WO2022007817A1 - 一种骨科手术装置及骨科手术机器人系统 - Google Patents

一种骨科手术装置及骨科手术机器人系统 Download PDF

Info

Publication number
WO2022007817A1
WO2022007817A1 PCT/CN2021/104851 CN2021104851W WO2022007817A1 WO 2022007817 A1 WO2022007817 A1 WO 2022007817A1 CN 2021104851 W CN2021104851 W CN 2021104851W WO 2022007817 A1 WO2022007817 A1 WO 2022007817A1
Authority
WO
WIPO (PCT)
Prior art keywords
moving
tool
orthopedic
decoupling
base
Prior art date
Application number
PCT/CN2021/104851
Other languages
English (en)
French (fr)
Inventor
朱圣晓
罗烨
张涛
陈嘉瑞
Original Assignee
深圳市鑫君特智能医疗器械有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市鑫君特智能医疗器械有限公司 filed Critical 深圳市鑫君特智能医疗器械有限公司
Priority to US17/622,772 priority Critical patent/US20220346892A1/en
Publication of WO2022007817A1 publication Critical patent/WO2022007817A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/16Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/16Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans
    • A61B17/1613Component parts
    • A61B17/1626Control means; Display units
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/16Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans
    • A61B17/1657Bone breaking devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/10Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges for stereotaxic surgery, e.g. frame-based stereotaxis
    • A61B90/11Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges for stereotaxic surgery, e.g. frame-based stereotaxis with guides for needles or instruments, e.g. arcuate slides or ball joints
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/16Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans
    • A61B2017/1602Mills
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • A61B2034/2046Tracking techniques
    • A61B2034/2055Optical tracking systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • A61B2034/2046Tracking techniques
    • A61B2034/2065Tracking using image or pattern recognition
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/06Measuring instruments not otherwise provided for
    • A61B2090/064Measuring instruments not otherwise provided for for measuring force, pressure or mechanical tension
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/90Identification means for patients or instruments, e.g. tags
    • A61B90/94Identification means for patients or instruments, e.g. tags coded with symbols, e.g. text
    • A61B90/96Identification means for patients or instruments, e.g. tags coded with symbols, e.g. text using barcodes

Definitions

  • the present invention relates to the technical field of medical instruments, in particular to an orthopedic surgical device and an orthopedic surgical robot system that can be used for grinding, bone cutting and other functions in orthopedic surgery.
  • the key to the success of osteotomy is whether the positioning operation can be performed accurately according to the preset surgical plan without damaging the human nerve tissue, so as to achieve the purpose of surgical treatment.
  • the doctor still uses the existing orthopedic electric grinder or ultrasonic osteotome, and the doctor performs the osteotomy with bare hands.
  • the amount of grinding or the incision of the ultrasonic osteotome is not well controlled, which may easily cause nerve damage.
  • Some orthopedic surgical robots are equipped with osteotomy tools on the tool end of the robotic arms. During the operation, the follow-up method is used. With the binocular vision navigation system, the doctor still needs to hold the osteotomy tool for operation. The feature is that the osteotomy tool is relatively stable. .
  • an osteotomy device that is convenient and easy to operate, has high precision, and has strong stability, which can improve surgical efficiency and reduce surgical injury, and an intelligent automatic osteotomy system that can avoid the difficulty and risk of manual operation.
  • the purpose of the present invention is to provide an orthopaedic surgical device that is convenient and simple to operate, has high accuracy, strong stability, and can improve surgical efficiency.
  • Another object of the present invention is to provide an orthopaedic surgery robot system that is convenient and simple to operate, has high precision, and has strong stability and can improve surgical efficiency.
  • An orthopedic surgical device includes an orthopedic surgical tool and two moving mechanisms, the two moving mechanisms respectively provide reciprocating movement variables in different directions for the orthopedic surgical tool; the orthopedic surgical device further includes a decoupling mechanism and an orthopedic surgical tool set. clamping mechanism; orthopedic surgical tool clamping mechanism installs the orthopedic surgical tool and is connected with the decoupling mechanism; the decoupling mechanism is connected with two moving mechanisms, and under the joint action of the two moving mechanisms, the orthopedic surgical tool is The surgical tool reaches any point within the range of travel.
  • one or both of the two moving mechanisms includes a base, a linear motor and a moving platform mounted on the base;
  • the linear motor includes a stator and a mover;
  • the mover is connected to the corresponding moving platform,
  • the mover drives the mobile platform to reciprocate linear motion;
  • the mobile platform is connected with the decoupling mechanism, and the mobile platform drives the decoupling mechanism to perform corresponding linear motion.
  • the two moving mechanisms are installed on the same base; the linear motors of the two moving mechanisms are installed at different positions on the same base; the base is an integral structure; the base is T-shaped or L-shaped or cruciform.
  • the moving mechanism further includes a linear guide or a cross-roller guide mounted on the base; a linear motor mover drives the moving platform to slide along the linear guide or the cross-roller guide; the linear guide A slider is arranged on the slider, and the mover of the linear motor is connected with the slider; the moving mechanism also includes a limit switch and a limit block, the limit switch is installed on the base, and the limit block is arranged on each moving The two ends of the platform cooperate with the corresponding limit switches to limit the movement stroke of the corresponding mobile platform.
  • the moving mechanism further includes a grating ruler and a read head, the grating ruler is arranged along the movement stroke of the corresponding mobile platform, the read head obtains position information, and the two cooperate with each other to detect the position of the corresponding mobile platform.
  • the two moving mechanisms are two of a lateral moving mechanism, a depth moving mechanism, and a longitudinal moving mechanism; the lateral moving mechanism provides a lateral linear reciprocating movement variable; the depth moving mechanism provides a depth-direction linear reciprocating movement Variable; the longitudinal movement mechanism provides linear reciprocating variable along the longitudinal direction.
  • the decoupling mechanism includes a mounting seat and a decoupling connecting seat; the mounting seat and the decoupling connecting seat are connected in a relatively movable manner; the orthopaedic surgery tool clamping mechanism is mounted on the mounting seat
  • the mounting seat and the decoupling connection seat are respectively connected with the moving platforms of the two moving mechanisms, and under the joint action of the two moving mechanisms, the decoupling mechanism drives the clamped device of the orthopedic surgery tool clamping mechanism. Orthopedic surgical tools arrive at predetermined points within the range of travel.
  • the decoupling mechanism further includes a decoupling guide rail; the decoupling guide rail is mounted on the mounting seat; a slider is provided on the decoupling guide rail, and the decoupling connection seat and the slider are
  • the sliding block drives the decoupling connecting seat to slide and cooperate with the decoupling guide rail; the sliding block does not detach from the decoupling guide rail for sliding cooperation;
  • the mounting seat is connected to a moving platform of a moving mechanism. It can be connected relatively movingly or fixedly, and the decoupling connection base can be connected relatively movingly or fixedly with the moving platform in another moving mechanism.
  • the mounting base is slidably connected to a moving platform of a moving mechanism, and a linear guide rail or a cross-roller guide rail is arranged on the front of the moving platform of the one moving mechanism; the mounting base is installed on the front of the mobile platform, and along the linear guide rails or cross-roller guide rails and the front surface of the mobile platform can be reciprocatingly matched; the back of the mobile platform is connected to the linear motor mover of the mobile mechanism; the The decoupling connection base is fixedly connected with the moving platform in another moving mechanism.
  • the orthopaedic tool clamping mechanism includes a tool holder, a tool holder and a sensor; the tool holder and the tool holder jointly hold the orthopaedic tool; the sensor is mounted on the mount of the decoupling mechanism Between the tool holder and the tool holder, it is used to measure the forces and moments in all directions during the working process of orthopedic surgical tools.
  • the tool holder and the tool holder are connected by a guide column;
  • the sensor is a six-axis sensor, which is connected to a surgical robot or a control center;
  • an interface seat is provided on the base of the moving mechanism for Connect with the tool flange at the end of the robotic arm of the surgical robot.
  • the present invention provides another orthopedic surgical device, comprising an orthopedic surgical tool and a plurality of moving mechanisms, the plurality of moving mechanisms respectively provide the orthopedic surgical tool with linear reciprocating movement variables in different directions, at least one of the plurality of moving mechanisms
  • the moving mechanism includes a moving platform, a linear motor, a linear guide or a cross-roller guide; the linear motor includes a stator and a mover, and the moving platform is connected with the mover and is driven by the mover to reciprocate linearly along the stator; the linear guide or the cross-roller guide Linear reciprocating motion directed to the moving platform.
  • the at least one moving mechanism is a lateral moving mechanism, a depth moving mechanism or a longitudinal moving mechanism; the lateral moving mechanism provides a horizontal linear reciprocating movement variable; the depth moving mechanism provides a linear reciprocating movement variable in the depth direction; A linear reciprocating movement variable is provided; the at least one moving mechanism includes a base; the moving mechanism further includes a limit switch and a limit block, the limit switch is installed on the base, and the limit block is provided on each mobile platform The two ends of the mobile platform cooperate with the corresponding limit switches to limit the movement stroke of the corresponding mobile platform.
  • the moving mechanism further includes a grating ruler and a read head, the grating ruler is arranged along the movement stroke of the corresponding mobile platform, the read head obtains position information, and the two cooperate with each other to detect the position of the corresponding mobile platform.
  • each moving mechanism includes a base, a moving platform and a power source installed on the base, and the power source drives the moving platform to reciprocate linearly relative to the base; the difference between the moving platform and/or the base of each moving mechanism
  • the orthopaedic surgical tools are connected to any point within the range of travel under the joint action of the plurality of moving mechanisms; the orthopedic surgical tools are connected with a moving platform of a moving mechanism.
  • the orthopedic surgical device includes an orthopedic surgical tool clamping mechanism; the orthopedic surgical tool is installed in the orthopedic surgical tool clamping mechanism; the orthopedic surgical tool clamping mechanism includes a tool jacket, a tool A clamp base and a sensor; the tool clamp base and the tool clamp sleeve jointly clamp orthopedic surgical tools; the tool clamp base is connected to the moving platform of the one moving mechanism; the sensor is mounted on the tool clamp base for measuring orthopedic surgical tools Forces and moments in all directions during work.
  • the present invention also provides an orthopedic surgical robot system, including a surgical robot, an orthopedic surgical tool, and the above-mentioned orthopedic surgical tool mounted on the orthopedic surgical device; the orthopedic surgical device and the surgical robot are connected.
  • the orthopaedic surgery robot includes a system control center, the moving mechanism of the orthopaedic surgery device includes a drive motor, and the drive motor is connected to the control center;
  • the orthopaedic surgery device is provided with a sensor, and the sensor Connected to the control center, the orthopedic surgery tool is provided with a navigation surface that can be recognized by a vision system, and the orthopedic surgery robot system further includes a binocular vision system, which can identify the navigation surface;
  • the orthopedic surgical device is provided with an interface seat, which is connected with the tool flange at the end of the mechanical arm of the surgical robot.
  • an orthopaedic surgical device includes an orthopaedic surgical tool connected in sequence, at least two moving mechanisms, the at least two moving mechanisms respectively provide the orthopedic surgical tool with linear reciprocating movement variables in different directions, the at least two moving mechanisms respectively.
  • the axes of the moving mechanisms along the respective different directions are perpendicular to each other.
  • the present invention realizes linear reciprocating motion variables in different directions by adopting a mechanical moving mechanism that can improve control precision, accuracy and stability, and the mutually perpendicular linear reciprocation provided by at least two of the moving mechanisms.
  • the motion variable realizes the automatic movement control of orthopedic surgical tools in at least two directions, thereby making the surgical operation easier, more stable, more precise, and more efficient.
  • the controllable motion variable provided by the mobile mechanism reduces the The pain and uncontrollable surgical risks of the doctor during manual operation increase the controllability and safety of the operation.
  • the orthopedic surgical device includes three moving mechanisms, the orthopedic surgical tool and the three moving mechanisms are connected in sequence, and the three moving mechanisms respectively provide the orthopedic surgical tool with straight lines in different directions. Reciprocating movement variable, the three moving mechanisms are perpendicular to each other along the axes of the respective different directions.
  • each of the moving mechanisms includes a drive motor, a slide rail and a moving platform, and the moving platform can reciprocate linearly along the slide rail under the drive of the drive motor, and the orthopaedic surgical tool
  • the connection method in which the at least two moving mechanisms are sequentially connected is as follows: the orthopaedic surgical tool is installed on the moving platform of one of the moving mechanisms, and the moving mechanism connected with the orthopedic surgical tool and the other moving mechanisms are respectively installed adjacent to each other in sequence. on the mobile platform of another mobile mechanism.
  • the mobile platform can reciprocate in a straight line along the sliding rail under the driving of the driving motor.
  • the mobile platform is installed between the sliding rail and the mobile platform. There are cross roller guides.
  • the moving mechanism further includes a lead screw assembly
  • the lead screw assembly includes a ball screw arranged along the direction of the slide rail, and a lead screw nut matched with the ball screw, and the moving platform is fixed.
  • the drive motor is connected to and drives the ball screw, so that a linear reciprocating relative motion is generated between the moving platform and the ball screw.
  • a rotating clamping mechanism is further provided between the orthopedic surgical tool and the connected moving mechanism, and the rotating clamping mechanism is installed on the moving mechanism connected with the orthopedic surgical tool.
  • a surgical tool is connected to the rotating clamping mechanism.
  • the rotating clamping mechanism includes a drive motor and a gear set connected to the output of the drive motor, and the output of the gear set is connected to the orthopaedic surgical tool.
  • the orthopaedic surgical tool includes an electric grinder or an ultrasonic osteotome.
  • the orthopaedic surgical device is further provided with a camera for real-time close-up monitoring of the condition of the surgical site.
  • the present invention also provides an orthopedic surgical robot system, which includes the above-mentioned orthopedic surgical device, and a control center.
  • the moving mechanism of the orthopedic surgical device includes a driving motor, and the driving motor is connected to the control center.
  • the orthopedic surgical device is provided with a sensor, the sensor is connected to the control center, the orthopedic surgical tool is provided with a navigation surface that can be recognized by a vision system, and the orthopedic surgical robot system further includes binoculars.
  • a vision system that recognizes the navigation surface.
  • the senor is a six-axis sensor and is installed on the moving mechanism.
  • the present invention has the following advantages:
  • the present invention realizes linear reciprocating motion variables in different directions by adopting a mechanical moving mechanism that can improve control precision, accuracy and stability, and realizes at least two mutually perpendicular linear reciprocating motion variables provided by the moving mechanisms.
  • the automatic movement control of orthopedic surgical tools in two directions makes the surgical operation easier, more stable, more precise, and more efficient. Painful and uncontrollable surgical risks increase the controllability and safety of surgery.
  • the invention can be used for an orthopedic surgical robot, used in conjunction with an orthopedic surgical robot, and can be used to perform functions such as automatic grinding and bone cutting in the orthopedic surgery.
  • FIG. 1 is an exploded schematic view of Embodiment 1 of an orthopedic surgical apparatus according to the present invention.
  • FIG. 2 is a side view of the first embodiment of the orthopedic surgical apparatus of the present invention.
  • FIG. 3 is a perspective view of Embodiment 1 of the orthopaedic surgical apparatus of the present invention.
  • FIG. 4 is an exploded schematic view of Embodiment 2 of the orthopedic surgical apparatus of the present invention.
  • FIG. 5 is a side view of the second embodiment of the orthopaedic surgical apparatus of the present invention.
  • FIG. 6 is a perspective view of the second embodiment of the orthopedic surgical apparatus of the present invention.
  • FIG. 7 is an exploded schematic view of Embodiment 3 of the orthopaedic surgical apparatus of the present invention.
  • FIG. 8 is a side view of the third embodiment of the orthopaedic surgical apparatus of the present invention.
  • FIG. 9 is a perspective view of Embodiment 3 of the orthopaedic surgical apparatus of the present invention.
  • FIG. 10 is an exploded schematic view of Embodiment 4 of the orthopaedic surgical apparatus of the present invention.
  • Fig. 11 is a side view of the fourth embodiment of the orthopaedic surgical apparatus of the present invention.
  • FIG. 12 is a perspective view of Embodiment 4 of the orthopaedic surgical apparatus of the present invention.
  • FIG. 13 is an exploded schematic view of Embodiment 5 of the orthopedic surgical apparatus of the present invention.
  • Fig. 14 is a side view of the fifth embodiment of the orthopaedic surgical apparatus of the present invention.
  • FIG. 15 is a perspective view of Embodiment 5 of the orthopedic surgical apparatus of the present invention.
  • FIG. 16 is one of the schematic diagrams of the space area where the orthopaedic surgical device of the present invention works.
  • FIG. 17 is the second schematic diagram of the space area working with the orthopaedic surgical device of the present invention.
  • FIG. 18 is one of the schematic plan views of the orthopaedic surgical apparatus of the present invention.
  • FIG. 19 is the second schematic plan view of the orthopaedic surgical device of the present invention.
  • FIG. 20 is a perspective view of the sixth embodiment of the orthopaedic surgical apparatus according to the present invention.
  • FIG. 21 is an exploded schematic view of the sixth embodiment of the orthopaedic surgical apparatus of the present invention.
  • the orthopaedic surgical apparatus in Embodiments 1, 2, and 4 of the present invention includes an orthopedic surgical tool and three moving mechanisms, the orthopedic surgical tool and the three moving mechanisms are connected in sequence, and the three moving mechanisms are orthopedic surgery tools respectively.
  • the tool provides linear reciprocating movement variables in different directions, and the three moving mechanisms are perpendicular to each other along the axes of the respective different directions.
  • the orthopaedic surgical tool and the three moving mechanisms are connected in sequence in the following way: the orthopedic surgical tool is installed on the mobile platform of one of the mobile mechanisms, and the mobile mechanism connected with the orthopedic surgical tool and the other mobile mechanisms are respectively Installed on the moving platform of another adjacent moving mechanism in turn.
  • the orthopedic surgical device of the third embodiment includes an orthopedic surgical tool and two moving mechanisms, the two moving mechanisms respectively provide the orthopedic surgical tool with linear reciprocating movement variables in different directions, and the two moving mechanisms move along the respective directions.
  • the axes of different directions are perpendicular to each other.
  • the orthopaedic surgical tool and the two moving mechanisms are connected in sequence in the following way: the orthopedic surgical tool is installed on the mobile platform of one of the mobile mechanisms, and the mobile mechanism connected with the orthopedic surgical tool is installed on the other mobile platform. on the agency's mobile platform.
  • the third embodiment adds a camera for real-time close-up monitoring of the surgical site.
  • the fifth embodiment is an alternative embodiment based on the first embodiment. Specifically, the orthopedic surgical tool in the first embodiment is changed to an ultrasonic osteotome.
  • Figures 1, 3, 4, 6, 7, 9, 10, and 12 use the right-hand Cartesian coordinate system used in the project, which is defined as shown in the figure: the positive direction of the X axis is to the right; the positive direction of the Y axis is to the right Front; the positive direction of the Z axis is downward; X is the horizontal direction, Y is the vertical direction, and Z is the depth direction.
  • the three moving mechanisms are the vertical moving mechanism 100 , the lateral moving mechanism 300 and the depth moving mechanism 200 , respectively providing linear reciprocating movement variables along the vertical, horizontal, and depth directions.
  • X is the horizontal direction
  • Y is the vertical direction
  • Z is the depth direction.
  • the superposition of the linear reciprocating movement variables in the longitudinal, transverse and depth directions allows the orthopedic surgical tool to reach any point within a certain range, thereby realizing the convenient, simple, high-precision and stable surgical operation of the orthopedic surgical tool. It can improve the efficiency of surgery and reduce the risk of surgery.
  • the longitudinal moving mechanism 100 includes a longitudinal driving motor 102, a longitudinal sliding rail mounting base 101 mounted with a longitudinal sliding rail, and a longitudinal moving platform 103, and the longitudinal moving platform 103 can move along the longitudinal direction under the driving of the longitudinal driving motor 102.
  • the longitudinal slide rail mounting base 101 performs linear reciprocating motion, and the longitudinal slide rails mounted on the longitudinal slide rail mounting base 101 use cross-roller guide rails (not shown) in this embodiment.
  • a connecting platform 503 and an installation interface seat 501 are installed on the longitudinal slide rail mounting seat 101, through which the orthopaedic surgical device can be installed on the surgical robot, and grinding and grinding operations can be performed according to the preoperative surgical plan.
  • the cutting position and depth are precisely controlled, which reduces the deviation caused by manual operation and ensures the accuracy of the operation.
  • the orthopaedic surgical device is also provided with a six-axis sensor 502, which can accurately measure forces and moments in various directions during the osteotomy process, sense movement variables in various dimensions, avoid surgical accidents, and improve control accuracy.
  • the depth moving mechanism 200 includes a depth driving motor 202, a depth sliding rail mounting seat 201 mounted with a depth sliding rail, and a depth moving platform, which can slide along the depth under the driving of the depth driving motor 202.
  • the rail mounting seat 201 performs linear reciprocating motion, and the depth sliding rail installed on the depth sliding rail mounting seat 201 adopts a cross roller guide rail (not shown) in this embodiment.
  • the depth slide rail mounting seat 201 is installed on the longitudinal moving platform 103 . Specifically, a detachable installation is realized between the depth slide rail mounting seat 201 and the longitudinal moving platform 103 through a quick release seat 105 .
  • the quick release seat 105 can be respectively fixed to the depth slide rail mounting base 201 and the longitudinal moving platform 103 by screws (hand-tightening screws), and is respectively connected with the depth sliding rail mounting base 201 and the longitudinal moving platform 103 snap fit.
  • the lateral movement mechanism 300 includes a lateral drive motor 302, a lateral slide rail mounting base 301 mounted with a lateral slide rail, and a lateral movement platform 303, which can move along the
  • the lateral slide rail mounting seat 301 performs linear reciprocating motion
  • the lateral slide rail mounted on the lateral slide rail mounting base 301 adopts a cross roller guide rail (not shown) in this embodiment.
  • the lateral slide rail mounting base 301 directly serves as the depth moving platform of the depth moving mechanism, is mounted on the depth slide rail mounting base 201 , and is connected and driven by the depth driving motor 202 .
  • each drive motor can be coupled and driven through a coupling.
  • the orthopaedic surgical tool is installed on the lateral movement platform 303 of the lateral movement mechanism, and a rotary clamping mechanism 400 propelled in the depth direction is further provided between the orthopaedic surgical tool and the connected lateral movement platform 303 ,
  • the rotating clamping mechanism 400 is mounted on the laterally moving platform 303 connected with the orthopedic surgical tool, and the orthopedic surgical tool is connected with the rotating clamping mechanism 400 .
  • the rotary clamping mechanism 400 includes a rotary drive motor 401, a mounting seat 404, a driving gear 402 and a driven gear 403 that mesh with each other, the driving motor is connected to and drives the driving gear 402, and the output of the driven gear 403 Attach the orthopaedic surgical tool.
  • the rotating clamping mechanism 400 is provided with a hand-tightening quick-release screw, which can quickly clamp an orthopedic surgical tool.
  • the orthopedic surgical tool includes an electric grinding head 601 driven by an orthopedic electric drill and an orthopedic surgical tool mounting seat 602 , and the orthopedic surgical tool mounting seat 602 is connected with the rotating clamping mechanism 400 .
  • the orthopaedic surgery tool mounting seat 602 is provided with a navigation surface 603, which can be recognized by the vision system and tracked in real time.
  • the orthopedic surgical tool in other embodiments may also be an ultrasonic osteotome.
  • the orthopedic surgical tool can be moved back and forth in a straight line in three directions: longitudinal, lateral, and depth, and the movement variables in the three directions are superimposed, so that the orthopedic surgery can be performed.
  • the tool reaches any point within a certain range.
  • the orthopedic surgery device of the present invention is used to realize any point in the three-dimensional space a of the orthopedic surgery tool on the operation site of the spine 700 to be operated.
  • the three moving mechanisms are the longitudinal moving mechanism 110, the lateral moving mechanism 310 and the depth moving mechanism 210, respectively, which provide linear reciprocating movement variables along the longitudinal, lateral and depth directions, respectively.
  • X is the horizontal direction
  • Y is the vertical direction
  • Z is the depth direction.
  • the superposition of the linear reciprocating movement variables in the longitudinal, transverse and depth directions allows the orthopedic surgical tool to reach any point within a certain range, thereby realizing the convenient, simple, high-precision and stable surgical operation of the orthopedic surgical tool. It can improve the efficiency of surgery and reduce the risk of surgery.
  • the longitudinal moving mechanism 110 includes a longitudinal driving motor 112, a longitudinal sliding rail mounting base 111 mounted with a longitudinal sliding rail, and a longitudinal moving platform 115.
  • the longitudinal moving mechanism 110 further includes a longitudinal screw assembly, and the longitudinal screw assembly includes A longitudinal ball screw 114 arranged along the direction of the longitudinal sliding rail, and a longitudinal screw nut 113 matched with the longitudinal ball screw 114, the longitudinal moving platform 115 is fixed on the longitudinal screw nut 113, and the The longitudinal driving motor 112 is connected to and drives the longitudinal ball screw 114 , so that a linear reciprocating relative motion is generated between the longitudinal moving platform 115 and the longitudinal ball screw 114 .
  • a connection platform 513 and an installation interface seat 501 are installed on the longitudinal slide rail mounting seat 111, through which the orthopaedic surgical device can be installed on the surgical robot, and grinding and grinding operations can be performed according to the preoperative surgical plan.
  • the cutting position and depth are precisely controlled, which reduces the deviation caused by manual operation and ensures the accuracy of the operation.
  • the orthopaedic surgical device is also provided with a six-axis sensor 502, which can accurately measure forces and moments in various directions during the osteotomy process, sense movement variables in various dimensions, avoid surgical accidents, and improve control accuracy.
  • the lateral movement mechanism 310 includes a lateral drive motor 312, a lateral slide rail mounting base 311 mounted with a lateral slide rail, and a lateral movement platform 315.
  • the lateral movement mechanism 310 also includes a lateral screw assembly, and the lateral screw assembly includes A transverse ball screw 314 arranged along the direction of the transverse slide rail, and a transverse screw nut 313 matched with the ball screw 314, the transverse moving platform 315 is fixed on the transverse screw nut 313, the transverse
  • the drive motor 312 is connected to and drives the lateral ball screw 314 , so that a linear reciprocating relative motion is generated between the lateral moving platform 315 and the lateral ball screw 314 .
  • the lateral slide rail mounting base 311 is mounted on the longitudinal moving platform 115 .
  • the depth moving mechanism 210 includes a depth driving motor 212, a depth sliding rail mounting base 211 mounted with a depth sliding rail, and a depth moving platform 213.
  • the depth moving mechanism 210 also includes a depth screw assembly, which includes a The depth ball screw 214 is arranged in the direction of the depth slide rail, the depth moving platform 213 is provided with an internal thread that matches the depth ball screw 214, and the depth drive motor 212 is connected to and drives the depth ball screw 214 , so that a linear reciprocating relative motion is generated between the depth moving platform 213 and the depth ball screw 214 .
  • the depth slide rail mounting seat 211 is installed on the lateral moving platform 315 .
  • each drive motor can be coupled and driven through a coupling.
  • the orthopaedic surgical tool is installed on the depth moving platform 213 of the depth moving mechanism 210, and a rotating clamping mechanism 410 is also provided between the orthopedic surgical tool and the connected depth moving platform 213, and the rotating
  • the clamping mechanism 410 is mounted on the depth moving platform 213 connected with the orthopedic surgical tool, which is connected with the rotating clamping mechanism 410 .
  • the rotary clamping mechanism 410 includes a rotary drive motor 411 , a mounting seat 414 , a driving gear 412 and a driven gear 413 that mesh with each other, the driving motor is connected to and drives the driving gear 412 , and the output of the driven gear 413 Attach the orthopaedic surgical tool.
  • the rotating clamping mechanism 410 is provided with a hand-tightening quick-release screw, which can quickly clamp an orthopedic surgical tool.
  • the orthopedic surgical tool includes an electric grinding head 601 driven by an orthopedic electric drill and an orthopedic surgical tool mounting seat 602 , which is connected with the rotating clamping mechanism 410 .
  • the orthopaedic surgery tool mounting seat 602 is provided with a navigation surface 603, which can be recognized by the vision system and tracked in real time.
  • the orthopedic surgical tool in other embodiments may also be an ultrasonic osteotome.
  • Embodiments 1 and 2 Please refer to FIGS. 7 to 9.
  • the orthopaedic surgical device described in Embodiment 3 includes orthopedic surgical tools and two moving mechanisms that are connected in sequence, and the two moving mechanisms are orthopedic surgical tools respectively.
  • Linear reciprocating movement variables in respective different directions are provided, and the axes of the two moving mechanisms along the respective different directions are perpendicular to each other.
  • the two moving mechanisms are the lateral moving mechanism 320 and the depth moving mechanism 220, respectively, which provide linear reciprocating movement variables along the lateral and depth directions, respectively.
  • X is the horizontal direction
  • Y is the vertical direction
  • Z is the depth direction.
  • the superposition of linear reciprocating movement variables in the lateral and depth directions allows the orthopaedic surgical tool to reach any point within a certain plane range, thereby realizing the convenient, simple, high-precision, and stable surgical operation of the orthopedic surgical tool. It can improve surgical efficiency and reduce surgical risks.
  • the lateral movement mechanism 320 includes a lateral drive motor 322, a lateral slide rail mounting base 321 mounted with a lateral slide rail, and a lateral movement platform 325.
  • the lateral movement mechanism 320 further includes a lateral screw assembly, and the lateral screw assembly includes A transverse ball screw 324 arranged along the direction of the transverse slide rail, and a transverse screw nut 323 matched with the ball screw 324, the transverse moving platform 325 is fixed on the transverse screw nut 323, the transverse
  • the drive motor 322 is connected to and drives the lateral ball screw 324 , so that a linear reciprocating relative motion is generated between the lateral moving platform 325 and the lateral ball screw 324 .
  • a connecting platform 523 and an installation interface seat 501 are installed on the lateral movement mechanism 320, through which the orthopaedic surgical device can be installed on the surgical robot, and the grinding and cutting can be adjusted according to the preoperative operation plan.
  • the position and depth are precisely controlled, which reduces the deviation caused by manual operation and ensures the accuracy of the operation.
  • the orthopaedic surgical device is also provided with a six-axis sensor 502, which can accurately measure forces and moments in various directions during the osteotomy process, sense movement variables in various dimensions, avoid surgical accidents, and improve control accuracy.
  • the depth moving mechanism 220 includes a depth driving motor 222, a depth sliding rail mounting base 221 mounted with a depth sliding rail, and a depth moving platform 223.
  • the depth moving mechanism 220 also includes a depth screw assembly, which includes a A depth ball screw 224 arranged in the direction of the depth slide rail, the depth moving platform 223 is provided with an internal thread matched with the depth ball screw 224, and the depth drive motor 222 is connected to and drives the depth ball screw 224 , so that a linear reciprocating relative motion is generated between the depth moving platform 223 and the depth ball screw 224 .
  • One end of the depth slide rail mounting seat 221 is installed on the lateral moving platform 325, and the other end is connected with the slider 327 fixed on a guide rail 326 on the connecting platform 523. This structure can better improve the depth movement.
  • the rigidity of the mechanism 220 is described in the depth slide rail, and the other end is connected with the slider 327 fixed on a guide rail 326 on the connecting platform 523. This structure can better improve
  • each drive motor can be coupled and driven through a coupling.
  • the orthopedic surgical tool is installed on the depth moving platform 223 of the depth moving mechanism 220, and a rotating clamping mechanism 420 is also provided between the orthopedic surgical tool and the connected depth moving platform 223, and the rotating
  • the clamping mechanism 420 is mounted on the depth moving platform 223 connected with the orthopedic surgical tool, which is connected with the rotating clamping mechanism 420 .
  • the rotary clamping mechanism 420 includes a rotary drive motor 421, a mounting seat 424, a driving gear 422 and a driven gear 423 that mesh with each other, the driving motor is connected to and drives the driving gear 422, and the output of the driven gear 423 Attach the orthopaedic surgical tool.
  • the rotating clamping mechanism 420 is provided with a hand-tightening quick-release screw, which can quickly clamp an orthopedic surgical tool.
  • the orthopedic surgical tool includes an electric grinding head 601 driven by an orthopedic electric drill and an orthopedic surgical tool mounting seat 602 , which is connected with the rotating clamping mechanism 420 .
  • the orthopaedic surgery tool mounting seat 602 is provided with a navigation surface 603, which can be recognized by the vision system and tracked in real time.
  • the orthopaedic surgical tool in other embodiments may be an osteotomy tool or an ultrasonic osteotome, or other tools.
  • a camera 328 is fixed on the laterally moving platform 325, which is used to closely monitor the situation of the surgical site in real time during the operation.
  • the three moving mechanisms are the longitudinal moving mechanism 130, the lateral moving mechanism 330 and the depth moving mechanism 230, respectively, which provide linear reciprocating movement variables along the longitudinal, lateral and depth directions, respectively.
  • X is the horizontal direction
  • Y is the vertical direction
  • Z is the depth direction.
  • the superposition of the linear reciprocating movement variables in the longitudinal, transverse and depth directions allows the orthopedic surgical tool to reach any point within a certain range, thereby realizing the convenient, simple, high-precision and stable surgical operation of the orthopedic surgical tool. It can improve the efficiency of surgery and reduce the risk of surgery.
  • the lateral movement mechanism 330 includes a lateral drive motor 332, a lateral slide rail mounting base 331 mounted with a lateral slide rail, and a lateral movement platform 335.
  • the lateral movement mechanism 330 also includes a lateral screw assembly, which includes A transverse ball screw 334 arranged along the direction of the transverse slide rail, and a transverse screw nut 333 matched with the ball screw 334, the transverse moving platform 335 is fixed on the transverse screw nut 333, the transverse
  • the drive motor 332 is connected to and drives the lateral ball screw 334 , so that a linear reciprocating relative motion is generated between the lateral moving platform 335 and the lateral ball screw 334 .
  • a connection platform 533 and an installation interface seat 501 are installed on the lateral movement mechanism 330, through which the orthopaedic surgical device can be installed on the surgical robot, and the grinding and cutting can be adjusted according to the preoperative surgical plan.
  • the position and depth are precisely controlled, which reduces the deviation caused by manual operation and ensures the accuracy of the operation.
  • the orthopaedic surgical device is also provided with a six-axis sensor 502, which can accurately measure forces and moments in various directions during the osteotomy process, sense movement variables in various dimensions, avoid surgical accidents, and improve control accuracy.
  • the depth moving mechanism 230 includes a depth driving motor 232, a depth sliding rail mounting base 231 mounted with a depth sliding rail, and a depth moving platform 235.
  • the depth moving mechanism 230 also includes a depth screw assembly, which includes a A depth ball screw 234 arranged in the direction of the depth slide rail, and a depth ball screw nut 233 matched with the depth ball screw 234, the depth moving platform 235 is fixed on the depth screw nut 233, the depth
  • the driving motor 232 is connected to and drives the depth ball screw 234 , so that a linear reciprocating relative motion is generated between the depth moving platform 235 and the depth ball screw 234 .
  • the depth slide rail mounting seat 231 is mounted on the lateral moving platform 335 .
  • the longitudinal moving mechanism 130 includes a longitudinal driving motor 132, a longitudinal sliding rail mounting base 131 mounted with a longitudinal sliding rail, and a longitudinal moving platform 135.
  • the longitudinal moving mechanism 130 further includes a longitudinal screw assembly, and the longitudinal screw assembly includes A longitudinal ball screw 134 arranged in the direction of the longitudinal slide rail, and a longitudinal screw nut 133 matched with the longitudinal ball screw 134, the longitudinal moving platform 135 is fixed on the longitudinal screw nut 133, and the The longitudinal driving motor 132 is connected to and drives the longitudinal ball screw 134 , so that a linear reciprocating relative motion is generated between the longitudinal moving platform 135 and the longitudinal ball screw 134 .
  • the longitudinal slide rail mounting seat 131 is mounted on the depth moving platform 235 .
  • the depth moving platform 235 has a lateral shoulder (not shown) extending laterally
  • the longitudinal slide rail mounting base 131 is mounted on the lateral shoulder of the depth moving platform 235 .
  • each drive motor can be coupled and driven through a coupling.
  • the orthopedic surgical tool is installed on the longitudinal moving platform 135 of the longitudinal moving mechanism 130 , and a rotating clamping mechanism 430 is also provided between the orthopedic surgical tool and the connected longitudinal moving platform 135 .
  • the clamping mechanism 430 is mounted on the longitudinal moving platform 135 connected to the orthopedic surgical tool, which is connected to the rotating clamping mechanism 430 .
  • the rotating clamping mechanism 430 includes a rotating driving motor 431, a mounting seat 434, a driving gear 432 and a driven gear 433 that mesh with each other, the driving motor is connected to and drives the driving gear 432, and the output of the driven gear 433 Attach the orthopaedic surgical tool.
  • the rotating clamping mechanism 430 is provided with a hand-tightening quick-release screw, which can quickly clamp an orthopedic surgical tool.
  • the orthopedic surgical tool includes an electric grinding head 601 driven by an orthopedic electric drill and an orthopedic surgical tool mounting seat 602 , and the orthopedic surgical tool mounting seat 602 is connected with the rotating clamping mechanism 430 .
  • the orthopaedic surgery tool mounting seat 602 is provided with a navigation surface 603, which can be recognized by the vision system and tracked in real time.
  • the orthopedic surgical tool in other embodiments may also be an ultrasonic osteotome.
  • the fifth embodiment is different from the first embodiment in that the orthopedic surgical tool used is an ultrasonic osteotome 604 .
  • the at least two moving mechanisms of the orthopaedic surgical device may also be composed of a lateral moving mechanism and a longitudinal moving mechanism, or a longitudinal moving mechanism and a depth moving mechanism.
  • the present invention also provides an orthopaedic surgery robot system, which includes the orthopaedic surgery device and the surgical robot according to any of the above embodiments.
  • the orthopedic surgical device installs the osteotomy device on the surgical robot through the installation interface seat 501 .
  • the orthopaedic surgery robot system includes a control center, and each moving mechanism of the orthopaedic surgery device includes a drive motor, and the drive motor is connected to the control center.
  • the control center can be set on the surgical robot or on the orthopaedic surgery robot.
  • the sensor of the orthopedic surgery device adopts a six-axis sensor, which is installed on the mobile mechanism and is electrically and communicatively connected to the control center.
  • the system also includes a binocular vision system that can identify the navigation surface.
  • the binocular vision system can be installed on an orthopedic surgical device, or placed beside the operating table through a bracket, or can be fixed above the operating table through a support.
  • the control circuit of the control center is connected with the computer through RSS485 or CAN communication to complete the preoperative planning and pre-planning grinding action or cutting action.
  • the orthopaedic surgery robot system of the present invention automatically completes the osteotomy action by a tool without the need for a doctor's operation, and the doctor mainly concentrates on monitoring the entire process, thereby reducing the doctor's labor intensity.
  • the orthopaedic surgical device of the sixth embodiment of the present invention includes a base 16, a depth movement mechanism 1 and a lateral movement mechanism 2 installed on the base 16, and a decoupling mechanism 3 installed on the movement mechanism and an operation Tool clamping mechanism 60 .
  • An orthopedic surgical tool (not shown) is installed in the surgical tool clamping mechanism 60 , and the orthopedic surgical tool may be a drill and an ultrasonic osteotome or other types of surgical tools.
  • the depth movement mechanism 1 and the lateral movement mechanism 2 respectively provide linear reciprocating movement variables along the lateral and depth directions, so that the decoupling mechanism 3 of this embodiment can complete the movement in both lateral and depth directions.
  • the lateral movement mechanism 2 of the orthopedic surgical device includes a linear motor 21 mounted on the base 16, a cross roller guide rail 25, a lateral grating ruler 22, a lateral read head 23, a lateral read head mounting seat 24, a lateral limit switch 20, and a mounting
  • the mover 28 of the linear motor 21 is installed on the lateral moving platform 10 , and drives the lateral moving platform 10 to perform linear reciprocating motion along the cross-roller guide rail 25 .
  • the stator 29 of the linear motor 21 is located in the middle of a pair of crossed roller guide rails.
  • the linear motor adopts a flat type linear motor or a U-slot type linear motor.
  • the lateral limit switch 20 is installed on the base 16 and can be located on both ends of the stator 29 or the cross roller guide rail 25, and lateral limit blocks 9 are provided at both ends of the lateral moving platform 10 to limit the linear reciprocating motion of the lateral moving platform 10 respectively.
  • the two end positions are matched with the lateral limit switch 20 to detect the lateral movement platform 10 moving to the limit positions on both sides.
  • the lateral limit switch 20 is a position sensor, which detects the running position of the lateral moving platform 10, and further controls the switching linear motor 21 through the detection information of the limit switch.
  • the depth moving mechanism of the orthopedic surgical device includes a linear motor 18, a linear guide 12, a depth grating 15, a depth reading head 14, a depth reading head mounting seat 13, a depth limit switch 17, and a depth limit switch 17 installed on the base 16.
  • the depth stop 26 on the depth moving platform 11 The mover 180 of the linear motor 18 is installed on the depth moving platform 11 , and drives the depth moving platform 11 to perform linear reciprocating motion along the linear guide rail 12 .
  • the stator 181 of the linear motor 18 is located in the middle of the two linear guide rails 12 , the linear guide rail 12 is provided with a slider, and the mover 180 is connected with the slider to form a sliding fit with the linear guide rail 12 .
  • the depth limit switch 17 is installed on the base 16 and can be located at the end of the stator 181 or the linear guide 12.
  • the two ends of the depth limit switch 17 are provided with lateral limit blocks 26 to respectively limit the two end points of the linear reciprocating motion of the depth moving platform 11. position, and cooperate with the depth limit switch 17 to detect whether the depth moving platform 11 moves to the limit position on both sides.
  • the depth limit switch 17 is a position sensor, and the linear motor 18 can be further controlled to switch based on the detection information of the limit switch.
  • the grating ruler 22/15 is installed on the base 16 and is located on one side of the linear motor stator or the cross roller guide 25/linear guide 12, and the read head 23/14 is installed on the mobile platform 10/11 through the read head mounting seat 24/13 and Located on one side of the stator of the linear motor or the cross-roller guide 25/linear guide 12, it is used to detect the moving position of the mover or the moving platform.
  • the grating scale 22 and the transverse read head 23 can also be replaced by other position sensors in the prior art.
  • the lateral movement mechanism and the depth movement mechanism are arranged on the same base 16 (T-shaped or cross-shaped). separate, e.g. castings) T-shaped or cross-shaped slabs.
  • the interface seat 19 is arranged on the base 16 .
  • the linear motors 18/21, the moving platform, etc. are arranged on the front of the base 16, and the interface seat 19 is arranged on the back of the base 16, and is connected to the surgical robot.
  • the bases of the lateral movement mechanism and the depth movement mechanism are arranged on the same base 16, and the linear motor is matched with the linear guide/cross-roller guide, eliminating the need for side connections between multiple bases, and multiple rotating motors and transmissions
  • the orthopedic operation device of the present invention has higher structural precision, better rigidity, and more convenient manufacture and assembly.
  • the decoupling mechanism 3 includes a mounting seat 6 , a decoupling guide rail 7 , a decoupling connecting seat 8 and a cross roller guide rail 27 installed on the lateral moving platform 10 .
  • the lateral moving platform 10 is provided with two cross roller guide rails 27, which are perpendicular to the decoupling guide rails 7, respectively guiding the lateral and depthwise linear movements of the decoupling mechanism.
  • the decoupling guide rails 7 are transverse linear guide rails, and a pair of cross roller guide rails 27 are arranged along the depth direction.
  • the decoupling guide rail 7 is fixed on the mounting seat 6 , and a slider is provided on the decoupling guide rail 7 , and the slider is slidably fitted without being separated from the guide rail 7 .
  • the decoupling connection base 8 is fixed on the depth moving platform 11, and one end is fixed on the slider of the decoupling guide rail 7.
  • the slider drives the decoupling connection base 8 to slide laterally on the guide rail 7, and the slider does not separate from the guide rail 7.
  • the decoupling mechanism is connected to the base plate 16 by fixing the decoupling connection base 8 to the depth moving platform 11 .
  • the mounting seat 6 is used to install the tool clamping mechanism 60, the decoupling guide rail 7 is fixedly connected to the mounting seat 6, and one side of the mounting seat 6 moves linearly back and forth along the cross roller guide rail 27 on the lateral moving platform 10, specifically in the depth Move in a straight line.
  • the mounting seat 6 is a flat plate structure, the front (one side) is used to install the tool clamping mechanism 60 , and the back is slidably matched with the cross roller guide rails 27 on the lateral moving platform 10 .
  • the decoupling mechanism can reach any point within the travel range on the plane under the simultaneous action of the depth and lateral movement mechanisms. Specifically, the platform 10 is moved laterally to drive the mounting seat 6 (and thus the tool clamping mechanism 60 ) to move horizontally and linearly. At this time, the decoupling guide rail 7 moves horizontally and linearly, and the decoupling guide rail 7 is opposite to the decoupling connecting seat 8 through the slider.
  • the depth moving platform 11 drives the mounting seat 6 (and thus the tool clamping mechanism 60 ) to move linearly in the depth direction as a whole through the decoupling connecting seat 8 , and the mounting seat 6 moves linearly in the depth direction along the cross roller guide rail 27 .
  • the surgical tool clamping mechanism 60 includes a tool clamp sleeve 61 , a tool clamp base 63 , a guide post 62 , a sensor interface base 64 and a six-axis sensor 65 .
  • the tool holder 61 is connected with the tool holder 63 through the guide post 62 and holds the surgical tool inside.
  • the tool holder 63 , the sensor interface seat 64 and the six-axis sensor 65 are sequentially mounted on the mounting seat 6 of the decoupling machine.
  • the tool clamping mechanism can clamp a drill or ultrasonic osteotome, or other orthopedic surgical tools.
  • the six-axis sensor 5 can accurately measure forces and moments in various directions during orthopaedic surgery, sense movement variables in various dimensions, avoid surgical accidents, and improve control accuracy.
  • the power source of this embodiment is in a plane rather than a superimposed form, so it has the characteristics of compact structure, excellent rigidity and stability.
  • the orthopedic surgical device is connected with the tool flange at the end of the mechanical arm of the orthopedic surgical robot through the interface seat 19 to constitute the orthopedic surgical robot system of the present invention.
  • the orthopedic surgical robot is provided with a control center, and the linear motors, sensors, switches and other electronic components of the orthopedic surgical device are electrically and communicatively connected to the control center, and are controlled by the control center to work; the control center can also be set on the surgical robot and the orthopedic surgical device. outside the console.
  • the surgical robot is provided with a control PCB, which is electrically and/or communicatively connected to the motors and sensors of the orthopaedic surgical device, and is electrically/communicatively connected to the control center for function control and data information processing.
  • the orthopedic surgical device is provided with a navigation surface that can be recognized by a vision system, and the orthopedic surgical device or the surgical robot further includes a binocular vision system, which can recognize the navigation surface.
  • the orthopaedic surgical device of the present invention may be provided with two or more moving mechanisms, and the plurality of moving mechanisms respectively provide linear reciprocating movement variables in different directions for the orthopedic surgical tool.
  • At least one of the plurality of moving mechanisms includes a moving platform, a linear motor, a linear guide, or a cross-roller guide.
  • the linear motor includes a stator and a mover, the moving platform is connected with the mover and is driven by the mover to reciprocate linearly along the stator; the linear guide rail or the cross roller guide rail guides the linear reciprocating motion of the moving platform.

Landscapes

  • Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Dentistry (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Robotics (AREA)
  • Pathology (AREA)
  • Surgical Instruments (AREA)

Abstract

一种骨科手术装置及骨科手术机器人系统,骨科手术装置包括骨科手术工具以及两个移动机构,两个移动机构分别为骨科手术工具提供不同方向的往复移动变量;骨科手术装置还包括解耦机构(3)和骨科手术工具装夹机构;骨科手术工具装夹机构安装骨科手术工具,与解耦机构(3)连接;解耦机构(3)与两个移动机构连接,在两个移动机构的共同作用下,使骨科手术工具到达行程范围内的任一点。骨科手术装置使得手术操作简便容易,稳定性强,精度高,提高了手术效率,减少了徒手操作时医生的苦累和难以控制的手术风险,增加了手术可控性和安全性。骨科手术机器人系统包括骨科手术装置、控制中心,控制中心连接并控制骨科手术装置的驱动电机,从而实现智能化、精度高的手术控制。

Description

一种骨科手术装置及骨科手术机器人系统 技术领域
本发明涉及医疗器械技术领域,尤其是涉及可用于进行骨科手术中的磨削、切骨等功能的骨科手术装置及骨科手术机器人系统。
背景技术
在骨科手术中,手术控制的精准度和稳定性十分重要,其中截骨手术成功的关键在于能否准确按照手术预设计划进行定位操作并且不损害人体神经组织,达到手术治疗目的。
目前仍没有直接应用于骨科手术机器人的智能自动截骨工具。绝大多数情况下依然由医生使用现有的骨科电磨或者超声骨刀,由医生徒手进行操作截骨,对磨削的量或者超声骨刀的切入量控制不好,容易造成神经受损。部分骨科手术机器人的机械臂工具端安装截骨工具,术中采用随动的方式,配合双目视觉导航系统,依然需要医生手握截骨工具进行操作,其特点在于截骨工具的把持比较稳定。采用骨科手术机器人把持截骨工具的方式,虽然增加了截骨工具在空间的稳定性,但是依然需要医生手动操控工具,并且需要根据导航系统的提示由医生实时进行控制,不够智能,同时医生需要密切关注导航系统的提示,医生的工作量也不低。
因此,需要提供一种操作方便简易、精准度高、稳定性强、能够提高手术效率、降低手术伤害的截骨装置,以及可避免手动操作难度和风险的智能的自动截骨系统。
技术问题
本发明的目的在于提供一种操作方便简易、精准度高、稳定性强、能够提高手术效率骨科手术装置。
本发明的再一目的在于提供一种操作方便简易、精准度高、稳定性强、能够提高手术效率骨科手术机器人系统。
技术解决方案
为实现本发明目的,提供以下技术方案:
一种骨科手术装置,包括骨科手术工具以及两个移动机构,所述两个移动机构分别为骨科手术工具提供不同方向的往复移动变量;所述骨科手术装置还包括解耦机构和骨科手术工具装夹机构;骨科手术工具装夹机构安装所述骨科手术工具,与所述解耦机构连接;所述解耦机构与两个移动机构连接,在所述两个移动机构的共同作用下,使骨科手术工具到达行程范围内的任一点。
在一些实施例中,两个移动机构中的一个或两个移动机构包括底座以及安装于底座上的直线电机和移动平台;直线电机包括定子和动子;所述动子连接对应的移动平台,由动子带动移动平台往复直线运动;移动平台与所述解耦机构连接,由移动平台带动解耦机构作相应的直线运动。
在一些实施例中,所述两个移动机构安装于同一底座上;两个移动机构的直线电机安装于同一底座的不同位置;所述底座为一体结构;所述底座为T形或L形或十字形。
在一些实施例中,所述移动机构还包括安装于底座上的直线导轨或交叉滚柱导轨;直线电机动子驱动所述移动平台沿所述直线导轨或交叉滚柱导轨滑动;所述直线导轨上设置有滑块,直线电机的动子与滑块连接;所述移动机构还包括限位开关和限位块,所述限位开关安装于底座上,所述限位块设置于每个移动平台的两端,与对应限位开关相互配合,用于限定对应移动平台的运动行程。所述移动机构还包括光栅尺和读头,所述光栅尺沿对应移动平台的运动行程设置,由读头获取位置信息,两者相互配合检测对应移动平台的位置。
在一些实施例中,所述两个移动机构为横向移动机构、深度移动机构、纵向移动机构中的两种;横向移动机构提供横向的直线往复移动变量;深度移动机构提供深度方向的直线往复移动变量;纵向移动机构沿纵向提供直线往复移动变量。
在一些实施例中,所述解耦机构包括安装座和解耦连接座;所述安装座与所述解耦连接座之间可相对运动地连接;骨科手术工具装夹机构安装于所述安装座上;所述安装座和解耦连接座分别与两个移动机构的移动平台连接,在所述两个移动机构的共同同作用下,解耦机构带动骨科手术工具装夹机构所装夹的骨科手术工具到达行程范围内的预定点。
在一些实施例中,所述解耦机构还包括解耦导轨;所述解耦导轨安装于所述安装座上;所述解耦导轨上设置有滑块,所述解耦连接座与滑块连接,由所述滑块带动解耦连接座与所述解耦导轨相对滑动配合;所述滑块不脱离所述解耦导轨地滑动配合;所述安装座与一个移动机构的移动平台之间可相对运动或固定地连接,所述解耦连接座与另一移动机构中的移动平台之间可相对运动或固定地连接。
在一些实施例中,所述安装座与一个移动机构的移动平台之间可相对滑动地连接,所述一个移动机构的移动平台的正面设置有直线导轨或交叉滚柱导轨;所述安装座安装于所述移动平台的正面,且沿所述直线导轨或交叉滚柱导轨与所述移动平台的正面可往复运动地配合;移动平台的背面连接于所述移动机构的直线电机动子;所述解耦连接座与另一移动机构中的移动平台固定连接。
在一些实施例中,所述骨科手术工具装夹机构包括工具夹套、工具夹座以及传感器;工具夹座与工具夹套共同夹持骨科手术工具;所述传感器安装于解耦机构的安装座与工具夹座之间,用于测量骨科手术工具工作过程中的各个方向的力和力矩。
在一些实施例中,所述工具夹套与工具夹座之间由导向柱连接;所述传感器为六轴传感器,与手术机器人或控制中心连接;移动机构的底座上设置有接口座,用于与手术机器人的机械臂末端工具法兰连接。
本发明提供另一种骨科手术装置,包括骨科手术工具和多个移动机构,所述多个移动机构分别为骨科手术工具提供不同方向的直线往复移动变量,所述多个移动机构中的至少一个移动机构包括移动平台、直线电机、直线导轨或交叉滚柱导轨;直线电机包括定子和动子,移动平台与动子连接由动子驱动沿定子直线往复运动;所述直线导轨或交叉滚柱导轨导向所述移动平台的直线往复运动。
进一步地,所述至少一个移动机构为横向移动机构、深度移动机构或纵向移动机构;横向移动机构提供横向的直线往复移动变量;深度移动机构提供深度方向的直线往复移动变量;纵向移动机构沿纵向提供直线往复移动变量;所述至少一个移动机构包括底座;所述移动机构还包括限位开关和限位块,所述限位开关安装于底座上,所述限位块设置于每个移动平台的两端,与对应限位开关相互配合,用于限定对应移动平台的运动行程。所述移动机构还包括光栅尺和读头,所述光栅尺沿对应移动平台的运动行程设置,由读头获取位置信息,两者相互配合检测对应移动平台的位置。
在一些实施例中,各移动机构包括底座以及安装于底座上的移动平台和动力源,由动力源驱动所述移动平台相对于底座作直线往复移动;各移动机构的移动平台和/或底座之间两两连接,在所述多个移动机构的共同作用下,使骨科手术工具到达行程范围内的任一点;所述骨科手术工具与一个移动机构的移动平台连接。
在一些实施例中,所述骨科手术装置包括骨科手术工具装夹机构;所述骨科手术工具安装于所述骨科手术工具装夹机构中;所述骨科手术工具装夹机构包括工具夹套、工具夹座以及传感器;工具夹座与工具夹套共同夹持骨科手术工具;所述工具夹座连接于所述一个移动机构的移动平台;所述传感器安装于工具夹座,用于测量骨科手术工具工作过程中的各个方向的力和力矩。
本发明还提供一种骨科手术机器人系统,包括手术机器人以及骨科手术工具以及如上所述的骨科手术装置安装的骨科手术工具;所述骨科手术装置与手术机器人之间连接。
进一步地,所述骨科手术机器人包括系统控制中心,所述骨科手术装置的移动机构包括有驱动电机,所述驱动电机与所述控制中心连接;所述骨科手术装置上设有传感器,所述传感器与所述控制中心连接,所述骨科手术工具上设有视觉系统可识别的导航面,所述骨科手术机器人系统还包括双目视觉系统,所述双目视觉系统可识别所述导航面;所述骨科手术装置上设置有接口座,与手术机器人的机械臂末端工具法兰连接。
一些实施方式中,一种骨科手术装置包括依次连接的骨科手术工具、至少两个移动机构,所述至少两个移动机构分别为骨科手术工具提供各自不同方向的直线往复移动变量,所述至少两个移动机构沿所述各自不同方向的所在轴线相互垂直。
一些实施方式中,本发明通过采用可提高控制精度、准确度及稳定性的机械式移动机构,来实现不同方向的直线往复运动变量,通过至少两个所述移动机构提供的相互垂直的直线往复运动变量,实现至少两个方向的骨科手术工具自动移动控制,从而使得手术操作更简便容易,稳定性更强,精度更高,手术效率提高,移动机构所提供的可控的运动变量,减少了徒手操作时医生的苦累和难以控制的手术风险,增加了手术可控性和安全性。
一些实施方式中,所述骨科手术装置包括三个所述移动机构,所述骨科手术工具、所述三个移动机构依次连接,所述三个移动机构分别为骨科手术工具提供各自不同方向的直线往复移动变量,所述三个移动机构分别沿所述各自不同方向的所在轴线两两相互垂直。
一些实施方式中,每个所述移动机构包括驱动电机、滑轨和移动平台,所述移动平台在所述驱动电机的驱动下可沿所述滑轨做直线往复运动,所述骨科手术工具、所述至少两个移动机构依次连接的连接方式是:所述骨科手术工具安装在其中一个移动机构的移动平台上,与所述骨科手术工具连接的移动机构以及其他移动机构分别依次安装在相邻的另一移动机构的移动平台上。
实现所述移动平台在所述驱动电机的驱动下可沿所述滑轨做直线往复运动,可以有多种不同的实施方式,一些实施方式中,所述移动平台与所述滑轨之间安装有交叉滚柱导轨。
一些实施方式中,所述移动机构还包括丝杠组件,所述丝杠组件包括沿滑轨方向设置的滚珠丝杠,以及与所述滚珠丝杠相配合的丝杠螺母,所述移动平台固定在所述丝杠螺母上,所述驱动电机连接并驱动所述滚珠丝杠,使得所述移动平台与滚珠丝杠之间产生直线往复的相对运动。
一些实施方式中,所述骨科手术工具与相连接的移动机构之间还设置有旋转夹持机构,所述旋转夹持机构安装在与骨科手术工具相连接的所述移动机构上,所述骨科手术工具与所述旋转夹持机构相连接。具体一些实施方式中,所述旋转夹持机构包括驱动电机、与所述驱动电机输出相连接的齿轮组,所述齿轮组输出连接所述骨科手术工具。
一些实施方式中,所述骨科手术工具包括电磨头或者超声骨刀。
一些实施方式中,所述骨科手术装置还设有用于实时近距离监控手术部位情况的摄像头。
本发明还提供一种骨科手术机器人系统,其包括如上所述的骨科手术装置,以及控制中心,所述骨科手术装置的移动机构包括有驱动电机,所述驱动电机与所述控制中心连接。
一些实施方式中,所述骨科手术装置上设有传感器,所述传感器与所述控制中心连接,所述骨科手术工具上设有视觉系统可识别的导航面,该骨科手术机器人系统还包括双目视觉系统,该双目视觉系统可识别所述导航面。
具体的一些实施方式中,所述传感器为六轴传感器,安装在移动机构上。
有益效果
与现有技术相比较,本发明具有如下所述优点:
本发明通过采用可提高控制精度、准确度及稳定性的机械式移动机构,来实现不同方向的直线往复运动变量,通过至少两个所述移动机构提供的相互垂直的直线往复运动变量,实现至少两个方向的骨科手术工具自动移动控制,从而使得手术操作更简便容易,稳定性更强,精度更高,手术效率提高,移动机构所提供的可控的运动变量,减少了徒手操作时医生的苦累和难以控制的手术风险,增加了手术可控性和安全性。
本发明可用于骨科手术机器人,与骨科手术机器人配合使用,可用于进行骨科手术中的自动磨削、切骨等功能。
附图说明
图1为本发明骨科手术装置实施例一的分解示意图。
图2为本发明骨科手术装置实施例一的侧视图。
图3为本发明骨科手术装置实施例一的立体图。
图4为本发明骨科手术装置实施例二的分解示意图。
图5为本发明骨科手术装置实施例二的侧视图。
图6为本发明骨科手术装置实施例二的立体图。
图7为本发明骨科手术装置实施例三的分解示意图。
图8为本发明骨科手术装置实施例三的侧视图。
图9为本发明骨科手术装置实施例三的立体图。
图10为本发明骨科手术装置实施例四的分解示意图。
图11为本发明骨科手术装置实施例四的侧视图。
图12为本发明骨科手术装置实施例四的立体图。
图13为本发明骨科手术装置实施例五的分解示意图。
图14为本发明骨科手术装置实施例五的侧视图。
图15为本发明骨科手术装置实施例五的立体图。
图16为采用本发明骨科手术装置工作的空间区域示意图之一。
图17为采用本发明骨科手术装置工作的空间区域示意图之二。
图18为采用本发明骨科手术装置工作的平面示意图之一。
图19为采用本发明骨科手术装置工作的平面示意图之二。
图20为本发明骨科手术装置实施例六的立体图。
图21为本发明骨科手术装置实施例六的分解示意图。
具体实施方式
下面将对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
值得注意的是,本发明中所提到的方向用语,例如,“横向”、“纵向”、“深度方向”、“上”、“下”、“前”、“后”、“左”、“右”、“内”、“外”、“侧面”等,仅是参考附加图式的方向,因此,使用的方向用语是为了更好、更清楚地说明及理解本发明,而不是指示或暗指所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
为了更详细说明本发明,下面结合附图对本发明提供的骨科手术装置实施例进行具体地描述。
本发明实施例一、二、四的所述骨科手术装置包括骨科手术工具和三个移动机构,所述骨科手术工具、所述三个移动机构依次连接,所述三个移动机构分别为骨科手术工具提供各自不同方向的直线往复移动变量,所述三个移动机构分别沿所述各自不同方向的所在轴线两两相互垂直。所述骨科手术工具、所述三个移动机构依次连接的连接方式是:所述骨科手术工具安装在其中一个移动机构的移动平台上,与所述骨科手术工具连接的移动机构以及其他移动机构分别依次安装在相邻的另一移动机构的移动平台上。实施例三的所述骨科手术装置包括骨科手术工具和两个移动机构,所述两个移动机构分别为骨科手术工具提供各自不同方向的直线往复移动变量,所述两个移动机构沿所述各自不同方向的所在轴线相互垂直。所述骨科手术工具、所述两个移动机构依次连接的连接方式是:所述骨科手术工具安装在其中一个移动机构的移动平台上,与所述骨科手术工具连接的移动机构安装在另一移动机构的移动平台上。额外的,实施例三增加了实时近距离监控手术部位的摄像头实施例五是在实施例一的基础上的替换实施例,具体是将实施例一中的骨科手术工具变为采用超声骨刀。
图1、3、4、6、7、9、10、12中采用工程中使用的右手直角笛卡尔坐标系,按图示定义:X轴的正方向为向右;Y轴的正方向为向前;Z轴的正方向为向下;X为横向,Y为纵向,Z为深度方向。该坐标轴前后左右上下的定义仅是参考附加图式的方向,使用的方向用语是为了更好、更清楚地说明及理解本发明,而不是指示或暗指所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
请参阅图1~3,具体实施例一中,所述三个移动机构分别为纵向移动机构100、横向移动机构300和深度移动机构200,分别提供沿纵向、横向、深度方向的直线往复移动变量。在图1坐标轴中,X为横向,Y为纵向、Z为深度方向。纵向、横向、深度三个方向的直线往复移动变量叠加,可以让所述骨科手术工具在一定范围内到达任意点,从而实现骨科手术工具的方便简易、精准度高、稳定性强的手术操作,并能够提高手术效率、降低手术风险。
所述纵向移动机构100包括纵向驱动电机102、安装有纵向滑轨的纵向滑轨安装座101和纵向移动平台103,所述纵向移动平台103在所述纵向驱动电机102的驱动下可沿所述纵向滑轨安装座101做直线往复运动,所述纵向滑轨安装座101上所安装的纵向滑轨在本实施例中采用交叉滚柱导轨(未标示)。所述纵向滑轨安装座101上安装有连接平台503和安装接口座501,通过该安装接口座501可以将所述骨科手术装置安装在手术机器人上,可以按照术前手术规划,对磨削及切削的位置、深度进行精确的控制,减少了人工操作带来的偏差,使得手术精度得到保证。
所述骨科手术装置还设有六轴传感器502,可以精确测量出截骨过程中的各个方向的力和力矩,感测各个维度的移动变量,避免手术事故的发生,提高控制精确度。
所述深度移动机构200包括深度驱动电机202、安装有深度滑轨的深度滑轨安装座201和深度移动平台,所述深度移动平台在所述深度驱动电机202的驱动下可沿所述深度滑轨安装座201做直线往复运动,所述深度滑轨安装座201上所安装的深度滑轨在本实施例中采用交叉滚柱导轨(未标示)。所述深度滑轨安装座201安装在所述纵向移动平台103上。具体的,所述深度滑轨安装座201与所述纵向移动平台103之间通过快拆座105实现可拆卸式安装。作为一种实施例,快拆座105可通过螺丝(手拧螺丝)分别固定于深度滑轨安装座201和所述纵向移动平台103,且分别与深度滑轨安装座201和所述纵向移动平台103卡紧配合。
所述横向移动机构300包括横向驱动电机302、安装有横向滑轨的横向滑轨安装座301和横向移动平台303,所述横向移动平台303在所述横向驱动电机302的驱动下可沿所述横向滑轨安装座301做直线往复运动,所述横向滑轨安装座301上所安装的横向滑轨在本实施例中采用交叉滚柱导轨(未标示)。所述横向滑轨安装座301直接作为所述深度移动机构的所述深度移动平台,安装在所述深度滑轨安装座201上,由所述深度驱动电机202连接驱动。
进一步的,各驱动电机可以通过联轴器联接驱动。
实施例中所述骨科手术工具安装在所述横向移动机构的横向移动平台303上,所述骨科手术工具与相连接的横向移动平台303之间还设置有深度方向推进的旋转夹持机构400,所述旋转夹持机构400安装在与骨科手术工具相连接的所述横向移动平台303上,所述骨科手术工具与所述旋转夹持机构400相连接。所述旋转夹持机构400包括旋转驱动电机401、安装座404、相啮合的主动齿轮402和从动齿轮403,所述驱动电机连接并驱动所述主动齿轮402,所述从动齿轮403的输出连接所述骨科手术工具。进一步的,所述旋转夹持机构400设有手拧快拆螺钉,可以快速的装夹骨科手术工具。
所述骨科手术工具包括由骨科电钻驱动的电磨头601和骨科手术工具安装座602,所述骨科手术工具安装座602与所述旋转夹持机构400连接。所述骨科手术工具安装座602上设有导航面603,可以由视觉系统识别,进行实时跟踪。其他实施例中的所述骨科手术工具还可以是超声骨刀。
请结合参阅图16~19,借助本发明骨科手术装置,可以使骨科手术工具获得在纵向、横向、深度三个方向的直线往复移动,三个方向的移动变量叠加,实现可以让所述骨科手术工具在一定范围内到达任意点,如图16和17中针对待手术脊骨700,使用本发明骨科手术装置实现骨科手术工具在该待手术脊骨700的手术部位上三维空间a内的任意点移动,或根据需要,实现在如图18和19中待手术脊骨700的手术部位上平面空间b内的任意点移动,从而实现骨科手术工具的方便简易、精准度高、稳定性强的手术操作,并能够提高手术效率、降低手术风险。
请参阅图4~6,具体实施例二中,所述三个移动机构分别为纵向移动机构110、横向移动机构310和深度移动机构210,分别提供沿纵向、横向、深度方向的直线往复移动变量。在图4坐标轴中,X为横向,Y为纵向、Z为深度方向。纵向、横向、深度三个方向的直线往复移动变量叠加,可以让所述骨科手术工具在一定范围内到达任意点,从而实现骨科手术工具的方便简易、精准度高、稳定性强的手术操作,并能够提高手术效率、降低手术风险。
所述纵向移动机构110包括纵向驱动电机112、安装有纵向滑轨的纵向滑轨安装座111和纵向移动平台115,所述纵向移动机构110还包括纵向丝杠组件,所述纵向丝杠组件包括沿纵向滑轨方向设置的纵向滚珠丝杠114,以及与所述纵向滚珠丝杠114相配合的纵向丝杠螺母113,所述纵向移动平台115固定在所述纵向丝杠螺母113上,所述纵向驱动电机112连接并驱动所述纵向滚珠丝杠114,使得所述纵向移动平台115与纵向滚珠丝杠114之间产生直线往复的相对运动。
所述纵向滑轨安装座111上安装有连接平台513和安装接口座501,通过该安装接口座501可以将所述骨科手术装置安装在手术机器人上,可以按照术前手术规划,对磨削及切削的位置、深度进行精确的控制,减少了人工操作带来的偏差,使得手术精度得到保证。所述骨科手术装置还设有六轴传感器502,可以精确测量出截骨过程中的各个方向的力和力矩,感测各个维度的移动变量,避免手术事故的发生,提高控制精确度。
所述横向移动机构310包括横向驱动电机312、安装有横向滑轨的横向滑轨安装座311和横向移动平台315,所述横向移动机构310还包括横向丝杠组件,所述横向丝杠组件包括沿横向滑轨方向设置的横向滚珠丝杠314,以及与所述滚珠丝杠314相配合的横向丝杠螺母313,所述横向移动平台315固定在所述横向丝杠螺母313上,所述横向驱动电机312连接并驱动所述横向滚珠丝杠314,使得所述横向移动平台315与横向滚珠丝杠314之间产生直线往复的相对运动。所述横向滑轨安装座311安装在所述纵向移动平台115上。
所述深度移动机构210包括深度驱动电机212、安装有深度滑轨的深度滑轨安装座211和深度移动平台213,所述深度移动机构210还包括深度丝杠组件,所述丝杠组件包括沿深度滑轨方向设置的深度滚珠丝杠214,所述深度移动平台213上设有与所述深度滚珠丝杠214相配合的内螺纹,所述深度驱动电机212连接并驱动所述深度滚珠丝杠214,使得所述深度移动平台213与深度滚珠丝杠214之间产生直线往复的相对运动。所述深度滑轨安装座211安装在所述横向移动平台315上。
进一步的,各驱动电机可以通过联轴器联接驱动。
实施例中所述骨科手术工具安装在所述深度移动机构210的深度移动平台213上,所述骨科手术工具与相连接的深度移动平台213之间还设置有旋转夹持机构410,所述旋转夹持机构410安装在与骨科手术工具相连接的所述深度移动平台213上,所述骨科手术工具与所述旋转夹持机构410相连接。所述旋转夹持机构410包括旋转驱动电机411、安装座414、相啮合的主动齿轮412和从动齿轮413,所述驱动电机连接并驱动所述主动齿轮412,所述从动齿轮413的输出连接所述骨科手术工具。进一步的,所述旋转夹持机构410设有手拧快拆螺钉,可以快速的装夹骨科手术工具。
所述骨科手术工具包括由骨科电钻驱动的电磨头601和骨科手术工具安装座602,所述骨科手术工具安装座602与所述旋转夹持机构410连接。所述骨科手术工具安装座602上设有导航面603,可以由视觉系统识别,进行实时跟踪。其他实施例中的所述骨科手术工具还可以是超声骨刀。
请参阅图7~9,和实施例一、二不同的是,实施例三中所述骨科手术装置包括依次连接的骨科手术工具和两个移动机构,所述两个移动机构分别为骨科手术工具提供各自不同方向的直线往复移动变量,所述两个移动机构沿所述各自不同方向的所在轴线相互垂直。
具体实施例三中,所述两个移动机构分别为横向移动机构320和深度移动机构220,分别提供沿横向、深度方向的直线往复移动变量。在图7坐标轴中,X为横向,Y为纵向、Z为深度方向。横向、深度两个方向的直线往复移动变量叠加,可以让所述骨科手术工具在一定平面范围内到达任意点,从而实现骨科手术工具的方便简易、精准度高、稳定性强的手术操作,并能够提高手术效率、降低手术风险。
所述横向移动机构320包括横向驱动电机322、安装有横向滑轨的横向滑轨安装座321和横向移动平台325,所述横向移动机构320还包括横向丝杠组件,所述横向丝杠组件包括沿横向滑轨方向设置的横向滚珠丝杠324,以及与所述滚珠丝杠324相配合的横向丝杠螺母323,所述横向移动平台325固定在所述横向丝杠螺母323上,所述横向驱动电机322连接并驱动所述横向滚珠丝杠324,使得所述横向移动平台325与横向滚珠丝杠324之间产生直线往复的相对运动。
所述横向移动机构320上安装有连接平台523和安装接口座501,通过该安装接口座501可以将所述骨科手术装置安装在手术机器人上,可以按照术前手术规划,对磨削及切削的位置、深度进行精确的控制,减少了人工操作带来的偏差,使得手术精度得到保证。所述骨科手术装置还设有六轴传感器502,可以精确测量出截骨过程中的各个方向的力和力矩,感测各个维度的移动变量,避免手术事故的发生,提高控制精确度。
所述深度移动机构220包括深度驱动电机222、安装有深度滑轨的深度滑轨安装座221和深度移动平台223,所述深度移动机构220还包括深度丝杠组件,所述丝杠组件包括沿深度滑轨方向设置的深度滚珠丝杠224,所述深度移动平台223设有与所述深度滚珠丝杠224相配合的内螺纹,所述深度驱动电机222连接并驱动所述深度滚珠丝杠224,使得所述深度移动平台223与深度滚珠丝杠224之间产生直线往复的相对运动。所述深度滑轨安装座221一端安装在所述横向移动平台325上,另一端与固定在连接平台523上的一条导轨326上的滑块327相连接,这种结构能更好的提高深度移动机构220的刚性。
进一步的,各驱动电机可以通过联轴器联接驱动。
实施例中所述骨科手术工具安装在所述深度移动机构220的深度移动平台223上,所述骨科手术工具与相连接的深度移动平台223之间还设置有旋转夹持机构420,所述旋转夹持机构420安装在与骨科手术工具相连接的所述深度移动平台223上,所述骨科手术工具与所述旋转夹持机构420相连接。所述旋转夹持机构420包括旋转驱动电机421、安装座424、相啮合的主动齿轮422和从动齿轮423,所述驱动电机连接并驱动所述主动齿轮422,所述从动齿轮423的输出连接所述骨科手术工具。进一步的,所述旋转夹持机构420设有手拧快拆螺钉,可以快速的装夹骨科手术工具。
所述骨科手术工具包括由骨科电钻驱动的电磨头601和骨科手术工具安装座602,所述骨科手术工具安装座602与所述旋转夹持机构420连接。所述骨科手术工具安装座602上设有导航面603,可以由视觉系统识别,进行实时跟踪。其他实施例中的所述骨科手术工具可以是截骨工具或超声骨刀,也可以是其他工具。
此外,横向移动平台325上固定有摄像机328,用于在手术中实时近距离监控手术部位的情况。
请参阅图10~12,具体实施例四中,所述三个移动机构分别为纵向移动机构130、横向移动机构330和深度移动机构230,分别提供沿纵向、横向、深度方向的直线往复移动变量。在图10坐标轴中,X为横向,Y为纵向、Z为深度方向。纵向、横向、深度三个方向的直线往复移动变量叠加,可以让所述骨科手术工具在一定范围内到达任意点,从而实现骨科手术工具的方便简易、精准度高、稳定性强的手术操作,并能够提高手术效率、降低手术风险。
所述横向移动机构330包括横向驱动电机332、安装有横向滑轨的横向滑轨安装座331和横向移动平台335,所述横向移动机构330还包括横向丝杠组件,所述横向丝杠组件包括沿横向滑轨方向设置的横向滚珠丝杠334,以及与所述滚珠丝杠334相配合的横向丝杠螺母333,所述横向移动平台335固定在所述横向丝杠螺母333上,所述横向驱动电机332连接并驱动所述横向滚珠丝杠334,使得所述横向移动平台335与横向滚珠丝杠334之间产生直线往复的相对运动。
所述横向移动机构330上安装有连接平台533和安装接口座501,通过该安装接口座501可以将所述骨科手术装置安装在手术机器人上,可以按照术前手术规划,对磨削及切削的位置、深度进行精确的控制,减少了人工操作带来的偏差,使得手术精度得到保证。所述骨科手术装置还设有六轴传感器502,可以精确测量出截骨过程中的各个方向的力和力矩,感测各个维度的移动变量,避免手术事故的发生,提高控制精确度。
所述深度移动机构230包括深度驱动电机232、安装有深度滑轨的深度滑轨安装座231和深度移动平台235,所述深度移动机构230还包括深度丝杠组件,所述丝杠组件包括沿深度滑轨方向设置的深度滚珠丝杠234,以及与所述深度滚珠丝杠234相配合的深度丝杠螺母233,所述深度移动平台235固定在所述深度丝杠螺母233上,所述深度驱动电机232连接并驱动所述深度滚珠丝杠234,使得所述深度移动平台235与深度滚珠丝杠234之间产生直线往复的相对运动。所述深度滑轨安装座231安装在所述横向移动平台335上。
所述纵向移动机构130包括纵向驱动电机132、安装有纵向滑轨的纵向滑轨安装座131和纵向移动平台135,所述纵向移动机构130还包括纵向丝杠组件,所述纵向丝杠组件包括沿纵向滑轨方向设置的纵向滚珠丝杠134,以及与所述纵向滚珠丝杠134相配合的纵向丝杠螺母133,所述纵向移动平台135固定在所述纵向丝杠螺母133上,所述纵向驱动电机132连接并驱动所述纵向滚珠丝杠134,使得所述纵向移动平台135与纵向滚珠丝杠134之间产生直线往复的相对运动。所述纵向滑轨安装座131安装在所述深度移动平台235上。具体的,所述深度移动平台235具有横向伸出的横肩部(未标示),所述纵向滑轨安装座131安装在所述深度移动平台235的横肩部上。
进一步的,各驱动电机可以通过联轴器联接驱动。
实施例中所述骨科手术工具安装在所述纵向移动机构130的纵向移动平台135上,所述骨科手术工具与相连接的纵向移动平台135之间还设置有旋转夹持机构430,所述旋转夹持机构430安装在与骨科手术工具相连接的所述纵向移动平台135上,所述骨科手术工具与所述旋转夹持机构430相连接。所述旋转夹持机构430包括旋转驱动电机431、安装座434、相啮合的主动齿轮432和从动齿轮433,所述驱动电机连接并驱动所述主动齿轮432,所述从动齿轮433的输出连接所述骨科手术工具。进一步的,所述旋转夹持机构430设有手拧快拆螺钉,可以快速的装夹骨科手术工具。
所述骨科手术工具包括由骨科电钻驱动的电磨头601和骨科手术工具安装座602,所述骨科手术工具安装座602与所述旋转夹持机构430连接。所述骨科手术工具安装座602上设有导航面603,可以由视觉系统识别,进行实时跟踪。其他实施例中的所述骨科手术工具还可以是超声骨刀。
如图13~15所示,实施例五与实施例一不同之处在于所采用的骨科手术工具为超声骨刀604。
作为替换实施例,所述骨科手术装置的至少两个移动机构还可以横向移动机构和纵向移动机构组成,或由纵向移动机构和深度移动机构组成。
本发明还提供一种骨科手术机器人系统,其包括如上所述任意实施例的骨科手术装置以及手术机器人。骨科手术装置通过安装接口座501将所述截骨装置安装在手术机器人上。骨科手术机器人系统包括控制中心,所述骨科手术装置的每个移动机构包括有驱动电机,所述驱动电机与所述控制中心连接,控制中心可以是设置于手术机器人上,或者设置于骨科手术机器人外部的控制台,可进行功能控制以及数据处理。所述骨科手术装置的传感器采用六轴传感器,安装在移动机构上并与所述控制中心电连接和通信连接,所述骨科手术工具上设有视觉系统可识别的导航面603,该骨科手术机器人系统还包括双目视觉系统,该双目视觉系统可识别所述导航面。该双目视觉系统可以安装在骨科手术装置上,或通过支架放在手术床旁,也可以通过支座固定在手术床上方。控制中心的控制电路通过RSS485或CAN通讯与计算机相连,完成术前规划预定的磨削动作或者切除动作。本发明的骨科手术机器人系统,由工具自动完成截骨动作,无需医生操作,医生将精力主要集中于监控整个过程,减轻了医生的劳动强度。
参照图20-21,本发明实施例六的骨科手术装置,包括底座16以及安装在底座16上的深度移动机构1和横向移动机构2,还包括安装于移动机构上的解耦机构3和手术工具装夹机构60。手术工具装夹机构60内安装骨科手术工具(未图示),骨科手术工具可以是磨钻和超声骨刀或其他类型的手术工具。深度移动机构1和横向移动机构2分别提供沿横向和深度方向的直线往复移动变量,使本实施例的解耦机构3可以完成横向和深度两个方向的运动。
骨科手术装置的横向移动机构2包括安装在底座16上的直线电机21、交叉滚柱导轨25、横向光栅尺22、横向读头23、横向读头安装座24、横向限位开关20、以及安装在横向移动平台10上两端的横向限位块9。所述直线电机21的动子28安装在横向移动平台10上,带动所述横向移动平台10沿着所述交叉滚柱导轨25做直线往复运动。直线电机21的定子29位于一对交叉滚柱导轨中间,本实施例中,直线电机采用平板式直线电机或U型槽式直线电机。横向限位开关20安装底座16上,可位于定子29或交叉滚柱导轨25的两侧末端,横向移动平台10的两端设置横向限位块9,分别限位横向移动平台10的直线往复运动的两终点位置,与横向限位开关20配合,以检测横向移动平台10运动到两侧的极限位置。横向限位开关20为位置传感器,检测横向移动平台10的运行位置,通过限位开关的检测信息进一步控制开关直线电机21。
所述骨科手术装置的深度移动机构包括安装在底座16上的直线电机18、直线导轨12、深度光栅尺15、深度读头14、深度读头安装座13、深度限位开关17、以及安装在深度移动平台11上的深度限位块26。所述直线电机18的动子180安装在深度移动平台11上,带动所述深度移动平台11沿着所述直线导轨12做直线往复运动。直线电机18的定子181位于两条直线导轨12中间,直线导轨12上设有滑块,动子180与滑块连接从而形成与直线导轨12的滑动配合。深度限位开关17安装底座16上,可位于定子181或直线导轨12的末端,深度限位开关17的两端设置横向限位块26,分别限位深度移动平台11的直线往复运动的两终点位置,与深度限位开关17配合,以检测深度移动平台11是否运动到两侧的极限位置。深度限位开关17为位置传感器,可通过限位开关的检测信息进一步控制开关直线电机18。
光栅尺22/15安装底座16上且位于直线电机定子或交叉滚柱导轨25/直线导轨12的一侧,读头23/14通过读头安装座24/13安装于移动平台10/11上且位于直线电机定子或交叉滚柱导轨25/直线导轨12的一侧,用于检测动子或移动平台的运动位置。光栅尺22和横向读头23也可由现有技术中的其他位置传感器取代。
本实施例中,横向移动机构和深度移动机构设置在同一底座16(T型或十字形),底座16可以是由两块平板装配成的整体T形或十字形平板,或者是一体成型(不可分开,例如铸件)的T形或十字形平板。接口座19设置于底座16上。本实施中,直线电机18/21、移动平台等设置于底座16的正面,接口座19设置于底座16的背面,与手术机器人连接。横向移动机构和深度移动机构的底座设置于同一块底座16上,且通过直线电机与直线导轨/交叉滚柱导轨配合,省去多块底座之间的边接,省去多个旋转电机及传动机构,直接由动力产生直线进给运动,因此本发明的骨科手术装置结构精度更高、刚度更佳、制造及组装更方便。
所述解耦机3构包括安装座6、解耦导轨7、解耦连接座8以及安装在横向移动平台10上的交叉滚柱导轨27。横向移动平台10上设置有两条交叉滚柱导轨27,与解耦导轨7相互垂直,分别导向解耦机构的横向以及深度方向的直线运动。本实施例中,解耦导轨7为横向直线导轨,一对交叉滚柱导轨27沿深度方向设置。解耦导轨7固定于安装座6上,解耦导轨7上设置有滑块,滑块不脱离导轨7地滑动配合。解耦连接座8一端固定在深度移动平台11上,一端固定在解耦导轨7的滑块上,由滑块带动解耦连接座8在导轨7上横向滑动,且滑块不脱离导轨7,从而通过解耦连接座8固定于深度移动平台11而实现将解耦机构连接于座板16上。安装座6用于安装工具装夹机构60,解耦导轨7固定连接于安装座6上,安装座6的一侧沿横向移动平台10上的交叉滚柱导轨27直线往返运动,具体是在深度方向直线移动。本实施例中,安装座6为平板结构,正面(一侧)用于安装工具装夹机构60,背面与横向移动平台10上的交叉滚柱导轨27滑动配合。解耦机构可以在深度和横向两个移动机构的同时作用下,到达平面上行程范围内的任一点。具体地,横向移动平台10来带动安装座6(从而带动工具装夹机构60)整体横向直线运动,此时解耦导轨7横向直线运动,解耦导轨7通过滑块与解耦连接座8相对滑动,解耦连接座8一端固定于深度移动平台11上,在横向不发生运动。深度移动平台11通过解耦连接座8带动安装座6(从而带动工具装夹机构60)整体在深度方向直线运动,安装座6沿交叉滚柱导轨27在深度方向直线运动。
所述手术工具装夹机构60包括工具夹套61、工具夹座63、导向柱62、传感器接口座64以及六轴传感器65。工具夹套61与工具夹座63通过导向柱62连接并内部夹持手术工具。工具夹座63、传感器接口座64以及六轴传感器65依次安装于解耦机的安装座6上。所述工具装夹机构可以装夹磨钻或超声骨刀,或者装夹其他骨科手术工具。所述六轴传感器5可以精确测量出骨科手术过程中的各个方向的力和力矩,感测各个维度的移动变量,避免手术事故的发生,提高控制精确度。
不同于其他实施例,本实施例的动力源在一个平面而非叠加形式,因此具有结构紧凑,刚性和稳定性极佳的特点。
骨科手术装置通过接口座19与骨科手术机器人的机械臂末端工具法兰连接,构成本发明的骨科手术机器人系统。骨科手术机器人设置有控制中心,骨科手术装置的直线电机、传感器及开关等电子部件,与控制中心电连接和通信连接,由控制中心控制进行工作;控制中心也可以设置于手术机器人以及骨科手术装置之外的控制台。手术机器人内设置有控制PCB,与骨科手术装置的电机、传感器等电连接和/或通信连接,与控制中心电连接/通信连接,以进行功能控制和数据信息的处理。骨科手术装置上设有视觉系统可识别的导航面,骨科手术装置或手术机器人还包括双目视觉系统,该双目视觉系统可识别所述导航面。
以上各实施例中的结构可相互组合或替换。
在其他实施例中,本发明的骨科手术装置,可以设置两个或两个以上移动机构,多个移动机构分别为骨科手术工具提供不同方向的直线往复移动变量。多个移动机构中的至少一个移动机构包括移动平台、直线电机、直线导轨或交叉滚柱导轨。直线电机包括定子和动子,移动平台与动子连接由动子驱动沿定子直线往复运动;直线导轨或交叉滚柱导轨导向所述移动平台的直线往复运动。
以上所述仅为本发明的较佳实施例,本发明的保护范围并不局限于此,任何基于本发明技术方案上的等效变换均属于本发明保护范围之内。

Claims (16)

  1. 一种骨科手术装置,包括骨科手术工具以及两个移动机构,所述两个移动机构分别为骨科手术工具提供不同方向的往复移动变量;其特征在于,所述骨科手术装置还包括解耦机构和骨科手术工具装夹机构;骨科手术工具装夹机构安装所述骨科手术工具,与所述解耦机构连接;所述解耦机构与两个移动机构连接,在所述两个移动机构的共同作用下,使骨科手术工具到达行程范围内的任一点。
  2. 如权利要求1所述的骨科手术装置,其特征在于,
    两个移动机构中的一个或两个移动机构包括底座以及安装于底座上的直线电机和移动平台;
    直线电机包括定子和动子;
    所述动子连接对应的移动平台,由动子带动移动平台往复直线运动;
    移动平台与所述解耦机构连接,由移动平台带动解耦机构作相应的直线运动。
  3. 如权利要求2所述的骨科手术装置,其特征在于,
    所述两个移动机构安装于同一底座上;
    两个移动机构的直线电机安装于同一底座的不同位置;
    所述底座为一体结构;
    所述底座为T形或L形或十字形。
  4. 如权利要求2所述的骨科手术装置,其特征在于,
    所述移动机构还包括安装于底座上的直线导轨或交叉滚柱导轨;直线电机动子驱动所述移动平台沿所述直线导轨或交叉滚柱导轨滑动;所述直线导轨上设置有滑块,直线电机的动子与滑块连接;
    所述移动机构还包括限位开关和限位块,所述限位开关安装于底座上,所述限位块设置于每个移动平台的两端,与对应限位开关相互配合,用于限定对应移动平台的运动行程;
    所述移动机构还包括光栅尺和读头,所述光栅尺沿对应移动平台的运动行程设置,由读头获取位置信息,两者相互配合检测对应移动平台的位置。
  5. 如权利要求1所述的骨科手术装置,其特征在于,
    所述两个移动机构为横向移动机构、深度移动机构、纵向移动机构中的两种;横向移动机构提供横向的直线往复移动变量;深度移动机构提供深度方向的直线往复移动变量;纵向移动机构沿纵向提供直线往复移动变量。
  6. 如权利要求1~5任一项所述的骨科手术装置,其特征在于,
    所述解耦机构包括安装座和解耦连接座;
    所述安装座与所述解耦连接座之间可相对运动地连接;
    骨科手术工具装夹机构安装于所述安装座上;
    所述安装座和解耦连接座分别与两个移动机构的移动平台连接,在所述两个移动机构的共同同作用下,解耦机构带动骨科手术工具装夹机构所装夹的骨科手术工具到达行程范围内的预定点。
  7. 如权利要求6所述的骨科手术装置,其特征在于,
    所述解耦机构还包括解耦导轨;所述解耦导轨安装于所述安装座上;所述解耦导轨上设置有滑块,所述解耦连接座与滑块连接,由所述滑块带动解耦连接座与所述解耦导轨相对滑动配合;所述滑块不脱离所述解耦导轨地滑动配合;
    所述安装座与一个移动机构的移动平台之间可相对运动或固定地连接,所述解耦连接座与另一移动机构中的移动平台之间可相对运动或固定地连接。
  8. 如权利要求6所述的骨科手术装置,其特征在于,
    所述安装座与一个移动机构的移动平台之间可相对滑动地连接,所述一个移动机构的移动平台的正面设置有直线导轨或交叉滚柱导轨;所述安装座安装于所述移动平台的正面,且沿所述直线导轨或交叉滚柱导轨与所述移动平台的正面可往复运动地配合;移动平台的背面连接于所述移动机构的直线电机动子;
    所述解耦连接座与另一移动机构中的移动平台固定连接。
  9. 如权利要求6所述的骨科手术装置,其特征在于,
    所述骨科手术工具装夹机构包括工具夹套、工具夹座以及传感器;工具夹座与工具夹套共同夹持骨科手术工具;所述传感器安装于解耦机构的安装座与工具夹座之间,用于测量骨科手术工具工作过程中的各个方向的力和力矩。
  10. 如权利要求9所述的骨科手术装置,其特征在于,
    所述工具夹套与工具夹座之间由导向柱连接;
    所述传感器为六轴传感器,与手术机器人或控制中心连接;
    移动机构的底座上设置有接口座,用于与手术机器人的机械臂末端工具法兰连接。
  11. 一种骨科手术装置,包括骨科手术工具和多个移动机构,所述多个移动机构分别为骨科手术工具提供不同方向的直线往复移动变量,其特征在于,所述多个移动机构中的至少一个移动机构包括移动平台、直线电机、直线导轨或交叉滚柱导轨;直线电机包括定子和动子,移动平台与动子连接由动子驱动沿定子直线往复运动;所述直线导轨或交叉滚柱导轨导向所述移动平台的直线往复运动。
  12. 如权利要求11所述的骨科手术装置,其特征在于,
    所述至少一个移动机构为横向移动机构、深度移动机构或纵向移动机构;横向移动机构提供横向的直线往复移动变量;深度移动机构提供深度方向的直线往复移动变量;纵向移动机构沿纵向提供直线往复移动变量;
    所述至少一个移动机构包括底座;
    所述移动机构还包括限位开关和限位块,所述限位开关安装于底座上,所述限位块设置于每个移动平台的两端,与对应限位开关相互配合,用于限定对应移动平台的运动行程;
    所述移动机构还包括光栅尺和读头,所述光栅尺沿对应移动平台的运动行程设置,由读头获取位置信息,两者相互配合检测对应移动平台的位置。
  13. 如权利要求11所述的骨科手术装置,其特征在于,
    各移动机构包括底座以及安装于底座上的移动平台和动力源,由动力源驱动所述移动平台相对于底座作直线往复移动;
    各移动机构的移动平台和/或底座之间两两连接,在所述多个移动机构的共同作用下,使骨科手术工具到达行程范围内的任一点;所述骨科手术工具与一个移动机构的移动平台连接。
  14. 如权利要求13所述的骨科手术装置,其特征在于,
    所述骨科手术装置包括骨科手术工具装夹机构;所述骨科手术工具安装于所述骨科手术工具装夹机构中;
    所述骨科手术工具装夹机构包括工具夹套、工具夹座以及传感器;工具夹座与工具夹套共同夹持骨科手术工具;所述工具夹座连接于所述一个移动机构的移动平台;所述传感器安装于工具夹座,用于测量骨科手术工具工作过程中的各个方向的力和力矩。
  15. 一种骨科手术机器人系统,包括手术机器人以及骨科手术工具,其特征在于,所述骨科手术工具是权利要求1~14任一项所述的骨科手术装置安装的骨科手术工具;所述骨科手术装置与手术机器人之间连接。
  16. 如权利要求15所述的骨科手术机器人系统,其特征在于,
    所述骨科手术机器人包括系统控制中心,所述骨科手术装置的移动机构包括有驱动电机,所述驱动电机与所述控制中心连接;所述骨科手术装置上设有传感器,所述传感器与所述控制中心连接,所述骨科手术工具上设有视觉系统可识别的导航面,所述骨科手术机器人系统还包括双目视觉系统,所述双目视觉系统可识别所述导航面;所述骨科手术装置上设置有接口座,与手术机器人的机械臂末端工具法兰连接。
PCT/CN2021/104851 2020-07-06 2021-07-06 一种骨科手术装置及骨科手术机器人系统 WO2022007817A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/622,772 US20220346892A1 (en) 2020-07-06 2021-07-06 Orthopedic surgical device and orthopedic surgical robot system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010642040.1A CN111772728A (zh) 2020-07-06 2020-07-06 智能截骨系统及截骨装置
CN202010642040.1 2020-07-06

Publications (1)

Publication Number Publication Date
WO2022007817A1 true WO2022007817A1 (zh) 2022-01-13

Family

ID=72757924

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/104851 WO2022007817A1 (zh) 2020-07-06 2021-07-06 一种骨科手术装置及骨科手术机器人系统

Country Status (3)

Country Link
US (1) US20220346892A1 (zh)
CN (1) CN111772728A (zh)
WO (1) WO2022007817A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114601562B (zh) * 2020-12-09 2024-03-29 苏州微创畅行机器人有限公司 手术工具导向及驱动机构、引导装置、机器人系统
CN115245367A (zh) * 2021-04-27 2022-10-28 中国科学院沈阳自动化研究所 2自由度膝关节用截骨执行器
CN113262050A (zh) * 2021-05-13 2021-08-17 北京铸正机器人有限公司 一种二自由度末端执行装置
CN114601565B (zh) * 2022-03-31 2023-07-14 广东工业大学 一种基于全髋关节置换术的主从控制式机械平台
CN117653266B (zh) * 2024-01-31 2024-04-23 鑫君特(苏州)医疗科技有限公司 髁间窝截骨规划装置、髁间窝自动截骨装置和相关设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI286505B (en) * 2005-12-23 2007-09-11 Univ Nat Taipei Technology Auxiliary robot with semi-active combined decoupling mechanism for orthopedics surgery
WO2009103743A1 (de) * 2008-02-21 2009-08-27 Dr. Johannes Heidenhain Gmbh Xy-tisch mit einer messanordnung zur positionsbestimmung
CN102723296A (zh) * 2012-05-11 2012-10-10 哈尔滨工业大学 一种双层直线电机驱动的xy运动平台
CN103919626A (zh) * 2014-04-22 2014-07-16 中国科学技术大学 一种用于磁共振成像扫描设备的小动物脑立体定位系统
CN106272364A (zh) * 2016-10-31 2017-01-04 山东大学 一种对称并联直驱运动解耦高精度伺服平台
CN108206155A (zh) * 2018-03-07 2018-06-26 广东工业大学 一种层架式解耦的xy高速运动平台

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI286505B (en) * 2005-12-23 2007-09-11 Univ Nat Taipei Technology Auxiliary robot with semi-active combined decoupling mechanism for orthopedics surgery
WO2009103743A1 (de) * 2008-02-21 2009-08-27 Dr. Johannes Heidenhain Gmbh Xy-tisch mit einer messanordnung zur positionsbestimmung
CN102723296A (zh) * 2012-05-11 2012-10-10 哈尔滨工业大学 一种双层直线电机驱动的xy运动平台
CN103919626A (zh) * 2014-04-22 2014-07-16 中国科学技术大学 一种用于磁共振成像扫描设备的小动物脑立体定位系统
CN106272364A (zh) * 2016-10-31 2017-01-04 山东大学 一种对称并联直驱运动解耦高精度伺服平台
CN108206155A (zh) * 2018-03-07 2018-06-26 广东工业大学 一种层架式解耦的xy高速运动平台

Also Published As

Publication number Publication date
CN111772728A (zh) 2020-10-16
US20220346892A1 (en) 2022-11-03

Similar Documents

Publication Publication Date Title
WO2022007817A1 (zh) 一种骨科手术装置及骨科手术机器人系统
US8961537B2 (en) Surgical robot with hybrid passive/active control
US7395607B1 (en) Rotational and translational microposition apparatus and method
CN113576592B (zh) 一种骨科手术装置及骨科手术机器人系统
US10441373B2 (en) Master-slave same-structure teleoperation fracture reduction mechanism
CN201299596Y (zh) 数字化微创机械臂手术系统
CN110638528A (zh) 手持式超声引导神经阻滞机器人
CN1688258A (zh) 手术处理人体或动物身体部位或部分的装置
CN2712301Y (zh) 影像断层下穿刺、活检、注射的引导装置
CN218899904U (zh) 一种眼科手术机器人和眼科手术设备
KR20150022414A (ko) 복강경 수술용 로봇
CN114209400A (zh) 一种超声图像导航的前列腺穿刺手术机器人
CN105832419A (zh) 一种微操精准手术机器人
CN108838524A (zh) 一种用于led导光板加工便于调节的激光切割机
CN110547875A (zh) 调整物体姿态的方法及其装置和在自动化设备中的应用
CN110584778A (zh) 调整物体姿态的方法及其装置和在自动化设备中的应用
CN112370164A (zh) 一种空间混联骨盆骨折复位机器人
CN212592301U (zh) 智能截骨系统及截骨装置
US20240108358A1 (en) Robotic Hand-Held Surgical Instrument Systems And Methods
CN101032653A (zh) 全自动头部γ刀放射治疗装置
WO2017219207A1 (zh) 一种骨科手术机器人
CN209884197U (zh) 一种新式超声穿刺探头辅助固定架
WO2017219208A1 (zh) 一种骨科手术机器人的智能骨钻
CN1290664C (zh) 聚焦超声治疗机的5自由度扫描装置
CN211512044U (zh) 光学跟踪装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21838812

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21838812

Country of ref document: EP

Kind code of ref document: A1