WO2022009597A1 - 成形体領域の検査プログラム、成形体領域の検査方法、成形体領域の検査装置 - Google Patents

成形体領域の検査プログラム、成形体領域の検査方法、成形体領域の検査装置 Download PDF

Info

Publication number
WO2022009597A1
WO2022009597A1 PCT/JP2021/022002 JP2021022002W WO2022009597A1 WO 2022009597 A1 WO2022009597 A1 WO 2022009597A1 JP 2021022002 W JP2021022002 W JP 2021022002W WO 2022009597 A1 WO2022009597 A1 WO 2022009597A1
Authority
WO
WIPO (PCT)
Prior art keywords
molded body
body region
information
mechanical property
composite material
Prior art date
Application number
PCT/JP2021/022002
Other languages
English (en)
French (fr)
Inventor
香織 谷上
千緒 峰尾
千博 今中
章太 永田
Original Assignee
帝人株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 帝人株式会社 filed Critical 帝人株式会社
Priority to CN202180048963.7A priority Critical patent/CN115803168A/zh
Priority to JP2022534967A priority patent/JP7358648B2/ja
Priority to US18/008,339 priority patent/US20230280311A1/en
Priority to EP21838178.8A priority patent/EP4180197A4/en
Publication of WO2022009597A1 publication Critical patent/WO2022009597A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/043Analysing solids in the interior, e.g. by shear waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/06Visualisation of the interior, e.g. acoustic microscopy
    • G01N29/0654Imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/44Processing the detected response signal, e.g. electronic circuits specially adapted therefor
    • G01N29/4472Mathematical theories or simulation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/44Processing the detected response signal, e.g. electronic circuits specially adapted therefor
    • G01N29/4481Neural networks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/08Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts of continuous length, e.g. cords, rovings, mats, fabrics, strands or yarns
    • B29K2105/10Cords, strands or rovings, e.g. oriented cords, strands or rovings
    • B29K2105/101Oriented
    • B29K2105/105Oriented uni directionally
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/023Solids
    • G01N2291/0231Composite or layered materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/02827Elastic parameters, strength or force
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/26Scanned objects
    • G01N2291/269Various geometry objects
    • G01N2291/2698Other discrete objects, e.g. bricks

Definitions

  • the present invention relates to an inspection program, an inspection method, and an inspection device for a fiber-reinforced molded body region.
  • the molded body reinforced with carbon fibers can reinforce the vulnerability of the matrix resin with high-strength fibers. Therefore, it is widely used as a lightweight and highly physical material.
  • non-destructive inspection is performed to inspect defective products at the time of manufacturing the composite material.
  • the following inspection is performed in the step of impregnating carbon fibers with a thermoplastic resin.
  • the ultrasonic wave transmitter and the receiver having directivity are opposed to each other at a certain distance from the object to be inspected (composite material in which the carbon fiber is impregnated with the thermoplastic resin).
  • an ultrasonic wave is emitted from one of the ultrasonic wave transmitters, the object to be inspected receives the ultrasonic wave by the opposite receiver, the propagation time of the ultrasonic wave is measured by a signal processing circuit, and the inspected object is inspected by these.
  • Non-contact detection of internal defects in objects By converting the inspection data using ultrasonic waves into an image, it is possible to make a pass / fail judgment of the object to be inspected based on the image.
  • Patent Documents 2 and 3 disclose a device that automatically performs a highly accurate search in order to efficiently sort blood and feathers in the production process of processed foods.
  • the sorting work of the composite material in the non-destructive inspection described in Patent Document 1 relies on the visual inspection of the obtained image. Therefore, it is difficult to grasp the state of the composite material in detail. In particular, in the pass / fail judgment performed by visually observing the image, it is difficult to set an objective evaluation standard, and it is difficult to determine what is used to calculate the pass / fail standard of the material.
  • the food inspection system described in Patent Documents 2 and 3 is a device for a human to search for the position of a hard bone, and is different from the technique for inspecting a molded product.
  • This food inspection system merely substitutes a neural network for what a human can judge whether an image or an object to be measured is good or bad.
  • the present invention is a molded body region capable of estimating the mechanical properties of a molded body region obtained by molding a composite material with a mold and using it for evaluation of the molded body region without measuring the mechanical properties. It is an object of the present invention to provide an inspection program, an inspection method, and an inspection device.
  • the mechanical property information of the first fiber-reinforced first molded body region is machine-learned so that the mechanical property information is unknown.
  • the projected area of the composite material is S1
  • the projected area of the portion corresponding to each of the first molded body region and the second molded body region in the molding die cavity of the molding die is S2.
  • the value obtained by the calculation of S1 / S2) ⁇ 100 is defined as the charge rate
  • the first molded body region and the second molded body region are each combined so that the charge ratio is 10% or more and 500% or less. It is obtained by molding a material.
  • the mechanical property information and the non-destructive inspection information of the fiber-reinforced first molded body region are machine-learned, so that the mechanical property information is unknown.
  • the first molded body region and the second molded body region are each obtained by molding a plate-shaped composite material with a molding die, and the projected area of the composite material is determined.
  • S1 be
  • S2 be the projected area of the portion corresponding to each of the first molded body region and the second molded body region in the molding die cavity of the molding die, and it can be obtained by the calculation of (S1 / S2) ⁇ 100.
  • the value is taken as a charge rate, and the first molded body region and the second molded body region are obtained by molding the composite material so that the charge ratio is 10% or more and 500% or less, respectively. ..
  • the inspection device for the molded body region of one aspect of the present invention is a model storage unit that stores a mechanical property estimation model generated by machine learning based on the mechanical property information and the non-destructive inspection information of the fiber-reinforced first molded body region.
  • the mechanical property estimation model estimates the mechanical property information of the second molded body region by inputting the non-destructive inspection information of the fiber-reinforced second molded body region whose mechanical property information is unknown.
  • the first molded body region and the second molded body region are obtained by molding a plate-shaped composite material with a molding die, respectively, and the projected area of the composite material is S1.
  • S2 be the projected area of the portion corresponding to each of the first molded body region and the second molded body region in the molding die cavity of the molding die, and the value obtained by the calculation of (S1 / S2) ⁇ 100.
  • the first molded body region and the second molded body region are obtained by molding the composite material so that the charge ratio is 10% or more and 500% or less, respectively.
  • the processor acquires the non-destructive inspection information of the second molded body region, inputs the non-destructive inspection information into the mechanical property estimation model, and mechanically physical properties of the second molded body region from the mechanical property estimation model. Information is acquired and output is performed based on the relevant machine property information.
  • the present invention it is possible to estimate the mechanical properties of the molded body region only from the non-destructive inspection information and use it for the evaluation of the molded body region without measuring the mechanical properties. According to the present invention, it is possible to instantly infer mechanical property information with high accuracy, which cannot be inferred from non-destructive inspection information no matter how hard a person tries. As a result, it is possible to reduce waste loss in the production of the molded product including the molded product region, and to provide a high-quality molded product at low cost.
  • the figure which shows the configuration example of the inspection system. Flow chart of learning process.
  • the figure which shows the example of the neural network which outputs three reaction values.
  • the figure which shows the arithmetic processing between the units of a neural network. Flow chart of guessing process. Distribution of identification surface and reaction value when RBF is used as the activation function. Distribution of discriminant surface and reaction value when the sigmoid function is used as the activation function.
  • the schematic diagram which shows an example of the method of molding a single composite material M by the molding die shown in FIG. The plan view of the fixed mold and the composite material M shown in FIG. 11 as seen in the direction D1.
  • the schematic diagram which shows the state which the composite material M was molded by the molding die shown in FIG. The schematic diagram which shows the example which heats a composite material M, performs a preliminary shaping, and then arranges it in a fixed mold.
  • the schematic diagram which shows the state which molded the composite material from the state of FIG. The schematic diagram for demonstrating the relationship between the charge rate and the flow distance of a composite material.
  • the inspection system of the present embodiment is a molded body region (second molded body) which is a region obtained by molding a fiber-reinforced composite material having a predetermined shape (for example, a plate shape) whose mechanical property information is unknown with a mold.
  • the area) is used as the object to be inspected, and the mechanical property information of the second molded body area is estimated without actual measurement.
  • the mechanical property information of the molded body region is information indicating the mechanical physical properties of the molded body region, and is, for example, information on fracture or elasticity such as strength of the molded body region.
  • information on fracture strength such as tensile strength or bending strength, and information on elastic modulus related to each of fracture strength, compressive strength, shear strength, etc. can be exemplified.
  • the information regarding the elastic modulus may be the elastic modulus (for example, tensile elastic modulus or bending elastic modulus) itself, or the rank when the elastic modulus (for example, tensile elastic modulus or bending elastic modulus) is ranked (hereinafter, machine). It may be described as a physical property rank).
  • the elastic modulus information includes information indicating that the elastic modulus (or its rank) corresponds to a defective product, information indicating that the elastic modulus (or its rank) corresponds to a non-defective product, and elastic modulus (or its rank). It is advisable to include more information indicating that it was difficult to guess.
  • the information on the fracture strength may be the fracture strength (for example, tensile strength or yield strength) itself, or the rank when the fracture strength (for example, tensile strength or yield strength) is ranked (hereinafter referred to as the mechanical property rank). (Description) may be used.
  • the information on the breaking strength includes information indicating that the breaking strength (or its rank) corresponds to a defective product, information indicating that the breaking strength (or its rank) corresponds to a good product, and breaking strength (or its rank). It may be better to include more information indicating that it was difficult to guess.
  • the computer included in the inspection system acquires the non-destructive inspection information of the second molded body region, and inputs this non-destructive inspection information into the mechanical property estimation model that is generated in advance and stored in the model storage unit. , The mechanical property information of the second molded body region is estimated by this mechanical property estimation model, and the output is performed based on the estimation result.
  • information for example, mechanical property rank, information that it is a good product or a defective product, information that it is difficult to guess, etc.
  • the printer is used. For example, printing information.
  • Non-destructive inspection information is information obtained by non-destructively inspecting the internal state of the molded body region with radiation, infrared rays, ultrasonic waves, or the like.
  • the non-destructive inspection information may be an image of inspection using vibration or sound, or may be numerical data.
  • an image for example, an image such as a radiographic image, an infrared image, or an ultrasonic image can be exemplified.
  • an ultrasonic image will be described as an example, but the present invention is not limited thereto.
  • the data of the fiber-reinforced molded body region (first molded body region) in which the data of the machine physical property information and the non-destructive inspection information are known is machine-learned (learned with supervision or learning without supervision). It is a model that outputs machine physical property information by inputting non-destructive inspection information generated by (including deep learning).
  • the mechanical property estimation model for example, a neural network, a support vector machine, or the like is used.
  • the computer of the inspection system constitutes the inspection device.
  • This computer includes a storage unit including a processor, a hard disk device or a device capable of storing information such as an SSD (Solid State Drive), and a RAM (Random Access Memory) and a ROM (Read Only Memory).
  • this processor acquires the non-destructive inspection information of the molded body area of the inspected object, inputs the acquired non-destructive inspection information into the mechanical property estimation model, and estimates the mechanical physical characteristics. Processing such as acquisition of mechanical property information from the model and output based on the acquired mechanical property information is performed.
  • Non-destructive inspection information for the part area usually indicates whether there are defects, voids, or foreign objects inside the part area, and if so, what degree of abundance and how much. Used to judge. However, even if a large number of defects, voids, or foreign substances are present inside the molded body region, the mechanical properties may be good depending on the distribution state of the defects, voids, or foreign substances. In such a case, if the non-destructive inspection information is visually checked and it is determined that the product is defective because there are many defects, voids, or foreign substances, the molded product region that should have been a non-defective product should be discarded. This will reduce production efficiency. On the other hand, the reverse is also possible. That is, even if the non-destructive inspection information is visually confirmed and it is determined that the product is a good product because there are few defects, voids, or foreign substances, the mechanical properties may be in a state corresponding to a defective product.
  • the present inventors have found that there is a correlation between the non-destructive inspection information and the machine physical property information, and a large amount of actual measurement data of the non-destructive inspection information and the machine physical property information are obtained.
  • machine learning a model such as a neural network or a support vector machine, we succeeded in inferring the mechanical property information of the molded body region with high accuracy from the non-destructive inspection information of the molded body region. It has not been conventionally considered to obtain mechanical property information from non-destructive inspection information. Therefore, it has not been easy for a person skilled in the art to construct a machine learning model that outputs machine physical property information by inputting non-destructive inspection information.
  • the type of the reinforcing fiber used in the present invention can be appropriately selected depending on the intended use of the molded body region a (corresponding to the second molded body region whose mechanical property information is unknown) which is the object to be inspected. Yes, and is not particularly limited.
  • As the reinforcing fiber either an inorganic fiber or an organic fiber can be preferably used.
  • the inorganic fiber examples include carbon fiber, activated carbon fiber, graphite fiber, glass fiber, tungsten carbide fiber, silicon carbide fiber (silicon carbide fiber), ceramics fiber, alumina fiber, natural mineral fiber (genbu rock fiber, etc.), and boron fiber. , Boron nitride fiber, boron carbide fiber, metal fiber and the like.
  • the carbon fiber is generally polyacrylonitrile (PAN) -based carbon fiber, petroleum / coal pitch-based carbon fiber, rayon-based carbon fiber, cellulose-based carbon fiber, lignin-based carbon fiber, and phenol-based fiber.
  • PAN polyacrylonitrile
  • Carbon fibers, gas phase growth type carbon fibers and the like are known, but in the present invention, any of these carbon fibers can be preferably used.
  • the form of the reinforcing fiber is not particularly limited, but the continuous fiber described by the present inventors as a specific example will be described below.
  • the present invention is not limited to continuous fibers.
  • the continuous fiber means a reinforcing fiber in which a bundle of reinforcing fibers is aligned in a continuous state without cutting the reinforcing fiber into a short fiber state.
  • continuous fibers are preferably fibers having a length of 1 m or more, and can be used by impregnating woven fabrics such as woven fabrics and knitted fabrics with resin by hand lay-up or the like, or as continuous fibers. It is sometimes used as a prepreg impregnated with uncured resin.
  • the molded body region a is reinforced with reinforcing fibers.
  • the present invention is not limited to the molded body region a described below.
  • the molded body region a is a molded body after molding of a plate-shaped composite material, and may be a molded body using a thermoplastic resin or a molded body using a thermosetting prepreg. Is also good.
  • a prepreg is a material for producing a molded body, in which continuous carbon fibers are arranged in one direction to form a sheet, or a base material made of carbon fibers such as carbon fiber woven fabric is impregnated with a thermosetting resin. It is a molding intermediate material that is impregnated with a part of a material or a thermosetting resin and the remaining part is arranged on at least one surface.
  • the molded body region a is preferably a unidirectional material.
  • the unidirectional material means a material in which continuous reinforcing fibers having a length of 100 mm or more are arranged in one direction inside the molded body region a.
  • a plurality of continuously reinforcing fibers may be laminated.
  • the molded body region a is a unidirectional material and the molded body uses a thermosetting prepreg, the influence of the fiber orientation on the mechanical properties is small. Therefore, it is possible to improve the accuracy of estimating the mechanical property information by the model described later.
  • Df Density of reinforcing fibers (mg / mm 3 )
  • Dm Matrix resin density (mg / mm 3 )
  • Dz Density of other components (mg / mm 3 )
  • Wf Mass ratio of reinforcing fibers (%)
  • Wm Mass ratio of matrix resin (%)
  • Wz Mass ratio of other components (%)
  • the porosity Vr is more preferably 5% or less, further preferably 3% or less. When the porosity is within the range, the accuracy of the mechanical property prediction of the present invention is improved.
  • the molded body region a can be prepared as follows.
  • Material-Reinforcing fiber Carbon fiber "Tenax (registered trademark)" STS40-24K (tensile strength 4,300 MPa, tensile elastic modulus 240 GPa, number of filaments 24,000, fineness 1,600 tex, elongation 1.8%, density 1 .78g / cm 3 , manufactured by Teijin Limited -Base resin: Thermosetting resin composition containing epoxy resin as the main component
  • the unidirectional prepreg was prepared by the hot melt method as follows. First, the thermosetting resin composition was applied onto a release paper using a coater to prepare a resin film. Next, the carbon fiber bundles are sent out from the creel, passed through a comb, the pitches between the carbon fiber bundles are aligned, and then the fibers are widened through the opening bar to form a sheet having a fiber grain of 100 g / m 2 per unit area. Aligned in one direction so as to be. Then, the resin film was laminated on both sides of the carbon fiber, heated and pressed to impregnate the thermosetting resin composition, and wound with a winder to prepare a one-way prepreg. The resin content of the obtained unidirectional prepreg was 30 wt. %.
  • the present inventors measured the tensile elastic modulus and the tensile strength of the molded body region a as described below.
  • the CFRP molded body was processed into a test piece shape (length 250 mm ⁇ width 15 mm) by a water jet, and a tab made of a glass fiber reinforced resin-based composite material was adhered.
  • a tensile test was performed in the 0 ° direction at a test speed of 2 mm / min using a universal testing machine, and the tensile elastic modulus and tensile strength of the CFRP molded body (molded body region a) were calculated. ..
  • Non-destructive inspection information The non-destructive inspection method used to generate non-destructive inspection information is not particularly limited, and any inspection method can detect internal defects, voids, or foreign substances in the molded body region a without destroying the molded body region a. good. Radiation, ultrasonic waves, infrared rays, etc. are used for non-destructive inspection.
  • the non-destructive inspection information the one obtained by converting the inspection data into an image is preferably used, and it is particularly preferable that the converted image is an ultrasonic flaw detection inspection image. Further, it may be an image of an inspection using vibration or sound.
  • the method of imaging the inspection data is not particularly limited. In many cases, when you purchase an ultrasound examination device, you will be provided with imaging software along with a computer terminal for data processing.
  • a typical non-destructive inspection method for a material is an inspection method using ultrasonic waves.
  • a directional ultrasonic wave transmitter and a receiver are opposed to each other on both sides of a molded body region a to be inspected at a certain distance, and pulse-modulated ultrasonic waves are emitted from one of the transmitters.
  • the ultrasonic wave is received by the opposite receiver, and the propagation time (echo intensity) of the ultrasonic wave is measured by the signal processing circuit.
  • the propagation time echo intensity
  • the CFRP molded body as the molded body region a is measured using an ultrasonic flaw detector (SDS-3600: manufactured by Japan Clout Kramer Co., Ltd.), and an ultrasonic flaw detection inspection image evaluating the internal defects of the CFRP molded body is obtained. ..
  • the molded body region a which is the object to be inspected, is subjected to ultrasonic inspection using ultrasonic waves having a frequency of 600 kHz after arranging an ultrasonic probe.
  • the transmitting probe is 30 mm vertically from the upper surface of the inspected object
  • the receiving probe is 30 mm vertically away from the lower surface of the inspected object, vertically from the shaft of the transmitting probe. Arrange both probes so that the shaft of the receiving probe comes.
  • the received echo intensity at a certain depth in the ultrasonic probe is brightly modulated to determine the position on the object to be inspected ( A C scan was used in which 2D) was displayed as Cartesian coordinates.
  • a C scan was used in which 2D was displayed as Cartesian coordinates.
  • the difference in the propagation behavior of the ultrasonic wave is shown by the difference in color and shading.
  • FIG. 8 A specifically obtained C-scan image is shown in FIG.
  • the color of the C-scan image shown in FIG. 8 can be changed according to the propagation behavior of ultrasonic waves and the echo intensity, but the image used for learning described below and the estimation of the mechanical property information of the inspected object can be used. All the images used shall be acquired under the same conditions.
  • the data converted into a format that can be input to the input layer of the neural network will be referred to as input data.
  • the non-destructive inspection information sample of the sample of the molded body region a (hereinafter referred to as the molded body region sample b, corresponding to the first molded body region) and the molded body.
  • the mechanical property information (hereinafter referred to as the mechanical property information sample) actually measured from the region sample b is acquired and used as the second input data, and the neural network is learned using the second input data.
  • the non-destructive inspection information of the molded body region a is input to the neural network as the first input data, and the mechanical property information of the molded body region a is obtained based on the reaction value in the output layer from the neural network. Infer. Based on the inferred mechanical property information, good products and defective products in the molded body region a may be sorted. Since the inspection system performs effective learning and highly accurate estimation, non-destructive inspection information (preferably ultrasonic flaw detection images) optimized for learning processing and estimation processing can be used. For example, various image processing may be performed on the ultrasonic flaw detection image so that the ultrasonic flaw detection image can be easily detected.
  • non-destructive inspection information preferably ultrasonic flaw detection images
  • image processing may be performed on the ultrasonic flaw detection image so that the ultrasonic flaw detection image can be easily detected.
  • the inspection device 1 performs image processing, generation of input data, learning of a neural network, estimation of mechanical property information using a neural network, and the like.
  • the inspection device 1 is an information processing device such as a computer that includes one or a plurality of processors composed of a CPU (Central Processing Unit), a storage unit, and a communication unit, and operates an OS (operating system) and an application. be.
  • the inspection device 1 may be a physical computer, a virtual machine (VM), a container, or a combination thereof. More specifically, the structure of the processor is an electric circuit in which circuit elements such as semiconductor elements are combined.
  • the inspection device 1 learns from an image storage unit 11 that stores non-destructive inspection information and non-destructive inspection information samples, a processing unit 12 that processes non-destructive inspection information and non-destructive inspection information samples, and an input data generation unit 13. It includes a data storage unit 14, a learning unit 15, a model storage unit 16, a guessing unit 17, a display unit 18, and an operation unit 19.
  • the processing unit 12, the input data generation unit 13, the learning unit 15, and the guessing unit 17 are functional blocks realized by the processor of the inspection device 1 executing a program, respectively.
  • This program includes an inspection program for the part area.
  • the image storage unit 11 is preferably a storage area for storing ultrasonic flaw detection images.
  • the image storage unit 11 may be a volatile memory such as SRAM or DRAM, or a non-volatile memory such as NAND, MRAM, or FRAM (registered trademark).
  • the processing unit 12 preferably performs image processing on the ultrasonic flaw detection image, and stores the image after the image processing in the image storage unit 11.
  • image processing an image is generated in which the brightness of each color of red, green, and blue (RGB) in the pixels in the image is extracted, and the brightness of green (G) is subtracted from the brightness of red (R) in each pixel. Examples include the generation of the image, the generation of the image in which only the red component is extracted after the conversion to the HSV color space, and the like, but other types of image processing may be performed.
  • the processing unit 12 may also perform image enlargement, reduction, cropping, noise removal, rotation, inversion, color depth change, contrast adjustment, brightness adjustment, sharpness adjustment, color correction, and the like.
  • the input data generation unit 13 generates input data to be input to the input layer of the neural network from the non-destructive inspection information or the non-destructive inspection information sample stored in the image storage unit 11. For example, when performing the learning described later using the ultrasonic flaw detection image, it is preferable to cut out a desired portion from the ultrasonic flaw detection image or remove the excess portion to obtain the second input data.
  • the input data generation unit 13 stores the input data in the learning data storage unit 14.
  • the input data is transferred to the estimation unit 17.
  • the input data generation unit 13 may generate input data using, for example, an image (non-destructive inspection information sample) taken by an external device or system.
  • the learning data storage unit 14 is a storage area for storing a plurality of input data used for learning a neural network.
  • the input data stored in the learning data storage unit 14 is used as the learning data of the learning unit 15.
  • the input data (second input data) used as the training data is stored in association with the mechanical property information sample obtained by measuring from the molded body region sample b which is the acquisition source of the input data.
  • the mechanical property information sample in addition to at least one of the mechanical property rank and the mechanical property value (for example, elasticity) of the molded body region sample b, the information indicating that the mechanical property value corresponds to a good product and the mechanical property value are not present. It is preferable that information indicating that the product corresponds to a non-defective product, information indicating that it is difficult to estimate the mechanical property value, and the like are included.
  • the mapping of the mechanical property information sample to the second input data obtained from the molded body region sample b is the mechanical property value of the molded body region sample b (for example,).
  • Elastic modulus can be directly input by the user by operating the operation unit 19. After inputting, the inspection device 1 classifies the mechanical property values into the mechanical property ranks. For example, the tensile modulus can be divided into the following mechanical property ranks.
  • Mechanical property rank 1 Tensile elastic modulus of the molded body region is 30 GPa or more Mechanical property rank 2: Tensile elastic modulus of the molded body region is 25 to 30 GPa Mechanical property rank 3: The tensile elastic modulus of the molded body region is 25 GPa or less.
  • the mechanical characteristic rank may be output in units of 3 GPa or 1 GPa instead of every 5 GPa as described above. If the mechanical property information sample corresponding to the second input data obtained from the molded body region sample b is known, the mechanical property rank is automatically labeled by a program or script instead of user operation. May be good. The labeling of the mechanical property rank may be performed before the conversion of the non-destructive inspection information sample obtained from the molded body region sample b into the second input data, or after the conversion into the second input data.
  • the learning unit 15 learns the neural network using the input data (second input data) stored in the learning data storage unit 14.
  • the learning unit 15 stores the learned neural network in the model storage unit 16.
  • the learning unit 15 can learn a neural network having three layers, for example, an input layer, a hidden layer, and an output layer. By learning the three-layer neural network, it is possible to secure the real-time response performance at the time of inspection of the molded body region a.
  • the number of units included in each of the input layer, the hidden layer, and the output layer is not particularly limited. The number of units included in each layer can be determined based on the required response performance, estimation target, discrimination performance, and the like.
  • the three-layer neural network is an example, and does not prevent the use of a multi-layer neural network with a larger number of layers.
  • various neural networks such as a convolutional neural network can be used.
  • the model storage unit 16 is a storage area for storing the neural network learned by the learning unit 15.
  • a plurality of neural networks may be stored in the model storage unit 16 according to the type of the molded body region a to be inspected. Since the model storage unit 16 is set to be referenceable from the estimation unit 17, the estimation unit 17 inspects the molded body region a (guessing of mechanical property information) using the neural network stored in the model storage unit 16. It can be carried out.
  • the model storage unit 16 may be a volatile memory such as RAM or DRAM, or a non-volatile memory such as NAND, MRAM or FRAM (registered trademark).
  • the model storage unit 16 may be located in a place accessible by the processor of the inspection device 1, and may not be built in the inspection device 1. For example, the model storage unit 16 may be a storage externally attached to the inspection device 1 or a network storage connected to a network accessible from the inspection device 1.
  • the guessing unit 17 estimates the mechanical property information of the molded body region a by using the neural network stored in the model storage unit 16.
  • the guessing unit 17 estimates the mechanical property rank of the molded body region a based on the reaction value output from the unit of the output layer.
  • Examples of the unit of the output layer include a unit having a mechanical property rank 1, a unit having a mechanical property rank 2, a unit having a mechanical property rank 3, a unit having difficulty in guessing, and the like, but other types of units may be prepared. ..
  • the mechanical property rank of the molded body region a may be estimated by using the difference or ratio of the reaction values of a plurality of units.
  • the display unit 18 is a display for displaying an image or text.
  • the display unit 18 may display the captured image, the image after image processing, and the estimation result by the estimation unit 17.
  • the operation unit 19 is a device that provides an operation means of the inspection device 1 by the user.
  • the operation unit 19 is, for example, a keyboard, a mouse, a button, a switch, a voice recognition device, and the like, but is not limited thereto.
  • FIG. 2 is a flowchart of the learning process.
  • the processor of the inspection device 1 acquires a non-destructive information sample of each of the plurality of molded body region samples b (step S201).
  • the non-destructive inspection information sample here includes those with a high or low mechanical property rank.
  • a non-destructive inspection information sample whose mechanical property information is difficult to guess may be prepared.
  • the non-destructive inspection information sample is an image, the image in which the molded body region sample b is not sufficiently captured, and the molded body region due to improper brightness adjustment by lighting or exposure. An image in which the sample b is not clearly shown may be mentioned.
  • the processor of the inspection device 1 generates the second input data from each acquired non-destructive inspection information sample (step S201). Next, the processor of the inspection device 1 acquires each mechanical property information sample of the plurality of molded body region samples b, and stores the acquired mechanical property information sample in association with each second input data (step). S203).
  • step S203 may be performed before step S202. In this case, even after each non-destructive inspection information sample is converted into the second input data, the mechanical property information sample associated with the non-destructive inspection information sample shall be inherited by the second input data. good.
  • the processor of the inspection device 1 starts learning by the neural network based on the second input data (step S204).
  • FIG. 3 shows an example of a neural network that outputs three reaction values.
  • the neural network 301 in FIG. 3 is a neural network having three layers of an input layer 302, a hidden layer 303, and an output layer 304.
  • the output layer 304 includes units 311, 312, and 313 for estimating the mechanical property rank.
  • the number of units 311, 312, and 313 is three in FIG. 3, but the number of units can be increased or decreased as appropriate according to the rank of mechanical properties.
  • step S204 when the second input data is input to the neural network, the mechanical property information sample associated with the second input data or information close to the sample is output from the neural network with high probability.
  • Each parameter and structure of the neural network is adjusted, such as the number of layers 303, the number of units included in each of the input layer 302 and the hidden layer 303, and the coupling coefficient between the units included in each of the input layer 302 and the hidden layer 303. To. In this way, the mechanical property estimation model is generated and stored in the model storage unit 16.
  • FIG. 4 shows the arithmetic processing between the units of the neural network.
  • FIG. 4 shows a unit of the m-1 layer and a unit of the mth layer.
  • the reaction value a j m of the unit number j of the mth layer can be obtained by using the following formula (2).
  • W jk m is a weight and indicates the strength of the bond between the units.
  • b j m is a bias.
  • the following equation (3) is a normal distribution function.
  • is an average value and indicates the center position of the bell-shaped peak drawn by the normal distribution function.
  • is the standard deviation and indicates the width of the peak. Since the value of equation (3) depends only on the distance from the center of the peak, it can be said that the Gaussian function (normal distribution function) is a kind of radial basis function (RBF).
  • the Gaussian function (normal distribution function) is an example, and other RBFs may be used.
  • the following equation (4) is a sigmoid function.
  • the sigmoid function asymptotically approaches 1.0 at the limit of x ⁇ ⁇ . Also, it asymptotically approaches 0.0 at the limit of x ⁇ - ⁇ . That is, the sigmoid function takes a value in the range (0.0, 1.0).
  • the reaction value of the unit 311 is 1, the reaction value of the unit 312 is 0, and the reaction value of the unit 313 is 0 in the teacher signal. ..
  • the reaction value of the unit 311 becomes 0, the reaction value of the unit 312 becomes 1, and the reaction value of the unit 313 becomes 0 in the teacher signal.
  • the adjustment of the weight W jk can be performed by using the back propagation method (backpropagation method).
  • back propagation method the weight W jk is adjusted in order from the output layer side so that the deviation between the output of the neural network 310 and the teacher signal becomes small.
  • the following equation (5) shows an improved backpropagation method.
  • Equation (7) shows the value adjustment process performed for the parameter ⁇ .
  • t is the number of learnings
  • is the learning constant
  • ⁇ k is the generalization error
  • O j is the reaction value of the unit number j
  • is the sensitivity constant
  • is the vibration constant.
  • ⁇ W jk , ⁇ jk , and ⁇ jk indicate the respective correction amounts of the weights W jk, ⁇ , and ⁇ .
  • the weight Wjk and parameter adjustment processing have been described by taking the improved backpropagation method as an example, but a general pack propagation method may be used instead.
  • the improved backpropagation method includes both general backpropagation methods.
  • the weight W jk and the number of parameter adjustments by the pack propagation method may be adjusted once or multiple times, and are not particularly limited. In general, it is possible to determine whether or not to repeatedly adjust the weight W jk and parameters by the backpropagation method based on the estimation accuracy of the mechanical property rank when using the test data. Repeated adjustment of the weight W jk and parameters may improve the estimation accuracy of the mechanical property rank.
  • the values of the weight W jk , the parameters ⁇ , and ⁇ can be determined in step S204. Once the values of the weights W jk , the parameters ⁇ , and ⁇ are determined, it becomes possible to perform the guessing process using the neural network.
  • FIG. 5 is a flowchart for explaining the estimation operation of the mechanical property information by the inspection device 1 that operates according to the inspection program of the molded body region.
  • the processor of the inspection device 1 acquires the non-destructive inspection information of the molded body region a (preferably captures an ultrasonic flaw detection inspection image) (step S501).
  • the ultrasonic flaw detection image is used as non-destructive inspection information, there may be a step of performing image processing on the ultrasonic flaw detection image between steps S501 and S502.
  • the processor of the inspection device 1 generates the first input data from the non-destructive inspection information (step S502).
  • the first input data has N elements equal to the number of units in the input layer of the neural network, and is in a format that can be input to the neural network.
  • the processor of the inspection device 1 inputs the first input data to the neural network (step S503).
  • the first input data is transmitted in the order of the input layer, the hidden layer, and the output layer.
  • the processor of the inspection device 1 estimates the mechanical property rank based on the reaction value in the output layer of the neural network (step S504).
  • FIG. 6 shows an example of the discrimination space when the Gaussian function is used as the activation function.
  • the identification curved surface that divides the identification space into regions for each rank of mechanical properties becomes a closed curved surface. Further, by adding an index in the height direction for each category of the mechanical property rank, the region related to each category can be localized in the identification space.
  • FIG. 7 shows an example of the discrimination space when the sigmoid function is used as the activation function.
  • the activation function is a sigmoid function
  • the identification surface is an open surface.
  • the above-mentioned neural network learning process corresponds to the process of learning the identification surface in the identification space.
  • the mechanical property rank 311 and the mechanical property rank 312 are shown in the regions in FIGS. 6 and 7, there may be a distribution of a plurality of three or more mechanical property ranks.
  • the inspection system of the present embodiment it is possible to infer the mechanical property information of the molded body region a from the non-destructive inspection information (preferably ultrasonic flaw detection image) of the molded body region a.
  • a neural network is used to determine an image or an object to be measured by a human being. It's just a substitute. That is, in these inventions, since the inspection target is a photographed food, a human can easily determine the presence or absence of a foreign substance or the like in the food.
  • the mechanical property information is a numerical value or a rank equivalent thereto
  • the non-destructive inspection information preferably an ultrasonic flaw detection image
  • the mechanical property information cannot be inferred from this.
  • the inspection device 1 of the present embodiment it is possible to instantly infer mechanical property information that cannot be inferred by a skilled worker no matter how hard he or she does, without actually measuring it.
  • the plate-shaped composite material before being molded by the molding die is collectively referred to as a composite material MX.
  • the composite material MX the composite material M, the composite material Ms, the composite material M2, and the composite material M3 are exemplified.
  • the composite material MX preferably contains discontinuous fibers.
  • the composite material MX is particularly preferably a sheet molding compound in which a chopped fiber bundle mat is impregnated with a thermosetting resin as a matrix resin.
  • the molding method of the composite material MX is not particularly limited, and press molding (compression molding), autoclave molding, vacuum molding and the like are used, but press molding is preferable.
  • FIG. 9 is a side view schematically showing an example of a molding die used for press molding of the composite material MX.
  • FIG. 10 is a schematic plan view of the fixed mold 20 in the molding mold shown in FIG. 9 as viewed from the movable mold 30 side.
  • the molding die shown in FIG. 9 includes a fixed die 20 and a movable die 30 movably configured with respect to the fixed die 20.
  • a recess 22 is formed on the upper surface 21 of the fixed mold 20 on the movable mold 30 side.
  • the recess 22 is a region partitioned by a bottom surface 22A and a pair of side surfaces 22B connecting the bottom surface 22A and the top surface 21.
  • the movable mold 30 is configured to be movable in a direction D including a direction D1 approaching the fixed mold 20 and a direction D2 away from the fixed mold 20.
  • the direction D1 is a direction in which pressure is applied to the composite material MX when molding the composite material MX. If the molding method is vacuum molding, the direction D1 is the suction direction.
  • the molded cavity (indicated by the diagonal line in the figure) is formed between the movable mold 30 and the fixed mold 20. Space SP) is formed.
  • a molded cavity is a space that forms a molded body.
  • the space SP shown in FIG. 9 the space forming the molded body that is trimmed and finally remains becomes the molding die cavity.
  • the portion shown by the broken line is trimmed to obtain a final product.
  • the portion of the space SP excluding the range shown by the broken line becomes the molding cavity.
  • FIG. 11 is a schematic diagram showing an example of a method of molding a single composite material M by the molding die shown in FIG. 9.
  • the plate-shaped composite material M is arranged on the upper surface 21 of the fixed mold 20 so as to cover the recess 22.
  • FIG. 12 is a schematic plan view of the fixed mold 20 and the composite material M shown in FIG. 11 as viewed in the direction D1.
  • the composite material M flows by the pressure from the movable mold 30 and is deformed along the shape of the space SP, and is molded as shown in FIG. Body MD1 is obtained.
  • the entire molded body region obtained by molding the composite material M constitutes the molded body MD1.
  • the molding method is cold press
  • the composite material M is heated before pressing to perform preliminary shaping.
  • the preformed composite material M is placed on the upper surface and the recess of the fixed mold 20.
  • the movable mold 30 is moved in the direction D1 from the state shown in FIG. 14, the preformed composite material M flows by the pressure from the movable mold 30 and is deformed along the shape of the space SP.
  • the molded body MD1 is obtained.
  • the composite material MX that is the source of the molded body may be one or a plurality.
  • another plate-shaped composite material Ms may be placed on the composite material M before molding.
  • FIG. 15 when a plurality of preformed plate-shaped composite materials (composite material M2 and composite material M3) are arranged on the fixed mold 20 so as not to overlap each other, and then molding is performed. There is also.
  • the movable mold 30 is moved in the direction D1 from the state shown in FIG. 15, the preformed composite material M2 and the composite material M3 flow by the pressure from the movable mold 30 and are deformed along the shape of the space SP.
  • a molded body MD2 composed of a molded body region MA2 obtained by molding the composite material M2 and a molded body region MA3 obtained by molding the composite material M3 is obtained.
  • the molded body region MA2 obtained by molding the composite material M2 and the molded body region MA3 obtained by molding the composite material M3 each form a part of the molded body MD2. It is composed.
  • the molded body is composed of a plurality of composite material MXs and is molded in a state where the plurality of composite material MXs are stacked.
  • the molded body is considered to be composed of a single molded body region.
  • the projected area S1 is the sum of the flat area of the composite material M and the flat area of the region of the composite material Ms that does not overlap with the composite material M.
  • the molded body is composed of a plurality of composite material MXs and that the plurality of composite material MXs are arranged so as not to overlap each other before molding.
  • the flat area of each composite material MX when the plurality of composite material MXs is defined as the projected area S1.
  • the flat area of the composite material M2 when the composite material M2 before the preliminary shaping is viewed in the thickness direction is the projected area S1.
  • the flat area of the composite material M3 when the composite material M3 before the preliminary shaping is viewed in the thickness direction is the projected area S1.
  • the molded body formed by the molding die cavity is composed of a single molded body region obtained by molding a single or a plurality of overlapping composite material MXs. In this case, the entire mold cavity is the portion corresponding to this single molded body region.
  • the flat area of this portion when viewed in the direction D1 is defined as the projected area S2.
  • the flat area of the space SP when viewed in the direction D1 is the projected area S2.
  • the molded body formed by the molding die cavity is composed of a plurality of molded body regions obtained by molding a plurality of composite material MXs arranged so as not to overlap each other.
  • the portion of the mold cavity in which each molded body region exists is the portion corresponding to each molded body region.
  • the flat area when each of these portions is viewed in the direction D1 is defined as the projected area S2.
  • the projected area S2 is the flat area of the space SP when the portion where the molded body region MA2 exists is viewed in the direction D1.
  • the projected area S2 is the flat area of the space SP when the portion where the molded body region MA3 exists is viewed in the direction D1.
  • the first charge rate is calculated with the flat area of the composite material M2 as the projected area S1 and the flat area of the portion of the molding cavity where the molded body region MA2 exists as the projected area S2. Further, the flat area of the composite material M3 is defined as the projected area S1, and the flat area of the portion of the molding cavity where the molded body region MA3 exists is defined as the projected area S2, and the second charge rate is calculated.
  • This charge rate means that the larger the value, the smaller the flow distance of the composite material MX during molding.
  • a case where only the molded body region MA2 shown in FIG. 16 is manufactured as a product by using the molding die shown in FIG. 9 is taken as an example.
  • the flow distance of the composite material M2 becomes longer than the example shown in FIG. Become.
  • the composite material MX contains discontinuous fibers and the molded body region obtained by molding the composite material MX is fiber-reinforced by the discontinuous fibers, the composite material MX is flowed to form a molded body region. Is generated, the fibers are oriented at the same time as the flow. Therefore, when the flow distance of the composite material MX is short, the flow at the time of molding and the control of the fiber orientation become easy, and the mechanical property quality of the molded body region at the time of mass production is stable.
  • the above-mentioned machine physical property estimation model can be generated by using the training data obtained in a state where the mechanical property quality of the molded body region does not vary as much as possible, so that the estimation accuracy of the mechanical property property can be improved.
  • the first molded body region that is the measurement source of the training data (non-destructive inspection information and machine physical property information) to be learned by the machine physical property estimation model, and the target for which the machine physical property estimation is performed by this machine physical property estimation model.
  • the second molded body region it is preferable to apply the one obtained by molding the composite material MX with a molding die so that the charge rate is 10% or more and 500% or less, respectively.
  • the structures of the first molded body region and the second molded body region include, for example, the molded body MD1 shown in FIG. 13, the molded body region MA2 shown in FIG. 16, the molded body region MA3 shown in FIG. , The molded body MD2 shown in FIG. 16 can be adopted.
  • the charge rate obtained for the composite material M2 and the molded body region MA2 and the composite material M3 and the molded body are obtained. It is sufficient that either one of the charge rate obtained for the region MA3 is 10% or more and 500% or less.
  • the lower limit of the charge rate is 10%.
  • the upper limit of the charge rate can be determined according to the use of the product manufactured by the molding die. If this upper limit is set to 500%, products suitable for many uses can be targeted.
  • the charge rate is preferably 50% or more, more preferably 70% or more. It is more preferably 80% or more.
  • the reinforcing fiber is a discontinuous fiber and it is desired to improve the mechanical strength in a specific direction, it is preferable to set the charge rate to 10% or more and less than 50% because anisotropy is likely to occur in the molded body region.
  • the fiber orientations of the composite material MX and the molded body region of the composite material MX after molding are similar.
  • isotropic property is ensured even in the molded body region if the flow during molding is small (in other words, if the charge rate is large). Therefore, the isotropic properties of the first molded product region and the second molded product region are preferably 1.5 or less, and more preferably 1.3 or less.
  • the coefficient of variation (CV) of each of the first molded body region and the second molded body region is preferably 10% or less.
  • the coefficient of variation (CV) of the basis weight is 10% or less, the physical properties of each of the first molded body region and the second molded body region are made uniform. Therefore, it becomes easy to estimate the mechanical properties by the mechanical property estimation model.
  • the fiber length of the reinforcing fiber bundle is Li
  • the single yarn diameter of the reinforcing fibers constituting the reinforcing fiber bundle is Di
  • the single yarn contained in the reinforcing fiber bundle is used.
  • the number of fibers is Ni
  • Li is 1 mm or more and 100 mm or less
  • Li / (Ni ⁇ Di 2 ) is 8.0 ⁇ 10 1 or more and 3.3 ⁇ 10 3 or less.
  • the volume ratio of the reinforcing fiber bundle A is preferably 50 to 100 vol%, more preferably 70 to 90 vol%, based on the total amount of the reinforcing fibers contained in the molded product.
  • Image storage unit 12 Processing unit 13: Input data generation unit 14: Learning data storage unit 15: Learning unit 16: Model storage unit 17: Guessing unit 18: Display unit 19: Operation unit 301: Neural network 302: Input layer 303: Hidden layer 304: Output layer 311, 312, 313 Units

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Acoustics & Sound (AREA)
  • Artificial Intelligence (AREA)
  • Evolutionary Computation (AREA)
  • Algebra (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Physics (AREA)
  • Pure & Applied Mathematics (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

機械物性を測定することなく、成形体の機械物性を推測して成形体の評価に役立てることのできる検査装置を提供する。 検査装置は、強化繊維で強化され且つ機械物性情報及び非破壊検査情報が既知の第一成形体領域の当該機械物性情報及び当該非破壊検査情報に基づく機械学習によって生成された機械物性推測モデルであって、強化繊維で強化され且つ機械物性情報が未知の第二成形体領域の非破壊検査情報を入力として前記第二成形体領域の機械物性情報を推測する機械物性推測モデルを記憶する記憶部と、前記第二成形体領域の非破壊検査情報を取得し、当該非破壊検査情報を前記機械物性推測モデルに入力して、前記機械物性推測モデルから当該第二成形体領域の機械物性情報を取得し、当該機械物性情報に基づく出力を行う。

Description

成形体領域の検査プログラム、成形体領域の検査方法、成形体領域の検査装置
 本発明は、繊維強化された成形体領域の検査プログラム、検査方法、及び検査装置に関する。
 炭素繊維によって繊維補強された成形体は、マトリックス樹脂の脆弱性を強度の高い繊維によって補強することができる。このため、軽量、高物性の優れた材料として広く採用されている。
 従来、繊維強化された複合材料の生産工程では、複合材料の製造時の不良品を検査するための非破壊検査が行われている。例えば、特許文献1では、熱可塑性樹脂を炭素繊維へ含浸させる工程において、次のような検査が行われる。まず、被検査物(熱可塑性樹脂を炭素繊維へ含浸させた複合材料)に一定の距離を隔てて指向性を有する超音波送波器と受波器を対向させる。そして、一方の超音波送波器から超音波を発射し、被検査物をその対向した受波器で超音波を受け、信号処理回路によりその超音波の伝播時間を測定し、これらにより被検査物の内部欠陥を非接触で検出する。ここでの超音波を用いた検査のデータは画像に変換されることで、当該画像に基づき、被検査物の合否判定を行うことができる。
 特許文献2、3には、加工食品の生産工程で効率的に血合いや羽などの選別を行うため、高精度の検索を自動的に行う装置が開示されている。
日本国特開2019-158459号公報 国際公開第2019/151393号 国際公開第2019/151394号
 近年、原材料価格や人件費の高騰などもあり、高い品質を維持しながら生産コストを抑えることが課題となっており、繊維強化された複合材料を金型(成形型)にて成形して得られた領域である成形体領域に対し、低コスト且つ高精度な検査を実現することが求められている。
 特許文献1に記載の非破壊検査における複合材料の選別作業は、得られた画像の目視検査に頼っている。このため、複合材料の状態を詳細に把握することは難しい。特に、画像を目視して行う合否判定では、客観的な評価基準を設けるのが難しく、何をもって材料の合否基準を算出するのかが定まりにくい。
 また、特許文献2、3に記載の食品検査システムは、人間が硬骨の位置を探すための装置であり、成形体の検査を行う技術とは異なる。この食品検査システムは、あくまで画像や測定対象物の良否を人間が見れば判断できるものを、ニューラルネットワークに代替させているに過ぎない。
 本発明は、機械物性を測定することなく、複合材料を金型にて成形して得られた成形体領域の機械物性を推測してその成形体領域の評価に役立てることのできる成形体領域の検査プログラム、検査方法、及び検査装置を提供することを目的とする。
 上記目的は以下の各態様によって解決できる。
 本発明の一態様の成形体領域の検査プログラムは、繊維強化された第一成形体領域の機械物性情報及び非破壊検査情報を機械学習させることで、機械物性情報が未知の繊維強化された第二成形体領域の非破壊検査情報を入力として前記第二成形体領域の機械物性情報を推測する機械物性推測モデルを生成するステップと、前記第二成形体領域の非破壊検査情報を取得するステップと、前記取得した前記非破壊検査情報を前記機械物性推測モデルに入力して、前記機械物性推測モデルから前記第二成形体領域の機械物性情報を取得し、当該機械物性情報に基づく出力を行うステップと、をプロセッサに実行させる成形体領域の検査プログラムであり、前記第一成形体領域及び前記第二成形体領域は、それぞれ、板状の複合材料を成形型にて成形して得られたものであり、前記複合材料の投影面積をS1とし、前記成形型の成形型キャビティにおける、前記第一成形体領域及び前記第二成形体領域の各々に対応する部分の投影面積をS2とし、(S1/S2)×100の演算で得られる値をチャージ率とし、前記第一成形体領域及び前記第二成形体領域は、それぞれ、前記チャージ率が10%以上500%以下となるように前記複合材料を成形して得られたものである。
 本発明の一態様の成形体領域の検査方法は、繊維強化された第一成形体領域の機械物性情報及び非破壊検査情報を機械学習させることで、機械物性情報が未知の繊維強化された第二成形体領域の非破壊検査情報を入力として前記第二成形体領域の機械物性情報を推測する機械物性推測モデルを生成するステップと、前記第二成形体領域の非破壊検査情報を取得するステップと、前記取得した前記非破壊検査情報を前記機械物性推測モデルに入力して、前記機械物性推測モデルから前記第二成形体領域の機械物性情報を取得し、当該機械物性情報に基づく出力を行うステップと、を備え、前記第一成形体領域及び前記第二成形体領域は、それぞれ、板状の複合材料を成形型にて成形して得られたものであり、前記複合材料の投影面積をS1とし、前記成形型の成形型キャビティにおける、前記第一成形体領域及び前記第二成形体領域の各々に対応する部分の投影面積をS2とし、(S1/S2)×100の演算で得られる値をチャージ率とし、前記第一成形体領域及び前記第二成形体領域は、それぞれ、前記チャージ率が10%以上500%以下となるように前記複合材料を成形して得られたものである。
 本発明の一態様の成形体領域の検査装置は、繊維強化された第一成形体領域の機械物性情報及び非破壊検査情報に基づく機械学習によって生成された機械物性推測モデルを記憶するモデル記憶部にアクセス可能なプロセッサを備え、前記機械物性推測モデルは、機械物性情報が未知の繊維強化された第二成形体領域の非破壊検査情報を入力として前記第二成形体領域の機械物性情報を推測するものであり、前記第一成形体領域及び前記第二成形体領域は、それぞれ、板状の複合材料を成形型にて成形して得られたものであり、前記複合材料の投影面積をS1とし、前記成形型の成形型キャビティにおける、前記第一成形体領域及び前記第二成形体領域の各々に対応する部分の投影面積をS2とし、(S1/S2)×100の演算で得られる値をチャージ率とし、前記第一成形体領域及び前記第二成形体領域は、それぞれ、前記チャージ率が10%以上500%以下となるように前記複合材料を成形して得られたものであり、前記プロセッサは、前記第二成形体領域の非破壊検査情報を取得し、当該非破壊検査情報を前記機械物性推測モデルに入力して、前記機械物性推測モデルから当該第二成形体領域の機械物性情報を取得し、当該機械物性情報に基づく出力を行う。
 本発明によれば、機械物性を測定することなく、非破壊検査情報のみによって成形体領域の機械物性を推測して成形体領域の評価に役立てることができる。本発明によれば、非破壊検査情報からでは人がどのように頑張っても推測することが出来ない機械物性情報を、高い精度にて瞬時に推測することができる。これにより、成形体領域を含む成形体の生産における廃棄ロスを低減し、高品質な成形体を低コストで提供できる。
検査システムの構成例を示す図。 学習処理のフローチャート。 3つの反応値を出力するニューラルネットワークの例を示す図。 ニューラルネットワークのユニット間の演算処理を示す図。 推測処理のフローチャート。 活性化関数にRBFを使ったときの識別曲面と反応値の分布。 活性化関数にシグモイド関数を使ったときの識別曲面と反応値の分布。 超音波探傷検査画像を示す模式図。 複合材料MXのプレス成形に用いる成形型の一例を模式的に示した側面図。 図9に示す成形型における固定型を可動型側から見た平面模式図。 図9に示す成形型によって単一の複合材料Mを成形する方法の一例を示す模式図。 図11に示す固定型及び複合材料Mを方向D1に見た平面模式図。 図9に示す成形型によって複合材料Mを成形した状態を示す模式図。 複合材料Mを加熱して予備賦形を行ってから固定型に配置する例を示す模式図。 予備賦形された複数の板状の複合材料を互いに重ならないようにして固定型上に配置してから成形を行う例を示す模式図。 図15の状態から複合材料を成形した状態を示す模式図。 チャージ率と複合材料の流動距離との関係を説明するための模式図。
 以下に、本発明の一実施形態である検査装置を含む検査システムについて説明するが、本発明はこれに制限されるものではない。
[検査システムの概略]
 本実施形態の検査システムは、機械物性情報が未知の繊維強化された所定形状(例えば板状)の複合材料を金型にて成形して得られた領域である成形体領域(第二成形体領域)を被検査物とし、この第二成形体領域の機械物性情報を、実測することなく、推測するものである。
 成形体領域の機械物性情報とは、成形体領域の機械的な物性を示す情報であり、例えば、成形体領域の強度などの破壊又は弾性に関する情報である。機械物性情報としては、引張強度又は曲げ強度などの破壊強度に関する情報や、破壊強度、圧縮強度、又はせん断強度等のそれぞれに関連する弾性率に関する情報が例示できる。
 弾性率に関する情報は、弾性率(例えば引張弾性率又は曲げ弾性率)そのものであってもよいし、弾性率(例えば引張弾性率又は曲げ弾性率)をランク分けした場合のそのランク(以下、機械物性ランクと記載)であってもよい。弾性率に関する情報には、弾性率(又はそのランク)が不良品に該当することを示す情報、弾性率(又はそのランク)が良品に該当することを示す情報、弾性率(又はそのランク)が推測困難であったことを示す情報のいずれかが更に含まれるようにするとよい。
 破壊強度に関する情報は、破壊強度(例えば引張強度、又は降伏強度)そのものであってもよいし、破壊強度(例えば引張強度又は降伏強度)をランク分けした場合のそのランク(以下、機械物性ランクと記載)であってもよい。破壊強度に関する情報には、破壊強度(又はそのランク)が不良品に該当することを示す情報、破壊強度(又はそのランク)が良品に該当することを示す情報、破壊強度(又はそのランク)が推測困難であったことを示す情報のいずれかが更に含まれるようにするとよい。
 検査システムに含まれるコンピュータは、第二成形体領域の非破壊検査情報を取得し、この非破壊検査情報を、事前に生成してモデル記憶部に記憶しておいた機械物性推測モデルに入力し、この機械物性推測モデルによって、その第二成形体領域の機械物性情報の推測を行い、その推測結果に基づく出力を行う。出力方法としては、表示部に情報(例えば機械物性ランク、良品又は不良品であることの情報、推測困難であることの情報等)を表示する、スピーカから該情報をメッセージとして流す、プリンタに該情報を印刷させる、等が挙げられる。
 非破壊検査情報とは、成形体領域の内部の状態を放射線、赤外線、又は超音波等によって非破壊にて検査して得られる情報である。非破壊検査情報としては、振動又は音響を利用した検査の画像であっても良いし、数値データでも良い。画像の場合、例えば、放射線画像、赤外線画像、又は超音波画像等の画像が例示できる。なお、後述する実施形態の一つでは、超音波画像を例にして説明するが、本発明はこれに限定されない。
 機械物性推測モデルは、機械物性情報及び非破壊検査情報のデータが既知の、繊維強化された成形体領域(第一成形体領域)、の当該データを機械学習(教師あり学習、又は教師無し学習のディープラーニングを含む)させることで生成された、非破壊検査情報を入力として機械物性情報を出力するモデルである。機械物性推測モデルは、例えばニューラルネットワーク又はサポートベクターマシン等が用いられる。
 検査システムのコンピュータは、検査装置を構成する。このコンピュータは、プロセッサと、ハードディスク装置又はSSD(Solid State Drive)等の情報を記憶可能な装置からなる記憶部と、RAM(Random Access Memory)及びROM(Read Only Memory)と、を備える。このプロセッサは、ROMに記憶された検査プログラムを実行することにより、被検査物の成形体領域の非破壊検査情報の取得、取得した非破壊検査情報の機械物性推測モデルへの入力、機械物性推測モデルからの機械物性情報の取得、取得した機械物性情報に基づく出力、等の処理を行う。
 成形体領域の非破壊検査情報は、通常、成形体領域の内部に欠陥、空隙、又は異物が存在しているか、存在している場合にはどの存在度合がどの程度であるか、といったことを判断するために用いられる。しかし、成形体領域の内部に欠陥、空隙、又は異物が多く存在していても、欠陥、空隙、又は異物の分布状態によっては、機械物性が良好となっている場合もある。このような場合、非破壊検査情報を目視にて確認して、欠陥、空隙、又は異物が多いから不良品であると判断してしまうと、良品であったはずの成形体領域を破棄することになってしまい、生産効率が下がることになる。一方、その逆もあり得る。つまり、非破壊検査情報を目視にて確認して、欠陥、空隙、又は異物が少ないから良品であると判断しても、機械物性は不良品に該当する状態となっている場合がある。
 本発明者らは、上記の観点に基づき検証を行った結果、非破壊検査情報と機械物性情報には相関性があることを見出し、非破壊検査情報及び機械物性情報の多数の実測データを、ニューラルネットワーク又はサポートベクターマシン等のモデルに機械学習させることで、成形体領域の非破壊検査情報から、高い確度で、その成形体領域の機械物性情報を推測することに成功した。非破壊検査情報から機械物性情報を求めることは従来考えられていない。このため、非破壊検査情報を入力として機械物性情報を出力する機械学習モデルを構築することは、当業者にとって容易なことではなかった。
 以下、検査システムの詳細例について説明する。なお、以下では、機械物性推測モデルがニューラルネットワークである例について説明する。
[強化繊維]
 本発明に用いられる強化繊維の種類は、被検査物である成形体領域a(機械物性情報が未知の第二成形体領域に相当する)の用途等に応じて適宜選択することができるものであり、特に限定されるものではない。強化繊維としては、無機繊維又は有機繊維のいずれであっても好適に用いることができる。
 上記無機繊維としては、例えば、炭素繊維、活性炭繊維、黒鉛繊維、ガラス繊維、タングステンカーバイド繊維、シリコンカーバイド繊維(炭化ケイ素繊維)、セラミックス繊維、アルミナ繊維、天然鉱物繊維(玄武岩繊維など)、ボロン繊維、窒化ホウ素繊維、炭化ホウ素繊維、及び金属繊維等を挙げることができる。
[炭素繊維]
 繊維として炭素繊維を用いる場合、炭素繊維としては、一般的にポリアクリロニトリル(PAN)系炭素繊維、石油・石炭ピッチ系炭素繊維、レーヨン系炭素繊維、セルロース系炭素繊維、リグニン系炭素繊維、フェノール系炭素繊維、気相成長系炭素繊維などが知られているが、本発明においてはこれらのいずれの炭素繊維であっても好適に用いることができる。
[強化繊維の形態]
 本発明において、強化繊維の形態に特に限定は無いが、以下、本発明者らが具体例として行った、連続繊維について説明する。ただし、本発明は連続繊維に限定されるものではない。
 連続繊維とは、強化繊維を短繊維の状態に切断することなく、強化繊維束を連続した状態で引き揃えた強化繊維を意味する。力学特性に優れる成形体領域aを得る目的からは、連続強化繊維を用いることが好ましい。より具体的には、連続繊維とは好ましくは長さが1m以上の繊維のことで、織物や編み物等の織布に加工した後樹脂をハンドレイアップなどで含浸させて用いたり、連続繊維に未硬化の樹脂を含浸させたプリプレグとして用いられたりする。
[成形体領域a]
 成形体領域aは、強化繊維で強化されたものである。以下、本発明らが行った実施態様の一例を説明するが、本発明は下記に記載の成形体領域aに限定されない。
1.成形体
 成形体領域aは、板状の複合材料の成形後の成形体であり、熱可塑性樹脂を用いた成形体であっても良いし、熱硬化性のプリプレグを用いた成形体であっても良い。
 プリプレグとは、成形体を作成するための材料であり、連続した炭素繊維を一方向に並べシート状にしたものや炭素繊維織物などの炭素繊維から成る基材に熱硬化性樹脂を含浸させたもの、または熱硬化性樹脂の一部を含浸させ、残りの部分を少なくとも片方の表面に配置した成形中間材料である。
2.一方向性材料
 成形体領域aは、一方向性材料であることが好ましい。一方向性材料とは、長さ100mm以上の連続した強化繊維が成形体領域aの内部に一方向にそろえて配置されているものをいう。一方向材料としては、複数の連続強化繊維を積層したものであっても良い。特に、成形体領域aが一方向性材料であって、熱硬化性のプリプレグを用いた成形体である場合、繊維配向による機械物性への影響が少ない。このため、後述のモデルによる機械物性情報の推測の精度を高めることができる。
[好ましい成形体領域]
 前記成形体領域は必須成分として強化繊維とマトリクス樹脂とを含み、任意成分としてその他の成分を含み、下記式(A)(B)で求められる成形体領域の空孔率Vrが10%以下であることが好ましい。
 Vr=(t2-t1)/t2×100 ・・・ 式(A)
 t1=(Wf/Df+Wm/Dm+Wz/Dz)÷単位面積(mm) ・・・ 式(B)
  t1:成形体領域の理論厚み mm
  t2:成形体領域の実測厚み mm
  Df:強化繊維の密度(mg/mm
  Dm:マトリクス樹脂の密度(mg/mm
  Dz:その他の成分の密度 (mg/mm
  Wf:強化繊維の質量割合(%)
  Wm:マトリクス樹脂の質量割合(%)
  Wz:その他の成分の質量割合(%)
 空孔率Vrは5%以下がより好ましく、3%以下が更に好ましい。空孔率が当該範囲内であれば、本発明の機械物性予測の精度が向上する。
[成形体領域aの製造]
 例えば、成形体領域aは以下のように準備できる。
1.材料
 ・強化繊維:炭素繊維“テナックス(登録商標)”STS40-24K(引張強度4,300MPa、引張弾性率240GPa、フィラメント数24,000本、繊度1,600tex、伸度1.8%、密度1.78g/cm、帝人(株)製)
 ・母材樹脂:エポキシ樹脂を主成分とした熱硬化性樹脂組成物
2.一方向プリプレグの作成
 一方向プリプレグは次のようにホットメルト法により作製した。まず初めに、コーターを用いて上記熱硬化性樹脂組成物を離型紙上に塗布し、樹脂フィルムを作製した。次に、クリールから上記炭素繊維束を送り出し、コームに通過させ、炭素繊維束間のピッチを揃えた後、開繊バーを通して拡幅し、単位面積あたりの繊維目付が100g/mのシート状となるように一方向に整列させた。その後、上記樹脂フィルムを炭素繊維の両面から重ね、加熱加圧して熱硬化性樹脂組成物を含浸させ、ワインダーで巻き取り、一方向プリプレグを作製した。得られた一方向プリプレグの樹脂含有率は30wt.%とした。
3.成形体領域aの作成
 一方向プリプレグを人手により0°方向に11枚積層し、積層構成[011]のプリプレグ積層体を得た。上記プリプレグ積層体をバッグフィルム内に入れ、成形型内に配置してこれをオートクレーブ内で昇温し、130℃にて120分間加熱し、硬化させて厚さ1mmのCFRP成形体(一方向炭素繊維強化熱硬化性樹脂成形体である、成形体領域a)を作製した。オートクレーブ成形時の下記に述べるチャージ率は100%であった。
[引張弾性率、引張強度の測定]
 本発明の破壊強度、又は弾性率の具体例として、本発明者らは次に述べるように成形体領域aの引張弾性率と引張強度を測定した。
 上記CFRP成形体をウォータージェットにより試験片形状(長さ250mm×幅15mm)に加工し、ガラス繊維強化樹脂基複合材料製のタブを接着した。ASTM D3039法に準拠し、万能試験機を用いて、試験速度2mm/minの条件にて0°方向引張試験を行い、CFRP成形体(成形体領域a)の引張弾性率および引張強度を算出した。
[非破壊検査情報]
 非破壊検査情報の生成に用いられる非破壊検査の方法に特に限定は無く、成形体領域aの内部欠陥、空隙、又は異物を、成形体領域aを破壊することなく検出する検査方法であればよい。非破壊検査には、放射線、超音波、又は赤外線等が用いられる。非破壊検査情報は、検査データを画像に変換したものが好ましく用いられ、変換後の画像が超音波探傷検査画像であることが特に好ましい。また、振動又は音響を利用した検査の画像であっても良い。検査データを画像化する手法は特に制限されない。多くの場合、超音波検査装置を購入すると、データ処理用コンピュータ端末とともに画像化ソフトウェアも提供される。
[超音波探傷検査画像]
 一般的に、材料の非破壊検査方法として代表的なものとして、超音波を用いる検査方法が挙げられる。被検査物である成形体領域aの両側に一定の距離を隔てて指向性を有する超音波送波器と受波器を対向させ、一方の送波器からパルス変調した超音波を発射し、その対向した受波器で超音波を受け、信号処理回路により超音波の伝播時間(エコー強度)を測定する。被検査物である成形体領域aに空隙や異物が含まれている場合には、この伝播時間が変化する。このため、成形体領域aの内部状態を超音波によって非接触で検出することが出来る。
 次に、非破壊検査情報としての超音波探傷検査画像の取得方法の具体例について述べる。ここでは、成形体領域aとしてのCFRP成形体を超音波探傷装置(SDS-3600:日本クラウトクレイマー社製)を用いて測定し、CFRP成形体の内部欠陥を評価した超音波探傷検査画像を得る。
 より詳細には、被検査物である成形体領域aを、超音波探触子を配置した後、周波数600kHzの超音波を用いて超音波検査を行う。送信用探触子は被検査物の上側表面から垂直距離で30mm、受信用探触子は被検査物の下側表面から垂直距離30mmそれぞれ離し、送信用探触子の軸部から鉛直方向に受信用探触子の軸部が来るように両探触子を配置する。
 受信用探触子にて受信された超音波から変換された電気信号の画像化には、超音波探触子におけるある深さの受信エコー強度を輝度変調して、被検査物上における位置(2次元)を直角座標として表示したCスキャンを用いた。得られたCスキャン画像では、超音波の伝播挙動の違いが色彩や濃淡の違いにより示される。
 具体的に得られたCスキャン画像を図8に示す。なお、図8に示したCスキャン画像は、超音波の伝播挙動、エコー強度に応じて色を変えることができるが、以下で述べる学習に用いる画像と、被検査物の機械物性情報の推測に用いる画像は、全て同じ条件で画像を取得するものとする。
[検査システム]
 以下では、ニューラルネットワークの入力層へ入力可能な形式に変換されたデータを入力データと記載する。検査システムでは、成形体領域aのサンプル(以下、成形体領域サンプルbと記載、第一成形体領域に相当する)の非破壊検査情報(以下、非破壊検査情報サンプルと記載)と、成形体領域サンプルbから実測して得た機械物性情報(以下、機械物性情報サンプルと記載)と、を取得して第2入力データとし、この第2入力データを使ってニューラルネットワークの学習を行う。ニューラルネットワークの学習が完了したら、成形体領域aの非破壊検査情報を第1入力データとしてニューラルネットワークに入力し、ニューラルネットワークからの出力層における反応値に基づき、成形体領域aの機械物性情報を推測する。推測された機械物性情報に基づき、成形体領域aの良品と不良品の仕分けを行ってもよい。
 検査システムは効果的な学習や高い精度の推測を行うため、学習処理と推測処理に最適化された非破壊検査情報(好ましくは超音波探傷画像)を使うことができる。例えば、超音波探傷画像の検出が容易になるよう、超音波探傷画像に各種画像処理を行ってもよい。
[検査装置]
 検査装置1は、画像処理、入力データの生成、ニューラルネットワークの学習、ニューラルネットワークを使った機械物性情報の推測などを行う。検査装置1は、CPU(Central Processing Unit)等で構成された1つ又は複数のプロセッサと、記憶部と、通信部を備え、OS(オペレーティングシステム)とアプリケーションが動作する計算機などの情報処理装置である。検査装置1は、物理的な計算機であってもよいし、仮想計算機(Virtual Machine:VM)、コンテナ(container)またはこれらの組み合わせにより実現されるものであってもよい。プロセッサの構造は、より具体的には、半導体素子等の回路素子を組み合わせた電気回路である。
 検査装置1は、非破壊検査情報と非破壊検査情報サンプルを記憶する画像記憶部11と、非破壊検査情報と非破壊検査情報サンプルを処理する処理部12と、入力データ生成部13と、学習データ記憶部14と、学習部15と、モデル記憶部16と、推測部17と、表示部18と、操作部19とを備えている。処理部12、入力データ生成部13、学習部15、及び推測部17は、それぞれ、検査装置1のプロセッサがプログラムを実行することで実現される機能ブロックである。このプログラムには、成形体領域の検査プログラムが含まれる。
 画像記憶部11は、好ましくは超音波探傷画像を保存する記憶領域である。画像記憶部11は、SRAM、DRAMなどの揮発性メモリでも、NAND、MRAM、FRAM(登録商標)などの不揮発性メモリでもよい。
 処理部12は、好ましくは超音波探傷画像に対して画像処理を行い、画像処理が行われた後の画像を画像記憶部11に保存する。画像処理の例としては、画像中のピクセルにおける赤、緑、青(RGB)の各色の輝度をそれぞれ抽出した画像の生成、各ピクセルにおける赤(R)の輝度から緑(G)の輝度を減算した画像の生成、HSV色空間への変換後、赤の成分のみを抽出した画像の生成などが挙げられるが、他の種類の画像処理を行ってもよい。
 処理部12は、他に画像の拡大、縮小、切り取り、ノイズ除去、回転、反転、色深度の変更、コントラスト調整、明るさ調整、シャープネスの調整、色補正などを行ってもよい。
 入力データ生成部13は、画像記憶部11に記憶された非破壊検査情報又は非破壊検査情報サンプルから、ニューラルネットワークの入力層に入力される、入力データを生成する。例えば、超音波探傷画像を用いて後述の学習を行う場合には、超音波探傷画像から所望の部位を切り取り、あるいは余分な部位を除去して第2入力データとするのが好ましい。
 検査装置1が学習処理を実行している場合、入力データ生成部13は入力データを学習データ記憶部14に保存する。検査装置1が成形体領域aの検査を行っている場合、入力データは推測部17に転送される。
 なお、学習処理を行う際、入力データ生成部13は、例えば、外部の装置やシステムによって撮影された画像(非破壊検査情報サンプル)を使って入力データを生成してもよい。
 学習データ記憶部14は、ニューラルネットワークの学習に用いられる複数の入力データを保存する記憶領域である。学習データ記憶部14に保存された入力データは、学習部15の学習データとして用いられる。学習データとして使われる入力データ(第2入力データ)には、その入力データの取得元である成形体領域サンプルbから測定して得られた機械物性情報サンプルが対応付けて記憶される。この機械物性情報サンプルは、成形体領域サンプルbの機械物性ランクと機械物性値(例えば弾性率)の少なくとも一方に加えて、機械物性値が良品に相当することを示す情報、機械物性値が不良品に相当することを示す情報、機械物性値の推測が困難であることを示す情報、等が含まれているとよい。
 例えば、成形体領域サンプルbから得た第2入力データへの機械物性情報サンプルの対応付け(以下、この対応付けをラベル付けとも記載する)は、その成形体領域サンプルbの機械物性値(例えば弾性率)を、ユーザが操作部19を操作することによって、直接入力することができる。入力後、検査装置1は、機械物性値を機械物性ランクに区分けする。例えば、引張弾性率を以下の機械物性ランクに分けることができる。
 機械物性ランク1:成形体領域の引張弾性率が30GPa以上
 機械物性ランク2:成形体領域の引張弾性率が25~30GPa
 機械物性ランク3:成形体領域の引張弾性率が25GPa以下
 この機械物性ランクは、上記のような5GPaごとではなく、3GPaや、1GPa単位で機械物性ランクを出力しても良い。なお、成形体領域サンプルbから得た第2入力データに対応する機械物性情報サンプルが既知なのであれば、プログラムやスクリプトなどによって、ユーザ操作ではなく、自動的に機械物性ランクのラベル付けを行ってもよい。機械物性ランクのラベル付けは、成形体領域サンプルbから得た非破壊検査情報サンプルの第2入力データへの変換前に行ってもよいし、第2入力データへの変換後に行ってもよい。
 学習部15は、学習データ記憶部14に保存された入力データ(第2入力データ)を使い、ニューラルネットワークの学習を行う。学習部15は、学習したニューラルネットワークをモデル記憶部16に保存する。学習部15は、例えば入力層と、隠れ層と、出力層の3層のニューラルネットワークを学習することができる。3層のニューラルネットワークを学習することにより、成形体領域aの検査時におけるリアルタイムの応答性能を確保することができる。入力層、隠れ層、出力層のそれぞれに含まれるユニット数については特に限定しない。各層に含まれるユニット数は、求められる応答性能、推測対象、識別性能などに基づいて決定することができる。
 なお、3層のニューラルネットワークは一例であり、これより層の数が多い多層のニューラルネットワークを用いることを妨げるものではない。多層のニューラルネットワークを用いる場合、畳み込みニューラルネットワークなど各種のニューラルネットワークを使うことができる。
 モデル記憶部16は、学習部15により学習されたニューラルネットワークを保存する、記憶領域である。モデル記憶部16には、検査対象とする成形体領域aの種類に応じて複数のニューラルネットワークを保存してもよい。モデル記憶部16は推測部17より参照可能に設定されているため、推測部17はモデル記憶部16に保存されているニューラルネットワークを使って成形体領域aの検査(機械物性情報の推測)を行うことができる。モデル記憶部16は、RAM、DRAMなどの揮発性メモリでも、NAND、MRAM、FRAM(登録商標)などの不揮発性メモリでもよい。なお、モデル記憶部16は、検査装置1のプロセッサがアクセス可能な場所にあればよく、検査装置1に内蔵されたものでなくてもよい。例えば、モデル記憶部16は、検査装置1に外付けされたストレージであってもよいし、検査装置1からアクセス可能なネットワークに接続されているネットワークストレージであってもよい。
 推測部17は、モデル記憶部16に保存されたニューラルネットワークを使って、成形体領域aの機械物性情報の推測を行う。推測部17は、出力層のユニットから出力される反応値に基づいて成形体領域aの機械物性ランクを推測する。出力層のユニットの例としては、機械物性ランク1のユニット、機械物性ランク2のユニット、機械物性ランク3のユニット、推測困難のユニットなどがあるが、その他の種類のユニットを用意してもよい。例えば、推測された機械物性ランクが低いものには、異物などが多く混入している可能性がある。複数のユニットの反応値の差や比を使って成形体領域aの機械物性ランクを推測してもよい。
 表示部18は、画像やテキストを表示するディスプレイである。表示部18には、撮影された画像や画像処理後の画像、推測部17による推測結果を表示してもよい。
 操作部19は、利用者による検査装置1の操作手段を提供する装置である。操作部19は、例えば、キーボード、マウス、ボタン、スイッチ、音声認識装置などであるが、これに限られない。
[学習処理]
 検査装置1による成形体領域aの機械物性ランクの推測を行う前に、成形体領域aと同一種類の成形体領域サンプルbの非破壊検査情報サンプル及び機械物性情報サンプルを使って、ニューラルネットワークの学習を行う必要がある。図2は、学習処理のフローチャートである。
 まず、検査装置1のプロセッサは、複数の成形体領域サンプルbの各々の非破壊情報サンプルを取得する(ステップS201)。ここでの非破壊検査情報サンプルには、機械物性ランクの高いものや低いものが含まれるようにする。ニューラルネットワークの出力層に推測困難の反応値を出力するユニットを設ける場合には、機械物性情報が推測困難な非破壊検査情報サンプルを用意してもよい。推測困難な非破壊検査情報サンプルの例としては、非破壊検査情報サンプルが画像の場合、成形体領域サンプルbが充分に写っていない画像、照明や露光による明るさ調整が不適切で成形体領域サンプルbが鮮明に写っていない画像などが挙げられる。
 検査装置1のプロセッサは、取得した各非破壊検査情報サンプルから第2入力データを生成する(ステップS201)。次に、検査装置1のプロセッサは、この複数の成形体領域サンプルbの各々の機械物性情報サンプルを取得し、取得した機械物性情報サンプルを、各第2入力データに対応付けて記憶する(ステップS203)。
 なお、ステップS203は、ステップS202の前に行ってもよい。この場合、各非破壊検査情報サンプルが第2入力データに変換された後も、当該非破壊検査情報サンプルに対応付けられた機械物性情報サンプルは、その第2入力データに引き継がれるものとすればよい。
 次に、検査装置1のプロセッサは、第2入力データに基づき、ニューラルネットワークによる学習を開始させる(ステップS204)。
 図3は、3つの反応値を出力するニューラルネットワークの例を示している。図3のニューラルネットワーク301は入力層302、隠れ層303、出力層304の3層を有するニューラルネットワークである。出力層304は機械物性ランクを推測するユニット311、312、313を含む。ユニット311、312、313は図3では3個であるが、機械物性のランクに応じて適宜増減することができる。
 ニューラルネットワークでは、入力層に入力された値が、隠れ層、出力層と伝播され、出力層の反応値が得られる。ステップS204では、第2入力データをニューラルネットワークに入力した場合に、この第2入力データに対応付けられた機械物性情報サンプル又はこれに近い情報が高い確率でニューラルネットワークから出力されるように、隠れ層303の数、入力層302及び隠れ層303の各々に含まれるユニット数、入力層302及び隠れ層303の各々に含まれるユニット間の結合係数等の、ニューラルネットワークの各パラメータや構造が調整される。このようにして、機械物性推測モデルが生成されて、モデル記憶部16に記憶される。
 図4はニューラルネットワークのユニット間の演算処理を示している。図4には、第m-1層のユニットと、第m層のユニットが示されている。説明のため、図4にはニューラルネットワークの一部のユニットのみが示されているものとする。第m-1層におけるユニット番号はk=1、2、3・・・である。第m層におけるユニット番号はj=1、2、3・・・である。
 第m-1層のユニット番号kの反応値をa m-1とすると、第m層のユニット番号jの反応値a は、下記の式(2)を使って求められる。
Figure JPOXMLDOC01-appb-M000001
 ここで、Wjk は重みであり、ユニット間の結合の強さを示している。b はバイアスである。f(・・・)は活性化関数である。式(2)より、第m層における任意のユニットの反応値は、第m-1層にあるすべてのユニット(k=1、2、3・・・)の反応値を重み付け加算し、活性化関数の変数として入力したときの出力値であることがわかる。
 次に活性化関数の例について説明する。下記の式(3)は正規分布関数である。
Figure JPOXMLDOC01-appb-M000002
 ここで、μは平均値であり、正規分布関数が描く釣鐘状のピークの中心位置を示している。σは標準偏差でありピークの幅を示している。式(3)の値は、ピークの中心からの距離のみに依存するため、ガウス関数(正規分布関数)は放射基底関数(radial basis function:RBF)の一種であるといえる。ガウス関数(正規分布関数)は一例であり、これ以外のRBFを使ってもよい。
 下記の式(4)はシグモイド関数である。シグモイド関数はx→∞の極限で1.0に漸近する。また、x→-∞の極限で0.0に漸近する。すなわち、シグモイド関数は(0.0,1.0)の範囲の値をとる。
Figure JPOXMLDOC01-appb-M000003
 なお、活性化関数としてガウス関数やシグモイド関数以外の関数を用いることを妨げるものではない。例えば、本発明者らは、畳み込み層ではRelu、出力層ではsoftmaxを用いた。
 ニューラルネットワークの学習は、入力データを入力層に入力したら、正しい出力が得られるよう、ユニット間の結合の強さである重みWjkの調整を行う。ニューラルネットワークにおいてある機械物性ランクをラベル付けされた入力データを入力したときに期待される、正しい出力(出力層のユニットの反応値)は教師信号ともよばれる。
 例えば、機械物性ランクが311とラベル付けした入力データを、ニューラルネットワーク301に入力したら、教師信号ではユニット311の反応値が1、ユニット312の反応値が0、ユニット313の反応値が0となる。機械物性ランクが312とラベル付けされた入力データをニューラルネットワーク301に入力したら、教師信号ではユニット311の反応値が0、ユニット312の反応値が1、ユニット313の反応値が0となる。
 例えば、重みWjkの調整はバックプロパゲーション法(誤差逆伝播法:Back Propagation Method)を使って実行することができる。バックプロパゲーション法では、ニューラルネットワーク310の出力と教師信号のずれが小さくなるよう、出力層側から順番に、重みWjkを調整する。下記の式(5)は改良型バックプロパゲーション法を示している。
Figure JPOXMLDOC01-appb-M000004
 なお、活性化関数としてガウス関数を用いた場合には重みWjkだけでなく、式(3)のσとμも、改良型バックプロパゲーション法におけるパラメータとして調整対象とする。パラメータσ、μの値を調整することにより、ニューラルネットワークの学習収束を補助する。下記の式(6)はパラメータσについて行われる値の調整処理を示している。
Figure JPOXMLDOC01-appb-M000005
 下記の式(7)はパラメータμについて行われる値の調整処理を示している。
Figure JPOXMLDOC01-appb-M000006
 ここで、tは学習回数、ηは学習定数、δは一般化誤差、Oはユニット番号jの反応値、αは感性定数、βは振動定数である。ΔWjk、Δσjk、Δμjkは重みWjk、σ、μのそれぞれの修正量を示す。
 ここでは、改良型バックプロパゲーション法を例に重みWjkやパラメータの調整処理を説明したが、代わりに一般のパックプロパゲーション法を使ってもよい。以降で単にバックプロパゲーション法と述べた場合、改良型バックプロパゲーション法を一般のバックプロパゲーション法の双方を含むものとする。
 パックプロパゲーション法による重みWjkやパラメータの調整回数は一回でもよいし、複数回でもよく、特に限定しない。一般に、テストデータを使ったときの機械物性ランクの推測精度に基づいてバックプロパゲーション法による重みWjkやパラメータの調整の繰り返しを行うのか否かを判断することができる。重みWjkやパラメータの調整を繰り返すと、機械物性ランクの推測精度が向上する場合がある。
 上述の方法を使うことにより、ステップS204においうて、重みWjk、パラメータσ、μの値を決定することができる。重みWjk、パラメータσ、μの値が決まると、ニューラルネットワークを使った推測処理を行うことが可能となる。
 図5は成形体領域の検査プログラムにしたがって動作する検査装置1による機械物性情報の推測動作を説明するためのフローチャートである。検査装置1のプロセッサは、成形体領域aの非破壊検査情報を取得する(好ましくは超音波探傷検査画像を撮影する)(ステップS501)。超音波探傷画像を非破壊検査情報とする場合、ステップS501とステップS502との間に、超音波探傷画像に対し画像処理をするステップがあっても良い。
 次に、検査装置1のプロセッサは、非破壊検査情報から第1入力データを生成する(ステップS502)。第1入力データはニューラルネットワークの入力層のユニット数に等しいN個の要素を有し、ニューラルネットワークへ入力可能な形式となっている。
 次に、検査装置1のプロセッサは、第1入力データをニューラルネットワークへ入力する(ステップS503)。第1入力データは入力層、隠れ層、出力層の順番に伝達される。検査装置1のプロセッサは、ニューラルネットワークの出力層における反応値に基づき、機械物性ランクの推測を行う(ステップS504)。
 ニューラルネットワークを使った推測処理は、第1入力データの識別空間内における位置を見つける処理と等価である。図6は、活性化関数にガウス関数を使ったときの識別空間の例を示している。活性化関数にガウス関数などのRBFを使うと、識別空間を機械物性のランクごとの領域に分ける識別曲面が閉曲面になる。また、機械物性ランクのそれぞれのカテゴリについて、高さ方向の指標を追加することにより、識別空間において各カテゴリに係る領域を局所化することができる。
 図7は、活性化関数にシグモイド関数を使ったときの識別空間の例を示している。活性化関数がシグモイド関数である場合、識別曲面は開曲面となる。なお、上述のニューラルネットワークの学習処理は、識別空間で識別曲面を学習する処理にあたる。図6、図7における領域には機械物性ランク311と機械物性ランク312のみ示しているが、3個以上の複数の機械物性ランクの分布があっても良い。
 以上のように、本実施形態の検査システムを用いれば、成形体領域aの非破壊検査情報(好ましくは超音波探傷画像)から、その成形体領域aの機械物性情報を推測できる。特許文献2(国際公開第2019/151393号)や特許文献3(国際公開第2019/151394号)に記載の発明では、あくまで画像や測定対象物を人間が見れば判断できるものを、ニューラルネットワークに代替させているに過ぎない。つまり、これら発明では、検査対象が写真撮影された食品であるため、その食品における異物などの有無を人間が容易に判断できる。
 一方、機械物性情報は、数値又はこれに準じたランク等であり、非破壊検査情報(好ましくは超音波探傷画像)は、成形体領域の内部の状態を可視化又は数値化したものである。つまり、非破壊検査情報を熟練工が見ても、ここから機械物性情報を推測することはできない。例えば、人間がいくら頑張っても、図8(a)~(d)の超音波探傷画像から、機械物性情報を推測できないことは明らかである。本実施形態の検査装置1を利用すれば、熟練工がどのように頑張っても推測することが出来ない機械物性情報を、実測することなく、瞬時に推測することができる。
 次に、板状の複合材料を成形型にて成形して得られた成形体領域の機械物性情報を推測する例について説明する。以下では、成形型にて成形する前の板状の複合材料を総称して複合材料MXと記載する。以下の説明では、複合材料MXとして、複合材料M、複合材料Ms、複合材料M2、複合材料M3が例示される。複合材料MXは、不連続繊維を含むものであることが好ましい。複合材料MXは、チョップド繊維束マットに、マトリックス樹脂として熱硬化性樹脂を含浸させたシートモールディングコンパウンドであることが特に好ましい。
 [複合材料MXの成形方法]
 複合材料MXの成形方法に特に限定は無く、プレス成形(圧縮成形)、オートクレーブ成形、バキューム成形などが用いられるが、プレス成形であることが好ましい。
 [成形型]
 図9は、複合材料MXのプレス成形に用いる成形型の一例を模式的に示した側面図である。図10は、図9に示す成形型における固定型20を可動型30側から見た平面模式図である。図9に示す成形型は、固定型20と、固定型20に対して移動自在に構成された可動型30と、を備える。固定型20における可動型30側の上面21には、凹部22が形成されている。凹部22は、底面22Aと、底面22Aと上面21とを繋ぐ一対の側面22Bとで区画される領域である。可動型30は、固定型20に対して近づく方向D1及び固定型20から遠ざかる方向D2を含む方向Dに移動自在に構成されている。方向D1は、複合材料MXを成形する際に複合材料MXに対して圧力をかける方向である。なお、成形方法がバキューム成形であれば、方向D1が吸引方向となる。
 可動型30が最も固定型20に接近した状態(図中の一点鎖線の位置に可動型30がある状態)では、可動型30と固定型20の間に成形型キャビティ(図中の斜線で示した空間SP)が形成される。
 成形型キャビティとは、成形体を形成する空間である。成形型によって複合材料MXを成形して得られる成形体のうち、端部等において不要な部分をトリミングする場合もある。この場合には、図9に示す空間SPのうち、トリミングされて最終的に残る成形体を形成する空間が、成形型キャビティとなる。例えば、図9に示す成形型によって複合材料Mを成形して得られた図13に示す成形体MD1のうち、破線で示した部分をトリミングして最終製品とする場合を想定する。この場合には、空間SPのうち、破線で示した範囲を除く部分が、成形型キャビティとなる。
 図11は、図9に示す成形型によって単一の複合材料Mを成形する方法の一例を示す模式図である。板状の複合材料Mは、固定型20の上面21に凹部22を覆う状態にて配置される。図12は、図11に示す固定型20及び複合材料Mを方向D1に見た平面模式図である。図11に示す状態から可動型30を方向D1に移動させると、複合材料Mは可動型30からの圧力によって流動して、空間SPの形状に沿って変形し、図13に示すように、成形体MD1が得られる。図11~図13の例では、複合材料Mを成形して得られた成形体領域の全部が成形体MD1を構成している。
 成形方法がコールドプレスの場合には、プレスの前に複合材料Mを加熱して予備賦形を行う。この予備賦形した複合材料Mを、図14に示すように、固定型20の上面及び凹部に配置する。その後、図14に示す状態から可動型30を方向D1に移動させると、予備賦形された複合材料Mは可動型30からの圧力によって流動して、空間SPの形状に沿って変形し、図13に示すように、成形体MD1が得られる。
 成形型によって成形体を製造する場合、成形体の元となる複合材料MXは1つであってもよいし、複数であってもよい。例えば、図11及び図12の一点鎖線で示すように、複合材料Mの上に更に別の板状の複合材料Msを配置してから成形を行う場合もある。また、図15に示すように、予備賦形された複数の板状の複合材料(複合材料M2と複合材料M3)を互いに重ならないようにして固定型20上に配置してから成形を行う場合もある。図15に示す状態から可動型30を方向D1に移動させると、予備賦形された複合材料M2と複合材料M3は可動型30からの圧力によって流動して、空間SPの形状に沿って変形する。そして、図16に示すように、複合材料M2を成形して得られた成形体領域MA2と、複合材料M3を成形して得られた成形体領域MA3と、からなる成形体MD2が得られる。図15及び図16の例では、複合材料M2を成形して得られた成形体領域MA2と、複合材料M3を成形して得られた成形体領域MA3は、それぞれ、成形体MD2の一部を構成している。
[成形体を構成する複合材料MXの投影面積S1]
 成形体が単一の複合材料MXによって構成されている場合には、その単一の複合材料MX(コールドプレス成形を採用する場合には、予備賦形前の状態のもの)を厚み方向にみたときのその複合材料MXの平面積を投影面積S1と定義する。図11の例では、複合材料Mの平面積が投影面積S1となる。
 成形体が複数の複合材料MXによって構成されており、且つ、この複数の複合材料MXを重ねた状態にて成形する場合を想定する。この場合には、成形体は、単一の成形体領域によって構成されるものと見做す。そして、重ねられた状態のこの複数の複合材料MX(コールドプレス成形の場合は、予備賦形前の状態のもの)をそれぞれの厚み方向に見たときの、その複数の複合材料MX全体の平面積を投影面積S1と定義する。図12の例では、複合材料Msの全体が複合材料Mと重なっている。このため、投影面積S1は、複合材料Mの平面積と同じになる。図12において、例えば、複合材料Msの一部だけが複合材料Mに重なるよう配置される場合を想定する。この場合には、複合材料Mの平面積と、複合材料Msにおける複合材料Mと重なっていない領域の平面積との和が投影面積S1となる。
 成形体が複数の複合材料MXによって構成され、且つ、この複数の複合材料MXが重ならないよう配置してから成形する場合を想定する。この場合には、この複数の複合材料MX(コールドプレス成形の場合は、予備賦形前の状態のもの)をそれぞれの厚み方向に見たときの各複合材料MXの平面積を投影面積S1と定義する。図15の例では、予備賦形前の複合材料M2を厚み方向にみたときの複合材料M2の平面積が投影面積S1となる。また、予備賦形前の複合材料M3を厚み方向にみたときの複合材料M3の平面積が投影面積S1となる。
[成形型キャビティにおける成形体領域に対応する部分の投影面積S2]
 成形型キャビティによって形成される成形体が、単一、又は、重なりあわされた複数の複合材料MXを成形して得られた単一の成形体領域によって構成される場合を想定する。この場合には、成形型キャビティ全体が、この単一の成形体領域に対応する部分となる。方向D1にみたときのこの部分の平面積を投影面積S2と定義する。図13の例では、方向D1にみたときの空間SPの平面積が投影面積S2となる。
 成形型キャビティによって形成される成形体が、互いに重ならない状態で配置された複数の複合材料MXを成形して得られた複数の成形体領域によって構成される場合を想定する。この場合には、成形型キャビティのうち各成形体領域が存在する部分が、各成形体領域に対応する部分である。この各部分を方向D1にみたときの平面積を投影面積S2と定義する。
 図16の例では、空間SPのうち、成形体領域MA2の存在する部分を方向D1にみたときの平面積が投影面積S2となる。また、空間SPのうち、成形体領域MA3の存在する部分を方向D1にみたときの平面積が投影面積S2となる。
 なお、複数の複合材料MXを離間して配置してコールドプレスして成形体を作成した場合には、成形時に各複合材料MXが流動して境界にウエルドが形成される。このため、完成した成形体を観察すれば、「各複合材料MXを成形して得られる成形体領域」は容易に判別できる。
[チャージ率]
 成形型で製造された成形体について、下記式(C)の演算にて得られる値をチャージ率と定義する。
 チャージ率[%]=100×{(成形体を構成する複合材料MXの投影面積S1)/(成形型キャビティにおける成形体領域に対応する部分の投影面積S2)} ・・・(C)
 なお、図16に示す例のように、成形体が複数の成形体領域を含む場合には、各成形体領域についての投影面積S1及び投影面積S2を式(C)に代入することで、1つの成形体に関して2つのチャージ率が求まる。
 つまり、複合材料M2の平面積を投影面積S1とし、且つ、成形型キャビティにおける成形体領域MA2の存在する部分の平面積を投影面積S2として第一のチャージ率が算出される。また、複合材料M3の平面積を投影面積S1とし、且つ、成形型キャビティにおける成形体領域MA3の存在する部分の平面積を投影面積S2として第二のチャージ率が算出される。
 このチャージ率は、その値が大きいほど、成形中における複合材料MXの流動距離が少ないことを意味する。例えば、図9に示した成形型を用いて、図16に示す成形体領域MA2のみを製品として製造する場合を例にする。この場合、図17に示すように、複合材料M2の投影面積S1を、図15に示す例よりも小さくしてチャージ率を下げると、複合材料M2の流動距離は図15に示す例よりも長くなる。
 複合材料MXが不連続繊維を含み、この複合材料MXを成形して得られた成形体領域が不連続繊維によって繊維強化されたものである場合には、複合材料MXを流動させて成形体領域を生成すると、流動と同時に繊維が配向する。したがって、複合材料MXの流動距離が短い場合には、成形時の流動や繊維配向の制御が容易になり、大量生産したときの成形体領域の機械物性品質が安定する。
 上述してきた機械物性推測モデルは、成形体領域の機械物性品質にできるだけバラツキがない状態にて得た学習データを用いて生成することで、機械物性の推測精度を高めることができる。具体的には、機械物性推測モデルに学習させる学習データ(非破壊検査情報及び機械物性情報)の測定元となる第一成形体領域と、この機械物性推測モデルによって機械物性の推測を行う対象となる第二成形体領域として、それぞれ、チャージ率が10%以上500%以下となるように複合材料MXを成形型にて成形して得られるものを適用対象とすることが好ましい。
 第一成形体領域と第二成形体領域の各々の構造としては、例えば、図13に示した成形体MD1、図16に示した成形体領域MA2、図16に示した成形体領域MA3、又は、図16に示した成形体MD2を採用することができる。なお、第一成形体領域と第二成形体領域の各々が、図16に示す成形体MD2である場合には、複合材料M2及び成形体領域MA2について求まるチャージ率と、複合材料M3及び成形体領域MA3について求まるチャージ率とのいずれか一方が、10%以上500%以下となっていればよい。
 チャージ率が10%未満になると、複合材料MXの流動距離が大きくなる。このため、第一成形体領域と第二成形体領域の各々の機械物性品質を安定化させるのが難しくなる。したがって、チャージ率の下限は10%としている。チャージ率の上限は、成形型にて製造する製品の用途によって決めることができる。この上限を500%としておけば、多くの用途に適した製品を対象とすることができる。なお、第一成形体領域と第二成形体領域の各々の機械物性品質をより安定化させるためには、チャージ率を50%以上とすることが好ましく、70%以上とすることがより好ましく、80%以上とすることが更に好ましい。なお、強化繊維が不連続繊維であって、特定方向への機械強度を向上させたいときは、チャージ率10%以上50%未満にすると、成形体領域に異方性が生じやすく、好ましい。
[成形体領域の等方性]
 成形時の複合材料MXの流動が少ない場合、複合材料MXとこれの成形後の成形体領域の繊維配向は近似する。特に、複合材料MXが不連続繊維によって強化された等方性基材の場合、成形時の流動が少なければ(換言すると、チャージ率が大きければ)成形体領域でも等方性が確保される。したがって、第一成形体領域と第二成形体領域の各々の等方性は1.5以下であることが好ましく、1.3以下であることがより好ましい。
[成形体領域の目付の変動係数(CV)]
 第一成形体領域と第二成形体領域の各々の目付の変動係数(CV)は10%以下であることが好ましい。目付の変動係数(CV)が10%以下であれば、第一成形体領域と第二成形体領域の各々の物性が均一化される。このため、機械物性推測モデルによる機械物性の推測が容易になる。
[成形体領域に含まれる強化繊維]
 第一成形体領域と第二成形体領域は、それぞれ、強化繊維束の繊維長をLiとし、強化繊維束を構成する強化繊維の単糸直径をDiとし、強化繊維束に含まれる単糸の繊維数をNiとした場合に、Liが1mm以上100mm以下であり、且つ、Li/(Ni×Di)が8.0×10以上3.3×10以下の強化繊維束Aを含む、ことが好ましい。
 強化繊維束Aの体積割合は、成形体に含まれる強化繊維全体に対して50~100vol%であることが好ましく、70~90vol%であることがより好ましい。
 以上、図面を参照しながら各種の実施の形態について説明したが、本発明はかかる例に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例又は修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。また、発明の趣旨を逸脱しない範囲において、上記実施の形態における各構成要素を任意に組み合わせてもよい。
 なお、本出願は、2020年7月8日出願の日本特許出願(特願2020-118107)に基づくものであり、その内容は本出願の中に参照として援用される。
 11:画像記憶部
 12:処理部
 13:入力データ生成部
 14:学習データ記憶部
 15:学習部
 16:モデル記憶部
 17:推測部
 18:表示部
 19:操作部
 301:ニューラルネットワーク
 302:入力層
 303:隠れ層
 304:出力層
 311、312、313 ユニット
 

Claims (14)

  1.  繊維強化された第一成形体領域の機械物性情報及び非破壊検査情報を機械学習させることで、機械物性情報が未知の繊維強化された第二成形体領域の非破壊検査情報を入力として前記第二成形体領域の機械物性情報を推測する機械物性推測モデルを生成するステップと、
     前記第二成形体領域の非破壊検査情報を取得するステップと、
     前記取得した前記非破壊検査情報を前記機械物性推測モデルに入力して、前記機械物性推測モデルから前記第二成形体領域の機械物性情報を取得し、当該機械物性情報に基づく出力を行うステップと、をプロセッサに実行させる成形体領域の検査プログラムであり、
     前記第一成形体領域及び前記第二成形体領域は、それぞれ、板状の複合材料を成形型にて成形して得られたものであり、
     前記複合材料の投影面積をS1とし、前記成形型の成形型キャビティにおける、前記第一成形体領域及び前記第二成形体領域の各々に対応する部分の投影面積をS2とし、(S1/S2)×100の演算で得られる値をチャージ率とし、
     前記第一成形体領域及び前記第二成形体領域は、それぞれ、前記チャージ率が10%以上500%以下となるように前記複合材料を成形して得られたものである、成形体領域の検査プログラム。
  2.  請求項1記載の成形体領域の検査プログラムであって、
     前記第一成形体領域及び前記第二成形体領域は、それぞれ、前記チャージ率が50%以上となるように、前記複合材料を成形して得られたものである、成形体領域の検査プログラム。
  3.  請求項1又は2記載の成形体領域の検査プログラムであって、
     前記第一成形体領域及び前記第二成形体領域は、それぞれ、不連続繊維によって繊維強化されたものである、成形体領域の検査プログラム。
  4.  請求項1から3のいずれか1項記載の成形体領域の検査プログラムであって、
     前記第一成形体領域及び前記第二成形体領域は、それぞれ、等方性が1.5以下となっているものである、成形体領域の検査プログラム。
  5.  請求項1から4のいずれか1項記載の成形体領域の検査プログラムであって、
     前記第一成形体領域及び前記第二成形体領域は、それぞれ、目付の変動係数が10%以下となっているものである、成形体領域の検査プログラム。
  6.  請求項1から5のいずれか1項記載の成形体領域の検査プログラムであって、
     前記第一成形体領域及び前記第二成形体領域の各々の強化繊維は、強化繊維束の繊維長をLiとし、強化繊維束を構成する強化繊維の単糸直径をDiとし、強化繊維束に含まれる単糸の繊維数をNiとした場合に、Liが1mm以上100mm以下であり、且つ、Li/(Ni×Di)が8.0×10以上3.3×10以下の強化繊維束を含むものである、成形体領域の検査プログラム。
  7.  請求項1から6のいずれか1項記載の成形体領域の検査プログラムであって、
     前記成形はプレス成形である、成形体領域の検査プログラム。
  8.  請求項1から7のいずれか1項記載の成形体領域の検査プログラムであって、
     前記複合材料は、チョップド繊維束マットに、マトリックス樹脂として熱硬化性樹脂を含浸させたシートモールディングコンパウンドである、成形体領域の検査プログラム。
  9.  請求項1から8のいずれか1項記載の成形体領域の検査プログラムであって、
     前記非破壊検査情報は、画像又は数値データである、成形体領域の検査プログラム。
  10.  請求項1から9のいずれか1項記載の成形体領域の検査プログラムであって、
     前記機械物性情報は、成形体領域の弾性率、又は破壊強度に関する情報である、成形体領域の検査プログラム。
  11.  請求項10記載の成形体領域の検査プログラムであって、
     前記弾性率に関する情報は、弾性率、又は弾性率をランク分けした場合のランクを含み、
     前記破壊強度に関する情報は、破壊強度、又は破壊強度をランク分けした場合のランクを含む、成形体領域の検査プログラム。
  12.  請求項11記載の成形体領域の検査プログラムであって、
     前記弾性率、又は破壊強度に関する情報は、前記弾性率、又は破壊強度が推測困難であることを示す情報、前記弾性率、又は破壊強度が不良品に相当することを示す情報、及び、前記弾性率、又は破壊強度が良品に相当することを示す情報の少なくとも1つを含む、成形体領域の検査プログラム。
  13.  繊維強化された第一成形体領域の機械物性情報及び非破壊検査情報を機械学習させることで、機械物性情報が未知の繊維強化された第二成形体領域の非破壊検査情報を入力として前記第二成形体領域の機械物性情報を推測する機械物性推測モデルを生成するステップと、
     前記第二成形体領域の非破壊検査情報を取得するステップと、
     前記取得した前記非破壊検査情報を前記機械物性推測モデルに入力して、前記機械物性推測モデルから前記第二成形体領域の機械物性情報を取得し、当該機械物性情報に基づく出力を行うステップと、を備え、
     前記第一成形体領域及び前記第二成形体領域は、それぞれ、板状の複合材料を成形型にて成形して得られたものであり、
     前記複合材料の投影面積をS1とし、前記成形型の成形型キャビティにおける、前記第一成形体領域及び前記第二成形体領域の各々に対応する部分の投影面積をS2とし、(S1/S2)×100の演算で得られる値をチャージ率とし、
     前記第一成形体領域及び前記第二成形体領域は、それぞれ、前記チャージ率が10%以上500%以下となるように前記複合材料を成形して得られたものである、成形体領域の検査方法。
  14.  繊維強化された第一成形体領域の機械物性情報及び非破壊検査情報に基づく機械学習によって生成された機械物性推測モデルを記憶するモデル記憶部にアクセス可能なプロセッサを備え、
     前記機械物性推測モデルは、機械物性情報が未知の繊維強化された第二成形体領域の非破壊検査情報を入力として前記第二成形体領域の機械物性情報を推測するものであり、
     前記第一成形体領域及び前記第二成形体領域は、それぞれ、板状の複合材料を成形型にて成形して得られたものであり、
     前記複合材料の投影面積をS1とし、前記成形型の成形型キャビティにおける、前記第一成形体領域及び前記第二成形体領域の各々に対応する部分の投影面積をS2とし、(S1/S2)×100の演算で得られる値をチャージ率とし、
     前記第一成形体領域及び前記第二成形体領域は、それぞれ、前記チャージ率が10%以上500%以下となるように前記複合材料を成形して得られたものであり、
     前記プロセッサは、前記第二成形体領域の非破壊検査情報を取得し、当該非破壊検査情報を前記機械物性推測モデルに入力して、前記機械物性推測モデルから当該第二成形体領域の機械物性情報を取得し、当該機械物性情報に基づく出力を行う、成形体領域の検査装置。
     
PCT/JP2021/022002 2020-07-08 2021-06-09 成形体領域の検査プログラム、成形体領域の検査方法、成形体領域の検査装置 WO2022009597A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202180048963.7A CN115803168A (zh) 2020-07-08 2021-06-09 成形体区域的检查程序、成形体区域的检查方法、成形体区域的检查装置
JP2022534967A JP7358648B2 (ja) 2020-07-08 2021-06-09 成形体領域の検査プログラム、成形体領域の検査方法、成形体領域の検査装置
US18/008,339 US20230280311A1 (en) 2020-07-08 2021-06-09 Non-transitory computer readable medium storing program for inspecting molded article region, method for inspecting molded article region, and device for inspecting molded article region
EP21838178.8A EP4180197A4 (en) 2020-07-08 2021-06-09 MOLDED ARTICLE REGION INSPECTION PROGRAM, MOLDED ARTICLE REGION INSPECTION METHOD, AND MOLDED ARTICLE REGION INSPECTION DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-118107 2020-07-08
JP2020118107 2020-07-08

Publications (1)

Publication Number Publication Date
WO2022009597A1 true WO2022009597A1 (ja) 2022-01-13

Family

ID=79552463

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/022002 WO2022009597A1 (ja) 2020-07-08 2021-06-09 成形体領域の検査プログラム、成形体領域の検査方法、成形体領域の検査装置

Country Status (5)

Country Link
US (1) US20230280311A1 (ja)
EP (1) EP4180197A4 (ja)
JP (1) JP7358648B2 (ja)
CN (1) CN115803168A (ja)
WO (1) WO2022009597A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114972327A (zh) * 2022-07-12 2022-08-30 爱尔达电气有限公司 半导体封装测试系统及其测试方法
WO2024005068A1 (ja) * 2022-06-30 2024-01-04 コニカミノルタ株式会社 予測装置、予測システムおよび予測プログラム

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018156689A (ja) * 2015-08-11 2018-10-04 サビック グローバル テクノロジーズ ビー.ブイ. 低い単位面積重量を有する多重プライ積層複合材
JP2019032768A (ja) * 2017-08-09 2019-02-28 三菱重工業株式会社 複合材の設計方法、及び複合材
WO2019151394A1 (ja) 2018-01-31 2019-08-08 株式会社ニチレイフーズ 食品検査補助システム、食品検査補助装置、およびコンピュータプログラム
WO2019151393A1 (ja) 2018-01-31 2019-08-08 株式会社ニチレイフーズ 食品検査システム、食品検査プログラム、食品検査方法および食品生産方法
JP2019158459A (ja) 2018-03-09 2019-09-19 帝人株式会社 超音波を用いる検査方法
JP2020118107A (ja) 2019-01-25 2020-08-06 愛三工業株式会社 発電用エンジンを搭載した電気自動車のパージシステム

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10564108B2 (en) * 2017-07-03 2020-02-18 Saudi Arabian Oil Company Apparatus and method for nondestructively inspecting fiberglass and nonmetallic pipes
US11225039B2 (en) * 2018-06-08 2022-01-18 Aurora Flight Sciences Corporation Systems and methods to automate composite manufacturing quality checks
CN110297041A (zh) * 2019-07-01 2019-10-01 天津工业大学 一种基于fcn与gru的3d编织复合材料缺陷检测方法
CN110286155B (zh) * 2019-07-15 2020-09-11 北京交通大学 一种多层复合材料的损伤检测方法及系统
CN111351860A (zh) * 2019-11-29 2020-06-30 浙江农林大学 基于Faster R-CNN的木材内部缺陷检测方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018156689A (ja) * 2015-08-11 2018-10-04 サビック グローバル テクノロジーズ ビー.ブイ. 低い単位面積重量を有する多重プライ積層複合材
JP2019032768A (ja) * 2017-08-09 2019-02-28 三菱重工業株式会社 複合材の設計方法、及び複合材
WO2019151394A1 (ja) 2018-01-31 2019-08-08 株式会社ニチレイフーズ 食品検査補助システム、食品検査補助装置、およびコンピュータプログラム
WO2019151393A1 (ja) 2018-01-31 2019-08-08 株式会社ニチレイフーズ 食品検査システム、食品検査プログラム、食品検査方法および食品生産方法
JP2019158459A (ja) 2018-03-09 2019-09-19 帝人株式会社 超音波を用いる検査方法
JP2020118107A (ja) 2019-01-25 2020-08-06 愛三工業株式会社 発電用エンジンを搭載した電気自動車のパージシステム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4180197A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024005068A1 (ja) * 2022-06-30 2024-01-04 コニカミノルタ株式会社 予測装置、予測システムおよび予測プログラム
CN114972327A (zh) * 2022-07-12 2022-08-30 爱尔达电气有限公司 半导体封装测试系统及其测试方法

Also Published As

Publication number Publication date
EP4180197A4 (en) 2023-12-27
CN115803168A (zh) 2023-03-14
US20230280311A1 (en) 2023-09-07
JPWO2022009597A1 (ja) 2022-01-13
EP4180197A1 (en) 2023-05-17
JP7358648B2 (ja) 2023-10-10

Similar Documents

Publication Publication Date Title
Caminero et al. Internal damage evaluation of composite structures using phased array ultrasonic technique: Impact damage assessment in CFRP and 3D printed reinforced composites
Oz et al. Multi-instrument in-situ damage monitoring in quasi-isotropic CFRP laminates under tension
WO2022009597A1 (ja) 成形体領域の検査プログラム、成形体領域の検査方法、成形体領域の検査装置
Azadi et al. Tensile loading rate effect on mechanical properties and failure mechanisms in open-hole carbon fiber reinforced polymer composites by acoustic emission approach
US9042516B2 (en) Nondestructive examination of structures having embedded particles
Pashmforoush et al. Damage classification of sandwich composites using acoustic emission technique and k-means genetic algorithm
Djabali et al. An experimental investigation of the mechanical behavior and damage of thick laminated carbon/epoxy composite
Wildemann et al. Research of the damage and failure processes of composite materials based on acoustic emission monitoring and method of digital image correlation
WO2021140312A1 (en) A method of producing 3d tomosynthesis images of a composite material
Ativitavas et al. Identification of fiber-reinforced plastic failure mechanisms from acoustic emission data using neural networks
Yousefi et al. Damage evaluation of laminated composite material using a new acoustic emission Lamb-based and finite element techniques
WO2022009596A1 (ja) 複合材料の検査装置、複合材料の検査方法、複合材料の検査プログラム
Habibi et al. Damage analysis of low-velocity impact of non-woven flax epoxy composites
Papa et al. Impact behaviour and non destructive evaluation of 3D printed reinforced composites
Caminero et al. Using digital image correlation techniques for damage detection on adhesively bonded composite repairs
Chen et al. Ultrasonic signal classification and porosity testing for CFRP materials via artificial neural network
WO2023120256A1 (ja) 成形体領域の検査プログラム、成形体領域の検査方法、成形体領域の検査装置および記録媒体
Srivastava et al. Determination of fiber content in 3-D printed composite parts using image analysis
WO2023120257A1 (ja) 複合材料の検査装置、複合材料の検査方法、複合材料の検査プログラムおよび記録媒体
Akgun et al. A novel damage evaluation of CFRPs under mode-I loading by using multi-instrument structural health monitoring methods
Shenoy Heckadka et al. Damage characterization of ultra high molecular weight Polyethylene/Flax/Jute fiber reinforced melamine formaldehyde hybrid composites using cone beam computed tomography
Kim et al. Tensile fracture behavior of nicalon/SiC composites
Liv A contribution to the understanding of compression after impact of composite laminates
Mei et al. Pure SH0 wave tomography for delamination detection in aerospace composites
Zhu et al. Enhancing resistance to low-velocity impact of electrospun-manufactured interlayer-strengthened CFRP by using infrared thermography

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21838178

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022534967

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021838178

Country of ref document: EP

Effective date: 20230208