WO2022009897A1 - 紫外線照射装置及び紫外線照射方法 - Google Patents

紫外線照射装置及び紫外線照射方法 Download PDF

Info

Publication number
WO2022009897A1
WO2022009897A1 PCT/JP2021/025506 JP2021025506W WO2022009897A1 WO 2022009897 A1 WO2022009897 A1 WO 2022009897A1 JP 2021025506 W JP2021025506 W JP 2021025506W WO 2022009897 A1 WO2022009897 A1 WO 2022009897A1
Authority
WO
WIPO (PCT)
Prior art keywords
biosensor
light
light source
ultraviolet irradiation
uvc
Prior art date
Application number
PCT/JP2021/025506
Other languages
English (en)
French (fr)
Inventor
篤史 兒玉
直人 矢吹
隼也 大槻
Original Assignee
旭化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成株式会社 filed Critical 旭化成株式会社
Priority to EP21838191.1A priority Critical patent/EP4180063A4/en
Priority to CN202180047791.1A priority patent/CN115768490A/zh
Priority to JP2022535357A priority patent/JPWO2022009897A1/ja
Publication of WO2022009897A1 publication Critical patent/WO2022009897A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/02Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using physical phenomena
    • A61L2/08Radiation
    • A61L2/10Ultraviolet radiation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/24Apparatus using programmed or automatic operation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2202/00Aspects relating to methods or apparatus for disinfecting or sterilising materials or objects
    • A61L2202/10Apparatus features
    • A61L2202/14Means for controlling sterilisation processes, data processing, presentation and storage means, e.g. sensors, controllers, programs

Definitions

  • the present invention relates to an ultraviolet irradiation device and an ultraviolet irradiation method.
  • an ultraviolet irradiation device that is irradiated in an open system such as the above-mentioned conventional ultraviolet irradiation device that avoids exposure to radiation
  • an area that is irradiated with ultraviolet rays is generated even outside the detection range of the human sensor.
  • it is difficult to reliably avoid exposure to ultraviolet rays. Therefore, an ultraviolet irradiation device capable of avoiding exposure more reliably has been desired.
  • an object of the present invention is to provide an ultraviolet irradiation device and an ultraviolet irradiation method capable of more reliably avoiding exposure to ultraviolet rays. There is.
  • the ultraviolet irradiation device is a biological sensor that is arranged around the light source so that the light source that emits ultraviolet rays and the irradiation range of the light source and the self-detection range overlap with each other to detect the presence of a person.
  • An electronic circuit that controls the light source based on the output signal of the biosensor, and a light-shielding cover that shields a part of ultraviolet rays emitted from the light source, and the light source sandwiches the light-shielding cover.
  • the electronic circuit stops the emission of the ultraviolet rays when the biosensor detects the presence of a person, and the state in which the biosensor detects the presence of a person is changed to a state in which the presence of a person is not detected. It is characterized in that the light source is controlled so as to emit the ultraviolet rays again when the switch is made.
  • the light source that emits ultraviolet rays is arranged around the light source so that the irradiation range of the light source and the self-detection range overlap, and the presence of a person is detected.
  • the light source is arranged in a region opposite to one side where the ultraviolet irradiation target exists, with a light-shielding cover that shields a part of the ultraviolet rays emitted from the light source.
  • the sensing surface of the biosensor and the light emitting surface of the light source are installed so as to face the same direction, and the angle of 1/2 of the maximum detection angle of the biosensor in the installed state is the light emitting surface of the light source.
  • the ultraviolet rays are shielded so as to be larger than the maximum angle formed by the normal vector and the ultraviolet rays emitted from the light source and passed without being shielded by the light shielding cover.
  • the maximum detection angle of the biosensor in the installed state is the maximum detection that the biosensor can detect when the biosensor, the light source, and the light-shielding cover are installed and the ultraviolet irradiation can be performed. It's called a horn.
  • the maximum value of the detection angle in the narrowed state becomes the maximum detection angle.
  • the maximum value of the detection angle in the unnarrowed state that is, the viewing angle determined by the specifications of the biosensor , The maximum detection angle.
  • FIG. 1A It is a perspective view which shows an example of the ultraviolet irradiation apparatus which concerns on 1st Embodiment of this invention. It is a perspective view of FIG. 1A. It is sectional drawing which shows the AA'cross section of FIG. 1A. (A) is a front view of the ultraviolet irradiation device, (b) is a rear view, and (c) is a side view. It is a block diagram which shows an example of the ultraviolet irradiation apparatus which concerns on 2nd Embodiment of this invention. This is an example of a timing chart used to explain the operation of the ultraviolet irradiation device. It is sectional drawing which shows the cross section of AA' in the modification of FIG. 1A.
  • FIG. 1A is a perspective view showing an example of the appearance of the ultraviolet irradiation device 1
  • FIG. 1B is a perspective view showing an example of seeing through the inside of the outer case 3.
  • 2A is a cross-sectional view taken along the line AA of FIG. 1A
  • FIG. 3A is a front view of the ultraviolet irradiation device 1
  • FIG. 3B is a rear view
  • FIG. 3C is a top view and a bottom view. Is the same as the top view.
  • FIG. 4 is a block diagram showing a functional configuration of the ultraviolet irradiation device 1.
  • the ultraviolet irradiation device 1 includes a device main body 2 and a substantially rectangular parallelepiped outer case 3 for accommodating the device main body 2.
  • the device main body 2 includes one biosensor 11 and two sets of light emitting units 12.
  • the light emitting unit 12 includes three UVC-LEDs (light sources) 12a, one blue LED (visible light light source) 12b, a heat sink 12c, and a driver substrate 12d.
  • the UVC-LED (light source) 12a is a light emitting diode that emits ultraviolet rays having a peak wavelength of 200 nm or more and 300 nm or less, and from the viewpoint of sterilization efficiency of bacteria and the like, it is more preferable that the peak wavelength is 255 nm or more and 280 nm or less. It is even better if it is as follows.
  • a drive circuit 12aa for driving and controlling the UVC-LED 12a and a driving circuit 12ba for driving and controlling the blue LED 12b are mounted on the driver board 12d. Further, a drive circuit 12aa for the UVC-LED 12a and a drive circuit 12ba for the blue LED 12b are mounted on the driver board 12d of the light emitting unit 12 of either of the two sets of light emitting units 12, and a control circuit (electronic) is mounted. Circuit) 1a is mounted.
  • the control circuit 1a inputs the detection signal (output signal) of the biological sensor 11, controls the UVC-LED 12a and the blue LED 12b based on the detection signal via the drive circuits 12aa and 12ba, respectively, and also controls the ultraviolet irradiation device 1 Control the whole.
  • the biosensor 11 is composed of, for example, a quantum infrared sensor (IR sensor) and is mounted on a sensor substrate 11a for the biosensor 11.
  • the UVC-LED12a and the blue LED12b are mounted on the light emitting substrate 12e.
  • the light emitting substrate 12e is provided separately from the sensor substrate 11a and is not in contact with the sensor substrate 11a so that it is not thermally connected to the sensor substrate 11a.
  • the light emitting substrate 12e has a substantially rectangular shape, three UVC-LEDs 12a are arranged at equal intervals along the long side at a position near one long side of the light emitting substrate 12e, and the blue LED 12b is substantially in the center of the light emitting substrate 12e. It is located slightly closer to the other long side of.
  • the sensing surface of the biosensor 11 and the light emitting surface of all UVC-LED12a are arranged so as to face in the same direction. Further, all the UVC-LEDs 12a are arranged in a range where the distance from the biosensor 11 is 20 mm or less in a plan view. By reducing the distance between the UVC-LED 12a and the biosensor 11, the ultraviolet irradiation area can be contained in the biosensor detection area even in the vicinity of the UVC-LED 12a, which is a light source.
  • the biological sensor 11 is not limited to the quantum infrared sensor (IR sensor), but is not limited to a focal infrared sensor, a microwave radar, a reflection infrared sensor, a millimeter wave radar, an ultrasonic sensor, a temperature detection sensor, and a ToF sensor. It can be applied even if it is. Further, the biosensor 11, UVC-LED12a, blue LED12b, and driver board 12d are connected by wiring (not shown).
  • the outer case 3 has a rectangular parallelepiped case body 3a having front and back surfaces corresponding to the front and back surfaces of the ultraviolet irradiation device 1, a light-shielding cover 3b provided in the opening portion on the front surface side of the case body 3a, and the back surface of the case body 3a. It is provided with a back cover 3c provided in the opening portion on the side. As shown in FIG. 2, each of the open ends of the case body 3a is formed with a stepped portion 3aa for supporting the light-shielding cover 3b and a stepped portion 3ab for supporting the back cover 3c.
  • slit holes 3da are formed on each of the two side surfaces 3d which are the upper surface and the bottom surface of the ultraviolet irradiation device 1 and which are in contact with the long sides of the case body 3a.
  • the slit holes 3da are formed along the longitudinal direction of the outer case 3, three rows each in the height direction of the case body 3a, and two rows along the longitudinal direction.
  • the light-shielding cover 3b has one circular hole 31 for the biosensor 11, six circular holes 32 for the UVC-LED 12a, and two circular holes 32 for the blue LED 12b. Hole 33 is formed.
  • the hole 31 is formed in the center of the light-shielding cover 3b, and its diameter is larger than that of the other holes 32 and 33.
  • the hole 32 has a diameter of about 1/3 to 1/4 of that of the hole 31, and the hole 33 is slightly larger than the hole 32.
  • the holes 32 and 33 are arranged half by half so as to sandwich the holes 31 from both sides along the longitudinal direction of the light-shielding cover 3b and to be symmetrical with respect to the holes 31.
  • the three holes 32 are arranged at equal intervals along the width direction (the lateral direction of the light-shielding cover 3b), and the hole 32 located at the center thereof and the hole 33 are arranged in the longitudinal direction (light-shielding cover 3b). Longitudinal direction) Located on the center line.
  • two boss-shaped protrusions 3ba for fixing the sensor substrate 11a are formed on the back surface of the light-shielding cover 3b on the side facing the back cover 3c.
  • the protrusions 3ba are provided at positions separated from each other on both sides along the longitudinal direction from the hole 31, and are slightly offset to one side from the center line in the longitudinal direction.
  • the sensor board 11a is arranged at a position separated from the light-shielding cover 3b by the length of the protrusion 3ba.
  • a boss-shaped protrusion 12ca for suppressing the upper surface of the heat sink 12c is provided at a position slightly inserted into the center side from the four corners on the back surface of the light-shielding cover 3b.
  • the back cover 3c is formed with a substantially rectangular opening 3ca for heat dissipation of the heat sink 12c, and the opening 3ca is located in the substantially central portion of the back cover 3c in the width direction in the longitudinal direction. Two are formed at intervals along the line. Further, in the vicinity of each of the openings 3ca on the side of the back cover 3c facing the light-shielding cover 3b, the positions of the two long sides of the opening 3ca are slightly closer to the short sides of the back cover 3c than the central portion. Is provided with a boss-shaped fixing member 3cb for fixing the heat sink 12c.
  • the heat sink 12c has a sword-shaped shape in which a large number of rod-shaped members c2 are formed on one surface of a substantially square flat plate portion c1, and a driver is formed along one surface of four side surfaces formed by the rod-shaped member c2.
  • the substrate 12d is fixed to the flange portion c3 of the heat sink 12c, and the UVC-LED12a mounted on the light emitting substrate 12e is provided on the surface of the flat plate portion c1 opposite to the rod-shaped member c2 and on the side opposite to the driver substrate 12d.
  • the light emitting substrate 12e is fixed to the flange portion c3 along the side of the flat plate portion c1.
  • the heat sink 12c to which the driver substrate 12d and the light emitting substrate 12e are fixed is arranged so that the light emitting substrate 12e side is closer to the center portion, and the rod-shaped member c2 side faces the back cover 3c with the rod-shaped member c2 of the heat sink 12c. Is screwed in from the opposite side to integrally fix the flange portion c3 and the fixing member 3cc. As a result, the heat sink 12c and the back cover 3c are integrally fixed.
  • the light-shielding cover 3b to which the sensor board 11a is fixed is screwed into the protrusion 12ca from the side opposite to the sensor board 11a of the light-shielding cover 3b so that the sensor board 11a side is on the inside.
  • the case body 3a are integrated, and the device body 2 is fixed in the outer case 3.
  • the heat sink 12c and the biosensor 11 can be in a state of not being thermally connected. That is, if the thermal resistance from the heat sink 12c to the biosensor 11 is 2.5 K / W or more, the heat transfer from the UVC-LED 12a to the biosensor 11 can be ignored, and it is considered that they are not thermally connected. Can be done.
  • the heat sink 12c is not limited to a sword-shaped heat sink, and can be applied to a heat sink having a plurality of fins.
  • the biological sensor 11 slightly protrudes from the surface of the light-shielding cover 3b so that a person existing in the vicinity of the irradiation target of the ultraviolet irradiation device 1 can be detected while the device main body 2 is fixed in the outer case 3. Have been placed. Further, in the UVC-LED12a and the blue LED12b, the irradiation light of each is emitted to the outside of the outer case 3 through the corresponding holes 32 and 33, and the irradiation area by the UVC-LED12a and the blue LED12b in the irradiation target. It is positioned so as to substantially coincide with the irradiation area of.
  • the ultraviolet irradiation device 1 operates, for example, using a DC voltage of 24 V input to an input terminal (not shown) as a power supply voltage, and as shown in FIG. 4, a control circuit 1a that controls the entire ultraviolet irradiation device 1 is a biological sensor 11.
  • UVC-LED 12a is driven and controlled via the drive circuit 12aa of each of the two light emitting units 12, and the blue LED 12b is driven and controlled via the drive circuit 12ba to irradiate the human body with ultraviolet rays.
  • Ultraviolet rays are applied to the object to be irradiated while avoiding being damaged.
  • the control circuit 1a detects that the state of detecting a person has been switched to the state of not detecting a person based on the detection signal of the biological sensor 11. Then, as shown in the timing chart of FIG. 5A, when it is detected that the state in which a person is detected has been switched to the state in which no person is detected, UVC is reached when the preset standby time T1 elapses. -The LED 12a is driven during the irradiation time T2 to irradiate with ultraviolet rays. Then, when the irradiation time T2 has elapsed, the ultraviolet irradiation is stopped.
  • the UVC-LED12a is driven to irradiate ultraviolet rays. Further, as shown in FIG. 5 (b), when the state in which no person is detected is periodically irradiated with ultraviolet rays every time the non-irradiation time T3 continues, or when it is detected that the person has disappeared, the ultraviolet rays are emitted.
  • the ultraviolet irradiation is promptly stopped.
  • the UVC-LED12a is driven and the blue LED12b is driven, and the same region as the ultraviolet irradiation region by the UVC-LED12a is irradiated with the blue light of the blue LED12b. This makes it possible to visualize the ultraviolet irradiation area.
  • the standby time T1 is set to a time that can be regarded as switching to a state in which a person is not detected based on the detection signal of the biological sensor 11, and is set to, for example, about 5 seconds.
  • the irradiation time T2 is set according to the irradiation time required to sufficiently sterilize the irradiated object by the ultraviolet irradiation of the UVC-LED12a, and is set to, for example, about 10 minutes.
  • the non-irradiation time T3 is set to, for example, about 50 minutes.
  • the UV irradiation is performed periodically. , Perform regular sterilization.
  • the ultraviolet rays are irradiated, so that even if the operation of the ATM or the like is not continuously performed, it is periodically performed. Since sterilization is performed regularly by irradiating with ultraviolet rays, the ATM and the like can be maintained in a state where a certain degree of sterilization effect can be obtained. It should be noted that it is not always necessary to irradiate the ultraviolet rays every time the non-irradiation time T3 elapses, that is, periodically, and the ultraviolet irradiation may be performed intermittently.
  • the ultraviolet irradiation time may be shorter than the irradiation time T2 because the person does not operate the ATM or the like. .. Further, since the ultraviolet irradiation area can be visualized by the blue LED 12b, the person who operates the ATM or the like can easily recognize the ultraviolet irradiation area and can avoid the exposure more reliably.
  • the biosensor 11 senses heat, the detection accuracy decreases when the temperature around the biosensor 11 rises.
  • the sensor substrate 11a on which the biological sensor 11 is mounted and the light emitting substrate 12e on which the UVC-LED 12a and the blue LED 12b are mounted are arranged separately, and further, the light emitting substrate 12e is arranged.
  • a heat sink 12c is fixed to the surface. The heat sink 12c enhances the heat dissipation effect of the UVC-LED12a.
  • the biosensor 11 is arranged as far as possible from the heat sink 12c to which the heat of the UVC-LED 12a is transferred, so that the influence of heat is obtained. Can be further reduced.
  • the ultraviolet irradiation area is visualized, the person can easily visually recognize the ultraviolet irradiation area. Therefore, the installation work of the ultraviolet irradiation device 1 can be easily performed. Further, by visualizing the ultraviolet irradiation area, for example, a person who operates an ATM or the like as an irradiation target can recognize whether or not sterilization is properly performed, and ultraviolet irradiation is performed when the operation is performed. You can recognize that it is not. Therefore, a sense of security can be obtained. Although the case where the heat dissipation effect is obtained by providing the heat sink 12c has been described here, the present invention is not limited to this. A cooling fan may be provided together with the heat sink 12c, or a cooling fan 12f may be provided between the heat sink 12c and the back cover 3c as shown in FIG.
  • the present invention is not limited to this, and the position is not limited to this.
  • the blue LED 12b (corresponding to the hole 33) is arranged near one end in the longitudinal direction of the outer case 3, and the biosensor 11 (corresponding to the hole 31) and the UVC-LED 12a (corresponding to the hole 32) are arranged in the outer case 3. It can also be arranged slightly closer to the other end than the center in the longitudinal direction of.
  • (a) is a front view and (b) is a rear view.
  • the ultraviolet irradiation device 1 may be fixed alone at a position where it is possible to irradiate the irradiated object with ultraviolet rays. Further, for example, as shown in FIG. 8, the ultraviolet irradiation device 1 may be attached to the tip of the movable arm and installed as a desk light type ultraviolet irradiation device. Further, the ultraviolet irradiation device 1 embeds the device main body 2 in a wall or the like, provides holes 31 to 33 on the wall plate at positions facing the biosensor 11, UVC-LED12a, and blue LED12b, and provides a light-shielding cover 3b on the wall plate. By providing the configuration corresponding to the above, the functional configuration equivalent to that of the ultraviolet irradiation device 1 may be realized.
  • FIG. 9A shows a sensing area (detection range) of the biological sensor 11 and an irradiation area (irradiation range) of the UVC-LED 12a.
  • the UVC-LED12am is a UVC-LED12a located at the farthest position from the biosensor 11 among the three UVC-LED12a mounted on each light emitting substrate 12e. be.
  • the sensing area of the biological sensor 11 is wider than the sum of the irradiation areas of the two UVC-LED12am. .. That is, for example, as shown in FIG. 9B, when the sensing area of the biological sensor 11 is narrower than the sum of the irradiation areas of the two UVC-LED12am, a person tries to operate an ultraviolet irradiation object (for example, an ATM). When the person approaches the irradiation target, the person enters the irradiation area before the person enters the sensing area of the biosensor 11.
  • an ultraviolet irradiation object for example, an ATM
  • the ultraviolet irradiation is stopped after the exposure. Further, even when the ultraviolet irradiation is not performed, the ultraviolet irradiation is performed at this point when the timing of the periodic ultraviolet irradiation comes, and it is detected by the biological sensor 11 that a person has invaded the controlled area after being exposed to the radiation. At that point, UV irradiation will be stopped. Since the UVC-LED can be generally regarded as a point light source, the ultraviolet radiation angle of the UVC-LED 12am in FIG. 9B is schematically shown, and is actually emitted at a wider angle than the one shown in the figure. There is.
  • the ultraviolet irradiation device 1 it is detected that a person is present before a person enters the irradiation area, the ultraviolet irradiation is stopped, and the ultraviolet irradiation is not performed. , It is possible to avoid being exposed to radiation more reliably, and it is possible to improve safety.
  • the sensing area and the irradiation area are adjusted in order to make the sensing area of the biological sensor 11 wider than the irradiation area of the UVC-LED12am.
  • the emission line and the light emitting surface of the UVC-LED12am are the ultraviolet rays that pass through the hole 32 without being shielded by the light-shielding cover 3b and are emitted toward the irradiation target.
  • the maximum angle formed by the normal vector of is defined as the maximum radiation angle equivalent value ⁇ 1.
  • the maximum detection angle that can be detected by the biosensor 11 in the state of being arranged in the outer case 3 that is, the detection angle that can be detected by the biosensor 11 when the biosensor 11 is incorporated in the ultraviolet irradiation device 1.
  • the angle of 1/2 of the maximum detection angle, which is the maximum value, is defined as the viewing angle equivalent value ⁇ 2.
  • the sensing area and the irradiation area are set so that the maximum radiation angle equivalent value ⁇ 1 is smaller than the viewing angle equivalent value ⁇ 2 ( ⁇ 1 ⁇ 2).
  • the expansion ratio of the sensing area of the biological sensor 11 is larger than the expansion ratio of the irradiation area by the UVC-LED12am.
  • the ratio of the irradiation area of the two UVC-LED12am included in the sensing area increases, and eventually, the two UVCs in the sensing area. -The irradiation area of LED12am will be included together.
  • the irradiation area of the two UVC-LED12a can be set in the sensing area.
  • These adjustments are made, for example, the opening diameter and arrangement position of the holes 31 and 32, the distance from the light receiving surface of the biosensor 11 to the hole 31, the distance from the light emitting surface of the UVC-LED12am to the hole 32, and the viewing angle of the biosensor 11. This is performed by combining any one or more of the performance, the maximum angle of the irradiation light of the UVC-LED12am, and the like.
  • the distance between the ultraviolet irradiation device 1 and the irradiation target, the biosensor 11 and the UVC-LED 12am so that the irradiation area of two UVC-LED12ams is included in the sensing area Adjust by combining any one or more of the distances between.
  • the irradiation area of the two UVC-LED 12am having the largest distance from the biosensor 11 is set to be included in the sensing area of the biosensor 11. is doing.
  • the detection area of the UVC-LED12a whose distance between the biosensor 11 and the UVC-LED12am is shorter than the distance between the UVC-LED12am and the biosensor 11 is always included in the detection area of the biosensor 11. Will be.
  • UVC-LED12a is placed on a circle centered on the biosensor 11 so that the distance between the sensor 11 and the biosensor 11 is equal, instead of arranging three in two rows at equal intervals. It may be arranged.
  • the ultraviolet irradiation device 1 according to the third embodiment is provided with a side cover in the ultraviolet irradiation device 1 according to the second embodiment.
  • 10A and 10B show the ultraviolet irradiation device 1 according to the third embodiment
  • FIG. 10A is a perspective view showing an example of an ultraviolet irradiation device provided with a side cover
  • FIG. 10B is a cross-sectional view showing a main part. Is.
  • the ultraviolet irradiation device 1 corresponds to the biosensor 11, UVC-LED12a, and blue LED12b on the surface of the light-shielding cover 3b opposite to the back cover 3c.
  • a side cover (protruding portion) 3e surrounding the holes 31 to 33 to be formed is provided.
  • the side cover 3e is formed, for example, in the shape of a rectangular parallelepiped rectangular parallelepiped end face.
  • the side cover 3e is not limited to the rectangular parallelepiped shape, and in the cross-sectional view shown in FIG. 10B, the end face becomes larger as the side cover 3e is inclined outward and away from the light-shielding cover 3b. It may be in the shape of a light bulb umbrella.
  • L1 is the distance between the UVC-LED12am, which is the farthest light source of the UVC-LED12a, which is located at the farthest position from the biosensor 11, and the biosensor 11.
  • ⁇ 2 is a value corresponding to a viewing angle, which is an angle of 1 ⁇ 2 of the maximum detection angle that can be detected by the biosensor 11 in a state of being arranged in the outer case 3.
  • ⁇ 3 is an ultraviolet ray emitted from the UVC-LED 12am, which is the farthest light source, and is emitted toward the object to be irradiated through the hole 32 without being shielded by the light-shielding cover 3b. It is a value corresponding to the farthest radiation angle representing the angle formed by the emission line passing through the point farthest from the sensor 11 and the normal vector of the light emitting surface of the UVC-LED12am which is the farthest light source.
  • the space region between the ultraviolet irradiation device 1 and the irradiation target near the light-shielding cover 3b is a spatial area.
  • the irradiation area in the above is not included in the sensing area and a human hand or the like enters such a space area, the irradiation area is first entered and then the sensing area is entered. In other words, there is a possibility of being exposed to radiation. Therefore, the side cover 3e is provided so that human hands or the like do not enter the space area where the irradiation area is not included in the sensing area.
  • the point where the sensing area of the biological sensor 11 and the irradiation area of the UVC-LED12am coincide with each other can be represented as a point of height H1 along the normal vector from the light emitting surface of the UVC-LED12am from the above equation (1). can.
  • the side cover 3e having a height higher than the point where the sensing area of the UVC-LED12as and the irradiation area of the UVC-LED12as coincide with each other is formed.
  • the side cover 3e prevents the entry of human hands or the like into the area that may be exposed to radiation. The safety can be further improved.
  • the side cover 3e may be provided so as to surround the holes 31 and 32 corresponding to the biosensor 11 and the UVC-LED 12a.
  • the covers may be provided only in the direction in which a person may access. For example, when it is assumed that it is arranged on the touch panel of the ATM, it is only necessary to assume the access of a person from the front direction of the device, so that the cover on the back side and the side surface of the device is unnecessary.
  • the side cover 3e is provided and the arrangement positions of the biosensor 11 and the UVC-LED 12a are changed.
  • the ultraviolet irradiation device 1 includes one light emitting unit 12 and one biosensor 11. Further, the biosensor 11 is arranged on one end side in the longitudinal direction when viewed from the light-shielding cover 3b side, and the UVC-LED12a is arranged on the other end side in the longitudinal direction of the biosensor 11. Further, the biological sensor 11 is provided in the tilt adjusting mechanism 13, and by adjusting the tilt by the tilt adjusting mechanism 13, the tilt of the sensing surface is directed toward the UVC-LED12a side.
  • the support member 13a to which the sensor substrate 11a can be attached and the fixing member 13b are movably fixed, and one end of the fixing member 13b is placed on the surface of the light-shielding cover 3b opposite to the back cover 3c.
  • the tilt adjusting mechanism 13 By fixing, attaching the sensor substrate 11a to the support member 13a, and manually adjusting the inclination of the support member 13a, the inclination of the sensor substrate 11a is adjusted and the orientation of the sensing surface is adjusted.
  • the tilt of the biological sensor 11 can be adjusted even after the biological sensor 11 is incorporated in the ultraviolet irradiation device 1.
  • the ultraviolet irradiation device 1 may be equipped with the tilt adjusting mechanism 13. If it is not necessary to adjust the tilt of the biosensor after incorporation, the tilt adjusting mechanism 13 does not necessarily have to be provided.
  • the sensor substrate 11a is arranged so as to be inclined so that the sensing surface faces the UVC-LED12a side, and the sensing area of the biosensor 11 includes the irradiation area of all the UVC-LED12a. It is arranged so that it can be used. Further, although the blue LED 12b is not shown in FIG. 12, the blue LED 12b is arranged so that its blue irradiation area overlaps with the irradiation area of all UVC-LED 12a.
  • the biosensor 11 and the UVC-LED12a By arranging the biosensor 11 and the UVC-LED12a in this way, the degree of freedom in the arrangement position of the biosensor 11 can be improved. That is, as shown in FIG. 1B, when the biosensor 11 is arranged in the center when viewed from the front, the biosensor 11 is arranged so that the irradiation area of the UVC-LED 12a is included in the sensing area of the biosensor 11. It is necessary to arrange the UVC-LED12a around the. On the other hand, as shown in FIG. 12, when all the UVC-LEDs 12a are arranged on one side of the biosensor 11, the biosensor 11 is UVC-so that the irradiation area of these UVC-LED12a is included in the sensing area. It may be arranged at an angle toward the LED 12a. That is, since the biosensor 11 may be arranged at any position around the plurality of UVC-LEDs 12a, the degree of freedom in the arrangement of the biosensor 11 can be improved.
  • the side cover 3e is provided on the light-shielding cover 3b as in the ultraviolet irradiation device 1 in the third embodiment.
  • L2 is the distance between the UVC-LED12am, which is the farthest light source arranged at the farthest position from the biosensor 11 among the UVC-LED12a, and the biosensor 11.
  • ⁇ 2 is a viewing angle equivalent value which is 1/2 of the maximum detection angle that can be detected by the biological sensor 11 in the state of being arranged in the outer case 3, and ⁇ 3 is emitted from UVC-LED12am which is the farthest light source.
  • the emission lines that are ultraviolet rays that pass through the hole 32 without being shielded by the light-shielding cover 3b and are emitted toward the object to be irradiated the emission line that passes through the point farthest from the biosensor 11 in a plan view and the most. It is a value corresponding to the farthest radiation angle representing the angle formed by the normal vector of the light emitting surface of the UVC-LED12am which is a far light source.
  • ⁇ 4 is the inclination of the sensing surface of the biological sensor 11.
  • the position is closer to the light-shielding cover 3b. Therefore, H2 corresponding to the height of the side cover 3e along the normal vector of the light emitting surface of the UVC-LED12am, which is the farthest light source, can be shortened by the amount corresponding to the tilt of the biological sensor 11, that is, the side cover. The height of 3e can be lowered. That is, the ultraviolet irradiation device 1 can be further miniaturized.
  • the arrangement of the holes 31 to 33 corresponding to each of the light-shielding cover 3b may be changed according to the arrangement of the biological sensor 11, the UVC-LED12a, and the blue LED12b.
  • each of the two light emitting units 12 is arranged so that the light emitting surface of the UVC-LED 12a is tilted toward the biological sensor 11.
  • the light emitting unit 12 is set so that the inclination (tilt angle) ⁇ a of the light emitting surface of the UVC-LED 12a satisfies the following equation (3).
  • L3 in the equation (3) is a living body.
  • the distance between the sensor 11 and the UVC-LED12an, and D represents the distance between the light emitting surface of the UVC-LED12an and the object to be irradiated.
  • the irradiation area A1 is widened, but the area A2 where the irradiation areas by the UVC-LED 12a mounted on the two light emitting units 12 overlap is narrow. Therefore, the region having a high irradiation density is narrower than the region having a high irradiation density when the overlapping region A3 of the irradiation areas is wide as shown in FIG. 13 (a).
  • the tilt adjusting mechanism (light source tilt adjusting mechanism) 13 shown in FIG. 12 may be applied to the light emitting unit 12 to manually adjust the tilt of the light emitting unit 12.
  • the tilt adjusting mechanism 13 may be provided on each of the two light emitting units 12, or may be provided on only one of them.
  • the ultraviolet irradiation device 1 is provided with a plurality of, for example, two biosensors 11-a and 11-b. That is, as shown in FIG. 14, UVC-LEDs 12a are arranged together, and two biosensors 11-a and 11-b are provided around these UVC-LEDs 12a. At this time, the biosensors 11-a and 11-b may be arranged so that the sensing surface thereof is tilted toward the UVC-LED12a side, or may be arranged so as to be parallel to the light emitting surface of the UVC-LED12a. .. Further, three or more biosensors 11 may be provided.
  • biosensors 11 By providing a plurality of biosensors 11 in this way, the area for sensing a person is expanded. Therefore, the existence of a person can be detected more reliably.
  • sensors of the same type may be provided, for example, a plurality of sensors of different types may be provided, and the biosensor 11 may be provided depending on the application of the ultraviolet irradiation device 1 and the installation environment. Should be selected.
  • the ultraviolet irradiation device 1 according to the first embodiment is further provided with the distance sensor 14.
  • the distance sensor 14 is mounted on the light emitting substrate 12e on which the UVC-LED12a is mounted, and measures the distance between the light emitting surface of the UVC-LED12a and an object existing in the same direction.
  • the control circuit 1a controls the driving time of the UVC-LED 12a based on the detection signal of the distance sensor 14, and the longer the distance to the irradiation target, the longer the irradiation time of ultraviolet rays. That is, as shown in FIG. 15, the longer the distance to the irradiation target, the lower the irradiation density. Therefore, the longer the distance to the irradiation target, the longer the irradiation time, so that a constant irradiation intensity (irradiation density ⁇ time) can be given to the irradiation target. Therefore, stable sterilization performance can be obtained for the irradiated object.
  • the distance sensor 14 can also be used as a biosensor by recognizing that a person has invaded the irradiation area when the differential value of the measurement distance exceeds the threshold value.
  • redundancy is increased and it is possible to detect the intrusion of a person more reliably.
  • the present invention is not limited to the case where the distance sensor 14 is provided in the ultraviolet irradiation device 1 according to the first embodiment, and it is also possible to provide the distance sensor 14 in the second to fifth embodiments, which is equivalent. The action effect of can be obtained.
  • the present invention is not limited to two lights, and one or three or more lights may be provided.
  • the UVC-LED12a is not limited to 6 lamps, and a desired number of UVC-LED12a may be provided. For example, when high sterilization performance is required or when sterilization is desired in a shorter time, a larger number may be provided. UVC-LED12a may be provided.
  • the biological sensor 11 does not have to be narrowed in the detection angle due to the hole 31 formed in the light-shielding cover 3b. Further, the biosensor 11 may be provided on the outside of the outer case 3, that is, on the surface of the light-shielding cover 3b.
  • the biosensor 11 may be fixed to the surface of the wall. Further, when the detection angle of the biological sensor 11 is not narrowed by the hole 31 formed in the light-shielding cover 3b, or by attaching the biological sensor 11 to the surface of the light-shielding cover 3b or the surface of the wall. When the detection angle of the biosensor 11 is not narrowed, the viewing angle determined by the specifications of the biosensor 11 is the maximum detection angle, and the angle of 1/2 of the viewing angle is the viewing angle equivalent value ⁇ 2. ..
  • UV irradiation device 1 Using the ultraviolet irradiation device 1 according to the first embodiment, a simulation was performed in which ultraviolet irradiation was performed on an irradiation target of 500 mm ⁇ 500 mm located at a position 300 mm away from the light-shielding cover 3b.
  • the output of the UVC-LED12a is 70 mW, and it is assumed that six UVC-LED12a are driven at 465 mA.
  • a high ultraviolet irradiation illuminance was obtained in the substantially central portion of the irradiation area.
  • the portion having the highest ultraviolet irradiation illuminance had a dose amount (integrated light amount (UV exposure amount)) of 40 mj / cm 2 or more in 10 minutes.
  • Ultraviolet irradiation device 1a Control circuit 2 Device body 3 Outer case 3b Light-shielding cover 3c Back cover 3e Side cover 11 Biosensor 11a Sensor board 12 Light emitting part 12a UVC-LED 12b blue LED 12c heat sink 12d driver board 12e light emitting board

Landscapes

  • Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

紫外線照射装置において、紫外線による被爆をより確実に回避する。紫外線を放出するUVC-LED(12a)と、UVC-LED(12a)の照射エリアと感知エリアとが重なるようにUVC-LED(12a)の周辺に配置され人の存在を検出する生体センサ(11)と、生体センサ(11)の出力信号に基づきUVC-LED(12a)を制御する制御回路(1a)と、UVC-LED(12a)から放出される紫外線の一部を遮光する遮光カバー(3b)と、を備え、制御回路(1a)は、生体センサ(11)が人の存在を検出したとき紫外線の放出を停止させ、生体センサ(11)が人の存在を検出している状態から人の存在を検出しない状態に切り替わったとき、再度紫外線を放出させるようにUVC-LED(12a)を駆動制御する。

Description

紫外線照射装置及び紫外線照射方法
 本発明は、紫外線照射装置及び紫外線照射方法に関する。
 紫外線には、殺菌能力があることから、殺菌装置としての各種紫外線照射装置が提案されている。
 また、近年、殺菌を行うことが可能な波長を照射できるLED(light emitting diode)が実用化されたことによって、紫外線光源として管球を用いた装置では実現できなかった装置構成が実現可能になり、持ち運び可能な小型の紫外線照射器が提案されている。
 また、紫外線照射装置による紫外線照射領域に人体が侵入すると、有害な紫外線により被爆するリスクがあることから、人感センサと紫外線の照射タイミングを制御する制御回路とを組み合わせることで、被爆を回避するようにした紫外線照射装置等も提案されている(例えば、特許文献1参照。)。
特開2017-29293号公報
 しかしながら、上記従来の被爆を回避するようにした紫外線照射装置のように、開放系において照射される紫外線照射装置においては、人感センサの検知範囲外であっても、紫外線照射されるエリアが発生し、紫外線による被爆を確実に回避することは困難である。
 そのため、被爆をより確実に回避することの可能な紫外線照射装置が望まれていた。
 そこで、この発明は、上記従来の未解決の課題に着目してなされたものであり、紫外線による被爆をより確実に回避することの可能な紫外線照射装置及び紫外線照射方法を提供することを目的としている。
 本発明の一実施形態に係る紫外線照射装置は、紫外線を放出する光源と、当該光源の照射範囲と自己の検出範囲とが重なるように前記光源の周辺に配置され人の存在を検出する生体センサと、前記生体センサの出力信号に基づき前記光源を制御する電子回路と、前記光源から放出される紫外線の一部を遮光する遮光カバーと、を備え、前記光源は、前記遮光カバーを挟んで前記紫外線の照射対象が存在する一の側とは逆側の領域に配置され、前記生体センサの感知面と前記光源の発光面とは同一方向に向けて設置され、当該紫外線照射装置に組み込まれた状態での前記生体センサの最大検知角の1/2の角度θ2は、前記発光面の法線ベクトルと、前記光源から放出され前記遮光カバーにより遮光されずに通過した紫外線とがなす最大角度θ1よりも大きく、前記電子回路は、前記生体センサが人の存在を検出したとき前記紫外線の放出を停止させ、前記生体センサが人の存在を検出している状態から人の存在を検出しない状態に切り替わったとき、再度前記紫外線を放出させるように前記光源を制御することを特徴としている。
 また、本発明の他の実施形態に係る紫外線照射方法は、紫外線を放出する光源と、当該光源の照射範囲と自己の検出範囲とが重なるように前記光源の周辺に配置され人の存在を検出する生体センサと、を備え、前記光源から放出される紫外線の一部を遮光する遮光カバーを挟んで、前記紫外線の照射対象が存在する一の側とは逆側の領域に前記光源を配置すると共に、前記生体センサの感知面と前記光源の発光面とを同一方向に向けて設置し、当該設置状態での前記生体センサの最大検知角の1/2の角度が、前記光源の発光面の法線ベクトルと、前記光源から放出され前記遮光カバーにより遮光されずに通過した紫外線とがなす最大角度よりも大きくなるように前記紫外線を遮光することを特徴としている。
 ここでいう、設置状態での生体センサの最大検知角とは、生体センサや光源、また遮光カバーが設置され紫外線照射を行うことが可能な状態にある状態において、生体センサが検知可能な最大検知角という。例えば生体センサが遮光カバーに対して光源と同じ側に配置され、遮光カバーによって、生体センサの検知範囲が狭められている場合には、狭められた状態における検知角の最大値が最大検知角となり、光源と同じ側に配置されているが遮光カバーによって検知範囲が狭められていない場合には、狭められていない状態における検知角の最大値、つまり、生体センサの仕様で決定される視野角が、最大検知角となる。
 本発明の一態様によれば、紫外線照射を行いつつ、紫外線による被爆をより確実に回避することができる。
本発明の第一実施形態に係る紫外線照射装置の一例を示す斜視図である。 図1Aの透視図である。 図1AのA-A′断面を示す断面図である。 (a)は紫外線照射装置の正面図、(b)は背面図、(c)は側面図である。 本発明の第2実施形態に係る紫外線照射装置の一例を示すブロック図である。 紫外線照射装置の動作説明に供するタイミングチャートの一例である。 図1Aの変形例におけるA-A′断面を示す断面図である。 紫外線照射装置の他の例を示す斜視図である。 紫外線照射装置の設置例を示す図である。 第2実施形態に係る紫外線照射装置の動作説明に供する図である。 第3実施形態に係る紫外線照射装置の動作説明に供する図である。 第3実施形態に係る紫外線照射装置の他の例である。 第4実施形態に係る紫外線照射装置の動作説明に供する説明図である。 第5実施形態に係る紫外線照射装置の動作説明に供する説明図である。 第6実施形態に係る紫外線照射装置の動作説明に供する説明図である。 第7実施形態に係る紫外線照射装置の動作説明に供する説明図である。 シミュレーション結果の一例である。
 次に、図面を参照して、本発明の実施形態を説明する。以下の図面の記載において、同一又は類似の部分には同一又は類似の符号を付している。ただし、図面は模式的なものであり、厚みと平面寸法との関係、各層の厚みの比率等は現実のものとは異なる。また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれている。
 また、以下に示す実施形態は、本発明の技術的思想を具体化するための装置や方法を例示するものであって、本発明の技術的思想は、構成部品の配置等を下記のものに特定するものでない。本発明の技術的思想は、特許請求の範囲に記載された請求項が規定する技術的範囲内において、種々の変更を加えることができる。
<第1実施形態>
 図1から図4は、本発明の第1実施形態に係る紫外線照射装置の一例を示す図である。
 紫外線照射装置1は、例えば銀行のATM等、多数の人間が触る場所に対して殺菌を行う。
 図1Aは紫外線照射装置1の外観の一例を示す斜視図、図1Bはアウターケース3内を透視した一例を示す斜視図である。図2は、図1AのA-A′断面図、図3(a)は紫外線照射装置1の正面図、図3(b)は背面図、図3(c)は上面図であり、底面図は上面図と同一である。図4は、紫外線照射装置1の機能構成を示すブロック図である。なお、図1Aでは、後述の生体センサ11を省略している。
 紫外線照射装置1は、装置本体2と、装置本体2を収納する略直方体形状のアウターケース3と、を備える。
 装置本体2は、一つの生体センサ11と、二組の発光部12とを備える。発光部12は、3灯のUVC-LED(光源)12aと、1灯の青色LED(可視光光源)12bと、ヒートシンク12cと、ドライバ基板12dと、を備える。UVC-LED(光源)12aは、ピーク波長が200nm以上300nm以下の紫外線を発する発光ダイオードであり、バクテリア等の殺菌効率の観点から、ピーク波長が255nm以上280nm以下であるとなお良く、260nm以上270nm以下であるとさらに良い。ドライバ基板12dには、UVC-LED12aを駆動制御する駆動回路12aa及び青色LED12bを駆動制御する駆動回路12baが実装されている。また、二組の発光部12のうちいずれか一方の発光部12のドライバ基板12dには、UVC-LED12a用の駆動回路12aa及び青色LED12b用の駆動回路12baが実装されると共に、制御回路(電子回路)1aが実装されている。制御回路1aは、生体センサ11の検出信号(出力信号)を入力し、この検出信号に基づきUVC-LED12a及び青色LED12bを、それぞれの駆動回路12aa、12baを介して制御すると共に、紫外線照射装置1全体を制御する。
 生体センサ11は、例えば量子型赤外線センサ(IRセンサ)で構成され、生体センサ11用のセンサ基板11aに実装される。UVC-LED12a及び青色LED12bは発光基板12eに実装されている。発光基板12eは、センサ基板11aとは別に設けられ、センサ基板11aとは接していないことで、センサ基板11aと熱的に接続されないようになっている。
 発光基板12eは略長方形状を有し、UVC-LED12aは発光基板12eの一方の長辺寄りの位置に長辺に沿って等間隔に3灯配置され、青色LED12bは発光基板12eのほぼ中央部の若干他方の長辺寄りの位置に配置されている。
 生体センサ11の感知面と全てのUVC-LED12aの発光面とは同一方向に向けて配置されている。また、全てのUVC-LED12aは、平面視で生体センサ11との間の距離が20mm以下の範囲に配置される。UVC-LED12aと生体センサ11との距離を近づけることで、光源であるUVC-LED12aの近辺においても、紫外線照射エリアを生体センサ検知エリア内に収めることが可能となる。
 なお、生体センサ11は、量子型赤外線センサ(IRセンサ)に限るものではなく、焦電型赤外線センサ、マイクロ波レーダ、反射型赤外線センサ、ミリ波レーダ、超音波センサ、温度検出センサ、ToFセンサ等であっても適用することができる。
 また、生体センサ11、UVC-LED12a、青色LED12b、及びドライバ基板12dは図示しない配線で接続されている。
 アウターケース3は、紫外線照射装置1の正面及び背面に当たる表裏面が開口した直方体状のケース本体3aと、ケース本体3aの表面側の開口部分に設けられた遮光カバー3bと、ケース本体3aの裏面側の開口部分に設けられた背面カバー3cと、を備える。ケース本体3aの開口端のそれぞれには、図2に示すように、遮光カバー3bを支持するための段差部3aa及び背面カバー3cを支持するための段差部3abが形成されている。
 図3(c)に示すように、紫外線照射装置1の上面及び底面となる、ケース本体3aの長辺に接する二つの側面3dのそれぞれには、スリット孔3daが形成されている。スリット孔3daは、アウターケース3の長手方向に沿って形成され、ケース本体3aの高さ方向に3列ずつ、長手方向に沿って2列に並んで形成されている。
 遮光カバー3bには、図3(a)に示すように、生体センサ11用の一つの円形の孔31と、UVC-LED12a用の六個の円形の孔32と、青色LED12b用の二つの円形の孔33とが形成されている。
 孔31は、遮光カバー3bの中心に形成され、その直径は他の孔32、33よりも大きい。孔32は、直径で孔31の1/3~1/4程度の大きさであり、孔33は、孔32よりも若干大きい。
 そして、孔32及び孔33は、遮光カバー3bの長手方向に沿って孔31を両側から挟み込み、孔31を中心として対称となるように、半分ずつ配置されている。この例では、三つの孔32が幅方向(遮光カバー3bの短手方向)に沿って等間隔に並んでおり、その中心に位置する孔32と、孔33とが、長手方向(遮光カバー3bの長手方向)中心線上に位置している。
 また、図1Bに示すように、遮光カバー3bの背面カバー3cと対向する側の面である裏面には、センサ基板11aを固定するための二本のボス状の突起3baが形成されている。突起3baは、孔31から長手方向に沿って両側に互いに離れた位置であって、長手方向中心線から一方の側に若干ずれた位置に設けられている。突起3baにセンサ基板11aを当接させた状態でセンサ基板11aの裏面側からビスを突起3baにねじ込むことで、センサ基板11aは遮光カバー3bから突起3baの長さ分だけ離隔した位置に配置される。
 さらに、遮光カバー3bの裏面の、四隅から中心側に若干入り込んだ位置には、ヒートシンク12cの上面を抑えるためのボス状の突起12caが設けられている。
 背面カバー3cには、図3(b)に示すように、ヒートシンク12cの放熱用の略長方形の開口部3caが形成され、開口部3caは、背面カバー3cの幅方向略中央部に長手方向に沿って間隔をあけて二つ形成されている。また、背面カバー3cの遮光カバー3bと対向する側の面の開口部3caそれぞれの近傍には、開口部3caの2つの長辺それぞれの、中央部よりもやや背面カバー3cの短辺寄りの位置に、ヒートシンク12cを固定するための、ボス状の固定部材3cbが設けられている。
 ヒートシンク12cは、例えば略正方形の平板部c1の一方の面に多数の棒状部材c2が形成された剣山形状を有し、棒状部材c2がなす四つの側面のうちの一つの面に沿うようにドライバ基板12dが、ヒートシンク12cのフランジ部c3に固定され、平板部c1の棒状部材c2とは逆側の面の、ドライバ基板12dとは逆側寄りに、発光基板12eに実装されたUVC-LED12aが平板部c1の辺に沿うように、発光基板12eがフランジ部c3に固定される。
 そして、ドライバ基板12d及び発光基板12eが固定されたヒートシンク12cを発光基板12e側が中央部寄りとなるように配置し、棒状部材c2側が背面カバー3cと対向するようにしてヒートシンク12cの棒状部材c2とは逆側からビスをねじ込むことで、フランジ部c3と固定部材3cbとを一体に固定する。これによって、ヒートシンク12cと背面カバー3cとが一体に固定される。さらに、センサ基板11aが固定された遮光カバー3bを、センサ基板11a側が内側となるようにして遮光カバー3bの、センサ基板11aとは逆側から、突起12caにビスをねじ込むことで、遮光カバー3bとケース本体3aとが一体となり、装置本体2がアウターケース3内に固定されるようになっている。また、このような構造とすることによって、ヒートシンク12cと生体センサ11とを熱的に接続されていない状態とすることができる。つまり、ヒートシンク12cから生体センサ11までの熱抵抗が2.5K/W以上あれば、UVC-LED12aから生体センサ11への伝熱は無視することができ、熱的に接続されていないとみなすことができる。
 なお、ヒートシンク12cは剣山形状のヒートシンクに限るものではなく、複数のフィンを備えたヒートシンクであっても適用することができる。
 また、生体センサ11は、装置本体2がアウターケース3内に固定された状態で、紫外線照射装置1の照射対象物付近に存在する人を検知できるように、遮光カバー3bの表面から多少突出して配置されている。また、UVC-LED12a及び青色LED12bは、それぞれの照射光が、対応する孔32、33を通ってアウターケース3外に放出され、且つ、照射対象物における、UVC-LED12aによる照射領域と、青色LED12bによる照射領域とが略一致するように位置決めされる。
 紫外線照射装置1は、例えば、図示しない入力端子に入力される24Vの直流電圧を電源電圧として動作し、図4に示すように、紫外線照射装置1全体を制御する制御回路1aが、生体センサ11の検出信号をもとに、2つの発光部12それぞれの駆動回路12aaを介してUVC-LED12aを駆動制御し、駆動回路12baを介して青色LED12bを駆動制御することにより、人体に紫外線照射が行われることを回避しつつ、照射対象物に対して紫外線照射を行う。
 具体的には、制御回路1aは、生体センサ11の検出信号をもとに人を検知している状態から人を検知しない状態に切り替わったことを検出する。そして、図5(a)のタイミングチャートに示すように、人を検知している状態から人を検知しない状態に切り替わったことを検出したとき、予め設定した待機時間T1が経過した時点で、UVC-LED12aを照射時間T2の間、駆動して紫外線照射を行う。そして、照射時間T2が経過したとき、紫外線照射を停止する。さらに、生体センサ11で人を検知しない状態が非照射時間T3の間継続したことを検出したとき、生体センサ11で人を検知した状態から人を検知しない状態に切り替わったことを検知しなくとも、照射時間T2の間、UVC-LED12aを駆動して紫外線照射を行う。また、図5(b)に示すように、人を検知しない状態が非照射時間T3の間継続する毎に定期的に紫外線照射を行っているとき、或いは人がいなくなったことを検知して紫外線照射を行っているときに、生体センサ11で人が存在することを検知したときには、速やかに紫外線照射を停止する。また、紫外線照射を行う場合には、UVC-LED12aを駆動すると共に、青色LED12bを駆動し、UVC-LED12aによる紫外線照射領域と同じ領域を、青色LED12bの青色光で照射する。これにより、紫外線照射領域を可視化することができる。
 待機時間T1は、生体センサ11の検出信号に基づき、人を検知しない状態に切り替わったとみなすことの可能な時間に設定され、例えば5秒程度に設定される。照射時間T2は、UVC-LED12aの紫外線照射によって照射対象物を十分に殺菌するために必要な照射時間に応じて設定され、例えば10分程度に設定される。非照射時間T3は、例えば50分程度に設定される。つまり、生体センサ11で人を検知しない状態、例えば銀行のATM等において、前回紫外線照射を行った後、誰もATMを操作していない状態であっても、定期的に紫外線照射を行うことによって、定期的に殺菌を行う。
 このように、生体センサ11の検出信号に基づき、紫外線照射を行うことによって、生体センサ11に基づき人を検知しない状態に切り替わったことを検出したときには、誰かがATM等を操作した可能性があることから、紫外線照射を行って殺菌を行うことで、照射対象物を効率よく殺菌することができる。
 また、生体センサ11が人を検知しない状態に切り替わった時点では紫外線照射を行わず、待機時間T1が経過した時点で紫外線照射を行うため、人が紫外線の照射範囲外に移動したとみなすことができる状態となった時点以後に紫外線照射を行うことになり、より確実に被爆することを回避することができ、安全性を向上させることができる。
 また、照射対象物に対する紫外線照射を行った後、人を検知しない状態が非照射時間T3の間継続したときには、紫外線照射を行うため、ATM等の操作が継続して行われない場合でも、定期的に紫外線照射を行うことによって、定期的に殺菌が行われるため、ATM等を、ある程度の殺菌効果が得られる状態に維持することができる。
 なお、必ずしも非照射時間T3が経過する毎に、つまり定期的に紫外線照射を行う必要はなく、断続的に紫外線照射を行うようにしてもよい。また、非照射時間T3が経過する毎に定期的に紫外線照射を行う場合には、人がATM等を操作していないため、紫外線の照射時間を、照射時間T2よりも短い時間にしてもよい。
 また、青色LED12bによって、紫外線照射領域を可視化することができるため、ATM等を操作する人間は、紫外線照射領域を容易に認識することができ、より確実に被爆を回避することができる。
 また、生体センサ11は、熱を感知しているため、生体センサ11周辺の温度が上昇すると検知精度が低下する。第1実施形態に係る紫外線照射装置1では、生体センサ11が実装されたセンサ基板11aと、UVC-LED12a及び青色LED12bが実装された発光基板12eと、を離して配置し、さらに、発光基板12eには、ヒートシンク12cを固定している。ヒートシンク12cによりUVC-LED12aの放熱効果が高まる。また、ヒートシンク12cを背面カバー3cに固定し、生体センサ11を遮光カバー3bに固定することで、UVC-LED12aの熱が伝わるヒートシンク12cから生体センサ11をできるだけ離して配置することにより、熱の影響をより低減することができる。
 また、紫外線照射領域を可視化しているため、人は目視により紫外線照射領域を容易に認識することができる。そのため、紫外線照射装置1の設置作業等を容易に行うことができる。また、紫外線照射領域が可視化されることにより、例えば照射対象物としてATM等を操作する人間は、殺菌が適切に行われているか否かを認識でき、また、操作する際に紫外線照射が行われていないことを認識することができる。そのため、安心感を得ることができる。
 なお、ここでは、ヒートシンク12cを設けることで放熱効果を得る場合について説明したが、これに限るものではない。ヒートシンク12cと合わせて冷却ファンを設けてもよく、図6に示すようにヒートシンク12cと背面カバー3cとの間に冷却ファン12fを設けてもよい。
 また、上記第1実施形態においては、図3(a)に示すように、生体センサ11、UVC-LED12a及び青色LED12bを配置した場合について説明したが、これに限るものではなく、任意の位置に配置することができる。図7に示すように青色LED12b(孔33に対応)をアウターケース3の長手方向一端寄りに配置し、生体センサ11(孔31に対応)及びUVC-LED12a(孔32に対応)をアウターケース3の長手方向中央よりもやや他端寄りに配置することもできる。なお図7において(a)は正面図、(b)は背面図である。
 また、上記第1実施形態において、紫外線照射装置1は、照射対象物に対して紫外線照射を行うことの可能な位置に単体で固定するようにしてもよい。また、例えば、図8に示すように、可動アームの先端に紫外線照射装置1を取り付けデスクライト型の紫外線照射装置として設置してもよい。
 また、紫外線照射装置1は、装置本体2を壁等に埋め込み、壁板の、生体センサ11、UVC-LED12a、青色LED12bと対向する位置に、孔31~33を設け、壁板に遮光カバー3bに相当する構成をもたせることで、紫外線照射装置1と同等の機能構成を実現するようにしてもよい。
<第2実施形態>
 次に、本発明の第2実施形態を説明する。
 第2実施形態に係る紫外線照射装置1は、第1実施形態に係る紫外線照射装置1において、UVC-LED12aと生体センサ11との位置関係を規定したものである。
 図9(a)は、生体センサ11の感知エリア(検出範囲)と、UVC-LED12aの照射エリア(照射範囲)とを示したものである。図9(a)において、UVC-LED12amは、図1Bに示すように、各発光基板12eに実装された3灯のUVC-LED12aのうち、生体センサ11から最も離れた位置にあるUVC-LED12aである。
 第2実施形態に係る紫外線照射装置1は、図9(a)に示すように、生体センサ11の感知エリアが、2灯のUVC-LED12amの照射エリアの和よりも広くなるようになっている。つまり、例えば図9(b)に示すように、生体センサ11の感知エリアが2灯のUVC-LED12amの照射エリアの和よりも狭い場合、紫外線の照射対象物(例えばATM)を操作しようとして人が照射対象物に接近した場合、生体センサ11の感知エリアに人が進入する前に照射エリアに進入する。そのため、UVC-LED12amによる紫外線照射が行われている最中に、生体センサ11により人が感知エリアに進入したことが検知された場合には、被爆した後に紫外線照射が停止されることになる。また、紫外線照射中でない場合でも、定期的に紫外線照射を行うタイミングがきたらこの時点で紫外線照射が行われ、これにより被爆し、その後生体センサ11によって人が管理エリアに侵入したことが検知された時点で、紫外線照射が停止されることになる。なお、UVC-LEDは一般的に点光源とみなせるため、図9(b)のUVC-LED12amの紫外線放射角は模式的に示したもので、実際には図示したものより広角に紫外線放射されている。
 これに対し、第2実施形態に係る紫外線照射装置1では、照射エリア内に人が進入する前の段階で、人が存在することが検知され、紫外線照射が停止され紫外線照射が行われないため、被爆することをより確実に回避することができ、安全性を向上させることができる。
 ここで、第2実施形態に係る紫外線照射装置1では、生体センサ11の感知エリアを、UVC-LED12amの照射エリアよりも広くするため、感知エリアと照射エリアとを調整する。具体的には、UVC-LED12amから放出された紫外線のうち、遮光カバー3bにより遮光されずに孔32を通過し照射対象物に向けて放出された紫外線である放出線とUVC-LED12amの発光面の法線ベクトルとがなす最大角度を最大放射角度相当値θ1とする。また、アウターケース3内に配置された状態における生体センサ11で検知可能な最大検知角、つまり、生体センサ11が紫外線照射装置1に組み込まれた状態において、生体センサ11で検知可能な検知角度の最大値である最大検知角の1/2の角度を視野角相当値θ2とする。そして、感知エリアと照射エリアとを、最大放射角度相当値θ1が視野角相当値θ2よりも小さく(θ1<θ2)なるように設定する。
 このように設定すると、紫外線照射装置1と紫外線照射対象物との間の距離が増加したときの、生体センサ11の感知エリアの拡大割合はUVC-LED12amによる照射エリアの拡大割合よりも大きいため、紫外線照射装置1と紫外線照射対象物との間の距離が大きくなるにつれて、感知エリアに含まれる2灯のUVC-LED12amの照射エリアの割合が大きくなり、やがて、感知エリア内に、2灯のUVC-LED12amの照射エリアが共に含まれるようになる。
 したがって、UVC-LED12amの最大放射角度相当値θ1が視野角相当値θ2よりも小さく(θ1<θ2)なるようにこれらを調整することで、感知エリア内に2灯のUVC-LED12aの照射エリアを含めることができる。つまり、人が照射対象物に近づくとまず、感知エリアに進入した人の存在が検出され、これによりUVC-LED12aの駆動が停止されて紫外線の照射が停止され、その後紫外線の照射エリアに進入することになる。つまり、紫外線の照射エリアに進入した人の被爆する可能性が低下する。
 また、例えば、タッチパネル等の表面を殺菌するような用途においては、付近を通過する人まで検知してしまうと誤動作につながるため、照射エリア内に限定した人の侵入の検知が望まれる。本構成において、θ2<θ1x2となるように、遮光カバー3bにおける孔31及び孔32の開口径を調節する事で、照射エリアに対して必要以上に検知エリアを広げることによる生体センサの誤検知を防止する事が可能となる。
 これらの調整は、例えば、孔31及び32の開口径及び配置位置、生体センサ11の受光面から孔31までの距離、UVC-LED12amの発光面から孔32までの距離、生体センサ11の視野角性能、UVC-LED12amの照射光の最大角度等のうちのいずれか一つ又は複数を組み合わせることにより行う。
 そして、さらに、照射対象物において、感知エリア内に2灯のUVC-LED12amの照射エリアが含まれるように、紫外線照射装置1と照射対象物との間の距離、生体センサ11及びUVC-LED12amとの間の距離等のうちのいずれか一つ又は複数を組み合わせて調整する。
 ここで、第2実施形態に係る紫外線照射装置1においては、生体センサ11との間の距離が最も大きい2灯のUVC-LED12amの照射エリアが生体センサ11の感知エリア内に含まれるように設定している。そのため、UVC-LED12aのうち、生体センサ11との間の距離がUVC-LED12amと生体センサ11との間の距離よりも短いUVC-LED12aの検知エリアは、必ず生体センサ11の感知エリア内に含まれることになる。
 なお、上述のように、生体センサ11とUVC-LED12aとの間の距離によって、感知エリアと照射エリアとの関係が変化するため、UVC-LED12aの配置位置を、図1Bに示すように、生体センサ11を挟んで3つずつ等間隔に2列に配置するのではなく、生体センサ11との間の距離が等間隔となるように、生体センサ11を中心とする円上にUVC-LED12aを配置するようにしてもよい。
<第3実施形態>
 次に、本発明の第3実施形態を説明する。
 第3実施形態に係る紫外線照射装置1は、第2実施形態に係る紫外線照射装置1において、サイドカバーを設けたものである。
 図10は第3実施形態に係る紫外線照射装置1を示したものであり、(a)はサイドカバーを備えた紫外線照射装置の一例を示す斜視図、(b)は、要部を表す断面図である。
 第3実施形態に係る紫外線照射装置1は、図10(a)に示すように、遮光カバー3bの、背面カバー3cとは逆側の面に、生体センサ11、UVC-LED12a及び青色LED12bに対応する孔31~33を囲むサイドカバー(突出部)3eが設けられている。サイドカバー3eは、例えば、端面が直方体の角筒状に形成される。なお、サイドカバー3eは、直方体の角筒状の形状に限るものではなく、図10(b)に示す断面図において、サイドカバー3eが外側に傾斜した、遮光カバー3bから離れるほど端面が大きくなる電球傘形状であってもよい。
 サイドカバー3eは、UVC-LED12aの発光面からサイドカバー3eの、遮光カバー3bとは逆側の端部までの、発光面の法線ベクトルに沿った高さH1が次式(1)を満足するように設定される。
  H1≧L1×cos(θ2)×cos(θ3)/sin(θ2-θ3) ……(1)
 式(1)中の、L1は、UVC-LED12aのうち生体センサ11から最も遠い位置に配置されている最遠光源であるUVC-LED12amと生体センサ11との間の距離である。θ2は、アウターケース3内に配置された状態における生体センサ11で検知可能な最大検知角の1/2の角度である視野角相当値である。θ3は、最遠光源であるUVC-LED12amから放出され、遮光カバー3bにより遮光されずに孔32を通過して照射対象物に向けて放出された紫外線である放出線のうち、平面視で生体センサ11から最も離れた地点を通る放出線と、最遠光源であるUVC-LED12amの発光面の法線ベクトルとがなす角度を表す最遠放射角度相当値である。
 図10(b)に示すように、照射対象物における照射エリアが感知エリアに含まれたとしても、紫外線照射装置1と照射対象物との間の、遮光カバー3bに近い空間領域では、空間領域における照射エリアが感知エリア内に含まれず、このような空間領域に人の手等が進入した場合には、まず照射エリアに進入し、その後感知エリアに進入することになる。つまり、被爆する可能性がある。そのため、照射エリアが感知エリア内に含まれない空間領域には人の手等が進入しないように、サイドカバー3eを設ける。そして、照射エリアが感知エリア内に含まれない空間領域への進入を阻止するためには、遮光カバー3bから、生体センサ11の感知エリアとUVC-LED12amの照射エリアとが一致する地点までの領域に人の手等が進入しなければよい。生体センサ11の感知エリアとUVC-LED12amの照射エリアとが一致する地点は、前記(1)式から、UVC-LED12amの発光面からの法線ベクトルに沿った高さH1の地点として表すことができる。そのため、UVC-LED12amの発光面からサイドカバー3eの先端までの発光面の法線ベクトルに沿った高さH1が、前記(1)式を満足するように設定することにより、少なくとも、生体センサ11の感知エリアとUVC-LED12asの照射エリアとが一致する地点よりも高さのあるサイドカバー3eが形成されることになる。その結果、空間領域における照射エリアが感知エリア内に含まれない場合であっても、サイドカバー3eにより、被爆する可能性がある領域への人の手等の進入が阻止されることになり、安全性をより向上させることができる。
 図7に示すように青色LED12b(孔33に対応)とUVC-LED12a(孔32に対応)を離して配置した場合には、図11に示すように、青色LED12bに対応する孔33を除いて、生体センサ11及びUVC-LED12aに対応する孔31、32を囲むようにサイドカバー3eを設ければよい。
 なお、本紫外線照射装置1において、必ずしも図10や図11に示すように4面をサイドカバーで囲う必要はなく、人がアクセスする可能性のある方向のみにカバーを設ければよい。例えばATMのタッチパネル上に配置する事を想定した場合、装置手前方向からの人のアクセスのみを想定すればよいので、装置奥側および側面のカバーは不要となる。
<第4実施形態>
 次に、本発明の第4実施形態を説明する。
 第4実施形態は、第1実施形態に係る紫外線照射装置1において、サイドカバー3eを設けると共に、生体センサ11及びUVC-LED12aの配置位置を変えたものである。
 第4実施形態に係る紫外線照射装置1は、図12に示すように、一つの発光部12と、一つの生体センサ11と、を備える。また、生体センサ11は、遮光カバー3b側からみて長手方向一方の端部側に配置され、UVC-LED12aは生体センサ11の、長手方向他方の端部側に配置される。さらに生体センサ11は、傾き調整機構13に設けられ、傾き調整機構13によって傾きを調整することによって、感知面の傾きがUVC-LED12a側に向くようになっている。傾き調整機構13は、例えばセンサ基板11aを取り付け可能な支持部材13aと固定部材13bとが可動可能に固定され、固定部材13bの一端を、遮光カバー3bの背面カバー3cとは逆側の面に固定し、支持部材13aにセンサ基板11aを取り付け、支持部材13aの傾きを手動で調整することによって、センサ基板11aの傾きを調整し感知面の向きを調整するようになっている。なお、ここでは、傾き調整機構13を備えることで、生体センサ11を紫外線照射装置1に組み込んだ後でも、生体センサ11の傾きを調整可能に構成しているが、例えば、紫外線照射装置1に組み込んだ後に、生体センサの傾きを調整する必要がない場合には、傾き調整機構13は必ずしも備えていなくともよい。
 傾き調整機構13により調整を行うことによって、センサ基板11aは感知面がUVC-LED12a側に向くように傾斜して配置され、生体センサ11の感知エリアに、全てのUVC-LED12aの照射エリアが含まれるように配置される。また、図12には、青色LED12bを記載していないが、青色LED12bは、その青色照射エリアが全てのUVC-LED12aの照射エリアと重なるように配置される。
 生体センサ11及びUVC-LED12aをこのように配置することによって、生体センサ11の配置位置の自由度を向上させることができる。つまり、図1Bに示すように、生体センサ11を正面からみて中央に配置した場合、生体センサ11の感知エリア内に、UVC-LED12aの照射エリアが含まれるように配置するには、生体センサ11の周囲にUVC-LED12aを配置する必要がある。これに対し、図12に示すように、生体センサ11の一方の側に全てのUVC-LED12aを配置した場合、これらUVC-LED12aの照射エリアが感知エリアに含まれるように生体センサ11をUVC-LED12a側に傾けて配置すればよい。つまり、複数のUVC-LED12aの周囲のいずれかの位置に生体センサ11を配置すればよいため、生体センサ11の配置の自由度を向上させることができる。
 サイドカバー3eは、第3実施形態における紫外線照射装置1と同様に、遮光カバー3bに設けられる。サイドカバー3eの高さは、UVC-LED12aの発光面からサイドカバー3eの遮光カバー3bとは逆側の端部までのUVC-LED12aの発光面の法線ベクトルに沿った距離H2として次式(2)で表すことができる。
  H2≧L2×cos(θ2+θ4)×cos(θ3)/sin(θ4+θ2-θ3) ……(2)
 なお、式(2)において、L2は、UVC-LED12aのうち生体センサ11から最も遠い位置に配置されている最遠光源であるUVC-LED12amと生体センサ11との間の距離である。θ2は、アウターケース3内に配置された状態における生体センサ11で検知可能な最大検知角の1/2の角度である視野角相当値、θ3は、最遠光源であるUVC-LED12amから放出され、遮光カバー3bにより遮光されずに孔32を通過して照射対象物に向けて放出された紫外線である放出線のうち、平面視で生体センサ11から最も離れた地点を通る放出線と、最遠光源であるUVC-LED12amの発光面の法線ベクトルとがなす角度を表す最遠放射角度相当値である。θ4は、生体センサ11の感知面の傾きである。
 生体センサ11の感知面を傾けることにより、生体センサ11から一番遠い位置にあるUVC-LED12amの照射エリアと生体センサ11の感知エリアとが一致する地点が、生体センサ11を傾けない場合に比較して、より遮光カバー3b寄りの位置となる。そのため、生体センサ11を傾けた分相当だけ、最遠光源であるUVC-LED12amの発光面の法線ベクトルに沿ったサイドカバー3eの高さに相当するH2を短くすることができ、すなわちサイドカバー3eの高さを低くすることができる。つまり紫外線照射装置1をより小型化することができる。なお、この場合には、生体センサ11、UVC-LED12a及び青色LED12bの配置に合わせて、遮光カバー3bのそれぞれに対応する孔31~33の配置を変更すればよい。
<第5実施形態>
 次に、本発明の第5実施形態を説明する。
 第5実施形態は、第1実施形態に係る紫外線照射装置1において、発光部12の配置位置を変えたものである。第5実施形態に係る紫外線照射装置1では、図13に示すように、二つの発光部12それぞれを、UVC-LED12aの発光面が生体センサ11側に傾くように配置している。発光部12は、UVC-LED12aの発光面の傾き(傾斜角)θaが、次式(3)を満足するように設定する。
  θa=asin(L3/D) ……(3)
 なお、各発光部12に搭載されている複数のUVC-LED12aのうち、最も遮光カバー3bに近い位置に配置されたUVC-LED12aをUVC-LED12anとしたとき、(3)式におけるL3は、生体センサ11とUVC-LED12anとの間の距離、Dは、UVC-LED12anの発光面と照射対象物との間の距離を表す。
 このように配置することによって、図13(a)に示すように、二つの発光部12それぞれに搭載されたUVC-LED12aの照射エリアが互い重なり合い、照射密度を高めることができる。つまり、第1実施形態に係る紫外線照射装置1のように、生体センサ11を挟んで配置された二つの発光部12に搭載されたUVC-LED12aの発光面が共に同じ方向を向いている場合、図13(b)に示すように、照射エリアA1は広がるが、二つの発光部12に搭載されたUVC-LED12aによる照射エリアが重なる領域A2は狭い。そのため、照射密度が高い領域は、図13(a)に示す、照射エリアの重なる領域A3が広い場合における照射密度が高い領域に比較して、狭い。
 そのため、例えば、二つの発光部12を、それぞれを互いに向き合う方向に傾けて配置することによって、容易に殺菌性能を向上させることができる。
 なお、発光部12に、図12に示す傾き調整機構(光源傾き調整機構)13を適用し、発光部12の傾きを手動で調整するようにしてもよい。傾き調整機構13は、二つの発光部12のそれぞれに設けてもよく、いずれか一方にのみ設けてもよい。一つの発光部12に1又は複数のUVC-LED12aを実装することにより、UVC-LED12aの傾きを一つずつ或いは複数毎に調整することができる。
<第6実施形態>
 次に、本発明の第6実施形態を説明する。
 第6実施形態は、第1実施形態に係る紫外線照射装置1において、複数、例えば二つの生体センサ11-a、11-bを設けたものである。
 すなわち、図14に示すように、UVC-LED12aを一纏めにして配置し、これらUVC-LED12aの周辺に二つの生体センサ11-a、11-bを設ける。このとき、生体センサ11-a、11-bは、その感知面が、UVC-LED12a側に傾くように配置してもよく、UVC-LED12aの発光面と平行となるように配置してもよい。また、生体センサ11を、3つ以上設けてもよい。
 このように、生体センサ11を複数設けることによって、人を感知するエリアが広がる。そのため、より確実に人の存在を感知することができる。
 なお、生体センサ11を複数設ける場合には、同一種のセンサを設けてもよく、例えば、種類の異なるセンサを複数設けてもよく、紫外線照射装置1の用途や設置環境に応じて生体センサ11を選定すればよい。
<第7実施形態>
 次に、本発明の第7実施形態を説明する。
 第7実施形態は、図15に示すように、第1実施形態に係る紫外線照射装置1において、さらに距離センサ14を設けたものである。
 距離センサ14は、UVC-LED12aが実装された発光基板12eに実装され、UVC-LED12aの発光面と同一方向に存在する物体との間の距離を測定する。
 そして、制御回路1aでは、距離センサ14の検出信号に基づき、UVC-LED12aの駆動時間を制御し、照射対象物までの距離が長いほど、紫外線の照射時間を長くする。
 つまり、図15に示すように、照射対象物までの距離が長いほど、照射密度は低下する。そのため、照射対象物までの距離が長いほど照射時間を長くすることによって、照射対象物に対して一定の照射強度(照射密度×時間)を与えることができる。そのため、照射対象物に対して安定した殺菌性能を得ることができる。
 さらに、測定距離の微分値が閾値を超えた場合に照射エリアに対して人が侵入したと認識することで、生体センサとしても使用できる。生体センサ11と併用して距離センサを生体センサとして使用する事で冗長性が増し、より確実に人の侵入を検知する事ができる。
 なお、第1実施形態に係る紫外線照射装置1において距離センサ14を設ける場合に限るものではなく、第2から第5実施形態においても、距離センサ14を設けるようにすることも可能であり、同等の作用効果を得ることができる。
 また、上記各実施形態においては、青色LED12bを2灯設ける場合について説明したが、2灯に限らず、一灯または3灯以上設けてもよい。同様にUVC-LED12aは6灯に限るものではなく、所望数のUVC-LED12aを設けてもよく、例えば、高い殺菌性能が必要な場合、或いは、より短時間で殺菌したい場合には、より多数のUVC-LED12aを設ければよい。
 また、上記各実施形態において、生体センサ11は、遮光カバー3bに形成された孔31により、検知角度が狭められなくともよい。また、生体センサ11は、アウターケース3の外側、つまり、遮光カバー3bの、表面に設けられていてもよい。
 同様に、装置本体2を壁等に埋め込む場合には、生体センサ11については、壁の表面に固定するようにしてもよい。
 また、遮光カバー3bに形成された孔31により、生体センサ11の検知角度が狭められていない場合、また、生体センサ11を遮光カバー3bの表面に取り付けたり、壁の表面に取り付けたりすることにより、生体センサ11の検知角度が狭められていない場合には、生体センサ11の仕様で決められている視野角が最大検知角となり、視野角の1/2の角度が視野角相当値θ2となる。
 以上、本発明の実施形態を説明したが、上記実施形態は、本発明の技術的思想を具体化するための装置や方法を例示するものであって、本発明の技術的思想は、構成部品の材質、形状、構造、配置等を特定するものでない。本発明の技術的思想は、特許請求の範囲に記載された請求項が規定する技術的範囲内において、種々の変更を加えることができる。
 第1実施形態に係る紫外線照射装置1を用いて、遮光カバー3bから300mm離れた位置にある500mm×500mmの照射対象物に対して紫外線照射を行う場合のシミュレーションを行った。UVC-LED12aの出力は70mWとし、6灯のUVC-LED12aを465mAで駆動する場合を想定した。その結果、図16に示すように、照射エリア略中央部で高い紫外線照射照度が得られた。図16において、紫外線照射照度が最も高い部分は、10分間でドーズ量(積算光量(UV露光量))が40mj/cm以上であった。
 1 紫外線照射装置
 1a 制御回路
 2 装置本体
 3 アウターケース
 3b 遮光カバー
 3c 背面カバー
 3e サイドカバー
11 生体センサ
11a センサ基板
12 発光部
12a UVC-LED
12b 青色LED
12c ヒートシンク
12d ドライバ基板
12e 発光基板

Claims (14)

  1.  紫外線を放出する光源と、
     当該光源の照射範囲と自己の検出範囲とが重なるように前記光源の周辺に配置され人の存在を検出する生体センサと、
     前記生体センサの出力信号に基づき前記光源を制御する電子回路と、
     前記光源から放出される紫外線の一部を遮光する遮光カバーと、
    を備え、
     前記光源は、前記遮光カバーを挟んで前記紫外線の照射対象が存在する一の側とは逆側の領域に配置され、
     前記生体センサの感知面と前記光源の発光面とは同一方向に向けて設置され、
     当該紫外線照射装置に組み込まれた状態での前記生体センサの最大検知角の1/2の角度θ2は、前記発光面の法線ベクトルと、前記光源から放出され前記遮光カバーにより遮光されずに通過した紫外線とがなす最大角度θ1よりも大きく、
     前記電子回路は、前記生体センサが人の存在を検出したとき前記紫外線の放出を停止させ、前記生体センサが人の存在を検出している状態から人の存在を検出しない状態に切り替わったとき、再度前記紫外線を放出させるように前記光源を制御する
    紫外線照射装置。
  2.  前記角度θ2は、前記最大角度θ1の2倍の角度よりも小さい請求項1に記載の紫外線照射装置。
  3.  一又は複数の前記光源を有し、
     前記一又は複数の光源から放出され前記遮光カバーを通過した紫外線を囲むように、前記遮光カバーから前記一の側に突出して設けられた突出部を備え、
     前記光源のうち前記生体センサから最も離れた位置に配置された最遠光源と前記生体センサとの間の距離をL1とし、
     前記最遠光源の発光面の法線ベクトルと、前記最遠光源から放出され前記遮光カバーを通過した紫外線のうち平面視で前記生体センサから最も離れた地点を通る紫外線とがなす角度をθ3としたとき、
     前記光源の発光面と前記突出部の先端との間の、前記発光面の法線ベクトルに沿った距離は、
     L1×cos(θ2)×cos(θ3)/sin(θ2-θ3)以上である請求項1又は請求項2に記載の紫外線照射装置。
  4.  一又は複数の前記光源を有し、
     前記生体センサは前記光源側に傾斜して設けられ、
     さらに、前記一又は複数の光源から放出され前記遮光カバーを通過した紫外線を囲むように前記遮光カバーから前記一の側に突出して設けられた突出部を有し、
     前記光源のうち前記生体センサから最も離れた位置に配置された最遠光源と前記生体センサとの間の距離をL2とし、
     前記最遠光源の発光面の法線ベクトルと、前記最遠光源から放出され前記遮光カバーを通過した紫外線のうち平面視で前記生体センサから最も離れた地点を通る一の紫外線とがなす角度をθ3とし、
     前記生体センサの感知面の法線ベクトルの、前記一の紫外線側への傾斜角度をθ4としたとき、
     前記光源の発光面と前記突出部の先端との間の、前記発光面の法線ベクトルに沿った距離は、
     L2×cos(θ2+θ4)×cos(θ3)/sin(θ4+θ2-θ3)以上である請求項1に記載の紫外線照射装置。
  5.  前記光源が、前記生体センサの周囲に複数配置されている請求項1又は請求項2に記載の紫外線照射装置。
  6.  複数の前記光源のうち少なくとも一つは、その発光面の法線ベクトルがそれぞれ前記生体センサ側に傾斜する光源傾き調整機構を有する請求項5に記載の紫外線照射装置。
  7.  前記光源のうち前記生体センサから最も離れた位置に配置された最遠光源と前記生体センサとの間の距離をL3とし、
     前記生体センサの感知面の中心を通る法線ベクトルを延長した直線の、前記遮光カバーの前記一の側の面との交点から前記照射対象との交点までの距離をDとしたとき、
     前記発光面の法線ベクトルの、前記生体センサ側への傾斜角度はasin(L3/D)
    である請求項6に記載の紫外線照射装置。
  8.  前記光源の周辺に複数の生体センサが配置されている請求項1から請求項4のいずれか一項に記載の紫外線照射装置。
  9.  前記光源と熱的に接続されたヒートシンクを備える請求項1から請求項8のいずれか一項に記載の紫外線照射装置。
  10.  前記ヒートシンクは、前記生体センサと熱的に接続されていない請求項9に記載の紫外線照射装置。
  11.  さらに冷却ファンを備える請求項9又は請求項10に記載の紫外線照射装置。
  12.  前記光源の発光面の向きと同一方向に存在する物体までの距離を検出する距離センサを備え、
     前記電子回路は、前記距離センサで検出した検出距離に応じて、前記光源による紫外線の放出時間を制御する請求項1から請求項11のいずれか一項に記載の紫外線照射装置。
  13.  前記光源の照射範囲を、自己の可視光照射範囲に含む可視光光源を備える請求項1から請求項12のいずれか一項に記載の紫外線照射装置。
  14.  紫外線を放出する光源と、
     当該光源の照射範囲と自己の検出範囲とが重なるように前記光源の周辺に配置され人の存在を検出する生体センサと、を備え、
     前記光源から放出される紫外線の一部を遮光する遮光カバーを挟んで、前記紫外線の照射対象が存在する一の側とは逆側の領域に前記光源を配置すると共に、前記生体センサの感知面と前記光源の発光面とを同一方向に向けて設置し、
     当該設置状態での前記生体センサの最大検知角の1/2の角度が、前記光源の発光面の法線ベクトルと、前記光源から放出され前記遮光カバーにより遮光されずに通過した紫外線とがなす最大角度よりも大きくなるように前記紫外線を遮光する紫外線照射方法。
PCT/JP2021/025506 2020-07-09 2021-07-06 紫外線照射装置及び紫外線照射方法 WO2022009897A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP21838191.1A EP4180063A4 (en) 2020-07-09 2021-07-06 ULTRAVIOLET IRRADIATION APPARATUS AND ULTRAVIOLET IRRADIATION METHOD
CN202180047791.1A CN115768490A (zh) 2020-07-09 2021-07-06 紫外线照射装置和紫外线照射方法
JP2022535357A JPWO2022009897A1 (ja) 2020-07-09 2021-07-06

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-118799 2020-07-09
JP2020118799 2020-07-09

Publications (1)

Publication Number Publication Date
WO2022009897A1 true WO2022009897A1 (ja) 2022-01-13

Family

ID=79553189

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/025506 WO2022009897A1 (ja) 2020-07-09 2021-07-06 紫外線照射装置及び紫外線照射方法

Country Status (4)

Country Link
EP (1) EP4180063A4 (ja)
JP (1) JPWO2022009897A1 (ja)
CN (1) CN115768490A (ja)
WO (1) WO2022009897A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017094090A (ja) * 2012-11-13 2017-06-01 バイオレット ディフェンス テクノロジ インク 紫外光を放出するためのデバイス
US20170296686A1 (en) * 2014-05-30 2017-10-19 Uv Partners, Inc. Uv germicidal devices, systems, and methods
CN110585457A (zh) * 2019-09-27 2019-12-20 珠海格力电器股份有限公司 一种控制设备的方法、装置、智能晾衣架及存储介质

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10588993B2 (en) * 2017-07-24 2020-03-17 Osram Sylvania Inc. UV downlight with intelligent irradiance control
CN107737354A (zh) * 2017-11-20 2018-02-27 深圳安士宝科技有限公司 一种鞋子消毒器
CN110933805B (zh) * 2019-12-11 2021-06-29 湖南翔拓新创实业有限公司 一种紫外线除菌led感应灯及其控制方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017094090A (ja) * 2012-11-13 2017-06-01 バイオレット ディフェンス テクノロジ インク 紫外光を放出するためのデバイス
US20170296686A1 (en) * 2014-05-30 2017-10-19 Uv Partners, Inc. Uv germicidal devices, systems, and methods
CN110585457A (zh) * 2019-09-27 2019-12-20 珠海格力电器股份有限公司 一种控制设备的方法、装置、智能晾衣架及存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4180063A4 *

Also Published As

Publication number Publication date
EP4180063A1 (en) 2023-05-17
CN115768490A (zh) 2023-03-07
EP4180063A4 (en) 2024-01-24
JPWO2022009897A1 (ja) 2022-01-13

Similar Documents

Publication Publication Date Title
WO2022072411A2 (en) Bimodal ultraviolet disinfection systems and related methods
KR20230035581A (ko) 실내 공기 중 병원균의 확산을 방지하거나 최소화하기 위한 벽과 같은 방사선장을 갖는 램프 및 시스템
KR20190023890A (ko) 거리 측정 기반 시력 보호 기능을 구비하는 자외선 조사 장치
WO2022009897A1 (ja) 紫外線照射装置及び紫外線照射方法
KR100568583B1 (ko) 광 커서 제어장치
JP2019061905A (ja) 移動体照明装置及び移動体
KR100596584B1 (ko) 디스플레이장치
JP6111633B2 (ja) 照明器具
KR101833222B1 (ko) 백라이트 및 이를 포함하는 휴대용 컴퓨터
KR20120082151A (ko) 엘이디 조명등
KR20030062177A (ko) 레이저를 이용한 비상구 유도 장치
US20220400541A1 (en) Light emitting device capable of adjusting sensitivity and curing apparatus employing the same
KR102521148B1 (ko) 천정형 바이러스 제거장치
JP2022085806A (ja) 殺菌装置
CN112220944A (zh) 电梯轿厢按钮紫外消毒器具
KR101225057B1 (ko) 자동문 센서 모듈 및 이를 이용한 자동문 개폐 방법
US20230390447A1 (en) System and method for safely and efficiently disinfecting air in a room
KR102313833B1 (ko) 포터블 살균기
US20220096693A1 (en) Enclosed space ultraviolet disinfection systems and related methods
JP2010145977A (ja) 照明装置
TWI846179B (zh) 具顯示模組的電子裝置及其顯示模組
JP2023131058A (ja) 紫外線照射装置及び紫外線光源モジュール
US20240157010A1 (en) Device and control method for disinfecting objects
JP4523268B2 (ja) パチンコ機
JP4644575B2 (ja) 赤外線検出器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21838191

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022535357

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18014773

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2021838191

Country of ref document: EP

Effective date: 20230209

NENP Non-entry into the national phase

Ref country code: DE