WO2022009638A1 - 異常警報システムおよび警報レベル設定方法 - Google Patents

異常警報システムおよび警報レベル設定方法 Download PDF

Info

Publication number
WO2022009638A1
WO2022009638A1 PCT/JP2021/022990 JP2021022990W WO2022009638A1 WO 2022009638 A1 WO2022009638 A1 WO 2022009638A1 JP 2021022990 W JP2021022990 W JP 2021022990W WO 2022009638 A1 WO2022009638 A1 WO 2022009638A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
abnormality
alarm
alarm level
level
Prior art date
Application number
PCT/JP2021/022990
Other languages
English (en)
French (fr)
Inventor
信介 川津
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to EP21836849.6A priority Critical patent/EP4180326A4/en
Priority to CN202180047845.4A priority patent/CN115836005A/zh
Publication of WO2022009638A1 publication Critical patent/WO2022009638A1/ja
Priority to US17/979,863 priority patent/US12065262B2/en
Priority to US18/765,393 priority patent/US20240359820A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D27/00Arrangement or mounting of power plants in aircraft; Aircraft characterised by the type or position of power plants
    • B64D27/02Aircraft characterised by the type or position of power plants
    • B64D27/24Aircraft characterised by the type or position of power plants using steam or spring force
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0061Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electrical machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/006Safety devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/04Helicopters
    • B64C27/08Helicopters with two or more rotors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C29/00Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft
    • B64C29/0008Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft having its flight directional axis horizontal when grounded
    • B64C29/0016Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft having its flight directional axis horizontal when grounded the lift during taking-off being created by free or ducted propellers or by blowers
    • B64C29/0025Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft having its flight directional axis horizontal when grounded the lift during taking-off being created by free or ducted propellers or by blowers the propellers being fixed relative to the fuselage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C29/00Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft
    • B64C29/0008Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft having its flight directional axis horizontal when grounded
    • B64C29/0016Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft having its flight directional axis horizontal when grounded the lift during taking-off being created by free or ducted propellers or by blowers
    • B64C29/0033Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft having its flight directional axis horizontal when grounded the lift during taking-off being created by free or ducted propellers or by blowers the propellers being tiltable relative to the fuselage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/02Aircraft not otherwise provided for characterised by special use
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D31/00Power plant control systems; Arrangement of power plant control systems in aircraft
    • B64D31/02Initiating means
    • B64D31/06Initiating means actuated automatically
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D43/00Arrangements or adaptations of instruments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D45/00Aircraft indicators or protectors not otherwise provided for
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/02Providing protection against overload without automatic interruption of supply
    • H02P29/024Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P5/00Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors
    • H02P5/46Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors for speed regulation of two or more dynamo-electric motors in relation to one another
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/10Air crafts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/40Electrical machine applications
    • B60L2220/42Electrical machine applications with use of more than one motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2250/00Driver interactions
    • B60L2250/10Driver interactions by alarm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D45/00Aircraft indicators or protectors not otherwise provided for
    • B64D2045/0085Devices for aircraft health monitoring, e.g. monitoring flutter or vibration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D2221/00Electric power distribution systems onboard aircraft
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Definitions

  • This disclosure relates to an alarm for an abnormal state of a motor system.
  • a motor system including a motor is installed and used in order to drive the rotary blades to rotate.
  • the motor system is configured as, for example, a system including a motor, an inverter circuit for supplying electric power to the motor, and a control device for controlling the inverter circuit.
  • an abnormality diagnosis such as the failure diagnosis of the motor described in Patent Document 1, as in the conventional case.
  • Patent Document 1 the presence / absence of a predetermined feature (presence / absence of a signal of a specific frequency) in the phase current supplied to the motor, and the torque current value (q-axis current value) obtained from the measured values of the phase current value and the motor rotation speed.
  • the presence or absence of abnormality is diagnosed based on the presence or absence of a predetermined feature amount.
  • an abnormality is found as a result of the abnormality diagnosis, the occurrence of the abnormality is detected and the type of the stopped abnormality is specified.
  • an alarm for such an abnormal state (hereinafter, simply referred to as an "abnormal alarm") is required.
  • an abnormality warning is required for a crew member or a ground controller when an abnormality is detected.
  • an abnormality of the motor system in an electric aircraft there is an abnormality that requires urgent response because it greatly affects flight safety, but an abnormality that is sufficient to respond after landing by flying with the current flight plan. Is also possible.
  • Patent Document 1 since there is no disclosure about the alarm, there is a possibility that the alarm level is not set or an inappropriate alarm level is set.
  • an abnormality warning system that gives an abnormality warning of a plurality of motor systems that drive motors used corresponding to a plurality of rotor blades of an electric aircraft.
  • This abnormality warning system is used in the electric aircraft having an abnormality determination unit for determining an abnormal motor system among the plurality of motor systems and a rotary wing corresponding to the motor system determined to be abnormal by the abnormality determination unit. It is provided with an alarm level setting unit that sets an alarm level at the time of alarming the abnormal state according to at least one of the position information and the function of the rotary blade.
  • the abnormality warning system of the above-described embodiment the abnormality is caused according to at least one of the position information of the rotary wing in the electric aircraft and the function of the rotary wing corresponding to the motor system determined to be abnormal. Since the alarm level for alarm is set, an appropriate alarm level can be set.
  • an electric drive system including multiple motor systems, an electric aircraft, a method of setting an alarm level, a computer program for realizing these devices and methods, a non-temporary recording medium on which such a computer program is recorded, and the like. can do.
  • FIG. 1 is a top view schematically showing a configuration of an electric aircraft to which an abnormality warning system as an embodiment of the present disclosure is applied.
  • FIG. 2 is a block diagram showing a functional configuration of an electric drive system including a motor system according to the first embodiment.
  • FIG. 3 is a flowchart showing the procedure of the alarm level setting process in the first embodiment.
  • FIG. 4 is a flowchart showing the procedure of the alarm level setting process in the second embodiment.
  • FIG. 5 is a top view schematically showing the configuration of the electric aircraft according to the third embodiment.
  • FIG. 6 is a top view schematically showing the configuration of the electric aircraft according to the third embodiment.
  • FIG. 7 is a flowchart showing the procedure of the alarm level setting process in the third embodiment.
  • FIG. 8 is an explanatory diagram showing the level of the total motor output in the third embodiment.
  • FIG. 9 is a block diagram showing a functional configuration of an electric drive system including a motor system according to a fourth embodiment.
  • FIG. 10 is an explanatory diagram showing the setting contents of the alarm level map in the fourth embodiment.
  • FIG. 11 is a flowchart showing the procedure of the alarm level setting process in the fourth embodiment.
  • FIG. 12 is a flowchart showing the procedure of the alarm level adjustment process in the fifth embodiment.
  • FIG. 13 is a flowchart showing the procedure of the alarm level setting process in the sixth embodiment.
  • FIG. 14 is a flowchart showing the procedure of the alarm level adjustment process in the seventh embodiment.
  • FIG. 15 is an explanatory diagram showing the setting contents of the alarm level map in another embodiment.
  • the electric aircraft 20 includes an airframe 21, nine rotor blades 30, and nine motor systems 10 arranged corresponding to each rotor blade.
  • the airframe 21 corresponds to a portion of the electric aircraft 20 excluding the nine rotor blades 30 and the motor system 10.
  • the airframe 21 includes a main body portion 22, a main wing 25, and a tail wing 28.
  • the main body portion 22 constitutes the fuselage portion of the electric aircraft 20.
  • the main body 22 has a symmetrical configuration with the axis AX as the axis of symmetry.
  • the "axis line AX” means an axis that passes through the center of gravity position CM of the electric aircraft 20 and is along the front-rear direction of the electric aircraft 20.
  • the "center of gravity position CM” means the position of the center of gravity of the electric aircraft 20 at the time of empty weight when no occupant is on board.
  • a passenger compartment (not shown) is formed inside the main body 22.
  • the main wing 25 is composed of a right wing 26 and a left wing 27.
  • the right wing 26 is formed so as to extend to the right from the main body portion 22.
  • the left wing 27 is formed so as to extend to the left from the main body portion 22.
  • Two rotor blades 30 and two motor systems 10 are arranged on the right wing 26 and the left wing 27, respectively.
  • the tail wing 28 is formed at the rear end portion of the main body portion 22.
  • the levitation rotary blade 31a is arranged at a position corresponding to the center of gravity position CM.
  • the levitation rotor 31b and the levitation rotor 31c are arranged in front of the levitation rotor 31a at positions line-symmetrical with respect to the axis AX.
  • the levitation rotor 31d and the levitation rotor 31e are arranged behind the levitation rotor 31a at positions line-symmetrical with respect to the axis AX.
  • Two of the nine rotors 30 are located on the right wing 26 and the left wing 27.
  • the levitation rotor 31f is arranged on the upper surface of the tip of the right wing 26
  • the levitation rotor 31g is arranged on the upper surface of the tip of the left wing 27.
  • Two of the nine rotary wings 30 are arranged on the right wing 26 and the left wing 27, respectively, and mainly function as propulsion rotary wings 32a and 32b for obtaining the horizontal propulsive force of the airframe 21.
  • the propulsion rotary wing 32a arranged on the right wing 26 and the propulsion rotary wing 32b arranged on the left wing 27 are arranged at positions symmetrical with each other about the axis AX.
  • Each rotary blade 30 is rotationally driven independently of each other around its own rotation axis (shaft 17 described later).
  • Each rotor 30 has three blades arranged at equal intervals from each other.
  • the electric drive system 100 is a system that controls each motor system 10 in response to a preset flight program or maneuvering from the occupant or the outside to rotationally drive the rotary blade 30.
  • the motor 11 included in the motor system 10 for rotationally driving the levitation rotary blades 31a to 31g will be referred to as a "levitation motor”
  • the motor 11 included in the motor system 10 for rotationally driving the propulsion rotary blades 32a to 32b will be referred to as "the levitation motor”. It is called a "propulsion motor”.
  • Each motor system 10 includes a motor 11, an inverter unit (INV unit) 12, a voltage sensor 13, a current sensor 14, a rotation sensor 15, a storage device 16, and a shaft 17.
  • the motor system 10 is a system that rotates the rotary blade 30 so as to have a rotation torque and a rotation speed according to a command from the electric control ECU 110 described later.
  • the motor 11 rotationally drives the rotary blade 30 via the shaft 17.
  • the motor 11 is composed of a three-phase AC brushless motor, and rotates the shaft 17 according to the voltage and current supplied from the inverter circuit 121 described later.
  • the motor 11 may be configured by any kind of motor such as an induction motor or a reluctance motor instead of the brushless motor.
  • the inverter unit 12 includes an inverter circuit 121 and a motor control unit 122.
  • the inverter circuit 121 has power elements such as an IGBT (Insulated Gate Bipolar Transistor) and a MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor), and switches at a duty ratio according to a control signal supplied from the motor control unit 122. By doing so, the driving power is supplied to the motor 11.
  • IGBT Insulated Gate Bipolar Transistor
  • MOSFET Metal-Oxide-Semiconductor Field-Effect Transistor
  • the motor control unit 122 controls the entire motor system 10. Specifically, the motor control unit 122 generates a drive signal in response to an instruction from the integrated control unit 120, which will be described later, and supplies the drive signal to the inverter circuit 121. Further, the motor control unit 122 feedback-controls the inverter circuit 121 using the detection values of the sensors 13 to 15.
  • the motor control unit 122 is composed of a microcomputer having a CPU, a ROM, and a RAM.
  • the voltage sensor 13 detects the voltage supplied from the power source 70 described later.
  • the current sensor 14 is provided between the inverter circuit 121 and the motor 11 and detects the drive current (phase current) of each phase of the motor 11.
  • the rotation sensor 15 detects the rotation speed of the motor 11.
  • the detected values of the voltage sensor 13, the current sensor 14, and the rotation sensor 15 are stored in the storage device 16 in time series and output to the electric control ECU 110 via the motor control unit 122. In the storage device 16, in addition to various control programs and detection values of various sensors, the result of abnormality diagnosis processing described later is recorded.
  • the electric drive system 100 includes an electric control ECU 110 in addition to the above-mentioned nine motor systems 10.
  • the electric control ECU 110 controls the electric drive system 100 as a whole and diagnoses an abnormality of the motor system 10.
  • the electric control ECU 110 is composed of a computer including a CPU, a ROM, and a RAM.
  • the CPU included in the electric control ECU 110 functions as an integrated control unit 120 and an abnormality warning system 130 by expanding and executing a control program stored in advance in the ROM in the RAM.
  • the integrated control unit 120 controls each motor system 10 according to a preset flight program, steering of the control stick by the user, or the like.
  • the abnormality warning system 130 is a system for performing an abnormality diagnosis of each motor system 10.
  • the abnormality alarm system 130 includes an abnormality determination unit 131, an alarm level setting unit 132, an output rate calculation unit 133, and an alarm output unit 134.
  • the abnormality determination unit 131 identifies a motor system in an abnormal state (hereinafter, also referred to as an “abnormal system”) by executing an abnormality diagnosis process.
  • the abnormality diagnosis process in this embodiment will be described.
  • the abnormality determination unit 131 is based on the motor system to be diagnosed (hereinafter referred to as "diagnosis target system”) and the motor system to be compared (hereinafter referred to as “comparison target system”). Acquires the value related to (hereinafter referred to as "state-related value"). Then, when the difference between the state-related value of the diagnosis target system and the state-related value of the comparison target system is larger than a predetermined threshold value, it is determined that the diagnosis target system is abnormal.
  • the state-related values include the phase current value measured by the current sensor 14, the supply voltage from the power supply 70 measured by the voltage sensor 13, and the rotation speed of the motor 11 measured by the rotation sensor 15. do.
  • the order in which the diagnosis target system is specified as the diagnosis target system is predetermined for the nine motor systems 10, and the diagnosis target system may be sequentially specified in such an order.
  • the comparison target system for example, a specific motor system may be defined in advance as the comparison target system for the motor system specified as the diagnosis target system. At this time, a motor system having higher reliability may be defined as a comparison target system.
  • the alarm level setting unit 132 sets an alarm level for alarming an abnormality in the motor system.
  • the alarm level is a level indicating the urgency of the alarm, and the higher the level, the higher the urgency of the alarm.
  • the following three alarm levels 1 to 3 can be set.
  • the warning level 1 is the lowest urgent level, and is set when the flight can be continued as it is and a certain degree of abnormality is warned.
  • the warning level 2 is the second lowest level of urgency, and is set when the electric aircraft 20 warns of an abnormality to some extent that it is necessary to shorten the flight plan if the electric aircraft 20 is in flight.
  • the warning level 3 is the most urgent level, and is set when warning an abnormality to the extent that an emergency landing is required. By executing the alarm level setting process described later, one of the alarm levels will be set. ⁇ Warning level 1: Flight can be continued ⁇ Warning level 2: Flight plan shortened ⁇ Warning level 3: Emergency landing
  • the alarm output unit 134 warns of an abnormality in the motor system. Specifically, in the present embodiment, an abnormality in the motor system is warned by displaying an alarm message on the display unit of the user interface unit (also referred to as “UI unit”) 50 described later.
  • UI unit user interface unit
  • the electric aircraft 20 is equipped with various components for performing flight and abnormality diagnosis. Specifically, the electric aircraft 20 is equipped with a sensor group 40, a user interface unit 50 (hereinafter referred to as “UI unit 50”), a communication device 60, and a power supply 70.
  • UI unit 50 user interface unit 50
  • communication device 60 communication device
  • power supply 70 power supply
  • the sensor group 40 includes an altitude sensor 41, a position sensor 42, and a speed sensor 43.
  • the altitude sensor 41 detects the current altitude of the electric aircraft 20.
  • the position sensor 42 identifies the current position of the electric aircraft 20 as latitude and longitude.
  • the position sensor 42 is configured by GNSS (Global Navigation Satellite System).
  • GNSS Global Navigation Satellite System
  • GPS Global Positioning System
  • the speed sensor 43 detects the speed of the electric aircraft 20.
  • the UI unit 50 provides the occupants of the electric aircraft 20 with a user interface for controlling the electric aircraft 20 and a user interface for monitoring the operating state.
  • a user interface includes, for example, an operation input unit such as a keyboard and a button, a display unit such as a liquid crystal panel, and the like.
  • the UI unit 50 is provided, for example, in the cockpit of the electric aircraft 20. The crew can use the UI unit 50 to change the flight plan and confirm the content of the warning.
  • the communication device 60 communicates with other electric aircraft, a control tower on the ground, and the like.
  • the communication device 60 corresponds to, for example, a civilian VHF radio.
  • the communication device 60 may be configured as a device that performs communication such as a wireless LAN specified in IEEE802.11 or a wired LAN specified in IEEE802.3.
  • the power source 70 is composed of a lithium ion battery and functions as one of the power supply sources in the electric aircraft 20.
  • the power supply 70 supplies three-phase AC power to the motor 11 via the inverter circuit 121 of each motor system 10.
  • the power supply 70 may be composed of an arbitrary secondary battery such as a nickel hydrogen battery instead of the lithium ion battery, and may be replaced with the secondary battery or in addition to the secondary battery to generate a fuel cell or power generation. It may be configured by any power supply source such as a machine.
  • the alarm level setting process shown in FIG. 3 is a process for setting an alarm level, and is executed when the power of the electric control ECU 110 is turned on.
  • the abnormality determination unit 131 executes an abnormality diagnosis for each motor system 10 and determines whether or not an abnormality has been detected (step S105). If it is determined that no abnormality is detected (step S105: NO), the process returns to step S105.
  • the alarm level setting unit 132 determines whether or not the detected abnormality of the motor system 10 affects the propulsion force or the lift force of the electric aircraft 20 (step S110).
  • the determination of "whether or not there is an influence on the propulsive force or the lift” is executed with reference to a map stored in advance in a storage unit (not shown) included in the electric control ECU 110. In such a map, "abnormal contents affecting propulsion or lift" are listed in advance.
  • the predetermined component corresponds to, for example, a motor coil included in the motor 11, an inverter circuit 121 included in the inverter circuit 121, and a cooling system component (such as a pump for a cooling medium) (not shown).
  • a cooling system component such as a pump for a cooling medium
  • the warning level setting unit 132 sets the warning level 1 as the warning level. (Step S135). Therefore, in this case, an alarm level to the extent that flight can be continued is set, and the alarm output unit 134 outputs an alarm to the UI unit 50 at the alarm level 1.
  • step S110 determines the levitation motor. It is determined whether or not the total motor output of the above is smaller than the first threshold value (step S115).
  • the first threshold value means a value obtained by multiplying the above-mentioned total landing output by a predetermined threshold value with respect to the above-mentioned output rate. Therefore, step S110 is equivalent to determining whether or not the following equation (2) holds, and according to the equation (3) obtained by rewriting the equation (2), the step S115 floats.
  • the warning level setting unit 132 sets the warning level 3 as the warning level (step S120). Therefore, in this case, an alarm level is set to such an extent that an emergency landing must be performed, and the alarm output unit 134 outputs an alarm to the UI unit 50 at such an alarm level 3.
  • step S115 when it is determined that the total motor output of the levitation motor is not smaller than the first threshold value (step S115: NO), the output rate calculation unit 133 determines that the total motor output of the propulsion motor is second. It is determined whether or not it is smaller than the threshold value (step S125). Similar to step S115 described above, step S125 can be said to be a process of determining whether or not the output rate (total motor output / required motor output) of the motor that rotationally drives the propulsion rotary blade is lower than the threshold value. .. If the above-mentioned "predetermined threshold rate for the output rate of the propulsion motor" is lower than the threshold rate to which the output rate is applied, the altitude cannot be maintained by driving the propulsion rotary blade. The rate at which flight stability is significantly impaired is determined in advance by experiments and simulations.
  • step S125: YES When it is determined that the total motor output of the propulsion motor is smaller than the second threshold value (step S125: YES), the warning level setting unit 132 sets the warning level 2 as the warning level (step S130). Therefore, in this case, an alarm level is set to such an extent that the flight plan must be shortened, and the alarm output unit 134 outputs an alarm to the UI unit 50 at the alarm level 2.
  • step S125: NO When it is determined in step S125 above that the total motor output of the propulsion motor is not smaller than the second threshold value (step S125: NO), step S135 described above is executed and the alarm level 1 is set. When the above steps S120, S130, and S135 are completed, the process returns to step S105.
  • step S125 When the total motor output of the propulsion motor is smaller than the second threshold value in step S125, the "warning level 2" is lower than the "warning level 3" set when the total motor output of the levitation motor is smaller than the first threshold value.
  • the electric aircraft 20 can no longer maintain the altitude only by rotationally driving the levitation rotor blades. Therefore, in such a case, the highest "warning level 3" is set.
  • step S125 when the total motor output of the propulsion motor is lower than the second threshold value (step S125: YES), the total motor output of the levitation motor is equal to or higher than the first threshold value. Altitude can be maintained by utilizing the levitation force obtained by driving. Therefore, the urgency of responding to such anomalies is low, and a lower level of "warning level 2" is set. As described above, in the present embodiment, when an abnormality of the motor system 10 is detected, the warning level is set according to the function (levitation / propulsion) of the rotary blades rotationally driven by the motor system.
  • the alarm level is set according to the function of the rotary blade corresponding to the abnormal system, an appropriate alarm level can be set.
  • a higher level is set as the alarm level than when it is large, so that the total motor output is small and the urgency of the response is higher.
  • a higher level can be set as the alarm level. Therefore, it is possible to prevent the response to such an alarm from being delayed and impairing safety.
  • the total motor output of the propulsion motor is smaller than the second threshold value, a higher level is set as the alarm level than when it is large, so that the total motor output is small and the urgency of the response is higher. Can be set to a higher level as the alarm level when Therefore, it is possible to prevent the response to such an alarm from being delayed and impairing safety.
  • a lower level is set as the warning level, so unnecessary emergency landing is performed and the convenience of the occupants is suppressed. can.
  • the lowest warning level "warning level 1" is set. Will be done. That is, in the present embodiment, when neither of the above two functions is impaired, a lower warning level is set as compared with the case where at least one of the two functions is impaired. Therefore, it is possible to prevent the emergency landing and the flight plan from being shortened even though neither the propulsion function nor the levitation function is impaired, which impairs the convenience of the occupants of the electric aircraft.
  • the abnormality alarm system 130 of the second embodiment is different from the abnormality alarm system 130 of the first embodiment in the specific procedure of the alarm level setting process. Since the device configuration of the electric aircraft 20 including the abnormality warning system 130 in the second embodiment is the same as that of the electric aircraft 20 in the first embodiment, the same configurations are designated by the same reference numerals and detailed description thereof will be given. Omit.
  • the alarm level setting process of the second embodiment is different from the alarm level setting process of the first embodiment shown in FIG. 3 in that step S112 is additionally executed. Since the other procedures in the alarm level setting process of the second embodiment are the same as those of the alarm level setting process of the first embodiment, the same procedures are designated by the same reference numerals and detailed description thereof will be omitted.
  • step S110 If it is determined in step S110 described above that there is no effect on the propulsive force or lift of the electric aircraft 20 (step S110: NO), whether or not the alarm level setting unit 132 affects the controllability of the electric aircraft 20. Is determined (step S112).
  • Controllability means ease of control and accuracy of control. For example, when the measurement accuracy is deteriorated due to an abnormality in the characteristics of various sensors, if the electric aircraft 20 is controlled based on the measured values, the control accuracy may be lowered, which affects the controllability. Further, for example, even when the capacity of the smoothing capacitor (not shown) of the inverter circuit 121 is reduced, the supply voltage to each motor system 10 is reduced, so that the controllability is lowered and has an influence.
  • a functional unit for detecting a failure for example, a signal line dedicated to failure detection or a comparison circuit fails, the control itself of the electric aircraft 20 is not affected.
  • a failure of a functional unit for performing fail-safe does not affect the control of the electric aircraft 20 itself. Therefore, these failures do not affect controllability.
  • a map associated with the type of abnormality and whether or not it affects controllability is stored in advance in the storage unit of the abnormality warning system 130, and in step S112, the map is referred to. , It is determined whether or not the controllability of the electric aircraft 20 is affected.
  • step S112 When it is determined that the controllability of the electric aircraft 20 is not affected (step S112: NO), the above-mentioned step S135 is executed, and "alarm level 1" is set as the alarm level. On the other hand, when it is determined that the controllability of the electric aircraft 20 is affected (step S112: YES), the above-mentioned step S130 is executed, and "alarm level 2" is set as the alarm level.
  • the controllability of the electric aircraft 20 is affected, the urgency of the response is higher than when it is not present. Therefore, in the present embodiment, a higher alarm level is set.
  • the abnormality warning system 130 of the second embodiment described above has the same effect as the abnormality warning system 130 of the first embodiment.
  • C. Third embodiment C1.
  • Device configuration The abnormality alarm system 130 of the third embodiment is different from the abnormality alarm system 130 of the first embodiment in the specific procedure of the alarm level setting process. Since the device configuration of the abnormality warning system 130 in the third embodiment is the same as that of the abnormality warning system 130 in the first embodiment, the same configurations are designated by the same reference numerals, and detailed description thereof will be omitted.
  • the configuration of the electric aircraft 20a on which the abnormality warning system 130 of the third embodiment is mounted is different from the configuration of the electric aircraft 20 of the first embodiment. First, the configuration of the electric aircraft 20a will be described with reference to FIGS. 5 and 6.
  • the electric aircraft 20a shown in FIGS. 5 and 6 has a so-called tilt wing type airframe. Note that FIG. 5 shows a top view of the electric aircraft 20a during cruise, and FIG. 21 shows a top view of the electric aircraft 20a during vertical takeoff and landing.
  • the electric aircraft 20a of the third embodiment has a body 21, a main wing 25, and a tail wing 28, similarly to the electric aircraft 20 of the first embodiment.
  • Two sets of the motor system 10 and the rotary blade 30a are arranged on the right wing 26 and the left wing 27, respectively.
  • the rotary blade 30a is different from the rotary blade 30 of the first embodiment in that it functions as a rotary blade for levitation and also as a rotary blade for propulsion, and has the same other configurations.
  • the right wing 26 and the left wing 27 are configured to be rotatable. As shown in FIG. 5, during the cruise, the postures of the right wing 26 and the left wing 27 are controlled so as to be substantially horizontal.
  • the rotary blade 30a can be rotationally driven in parallel with the vertical direction, and a propulsive force is generated by such rotational driving.
  • the attitudes of the right wing 26 and the left wing 27 are controlled so as to be substantially vertical.
  • the rotary blade 30a can be rotationally driven in parallel with the horizontal direction, and lift is generated by such rotational driving.
  • the alarm level setting process of the third embodiment shown in FIG. 7 is the first embodiment shown in FIG. 3 in that step S115a is executed instead of step S115 and step S125a is executed instead of step S125. It is different from the alarm level setting process of the form. Since the other procedures in the alarm level setting process of the third embodiment are the same as those of the alarm level setting process of the first embodiment, the same procedures are designated by the same reference numerals and detailed description thereof will be omitted.
  • step S110 When it is determined that the detected abnormality of the motor system 10 affects the propulsion force or lift in the electric aircraft 20 (step S110: YES), the output rate calculation unit 133 indicates that the total motor output of all the motors is low. It is determined whether or not it is smaller than the threshold value (step S115a). In step S115 of the first embodiment, the determination is made about the total motor output of the levitation motor, but in this step S115a, the determination is made about the total motor output of all the motors. This is because the rotary blade 30a functions as both a levitation rotary blade and a propulsion rotary blade.
  • the above-mentioned "low threshold value” and the later-described "high threshold value" will be described with reference to FIG.
  • the vertical axis shows the total motor output.
  • the horizontal axis represents four model cases in which the total motor output differs from each other.
  • three threshold values of "normal limit threshold value”, “performance limit threshold value”, and “safety limit threshold value” are set for the total motor output.
  • the "normal limit threshold value” is a threshold value set as a value at which normal flight is possible if the threshold value is equal to or higher than the threshold value.
  • the "performance limit threshold value” is a threshold value set as a value that can maximize the aircraft performance as designed as long as it is equal to or higher than the threshold value.
  • the "safety limit threshold” is a threshold set as a value that can ensure safety without depending on the skill of the pilot as long as it is equal to or higher than the threshold. These thresholds can be determined in advance by experiments or simulations. For example, in “Case 1”, since the total motor output is larger than the normal limit threshold value, normal flight can be realized in the electric aircraft 20a. In “Case 2”, although the total motor output is below the normal limit threshold value, it is larger than the performance limit threshold value, so that the aircraft performance as designed can be maximized. In “Case 3”, although the total motor output is below the performance limit threshold value, it is larger than the safety limit threshold value, so that safety can be ensured without depending on the skill of the pilot.
  • step S115a when it is determined that the total motor output is smaller than the low threshold value (step S115a: YES), the above-mentioned step S120 is executed, and the alarm level is set to "alarm level 3".
  • step S115a: NO when it is determined that the total motor output of the motors is not smaller than the low threshold value (step S115a: NO), the output rate calculation unit 133 asks whether the total motor output of all the motors is smaller than the high threshold value. It is determined whether or not (step S125a).
  • step S125a: YES When it is determined that the total motor output is smaller than the high threshold value (step S125a: YES), the above-mentioned step S130 is executed, and the alarm level is set to "alarm level 2". On the other hand, when it is determined that the total motor output is not smaller than the high threshold value (step S125a: NO), the above-mentioned step S135 is executed, and the alarm level is set to "alarm level 1".
  • the abnormality warning system 130 of the third embodiment described above has the same effect as the abnormality warning system 130 of the first embodiment.
  • the warning level 3 can be set and the total motor output is safe. If it is equal to or more than the limit threshold and less than the performance limit threshold, the warning level 2 can be set, and if the total motor output is equal to or more than the performance limit threshold and less than the normal limit threshold, the warning level 1 can be set. Therefore, an appropriate level according to the total motor output of the motor can be set as the alarm level.
  • D. Fourth Embodiment D1. Device configuration: The abnormality warning system 130a of the fourth embodiment shown in FIG. 9 is different from the abnormality warning system 130 of the first embodiment shown in FIG. 2 in that the warning level map 135 is provided. Since the other configurations of the abnormality warning system 130a of the fourth embodiment are the same as those of the abnormality warning system 130 of the first embodiment, the same configurations are designated by the same reference numerals, and detailed description thereof will be omitted.
  • the alarm level is associated with the combination of the total motor output of the levitation motor and the total motor output of the propulsion motor.
  • the following three output levels (i) to (iii) are set for the total motor output of the levitation motor.
  • the total motor output of the propulsion motor includes the above (i) to (iii).
  • the following output levels are set.
  • the loss of propulsive force in (iv) above means that the total motor output of the propulsion motor is 0 (zero).
  • the output level of the levitation motor is “greater than or equal to the performance limit threshold value and less than the normal limit”
  • the output level of the propulsion motor is "more than or equal to the safety limit threshold value and less than the performance limit threshold value” or “more than or equal to the performance limit threshold value and normal”. If it is "less than the limit", "alarm level 2" is set.
  • an “alarm” is given when the output level of the levitation motor is “greater than or equal to the performance limit threshold value and less than the normal limit” and the output level of the propulsion motor is “greater than or equal to the safety limit threshold value and less than the performance limit threshold value”.
  • level 2 the output level is reversed, that is, the output level of the levitation motor is “greater than or equal to the safety limit threshold and less than the performance limit threshold”
  • the propulsion motor When the output level is "greater than or equal to the performance limit threshold value and less than the normal limit", "alarm level 3" is set. This is due to the difference in the functions of the rotary blades described in the first embodiment.
  • the levitation motor has a function of rotationally driving the rotary blades used to obtain the lift of the electric aircraft 20. Therefore, the decrease in output due to a failure or the like has a greater effect on the flight of the electric aircraft 20 than the decrease in output of the propulsion motor. Therefore, in the present embodiment, the alarm table is set in advance so that a high alarm level (alarm level 3) is set when the output level of the levitation motor is reached even if the output level is the same. There is.
  • the alarm level setting process of the fourth embodiment shown in FIG. 11 is a process for setting an alarm level, similarly to the alarm level setting process of the first embodiment, and is executed when the power of the electric motor control ECU 110 is turned on. ..
  • the abnormality determination unit 131 executes an abnormality diagnosis for each motor system 10 and determines whether or not an abnormality has been detected (step S205). If it is determined that no abnormality is detected (step S205: NO), the process returns to step S105. Since this step S205 is the same as step S105 of the alarm level setting process of the first embodiment described above, detailed description thereof will be omitted.
  • the output rate calculation unit 133 specifies the total motor output of the levitation motor (step S210). Further, the output rate calculation unit 133 specifies the total motor output of the propulsion motor (step S215).
  • the alarm level setting unit 132 refers to the alarm level map 135 shown in FIG. 10 based on the total motor output of the levitation motor specified in step S210 and the total motor output of the propulsion motor specified in step S215. Then, the alarm level is set (step S220). Therefore, for example, the output level of the levitation motor (total motor output) corresponds to the output level equal to or higher than the safety limit threshold value and less than the performance limit threshold value, and the output level of the propulsion motor (total motor output) is equal to or higher than the performance limit threshold value and normal. If the output level is less than the limit threshold value, "alarm level 3" is set. After the completion of step S220, the process returns to step S205.
  • the abnormality warning system 130a of the fourth embodiment described above has the same effect as the abnormality warning system 130 of the first embodiment.
  • the alarm level is set appropriately by referring to the alarm level map 135 in which the alarm level is set in advance for the combination of the total motor output of the levitation motor and the total motor output of the propulsion motor.
  • the alarm level can be set easily and in a short time. Further, even if the output level is the same, when the output level of the levitation motor is reached, a higher alarm level (alarm level 3) is set as compared with the case of the output level of the propulsion motor. Therefore, a higher alarm level can be set in the event of an abnormality in the motor system 10 including the levitation motor, which has a greater effect on the flight of the electric aircraft 20.
  • E. Fifth Embodiment Since the configuration of the abnormality warning system 130 of the fifth embodiment is the same as the configuration of the abnormality warning system 130 of the first embodiment, the same configurations are designated by the same reference numerals, and detailed description thereof will be omitted. Further, the electric aircraft equipped with the abnormality warning system 130 of the fifth embodiment is the same as the electric aircraft 20 of the first embodiment shown in FIG.
  • the abnormality alarm system 130 of the fifth embodiment is different from the abnormality alarm system 130 of the first embodiment in that the alarm level adjustment process shown in FIG. 12 is executed in addition to the alarm level setting process shown in FIG.
  • the alarm level adjustment process is a process for adjusting the alarm level set by the alarm level setting process, and is executed when any one of steps S120, S130, and S135 of the alarm level setting process is completed.
  • the alarm level setting unit 132 determines whether or not the motor corresponding to the motor system determined to be abnormal in the alarm level setting process (hereinafter referred to as “abnormal system”) is a levitation motor. Determination (step S305). When it is determined that the motor corresponding to the abnormal system is not a levitation motor (step S305: NO), the alarm level setting unit 132 maintains the alarm level (step S310). Therefore, in this case, the alarm level remains the alarm level set by the alarm level setting process.
  • the alarm level setting unit 132 has the rotary blade 30 rotationally driven by the levitation motor. , Whether or not it is arranged on the main wing 25, that is, whether or not it corresponds to any of the two levitation rotary blades 31f and 31g (step S315).
  • Step S310 When it is determined that the rotary blade 30 rotationally driven by the levitation motor is not arranged on the main wing 25, that is, corresponds to any of the levitation rotary blades 31a to 31e (step S315: NO), the above-mentioned Step S310 is executed and the alarm level is maintained. On the other hand, when it is determined that the rotary blade 30 rotationally driven by the relevant levitation motor is arranged on the main wing 25, that is, corresponds to either of the two levitation rotary blades 31f and 31g (step). S315: YES), the alarm level setting unit 132 raises the alarm level by one (step S320). After the completion of step S310 or step S320 described above, the alarm level adjustment process ends. If the alarm level is the maximum level "alarm level 3", the level is maintained.
  • step S110: YES it is determined that the propulsion force or the lift is affected by the failure of the motor system 10 including the levitation motor (step S110: YES), and the total motor output of the levitation motor is equal to or higher than the first threshold value (step S115: NO). )
  • step S125: YES "alarm level 2" is set according to the alarm level setting process.
  • the failed motor system 10 is a system that rotationally drives any of the two levitation rotors 31f and 31g arranged on the main wing 25, the alarm level is increased by one to "alarm level 3". Will be adjusted (changed) to.
  • the failed motor system 10 is a system that rotationally drives any of the five levitation rotary blades 31a to 31e arranged in the main body 22, the alarm level is "alarm level 2". It remains.
  • the failed motor system 10 is a motor system that rotationally drives any of the two levitation rotors 31f and 31g arranged on the main wing 25, the alarm level is raised by one.
  • the two levitation rotors 31f and 31g arranged on the main wing 25 are located far from the center of gravity CM, and therefore, if the motor system 10 for rotationally driving them fails, the other five. Compared with the case where the levitation rotor blades 31a to 31e fail, the attitude of the electric aircraft 20 is likely to fluctuate significantly and the flight stability is likely to decrease.
  • the failed motor system 10 is a motor system that rotationally drives any of the two levitation rotors 31f and 31g arranged on the main wing 25, the alarm level is raised by one to speed up the operation. I try to encourage a good response.
  • the abnormality warning system 130 of the fifth embodiment described above has the same effect as the abnormality warning system 130 of the first embodiment.
  • the alarm level adjustment process is executed and the failed motor system 10 is a system that rotationally drives one of the two levitation rotary blades 31f and 31g arranged on the main wing 25, the alarm level Therefore, when a failure occurs, the attitude of the electric aircraft 20 fluctuates greatly and the flight stability tends to deteriorate. In the event of a failure of the motor system 10, the alarm level is raised by one to quickly. You can encourage a response.
  • the abnormality alarm system 130 of the sixth embodiment is different from the abnormality alarm system 130 of the first embodiment in the specific procedure of the alarm level setting process. Since the device configuration of the electric aircraft 20 including the abnormality warning system 130 in the sixth embodiment is the same as that of the electric aircraft 20 in the first embodiment, the same components are designated by the same reference numerals and detailed description thereof will be given. Omit.
  • the alarm levels were three levels of alarm levels 1 to 3.
  • the alarm level is relatively "low alarm level” and relatively "high alarm level”. The difference between these two levels corresponds to the difference in urgency, as in the first embodiment.
  • the alarm itself output based on such an alarm that is, the alarm message itself displayed on the UI unit 50, is common to the "high alarm level” and the "low alarm level”.
  • the alarm output unit 134 outputs an alarm when, as a result of the abnormality diagnosis, it is continuously diagnosed that the same motor system 10 is abnormal for a threshold number of times or more. Then, in the sixth embodiment, when the "high alarm level” is set, the alarm is relatively easy to be output, and when the "low alarm level” is set, the alarm is relatively easy to be output. Is difficult to output.
  • the abnormality determination unit 131 executes an abnormality diagnosis for each motor system 10 and determines whether or not an abnormality has been detected (step S400). If it is determined that no abnormality is detected (step S400: NO), the process returns to step S400.
  • This step S400 is the same as step S105 of the first embodiment.
  • step S400 determines whether or not the motor corresponding to the abnormal system detected in the alarm level setting process is a levitation motor (step S400: YES). Step S405). This step S405 is the same as step S305 of the fifth embodiment.
  • the alarm level setting unit 132 When it is determined that the motor corresponding to the abnormal system is not a levitation motor (step S405: NO), the alarm level setting unit 132 has a "low threshold number" used as an alarm output condition set as an initial value.
  • the alarm level is set in "alarm level” (step S410). For example, the initial value of "4 times" is set as the "threshold number of times".
  • step S405 When it is determined that the motor corresponding to the abnormal system is a levitation motor (step S405: YES), the alarm level setting unit 132 has the rotary blade 30 rotationally driven by the levitation motor, and the rotary blade 30 is arranged on the main wing 25. That is, it is determined whether or not it corresponds to any of the two levitation rotary blades 31f and 31g (step S415).
  • This step S415 is the same as step S315 of the alarm level adjustment process of the fifth embodiment.
  • Step S410 When it is determined that the rotary blade 30 rotationally driven by the levitation motor is not arranged on the main wing 25, that is, corresponds to any of the levitation rotary blades 31a to 31e (step S415: NO), the above-mentioned Step S410 is executed, and the alarm level is set to the "low alarm level" in which the "threshold number of times" used as the condition of the alarm output is set to the initial value.
  • the alarm level setting unit 132 sets the alarm level to a "high alarm level" in which the "threshold number of times" used for the alarm output condition is reduced by a predetermined number of times with respect to the initial value (step S420). ..
  • the threshold number is set to "3".
  • the motor system 10 rotationally drives any one of the five levitation rotary blades 31a to 31e arranged in the main body 22.
  • the threshold number is "4 times", and it is difficult to output an alarm.
  • the failed motor system 10 is a motor system that rotationally drives any of the two levitation rotary blades 31f and 31g arranged on the main wing 25, the threshold number is "3 times". , It is easy to output an alarm.
  • the threshold number is reduced and an alarm is output.
  • the failed motor system 10 is a motor system that rotationally drives one of the two levitation rotary blades 31f and 31g arranged on the main wing 25, It is the same as the reason why the alarm level is raised by one.
  • the abnormality warning system 130 of the sixth embodiment described above has the same effect as the abnormality warning system 130 of the first embodiment.
  • the failed motor system 10 is a system that rotationally drives any of the two levitation rotary blades 31f and 31g arranged on the main wing 25, the number of thresholds used in the alarm output condition is reduced. Therefore, in the event of a failure of the motor system 10 in which the attitude of the electric aircraft 20 is greatly changed and the flight stability is likely to be deteriorated, an alarm can be easily output and a prompt response can be promoted.
  • the output rate calculation unit 133 may be omitted.
  • the configuration of the abnormality warning system 130 of the seventh embodiment is the same as the configuration of the abnormality warning system 130 of the first embodiment, the same configurations are designated by the same reference numerals, and detailed description thereof will be omitted.
  • the electric aircraft equipped with the abnormality warning system 130 of the seventh embodiment is the same as the electric aircraft 20 of the first embodiment shown in FIG.
  • the abnormality alarm system 130 of the seventh embodiment is different from the abnormality alarm system 130 of the first embodiment in that the alarm level adjustment process shown in FIG. 14 is executed in addition to the alarm level setting process shown in FIG.
  • the alarm level adjustment process is a process for adjusting the alarm level set by the alarm level setting process, and is executed when any one of steps S120, S130, and S135 of the alarm level setting process is completed.
  • the alarm level setting unit 132 determines whether or not a predetermined period has elapsed from the previous setting of the alarm level (step S505). When it is determined that a predetermined period has not elapsed since the previous setting of the alarm level (step S505: NO), the alarm level setting unit 132 maintains the alarm level (step S510).
  • the "predetermined period" of step S505 is set to 3 minutes. The period is not limited to 3 minutes and may be set to any period.
  • step S505 when it is determined that a predetermined period has elapsed from the previous setting of the alarm level (step S505: YES), the alarm level setting unit 132 raises the alarm level by one (step S515). After the completion of step S510 or step S515, the process returns to step S505.
  • a predetermined period of time has passed since the previous setting of the alarm level, the flight for such a predetermined period may have a greater effect on the flight due to the failure, in other words, a quick response may be required. For example, due to a failure of various sensors 13 to 15, the motor 11 cannot be rotated at the optimum operating point, the power consumption of the motor 11 increases, and the SOC (State Of Charge) of the power supply 70 (secondary battery) increases.
  • SOC State Of Charge
  • the SOC may decrease further and the flight may not be able to continue. Therefore, in such a case, the alarm level is raised by one to output a more urgent alarm. Since the alarm level adjustment process of the seventh embodiment is repeatedly executed, the alarm level is increased by one every predetermined time unless the abnormal state is improved. Therefore, the longer the abnormal state continues, the higher the alarm level will be set.
  • the abnormality warning system 130 of the seventh embodiment described above has the same effect as the abnormality warning system 130 of the first embodiment.
  • the warning level is raised by one when a predetermined period has passed since the previous setting of the warning level, when the flight for such a predetermined period has a greater effect on the flight due to a failure and more prompt response is required. In, a more urgent alarm can be output.
  • the output rate calculated by the output rate calculation unit 133 means the ratio of the total motor output of the motor system to the required motor output, but the present disclosure is not limited to this. It may mean the ratio of the number of normal rotor blades 30 (motors 11) that can be output to the minimum number of rotor blades 30 (motors 11) required for the flight of the electric aircraft 20. Even in such a configuration, the same effect as that of each embodiment is obtained.
  • (H2) it has been determined whether or not to raise the alarm level by one depending on whether or not the failed motor system 10 is arranged on the main wing 25, but the present disclosure is not limited to this. ..
  • the alarm level for the motor system 10 corresponding to the levitation rotary wing located far from the center of gravity position CM of the electric aircraft 20 is set to the motor corresponding to the levitation rotary wing located near the center of gravity position CM. Any configuration may be adopted that is set to a level higher than the alarm level for the system 10. Specifically, among the five levitation rotors 31a to 31e arranged in the main body 22, the alarm level set when the levitation rotor 31a arranged at the center of gravity CM fails is higher than the alarm level.
  • the alarm level set when the other four levitation rotor blades 31b to 31e fail may be set high.
  • the alarm level for the motor system 10 corresponding to the levitation rotary wing arranged at a position far from the center of gravity position CM corresponds to the levitation rotary wing arranged at a position close to the center of gravity position CM. Since it is set as a level higher than the warning level for the motor system 10, the rotation that greatly affects the flight and posture of the electric aircraft 20 when the rotation becomes abnormal because it is located far from the center of gravity CM. A higher level of alarm level can be set for an abnormality in the motor system 10 corresponding to the blade.
  • (H3) it has been determined whether or not to increase the rotation threshold value depending on whether or not the failed motor system 10 is arranged on the main wing 25, but the present disclosure is not limited to this.
  • the threshold number of times for the motor system 10 corresponding to the levitation rotary wing arranged at a position far from the center of gravity position CM of the electric aircraft 20 is set to the motor corresponding to the levitation rotary wing arranged at a position close to the center of gravity position CM.
  • a configuration may be adopted in which the number of times is less than the threshold number of times for the system 10. According to such a configuration, the same effect as that of the sixth embodiment is obtained.
  • step S505 it is determined whether or not a predetermined period has elapsed from the previous setting of the alarm level, but the present disclosure is not limited to this.
  • a threshold time for raising the alarm level is set in advance for the elapsed time since the first determination of abnormality. Specifically, a threshold time for raising the alarm level by one and a threshold time for raising the alarm level by one are set. Then, in step S505, "whether or not the elapsed time has reached the threshold time" may be determined.
  • the number of alarm levels was two or three, but the present disclosure is not limited to these. It may be any number of 2 or more.
  • the number of alarm levels is set to 4 or more, and a plurality of threshold values are set for the total motor output of the levitation motor and the total motor output of the propulsion motor, respectively, and are specified by the threshold values. Different alarm levels may be set for each of the plurality of output levels. Similarly, in the third embodiment, three or more threshold values may be set for the total motor output.
  • the fourth embodiment for example, as shown in the alarm level map 135a shown in FIG.
  • a new level of “floating force loss” is provided for the output level of the levitation motor, and when the output level is applicable, the propulsion is used.
  • "alarm level 4" which is higher than the alarm level 3 may be set.
  • the alarm level setting unit 132 is used when the levitation function of the propulsion function and the levitation function is impaired (that is, when the levitation force is lost) and when the propulsion function is impaired (that is, when the levitation force is lost).
  • a higher level will be set as the alarm level compared to (when the propulsion force is lost).
  • the output rate calculation unit 133 corresponds to the output rate calculation unit and the function loss identification unit in the present disclosure.
  • the alarm level setting unit 132 is impaired at least one of the propulsion function and the levitation function. The same level or a lower level will be set as the alarm level. As a result, it is possible to prevent the convenience of the occupants of the electric aircraft from being impaired due to the emergency response being taken even though neither the propulsion function nor the levitation function is impaired.
  • the alarm level adjustment in the alarm level adjustment process depends on whether or not the alarm level is arranged on the main wing 25 (fifth embodiment) and whether or not a predetermined period has elapsed from the previous setting of the alarm level (sixth embodiment).
  • this disclosure is not limited to this.
  • the alarm level set in the alarm level setting process is adjusted according to each parameter such as the remaining charge (battery SOC) of the power source 70, the distance to the airport, the altitude, the number of occupants, the weight of the aircraft, and the aircraft type. You may do so.
  • the alarm level may be raised as the remaining charge of the power source 70 is small, the distance to the airport is long, the altitude is high, the number of passengers is large, and the weight of the aircraft is heavy.
  • the airframe type for example, the type without wings may be adjusted to raise the alarm level as compared with the type having wings, and the type with a small number of motors may be adjusted to raise the alarm level as compared with the type having many motors.
  • each of these parameters may be scored and the alarm level may be set according to the total value of the scores of all the parameters. Further, instead of these parameters, the above-mentioned output rate and the degree of influence on controllability may be scored, and the alarm level may be set according to the total value thereof.
  • the level of the cooling performance of the motor 11 may be scored and added to the total value.
  • the cooling performance may be configured, for example, by scoring the temperature of the cooling medium, and the higher the temperature, the higher the score (the alarm level is likely to be set higher).
  • the abnormality warning systems 130 and 130a in each embodiment are merely examples and can be changed in various ways.
  • the abnormality warning systems 130 and 130a may be configured by a server device installed in, for example, a control tower on the ground, without being mounted on the electric aircraft 20 and 20a.
  • control of each motor system 10, abnormality diagnosis of each motor system 10, alarm level setting processing, and alarm level adjustment processing may be performed by communication via the communication device 60.
  • the motor system 10 includes the motor 11, but may be configured not to include the motor 11.
  • step S110 of the alarm level setting process of the other embodiments except the fourth and sixth embodiments a map in which "abnormal contents affecting propulsion or lift" are listed in advance is used. In place of or in addition to such a map, a map listing "abnormal content that does not affect propulsion or lift" may be used.
  • the motor 11 may be configured by a motor generator.
  • the anomaly alarm systems 130, 130a and methods thereof described in the present disclosure are provided by configuring a processor and memory programmed to perform one or more functions embodied by a computer program. It may be realized by a dedicated computer. Alternatively, the anomaly alarm systems 130, 130a and methods thereof described in the present disclosure may be implemented by a dedicated computer provided by configuring the processor with one or more dedicated hardware logic circuits. Alternatively, the anomaly alarm systems 130, 130a and methods thereof described in the present disclosure are a processor composed of a processor and memory programmed to perform one or more functions and one or more hardware logic circuits. It may be realized by one or more dedicated computers configured in combination with. Further, the computer program may be stored in a computer-readable non-transitional tangible recording medium as an instruction executed by the computer.
  • the present disclosure is not limited to the above-described embodiment, and can be realized by various configurations within a range not deviating from the purpose.
  • the technical features in each embodiment corresponding to the technical features in the embodiments described in the column of the outline of the invention may be used to solve some or all of the above-mentioned problems, or one of the above-mentioned effects. It is possible to replace or combine as appropriate to achieve the part or all. Further, if the technical feature is not described as essential in the present specification, it can be appropriately deleted.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Transportation (AREA)
  • Control Of Electric Motors In General (AREA)
  • Control Of Multiple Motors (AREA)

Abstract

異常警報システム(130、130a)は、電動航空機(20)が有する複数の回転翼(30)にそれぞれ対応して用いられるモータ(11)を駆動させる複数のモータシステム(10)の異常警報を行う。この異常警報システム(130、130a)は、複数のモータシステムのうち、異常であるモータシステムを判定する異常判定部(131)と、異常判定部により異常と判定されたモータシステムに対応する、回転翼の電動航空機における位置情報と、回転翼の用途と、のうちの少なくとも一方に応じて、異常を警報する警報レベルを設定する警報レベル設定部(132)と、を備える。

Description

異常警報システムおよび警報レベル設定方法 関連出願の相互参照
 本出願は、2020年7月9日に出願された日本出願番号2020-118320号に基づくもので、ここにその記載内容を援用する。
 本開示は、モータシステムの異常状態の警報に関する。
 近年、eVTOL(electric Vertical Take-Off and Landing aircraft)等の電動航空機においては、回転翼を回転駆動させるために、モータを含むモータシステムが搭載されて用いられている。モータシステムは、例えば、モータと、モータに電力を供給するインバータ回路と、インバータ回路を制御する制御装置とを含むシステムとして構成される。このようなモータシステムでは、従来と同様に、例えば、特許文献1に記載のモータの故障診断のような異常診断を行うことが望まれる。特許文献1では、モータに供給する相電流における所定の特徴の有無(特定周波数の信号の有無)や、相電流値およびモータ回転数の実測値から求められるトルク電流値(q軸電流値)における所定の特徴量有無に基づき、異常の有無が診断される。そして、異常診断の結果、異常が見つかった場合には、異常の発生を検出するとともに、発止した異常の種類を特定している。
特開2005-49178号公報
 一般に、異常が検出された場合には、かかる異常状態の警報(以下、単に「異常警報」と呼ぶ)が求められる。例えば、電動航空機が飛行中において異常診断を実行する構成では、異常が検出された場合に、乗組員や地上の管制官に対する異常警報が求められる。電動航空機におけるモータシステムの異常として、飛行安全性に大きく影響するために対応に緊急を要するような異常がある一方、現在の飛行計画で飛行して着陸後に対応しても十分に間に合うような異常もあり得る。しかし、特許文献1では、警報についての開示が無いため、警報レベルが設定されない、或いは、適切でない警報レベルが設定されるおそれがある。このため、対応に緊急を要する異常が発生したにも関わらずそのまま飛行を継続して安全性を大きく損なうという問題や、現在の飛行計画で飛行して着陸後に対応しても十分に間に合うような異常が発生したにもかかわらず、飛行計画を変更して緊急に着陸して乗員の利便性を大きく損なうといった問題が起こり得る。このため、適切な警報レベルを設定可能な技術が望まれる。
 本開示の一形態によれば、電動航空機が有する複数の回転翼にそれぞれ対応して用いられるモータを駆動させる複数のモータシステムの異常警報を行う異常警報システムが提供される。この異常警報システムは、前記複数のモータシステムのうち、異常であるモータシステムを判定する異常判定部と、前記異常判定部により異常と判定されたモータシステムに対応する前記回転翼の前記電動航空機における位置情報と、前記回転翼の機能と、のうちの少なくとも一方に応じて、前記異常状態を警報する際の警報レベルを設定する警報レベル設定部と、を備える。
 回転翼の配置位置によってかかる回転翼に対応するモータシステムの異常が電動航空機の飛行に与える影響は異なる。また、回転翼の用途によって回転翼に対応するモータシステムの異常が電動航空機の飛行に与える影響は異なる。したがって、上記形態の異常警報システムによれば、異常と判定されたモータシステムに対応する、回転翼の電動航空機における位置情報と、回転翼の機能と、のうちの少なくとも一方に応じて、異常を警報する警報レベルを設定するので、適切な警報レベルを設定することができる。
 本開示は、種々の形態で実現することも可能である。例えば、複数のモータシステムを含む電駆動システム、電動航空機、警報レベルの設定方法、これらの装置や方法を実現するためのコンピュータプログラム、かかるコンピュータプログラムを記録した一時的でない記録媒体等の形態で実現することができる。
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、本開示の一実施形態としての異常警報システムを適用した電動航空機の構成を模式的に示す上面図、 図2は、第1実施形態におけるモータシステムを含む電駆動システムの機能的構成を示すブロック図、 図3は、第1実施形態における警報レベル設定処理の手順を示すフローチャート、 図4は、第2実施形態における警報レベル設定処理の手順を示すフローチャート、 図5は、第3実施形態における電動航空機の構成を模式的に示す上面図、 図6は、第3実施形態における電動航空機の構成を模式的に示す上面図、 図7は、第3実施形態における警報レベル設定処理の手順を示すフローチャート、 図8は、第3実施形態におけるモータ合計出力のレベルを示す説明図、 図9は、第4実施形態におけるモータシステムを含む電駆動システムの機能的構成を示すブロック図、 図10は、第4実施形態における警報レベルマップの設定内容を示す説明図、 図11は、第4実施形態における警報レベル設定処理の手順を示すフローチャート、 図12は、第5実施形態における警報レベル調整処理の手順を示すフローチャート、 図13は、第6実施形態における警報レベル設定処理の手順を示すフローチャート、 図14は、第7実施形態における警報レベル調整処理の手順を示すフローチャート、 図15は、他の実施形態における警報レベルマップの設定内容を示す説明図。
A.第1実施形態:
A1.装置構成:
 図1に示す電動航空機20は、eVTOL(electric Vertical Take-Off and Landing aircraft)とも呼ばれ、鉛直方向に離着陸可能であり、また、水平方向への推進が可能な有人航空機である。電動航空機20は、機体21と、9つの回転翼30と、各回転翼に対応して配置されている9つのモータシステム10とを備える。
 機体21は、電動航空機20において9つの回転翼30およびモータシステム10を除いた部分に相当する。機体21は、本体部22と、主翼25と、尾翼28とを備える。
 本体部22は、電動航空機20の胴体部分を構成する。本体部22は、軸線AXを対称軸として左右対称の構成を有する。本実施形態において、「軸線AX」とは、電動航空機20の重心位置CMを通り、電動航空機20の前後方向に沿った軸を意味している。また、「重心位置CM」とは、乗員が搭乗していない空虚重量時における電動航空機20の重心位置を意味する。本体部22の内部には、図示しない乗員室が形成されている。
 主翼25は、右翼26と左翼27とにより構成されている。右翼26は、本体部22から右方向に延びて形成されている。左翼27は、本体部22から左方向に延びて形成されている。右翼26と左翼27とには、それぞれ回転翼30とモータシステム10とが2つずつ配置されている。尾翼28は、本体部22の後端部に形成されている。
 9つの回転翼30のうちの5つは、本体部22の上面の中央部に配置されている。これら5つの回転翼30は、主に機体21の揚力を得るための浮上用回転翼31a~31eとして機能する。浮上用回転翼31aは、重心位置CMに対応する位置に配置されている。浮上用回転翼31bと浮上用回転翼31cは、浮上用回転翼31aよりも前方において、軸線AXを中心として互いに線対称の位置に配置されている。浮上用回転翼31dと浮上用回転翼31eは、浮上用回転翼31aよりも後方において、軸線AXを中心として互いに線対称の位置に配置されている。9つの回転翼30のうちの2つは、右翼26および左翼27に配置されている。具体的には、右翼26の先端部の上面に浮上用回転翼31fが配置され、左翼27の先端部の上面に浮上用回転翼31gが配置されている。
 9つの回転翼30のうちのさらに2つは、右翼26および左翼27にそれぞれ配置され、主に機体21の水平方向の推進力を得るための推進用回転翼32a、32bとして機能する。右翼26に配置された推進用回転翼32aと、左翼27に配置された推進用回転翼32bは、軸線AXを中心として互いに線対称の位置に配置されている。各回転翼30は、それぞれの回転軸(後述のシャフト17)を中心として、互いに独立して回転駆動される。各回転翼30は、互いに等角度間隔で配置された3つのブレードをそれぞれ有する。
 図2に示すように、各回転翼30に対応する合計9つのモータシステム10は、電駆動システム100の一部として構成されている。電駆動システム100は、予め設定されている飛行プログラム、或いは、乗員や外部からの操縦に応じて各モータシステム10を制御し、回転翼30を回転駆動させるシステムである。以降では、浮上用回転翼31a~31gを回転駆動させるモータシステム10が備えるモータ11を「浮上用モータ」と呼び、推進用回転翼32a~32bを回転駆動させるモータシステム10が備えるモータ11を「推進用モータ」と呼ぶ。
 9つのモータシステム10は、互いにほぼ同じ構成を有する。各モータシステム10は、モータ11と、インバータユニット(INVユニット)12と、電圧センサ13と、電流センサ14と、回転センサ15と、記憶装置16と、シャフト17を備える。モータシステム10は、後述の電動統括ECU110からの指令に応じた回転トルクおよび回転数となるように、回転翼30を回転させるシステムである。
 モータ11は、シャフト17を介して回転翼30を回転駆動させる。モータ11は、本実施形態では3相交流ブラシレスモータにより構成され、後述のインバータ回路121から供給される電圧および電流に応じてシャフト17を回転させる。なお、モータ11は、ブラシレスモータに代えて、誘導モータやリラクタンスモータ等の任意の種類のモータにより構成されていてもよい。
 インバータユニット12は、インバータ回路121と、モータ制御部122とを備える。インバータ回路121は、IGBT(Insulated Gate Bipolar Transistor)やMOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)等のパワー素子を有し、モータ制御部122から供給される制御信号に応じたデューティ比でスイッチングすることにより、モータ11に駆動電力を供給する。
 モータ制御部122は、モータシステム10を全体制御する。具体的には、モータ制御部122は、後述する統合制御部120からの指示に応じて駆動信号を生成し、かかる駆動信号をインバータ回路121に供給する。また、モータ制御部122は、各センサ13~15の検出値を用いてインバータ回路121をフィードバック制御する。本実施形態において、モータ制御部122は、CPU、ROM、RAMを有するマイクロコンピュータにより構成されている。
 電圧センサ13は、後述の電源70から供給される電圧を検出する。電流センサ14は、インバータ回路121とモータ11との間に設けられており、モータ11の各相の駆動電流(相電流)を検出する。回転センサ15は、モータ11の回転数を検出する。電圧センサ13、電流センサ14および回転センサ15の検出値は、記憶装置16に時系列に記憶されると共に、モータ制御部122を介して電動統括ECU110へと出力される。記憶装置16には、各種制御プログラムや、各種センサの検出値に加えて、後述の異常診断処理の結果が記録される。
 電駆動システム100は、上述の9つのモータシステム10に加えて、電動統括ECU110を備える。電動統括ECU110は、電駆動システム100を全体制御すると共に、モータシステム10の異常診断を行う。本実施形態において、電動統括ECU110は、CPU、ROM、RAMを備えるコンピュータにより構成されている。電動統括ECU110が備えるCPUは、ROMに予め記憶されている制御プログラムをRAMに展開して実行することにより、統合制御部120および異常警報システム130として機能する。
 統合制御部120は、予め設定されている飛行プログラム或いはユーザによる操縦桿の操舵等に応じて、各モータシステム10を制御する。
 異常警報システム130は、各モータシステム10の異常診断を行うためのシステムである。異常警報システム130は、異常判定部131と、警報レベル設定部132と、出力率算出部133と、警報出力部134とを備える。
 異常判定部131は、異常診断処理を実行することにより、異常状態であるモータシステム(以下、「異常システム」とも呼ぶ)を特定する。本実施形態における異常診断処理を説明する。まず、異常判定部131は、診断対象のモータシステム(以下、「診断対象システム」と呼ぶ)と、比較対象のモータシステム(以下、「比較対象システム」と呼ぶ)とから、それぞれモータの動作状態に関連する値(以下、「状態関連値」と呼ぶ)を取得する。そして、診断対象システムの状態関連値と比較対象システムの状態関連値との差分が、所定の閾値よりも大きい場合には、診断対象システムは異常であると判定する。他方、上述の差分が所定の閾値以下の場合には、診断対象システムは異常ではない(正常である)と判定する。状態関連値としては、例えば、電流センサ14により測定される相電流値や、電圧センサ13により測定される電源70からの供給電圧や、回転センサ15により測定されるモータ11の回転数などが該当する。診断対象システムは、例えば、9つのモータシステム10に対して、予め診断対象システムとして特定される順序が予め定められており、かかる順序に従って順次特定されてもよい。また、比較対象システムは、例えば、診断対象システムとして特定されたモータシステムに対して、予め特定のモータシステムを比較対象システムとして定めておいてもよい。このとき、より高い信頼性を有するモータシステムを比較対象システムとして定めてもよい。
 警報レベル設定部132は、モータシステムの異常を警報する警報レベルを設定する。警報レベルとは、警報の緊急性を示すレベルであり、より高いレベルほど、より緊急性が高い警報であることを意味する。本実施形態では、下記3つの警報レベル1~3が設定され得る。警報レベル1は、最も緊急性が低いレベルであり、そのまま飛行継続可能である程度の異常を警報する場合に設定される。警報レベル2は、2番目に緊急性が低いレベルであり、電動航空機20が飛行中であれば、飛行計画を短縮する必要がある程度の異常を警報する場合に設定される。警報レベル3は、最も緊急性が高いレベルであり、緊急着陸が必要になる程度の異常を警報する場合に設定される。後述の警報レベル設定処理が実行されることにより、いずれかの警報レベルが設定されることとなる。
 ・警報レベル1:飛行継続可能
 ・警報レベル2:飛行計画短縮
 ・警報レベル3:緊急着陸
 出力率算出部133は、電動航空機20の飛行時に必要な要求モータ出力(以下、単に「要求モータ出力」と呼ぶ)に対する、複数のモータシステムの合計モータ出力の割合(以下、「出力率」と呼ぶ)を特定する。すなわち、下記式(1)が成り立つ。
 出力率=合計モータ出力/要求モータ出力 ・・・(1)
 警報出力部134は、モータシステムの異常を警報する。具体的には、本実施形態では、後述するユーザインターフェイス部(「UI部」とも呼ぶ)50が有する表示部に警報メッセージを表示させることにより、モータシステムの異常を警報する。
 電動航空機20には、上述の電駆動システム100に加えて、飛行や異常診断を行うための様々な構成要素が搭載されている。具体的には、電動航空機20には、センサ群40と、ユーザインターフェイス部50(以下、「UI部50」と呼ぶ)と、通信装置60と、電源70とが搭載されている。
 センサ群40は、高度センサ41、位置センサ42、速度センサ43を含む。高度センサ41は、電動航空機20の現在の高度を検出する。位置センサ42は、電動航空機20の現在位置を緯度および経度として特定する。本実施形態において、位置センサ42は、GNSS(Global Navigation Satellite System)により構成されている。GNSSとしては、例えば、GPS(Global Positioning System)を用いてもよい。速度センサ43は、電動航空機20の速度を検出する。
 UI部50は、電動航空機20の乗員に対し、電動航空機20の制御用のユーザインターフェイスおよび動作状態のモニタ用のユーザインターフェイスを提供する。かかるユーザインターフェイスとしては、例えば、キーボードやボタンなどの操作入力部や、液晶パネルなどの表示部などが含まれる。UI部50は、例えば、電動航空機20のコクピットに設けられている。乗組員は、UI部50を用いて、飛行計画の変更や、警報内容の確認を行うことができる。
 通信装置60は、他の電動航空機や、地上の管制塔などと通信を行う。通信装置60としては、例えば、民間用VHF無線機などが該当する。なお、通信装置60は、民間用VHF以外にも、IEEE802.11において規定されている無線LANや、IEEE802.3において規定されている有線LANなどの通信を行う装置として構成されてもよい。電源70は、リチウムイオン電池により構成され、電動航空機20における電力供給源の1つとして機能する。電源70は、各モータシステム10のインバータ回路121を介してモータ11に三相交流電力を供給する。なお、電源70は、リチウムイオン電池に代えて、ニッケル水素電池等の任意の二次電池により構成されていてもよく、二次電池に代えて、または二次電池に加えて、燃料電池や発電機等の任意の電力供給源により構成されてもよい。
A2.警報レベル設定処理:
 図3に示す警報レベル設定処理は、警報レベルを設定するための処理であり、電動統括ECU110の電源がオンすると実行される。異常判定部131は、各モータシステム10をそれぞれ対象として異常診断を実行し、異常を検出した否かを判定する(ステップS105)。異常を検出しないと判定された場合(ステップS105:NO)、処理はステップS105に戻る。
 他方、各モータシステム10をそれぞれ対象として異常診断を実行したところ、少なくとも1つのモータシステム10が異常であると判定され、その結果、異常システムを検出したと判定された場合(ステップS105:YES)、警報レベル設定部132は、検出されたモータシステム10の異常が、電動航空機20における推進力または揚力に影響があるか否かを判定する(ステップS110)。「推進力または揚力に影響があるか否か」の判定は、電動統括ECU110が有する図示しない記憶部に予め記憶されているマップを参照して実行される。かかるマップには、予め「推進力または揚力に影響がある異常内容」が列挙されている。例えば、「インバータ回路121の故障」や、「電動統括ECU110が備えるCPUの故障」や、「冗長無しのセンサ故障」や、「所定部品の故障」などが列挙されている。所定部品とは、例えば、モータ11に含まれるモータコイルや、インバータ回路121に含まれるインバータ回路121や、図示しない冷却系の部品(冷却媒体用のポンプなど)が該当する。他方、かかるマップに設定されていない種類のモータシステム10の異常については、電動航空機20における推進力または揚力に影響が無いと判定される。
 検出されたモータシステム10の異常が、電動航空機20における推進力または揚力に影響が無いと判定された場合(ステップS110:NO)、警報レベル設定部132は、警告レベルとして警告レベル1を設定する(ステップS135)。したがって、この場合には、飛行継続可能な程度の警報レベルが設定され、警報出力部134は、かかる警報レベル1で警報をUI部50に出力することとなる。
 上述のステップS110において、検出されたモータシステム10の異常が、電動航空機20における推進力または揚力に影響があると判定された場合(ステップS110:YES)、出力率算出部133は、浮上用モータの合計モータ出力が第1閾値よりも小さいか否かを判定する(ステップS115)。ここで、第1閾値とは、上述の出力率に対して予め定められている閾値率を、上述の着陸合計出力に掛け合わせて得られる値を意味する。したがって、ステップS110は、下記式(2)が成立するか否かを判定することに等しく、また、かかる式(2)を書き換えて得られる式(3)によれば、かかるステップS115は、浮上用モータの出力率(合計モータ出力/着陸合計出力)が閾値率よりも低いか否かを判定する処理であるとも言える。なお、上述の「浮上用モータの出力率に対して予め定められている閾値率」は、出力率がかかる閾値率よりも低い場合には、例えば、浮上用回転翼のみの駆動により高度を維持できなくなって飛行安定性が著しく損なわれることとなる率として、予め実験やシミュレーション等により定められている。
 合計モータ出力<(閾値率×着陸合計出力) ・・・(2)
 (合計モータ出力/要求モータ出力)<閾値率 ・・・(3)
 浮上用モータの合計モータ出力が第1閾値よりも小さいと判定された場合(ステップS115:YES)、警報レベル設定部132は、警告レベルとして警告レベル3を設定する(ステップS120)。したがって、この場合には、緊急着陸をしなければならない程度の警報レベルが設定され、警報出力部134は、かかる警報レベル3で警報をUI部50に出力することとなる。
 上述のステップS115において、浮上用モータの合計モータ出力が第1閾値よりも小さくないと判定された場合(ステップS115:NO)、出力率算出部133は、推進用モータの合計モータ出力が第2閾値よりも小さいか否かを判定する(ステップS125)。ステップS125は、上述のステップS115と同様に、推進用回転翼を回転駆動させるモータの出力率(合計モータ出力/要求モータ出力)が閾値率よりも低いか否かを判定する処理であるとも言える。なお、上述の「推進用モータの出力率に対して予め定められている閾値率」は、出力率がかかる閾値率よりも低い場合には、推進用回転翼の駆動により高度を維持できなくなって飛行安定性が著しく損なわれることとなる率として、予め実験やシミュレーション等により定められている。
 推進用モータの合計モータ出力が第2閾値よりも小さいと判定された場合(ステップS125:YES)、警報レベル設定部132は、警告レベルとして警告レベル2を設定する(ステップS130)。したがって、この場合には、飛行計画を短縮しなければならない程度の警報レベルが設定され、警報出力部134は、かかる警報レベル2で警報をUI部50に出力することとなる。上述のステップS125において、推進用モータの合計モータ出力が第2閾値よりも小さくないと判定された場合(ステップS125:NO)、上述のステップS135が実行され、警報レベル1が設定される。上述のステップS120、S130、S135が完了すると、処理はステップS105に戻る。
 ステップS125で推進用モータの合計モータ出力が第2閾値よりも小さいときには、浮上用モータの合計モータ出力が第1閾値より小さいときに設定される「警告レベル3」よりも低い「警告レベル2」が設定される理由について説明する。浮上用モータの合計モータ出力が第1閾値より小さい場合(ステップS115:YES)、もはや電動航空機20は、浮上用回転翼の回転駆動だけでは高度を維持できない。したがって、かかる場合には最も高い「警告レベル3」が設定される。これに対して、ステップS125において、推進用モータの合計モータ出力が第2閾値より低い場合(ステップS125:YES)、浮上用モータの合計モータ出力は第1閾値以上であるため、浮上用モータの駆動により得られる浮上力を利用して高度を維持することができる。したがって、かかる異常への対応の緊急性は低く、より低いレベルの「警告レベル2」が設定される。このように、本実施形態では、モータシステム10の異常が検出された場合に、かかるモータシステムが回転駆動させる回転翼の機能(浮上/推進)に応じて警告レベルが設定されている。これにより、対応の緊急性が高い異常であるにも関わらず低いレベルの警報レベルが設定されることや、対応の緊急性が低い異常であるにも関わらず高いレベルの警報レベルが設定されたために、不要な緊急着陸が行われ、乗員の利便性を損ねることを抑制できる。
 以上説明した第1実施形態のモータシステム10によれば、異常システムに対応する回転翼の機能に応じた警報レベルを設定するので、適切な警報レベルを設定することができる。
 また、浮上用モータの合計モータ出力が第1閾値よりも小さい場合に、大きい場合に比べて警報レベルとしてより高いレベルを設定するので、合計モータ出力が小さく、対応の緊急性がより高い異常が発生した場合に、警報レベルとしてより高いレベルを設定できる。このため、かかる警報に対する対応が遅れてしまい安全性を損なうことを抑制できる。同様に、推進用モータの合計モータ出力が第2閾値よりも小さい場合に、大きい場合に比べて警報レベルとしてより高いレベルを設定するので、合計モータ出力が小さく、対応の緊急性がより高い異常が発生した場合に、警報レベルとしてより高いレベルを設定できる。このため、かかる警報に対する対応が遅れてしまい安全性を損なうことを抑制できる。また、合計モータ出力が大きく、対応の緊急性がより低い異常が発生した場合に、警報レベルとしてより低いレベルを設定するので、不要な緊急着陸が行われ、乗員の利便性を損ねることを抑制できる。
 また、推進力または揚力に影響が無い場合、すなわち、電動航空機20における推進機能と浮上機能とのうちのいずれも損なわれていない場合には、最も低い警告レベルである「警告レベル1」が設定される。つまり、本実施形態では、上記2つの機能のいずれも損なわれていない場合には、2つの機能のうちの少なくとも一方が損なわれた場合に比べて警告レベルとしてより低いレベルが設定される。このため、推進機能と浮上機能がいずれも損なわれないにも関わらず緊急着陸や飛行計画の短縮が行われてしまい、電動航空機の乗員の利便性を損なってしまうことを抑制できる。
B.第2実施形態:
 第2実施形態の異常警報システム130は、警報レベル設定処理の具体的な手順において、第1実施形態の異常警報システム130と異なる。第2実施形態における異常警報システム130を含む電動航空機20の装置構成は、第1実施形態の電動航空機20と同じであるので、同一の構成には同一の符号を付し、その詳細な説明を省略する。
 図4に示すように、第2実施形態の警報レベル設定処理では、ステップS112が追加して実行される点において、図3に示す第1実施形態の警報レベル設定処理と異なる。第2実施形態の警報レベル設定処理におけるその他の手順は、第1実施形態の警報レベル設定処理と同じであるので、同一の手順には同一の符号を付し、その詳細な説明を省略する。
 上述のステップS110において、電動航空機20における推進力または揚力に影響が無いと判定された場合(ステップS110:NO)、警報レベル設定部132は、電動航空機20の制御性に影響があるか否かを判定する(ステップS112)。制御性とは、制御の容易性や、制御の正確性といった意味である。例えば、各種センサの特性異常に起因して測定精度が悪化している場合、かかる測定値に基づき電動航空機20を制御すると、制御精度が低下するおそれがあり、制御性に影響がある。また、例えば、インバータ回路121が有する図示しない平滑コンデンサの容量が低下した場合も、各モータシステム10への供給電圧が低下するため、制御性は低下して影響がある。他方、例えば、故障を検出する機能部、例えば、故障検出専用の信号線や、比較回路が故障しても、電動航空機20の制御自体には影響を与えない。同様に、例えば、フェールセーフを実行するための機能部の故障も電動航空機20の制御自体には影響を与えない。したがって、これらの故障では、制御性に影響はない。本実施形態では、異常の種類と制御性に影響を与えるか否かが対応付けられたマップが予め異常警報システム130が有する記憶部に記憶されており、ステップS112ではかかるマップを参照することにより、電動航空機20の制御性に影響があるか否かを判定される。
 電動航空機20の制御性に影響が無いと判定された場合(ステップS112:NO)、上述のステップS135が実行され、警報レベルとして「警報レベル1」が設定される。これに対して、電動航空機20の制御性に影響があると判定された場合(ステップS112:YES)、上述のステップS130が実行され、警報レベルとして「警報レベル2」が設定される。電動航空機20の制御性に影響がある場合には、無い場合に比べて対応の緊急性は高いため、本実施形態では、より高い警報レベルが設定されるように構成されている。
 以上説明した第2実施形態の異常警報システム130は、第1実施形態の異常警報システム130と同様な効果を奏する。加えて、検出された異常が電動航空機20の制御性に影響があるか否かを判定し、影響があると判定された場合には影響が無いと判定された場合に比べてより高い警報レベルを設定するので、対応が行われ易くできる。
C.第3実施形態:
C1.装置構成:
 第3実施形態の異常警報システム130は、警報レベル設定処理の具体的な手順において、第1実施形態の異常警報システム130と異なる。第3実施形態における異常警報システム130の装置構成は、第1実施形態の異常警報システム130と同じであるので、同一の構成には同一の符号を付し、その詳細な説明を省略する。第3実施形態の異常警報システム130が搭載されている電動航空機20aの構成は、第1実施形態の電動航空機20の構成と異なる。まず、この電動航空機20aの構成について、図5および図6を用いて説明する。
 図5および図6に示す電動航空機20aは、いわゆるチルトウィング形の機体を有する。なお、図5は、クルーズ時の電動航空機20aの上面図を表し、図21は、垂直離着陸時の電動航空機20aの上面図を表している。
 第3実施形態の電動航空機20aは、第1実施形態の電動航空機20と同様に、機体21、主翼25、尾翼28を有する。右翼26および左翼27には、それぞれモータシステム10と回転翼30aとのセットが2つずつ配置されている。回転翼30aは、浮上用回転翼として機能するとともに推進用回転翼としても機能する点において、第1実施形態の回転翼30と異なりその他の構成は同じである。本実施形態では、右翼26および左翼27は、回動可能に構成されている。図5に示すように、クルーズ時には、右翼26および左翼27は、略水平となるように姿勢が制御されている。これにより、回転翼30aは、鉛直方向と平行に回転駆動可能となり、かかる回転駆動によって推進力が発生する。これに対して、図6に示すように、垂直離着陸時には、右翼26および左翼27は、略鉛直となるように姿勢が制御されている。これにより、回転翼30aは、水平方向と平行に回転駆動可能となり、かかる回転駆動によって揚力が発生する。
C2.警報レベル設定処理:
 図7に示す第3実施形態の警報レベル設定処理は、ステップS115に代えてステップS115aが実行される点、およびステップS125に代えてステップS125aが実行される点において、図3に示す第1実施形態の警報レベル設定処理と異なる。第3実施形態の警報レベル設定処理におけるその他の手順は、第1実施形態の警報レベル設定処理と同じであるので、同一の手順には同一の符号を付し、その詳細な説明を省略する。
 検出されたモータシステム10の異常が、電動航空機20における推進力または揚力に影響があると判定された場合(ステップS110:YES)、出力率算出部133は、すべてのモータの合計モータ出力が低閾値よりも小さいか否かを判定する(ステップS115a)。第1実施形態のステップS115では、浮上用モータの合計モータ出力について判定が行われていたが、このステップS115aでは、すべてのモータの合計モータ出力について判定が行われる。これは、回転翼30aが浮上用回転翼としても推進用回転翼としても機能するためである。上述の「低閾値」および後述の「高閾値」について、図8を用いて説明する。
 図8において、縦軸は合計モータ出力を示す。横軸には、合計モータ出力が互いに異なる4つのモデルケースが表されている。第3実施形態においては、合計モータ出力に対して、「正常限界閾値」、「性能限界閾値」、「安全限界閾値」の3つの閾値が設定されている。「正常限界閾値」とは、かかる閾値以上であれば正常な飛行が可能となる値として設定された閾値である。「性能限界閾値」とは、かかる閾値以上であれば設計意図通りの機体性能を最大限発揮できる値として設定された閾値である。「安全限界閾値」とは、かかる閾値以上であればパイロットのスキルに依存せずに安全確保できる値として設定された閾値である。これらの閾値は、予め実験やシミュレーションにより決定され得る。例えば、「ケース1」では、合計モータ出力は正常限界閾値よりも大きいので、電動航空機20aにおいて正常な飛行が実現できる。「ケース2」では、合計モータ出力は正常限界閾値を下回っているものの、性能限界閾値よりも大きいので、設計意図通りの機体性能を最大限発揮することができる。「ケース3」では、合計モータ出力は、性能限界閾値を下回っているものの、安全限界閾値よりも大きいので、パイロットのスキルに依存せずに安全確保することができる。「ケース4」では、合計モータ出力は、安全限界閾値を下回っている。このため、パイロットのスキルが高ければ安全が確保できる場合もあるが、かかるスキルが低い場合には安全が確保できなくなる。図8の右端に示すように、合計モータ出力が安全限界閾値未満の場合には、電動航空機20aの飛行状態は、危険状態であるといえる。また、合計モータ出力が安全限界閾値以上且つ正常限界閾値未満の状態は、安全余裕のある状態であるといえる。また、合計モータ出力が正常限界閾値以上の状態は、正常であるといえる。本実施形態では、「低閾値」とは、「安全限界閾値」に相当し、「高閾値」とは、「性能限界閾値」に相当する。
 図7に示すように、合計モータ出力が低閾値よりも小さいと判定された場合(ステップS115a:YES)、上述のステップS120が実行され、警報レベルは「警報レベル3」に設定される。これに対して、モータの合計モータ出力が低閾値よりも小さくないと判定された場合(ステップS115a:NO)、出力率算出部133は、すべてのモータの合計モータ出力が高閾値よりも小さいか否かを判定する(ステップS125a)。
 合計モータ出力が高閾値よりも小さいと判定された場合(ステップS125a:YES)、上述のステップS130が実行され、警報レベルは「警報レベル2」に設定される。これに対して、合計モータ出力が高閾値よりも小さくないと判定された場合(ステップS125a:NO)、上述のステップS135が実行され、警報レベルは「警報レベル1」に設定される。
 以上説明した第3実施形態の異常警報システム130は、第1実施形態の異常警報システム130と同様な効果を有する。加えて、チルトウィング形の機体を有する電動航空機20aに異常警報システム130aが搭載された構成において、合計モータ出力が安全限界閾値未満の場合には、警告レベル3を設定でき、合計モータ出力が安全限界閾値以上且つ性能限界閾値未満である場合には、警告レベル2を設定でき、合計モータ出力が性能限界閾値以上且つ正常限界閾値未満である場合には、警告レベル1を設定できる。したがって、モータ合計モータ出力に応じた適切なレベルを、警報レベルとして設定できる。
D.第4実施形態:
D1.装置構成:
 図9に示す第4実施形態の異常警報システム130aは、警報レベルマップ135を備える点において、図2に示す第1実施形態の異常警報システム130と異なる。第4実施形態の異常警報システム130aにおけるその他の構成は、第1実施形態の異常警報システム130と同じであるので、同一の構成には同一の符号を付し、その詳細な説明を省略する。
 図10に示すように、第4実施形態の警報レベルマップ135は、浮上用モータの合計モータ出力と、推進用モータの合計モータ出力の組み合わせに対して、警報レベルが対応付けられている。浮上用モータの合計モータ出力には、下記(i)~(iii)の3つの出力レベルが設定されている。
 (i)安全限界閾値未満
 (ii)安全限界閾値以上且つ性能限界閾値未満
 (iii)性能限界閾値以上且つ正常限界未満
 また、推進用モータの合計モータ出力には、上記(i)~(iii)の3つの出力レベルに加えて、下記(iv)の出力レベルが設定されている。
 (iv)推進力喪失
 上記(i)~(iii)における、安全限界閾値、性能限界閾値、正常限界閾値は、いずれも第3実施形態と同様であるのでその詳細な説明を省略する。上記(iv)の推進力喪失とは、すなわち、推進用モータの合計モータ出力が0(ゼロ)であることを意味する。
 図10に示すように、浮上用モータの出力レベルが「安全限界閾値未満」の場合、および「安全限界閾値以上且つ性能限界閾値未満」の場合に対しては、推進用モータの出力レベルに関わらず、「警報レベル3」が設定されている。また、浮上用モータの出力レベルが「性能限界異常且つ正常限界未満」の場合であって、推進用モータの出力レベルが「安全限界未満」または「推進力喪失」の場合に対しては、「警報レベル3」が設定されている。さらに、浮上用モータの出力レベルが「性能限界閾値以上且つ正常限界未満」であり、且つ、推進用モータの出力レベルが「安全限界閾値以上且つ性能限界閾値未満」または「性能限界閾値以上且つ正常限界未満」である場合に対しては、「警報レベル2」が設定されている。
 ここで、浮上用モータの出力レベルが「性能限界閾値以上且つ正常限界未満」であり、且つ、推進用モータの出力レベルが「安全限界閾値以上且つ性能限界閾値未満」の場合に対して「警報レベル2」が設定されているのに対して、出力レベルが逆となる場合、すなわち、浮上用モータの出力レベルが「安全限界閾値以上且つ性能限界閾値未満」であり、且つ、推進用モータの出力レベルが「性能限界閾値以上且つ正常限界未満」の場合に対しては、「警報レベル3」が設定されている。これは、第1実施形態において述べた回転翼の機能の違いによるものである。すなわち、浮上用モータは、電動航空機20の揚力を得るために用いられる回転翼を回転駆動させる機能を有する。このため、故障等による出力低下は、推進用モータの出力低下に比べて電動航空機20の飛行に大きな影響を与える。そこで、本実施形態では、同じ出力レベルであっても、浮上用モータがかかる出力レベルになった場合に対して高い警報レベル(警報レベル3)が設定されるように予め警報テーブルが設定されている。
D2.警報レベル設定処理:
 図11に示す第4実施形態の警報レベル設定処理は、第1実施形態の警報レベル設定処理と同様に、警報レベルを設定するための処理であり、電動統括ECU110の電源がオンすると実行される。異常判定部131は、各モータシステム10をそれぞれ対象として異常診断を実行し、異常を検出した否かを判定する(ステップS205)。異常を検出しないと判定された場合(ステップS205:NO)、処理はステップS105に戻る。このステップS205は、上述の第1実施形態の警報レベル設定処理のステップS105と同じであるので、その詳細な説明を省略する。
 異常を検出したと判定された場合(ステップS205:YES)、出力率算出部133は、浮上用モータの合計モータ出力を特定する(ステップS210)。また、出力率算出部133は、推進用モータの合計モータ出力を特定する(ステップS215)。
 警報レベル設定部132は、ステップS210により特定された浮上用モータの合計モータ出力と、ステップS215により特定された推進用モータの合計モータ出力とに基づき、図10に示す警報レベルマップ135を参照して、警報レベルを設定する(ステップS220)。したがって、例えば、浮上用モータの出力レベル(合計モータ出力)が安全限界閾値以上且つ性能限界閾値未満の出力レベルに該当し、推進用モータの出力レベル(合計モータ出力)が性能限界閾値以上且つ正常限界閾値未満の出力レベルに該当する場合には、「警報レベル3」が設定されることとなる。ステップS220の完了後、処理はステップS205に戻る。
 以上説明した第4実施形態の異常警報システム130aは、第1実施形態の異常警報システム130と同様な効果を奏する。加えて、浮上用モータの合計モータ出力と、推進用モータの合計モータ出力の組み合わせに対して、予め警報レベルが設定されている警報レベルマップ135を参照して警報レベルを設定するので、適切な警報レベルを簡易且つ短時間に設定できる。また、同じ出力レベルであっても、浮上用モータがかかる出力レベルになった場合には、推進用モータがかかる出力レベルになった場合に比べて、より高い警報レベル(警報レベル3)が設定されるので、電動航空機20の飛行により大きな影響を与える浮上用モータを含むモータシステム10の異常時に、より高い警報レベルを設定できる。
E.第5実施形態:
 第5実施形態の異常警報システム130の構成は、第1実施形態の異常警報システム130の構成と同じであるので、同一の構成には同一の符号を付し、その詳細な説明を省略する。また、第5実施形態の異常警報システム130が搭載される電動航空機は、図1に示す第1実施形態の電動航空機20と同じである。第5実施形態の異常警報システム130では、図3に示す警報レベル設定処理に加えて、図12に示す警報レベル調整処理が実行される点において、第1実施形態の異常警報システム130と異なる。警報レベル調整処理とは、警報レベル設定処理により設定された警報レベルを調整するための処理であり、警報レベル設定処理のステップS120、S130、S135のいずれかが完了すると実行される。
 図12に示すように、警報レベル設定部132は、警報レベル設定処理において異常と判定されたモータシステム(以下、「異常システム」と呼ぶ)に対応するモータは浮上用モータであるか否かを判定する(ステップS305)。異常システムに対応するモータが浮上用モータでないと判定された場合(ステップS305:NO)、警報レベル設定部132は警報レベルを維持する(ステップS310)。したがって、この場合、警報レベルは、警報レベル設定処理によって設定された警報レベルのままとなる。
 これに対して、異常システムに対応するモータが浮上用モータであると判定された場合(ステップS305:YES)、警報レベル設定部132は、該当の浮上用モータにより回転駆動される回転翼30は、主翼25に配置されているか否か、すなわち、2つの浮上用回転翼31f、31gのいずれかに該当するか否かを判定する(ステップS315)。
 該当の浮上用モータが回転駆動させる回転翼30は、主翼25に配置されていない、すなわち、浮上用回転翼31a~31eのいずれかに該当すると判定された場合(ステップS315:NO)、上述のステップS310が実行され、警報レベルは維持される。これに対して、該当の浮上用モータが回転駆動させる回転翼30は、主翼25に配置されている、すなわち、2つの浮上用回転翼31f、31gのいずれかに該当すると判定された場合(ステップS315:YES)、警報レベル設定部132は、警報レベルを1つ上げる(ステップS320)。上述のステップS310またはステップS320の完了後、警報レベル調整処理は終了する。なお、警報レベルが最大レベルの「警報レベル3」である場合には、かかるレベルを維持する。
 例えば、浮上用モータを含むモータシステム10の故障により推進力または揚力に影響がある(ステップS110:YES)と判定され、浮上用モータの合計モータ出力が第1閾値以上であり(ステップS115:NO)、且つ、推進用モータの合計モータ出力が第2閾値よりも小さい場合(ステップS125:YES)、警報レベル設定処理によれば、「警報レベル2」が設定される。しかし、故障したモータシステム10が主翼25に配置されている2つの浮上用回転翼31f、31gのいずれかを回転駆動させるシステムである場合には、警報レベルは、1つ上がって「警報レベル3」に調整(変更)されることとなる。これに対して、故障したモータシステム10が本体部22に配置されている5つの浮上用回転翼31a~31eのいずれかを回転駆動させるシステムである場合には、警報レベルは、「警報レベル2」のままである。
 このように、故障したモータシステム10が主翼25に配置されている2つの浮上用回転翼31f、31gのいずれかを回転駆動させるモータシステムである場合には、警報レベルを1つ上げるようにしている理由について説明する。主翼25に配置されている2つの浮上用回転翼31f、31gは、重心位置CMから遠い位置に存在しているため、これらを回転駆動させるモータシステム10が故障した場合には、他の5つの浮上用回転翼31a~31eが故障した場合に比べて、電動航空機20の姿勢が大きく変動して飛行安定性が低下し易い。そこで、故障したモータシステム10が主翼25に配置されている2つの浮上用回転翼31f、31gのいずれかを回転駆動させるモータシステムである場合には、警報レベルを1つ上げるようにして、迅速な対応を促すようにしている。
 以上説明した第5実施形態の異常警報システム130は、第1実施形態の異常警報システム130と同様な効果を奏する。加えて、警報レベル調整処理を実行して、故障したモータシステム10が主翼25に配置されている2つの浮上用回転翼31f、31gのいずれかを回転駆動させるシステムである場合には、警報レベルを1つ上げるようにしているので、故障が生じた場合に電動航空機20の姿勢が大きく変動して飛行安定性が低下し易いモータシステム10の故障時において、警報レベルを1つ上げて迅速な対応を促すことができる。
F.第6実施形態:
 第6実施形態の異常警報システム130は、警報レベル設定処理の具体的な手順において、第1実施形態の異常警報システム130と異なる。第6実施形態における異常警報システム130を含む電動航空機20の装置構成は、第1実施形態の電動航空機20と同じであるので、同一の構成には同一の符号を付し、その詳細な説明を省略する。
 第1実施形態では、警報レベルは警報レベル1~3の3つのレベルであった。これに対して第6実施形態では、警報レベルは、相対的に「低い警報レベル」と、相対的に「高い警報レベル」の2つのレベルである。これら2つのレベルの差は、第1実施形態と同様に、緊急性の差に相当する。しかし、かかる警報に基づき出力される警報自体、すなわち、UI部50に表示される警報メッセージ自体は、「高い警報レベル」と「低い警報レベル」とで共通している。また、第6実施形態では、警報出力部134は、異常診断の結果、同一のモータシステム10に対して閾値回数以上連続して異常であると診断された場合に、警報を出力する。そして、第6実施形態では、「高い警報レベル」に設定されている場合には、相対的に警報が出力され易くなり、「低い警報レベル」に設定されている場合には、相対的に警報が出力され難くなる。
 図13に示すように、異常判定部131は、各モータシステム10をそれぞれ対象として異常診断を実行し、異常を検出した否かを判定する(ステップS400)。異常を検出しないと判定された場合(ステップS400:NO)、処理はステップS400に戻る。このステップS400は、第1実施形態のステップS105と同じである。
 異常を検出したと判定された場合(ステップS400:YES)、警報レベル設定部132は、警報レベル設定処理において検出された異常システムに対応するモータは浮上用モータであるか否かを判定する(ステップS405)。このステップS405は、第5実施形態のステップS305と同じである。
 異常システムに対応するモータが浮上用モータでないと判定された場合(ステップS405:NO)、警報レベル設定部132は、警報出力の条件に用いられる「閾値回数」が初期値に設定された「低い警報レベル」に、警報レベルを設定する(ステップS410)。例えば、「閾値回数」として初期値の「4回」が設定される。
 異常システムに対応するモータが浮上用モータであると判定された場合(ステップS405:YES)、警報レベル設定部132は、該当の浮上用モータが回転駆動させる回転翼30は、主翼25に配置されているか否か、すなわち、2つの浮上用回転翼31f、31gのいずれかに該当するか否かを判定する(ステップS415)。このステップS415は、第5実施形態の警報レベル調整処理のステップS315と同様である。
 該当の浮上用モータが回転駆動させる回転翼30は、主翼25に配置されていない、すなわち、浮上用回転翼31a~31eのいずれかに該当すると判定された場合(ステップS415:NO)、上述のステップS410が実行され、警報出力の条件に用いられる「閾値回数」が初期値に設定された「低い警報レベル」に、警報レベルが設定される。
 これに対して、該当の浮上用モータが回転駆動させる回転翼30は、主翼25に配置されている、すなわち、2つの浮上用回転翼31f、31gのいずれかに該当すると判定された場合(ステップS415:YES)、警報レベル設定部132は、警報出力の条件に用いられる「閾値回数」を初期値に対して所定回数減少させた「高い警報レベル」に、警報レベルを設定する(ステップS420)。例えば、ステップS420では、閾値回数が「3」に設定される。上述のステップS410またはステップS420の完了後、処理はステップS400に戻る。
 例えば、浮上用モータを含むモータシステム10の故障が発生し、かかるモータシステム10が本体部22に配置されている5つの浮上用回転翼31a~31eのいずれかを回転駆動させるためのモータシステムである場合には、閾値回数は「4回」となり、警報が出力され難い。これに対して、故障したモータシステム10が主翼25に配置されている2つの浮上用回転翼31f、31gのいずれかを回転駆動させるモータシステムである場合には、閾値回数は「3回」となり、警報が出力され易い。
 このように、故障したモータシステム10が主翼25に配置されている2つの浮上用回転翼31f、31gのいずれかを回転駆動させるシステムである場合には、閾値回数を減少させて警報を出力され易くしているのは、第5実施形態において、故障したモータシステム10が主翼25に配置されている2つの浮上用回転翼31f、31gのいずれかを回転駆動させるモータシステムである場合には、警報レベルを1つ上げるようにしている理由と同様である。
 以上説明した第6実施形態の異常警報システム130は、第1実施形態の異常警報システム130と同様な効果を奏する。加えて、故障したモータシステム10が主翼25に配置されている2つの浮上用回転翼31f、31gのいずれかを回転駆動させるシステムである場合には、警報出力の条件で用いられる閾値回数を減少させるので、電動航空機20の姿勢が大きく変動して飛行安定性が低下し易いモータシステム10の故障時において、警報を出力され易くでき、迅速な対応を促すことができる。なお、第6実施形態では、出力率算出部133を省略してもよい。
G.第7実施形態:
 第7実施形態の異常警報システム130の構成は、第1実施形態の異常警報システム130の構成と同じであるので、同一の構成には同一の符号を付し、その詳細な説明を省略する。また、第7実施形態の異常警報システム130が搭載される電動航空機は、図1に示す第1実施形態の電動航空機20と同じである。第7実施形態の異常警報システム130では、図3に示す警報レベル設定処理に加えて、図14に示す警報レベル調整処理が実行される点において、第1実施形態の異常警報システム130と異なる。警報レベル調整処理とは、警報レベル設定処理により設定された警報レベルを調整するための処理であり、警報レベル設定処理のステップS120、S130、S135のいずれかが完了すると実行される。
 図14に示すように、警報レベル設定部132は、警報レベルの前回設定から所定期間経過したか否かを判定する(ステップS505)。警報レベルの前回設定から所定期間経過していないと判定された場合(ステップS505:NO)、警報レベル設定部132は、警報レベルを維持する(ステップS510)。本実施形態において、ステップS505の「所定期間」は、3分間に設定されている。なお、3分間に限らず、任意の期間に設定されてもよい。
 これに対して、警報レベルの前回設定から所定期間経過したと判定された場合(ステップS505:YES)、警報レベル設定部132は、警報レベルを1つ上げる(ステップS515)。ステップS510またはステップS515の完了後、処理はステップS505に戻る。警報レベルの前回設定から所定期間経過した場合、かかる所定期間の飛行により、故障による飛行への影響がより大きくなるおそれ、換言すると、対応の迅速性がより求められるおそれがある。例えば、各種センサ13~15の故障により、最適な動作点にてモータ11を回転させることができなくなり、モータ11における消費電力が増大して、電源70(二次電池)のSOC(State Of Charge)の減少速度が大きくなった場合、所定期間経過した場合には、SOCがより低下して飛行が継続できなくなるおそれがある。そこで、このような場合には、警報レベルを1つ上げて、より緊急性の高い警報を出力するようにしている。なお、第7実施形態の警報レベル調整処理は、繰り返し実行されるため、異常状態が改善されない限り、所定時間経過ごとに警報レベルが1つずつ上がることとなる。したがって、より長い間異常状態が継続するほど、より高い警報レベルが設定されることとなる。
 以上説明した第7実施形態の異常警報システム130は、第1実施形態の異常警報システム130と同様な効果を奏する。加えて、警報レベルの前回設定から所定期間経過した場合に警報レベルを1つ上げるので、かかる所定期間の飛行により、故障による飛行への影響がより大きくなって対応の迅速性がより求められる場合において、より緊急性の高い警報を出力できる。
H.他の実施形態:
 (H1)各実施形態において、出力率算出部133が算出する出力率は、要求モータ出力に対するモータシステムの合計モータ出力の割合を意味していたが、本開示はこれに限定されない。電動航空機20の飛行に必要な最低限の回転翼30(モータ11)の個数に対する、出力可能な正常な回転翼30(モータ11)の個数の割合を意味してもよい。かかる構成においても、各実施形態と同様な効果を奏する。
 (H2)第5実施形態では、故障したモータシステム10が主翼25に配置されているか否かに応じて警報レベルを1つ上げるか否かが決定されていたが、本開示はこれに限定されない。電動航空機20の重心位置CMから遠い位置に配置されている浮上用回転翼に対応するモータシステム10についての警報レベルを、重心位置CMに近い位置に配置されている浮上用回転翼に対応するモータシステム10についての警報レベルよりも高いレベルとして設定する任意の構成を採用してもよい。具体的には、本体部22に配置されている5つの浮上用回転翼31a~31eのうち、重心位置CMに配置されている浮上用回転翼31aが故障した場合に設定される警報レベルよりも、他の4つの浮上用回転翼31b~31eが故障した場合に設定される警報レベルを高く設定するようにしてもよい。かかる構成においては、重心位置CMから遠い位置に配置されている浮上用回転翼に対応するモータシステム10についての警報レベルを、重心位置CMに近い位置に配置されている浮上用回転翼に対応するモータシステム10についての警報レベルよりも高いレベルとして設定するので、重心位置CMから遠い位置に配置されているために回転が異常となった場合の電動航空機20の飛行や姿勢に大きな影響を与える回転翼に対応するモータシステム10の異常に対して、より高いレベルの警報レベルを設定できる。
 (H3)第6実施形態では、故障したモータシステム10が主翼25に配置されているか否かに応じて回転閾値を増加させるか否かが決定されていたが、本開示はこれに限定されない。電動航空機20の重心位置CMから遠い位置に配置されている浮上用回転翼に対応するモータシステム10についての閾値回数を、重心位置CMに近い位置に配置されている浮上用回転翼に対応するモータシステム10についての閾値回数よりもより減少させる構成を採用してもよい。かかる構成によれば、第6実施形態と同様な効果を奏する。加えて、重心位置CMからより遠くに配置されているために故障が生じた場合に電動航空機20の姿勢が大きく変動して飛行安定性がより低下し易いモータシステム10の故障時において、警報をより出力され易くでき、迅速な対応を的確な程度にて促すことができる。
 (H4)第7実施形態の警報レベル調整処理では、ステップS505において、警報レベルの前回設定から所定期間経過したか否かが判定されていたが、本開示はこれに限定されない。例えば、最初に異常と判定されてからの経過時間に対して、予め警報レベルを上げる閾値時間を設けておく。具体的には、警報レベルを1つ上げる閾値時間、警報レベルをさらに1つ上げる閾値時間をそれぞれ設定しておく。そして、ステップS505では、「経過時間が閾値時間に達したか否か」を判定するようにしてもよい。
 (H5)各実施形態において、警報レベルの数は、2つまたは3つであったが、本開示はこれらに限定されない。2以上の任意の数であってもよい。例えば、第1実施形態においては、警報レベルの数を4つ以上とし、浮上用モータの合計モータ出力および推進用モータの合計モータ出力に対してそれぞれ複数の閾値を設け、かかる閾値により特定される複数の出力レベルごとに、互いに異なる警報レベルを設定するようにしてもよい。同様に、第3実施形態においても、合計モータ出力に対して、3つ以上の閾値を設けてもよい。第4実施形態では、例えば、図15に示す警報レベルマップ135aように、浮上用モータの出力レベルについて「浮上力喪失」という新たなレベルを設け、かかる出力レベルに該当する場合には、推進用モータの出力レベルに関わらず、いずれも警報レベル3よりも高い「警報レベル4」を設定するようにしてもよい。かかる構成においては、警報レベル設定部132は、推進機能と浮上機能とのうちの浮上機能が損なわれた場合(すなわち、浮上力が喪失した場合)に、推進機能が損なわれた場合(すなわち、推進力が喪失した場合)に比べて、警報レベルとしてより高いレベルを設定することとなる。かかる構成においては、推進機能と浮上機能とのうちの浮上機能のみが損なわれた場合に、推進機能のみが損なわれた場合に比べて、警報レベルとしてより高いレベルを設定するので、電動航空機の安全性が大きく損なわれることを抑制できる。かかる構成においては、出力率算出部133は、本開示における出力率算出部および機能損失特定部に相当する。なお、かかる構成および第4実施形態では、警報レベル設定部132は、推進機能と浮上機能とのうちのいずれも損なわれない場合には、推進機能と浮上機能とのうちの少なくとも一方が損なわれた場合に比べて、警報レベルとして同じレベル又はより低いレベルを設定することとなる。これにより、推進機能と浮上機能がいずれも損なわれないにも関わらず緊急の対応が行われてしまい、電動航空機の乗員の利便性を損なうことを抑制できる。
 (H6)警報レベル調整処理における警報レベルの調整は、主翼25に配置されているか否か(第5実施形態)、警報レベルの前回設定から所定期間経過したか否か(第6実施形態)に応じて実施されていたが、本開示はこれに限定されない。例えば、電源70の充電残量(電池SOC)、空港までの距離、高度、乗員数、機体重量、機体タイプなどの各パラメータに応じて、警報レベル設定処理にて設定された警報レベルを調整するようにしてもよい。具体的には、電源70の充電残量が少ないほど、空港までの距離が長いほど、高度が高いほど、乗員数が多いほど、機体重量が大きいほど、警報レベルを上げるようにしてもよい。また、機体タイプに関しては、例えば、翼が無いタイプは有るタイプに比べて警報レベルを上げる、モータ数が少ないタイプは多いタイプに比べて警報レベルを上げる、などの調整を行ってもよい。また、これらの各パラメータをそれぞれ点数化し、全パラメータの点数の合計値に応じて警報レベルを設定するようにしてもよい。さらに、これらのパラメータに代えて、上述の出力率、制御性への影響度をそれぞれ点数化し、それらの合計値に応じて警報レベルを設定するようにしてもよい。なお、かかる構成においては、モータ11の冷却性能の高低も点数化して合計値に加えるようにしてもよい。冷却性能は、例えば、冷却媒体の温度を点数化し、より高い温度であるほどより点数が高い(警報レベルが高く設定され易い)構成としてもよい。
 (H7)各実施形態における異常警報システム130、130aは、あくまでも一例であり、様々に変更可能である。例えば、異常警報システム130、130aは、電動航空機20、20aに搭載されずに、例えば、地上の管制塔などに設置されたサーバ装置により構成されてもよい。かかる構成においては、通信装置60を介した通信により各モータシステム10の制御、各モータシステム10の異常診断、警報レベル設定処理、警報レベル調整処理が行われてもよい。各実施形態において、モータシステム10は、モータ11を含んでいたが、モータ11を含まない構成としてもよい。また、第4および第6実施形態を除く他の実施形態の警報レベル設定処理のステップS110では、予め「推進力または揚力に影響がある異常内容」が列挙されたマップが用いられていたが、かかるマップに代えて、または、かかるマップに加えて、「推進力または揚力に影響がない異常内容」が列挙されたマップが用いられてもよい。また、モータ11をモータジェネレータにより構成してもよい。
 (H8)本開示に記載の異常警報システム130、130a及びそれら手法は、コンピュータプログラムにより具体化された一つ乃至は複数の機能を実行するようにプログラムされたプロセッサ及びメモリを構成することによって提供された専用コンピュータにより、実現されてもよい。あるいは、本開示に記載の異常警報システム130、130a及びそれら手法は、一つ以上の専用ハードウエア論理回路によってプロセッサを構成することによって提供された専用コンピュータにより、実現されてもよい。もしくは、本開示に記載の異常警報システム130、130a及びそれら手法は、一つ乃至は複数の機能を実行するようにプログラムされたプロセッサ及びメモリと一つ以上のハードウエア論理回路によって構成されたプロセッサとの組み合わせにより構成された一つ以上の専用コンピュータにより、実現されてもよい。また、コンピュータプログラムは、コンピュータにより実行されるインストラクションとして、コンピュータ読み取り可能な非遷移有形記録媒体に記憶されていてもよい。
 本開示は、上述の実施形態に限られるものではなく、その趣旨を逸脱しない範囲において種々の構成で実現することができる。例えば、発明の概要の欄に記載した形態中の技術的特徴に対応する各実施形態中の技術的特徴は、上述の課題の一部又は全部を解決するために、あるいは、上述の効果の一部又は全部を達成するために、適宜、差し替えや、組み合わせを行うことが可能である。また、その技術的特徴が本明細書中に必須なものとして説明されていなければ、適宜、削除することが可能である。

Claims (9)

  1.  電動航空機(20)が有する複数の回転翼(30)にそれぞれ対応して用いられるモータ(11)を駆動させる複数のモータシステム(10)の異常警報を行う異常警報システム(130、130a)であって、
     前記複数のモータシステムのうち、異常であるモータシステムを判定する異常判定部(131)と、
     前記異常判定部により異常と判定されたモータシステムに対応する、前記回転翼の前記電動航空機における位置情報と、前記回転翼の機能と、のうちの少なくとも一方に応じて、前記異常を警報する警報レベルを設定する警報レベル設定部(132)と、
     を備える、異常警報システム。
  2.  請求項1に記載の異常警報システムにおいて、
     前記電動航空機の飛行時に必要な要求モータ出力に対する、前記複数のモータシステムによる合計モータ出力の割合である出力率を算出する出力率算出部(133)を、さらに備え、
     前記警報レベル設定部は、さらに前記出力率にも応じて、前記警報レベルを設定する、異常警報システム。
  3.  請求項1または請求項2に記載の異常警報システムにおいて、
     前記電動航空機は、前記複数の回転翼として、前記電動航空機における浮上機能を発揮する浮上用回転翼(31a-31g)と、前記電動航空機における推進機能を発揮する推進用回転翼(32a-32b)との2種類の回転翼を有する、異常警報システム。
  4.  請求項3に記載の異常警報システムにおいて、
     異常であるモータシステムが判定された状態において、前記浮上機能と前記推進機能とがそれぞれ損なわれたか否かを特定する機能損失特定部(133)を、さらに備え、
     前記警報レベル設定部は、前記浮上機能と前記推進機能とのうちのいずれも損なわれない場合には、前記浮上機能と前記推進機能とのうちの少なくとも一方が損なわれた場合に比べて、前記警報レベルとして同じレベル又はより低いレベルを設定する、異常警報システム。
  5.  請求項4に記載の異常警報システムにおいて、
     前記警報レベル設定部は、前記推進機能と前記浮上機能とのうちの前記浮上機能が損なわれた場合に、前記推進機能が損なわれた場合に比べて、前記警報レベルとしてより高いレベルを設定する、異常警報システム。
  6.  請求項5に記載の異常警報システムにおいて、
     前記複数の回転翼には、複数の前記浮上用回転翼が含まれ、
     前記警報レベル設定部は、複数の前記浮上用回転翼のうち、前記電動航空機の機体重心(CM)から遠い位置に配置されている前記浮上用回転翼に対応する前記モータシステムについての前記警報レベルを、前記機体重心に近い位置に配置されている前記浮上用回転翼に対応する前記モータシステムについての前記警報レベルよりも高いレベルとして設定する、異常警報システム。
  7.  請求項1から請求項6までのいずれか一項に記載の異常警報システムにおいて、
     前記異常判定部は、単一の前記モータシステムについて予め定められた閾値回数連続して異常判定された場合に、該モータシステムを異常であるモータシステムとして判定し、
     前記警報レベル設定部は、前記位置情報と前記機能とのうちの少なくとも一方に応じて、前記閾値回数を決定することにより、前記警報レベルを設定し、
     より高い前記警報レベルは、より少ない前記閾値回数が設定されたレベルであり、
     より低い前記警報レベルは、より多い前記閾値回数が設定されたレベルである、異常警報システム。
  8.  請求項1から請求項7までのいずれか一項に記載の異常警報システムにおいて、
     前記警報レベル設定部は、
      同一の前記モータシステムについて異常と判定される期間に応じて、前記警報レベルを変化させ、
      前記期間が長い場合には、前記期間が短い場合に比べて前記警報レベルとしてより高いレベルを設定する、異常警報システム。
  9.  電動航空機(20)が有する複数の回転翼(30)にそれぞれ対応して用いられるモータ(11)を駆動させる複数のモータシステム(10)の異常を警報する警報レベルを設定する警報レベル設定方法であって、
     前記複数のモータシステムのうち、異常であるモータシステムを判定する判定工程と、
     前記判定工程により異常と判定されたモータシステムに対応する、前記回転翼の前記電動航空機における位置情報と、前記回転翼の機能と、のうちの少なくとも一方に応じて、前記警報レベルを設定する設定工程と、
     を備える、警報レベル設定方法。
PCT/JP2021/022990 2020-07-09 2021-06-17 異常警報システムおよび警報レベル設定方法 WO2022009638A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP21836849.6A EP4180326A4 (en) 2020-07-09 2021-06-17 ANOMALY WARNING SYSTEM AND METHOD FOR ADJUSTING THE WARNING LEVEL
CN202180047845.4A CN115836005A (zh) 2020-07-09 2021-06-17 异常警报系统和警报等级设定方法
US17/979,863 US12065262B2 (en) 2020-07-09 2022-11-03 Abnormality warning system and warning level setting method
US18/765,393 US20240359820A1 (en) 2020-07-09 2024-07-08 Abnormality warning system and warning level setting method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020118320A JP7439666B2 (ja) 2020-07-09 2020-07-09 異常警報システムおよび警報レベル設定方法
JP2020-118320 2020-07-09

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/979,863 Continuation US12065262B2 (en) 2020-07-09 2022-11-03 Abnormality warning system and warning level setting method

Publications (1)

Publication Number Publication Date
WO2022009638A1 true WO2022009638A1 (ja) 2022-01-13

Family

ID=79552971

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/022990 WO2022009638A1 (ja) 2020-07-09 2021-06-17 異常警報システムおよび警報レベル設定方法

Country Status (5)

Country Link
US (2) US12065262B2 (ja)
EP (1) EP4180326A4 (ja)
JP (1) JP7439666B2 (ja)
CN (1) CN115836005A (ja)
WO (1) WO2022009638A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220388400A1 (en) * 2020-02-18 2022-12-08 Denso Corporation Abnormality diagnosis system and abnormality diagnosis method
WO2023140032A1 (ja) * 2022-01-19 2023-07-27 株式会社デンソー 制御装置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB202104306D0 (en) * 2021-03-26 2021-05-12 Rolls Royce Plc Computer-implemented methods for indicating damage to an aircraft
US20220363404A1 (en) * 2021-05-14 2022-11-17 Beta Air, Llc Systems and methods for monitoring health of an electric vertical take-off and landing vehicle
US20230219686A1 (en) * 2022-01-11 2023-07-13 Rodrigo Daniel Zelayeta Vertical takeoff and landing tandem wing aircraft that is propelled by a system of electric ducted fans
US11958630B1 (en) * 2022-10-14 2024-04-16 Beta Air, Llc Apparatus and method for powering an auxiliary components on an aircraft
CN117141726A (zh) * 2023-09-14 2023-12-01 山西彗星智能科技有限责任公司 一种航空混动能源系统用保护方法与系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016088111A (ja) * 2014-10-29 2016-05-23 ヤンマー株式会社 ヘリコプター
US20170066531A1 (en) * 2014-03-13 2017-03-09 Endurant Systems, Llc Uav configurations and battery augmentation for uav internal combustion engines, and associated systems and methods
JP2017047736A (ja) * 2015-08-31 2017-03-09 国立大学法人 鹿児島大学 無人回転翼機及びプログラム
US20190241275A1 (en) * 2016-10-21 2019-08-08 SZ DJI Technology Co., Ltd. Troubleshooting method, aircraft, server and control device

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2783030B2 (ja) 1991-12-27 1998-08-06 住友金属工業株式会社 鉄道車両の車体振動制御系の診断方法
JP2005049178A (ja) 2003-07-31 2005-02-24 Toenec Corp 電動機駆動系における故障検出診断システム
JP2009078745A (ja) 2007-09-27 2009-04-16 Japan Aerospace Exploration Agency 電動垂直離着陸機
US7902999B2 (en) * 2008-04-18 2011-03-08 Honeywell International Inc. Gas turbine engine rotor lock prevention system and method
JP2009270492A (ja) 2008-05-08 2009-11-19 Denso Corp 気筒休止システムの故障診断装置。
EP2226766A3 (en) * 2009-03-02 2014-06-11 Sikorsky Aircraft Corporation Rotor system health monitoring using shaft load measurements and virtual monitoring of loads
FR2946023B1 (fr) 2009-06-02 2014-11-28 Airbus France Procede et dispositif de traitement de pannes
US10023318B2 (en) * 2014-07-17 2018-07-17 Japan Aerospace Exploration Agency Motorized aircraft and method for determining output and number of electric motors in motorized aircraft
US10139493B1 (en) * 2016-07-06 2018-11-27 Near Earth Autonomy, Inc. Rotor safety system
WO2018234523A1 (de) * 2017-06-22 2018-12-27 Zf Friedrichshafen Ag Verfahren zur erkennung von schäden eines rotors eines luftfahrzeugs
US20200164995A1 (en) * 2017-06-30 2020-05-28 A^3 By Airbus Llc Fault-tolerant electrical systems for aircraft

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170066531A1 (en) * 2014-03-13 2017-03-09 Endurant Systems, Llc Uav configurations and battery augmentation for uav internal combustion engines, and associated systems and methods
JP2016088111A (ja) * 2014-10-29 2016-05-23 ヤンマー株式会社 ヘリコプター
JP2017047736A (ja) * 2015-08-31 2017-03-09 国立大学法人 鹿児島大学 無人回転翼機及びプログラム
US20190241275A1 (en) * 2016-10-21 2019-08-08 SZ DJI Technology Co., Ltd. Troubleshooting method, aircraft, server and control device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4180326A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220388400A1 (en) * 2020-02-18 2022-12-08 Denso Corporation Abnormality diagnosis system and abnormality diagnosis method
US11872898B2 (en) * 2020-02-18 2024-01-16 Denso Corporation Abnormality diagnosis system and abnormality diagnosis method
WO2023140032A1 (ja) * 2022-01-19 2023-07-27 株式会社デンソー 制御装置

Also Published As

Publication number Publication date
US12065262B2 (en) 2024-08-20
EP4180326A1 (en) 2023-05-17
EP4180326A4 (en) 2023-12-20
JP7439666B2 (ja) 2024-02-28
US20230049397A1 (en) 2023-02-16
CN115836005A (zh) 2023-03-21
JP2022015468A (ja) 2022-01-21
US20240359820A1 (en) 2024-10-31

Similar Documents

Publication Publication Date Title
WO2022009638A1 (ja) 異常警報システムおよび警報レベル設定方法
US12068710B2 (en) Abnormality diagnosis system
WO2016067489A1 (ja) ヘリコプター
WO2021166839A1 (ja) 異常診断システムおよび異常診断方法
US11846953B2 (en) System and method for controlling differential thrust of a blown lift aircraft
US20080114505A1 (en) Vertical take-off and landing aircraft and vertical take-off and landing aircraft control method
AU2021214406A1 (en) Aircraft with tilting fan assemblies
JP7452026B2 (ja) モータ制御システム
JP2021030931A (ja) 電動垂直離着陸機および制御装置
JP7342523B2 (ja) 電動垂直離着陸機および電動垂直離着陸機の制御装置
WO2023140032A1 (ja) 制御装置
JP7533438B2 (ja) 電動垂直離着陸機の制御装置およびコンピュータプログラム
US20240367808A1 (en) Control device
WO2024080060A1 (ja) 制御装置、運航管理システム、および制御プログラム
US20240257655A1 (en) Flight control device and non-transitory computer readable medium storing flight control program
WO2023218909A1 (ja) 電動航空機及び異常検出システム
WO2023234043A1 (ja) 飛行制御装置、飛行制御プログラム及び飛行制御方法
CN117270568A (zh) 无人机、无人机飞行控制方法及装置
JP2021024433A (ja) 航空機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21836849

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021836849

Country of ref document: EP

Effective date: 20230209

NENP Non-entry into the national phase

Ref country code: DE