WO2022009710A1 - 溶接ロボットの動作自動生成方法及び動作自動生成システム - Google Patents

溶接ロボットの動作自動生成方法及び動作自動生成システム Download PDF

Info

Publication number
WO2022009710A1
WO2022009710A1 PCT/JP2021/024263 JP2021024263W WO2022009710A1 WO 2022009710 A1 WO2022009710 A1 WO 2022009710A1 JP 2021024263 W JP2021024263 W JP 2021024263W WO 2022009710 A1 WO2022009710 A1 WO 2022009710A1
Authority
WO
WIPO (PCT)
Prior art keywords
welding
welding robot
measurement
point cloud
motion
Prior art date
Application number
PCT/JP2021/024263
Other languages
English (en)
French (fr)
Inventor
幸男 齊藤
Original Assignee
ジャパンマリンユナイテッド株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ジャパンマリンユナイテッド株式会社 filed Critical ジャパンマリンユナイテッド株式会社
Priority to KR1020237003745A priority Critical patent/KR20230033716A/ko
Priority to CN202180047652.9A priority patent/CN115768581A/zh
Publication of WO2022009710A1 publication Critical patent/WO2022009710A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/12Automatic feeding or moving of electrodes or work for spot or seam welding or cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1656Programme controls characterised by programming, planning systems for manipulators
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/4093Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by part programming, e.g. entry of geometrical information as taken from a technical drawing, combining this with machining and material information to obtain control information, named part programme, for the NC machine

Definitions

  • the point cloud processing step may recognize that the invalid region is formed by a plane perpendicular to the extraction surface and generate the assumed surface.
  • a three-dimensional model generation step Step 5 that generates a three-dimensional model of the welding location from the extracted surface and the assumed surface, a work setting process Step 6 that inputs data related to welding such as the welding location and leg length, and a welding robot using the three-dimensional model.
  • a predetermined welding operation generation step Step 7 for generating a welding motion a construction order setting step Step 8 for setting the construction order of welding points included in the three-dimensional model, and a predetermined welding robot 1 based on the automatically generated welding motion and the construction order. It includes a welding work step Step 9 for executing welding work.
  • FIG. 7 is an image diagram showing the extraction surface synthesis step, (A) shows the synthesis method, and (B) shows the synthesis result.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Robotics (AREA)
  • Geometry (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Manipulator (AREA)

Abstract

溶接ロボットの事前作業を削減し、現場で溶接ロボットの動作を自動生成することができる、溶接ロボットの動作自動生成方法及び動作自動生成システムを提供する。 本実施形態に係る溶接ロボット1の動作自動生成方法は、3D計測センサ4を所定の場所に配置するセッティング工程Step1と、溶接場所を複数の計測領域に分割して3D計測センサ4で計測する計測工程Step2と、計測された点群データのうち平面として認識可能な点群データから抽出面を生成し、点群データが得られない認識不能な無効領域から想定面を生成する点群処理工程Step3と、溶接場所における全ての計測を終了したか否か確認する計測確認工程Step4と、抽出面及び想定面から溶接場所の三次元モデルを生成する三次元モデル生成工程Step5と、を含んでいる。

Description

溶接ロボットの動作自動生成方法及び動作自動生成システム
 本発明は、溶接ロボットの動作自動生成方法及び動作自動生成システムに関し、特に、溶接場所に持ち込んだ溶接ロボットの溶接動作を現場で自動的に生成することができる溶接ロボットの動作自動生成方法及び動作自動生成システムに関する。
 例えば、船舶の建造では、ロンジ、カラープレート、スティフナ等、多数の部材から構成された船殻構造が溶接作業の対象となる。船舶建造工程の初期は、パネルに補強材を溶接するといった比較的簡単な構造の溶接作業であり、その自動化も進められている。後工程に進むに従い、立体的で大型の構造となっていくため、工場ラインに固定された自動溶接装置ではその装置も大型化せざるを得ず、初期費用も増大化するため、設備導入が難しい状況となる。かかる事情から小型化・軽量化された溶接ロボットを溶接場所に持ち込んで自動溶接することが長年研究されている。
 例えば、特許文献1には、CADデータのワーク形状情報からワークモデルを生成し、取付部材の取付線からなる基本溶接線の溶接モデルを生成し、更に溶接ロボットの動作範囲を定める領域分割線でワークを分割したセルモデルを生成し、基本溶接線ごとにワークと溶接ロボットの干渉の有無をチェックし、干渉が生じた場合には干渉が生じない範囲に短縮した溶接線を生成し、領域ごとに溶接線の溶接方向・順序・経路を決定し、更に溶接設計情報を指定して動作プログラムを生成する方法が開示されている。
特開2004-1226号公報
 しかしながら、特許文献1に記載された発明のように、CADデータを用いる場合には事前に溶接対象物のCADデータを用意しなければならず、事前作業に時間を要するという問題がある。また、CADデータの修正があった際に動作プログラムへの反映が遅れたり、CADデータに反映されない構造物が取り付けられていたり、CADデータと実際の溶接対象物及びその周辺部の形状が異なっていることも少なくない。その場合、溶接箇所でない場所を溶接してしまったり、溶接対象物やその周辺部と溶接ロボットとが衝突したりしてしまうという問題がある。
 本発明はかかる問題点に鑑み創案されたものであり、溶接ロボットの事前作業を削減し、現場で溶接ロボットの動作を自動生成することができる、溶接ロボットの動作自動生成方法及び動作自動生成システムを提供することを目的とする。
 本発明によれば、所定の溶接場所に配置された溶接ロボットの溶接動作を自動的に生成する溶接ロボットの動作自動生成方法であって、3D計測センサを所定の場所に配置するセッティング工程と、前記溶接場所を複数の計測領域に分割して前記3D計測センサで計測する計測工程と、計測された点群データのうち平面として認識可能な点群データから抽出面を生成し、点群データが得られない認識不能な無効領域から想定面を生成する点群処理工程と、前記抽出面及び前記想定面から前記溶接場所の三次元モデルを生成する三次元モデル生成工程と、前記三次元モデルを用いて溶接ロボットの溶接動作を生成する溶接動作生成工程と、を含むことを特徴とする溶接ロボットの動作自動生成方法が提供される。
 前記点群処理工程は、前記計測工程ごとに処理されてもよい。
 前記セッティング工程は、前記複数の計測領域が隣接する計測領域と重複した領域を有するように処理されてもよい。
 前記点群処理工程は、前記無効領域が前記抽出面に対して垂直な平面により形成されていると認識して前記想定面を生成するようにしてもよい。
 前記三次元モデル生成工程は、前記抽出面をロボット座標系に変換して合成する抽出面合成工程と、前記想定面をロボット座標系に変換して合成する想定面合成工程と、を含んでいてもよい。
 前記三次元モデル生成工程は、鋼板の板厚に相当する幅の平面を鋼板の端面として処理する板厚形状確認工程を含んでいてもよい。
 前記三次元モデル生成工程は、前記抽出面及び前記想定面が形成されない影部を抽出し復元する影部形状復元工程を含んでいてもよい。
 前記溶接動作生成工程は、前記溶接ロボットが配置された場所の傾きを考慮して前記溶接動作を生成することを含んでいてもよい。
 また、本発明によれば、所定の溶接場所に配置された溶接ロボットの溶接動作を自動的に生成する溶接ロボットの動作自動生成システムであって、前記溶接場所を複数の計測領域に分割して計測する3D計測センサと、前記3D計測センサのデータに基づいて前記溶接場所の三次元モデルを生成する演算装置と、を備え、前記演算装置は、計測された点群データのうち平面として認識可能な点群データから抽出面を生成し、点群データが得られない認識不能な無効領域から想定面を生成し、前記抽出面及び前記想定面から前記溶接場所の三次元モデルを生成し、前記三次元モデルを用いて溶接ロボットの溶接動作を生成するように構成されている、ことを特徴とする溶接ロボットの動作自動生成システムが提供される。
 上述した本発明に係る溶接ロボットの動作自動生成方法及び動作自動生成システムによれば、3D計測センサを用いて溶接場所の三次元モデルを生成するようにしたことから、事前にCADデータを用いて溶接ロボットの溶接動作を生成する必要がない。したがって、本発明によれば、溶接ロボットの事前作業を削減し、現場で溶接ロボットの動作を自動生成することができる。
本発明の一実施形態に係る溶接ロボットの動作自動生成システムで使用する溶接ロボットの一例を示す斜視図である。 本発明の一実施形態に係る溶接ロボットの動作自動生成方法を示す全体フロー図である。 点群処理工程を示すフロー図である。 三次元モデル生成工程を示すフロー図である。 点群処理工程後の平面形状の一例を示す図であり、(A)は第一計測領域、(B)は第二計測領域、(C)は第三計測領域、(D)は第四計測領域、(E)は第五計測領域、(F)は第六計測領域、を示している。 点群処理工程後の平面形状の一例を示す図であり、(A)は第七計測領域、(B)は第八計測領域、(C)は第九計測領域、を示している。 抽出面合成工程を示すイメージ図であり、(A)は合成方法、(B)は合成結果、を示している。 想定面合成工程を示すイメージ図である。 板厚形状確認工程を示すイメージ図である。 影部形状復元工程を示すイメージ図である。
 以下、本発明の実施形態について図1~図10を用いて説明する。ここで、図1は、本発明の一実施形態に係る溶接ロボットの動作自動生成システムで使用する溶接ロボットの一例を示す斜視図である。
 図1に示した溶接ロボット1は、折り畳み可能な多関節アーム2を備えた可搬式の溶接ロボットである。多関節アーム2は、例えば、回転台2t上に配置されるベース21と、ベース21の先端に回動可能に接続された上腕22と、上腕22の先端に回動可能に接続された下腕23と、下腕23の先端に回動可能に接続された手首部24と、手首部24の先端に回転可能に接続されたツール部25と、を備えている。
 上腕22、下腕23、手首部24及びツール部25は、ベース21上に折り畳んで配置することができるように構成されている。回転台2tは、台座3上に配置されており、多関節アーム2をZ軸中心に回転させるように構成されている。ツール部25の先端には溶接トーチ2wが配置される。
 また、上腕22の前面には、三次元形状を点群データとして取得可能な3D計測センサ4が配置されている。3D計測センサ4は、例えば、溶接対象物までの距離画像を取得可能な距離画像センサである。ただし、3D計測センサ4は、距離画像センサに限定されるものではなく、三次元の点群データを得られるセンサであればよい。3D計測センサ4を溶接ロボット1に配置することにより、溶接ロボット1と一緒に3D計測センサ4を溶接場所に搬入することができる。また、上腕22に3D計測センサ4を配置することにより、ツール部25付近にセンサを設置する場合と比較して、溶接スパッタやヒュームによる影響を低減することができる。
 上述した多関節アーム2は、図1に示した状態において、XYZの三軸直交座標で表現すれば、ベース21のZ軸周り、上腕22のX軸周り、下腕23のX軸周り、手首部24のX軸周り、ツール部25のY軸周りの合計5自由度を有している。なお、上述した多関節アーム2の構成は単なる一例であり、図示した構成に限定されるものではない。
 台座3上には、溶接ロボット1の動作自動生成システムの演算装置及び溶接ロボット1の制御装置を収容する制御ボックス5が配置されている。また、台座3には、溶接ロボット1を搬送するためのハンドル6が配置されている。ハンドル6は、搬送時には折り畳んだ多関節アーム2の上方に回動され、設置時には図示したように台座3の前方に回動される。
 また、台座3の両側部には床面に載置された溶接ロボット装置1を持ち上げるための把手31が配置されていてもよい。また、台座3の前方には、溶接ロボット装置1の位置決めを行うためのレーザーポインタ32が配置されていてもよい。また、台座3の底部には、永久磁石又は電磁石によって構成される固定用磁石(図示せず)及び脚部33が配置されていてもよい。また、図示しないが、台座3には加速度計や傾斜計等、溶接ロボット1が配置された場所の傾きを計測するためのセンサが配置されてもよい。
 本実施形態に係る溶接ロボット1の動作自動生成システムは、所定の溶接場所に配置された溶接ロボット1の溶接動作を自動的に生成する動作自動生成システムであって、溶接場所を複数の計測領域に分割して計測する3D計測センサ4と、3D計測センサ4のデータに基づいて溶接場所の三次元モデルを生成する演算装置と、を備えており、演算装置は後述するフローに基づいて溶接ロボット1の溶接動作を自動的に生成するように構成されている。
 次に、本発明の一実施形態に係る溶接ロボット1の動作自動生成方法について、図2~図10を参照しつつ説明する。図2は、本発明の一実施形態に係る溶接ロボットの動作自動生成方法を示す全体フロー図である。図3は、点群処理工程を示すフロー図である。図4は、三次元モデル生成工程を示すフロー図である。
 本実施形態に係る溶接ロボット1の動作自動生成方法は、所定の溶接場所に配置された溶接ロボット1の溶接動作を自動的に生成する動作自動生成方法であって、3D計測センサ4を所定の場所に配置するセッティング工程Step1と、溶接場所を複数の計測領域に分割して3D計測センサ4で計測する計測工程Step2と、計測された点群データのうち平面として認識可能な点群データから抽出面を生成し、点群データが得られない認識不能な無効領域から想定面を生成する点群処理工程Step3と、溶接場所における全ての計測を終了したか否か確認する計測確認工程Step4と、抽出面及び想定面から溶接場所の三次元モデルを生成する三次元モデル生成工程Step5と、溶接箇所や脚長等の溶接に関するデータを入力する作業設定工程Step6と、三次元モデルを用いて溶接ロボットの溶接動作を生成する溶接動作生成工程Step7と、三次元モデルに含まれる溶接箇所の施工順序を設定する施工順序設定工程Step8と、自動生成した溶接動作及び施工順序に基づいて溶接ロボット1により所定の溶接作業を実行する溶接作業工程Step9と、を備えている。
 セッティング工程Step1は、溶接場所の所定の領域を計測するために3D計測センサ4を配置する工程である。本実施形態では、溶接ロボット1を所定の場所に配置し、その向きを調整することによって、3D計測センサ4がセッティングされる。
 計測工程Step2は、例えば、3D計測センサ4からランダムドット等のパターン光(赤外線)を照射し、それを1つ又は複数の赤外線カメラで撮影することによって距離画像を得ることができるセンサを使用し、その距離画像から計測領域の点群データを取得する工程である。
 点群処理工程Step3は、点群データから平面形状を抽出又は生成する工程である。床面に対して垂直に配置され3D計測センサ4に相対する位置にある平面(例えば、ロンジのウェブ面等)からは規則正しく配列した点群データが取得される。一方、ロンジのウェブ面に垂直に配置されたスティフナ等の水平面等では、3D計測センサ4からの照射光の入射角が浅くなり、その平面では点群を計測することができず、3D計測センサ4からの視点で点群データが抜けた領域が形成される。
 本実施形態では、点群データのうち平面として認識可能な点群データから抽出される平面を「抽出面」と定義し、3D計測センサ4の視点で点群データが得られない認識不能な領域を「無効領域」と定義する。また、無効領域から生成される平面を「想定面」と定義する。
 点群処理工程Step3は、点群データから抽出面を生成する処理を含み、無効領域が抽出面に対して垂直な平面により形成されていると認識して想定面を生成する処理を含んでいる。具体的には、点群処理工程Step3は、図3に示したフローに基づいて処理される。
 図3に示したように、点群処理工程Step3は、距離画像データを取得するデータ取得工程Step31と、距離画像データをセンサ座標系の三次元座標に変換する座標変換工程Step32と、座標変換したデータから局所平面を計算する局所平面計算工程Step33と、局所平面をラベリングするラベリング工程Step34と、平面形状(抽出面)を抽出する形状抽出工程Step35と、3D計測センサ4の視点による距離画像データから無効領域を抽出する無効領域抽出工程Step36と、無効領域から想定面を生成する想定面生成工程Step37と、を含んでいる。
 座標変換工程Step32から形状抽出工程Step35の工程は、3D計測センサ4で取得したデータをダウンサイジング等の処理をした後、微小領域の法線方向計算や距離による判断等、一般的な手法を用いることができ、ここでは詳細な説明を省略する。なお、ラベリング工程Step34では、例えば、面法線のなす角度や面の距離等から、データを平面ごとに区分けしてラベリングする。また、3D計測センサ4が点群データを直接的に取得することができる3Dセンサである場合には、データ取得工程Step31及び座標変換工程Step32は同一工程となる。
 無効領域は、レーザ光の入射角が浅い面又は3D計測センサ4の計測可能範囲に対象物がない領域によって構成される。したがって、無効領域抽出工程Step36では、微小領域は無視し、細長い領域(大型鋼構造物のように比較的細長い部材が計測対象となる場合)を切り出すことにより、データ処理量を削減しつつ無効領域を選別する。なお、無効領域抽出工程Step36において、3D計測センサ4が点群データを直接的に取得することができる3Dセンサである場合には、3D計測センサ4の視点による距離画像相当のデータ作成工程を先に行うようにしてもよい。
 想定面生成工程Step37では、3D計測センサ4の位置を基準にして無効領域の周囲面に直交する面形状の候補を作成し、無効領域が影となる面形状を生成する。例えば、面が3D計測センサ4の視点よりも高い場合には、無効領域は上底よりも下底が長い台形形状となり、面が3D計測センサ4の視点よりも低い場合には、無効領域は下底よりも上底が長い台形形状となる。
 計測確認工程Step4は、溶接場所の全体の計測を終了したか否か(所定回数の計測を終了したか否か)を確認工程である。全ての計測を終了していない場合(N)には、セッティング工程Step1に戻り、全ての計測を終了した場合(Y)には、次工程に移行する。
 セッティング工程Step1では、溶接ロボット1を所定の場所に配置し直したり、多関節アーム2を移動させて3D計測センサ4の向きや姿勢を変更したりして3D計測センサ4をセッティングする。このとき、複数の計測領域が隣接する計測領域と重複した領域を有するように3D計測センサ4をセッティングする。かかる処理により、複数の計測領域で同一面の点群データを取得することができ、同一面の認識を容易に行うことができ、平面の合成を容易に処理することができる。
 ここで、図5は、点群処理工程後の平面形状の一例を示す図であり、(A)は第一計測領域、(B)は第二計測領域、(C)は第三計測領域、(D)は第四計測領域、(E)は第五計測領域、(F)は第六計測領域、を示している。図6は、点群処理工程後の平面形状の一例を示す図であり、(A)は第七計測領域、(B)は第八計測領域、(C)は第九計測領域、を示している。
 図5(A)~図6(C)に示した平面形状は、N回目(Nは1~9の整数)に計測した計測領域の点群データに基づいて抽出又は生成された平面形状を示している。図5(A)~図5(F)に示した第一計測領域~第六計測領域の平面形状では、無効領域は抽出されず、抽出面のみによって構成されている。また、図6(A)~図6(C)の右図に示した平面形状は、各図の左図に示した無効領域(空白部分)から生成された想定面S1~S3を含んでいる。
 本実施形態では、計測された全ての点群データを座標変換したうえで合成してから平面形状を抽出又は生成せずに、計測領域ごとに点群データを処理している。すなわち、点群処理工程Step3は、計測工程Step2ごとに処理される。したがって、点群処理工程Step3で処理される一回のデータ量を低減することができ、平面形状の抽出又は生成の処理時間を短縮することができる。
 三次元モデル生成工程Step5は、例えば、図5(A)~図6(C)に示した平面形状から三次元モデルを生成する工程である。具体的には、図4に示したフローに基づいて処理される。
 図4に示したように、三次元モデル生成工程Step5は、例えば、抽出面をロボット座標系に変換して合成する抽出面合成工程Step51と、想定面をロボット座標系に変換して合成する想定面合成工程Step52と、鋼板の板厚に相当する幅の平面を鋼板の端面として処理する板厚形状確認工程Step53と、抽出面及び想定面が形成されない影部を抽出し復元する影部形状復元工程Step54と、を備えている。
 抽出面合成工程Step51は、点群処理工程Step3により抽出された抽出面を合成する工程である。具体的には、抽出面合成工程Step51は、全ての抽出面形状を取得する第一工程Step511と、抽出面形状をロボット座標系に変換する第二工程Step512と、抽出面が登録済み面と同一面領域か否か確認する第三工程Step513と、抽出面が登録済み面と同一面領域ではない場合(N)に当該抽出面を新規面として登録する第四工程Step514と、抽出面が登録済み面と同一面領域である場合(Y)に重ね合わせて平面・形状を再計算する第五工程Step515と、全ての抽出面を処理したか否か確認する第六工程Step516と、を備えている。
 例えば、図5(A)~図6(C)に示した第一計測領域~第九計測領域の平面形状は、センサ座標系であるため、視点が各計測領域によって異なっている。そこで、センサ座標系の座標をロボット座標系の座標に変換することによって座標系を統一している。ここで、図7は、抽出面合成工程を示すイメージ図であり、(A)は合成方法、(B)は合成結果、を示している。
 図7(A)の上段に示した二つの平面形状は、図5(A)及び図5(B)に示した第一計測領域及び第二計測領域の平面形状である。抽出面合成工程Step51において、第一計測領域から順番に処理する場合について説明する。第一計測領域A1に含まれる平面形状をロボット座標系に座標変換し、そこに含まれる平面の全てを新規面として動作自動生成システムに登録する。例えば、図7(A)に示したように、面M1~M4が新規面として登録される。
 次に、第二計測領域A2の平面形状をロボット座標系に座標変換し、動作自動生成システムに登録された登録済み面M1~M4と同一面領域を有するか否かを確認する。いま、図7(A)に示したように、第二計測領域A2に含まれる面が登録済み面M1と同一面領域を有しているとすれば、その座標を用いて図7(A)の下段に示したように、第一計測領域A1に含まれる平面形状と第二計測領域A2に含まれる平面形状を合成する。なお、登録済み面M1~M4と同一面領域を構成しない面は、新規面として動作自動生成システムに登録される。
 以下、かかる処理を全ての計測領域について繰り返し行うことにより、図7(B)に示したように、全ての抽出面を合成したプレ三次元モデルを生成することができる。ここでは、図5(A)~図6(C)に示した第一計測領域~第九計測領域に含まれる平面形状の抽出面からプレ三次元モデルを生成した場合を図示してある。
 想定面合成工程Step52は、点群処理工程Step3により生成された想定面を合成する工程である。具体的には、想定面合成工程Step52は、全ての想定面形状を取得する第一工程Step521と、想定面形状をロボット座標系に変換する第二工程Step522と、想定面の有効性を確認する第三工程Step523と、想定面を合成する第四工程Step524と、全ての想定面を処理したか否か確認する第五工程Step525と、を備えている。
 第三工程Step523は、他の計測領域で想定面が通常の平面として認識されていないかを確認する工程である。例えば、他の計測領域のセンサ原点と抽出面外形線とで作る視野エリアに想定面がある場合には、当該想定面を無効とし、合成対象から除外する。なお、第四工程Step524は、上述した抽出面合成工程Step51と実質的に同様の処理によって処理される。
 ここで、図8は、想定面合成工程を示すイメージ図である。図8の上段に示した想定面S1′は、第七計測領域に含まれる想定面S1を座標変換して拡大したものである。また、図8の中段に示した想定面S2′は、第八計測領域に含まれる想定面S2を座標変換して想定面S1と合成したものである。また、図8の下段に示した想定面S3′は、第九計測領域に含まれる想定面S3を座標変換し想定面S2′と合成したものである。
 板厚形状確認工程Step53は、板厚形状から平面を推定する処理を行う工程である。鋼板の板厚形状とみなせる部分は平面の端面を形成しているものと考えられることから、当該端面を形成する平面を推定することができる。例えば、板厚分とみなせる細長い形状面(平行に近い長手方向の外形状を持つ面)に対し、同一面法線方向かつ構造状あり得る範囲の部材幅の距離の平面まで、垂直2面(板厚の両側)を長手方向外形線から作成する。かかる板厚形状確認工程Step53の処理により、三次元モデル上で浮いた面を消去することができる。
 ここで、図9は、板厚形状確認工程を示すイメージ図である。図9の上段に示した図は、抽出面合成工程Step51及び想定面合成工程Step52を処理した後の三次元モデルである。なお、図中の仮想面L1は上方計測境界面を示し、仮想面L2,L3は側方計測境界面を示している。図9の上段に示した図は、上段の図から板厚形状部Dを抽出し、平面形状を推定して追加した三次元モデルである。
 影部形状復元工程Step54は、部材の影になって面が接していない部分の形状を復元する工程である。例えば、近傍の平面で想定される角度で交差する側の形状を延長することによって復元する。かかる影部形状復元工程Step54の処理により、三次元モデル上で不自然に離隔した面を消去することができる。
 ここで、図10は、影部形状復元工程を示すイメージ図である。図10の上段に示した図は、抽出面合成工程Step51及び想定面合成工程Step52を処理した後の三次元モデルである。図中、点線で囲んだ部分に面が生成されていない部分、すなわち、影部Hが形成されている。この部分を上述した処理により図10の下段に示した図のように影部Hを復元させる。
 作業設定工程Step6は、溶接箇所や脚長等の溶接に必要なデータを入力する工程である。例えば、既に溶接済みの場所と同じ構造の溶接場所を溶接するような場合には、溶接箇所や脚長等の溶接に必要なデータは既知であることから、かかる作業設定工程Step6は、セッティング工程Step1の前に処理するようにしてもよい。
 溶接動作生成工程Step7は、上述した処理によって生成された三次元モデルに基づいて溶接ロボット1(多関節アーム2)の溶接動作を生成する工程である。かかる溶接動作生成工程Step7では、台座3に配置した加速度センサや傾斜センサ等のデータを用いて溶接ロボット1の傾きを算出し、重力方向を考慮した溶接継手の溶接条件を用いて動作を生成するようにしてもよい。
 また、溶接動作生成工程Step7は、例えば、溶接ロボット1の姿勢の決定、多関節アーム2の動作・干渉の確認等の処理を行い、溶接開始位置までの移動、センシング動作、ギャップごとの溶接動作、退避位置までの移動等の動作データを作成する。なお、かかる溶接動作生成工程Step7は、多関節アームを備えた一般的なロボットの動作生成処理と実質的に同じであることから、ここでは詳細な説明を省略する。
 施工順序設定工程Step8は、溶接スラグの落下等を考慮して、例えば、縦方向の溶接を横方向の溶接よりも優先させたり、上方の溶接よりも下方の溶接を優先させたりすることによって、溶接する順序を設定する工程である。
 溶接作業工程Step9は、生成された溶接動作及び施工順序に基づいて溶接ロボット1により溶接する工程である。例えば、溶接ロボット1を所定の位置に配置し、溶接トーチ2wを開始位置まで移動させ、継手のセンシングをした後、ギャップ長に応じた溶接を行う。
 上述した本実施形態に係る溶接ロボット1の動作自動生成方法によれば、3D計測センサ4を用いて溶接場所の三次元モデルを生成するようにしたことから、事前にCADデータを用いて溶接ロボット1の溶接動作を生成する必要がない。したがって、本実施形態によれば、溶接ロボット1の事前作業を削減し、現場で溶接ロボット1の動作を自動生成することができる。
 また、本実施形態に係る溶接ロボット1の動作自動生成方法をコンピュータ等の演算装置に実行させるためのプログラムは、制御ボックス5内のSSD(Solid State Drive)やHDD(Hard disk drive)等の記憶装置に記憶されていてもよいし、制御ボックス5に配置された読取装置で読み取り可能な記録媒体に記録されていてもよいし、制御ボックス5とケーブルによって接続される外部制御ボックス側に記憶されていてもよいし、外部制御ボックス側の演算装置で実行されてもよい。また、プログラムは、インターネット等のネットワークを介して演算装置にインストール可能に構成されていてもよい。
 記録媒体は、例えば、フラッシュメモリ等の半導体メモリが搭載されたUSB(Universal Serial Bus)メモリである。記録媒体は、磁気ディスク及び光学ディスクであってもよい。光学ディスクは、例えば、CD(Compact Disc)及びDVD(Digital Versatile Disc)である。
 本発明は上述した実施形態に限定されず、本発明の趣旨を逸脱しない範囲で種々変更が可能であることは勿論である。
1 溶接ロボット、2 多関節アーム、2t 回転台、2w 溶接トーチ、3 台座、4 3D 計測センサ、5 制御ボックス、6 ハンドル、21 ベース、22 上腕、23 下腕、24 手首部、25 ツール部、31 把手、32 レーザーポインタ、33 脚部
 

Claims (9)

  1.  所定の溶接場所に配置された溶接ロボットの溶接動作を自動的に生成する溶接ロボットの動作自動生成方法であって、
     3D計測センサを所定の場所に配置するセッティング工程と、
     前記溶接場所を複数の計測領域に分割して前記3D計測センサで計測する計測工程と、
     計測された点群データのうち平面として認識可能な点群データから抽出面を生成し、点群データが得られない認識不能な無効領域から想定面を生成する点群処理工程と、
     前記抽出面及び前記想定面から前記溶接場所の三次元モデルを生成する三次元モデル生成工程と、
     前記三次元モデルを用いて溶接ロボットの溶接動作を生成する溶接動作生成工程と、
    を含むことを特徴とする溶接ロボットの動作自動生成方法。
  2.  前記点群処理工程は、前記計測工程ごとに処理される、請求項1に記載の溶接ロボットの動作自動生成方法。
  3.  前記セッティング工程は、前記複数の計測領域が隣接する計測領域と重複した領域を有するように処理される、請求項1に記載の溶接ロボットの動作自動生成方法。
  4.  前記点群処理工程は、前記無効領域が前記抽出面に対して垂直な平面により形成されていると認識して前記想定面を生成する、請求項1に記載の溶接ロボットの動作自動生成方法。
  5.  前記三次元モデル生成工程は、前記抽出面をロボット座標系に変換して合成する抽出面合成工程と、前記想定面をロボット座標系に変換して合成する想定面合成工程と、を含む、請求項1に記載の溶接ロボットの動作自動生成方法。
  6.  前記三次元モデル生成工程は、鋼板の板厚に相当する幅の平面を鋼板の端面として処理する板厚形状確認工程を含む、請求項1に記載の溶接ロボットの動作自動生成方法。
  7.  前記三次元モデル生成工程は、前記抽出面及び前記想定面が形成されない影部を抽出し復元する影部形状復元工程を含む、請求項1に記載の溶接ロボットの動作自動生成方法。
  8.  前記溶接動作生成工程は、前記溶接ロボットが配置された場所の傾きを考慮して前記溶接動作を生成することを含む、請求項1に記載の溶接ロボットの動作自動生成方法。
  9.  所定の溶接場所に配置された溶接ロボットの溶接動作を自動的に生成する溶接ロボットの動作自動生成システムであって、
     前記溶接場所を複数の計測領域に分割して計測する3D計測センサと、
     前記3D計測センサのデータに基づいて前記溶接場所の三次元モデルを生成する演算装置と、を備え、
     前記演算装置は、計測された点群データのうち平面として認識可能な点群データから抽出面を生成し、点群データが得られない認識不能な無効領域から想定面を生成し、前記抽出面及び前記想定面から前記溶接場所の三次元モデルを生成し、前記三次元モデルを用いて溶接ロボットの溶接動作を生成するように構成されている、
    ことを特徴とする溶接ロボットの動作自動生成システム。
     
     
PCT/JP2021/024263 2020-07-06 2021-06-28 溶接ロボットの動作自動生成方法及び動作自動生成システム WO2022009710A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020237003745A KR20230033716A (ko) 2020-07-06 2021-06-28 용접 로봇의 동작 자동 생성 방법 및 동작 자동 생성 시스템
CN202180047652.9A CN115768581A (zh) 2020-07-06 2021-06-28 焊接机器人的动作自动生成方法以及动作自动生成系统

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-116322 2020-07-06
JP2020116322A JP6985464B1 (ja) 2020-07-06 2020-07-06 溶接ロボットの動作自動生成方法及び動作自動生成システム

Publications (1)

Publication Number Publication Date
WO2022009710A1 true WO2022009710A1 (ja) 2022-01-13

Family

ID=79193297

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/024263 WO2022009710A1 (ja) 2020-07-06 2021-06-28 溶接ロボットの動作自動生成方法及び動作自動生成システム

Country Status (4)

Country Link
JP (1) JP6985464B1 (ja)
KR (1) KR20230033716A (ja)
CN (1) CN115768581A (ja)
WO (1) WO2022009710A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023234290A1 (ja) * 2022-06-01 2023-12-07 リンクウィズ株式会社 作業経路生成システムおよび作業経路生成方法
CN117576094A (zh) * 2024-01-15 2024-02-20 中铁科工集团有限公司 一种3d点云智能感知焊缝位姿提取方法、系统、设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004001226A (ja) * 2003-07-18 2004-01-08 Jfe Engineering Kk 溶接ロボット動作プログラムの自動生成システム
JP2005271103A (ja) * 2004-03-23 2005-10-06 Tookin:Kk 作業用ロボット及びそのキャリブレーション方法
JP2008020993A (ja) * 2006-07-11 2008-01-31 Tookin:Kk 作業用ロボットの教示データ作成装置
JP2010519056A (ja) * 2007-02-19 2010-06-03 フラウンホッファー−ゲゼルシャフト ツァー フェーデルング デア アンゲバンテン フォルシュング エー ファー 加工対象物を溶接するロボットを制御する方法および装置
JP2012232370A (ja) * 2011-04-28 2012-11-29 Seiko Epson Corp ロボットコントローラー、簡易設置型ロボット、及び簡易設置型ロボットの制御方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004001226A (ja) * 2003-07-18 2004-01-08 Jfe Engineering Kk 溶接ロボット動作プログラムの自動生成システム
JP2005271103A (ja) * 2004-03-23 2005-10-06 Tookin:Kk 作業用ロボット及びそのキャリブレーション方法
JP2008020993A (ja) * 2006-07-11 2008-01-31 Tookin:Kk 作業用ロボットの教示データ作成装置
JP2010519056A (ja) * 2007-02-19 2010-06-03 フラウンホッファー−ゲゼルシャフト ツァー フェーデルング デア アンゲバンテン フォルシュング エー ファー 加工対象物を溶接するロボットを制御する方法および装置
JP2012232370A (ja) * 2011-04-28 2012-11-29 Seiko Epson Corp ロボットコントローラー、簡易設置型ロボット、及び簡易設置型ロボットの制御方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023234290A1 (ja) * 2022-06-01 2023-12-07 リンクウィズ株式会社 作業経路生成システムおよび作業経路生成方法
CN117576094A (zh) * 2024-01-15 2024-02-20 中铁科工集团有限公司 一种3d点云智能感知焊缝位姿提取方法、系统、设备
CN117576094B (zh) * 2024-01-15 2024-04-19 中铁科工集团有限公司 一种3d点云智能感知焊缝位姿提取方法、系统、设备

Also Published As

Publication number Publication date
JP6985464B1 (ja) 2021-12-22
KR20230033716A (ko) 2023-03-08
CN115768581A (zh) 2023-03-07
JP2022014138A (ja) 2022-01-19

Similar Documents

Publication Publication Date Title
Yin et al. Development and calibration of an integrated 3D scanning system for high-accuracy large-scale metrology
WO2022009710A1 (ja) 溶接ロボットの動作自動生成方法及び動作自動生成システム
JP4533659B2 (ja) レーザー計測により地図画像を生成する装置及び方法
JP7439073B2 (ja) 溶接パス生成のためのシステム及び方法
JP5473914B2 (ja) プライの境界及び方向の自動検査方法及び装置
US8437535B2 (en) System and method of determining object pose
US20130060369A1 (en) Method and system for generating instructions for an automated machine
JP2020128000A (ja) 非破壊検査装置及び方法
Paoli et al. Large yacht hull measurement by integrating optical scanning with mechanical tracking-based methodologies
JP2004508954A (ja) 位置決め装置およびシステム
KR20080075506A (ko) 결함 및 검사 위치를 투사하기 위한 시스템 및 관련 방법
US8467992B1 (en) Vision based location and measurement device and methods
Kinnell et al. Autonomous metrology for robot mounted 3D vision systems
JP7215056B2 (ja) 建築作業装置および建築作業方法
JP5629883B2 (ja) 形状測定装置、形状測定方法及び形状測定プログラム
US20020120359A1 (en) System and method for planning a tool path along a contoured surface
JP7332015B2 (ja) 建築作業装置および建築作業方法
WO2023205209A1 (en) Autonomous assembly robots
Yu et al. Multiseam tracking with a portable robotic welding system in unstructured environments
JP7328437B2 (ja) 3次元点の位置情報を生成する三次元測定装置
JP2022017738A (ja) 画像処理装置
WO2023248353A1 (ja) ワークの位置データを取得する装置、制御装置、ロボットシステム、方法、及びコンピュータプログラム
WO2023188407A1 (ja) ロボットシステム
Shu et al. Model-based scanning path generation for inspection
KR101925857B1 (ko) 로봇 용접기용 레이저 빔의 3차원 포인트 좌표 측정방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21837599

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20237003745

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21837599

Country of ref document: EP

Kind code of ref document: A1