnification set by the swing condition setting unit 12.
  • the swing phase calculation unit 122 calculates the swing phase based on the swing conditions. For example, the swing phase calculation unit 122 calculates the swing phase (swing frequency) based on the swing frequency magnification set by the swing condition setting unit 12.
  • the swing command generation unit 13A of the present embodiment generates a swing command based on the swing amplitude calculated by the swing amplitude calculation unit 121 and the swing phase calculated by the swing phase calculation unit 122.
  • the swing start / end determination unit 14A of the present embodiment swings based on at least one of the swing amplitude calculated by the swing amplitude calculation unit 121 and the swing phase calculated by the swing phase calculation unit 122. Judge the start / end of the motion.
  • the swing start / end determination unit 14A may determine the swing start / end when, for example, the swing amplitude (amplitude value of a sine wave or a cosine wave) is equal to or less than a specified value. As a result, it is possible to suppress discontinuous commands at the start / end of superposition of swing commands.
  • the swing start / end determination unit 14A may determine the swing start / end when the swing phase is such that the absolute value of the swing command is equal to or less than the specified value. By setting the specified value to 0, it becomes possible to further reduce the shock.
  • the start / end of swing may be determined when the swing phase is 0 ° or 180 °.
  • the start / end of swing may be determined when the swing phase is 0 °.
  • the superimposition of the swing command on the movement command is started / ended, so that the swing command is discontinuous.
  • the generation of commands can be suppressed, and the shock generated in the machine tool can be reduced. As a result, the machining accuracy of rocking cutting can be improved.
  • the configuration includes the swing amplitude calculation unit 121 and the swing phase calculation unit 122, but a configuration including only one of these may be used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Geometry (AREA)
  • Mechanical Engineering (AREA)
  • Numerical Control (AREA)

Abstract

揺動切削加工において工作機械に生じるショックを低減できる工作機械の制御装置を提供すること。工具とワークを相対的に揺動させながら加工する工作機械の制御装置1であって、揺動条件に基づいて揺動指令を生成する揺動指令生成部13と、揺動指令に基づいて揺動の開始/終了を判定する揺動開始/終了判定部14と、揺動開始/終了判定部14の判定結果に応じて揺動指令を移動指令に重畳することにより生成される重畳指令に基づいて、工具とワークとを相対的に揺動させる位置速度制御部18と、を備え、揺動開始/終了判定部14は、揺動指令の絶対値が規定値以下である場合に揺動の開始/終了を判定する、工作機械の制御装置1である。

Description

工作機械の制御装置
 本発明は、工作機械の制御装置に関する。
 従来、穴開け加工や旋削加工等の切屑対策として、揺動切削を適用することがある。例えば、揺動切削加工を実現するために、移動指令に揺動指令を重畳する技術が知られている(例えば、特許文献1参照)。この技術によれば、移動指令に揺動指令を重畳することで生成される重畳指令により、切屑を細断しながら揺動切削加工が可能である。
特開2019-28597号公報
 ところで、移動指令に揺動指令を重畳開始/終了する際の揺動位相によっては、揺動指令の重畳により不連続な重畳指令が生成される。このような不連続な重畳指令により、加速度が急峻に変化し、工作機械にショックが発生することがある。工作機械にショックが発生すると、加工精度に悪影響を及ぼすおそれがある。
 従って、揺動切削加工において工作機械に生じるショックを低減できる工作機械の制御装置が望まれる。
 本開示の一態様は、工具とワークを相対的に揺動させながら加工する工作機械の制御装置であって、揺動条件に基づいて揺動指令を生成する揺動指令生成部と、前記揺動指令に基づいて揺動の開始/終了を判定する揺動開始/終了判定部と、前記揺動開始/終了判定部の判定結果に応じて前記揺動指令を移動指令に重畳することにより生成される重畳指令に基づいて、前記工具と前記ワークとを相対的に揺動させる制御部と、を備え、前記揺動開始/終了判定部は、前記揺動指令の絶対値が規定値以下である場合に揺動の開始/終了を判定する、工作機械の制御装置である。
 本開示の一態様によれば、揺動切削加工において工作機械に生じるショックを低減できる工作機械の制御装置を提供できる。
本開示の第1実施形態に係る工作機械の制御装置の構成を示す図である。 移動指令の一例を示す図である。 揺動指令の一例を示す図である。 図2の移動指令に対する図3の揺動指令の重畳を開始/終了するタイミングが揺動位相0°及び180°からずれた場合の重畳指令を示す図である。 図2の移動指令に対する図3の揺動指令の重畳を開始/終了するタイミングが揺動位相0°及び180°からずれていない場合の重畳指令を示す図である。 揺動指令の他の例を示す図である。 図2の移動指令に対する図6の揺動指令の重畳を開始/終了するタイミングが、揺動指令が0となる揺動位相からずれた場合の重畳指令を示す図である。 図2の移動指令に対する図6の揺動指令の重畳を開始/終了するタイミングが、揺動指令が0となる揺動位相からずれていない場合の重畳指令を示す図である。 本開示の第2実施形態に係る工作機械の制御装置の構成を示す図である。
 以下、本開示の実施形態について、図面を参照しながら詳しく説明する。なお、第2実施形態以降の説明において、第1実施形態と共通する構成、効果についてはその説明を省略し、第1実施形態と相違する構成、効果についてのみ説明する。また、本明細書において、揺動指令とは、ある揺動位相における指令の瞬時値を意味し、揺動振幅とは、正弦波又は余弦波の振幅値を意味する。
[第1実施形態]
 図1は、本開示の第1実施形態に係る工作機械の制御装置1の機能ブロック図である。図1に示されるように、本実施形態に係る工作機械の制御装置1は、サーボ制御装置10を含んで構成され、送り軸を駆動するモータ30を駆動制御する。
 本実施形態に係る工作機械の制御装置1は、図1に示されるように、第1加算器11と、揺動条件設定部12と、揺動指令生成部13と、揺動開始/終了判定部14と、第2加算器15と、学習制御器16と、第3加算器17と、位置速度制御部18と、を備える。
 図1に示されるように、本実施形態に係る工作機械の制御装置1では、図示しない移動指令生成部によって加工条件に基づいて生成されるモータ30に対する移動指令が、後述するサーボ制御装置10の第1加算器11に入力される。
 第1加算器11は、位置偏差を算出する。具体的には、第1加算器11は、送り軸のモータ30のエンコーダによる位置検出に基づいた位置フィードバックと位置指令との差分である位置偏差を算出する。
 揺動条件設定部12は、揺動条件を設定する。具体的に、揺動条件設定部12は、揺動振幅又は揺動振幅倍率と、揺動周波数又は揺動周波数倍率を設定する。これら揺動振幅又は揺動振幅倍率と、揺動周波数又は揺動周波数倍率とからなる揺動条件は、後述の揺動指令生成部13に入力される。
 揺動指令生成部13は、揺動条件に基づいて揺動指令を生成する。揺動指令生成部13は、揺動振幅倍率及び揺動周波数倍率という揺動条件と加工条件から揺動指令を求めても良いし、揺動振幅及び揺動周波数という揺動条件から揺動指令を求めても良い。また、倍率と倍率ではない条件は任意で組み合わせてもよい。即ち、揺動軸が停止している場合等への適用も考慮して、揺動条件にて揺動振幅や揺動周波数をそのまま設定する形であれば加工条件を用いずに揺動指令を生成することもできる。
 揺動開始/終了判定部14は、揺動指令に基づいて揺動の開始/終了を判定する。この揺動開始/終了判定部14による揺動の開始/終了の判定については、後段で詳述する。
 第2加算器15は、重畳指令を生成する。具体的には、第2加算器15は、第1加算器11で算出された位置偏差に対して、揺動指令生成部13で生成された揺動指令を重畳することにより、重畳指令を生成する。なお、第2加算器15は、揺動指令生成部13で生成された揺動指令を移動指令に加算する構成としてもよい。あるいは、揺動指令生成部13では揺動指令(速度指令)を生成し、第2加算器15は揺動指令を移動指令(速度指令)に加算する構成としてもよい。
 また、第2加算器15は、揺動開始/終了判定部14の判定結果に応じて、揺動指令を位置偏差に重畳する。即ち、第2加算器15は、揺動開始/終了判定部14により揺動開始と判定された場合には位置偏差に対する揺動指令の重畳を開始し、揺動開始/終了判定部14により揺動終了と判定された場合には位置偏差に対する揺動指令の重畳を終了する。
 学習制御器16は、重畳指令に基づいて重畳指令の補正量を算出し、算出された補正量を第3加算器17により重畳指令に加算することにより、重畳指令を補正する。この学習制御器16は、メモリを有し、揺動の1周期もしくは複数周期内において揺動位相及び補正量を関係づけてメモリに記憶し、モータ30の応答性に応じた揺動動作の位相遅れを補償できるタイミングにメモリに記憶された補正量を読み出して第3加算器17に出力する。補正量を出力する揺動位相がメモリに記憶された揺動位相に存在しない場合、揺動位相の近い補正量から出力する補正量を算出しても良い。一般的に、揺動周波数が高くなるほど揺動指令に対する位置偏差は大きくなるため、この学習制御器16による補正を行うことで、周期的な揺動指令に対する追従性を向上させることができる。結果として、重畳指令への追従性も向上し、揺動切削加工中に工作機械に生じるショックを低減できる。ひいては、加工精度を向上できる。
 位置速度制御部18は、補正量加算後の重畳指令に基づいて、送り軸を駆動するモータ30に対するトルク指令を生成し、生成したトルク指令によりモータ30を制御する。これにより、工具とワークとを相対的に揺動させながら加工が行われる。
 次に、揺動開始/終了判定部14による揺動の開始/終了の判定について詳しく説明する。
 本実施形態の揺動開始/終了判定部14は、揺動指令の絶対値が規定値以下である場合に、揺動の開始/終了の判定を行う。規定値は、例えば0や0近傍の値に設定され、加速度に基づいて算出しても良い。このタイミングにおいて、揺動開始/終了条件が満たされた場合に揺動開始/終了と判断する。例えば、揺動振幅、移動指令、加工プログラムを管理する上位制御装置からの通知、外部信号によって判断しても良い。揺動振幅や移動指令により判断する場合、規定値以上であれば開始、規定値未満であれば終了と判断してもよいし、開始/終了判断を行う規定値にヒステリシスを持たせても良い。上位制御装置からの通知や外部信号により判断する場合、開始(ON)が通知されれば開始と判断し、終了(OFF)が通知されれば終了と判断すれば良い。位置偏差に重畳される揺動指令の絶対値が規定値以下であることにより、揺動開始/終了時における不連続な重畳指令の生成を抑制でき、工作機械に生じるショックを低減できる。
 なお本実施形態では、揺動開始/終了判定部14により揺動の開始/終了のタイミングが決定されるため、加工プログラムで規定した揺動開始/終了のタイミングからずれることがある。揺動開始/終了判定部14は、加工プログラムで規定した揺動開始/終了のタイミングからのずれ量が所定範囲内になるように、揺動の開始/終了のタイミングを決定する構成としても良い。
 図2~図8に示す具体例を参照して、揺動開始/終了判定部14による揺動の開始/終了の判定について、より具体的に説明する。
 図2は、移動指令の一例を示す図で移動指令が一定の場合の図である。図2に示す移動指令が一定速度の場合、時間と移動量が比例関係にある直線状の指令となる。また、図3は、揺動指令の一例を示す図で、正弦波状の指令の場合である。
 図4は、図2の移動指令に対する図3の揺動指令の重畳を開始/終了するタイミングが揺動位相0°及び180°からずれた場合の重畳指令を示す図である。図3の揺動指令は正弦波であるため、揺動位相0°及び180°の場合に揺動指令は0となる。そのため、図3の揺動指令の重畳を開始/終了するタイミングが揺動位相0°及び180°からずれると、揺動指令は0以外の値となるため、図4に示すように重畳開始/終了時の指令が不連続なものとなる。図4中、破線で囲まれた部分が重畳開始/終了時を表しており、大きなショックが発生していることが分かる。
 これに対して、図5は、図2の移動指令に対する図3の揺動指令の重畳を開始/終了するタイミングが揺動位相0°及び180°からずれていない場合の重畳指令を示す図である。図3の揺動指令の重畳を開始/終了するタイミングが揺動位相0°及び180°であると、揺動指令は0となるため、図5に示すように重畳開始/終了時の指令が連続的で滑らかなものとなる。図5中、破線で囲まれた部分が重畳開始/終了時を表しており、ショックが低減されていることが分かる。
 また、図6は、揺動指令の他の例を示す図である。図6に示す揺動指令のように、余弦波状の指令で、かつ、縦軸の位置がオフセットされたものであっても良い。
 図7は、図2の移動指令に対する図6の揺動指令の重畳を開始/終了するタイミングが、揺動指令が0となる揺動位相からずれた場合の重畳指令を示す図である。図6の揺動指令は余弦波でありかつ縦軸の位置がオフセットされており、図6から明らかであるように揺動位相0°の場合に揺動指令は0となる。そのため、図6の揺動指令の重畳を開始/終了するタイミングが揺動位相0°からずれると、揺動指令は0以外の値となるため、図7に示すように重畳開始/終了時の指令が不連続なものとなる。図7中、破線で囲まれた部分が重畳開始/終了時を表しており、大きなショックが発生していることが分かる。
 これに対して、図8は、図2の移動指令に対する図6の揺動指令の重畳を開始/終了するタイミングが、揺動指令が0となる揺動位相からずれていない場合の重畳指令を示す図である。図6の揺動指令の重畳を開始/終了するタイミングが揺動位相0°であると、揺動指令は0となるため、図8に示すように重畳開始/終了時の指令が連続的で滑らかなものとなる。図8中、破線で囲まれた部分が重畳開始/終了時を表しており、ショックが低減されていることが分かる。
 図2~8の説明の通り、揺動指令が小さいタイミングにて揺動を開始/終了することにより、工作機械に生じるショックを低減できることが分かる。
 本実施形態に係る工作機械の制御装置1によれば、以下の効果が奏される。
 本実施形態では、揺動指令に基づいて揺動の開始/終了を判定する揺動開始/終了判定部14を設けるとともに、揺動開始/終了判定部14の判定結果に応じて揺動指令を移動指令に重畳して重畳指令を生成する構成とした。また、揺動指令の絶対値が規定値以下である場合に、揺動開始/終了判定部14により揺動の開始/終了を判定する構成とした。
 これにより、揺動指令の絶対値が規定値以下のときに、移動指令に対する揺動指令の重畳を開始/終了することになるため、不連続な指令の生成を抑制でき、工作機械に生じるショックを低減できる。ひいては、揺動切削加工の加工精度を向上できる。
[第2実施形態]
 図9は、本開示の第2実施形態に係る工作機械の制御装置1Aの構成を示す図である。図9に示すように、第2実施形態に係る工作機械の制御装置1Aは、サーボ制御装置10Aを含んで構成され、揺動振幅算出部121及び揺動位相算出部122をさらに備える点が第1実施形態と相違している。また、揺動指令生成部13Aが第1実施形態の揺動指令生成部13に対応し、揺動開始/終了判定部14Aが第1実施形態の揺動開始/終了判定部14に対応しており、その他の構成については第1実施形態と同様である。
 揺動振幅算出部121は、揺動条件に基づいて揺動振幅を算出する。例えば、揺動振幅算出部121は、揺動条件設定部12で設定された揺動振幅倍率に基づいて、揺動振幅を算出する。
 揺動位相算出部122は、揺動条件に基づいて揺動位相を算出する。例えば、揺動位相算出部122は、揺動条件設定部12で設定された揺動周波数倍率に基づいて、揺動位相(揺動周波数)を算出する。
 本実施形態の揺動指令生成部13Aは、揺動振幅算出部121で算出された揺動振幅及び揺動位相算出部122で算出された揺動位相に基づいて、揺動指令を生成する。
 本実施形態の揺動開始/終了判定部14Aは、揺動振幅算出部121で算出された揺動振幅及び揺動位相算出部122で算出された揺動位相のうち、少なくとも一方に基づいて揺動の開始/終了を判定する。
 より詳しくは、揺動開始/終了判定部14Aは、例えば揺動振幅(正弦波又は余弦波の振幅値)が規定値以下の時に、揺動の開始/終了を判定しても良い。これにより、揺動指令の重畳開始/終了時に不連続な指令となるのを抑制できる。
 また、揺動開始/終了判定部14Aは、揺動指令の絶対値が規定値以下になる揺動位相の時に、揺動の開始/終了を判定しても良い。規定値を0にすることでショックをより低減することが可能になる。上述した図3に示す正弦波状の揺動指令の場合であれば、揺動位相が0°又は180°の時に揺動の開始/終了を判定すれば良い。また、上述した図6に示す縦軸の位置がオフセットされた余弦波状の揺動指令の場合であれば、揺動位相が0°の時に揺動の開始/終了を判定すれば良い。
 本実施形態によれば、第1実施形態と同様に、揺動指令の絶対値が規定値以下のときに、移動指令に対する揺動指令の重畳を開始/終了することになるため、不連続な指令の生成を抑制でき、工作機械に生じるショックを低減できる。ひいては、揺動切削加工の加工精度を向上できる。
 なお、本開示は上記態様に限定されるものではなく、本開示の目的を達成できる範囲での変形、改良は本開示に含まれる。
 例えば第2実施形態では、揺動振幅算出部121及び揺動位相算出部122を備える構成としたが、これらのうちの一方のみを備える構成としても良い。
 1,1A 工作機械の制御装置
 10,10A サーボ制御装置
 11 第1加算器
 12 揺動条件設定部
 13,13A 揺動指令生成部
 14,14A 揺動開始/終了判定部
 15 第2加算器
 16 学習制御器(学習制御部)
 17 第3加算器(学習制御部)
 18 位置速度制御部(制御部)
 30 モータ
 121 揺動振幅算出部
 122 揺動位相算出部

Claims (6)

  1.  工具とワークを相対的に揺動させながら加工する工作機械の制御装置であって、
     揺動条件に基づいて揺動指令を生成する揺動指令生成部と、
     前記揺動指令に基づいて揺動の開始/終了を判定する揺動開始/終了判定部と、
     前記揺動開始/終了判定部の判定結果に応じて前記揺動指令を移動指令に重畳することにより生成される重畳指令に基づいて、前記工具と前記ワークとを相対的に揺動させる制御部と、を備え、
     前記揺動開始/終了判定部は、前記揺動指令の絶対値が規定値以下である場合に揺動の開始/終了を判定する、工作機械の制御装置。
  2.  前記揺動条件に基づいて揺動振幅を算出する揺動振幅算出部をさらに備え、
     前記揺動指令生成部は、前記揺動振幅に基づいて前記揺動指令を算出し、
     前記揺動開始/終了判定部は、前記揺動振幅に基づいて揺動の開始/終了を判定する、請求項1に記載の工作機械の制御装置。
  3.  前記揺動条件に基づいて揺動位相を算出する揺動位相算出部をさらに備え、
     前記揺動指令生成部は、前記揺動位相に基づいて前記揺動指令を生成し、
     前記揺動開始/終了判定部は、前記揺動位相に基づいて揺動の開始/終了を判定する、請求項1又は2に記載の工作機械の制御装置。
  4.  前記揺動開始/終了判定部は、前記揺動指令が0になる揺動位相の時に揺動の開始/終了を判定する、請求項3に記載の工作機械の制御装置。
  5.  前記揺動開始/終了判定部は、外部信号により揺動開始が通知されかつ所定の揺動開始条件を満たす場合に揺動開始と判定し、外部信号により揺動終了が通知されかつ所定の揺動終了条件を満たす場合に揺動終了と判定する、請求項1から4いずれかに記載の工作機械の制御装置。
  6.  前記重畳指令に基づいて前記重畳指令の補正量を算出し、算出された補正量を前記重畳指令に加算することにより前記重畳指令を補正する学習制御部をさらに備える、請求項1から5いずれかに記載の工作機械の制御装置。
PCT/JP2021/025630 2020-07-10 2021-07-07 工作機械の制御装置 WO2022009925A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE112021003694.7T DE112021003694T5 (de) 2020-07-10 2021-07-07 Werkzeugmaschinensteuervorrichtung
JP2022535371A JP7509881B2 (ja) 2020-07-10 2021-07-07 工作機械の制御装置
US18/004,419 US20230333532A1 (en) 2020-07-10 2021-07-07 Machine tool control device
CN202180048390.8A CN115777087A (zh) 2020-07-10 2021-07-07 机床的控制装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020119085 2020-07-10
JP2020-119085 2020-07-10

Publications (1)

Publication Number Publication Date
WO2022009925A1 true WO2022009925A1 (ja) 2022-01-13

Family

ID=79553219

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/025630 WO2022009925A1 (ja) 2020-07-10 2021-07-07 工作機械の制御装置

Country Status (5)

Country Link
US (1) US20230333532A1 (ja)
JP (1) JP7509881B2 (ja)
CN (1) CN115777087A (ja)
DE (1) DE112021003694T5 (ja)
WO (1) WO2022009925A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024154314A1 (ja) * 2023-01-19 2024-07-25 ファナック株式会社 工作機械の制御装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011248473A (ja) * 2010-05-24 2011-12-08 Fanuc Ltd 任意区間で速度変更が可能な揺動動作機能を有する数値制御装置
JP2018180990A (ja) * 2017-04-14 2018-11-15 ファナック株式会社 揺動切削を行う工作機械の制御装置
JP2018180633A (ja) * 2017-04-04 2018-11-15 ファナック株式会社 揺動切削を行う工作機械の制御装置
JP2019028597A (ja) * 2017-07-27 2019-02-21 ファナック株式会社 揺動切削を行う工作機械の制御装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011248473A (ja) * 2010-05-24 2011-12-08 Fanuc Ltd 任意区間で速度変更が可能な揺動動作機能を有する数値制御装置
JP2018180633A (ja) * 2017-04-04 2018-11-15 ファナック株式会社 揺動切削を行う工作機械の制御装置
JP2018180990A (ja) * 2017-04-14 2018-11-15 ファナック株式会社 揺動切削を行う工作機械の制御装置
JP2019028597A (ja) * 2017-07-27 2019-02-21 ファナック株式会社 揺動切削を行う工作機械の制御装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024154314A1 (ja) * 2023-01-19 2024-07-25 ファナック株式会社 工作機械の制御装置

Also Published As

Publication number Publication date
JPWO2022009925A1 (ja) 2022-01-13
JP7509881B2 (ja) 2024-07-02
DE112021003694T5 (de) 2023-04-20
US20230333532A1 (en) 2023-10-19
CN115777087A (zh) 2023-03-10

Similar Documents

Publication Publication Date Title
US10509387B2 (en) Control device for machine tool performing oscillation cutting
CN108693835B (zh) 进行摆动切削的机床的控制装置
CN108732989B (zh) 进行摆动切削的机床的控制装置
JP6457432B2 (ja) 揺動切削を行う工作機械のサーボ制御装置、制御方法及びコンピュータプログラム
JP6342935B2 (ja) 揺動切削を行う工作機械のサーボ制御装置、制御方法及びコンピュータプログラム
JP6499709B2 (ja) 揺動切削を行う工作機械の制御装置
JP6503001B2 (ja) 揺動切削を行う工作機械の制御装置
JP4728422B2 (ja) 高速揺動動作を高精度化するサーボ制御システム
JP4813616B1 (ja) 円弧動作時の速度制御機能を有する工作機械の数値制御装置
JP2007257515A (ja) サーボモータの制御方法
CN108723890B (zh) 进行摇摆切割的机床的控制装置
WO2022009925A1 (ja) 工作機械の制御装置
JP7280310B2 (ja) 数値制御装置
JP7022096B2 (ja) サーボ制御装置
JP6599920B2 (ja) 揺動切削を行う工作機械の制御装置
JP5494378B2 (ja) ねじ切り制御方法及びその装置
WO2021166974A1 (ja) 工作機械の制御装置
JP7007531B1 (ja) 情報処理装置、工作機械の制御装置、及びコンピュータプログラム
WO2021241552A1 (ja) 工作機械の制御装置
WO2022025056A1 (ja) 工作機械の制御装置
WO2022249317A1 (ja) 工作機械の制御装置
WO2022269751A1 (ja) 工作機械の制御装置
WO2022202852A1 (ja) サーボ制御装置
WO2023007602A1 (ja) 工作機械の制御装置
JP2018092357A (ja) サーボモータ制御装置、サーボモータ制御方法及びコンピュータプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21837334

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022535371

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 21837334

Country of ref document: EP

Kind code of ref document: A1