WO2022009255A1 - エネルギー関数導出装置、方法、および、コンピュータ読取可能な記録媒体 - Google Patents

エネルギー関数導出装置、方法、および、コンピュータ読取可能な記録媒体 Download PDF

Info

Publication number
WO2022009255A1
WO2022009255A1 PCT/JP2020/026349 JP2020026349W WO2022009255A1 WO 2022009255 A1 WO2022009255 A1 WO 2022009255A1 JP 2020026349 W JP2020026349 W JP 2020026349W WO 2022009255 A1 WO2022009255 A1 WO 2022009255A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
identification information
spin
change
energy function
Prior art date
Application number
PCT/JP2020/026349
Other languages
English (en)
French (fr)
Inventor
芙美代 鷹野
浩明 井上
拓也 荒木
基己 鈴木
悠記 小林
考弘 西村
博 千嶋
彰宏 矢田部
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to US18/014,308 priority Critical patent/US20230259674A1/en
Priority to JP2022534492A priority patent/JP7414144B2/ja
Priority to PCT/JP2020/026349 priority patent/WO2022009255A1/ja
Publication of WO2022009255A1 publication Critical patent/WO2022009255A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/11Complex mathematical operations for solving equations, e.g. nonlinear equations, general mathematical optimization problems
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/18Complex mathematical operations for evaluating statistical data, e.g. average values, frequency distributions, probability functions, regression analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N99/00Subject matter not provided for in other groups of this subclass
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2111/00Details relating to CAD techniques
    • G06F2111/06Multi-objective optimisation, e.g. Pareto optimisation using simulated annealing [SA], ant colony algorithms or genetic algorithms [GA]

Definitions

  • the present invention is a computer-readable device that records an energy function derivation device, an energy function derivation method, and an energy function derivation program for deriving an energy function of a model in which the state of each spin is represented by a first value or a second value. Regarding recording media.
  • the solution of the combinatorial optimization problem can be obtained by applying the energy function of the Ising model or the energy function of QUADOT (Quadratic Unconstrained Binary Optimization) to, for example, simulated annealing.
  • QUADOT Quadrattic Unconstrained Binary Optimization
  • the Ising model is a statistical mechanics model that expresses the behavior of a magnetic material by individual spins, but it can also be applied to the solution of combinatorial optimization problems.
  • the state of each spin is represented by "1" or "-1".
  • QUABO is also known as a model in which the state of each spin is represented by "1" or "0".
  • the energy function of the Ising model and the energy function of QUABO can be converted to each other.
  • the energy function of the Ising model is expressed by the following equation (1).
  • x i and x j are variables representing the spin state. The subscript in this variable identifies the spin. J ij is a constant corresponding to i and j, and h i is a constant corresponding to i.
  • x i and x j are variables representing the spin state. The subscript in this variable identifies the spin.
  • Q ij is a constant corresponding to i and j.
  • the energy function of the Ising model or the energy function of QUAB is obtained, apply the energy function to simulated annealing and specify the state of each spin when the energy is minimized. Then, the state of each spin is interpreted as the solution of the combinatorial optimization problem.
  • Patent Document 1 describes searching for the ground state of the Ising model using the initial operating conditions.
  • a user the person who tries to obtain the solution of the combinatorial optimization problem is referred to as a user.
  • the work shift creation problem will be taken as an example of the combinatorial optimization problem.
  • a formula that expresses the energy in the work shift creation problem which reflects the restrictions of "working two or more people every day”, “prohibiting continuous work for three days or more”, and “prohibiting consecutive holidays for two days or more”. Is created and the equation is converted into the energy function of QUABO. Then, it is assumed that the energy function is applied to simulated annealing and the solution shown in FIG. 8 is obtained.
  • each state of 15 spins of spins 1 to 15 is represented by "1" or "0". In this example, "1" means to go to work, and "0" means not to go to work.
  • the above example is an example of a case where the user wants to change at least a part of the solution of the combinatorial optimization problem once obtained in response to some change in the situation.
  • the present invention is an energy function derivation device and an energy function derivation device capable of deriving an energy function obtained by making a desired change to the solution when it is desired to change the solution of the once obtained combination optimization problem. It is an object of the present invention to provide a computer-readable recording medium in which a method and an energy function derivation program are recorded.
  • the energy function derivation device is an energy function of a model in which the solution of the combination optimization problem and the state of each spin are represented by a first value or a second value, and is used in obtaining the solution.
  • the energy function and a set of change desires indicating the degree to which the user wants to change the spin identification information and the spin state corresponding to the identification information in the solution, the identification information and the change desire degree.
  • the term creating means for creating a term based on the spin state corresponding to the identification information in the solution and the degree of desired change, and the term created for each set by the term creating means are used as the energy function. It is characterized by having an energy function derivation means for deriving a new energy function by adding it.
  • the energy function derivation method is an energy function of a model in which a solution of a combination optimization problem and an individual spin state are represented by a first value or a second value, and is used in obtaining the solution.
  • a set of change desires indicating the degree to which the user wants to change the spin identification information and the spin state corresponding to the identification information in the solution
  • the identification information and the change desire degree For each set, create a term based on the spin state corresponding to the identification information in the solution and the degree of desired change, and add the term created for each set to the energy function to derive a new energy function. It is characterized by doing.
  • the computer-readable recording medium provides the computer with a solution to the combination optimization problem and an energy function of a model in which the state of each spin is represented by a first value or a second value.
  • Discrimination information given the energy function used in the acquisition and a set of spin identification information and a change preference set indicating the degree to which the user wants to change the spin state corresponding to the identification information in the solution.
  • a term creation process for creating a term based on the spin state corresponding to the identification information in the solution and a change preference degree for each set of the desired degree of change, and a term created for each set in the term creation process.
  • the solution of the combinatorial optimization problem is obtained by applying the energy function of QUABO to annealing (for example, simulated annealing) will be described as an example.
  • the present invention can also be applied when a solution to a combinatorial optimization problem is obtained by applying the energy function of the Ising model to annealing.
  • "1" in the Ising model and "1" in the QUAO can be referred to as the first value.
  • "-1" in the Ising model and "0" in QUA can be referred to as a second value.
  • FIG. 1 is a block diagram showing a configuration example of the energy function derivation device according to the embodiment of the present invention.
  • the energy function derivation device 1 includes an input unit 2, a term creation unit 3, and an energy function derivation unit 4.
  • the solution of the combinatorial optimization problem already obtained and the energy function of the QUA used to obtain the solution are input to the input unit 2.
  • the solution of the combinatorial optimization problem already obtained and the energy function of the Ising model used for obtaining the solution may be input to the input unit 2.
  • the solution input to the input unit 2 is a solution that the user wants to change at least a part.
  • the set of spin identification information and change desired degree is also input to the input unit 2.
  • the number of sets of spin identification information and change desired degree input to the input unit 2 may be one or a plurality.
  • a set of spin identification information and a degree of change desire is defined for all spins in the solution, and all the sets may be input to the input unit 2.
  • the change desire degree paired with the spin identification information is a value indicating the degree to which the user wants to change the spin state corresponding to the identification information in the input solution.
  • FIG. 2 is a schematic diagram showing a change in meaning due to a change in the degree of desire for change.
  • Change desired degree the first predetermined value, which means changing the spin state corresponding to the identification information taking alteration desired degree and set to absolute (hereinafter, referred to as V 1.)
  • V 1 a second predetermined value
  • V 2 a second predetermined value which means that the spin state corresponding to the identification information is never changed. It may be V 2 > V 1 or V 1 > V 2.
  • V 2 > V 1 will be described as an example. Also, mark the average value of V 1 and V 2 and V ave.
  • change desired degree when the change desired degree is V 1 , it means that the spin state corresponding to the identification information paired with the change desired degree is absolutely changed as described above.
  • Change desired degree as it approaches from V 1 to V ave, change the desired degree, makes sense that may be changing the spin of the state, the degree to which you want to change the spin of the state decreases.
  • the change desired degree when the change desired degree is V 2 , it means that the spin state corresponding to the identification information paired with the change desired degree is never changed as described above.
  • Change desired degree as it approaches from V 2 to V ave, change the desired degree, makes sense that it is not necessary to change the spin of the state, the degree to which you do not want to change the spin of the state decreases.
  • the fact that the degree of change desired is Vave means that the spin state may or may not be changed.
  • the term creation unit 3 uses the input unit 2 to determine the solution of the combinatorial optimization problem already obtained, the energy function of the QUABO used to obtain the solution, the spin identification information, and the degree of change desire. Incorporate a pair. As described above, the number of sets of spin identification information and change desire degree may be one or more.
  • the term creation unit 3 creates a term based on the spin state corresponding to the identification state in the captured solution and the change desired degree for each set of the spin identification information and the change desired degree.
  • the term creation unit 3 creates a term in the form of ⁇ ⁇ (ki i ⁇ x i ) 2 for each set of spin identification information and change desired degree.
  • I is the identification information of the spin in the captured set.
  • k i is a value corresponding to the spin state corresponding to the identification information i in the captured solution, or the state in which the state is inverted. In this example, k i takes a value of either "1" or "0".
  • x i is a variable representing the spin state corresponding to the identification information i.
  • is a value according to the degree of change desired that is paired with the identification information i.
  • FIG. 3 is a schematic diagram showing a method for determining ki and ⁇ .
  • Term creation unit 3 change desired degree, the value between V ave and V 1 or, if V 1, a k i, obtained by inverting the spin state corresponding to the identification information i in captured solutions Set to the value corresponding to the state. For example, it is assumed that the solution illustrated in FIG. 8 is incorporated. Then, it is assumed that the spin identification information in the set of interest is "12". Further, the modification desiring degree that forms a pair with the identification information "12" is assumed to be a value between V ave and V 1. In the solution illustrated in FIG. 8, the inverted state of the spin 12 state “1” is “0”. Therefore, in this case, the term creation unit 3 sets the value of k 12 to “0”. If the change desired degree of V 1 is the same.
  • Value claim creation unit 3 change desired degree, the value between V ave and V 2 or, if V 2, the k i, corresponding to the spin state corresponding to the identification information i in captured solutions Stipulated in. For example, it is assumed that the solution illustrated in FIG. 8 is incorporated. Then, it is assumed that the spin identification information in the set of interest is "2". Further, the modification desiring degree that forms a pair with the identification information "2", and a value between V ave and V 2. In the solution illustrated in FIG. 8, the state of spin 2 is "1". Therefore, in this case, the term creation unit 3 sets the value of k 2 to "1". The same applies when the degree of change desired is V 2.
  • claim creation unit 3 may be set to any value of k i "1" and "0".
  • Term creation unit 3 the larger the absolute value of the difference between the change desired degree and V ave in the set of interest, the value of alpha in terms “ ⁇ ⁇ (k i -x i ) 2" corresponding to the set set to a larger value, the smaller the absolute value of the difference between the change desired degree and V ave in the set of interest, the value of alpha in terms " ⁇ ⁇ (k i -x i ) 2" corresponding to the set To a small value.
  • the absolute value of the difference between the desired degree of change and Vave becomes the largest when the desired degree of change is V 1 or V 2 . Therefore, when the degree of change desired is V 1 or V 2 , the term creation unit 3 sets the value of ⁇ to ⁇ max (1 in this example). Further, the absolute value of the difference between the desired degree of change and Vave becomes the smallest when the desired degree of change is Vave . Therefore, when the degree of change desired is Vave , the term creation unit 3 sets the value of ⁇ to ⁇ min (0 in this example). Then, the term creation unit 3 sets ⁇ to a larger value as the degree of desired change is closer to V 1 or V 2. Further, the term creation unit 3 sets ⁇ to a smaller value as the degree of desired change is closer to Ave.
  • a set of spin identification information and a desired degree of change may be determined for each spin, and each set may be input to the input unit 2.
  • a set of identification information “12” and change desired degree “V 1 ” is defined.
  • the set of the identification information "i” and the change desired degree "V 3 " may be defined for the set other than the spin 12.
  • V 3 is a slightly smaller value than V 2. 4
  • the magnitude of the value of V 3 and is a schematic diagram showing the value of ⁇ corresponding to various changes desired degree.
  • ⁇ 3 be the value of ⁇ corresponding to the degree of change desired “V 3 ” (see FIG. 4).
  • the term creation unit 3 creates the term ⁇ max ⁇ (0 ⁇ x 12 ) 2 for the spin 12 as described above. Also, term creation unit 3, for each spin than spin 12, to create a section that ⁇ 3 ⁇ (k i -x i ) 2. K i in this section is a value that indicates the state of the spin i in solution shown in Figure 8.
  • the item creation unit 3 creates each item shown below (see FIG. 8). However, in the following, some items are omitted.
  • V 3 is a slightly smaller value than V 2 , and ⁇ max > ⁇ 3 . Therefore, when the energy function created as described later is applied to simulated annealing and the solution is obtained again, the state of each spin other than spin 12 may have changed from the state shown in FIG. Yes, but not significantly changed.
  • the energy function derivation unit 4 is a term created by the term creation unit 3 for each set input to the input QUA energy function (that is, the energy function of the QUA used to obtain the input solution). To generate a new energy function by adding.
  • the term creation unit 3 takes in the energy function of the QUAO represented by the equation (2) via the input unit 2. Further, it is assumed that the term creation unit 3 takes in the solution shown in FIG. 8 and the set corresponding to each spin (the set of the identification information and the degree of desired change) and creates the above-mentioned plurality of terms.
  • the energy function derivation unit 4 derives a new energy function by adding the above-mentioned plurality of terms to the right side of the equation (2). This new energy function is expressed by the following equation (3).
  • the energy function derivation unit 4 newly adds the term created by the term creation unit 3 to the input energy function. All you have to do is generate an energy function.
  • the state of each spin is represented by "1" or "-1".
  • the input unit 2 is, for example, data recorded on a data recording medium such as an optical disk (in this embodiment, a solution to a combinatorial optimization problem, an energy function used to obtain the solution, and spin identification information. And it may be realized by a data reading device that reads a set of degree of change desired. However, the input unit 2 is not limited to such a data reading device, and may be an input device such as a keyboard for the user to input such data.
  • the term creation unit 3 and the energy function derivation unit 4 are realized by, for example, a CPU (Central Processing Unit) of a computer that operates according to an energy function derivation program.
  • the CPU may read the energy function derivation program from a program recording medium such as a computer program storage device, and operate as the term creation unit 3 and the energy function derivation unit 4 according to the energy function derivation program.
  • FIG. 5 is a flowchart showing an example of the processing progress of the embodiment of the present invention. The matters already explained will be omitted as appropriate.
  • the term creation unit 3 takes in the solution of the combinatorial optimization problem, the energy function of the QUA used to obtain the solution, the spin identification information, and the set of the degree of change desire via the input unit 2. (Step S1).
  • the number of sets of spin identification information and change desire may be one or more.
  • Step S2 term creation unit 3, for each set of spin identity and changes desired degree, to create a form of section of ⁇ ⁇ (k i -x i) 2 ( Step S2). Since the method for determining ki and ⁇ has already been described, the description thereof will be omitted here.
  • step S3 the energy function derivation unit 4 derives a new energy function by adding each term created in step S2 to the energy function taken in step S1 (step S3).
  • step S3 for example, an energy function as illustrated in the equation (3) is derived.
  • the energy function derived in step S3 can be converted into an energy function of the form shown in the equation (2).
  • the energy function shown in the equation (3) can be converted into the energy function of the QUAO shown in the following equation (4).
  • the newly derived energy function can be converted into the energy function of the form shown in the equation (1).
  • the form shown in the equation (2) and the form shown in the equation (1) are the forms of the energy function when applied to annealing (for example, simulated annealing).
  • the energy function derivation device 1 may include a conversion unit (not shown) that converts the energy function derived in step S3 into an energy function of the form when it is applied to annealing.
  • This conversion unit is also realized, for example, by the CPU of a computer that operates according to the energy function derivation program.
  • the energy function applied to the format when applied to annealing is input to the solver that performs annealing. Then, the solver performs annealing using the energy function and calculates a new solution. The solution is modified as desired by the user.
  • the solver may be provided with a conversion unit (not shown) that converts the energy function derived in step S3 into an energy function of the form when applied to annealing.
  • the energy function derived in step S3 may be input to the solver as it is.
  • the conversion unit provided in the solver converts the input energy function into an energy function in the form when it is applied to annealing, and the solver may perform annealing using the converted energy function. ..
  • the term creation unit 3 creates a term in the form of ⁇ ⁇ (ki i ⁇ x i ) 2 for each set of spin identification information and change desired degree. This section is created according to the degree of change desired for the spin state identified by the identification information.
  • the energy function derivation unit 4 derives a new energy function by adding each term created by the term creation unit 3 to the input energy function. Therefore, the new energy function reflects the degree of desire for change. Therefore, the desired change is made to the solution newly obtained by annealing based on the new energy function. Therefore, in the present embodiment, when it is desired to change the solution of the combinatorial optimization problem once obtained, it is possible to derive an energy function obtained by making a desired change to the solution.
  • FIG. 6 is a schematic block diagram showing a configuration example of a computer according to the energy function derivation device 1 according to the embodiment of the present invention.
  • the computer 1000 includes a CPU 1001, a main storage device 1002, an auxiliary storage device 1003, an interface 1004, and a data reading device 1005.
  • the energy function derivation device 1 of the embodiment of the present invention is realized by the computer 1000.
  • the operation of the energy function derivation device 1 is stored in the auxiliary storage device 1003 in the form of an energy function derivation program.
  • the CPU 1001 reads the energy function derivation program from the auxiliary storage device 1003, expands the energy function derivation program to the main storage device 1002, and executes the process described in the above embodiment according to the energy function derivation program.
  • Auxiliary storage 1003 is an example of a non-temporary tangible medium.
  • Other examples of non-temporary tangible media include magnetic disks, optical magnetic disks, CD-ROMs (Compact Disk Read Only Memory), DVD-ROMs (Digital Versatile Disk Read Only Memory), which are connected via interface 1004. Examples include semiconductor memory.
  • the distributed computer 1000 may expand the program to the main storage device 1002 and execute the process described in the above embodiment according to the program. ..
  • each component may be realized by a general-purpose or dedicated circuit (circuitry), a processor, or a combination thereof. These may be composed of a single chip or may be composed of a plurality of chips connected via a bus. A part or all of each component may be realized by the combination of the circuit or the like and the program described above.
  • the plurality of information processing devices and circuits may be centrally arranged or distributed.
  • the information processing device, the circuit, and the like may be realized as a form in which each is connected via a communication network, such as a client-and-server system and a cloud computing system.
  • FIG. 7 is a block diagram showing an outline of the energy function derivation device of the present invention.
  • the energy function deriving device of the present invention includes a term creating means 73 and an energy function deriving means 74.
  • the term creation means 73 (for example, the term creation unit 3) is an energy function of a model that expresses the solution of a combinatorial optimization problem and the state of each spin by a first value or a second value, and solves the solution. Discrimination information given the energy function used in the acquisition and a set of change wishes indicating the degree to which the user wants to change the spin state corresponding to the spin identification information and the identification information in the solution. And for each set of change preference, create a term based on the spin state corresponding to the identification information in the solution and the change preference.
  • the energy function deriving means 74 (for example, the energy function deriving unit 4) derives a new energy function by adding the terms created for each set by the term creating means 73 to the given energy function.
  • Section creating unit 73 represents the identity of a given spin and i, represents the spin states corresponding to the identification information in the solution, or a value corresponding to an inverted state of the relevant state k i, the a variable representing the spin state corresponding to the identification information represents a x i, the value according to the changes desired degree forming the identification information and set when expressed as alpha, for each of the identification information and the modification desiring degree set, You may create a term of the form ⁇ ⁇ (ki i ⁇ x i ) 2.
  • the change desired degree is the spin state corresponding to the identification information from the first predetermined value (for example, V 1 ) when the spin state corresponding to the identification information paired with the change desired degree is absolutely changed. It is a continuous value up to the second predetermined value (for example, V 2 ) when it is not changed, and is given when the term creating means 73 sets the average value of the first predetermined value and the second predetermined value as Vave.
  • the present invention is suitably applied to the derivation of the energy function when re-finding the solution of the combinatorial optimization problem.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Data Mining & Analysis (AREA)
  • Mathematical Physics (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • General Engineering & Computer Science (AREA)
  • Computational Mathematics (AREA)
  • Software Systems (AREA)
  • Algebra (AREA)
  • Operations Research (AREA)
  • Databases & Information Systems (AREA)
  • Evolutionary Biology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Probability & Statistics with Applications (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Computing Systems (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

項作成手段73は、組合せ最適化問題の解と、個々のスピンの状態を第1の値または第2の値で表すモデルのエネルギー関数であって、その解を得る際に用いられたエネルギー関数と、スピンの識別情報およびその解におけるその識別情報に対応するスピンの状態をユーザが変更したい度合いを示す変更希望度の組とが与えられた場合に、識別情報および変更希望度の組毎に、その解における識別情報に対応するスピンの状態と、変更希望度とに基づいた項を作成する。エネルギー関数導出手段74は、項作成手段73が組毎に作成した項を、与えられたエネルギー関数に加えることによって新たなエネルギー関数を導出する。

Description

エネルギー関数導出装置、方法、および、コンピュータ読取可能な記録媒体
 本発明は、個々のスピンの状態を第1の値または第2の値で表すモデルのエネルギー関数を導出するエネルギー関数導出装置、エネルギー関数導出方法、および、エネルギー関数導出プログラムを記録したコンピュータ読取可能な記録媒体に関する。
 組合せ最適化問題の解は、イジングモデルのエネルギー関数またはQUBO(Quadratic Unconstrained Binary Optimization )のエネルギー関数を、例えば、シミュレーテッドアニーリングに適用することによって求めることができる。
 イジングモデルは、個々のスピンによって磁性体の振る舞いを表す統計力学上のモデルであるが、組合せ最適化問題の求解にも適用可能である。イジングモデルでは、個々のスピンの状態は、“1”または“-1”で表される。
 また、個々のスピンの状態を“1”または“0”で表すモデルとしてQUBOも知られている。
 なお、イジングモデルにおける“1”やQUBOにおける“1”を第1の値と称することができる。そして、イジングモデルにおける“-1”やQUBOにおける“0”を第2の値と称することができる。
 イジングモデルのエネルギー関数と、QUBOのエネルギー関数とは、相互に変換可能である。
 現状では、主に、イジングモデルのエネルギー関数やQUBOのエネルギー関数を入力として、一般的なコンピュータを用いて、シミュレーテッドアニーリングで組合せ最適化問題の解が求められている。この手法の例を説明する。
 まず、組合せ最適化問題におけるエネルギーを表す式を作成する。組合せ最適化問題におけるエネルギーを表す式の作成を、定式化と称する場合がある。
 組合せ最適化問題におけるエネルギーを表す式を作成したならば、その式を、イジングモデルのエネルギー関数、または、QUBOのエネルギー関数に変換する。この変換方法は、公知である。
 イジングモデルのエネルギー関数は、以下の式(1)のように表される。
Figure JPOXMLDOC01-appb-M000001
 式(1)におけるx,xは、スピンの状態を表す変数である。この変数における添え字によってスピンが識別される。Jijは、i,jに応じた定数であり、hは、iに応じた定数である。
 また、QUBOのエネルギー関数は、以下の式(2)のように表される。
Figure JPOXMLDOC01-appb-M000002
 式(2)におけるx,xは、スピンの状態を表す変数である。この変数における添え字によってスピンが識別される。Qijは、i,jに応じた定数である。
 イジングモデルのエネルギー関数またはQUBOのエネルギー関数が得られたならば、そのエネルギー関数をシミュレーテッドアニーリングに適用し、エネルギーが最小になるときの各スピンの状態を特定する。そして、その各スピンの状態が、組合せ最適化問題の解として解釈される。
 なお、特許文献1には、初期動作条件を用いてイジングモデルの基底状態を探索することが記載されている。
特開2019-160169号公報
 以下、組合せ最適化問題の解を得ようとする者をユーザと記す。
 ある組合せ最適化問題の解が得られたとする。しかし、何等かの状況の変化に応じて、その解の少なくとも一部を変更したいとユーザが考える場合がある。以下では、このような状況を説明する。また、以下の説明では、組合せ最適化問題の例として、勤務シフト作成問題を例にする。本例では、「毎日2人以上勤務すること」、「3日以上の連続勤務は禁止」、「2日以上の連休は禁止」という制約が反映された、勤務シフト作成問題におけるエネルギーを表す式が作成され、その式が、QUBOのエネルギー関数に変換されたものとする。そして、そのエネルギー関数がシミュレーテッドアニーリングに適用され、図8に示す解が得られたものとする。
 図8に示す表では、横方向に曜日を示す。また、図8に示す表において、縦方向に示すA,B,Cは、勤務者を示す。また、図8に示す表では、スピン1~15の15個のスピンの各状態が“1”または“0”で表されている。本例では、“1”は出勤することを意味し、“0”は出勤しないことを意味しているものとする。
 図8に示す解が得られた後、勤務者Cに火曜日に急用ができたため、勤務者Cが火曜日に休暇となるように変更したいとユーザが考える場合が生じ得る。すなわち、ユーザが、スピン12の値を“1”から“0”に変更したいと考える場合が生じ得る。また、この場合において、ユーザは、他の勤務者の出勤状況はできるだけ変更したくないという希望も持っていると考えられる。
 上記の例は、何等かの状況の変化に応じて、一旦得られた組合せ最適化問題の解の少なくとも一部を変更したいとユーザが考えるケースの例である。
 上記のように例示されるケースに対応できるように、一旦得られた組合せ最適化問題の解を変更したい場合に、その解に対して所望の変更を加えた解が得られるエネルギー関数を導出できることが好ましい。
 そこで、本発明は、一旦得られた組合せ最適化問題の解を変更したい場合に、その解に対して所望の変更を加えた解が得られるエネルギー関数を導出できるエネルギー関数導出装置、エネルギー関数導出方法、および、エネルギー関数導出プログラムを記録したコンピュータ読取可能な記録媒体を提供することを目的とする。
 本発明によるエネルギー関数導出装置は、組合せ最適化問題の解と、個々のスピンの状態を第1の値または第2の値で表すモデルのエネルギー関数であって、前記解を得る際に用いられたエネルギー関数と、スピンの識別情報および前記解における前記識別情報に対応するスピンの状態をユーザが変更したい度合いを示す変更希望度の組とが与えられた場合に、識別情報および変更希望度の組毎に、前記解における識別情報に対応するスピンの状態と、変更希望度とに基づいた項を作成する項作成手段と、前記項作成手段が組毎に作成した項を、前記エネルギー関数に加えることによって新たなエネルギー関数を導出するエネルギー関数導出手段とを備えることを特徴とする。
 本発明によるエネルギー関数導出方法は、組合せ最適化問題の解と、個々のスピンの状態を第1の値または第2の値で表すモデルのエネルギー関数であって、前記解を得る際に用いられたエネルギー関数と、スピンの識別情報および前記解における前記識別情報に対応するスピンの状態をユーザが変更したい度合いを示す変更希望度の組とが与えられた場合に、識別情報および変更希望度の組毎に、前記解における識別情報に対応するスピンの状態と、変更希望度とに基づいた項を作成し、組毎に作成した項を、前記エネルギー関数に加えることによって新たなエネルギー関数を導出することを特徴とする。
 本発明によるコンピュータ読取可能な記録媒体は、コンピュータに、組合せ最適化問題の解と、個々のスピンの状態を第1の値または第2の値で表すモデルのエネルギー関数であって、前記解を得る際に用いられたエネルギー関数と、スピンの識別情報および前記解における前記識別情報に対応するスピンの状態をユーザが変更したい度合いを示す変更希望度の組とが与えられた場合に、識別情報および変更希望度の組毎に、前記解における識別情報に対応するスピンの状態と、変更希望度とに基づいた項を作成する項作成処理、および、前記項作成処理で組毎に作成した項を、前記エネルギー関数に加えることによって新たなエネルギー関数を導出するエネルギー関数導出処理を実行させるためのエネルギー関数導出プログラムを記録したコンピュータ読取可能な記録媒体である。
 本発明によれば、一旦得られた組合せ最適化問題の解を変更したい場合に、その解に対して所望の変更を加えた解が得られるエネルギー関数を導出できる。
本発明の実施形態のエネルギー関数導出装置の構成例を示すブロック図である。 変更希望度の変化による意味の変化を示す模式図である。 およびαの決定方法を示す模式図である。 の値の大きさ、および、種々の変更希望度に対応するαの値を示す模式図である。 本発明の実施形態の処理経過の例を示すフローチャートである。 本発明の実施形態のエネルギー関数導出装置1に係るコンピュータの構成例を示す概略ブロック図である。 本発明のエネルギー関数導出装置の概要を示すブロック図である。 組合せ最適化問題の解の一例を示す模式図である。
 以下、本発明の実施形態を図面を参照して説明する。
 以下の説明では、QUBOのエネルギー関数をアニーリング(例えば、シミュレーテッドアニーリング)に適用することで組合せ最適化問題の解が求められる場合を例にして説明する。ただし、本発明は、イジングモデルのエネルギー関数をアニーリングに適用することで組合せ最適化問題の解が求められる場合にも適用可能である。既に述べたように、イジングモデルにおける“1”やQUBOにおける“1”を第1の値と称することができる。そして、イジングモデルにおける“-1”やQUBOにおける“0”を第2の値と称することができる。
 図1は、本発明の実施形態のエネルギー関数導出装置の構成例を示すブロック図である。エネルギー関数導出装置1は、入力部2と、項作成部3と、エネルギー関数導出部4とを備える。
 入力部2には、既に得られている組合せ最適化問題の解と、その解を得る際に用いられたQUBOのエネルギー関数とが入力される。なお、入力部2には、既に得られている組合せ最適化問題の解と、その解を得る際に用いられたイジングモデルのエネルギー関数とが入力されてもよい。
 ここで、入力部2に入力される解は、ユーザが、少なくとも一部を変更したいと考えている解である。
 入力部2には、さらに、スピンの識別情報および変更希望度の組も入力される。入力部2に入力されるスピンの識別情報および変更希望度の組の数は、1つであっても、複数であってもよい。解における全てのスピンについてスピンの識別情報および変更希望度の組が定められ、その全ての組が入力部2に入力されてもよい。
 スピンの識別情報と組をなす変更希望度とは、入力された解におけるその識別情報に対応するスピンの状態をユーザが変更したい度合いを示す値である。
 図2は、変更希望度の変化による意味の変化を示す模式図である。変更希望度は、変更希望度と組をなす識別情報に対応するスピンの状態を絶対に変えることを意味する第1所定値(以下、Vと記す。)から、変更希望度と組をなす識別情報に対応するスピンの状態を絶対に変えないことを意味する第2所定値(以下、Vと記す。)までの連続値である。V>Vであっても、V>Vであってもよい。以下では、V>Vである場合を例にして説明する。また、VとVの平均値をVaveと記す。
 変更希望度がVである場合、上記のように、変更希望度と組をなす識別情報に対応するスピンの状態を絶対に変えることを意味する。変更希望度が、VからVaveに近づくにつれて、変更希望度は、スピンの状態を変えてもよいという意味になり、スピンの状態を変えたい度合いは減少していく。また、変更希望度がVである場合、上記のように、変更希望度と組をなす識別情報に対応するスピンの状態を絶対に変えないことを意味する。変更希望度が、VからVaveに近づくにつれて、変更希望度は、スピンの状態を変えなくてもよいという意味になり、スピンの状態を変えたくない度合いは減少していく。変更希望度が、Vaveであるということは、スピンの状態を変えても変えなくてもよいことを意味する。
 項作成部3は、入力部2を介して、既に得られている組合せ最適化問題の解と、その解を得る際に用いられたQUBOのエネルギー関数と、スピンの識別情報および変更希望度の組とを取り込む。前述のように、スピンの識別情報および変更希望度の組の数は、1つであっても、複数であってもよい。
 そして、項作成部3は、スピンの識別情報および変更希望度の組毎に、取り込んだ解における識別状態に対応するスピンの状態と、変更希望度とに基づいた項を作成する。
 具体的には、項作成部3は、スピンの識別情報および変更希望度の組毎に、α×(k-xという形式の項を作成する。
 iは、取り込んだ組におけるスピンの識別情報である。
 kは、取り込んだ解におけるその識別情報iに対応するスピンの状態、または、その状態を反転させた状態に該当する値である。本例では、kは、“1”または“0”のいずれかの値をとる。
 xは、その識別情報iに対応するスピンの状態を表す変数である。
 αは、その識別情報iと組をなす変更希望度に応じた値である。
 項作成部3は、組毎に、α×(k-xという形式の項を作成する。このときにおける、kおよびαの決定方法について説明する。図3は、kおよびαの決定方法を示す模式図である。
 まず、kの決定方法について説明する。
 項作成部3は、変更希望度が、VaveとVとの間の値、または、Vならば、kを、取り込んだ解における識別情報iに対応するスピンの状態を反転させた状態に該当する値に定める。例えば、図8に例示する解を取り込んでいるとする。そして、着目している組におけるスピンの識別情報が“12”であるとする。また、その識別情報“12”と組をなす変更希望度が、VaveとVとの間の値であるとする。図8に例示する解において、スピン12の状態“1”を反転させた状態は“0”である。従って、この場合、項作成部3は、k12の値を“0”に定める。変更希望度がVである場合も同様である。
 項作成部3は、変更希望度が、VaveとVとの間の値、または、Vならば、kを、取り込んだ解における識別情報iに対応するスピンの状態に該当する値に定める。例えば、図8に例示する解を取り込んでいるとする。そして、着目している組におけるスピンの識別情報が“2”であるとする。また、その識別情報“2”と組をなす変更希望度が、VaveとVとの間の値であるとする。図8に例示する解において、スピン2の状態は“1”である。従って、この場合、項作成部3は、kの値を“1”に定める。変更希望度がVである場合も同様である。
 なお、変更希望度がVaveであるならば、項作成部3は、kの値を“1”と“0”のいずれに定めてもよい。
 次に、αの決定方法について説明する。αの取り得る最大値をαmaxと記し、αの取り得る最小値をαminと記す。ここでは、αmax=1であり、αmin=0である場合を例にして説明する。
 項作成部3は、着目している組における変更希望度とVaveとの差の絶対値が大きいほど、その組に対応する項“α×(k-x”におけるαの値を大きな値に定め、着目している組における変更希望度とVaveとの差の絶対値が小さいほど、その組に対応する項“α×(k-x”におけるαの値を小さな値に定める。
 変更希望度とVaveとの差の絶対値が最も大きくなるのは、変更希望度がVまたはVであるときである。従って、変更希望度がVまたはVであるときには、項作成部3は、αの値をαmax(本例では、1)に定める。また、変更希望度とVaveとの差の絶対値が最も小さくなるのは、変更希望度がVaveであるときである。従って、変更希望度がVaveであるときには、項作成部3は、αの値をαmin(本例では、0)に定める。そして、項作成部3は、変更希望度が、VまたはVに近い値であるほど、αを大きな値に定める。また、項作成部3は、変更希望度がVaveに近い値であるほど、αを小さな値に定める。
 ここで、スピンの識別情報および変更希望度の組として、1つの組が入力された場合の例を示す。この組は、スピンの識別情報“12”および変更希望度“V”の組であるとする。また、組合せ最適化問題の解として、図8に示す解が入力されているものとする。スピンの識別情報“12”および変更希望度“V”の組が入力されたということは、ユーザは、図8に示すスピン12の状態を、 “1”から“0”に絶対に変更したいと考えている。項作成部3は、この組に関して、αmax×(0-x12という項を作成する。なお、この場合、後述のように作成されたエネルギー関数をシミュレーテッドアニーリングに適用して再度、解を求めた場合、スピン12の状態は“0”になるが、他のスピンの状態は、“1”または“0”のいずれになるかは分からない。
 ユーザは、スピン12以外のスピンの状態をきるだけ変更したくないという希望も持っていると考えられる。この場合、スピン毎に、スピンの識別情報および変更希望度の組を定め、その各組を入力部2に入力すればよい。ここで、スピン12に関しては、識別情報“12”および変更希望度“V”という組が定められている。そして、スピン12以外の識別情報を便宜的にiと表すことにすると、スピン12以外の組に関しては、識別情報“i”および変更希望度“V”という組が定めておけばよい。ここで、Vは、Vよりもやや小さな値である。図4は、Vの値の大きさ、および、種々の変更希望度に対応するαの値を示す模式図である。変更希望度“V”に対応するαの値をαとする(図4参照)。ここで、αmax>αである。
 この場合、項作成部3は、スピン12に関しては、前述のように、αmax×(0-x12という項を作成する。また、項作成部3は、スピン12以外の各スピンに関しては、α×(k―xという項を作成する。この項におけるkは、図8に示す解におけるスピンiの状態を示す値である。
 具体的には、項作成部3は、以下に示す各項を作成する(図8参照)。ただし、以下では、一部の項の明示を省略している。
 α×(0―x
 α×(1―x
 α×(1―x
 α×(0―x
 α×(1―x
  :
 α×(1―x11
 αmax×(0―x12
 α×(0―x13
 α×(1―x14
 α×(1―x15
 Vは、Vよりもやや小さな値であり、αmax>αである。従って、後述のように作成されたエネルギー関数をシミュレーテッドアニーリングに適用して再度、解を求めた場合、スピン12以外の各スピンの状態は、図8に示す状態から変化している可能性があるが、大幅に変更されることはない。
 以下の説明では、項作成部3が、上記の複数の項を作成した場合を例にして説明する。
 エネルギー関数導出部4は、入力されたQUBOのエネルギー関数(すなわち、入力された解を得る際に用いられたQUBOのエネルギー関数)に、入力された組毎に項作成部3によって作成された項を加算することによって、新たなエネルギー関数を生成する。
 例えば、項作成部3が、入力部2を介して、式(2)に示すQUBOのエネルギー関数を取り込んだとする。また、項作成部3は、図8に示す解や、個々のスピンに対応する組(識別情報および変更希望度の組)を取り込み、上記の複数の項を作成したとする。この場合、エネルギー関数導出部4は、式(2)の右辺に、上記の複数の項を加算することによって、新たなエネルギー関数を導出する。この新たなエネルギー関数は、以下の式(3)のように表される。
Figure JPOXMLDOC01-appb-M000003
 なお、入力されたエネルギー関数がイジングモデルのエネルギー関数である場合にも、エネルギー関数導出部4は、入力されたエネルギー関数に、項作成部3によって作成された項を加算することによって、新たなエネルギー関数を生成すればよい。なお、この場合、入力される解において、各スピンの状態は、“1”または“-1”で表されている。そして、項作成部3は、α×(k-xという形式の項におけるkの値を、“1”または“-1”に定める。その他の点は、既に説明した事項と同様である。
 入力部2は、例えば、光学ディスクなどのデータ記録媒体に記録されたデータ(本実施形態では、組合せ最適化問題の解、その解を得る際に用いられたエネルギー関数、並びに、スピンの識別情報および変更希望度の組)を読み込むデータ読み込み装置によって実現されてもよい。ただし、入力部2は、そのようなデータ読み込み装置に限定されず、ユーザがそのようなデータを入力するためのキーボード等の入力デバイスであってもよい。
 項作成部3およびエネルギー関数導出部4は、例えば、エネルギー関数導出プログラムに従って動作するコンピュータのCPU(Central Processing Unit )によって実現される。この場合、CPUは、コンピュータのプログラム記憶装置等のプログラム記録媒体からエネルギー関数導出プログラムを読み込み、そのエネルギー関数導出プログラムに従って、項作成部3およびエネルギー関数導出部4として動作すればよい。
 次に、処理経過について説明する。図5は、本発明の実施形態の処理経過の例を示すフローチャートである。既に説明した事項については、適宜、説明を省略する。
 項作成部3は、組合せ最適化問題の解と、その解を得る際に用いられたQUBOのエネルギー関数と、スピンの識別情報および変更希望度の組とを、入力部2を介して、取り込む(ステップS1)。スピンの識別情報および変更希望度の組の数は、1つであっても、複数であってもよい。
 次に、項作成部3は、スピンの識別情報および変更希望度の組毎に、α×(k-xという形式の項を作成する(ステップS2)。kおよびαの決定方法については、既に説明したので、ここでは、説明を省略する。
 次に、エネルギー関数導出部4は、ステップS1で取り込まれたエネルギー関数に、ステップS2で作成された各項を加えることによって、新たなエネルギー関数を導出する(ステップS3)。ステップS3では、例えば、式(3)に例示するようなエネルギー関数が導出される。
 ステップS3で導出されたエネルギー関数は、式(2)に示す形式のエネルギー関数に変換できる。例えば、式(3)に示すエネルギー関数は、以下の式(4)に示すQUBOのエネルギー関数に変換することができる。
Figure JPOXMLDOC01-appb-M000004
 イジングモデルのエネルギー関数を用いる場合にも、新たに導出されたエネルギー関数を式(1)に示す形式のエネルギー関数に変換することができる。式(2)に示す形式や、式(1)に示す形式は、アニーリング(例えば、シミュレーテッドアニーリング)に適用される際のエネルギー関数の形式である。
 エネルギー関数導出装置1は、上記のように、ステップS3で導出されたエネルギー関数を、アニーリングに適用される際の形式のエネルギー関数に変換する変換部(図示略)を備えていてもよい。この変換部も、例えば、エネルギー関数導出プログラムに従て動作するコンピュータのCPUによって実現される。
 アニーリングに適用される際の形式に適用されたエネルギー関数は、アニーリングを実行するソルバに入力される。すると、そのソルバは、そのエネルギー関数を用いてアニーリングを実行し、新たに解を算出する。この解には、ユーザの所望の変更が加えられている。
 なお、ステップS3で導出されたエネルギー関数を、アニーリングに適用される際の形式のエネルギー関数に変換する変換部(図示略)が、ソルバに設けられていてもよい。この場合には、ステップS3で導出されたエネルギー関数をそのままソルバに入力してよい。そして、ソルバに設けられた変換部が、入力されたエネルギー関数を、アニーリングに適用される際の形式のエネルギー関数に変換し、ソルバが、変換後のエネルギー関数を用いてアニーリングを実行すればよい。
 本実施形態では、項作成部3は、スピンの識別情報および変更希望度の組毎に、α×(k-xという形式の項を作成する。この項は、識別情報によって特定されるスピンの状態に対する変更希望度に応じて作成される。そして、エネルギー関数導出部4は、項作成部3によって作成された各項を、入力されたエネルギー関数に加えることによって、新たなエネルギー関数を導出する。従って、その新たな新たなエネルギー関数には、変更希望度が反映されている。よって、その新たなエネルギー関数に基づいてアニーリングによって新たに求められた解には、所望の変更が加えられている。従って、本実施形態では、一旦得られた組合せ最適化問題の解を変更したい場合に、その解に対して所望の変更を加えた解が得られるエネルギー関数を導出できる。
 図6は、本発明の実施形態のエネルギー関数導出装置1に係るコンピュータの構成例を示す概略ブロック図である。コンピュータ1000は、CPU1001と、主記憶装置1002と、補助記憶装置1003と、インタフェース1004と、データ読み込み装置1005とを備える。
 本発明の実施形態のエネルギー関数導出装置1は、コンピュータ1000によって実現される。エネルギー関数導出装置1の動作は、エネルギー関数導出プログラムの形式で補助記憶装置1003に記憶されている。CPU1001は、そのエネルギー関数導出プログラムを補助記憶装置1003から読み出して、そのエネルギー関数導出プログラムを主記憶装置1002に展開し、そのエネルギー関数導出プログラムに従って、上記の実施形態で説明した処理を実行する。
 補助記憶装置1003は、一時的でない有形の媒体の例である。一時的でない有形の媒体の他の例として、インタフェース1004を介して接続される磁気ディスク、光磁気ディスク、CD-ROM(Compact Disk Read Only Memory )、DVD-ROM(Digital Versatile Disk Read Only Memory )、半導体メモリ等が挙げられる。また、プログラムが通信回線によってコンピュータ1000に配信される場合、配信を受けたコンピュータ1000がそのプログラムを主記憶装置1002に展開し、そのプログラムに従って上記の実施形態で説明した処理を実行してもよい。
 また、各構成要素の一部または全部は、汎用または専用の回路(circuitry )、プロセッサ等やこれらの組合せによって実現されてもよい。これらは、単一のチップによって構成されてもよいし、バスを介して接続される複数のチップによって構成されてもよい。各構成要素の一部または全部は、上述した回路等とプログラムとの組合せによって実現されてもよい。
 各構成要素の一部または全部が複数の情報処理装置や回路等により実現される場合には、複数の情報処理装置や回路等は集中配置されてもよいし、分散配置されてもよい。例えば、情報処理装置や回路等は、クライアントアンドサーバシステム、クラウドコンピューティングシステム等、各々が通信ネットワークを介して接続される形態として実現されてもよい。
 次に、本発明の概要について説明する。図7は、本発明のエネルギー関数導出装置の概要を示すブロック図である。本発明のエネルギー関数導出装置は、項作成手段73と、エネルギー関数導出手段74とを備える。
 項作成手段73(例えば、項作成部3)は、組合せ最適化問題の解と、個々のスピンの状態を第1の値または第2の値で表すモデルのエネルギー関数であって、その解を得る際に用いられたエネルギー関数と、スピンの識別情報およびその解におけるその識別情報に対応するスピンの状態をユーザが変更したい度合いを示す変更希望度の組とが与えられた場合に、識別情報および変更希望度の組毎に、その解における識別情報に対応するスピンの状態と、変更希望度とに基づいた項を作成する。
 エネルギー関数導出手段74(例えば、エネルギー関数導出部4)は、項作成手段73が組毎に作成した項を、与えられたエネルギー関数に加えることによって新たなエネルギー関数を導出する。
 そのような構成によって、一旦得られた組合せ最適化問題の解を変更したい場合に、その解に対して所望の変更を加えた解が得られるエネルギー関数を導出できる。
 項作成手段73が、与えられたスピンの識別情報をiと表し、解におけるその識別情報に対応するスピンの状態、または、当該状態を反転させた状態に該当する値をkと表し、その識別情報に対応するスピンの状態を表す変数をxと表し、その識別情報と組をなす変更希望度に応じた値をαと表したときに、識別情報および変更希望度の組毎に、α×(k-xという形式の項を作成してもよい。
 変更希望度は、当該変更希望度と組をなす識別情報に対応するスピンの状態を絶対に変える場合の第1所定値(例えば、V)からその識別情報に対応するスピンの状態を絶対に変えない場合の第2所定値(例えば、V)までの連続値であり、項作成手段73が、第1所定値と第2所定値との平均値をVaveとした場合に、与えられたスピンの識別情報iと組をなす変更希望度がVaveと第1所定値との間の値または第1所定値であるならばkを、解におけるその識別情報に対応するスピンの状態を反転させた状態に該当する値に定め、与えられたスピンの識別情報iと組をなす変更希望度がVaveと第2所定値との間の値または第2所定値であるならばkを、解におけるその識別情報に対応するスピンの状態に該当する値に定め、変更希望度とVaveとの差の絶対値が大きいほどαを大きな値に定め、変更希望度とVaveとの差の絶対値が小さいほどαを小さな値に定めてもよい。
 以上、実施形態を参照して本願発明を説明したが、本願発明は上記の実施形態に限定されるものではない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更をすることができる。
産業上の利用の可能性
 本発明は、組合せ最適化問題の解を求め直す場合におけるエネルギー関数の導出に好適に適用される。
 1 エネルギー関数導出装置
 2 入力部
 3 項作成部
 4 エネルギー関数導出部

Claims (9)

  1.  組合せ最適化問題の解と、個々のスピンの状態を第1の値または第2の値で表すモデルのエネルギー関数であって、前記解を得る際に用いられたエネルギー関数と、スピンの識別情報および前記解における前記識別情報に対応するスピンの状態をユーザが変更したい度合いを示す変更希望度の組とが与えられた場合に、識別情報および変更希望度の組毎に、前記解における識別情報に対応するスピンの状態と、変更希望度とに基づいた項を作成する項作成手段と、
     前記項作成手段が組毎に作成した項を、前記エネルギー関数に加えることによって新たなエネルギー関数を導出するエネルギー関数導出手段とを備える
     ことを特徴とするエネルギー関数導出装置。
  2.  前記項作成手段は、
     与えられたスピンの識別情報をiと表し、前記解における前記識別情報に対応するスピンの状態、または、当該状態を反転させた状態に該当する値をkと表し、前記識別情報に対応するスピンの状態を表す変数をxと表し、前記識別情報と組をなす変更希望度に応じた値をαと表したときに、識別情報および変更希望度の組毎に、α×(k-xという形式の項を作成する
     請求項1に記載のエネルギー関数導出装置。
  3.  変更希望度は、当該変更希望度と組をなす識別情報に対応するスピンの状態を絶対に変える場合の第1所定値から前記識別情報に対応するスピンの状態を絶対に変えない場合の第2所定値までの連続値であり、
     前記項作成手段は、
     前記第1所定値と前記第2所定値との平均値をVaveとした場合に、
     与えられたスピンの識別情報iと組をなす変更希望度がVaveと第1所定値との間の値または第1所定値であるならばkを、前記解における前記識別情報に対応するスピンの状態を反転させた状態に該当する値に定め、
     与えられたスピンの識別情報iと組をなす変更希望度がVaveと第2所定値との間の値または第2所定値であるならばkを、前記解における前記識別情報に対応するスピンの状態に該当する値に定め、
     変更希望度とVaveとの差の絶対値が大きいほどαを大きな値に定め、変更希望度とVaveとの差の絶対値が小さいほどαを小さな値に定める
     請求項2に記載のエネルギー関数導出装置。
  4.  組合せ最適化問題の解と、個々のスピンの状態を第1の値または第2の値で表すモデルのエネルギー関数であって、前記解を得る際に用いられたエネルギー関数と、スピンの識別情報および前記解における前記識別情報に対応するスピンの状態をユーザが変更したい度合いを示す変更希望度の組とが与えられた場合に、識別情報および変更希望度の組毎に、前記解における識別情報に対応するスピンの状態と、変更希望度とに基づいた項を作成し、
     組毎に作成した項を、前記エネルギー関数に加えることによって新たなエネルギー関数を導出する
     ことを特徴とするエネルギー関数導出方法。
  5.  与えられたスピンの識別情報をiと表し、前記解における前記識別情報に対応するスピンの状態、または、当該状態を反転させた状態に該当する値をkと表し、前記識別情報に対応するスピンの状態を表す変数をxと表し、前記識別情報と組をなす変更希望度に応じた値をαと表したときに、識別情報および変更希望度の組毎に、α×(k-xという形式の項を作成する
     請求項4に記載のエネルギー関数導出方法。
  6.  変更希望度は、当該変更希望度と組をなす識別情報に対応するスピンの状態を絶対に変える場合の第1所定値から前記識別情報に対応するスピンの状態を絶対に変えない場合の第2所定値までの連続値であり、
     前記第1所定値と前記第2所定値との平均値をVaveとした場合に、
     与えられたスピンの識別情報iと組をなす変更希望度がVaveと第1所定値との間の値または第1所定値であるならばkを、前記解における前記識別情報に対応するスピンの状態を反転させた状態に該当する値に定め、
     与えられたスピンの識別情報iと組をなす変更希望度がVaveと第2所定値との間の値または第2所定値であるならばkを、前記解における前記識別情報に対応するスピンの状態に該当する値に定め、
     変更希望度とVaveとの差の絶対値が大きいほどαを大きな値に定め、変更希望度とVaveとの差の絶対値が小さいほどαを小さな値に定める
     請求項5に記載のエネルギー関数導出方法。
  7.  コンピュータに、
     組合せ最適化問題の解と、個々のスピンの状態を第1の値または第2の値で表すモデルのエネルギー関数であって、前記解を得る際に用いられたエネルギー関数と、スピンの識別情報および前記解における前記識別情報に対応するスピンの状態をユーザが変更したい度合いを示す変更希望度の組とが与えられた場合に、識別情報および変更希望度の組毎に、前記解における識別情報に対応するスピンの状態と、変更希望度とに基づいた項を作成する項作成処理、および、
     前記項作成処理で組毎に作成した項を、前記エネルギー関数に加えることによって新たなエネルギー関数を導出するエネルギー関数導出処理
     を実行させるためのエネルギー関数導出プログラムを記録したコンピュータ読取可能な記録媒体。
  8.  前記コンピュータに、
     前記項作成処理で、
     与えられたスピンの識別情報をiと表し、前記解における前記識別情報に対応するスピンの状態、または、当該状態を反転させた状態に該当する値をkと表し、前記識別情報に対応するスピンの状態を表す変数をxと表し、前記識別情報と組をなす変更希望度に応じた値をαと表したときに、識別情報および変更希望度の組毎に、α×(k-xという形式の項を作成させる
     エネルギー関数導出プログラムを記録した請求項7に記載のコンピュータ読取可能な記録媒体。
  9.  変更希望度は、当該変更希望度と組をなす識別情報に対応するスピンの状態を絶対に変える場合の第1所定値から前記識別情報に対応するスピンの状態を絶対に変えない場合の第2所定値までの連続値であり、
     前記コンピュータに、
     前記項作成処理で、
     前記第1所定値と前記第2所定値との平均値をVaveとした場合に、
     与えられたスピンの識別情報iと組をなす変更希望度がVaveと第1所定値との間の値または第1所定値であるならばkを、前記解における前記識別情報に対応するスピンの状態を反転させた状態に該当する値に定めさせ、
     与えられたスピンの識別情報iと組をなす変更希望度がVaveと第2所定値との間の値または第2所定値であるならばkを、前記解における前記識別情報に対応するスピンの状態に該当する値に定めさせ、
     変更希望度とVaveとの差の絶対値が大きいほどαを大きな値に定めさせ、変更希望度とVaveとの差の絶対値が小さいほどαを小さな値に定めさせる
     エネルギー関数導出プログラムを記録した請求項8に記載のコンピュータ読取可能な記録媒体。
PCT/JP2020/026349 2020-07-06 2020-07-06 エネルギー関数導出装置、方法、および、コンピュータ読取可能な記録媒体 WO2022009255A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US18/014,308 US20230259674A1 (en) 2020-07-06 2020-07-06 Energy function derivation device, method, and computer-readable recording medium
JP2022534492A JP7414144B2 (ja) 2020-07-06 2020-07-06 エネルギー関数導出装置、方法、および、プログラム
PCT/JP2020/026349 WO2022009255A1 (ja) 2020-07-06 2020-07-06 エネルギー関数導出装置、方法、および、コンピュータ読取可能な記録媒体

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/026349 WO2022009255A1 (ja) 2020-07-06 2020-07-06 エネルギー関数導出装置、方法、および、コンピュータ読取可能な記録媒体

Publications (1)

Publication Number Publication Date
WO2022009255A1 true WO2022009255A1 (ja) 2022-01-13

Family

ID=79553056

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/026349 WO2022009255A1 (ja) 2020-07-06 2020-07-06 エネルギー関数導出装置、方法、および、コンピュータ読取可能な記録媒体

Country Status (3)

Country Link
US (1) US20230259674A1 (ja)
JP (1) JP7414144B2 (ja)
WO (1) WO2022009255A1 (ja)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016051313A (ja) * 2014-08-29 2016-04-11 株式会社日立製作所 半導体装置、画像セグメンテーション方法、および画像処理装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5366171B2 (ja) 2008-01-29 2013-12-11 インターナショナル・ビジネス・マシーンズ・コーポレーション 多目的最適化装置、重み付けの調整をするための方法及び重み付け調整プログラム

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016051313A (ja) * 2014-08-29 2016-04-11 株式会社日立製作所 半導体装置、画像セグメンテーション方法、および画像処理装置

Also Published As

Publication number Publication date
JPWO2022009255A1 (ja) 2022-01-13
US20230259674A1 (en) 2023-08-17
JP7414144B2 (ja) 2024-01-16

Similar Documents

Publication Publication Date Title
JP6161257B2 (ja) イベント検出装置及びその方法、動作認識装置及びその方法、プログラム
JP5058681B2 (ja) 情報処理方法及び装置、プログラム、記憶媒体
JP2018522343A (ja) 意思決定モデルを構築する方法、コンピュータデバイス及び記憶デバイス
US8995772B2 (en) Real-time face detection using pixel pairs
WO2021059338A1 (ja) 求解システム、求解方法および求解プログラム
US7663627B2 (en) Graphic drawing program, method, and apparatus
JP7044077B2 (ja) モデル推定システム、方法およびプログラム
Gunaratne et al. Exponentially weighted control charts to monitor multivariate process variability for high dimensions
JP6950504B2 (ja) 異常候補抽出プログラム、異常候補抽出方法および異常候補抽出装置
WO2022009255A1 (ja) エネルギー関数導出装置、方法、および、コンピュータ読取可能な記録媒体
WO2022091408A1 (ja) 求解方法選択装置および方法
JP2017084081A (ja) 磁性体シミュレーション装置、マイクロ磁化算出方法及びプログラム
Song et al. Asymptotics for change-point models under varying degrees of mis-specification
JP2011141866A (ja) データ分類装置、データ分類システムおよびプログラム
JP6536157B2 (ja) モデル推定システム、モデル推定方法およびモデル推定プログラム
JP6816818B2 (ja) 画像処理装置、画像処理方法及び記録媒体
WO2022014036A1 (ja) 求解システム、求解方法、および、コンピュータ読取可能な記録媒体
JP6729703B2 (ja) 情報提示方法、装置、及びプログラム
WO2021024297A1 (ja) 敵対的事例検知システム、方法およびプログラム
US20070100553A1 (en) Shape simulation method, program and apparatus
JP2022185799A (ja) 情報処理プログラム、情報処理方法および情報処理装置
WO2022085133A1 (ja) 求解システムおよび求解方法
US20230418429A1 (en) Computer-readable recording medium storing information processing program, information processing method, and information processing apparatus
WO2019026166A1 (ja) 作業データ分類システム、作業データ分類方法、およびプログラム
JP7468655B2 (ja) 不整合判定装置、方法、および、プログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20943850

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022534492

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20943850

Country of ref document: EP

Kind code of ref document: A1