WO2022007814A1 - 电池包取出控制方法、电池包安装控制方法 - Google Patents

电池包取出控制方法、电池包安装控制方法 Download PDF

Info

Publication number
WO2022007814A1
WO2022007814A1 PCT/CN2021/104844 CN2021104844W WO2022007814A1 WO 2022007814 A1 WO2022007814 A1 WO 2022007814A1 CN 2021104844 W CN2021104844 W CN 2021104844W WO 2022007814 A1 WO2022007814 A1 WO 2022007814A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
battery pack
height
image
power exchange
Prior art date
Application number
PCT/CN2021/104844
Other languages
English (en)
French (fr)
Inventor
张建平
周英富
文超
吉毅
Original Assignee
奥动新能源汽车科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202010642724.1A external-priority patent/CN113895288B/zh
Priority claimed from CN202010643287.5A external-priority patent/CN113895293A/zh
Application filed by 奥动新能源汽车科技有限公司 filed Critical 奥动新能源汽车科技有限公司
Publication of WO2022007814A1 publication Critical patent/WO2022007814A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/80Exchanging energy storage elements, e.g. removable batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60SSERVICING, CLEANING, REPAIRING, SUPPORTING, LIFTING, OR MANOEUVRING OF VEHICLES, NOT OTHERWISE PROVIDED FOR
    • B60S5/00Servicing, maintaining, repairing, or refitting of vehicles
    • B60S5/06Supplying batteries to, or removing batteries from, vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors

Definitions

  • the invention relates to the field of battery replacement, in particular to a battery pack take-out control method and a battery pack installation control method.
  • Electric vehicles are developing rapidly and are being used more and more widely.
  • the user can drive the electric vehicle into the battery swap station to replace the battery pack. Whether the battery pack is installed in place is the key to the success of the battery swap.
  • the technical problem to be solved by the present invention is to provide a battery pack removal control method and a battery pack installation control method in order to overcome the defects of low power exchange efficiency, low stability and poor safety in the prior art.
  • a battery pack take-out control method which is used for controlling a power exchange device to take out a battery pack from a battery compartment or an electric vehicle, the battery pack being locked on the battery compartment or a battery bracket in the electric vehicle , the battery pack taking control method includes the following steps:
  • the power exchange device In the control method for taking out the battery pack, after the power exchange device is aligned with the battery bracket, the power exchange device is first connected to the battery pack, and then the battery pack is unlocked to release the locked state from the battery bracket, and finally the battery pack is unlocked. Take out the unlocked battery pack, and the battery replacement procedure is reasonable to ensure that the battery pack can be removed from the battery bracket smoothly and accurately, and the battery replacement efficiency is improved.
  • the step of adjusting the position of the power exchange device until the power exchange device reaches a preset relative position relative to the battery bracket includes the following steps:
  • Control the power exchange device to adjust the angle according to the angular rotation amount until the power exchange device and the battery bracket reach a preset angle
  • the power exchange device is adjusted in angle, and after the angle is adjusted in place, it is adjusted in the horizontal and vertical directions, so that the power exchange device and the battery bracket are positioned, which simplifies the position adjustment process of the power exchange device. , which improves the positioning efficiency of the power exchange equipment.
  • the step of controlling the battery swapping device to extend and connect to the battery pack includes the following steps:
  • the double extension mechanism of the power exchange device is controlled to extend according to the third depth of field value or the fourth depth of field value.
  • the power exchange device after the power exchange device is positioned, it can automatically and accurately control the extension distance of the double extension mechanism according to the acquired image, which is beneficial to improve the power exchange accuracy and power exchange efficiency of the power exchange device.
  • the step of controlling the battery swapping device to extend and connect to the battery pack includes the following steps:
  • the disk push box when the disk push box is controlled to approach and contact the battery pack, the disk push box is controlled to stop moving based on whether the disk push box is in contact with the battery pack, so that the part of the disk push box used for connecting the battery pack can accurately contact the battery pack , in order to improve the accuracy of the connection between the push plate box and the battery pack.
  • the push plate box in the process of controlling the push plate box to move toward the battery pack, when the push plate box moves to a preset distance from the battery pack, the push plate box is controlled to decelerate to move.
  • This method enables the pusher box to decelerate before contacting the battery pack, so as to maintain contact with the battery pack at a relatively slow speed. At the same time, before the push-disc box is not in contact with the battery pack, it can move at a relatively fast speed, so as to ensure the overall efficiency in the process of battery replacement.
  • the step of judging whether the disk push box is in contact with the battery pack includes: acquiring a preliminary contact signal triggered by the preliminary contact between the disk push box and the battery pack, and obtaining the preliminary contact signal triggered by the preliminary contact between the disk push box and the battery pack.
  • the pack is further contacted with the triggering lamination signal, and when both the preliminary contact signal and the lamination signal are acquired, it is determined that the contact between the push tray box and the battery pack is completed.
  • the method effectively avoids the situation that the push-disc box stops moving when it is not in close and sufficient contact with the battery pack, resulting in an insecure connection of the battery pack, which can improve the reliability of the connection between the power exchange device and the battery pack, and improve the power exchange efficiency.
  • the method further includes:
  • This method ensures that each step in the battery pack removal control method can be accurately executed by determining whether the push-disc box is connected in place relative to the battery pack before the unlocking step of the power-swapping device, and avoids changing the battery pack. Unlocking the battery pack when the electrical device is not connected to the battery pack in place can improve the battery swapping reliability of the battery swapping device.
  • the step of controlling the unlocking mechanism of the battery swapping device to unlock includes the following steps:
  • the unlocking mechanism is controlled to drive the unlocking member to unlock.
  • the battery pack located on the battery bracket is unlocked by the unlocking mechanism arranged on the power exchange device, so as to improve the unlocking accuracy through this unlocking method, so that the Improve power exchange efficiency; at the same time, effectively avoid misoperation, greatly improving safety and stability.
  • the step of controlling the battery swapping device to take out the unlocked battery pack includes the following steps:
  • the push tray is controlled to return, so as to drive the battery pack to move synchronously and take it out from the battery bracket.
  • the unlocked battery pack is taken out by using a push-disc box that has been connected to the battery pack, and the battery pack is taken out in a translational manner through the push-disc box, ensuring that The stability of battery removal can avoid damage to the battery pack and improve the safety of battery replacement.
  • the height of the power exchange device is adjusted to match the height of the battery tray during the retracting process of the push tray.
  • the method adjusts the height of the power exchange device to match the height of the battery bracket during the return process of the push-disc box, so as to avoid that the battery bracket is at a height relative to the power exchange device during the process of removing the battery pack from the battery bracket.
  • the deviation of the direction causes the battery pack to be stuck during the pulling process.
  • the method further includes:
  • the extension mechanism is controlled to return, so that the battery pack can be safely taken out to the battery replacement device, which can improve the reliability of battery replacement of the battery replacement device. sex.
  • a battery pack installation control method which is used for controlling a power exchange device to install a battery pack on a battery compartment or a battery bracket of an electric vehicle, the battery pack installation control method comprising the following steps:
  • the unlocking mechanism of the battery swapping device is controlled to be locked.
  • the battery replacement device After the battery replacement device is aligned with the battery bracket, the battery replacement device first pushes the battery pack to the battery bracket, and then drives the unlocking mechanism to lock the battery bracket, so that the battery pack can be smoothly , Install it on the battery bracket accurately to ensure the accuracy and stability of the battery pack installation process and improve the power exchange efficiency.
  • the step of adjusting the position of the power exchange device until the power exchange device reaches a preset relative position relative to the battery bracket includes the following steps:
  • Control the power exchange device to adjust the angle according to the angular rotation amount until the power exchange device and the battery bracket reach a preset angle
  • the power exchange device is adjusted in angle, and after the angle is adjusted in place, it is adjusted in the horizontal and vertical directions, so that the power exchange device and the battery bracket are positioned, which simplifies the position adjustment process of the power exchange device. , which improves the positioning efficiency of the power exchange equipment.
  • the step of controlling the power exchange device to move the battery pack to the battery bracket includes the following steps:
  • the double extension mechanism of the power exchange device is controlled to extend according to the third depth of field value or the fourth depth of field value.
  • the power exchange device after the power exchange device is positioned, it can automatically and accurately control the extension distance of the double extension mechanism according to the acquired image, which is beneficial to improve the power exchange accuracy and power exchange efficiency of the power exchange device.
  • the method further includes:
  • the push tray box of the power exchange device is controlled to push the battery pack to the battery bracket.
  • the push tray box is controlled to push the battery pack in place, so as to ensure that the battery pack can be accurately installed on the battery bracket.
  • the step of controlling the disk push box of the power exchange device to push the battery pack to the battery bracket includes the following steps:
  • the step of judging whether the push tray pushes the battery pack into place comprises:
  • the method effectively avoids the situation where the push-disc box stops pushing the battery pack without accurately sending the battery pack into the battery holder, which affects the subsequent locking operation, and improves the battery-changing reliability of the battery-changing device.
  • the height of the power exchange device is adjusted to match the height of the battery tray.
  • the method adjusts the height of the power-swap device to match the height of the battery bracket during the process of the push-disc box moving toward the battery bracket, so as to avoid the process of moving the battery pack into the battery bracket, due to the relative replacement of the battery bracket.
  • the deviation of the electrical equipment in the height direction causes the battery pack to be stuck during the push process.
  • the step of controlling the unlocking mechanism of the battery swapping device to lock includes the following steps:
  • the unlocking mechanism is controlled to drive the unlocking member to lock.
  • the battery pack located on the battery bracket is locked by the unlocking mechanism arranged on the power exchange device, so as to improve the locking accuracy through this locking method Therefore, it can improve the efficiency of power exchange; at the same time, it can effectively avoid the occurrence of misoperation, and greatly improve the safety and stability.
  • the following steps are included:
  • the method detects whether the battery pack is locked after the battery pack is installed, so as to ensure that the battery pack is firmly and reliably installed on the battery bracket, and avoid the hidden danger of the battery pack falling off.
  • the step of judging whether the battery pack is locked on the battery bracket includes the following steps:
  • the push-disc box is controlled to retreat to a preset distance to determine the locked state of the battery pack.
  • the method utilizes the function that the push-disc box can adsorb the battery pack. After the battery pack is locked in the battery bracket, the push-disc box adsorbed on the battery pack moves outward to detect whether the battery pack will follow the push-disc box. It is removed from the battery holder again, so as to realize the purpose of judging the locking state of the battery pack.
  • the solution is realized by using the existing structure, which is simple and reliable.
  • the following steps are further included:
  • the double extension mechanism of the power exchange device is controlled to be retracted.
  • the push-disc box and the double extension mechanism of the power exchange device are driven to return to the initial position, so as to ensure the reliable implementation of the battery pack installation control method.
  • a control method for picking up and placing a battery pack the battery pack has a first position located in a battery compartment or a battery bracket in an electric vehicle and a second position located on a power exchange device, comprising the following steps:
  • adjusting the height of the battery replacement device according to the height of the battery bracket can ensure that the height of the battery replacement device is compatible with the height of the battery bracket, effectively preventing the electric vehicle from being weighed due to the weight of the body during the process of picking and placing the battery pack.
  • the problem that the battery pack is stuck due to the change of its own height (that is, the change of the height of the battery holder) caused by the change is difficult to take out or install.
  • the height of the battery swapping device is adjusted in real time.
  • the height of the power exchange device is controlled and adjusted according to at least one preset position between the first position and the second position.
  • the height of the battery swapping device is controlled and adjusted intermittently, and the process of picking and placing the battery pack can be reduced on the premise that the battery pack can move smoothly.
  • the height of the power-swap device is adjusted; or,
  • the height of the power-swap device is adjusted.
  • the height of the battery swapping device is adjusted according to the preset stroke after the battery pack is moved, so as to ensure that the battery pack is smoothly transitioned from one position to another, thereby improving the efficiency of picking and placing the battery pack.
  • the height of the power-swap device is adjusted in real time according to the height change of the battery holder to match the height of the battery holder.
  • the height of the power exchange device is adjusted in real time to match the height of the battery bracket according to the height change of the battery bracket, so as to realize the follow-up between the height of the power exchange device and the height of the battery bracket, that is, at the same time Raised or lowered, the near-flush height keeps the battery pack in a stable state, facilitating the movement of the battery pack.
  • the height of the power exchange device is adjusted based on the first preset height.
  • the height of the battery swapping device is adjusted based on the first preset height, and the height of the battery swapping device can be adjusted by stages for a given preset value for battery packs of different models and weights, or according to the tire pressure condition of the electric vehicle. After adjustment, the adjustment can be carried out in multiple times, so that the height of the power exchange device and the height of the battery bracket are kept within a predetermined range, and the movement of the battery pack will not be affected.
  • the height of the power-swap device is adjusted based on the second preset height.
  • the height of the power-swap device is adjusted based on the second preset height, and the power-swap device can be adjusted for battery packs of different models and weights, or according to the tire pressure condition of the electric vehicle, after the battery pack moves out of the preset travel.
  • the power-swap device can be adjusted for battery packs of different models and weights, or according to the tire pressure condition of the electric vehicle, after the battery pack moves out of the preset travel.
  • the step of adjusting the height of the power exchange device according to the height of the battery bracket includes:
  • the height adjustment of the battery swapping device is performed by obtaining the vertical displacement by means of visual image acquisition combined with image processing, which can obtain higher adjustment accuracy and ensure the smooth progress of the battery pack picking and placing process.
  • the vertical displacement includes a first vertical displacement and a second vertical displacement
  • the step of performing image processing on the first image and/or the second image to obtain the vertical displacement includes:
  • the first vertical displacement amount is obtained according to the first image and the first reference image
  • the second vertical displacement amount is obtained according to the second image and the second reference image
  • the first reference image includes when the height of the power exchange device matches the battery holder.
  • the first partial reference image and the second reference image include the second partial reference image when the height of the power exchange device matches the battery holder.
  • the power exchange device is driven to move up and down by a first lift mechanism and a second lift mechanism arranged at both ends;
  • the first lifting mechanism drives the power exchange device to go up and down according to the first vertical displacement
  • the second lift mechanism drives the power exchange device to go up and down according to the second vertical displacement
  • the first lifting mechanism and the second lifting mechanism are controlled to perform lifting and lowering operations on the heights of the two sides of the power exchange equipment respectively, which can improve the accuracy of the height adjustment of the power exchange equipment. sex.
  • the power exchange device In the battery pack take-out control method and installation control method, after the power exchange device is aligned with the battery bracket, the power exchange device first connects the battery pack from the battery bracket or pushes the battery pack to the battery bracket, and then drives the battery pack.
  • the unlocking mechanism unlocks or locks the battery bracket, so that the battery pack can be removed or installed from the battery bracket smoothly and accurately, so as to ensure the accuracy and stability of the battery pack removal and installation process, and improve battery replacement. efficient.
  • FIG. 1 is a schematic flowchart (1) of a control method for taking out a battery pack according to Embodiment 1 of the present invention.
  • FIG. 2 is a schematic flowchart (2) of a control method for taking out a battery pack according to Embodiment 1 of the present invention.
  • FIG. 3 is a schematic flowchart (3) of a method for controlling the removal of a battery pack according to Embodiment 1 of the present invention.
  • FIG. 4 is a schematic flowchart (4) of the control method for taking out a battery pack according to Embodiment 1 of the present invention.
  • FIG. 5 is a schematic flowchart (5) of the control method for taking out a battery pack according to Embodiment 1 of the present invention.
  • FIG. 6 is a schematic flowchart (1) of a battery pack installation control method according to Embodiment 1 of the present invention.
  • FIG. 7 is a schematic flowchart (2) of a battery pack installation control method according to Embodiment 1 of the present invention.
  • FIG. 8 is a schematic flowchart (3) of a battery pack installation control method according to Embodiment 1 of the present invention.
  • FIG. 9 is a schematic flowchart (4) of a battery pack installation control method according to Embodiment 1 of the present invention.
  • FIG. 10 is a schematic three-dimensional structural diagram of a power exchange device according to Embodiment 2 of the present invention.
  • FIG. 11 is a schematic three-dimensional structure diagram (1) of the battery tray according to the second embodiment of the present invention.
  • FIG. 12 is a schematic front view of the structure of the power exchange device according to Embodiment 2 of the present invention.
  • FIG. 13 is a schematic three-dimensional structure diagram (2) of the battery tray according to the second embodiment of the present invention.
  • FIG. 14 is a partial enlarged view of part A in FIG. 13 .
  • FIG. 15 is a partial structural schematic diagram of the battery tray according to the second embodiment of the present invention.
  • FIG. 16 is a schematic top-view structural diagram of a battery tray according to Embodiment 2 of the present invention.
  • FIG. 17 is a partial enlarged view of part C in FIG. 16 .
  • FIG. 18 is a schematic diagram of the connection relationship between the battery tray and the battery pack according to Embodiment 2 of the present invention.
  • FIG. 19 is a schematic diagram (1) of the positional relationship between the battery tray and the battery pack according to Embodiment 2 of the present invention.
  • FIG. 20 is a schematic diagram (2) of the positional relationship between the battery tray and the battery pack according to Embodiment 2 of the present invention.
  • 21 is a schematic diagram (3) of the positional relationship between the battery tray and the battery pack according to Embodiment 2 of the present invention.
  • FIG. 22 is a schematic three-dimensional structure diagram (3) of the battery tray according to the second embodiment of the present invention.
  • FIG. 23 is a partial enlarged view of part D in FIG. 18 .
  • FIG. 24 is a partial enlarged view of part B in FIG. 13 .
  • FIG. 25 is a partial structural schematic diagram of a battery tray and a battery pack according to Embodiment 2 of the present invention.
  • FIG. 26 is a schematic three-dimensional structure diagram (3) of the battery tray according to the second embodiment of the present invention.
  • FIG. 27 is a flowchart of a control method for picking and placing a battery pack according to Embodiment 3 of the present invention.
  • FIG. 28 is a flowchart of step S12 of the control method for picking and placing a battery pack according to Embodiment 4 of the present invention.
  • FIG. 29 is a schematic diagram of a battery holder and a power exchange device of a control method for picking and placing a battery pack according to Embodiment 4 of the present invention.
  • FIG. 30 is a schematic diagram of a first reference image of a control method for picking and placing a battery pack according to Embodiment 4 of the present invention.
  • FIG. 31 is a schematic diagram of a first image of a control method for picking and placing a battery pack according to Embodiment 4 of the present invention.
  • FIG. 32 is a schematic diagram of the first lifting mechanism and the second lifting mechanism of the control method for picking and placing battery packs according to Embodiment 4 of the present invention.
  • Image acquisition module 41 sky rail 701, ground rail 702, sky rail guide wheel 703, ground rail guide wheel 704, first vertical driver 61, second vertical driver 62, power exchange actuator 803, first chain 706, first Sprocket 611, second chain 621, second sprocket 622, battery tray 803, turntable 811, rotary driver 812, equipment frame 1, unlocking mechanism 21, push tray 22, push tray body 22a, connecting portion 23, suction Device 231, adsorption surface 2311, first connector 232, sensing end 232a, second connector 233, detection rod 2331, return spring 2332, movable part 234, support rod 2341, elastic element 2342, retraction detection sensor 235, first A detection module 241, a second detection module 242, a deceleration detection part 243a, a reset detection part 243b, a limit detection part 243c, a second detection part 244, a balance part 25, a push block 251, a transfer structure 252, a double extension mechanism 3, side guide wheel 4, battery pack 100
  • the present invention provides a method for controlling the removal of a battery pack, which is used to control a power exchange device to take out a battery pack from a battery compartment or an electric vehicle, and make the battery pack locked in the battery compartment or the electric vehicle.
  • the battery pack taking control method includes the following steps:
  • step S01 refers to moving the battery-swapping device to a position aligned with the battery bracket.
  • the battery pack take-out control method after aligning the power exchange device with the battery bracket, first connect the battery pack, and then drive the unlocking mechanism to unlock the battery bracket, so that the unlocked battery pack can be smoothly and accurately removed from the battery pack.
  • the battery tray is removed to ensure the accuracy, stability and efficiency of the battery pack removal process.
  • step S01 As shown in Figure 2, the following steps may be specifically included in step S01:
  • At least two positions on the battery bracket are not specifically limited, and the above positions can be adjusted and selected according to actual needs.
  • the power exchange device firstly adjusts the angle according to the current relative position to the battery bracket, and after the angle is adjusted in place, then performs horizontal and vertical direction adjustment according to the current relative position to the battery bracket. adjustment to align the swap device with the battery bay. After the angle of the power exchange device is adjusted in place, that is, after the power exchange device is parallel to the battery bracket, the relative angle between the power exchange device and the battery bracket will not be caused by the displacement of the power exchange device in the horizontal or vertical direction.
  • the change of the power exchange equipment simplifies the position adjustment process of the power exchange equipment and improves the positioning efficiency of the power exchange equipment.
  • the positioning method of this embodiment can automatically and accurately acquire the exact position of the battery bracket of the battery-swap vehicle, so that the battery-swap device can be accurately positioned with the battery bracket of the battery-swap vehicle for disassembly and assembly of the battery pack, thereby extremely Greatly improves the accuracy and efficiency of battery swapping.
  • step S02 As shown in FIG. 3 , after the alignment between the power exchange device and the battery holder is realized in step S01, the following steps can be specifically implemented in step S02:
  • the power exchange device after the power exchange device is positioned, it can automatically and accurately control the extension distance of the double extension mechanism according to the acquired image, which is beneficial to improve the power exchange accuracy and power exchange efficiency of the power exchange device.
  • the third depth-of-field value at the position corresponding to the battery bracket in the third image is equal to the fourth depth-of-field value at the position corresponding to the battery bracket in the fourth image, and the battery-swapping device
  • the extension distance of the double extension mechanism can be determined according to the third depth of field value or the fourth depth of field value.
  • step S022 the double extension mechanism of the battery swapping device is extended and close to the battery bracket, and at this time, the subsequent steps in step S02 can be continued:
  • the push disc case in the solution of taking the battery pack by pushing the disc case, after the double extension mechanism approaches the battery tray, the push disc case can be controlled to approach and contact the battery pack, and based on whether the push disc case is in contact with the battery pack As a basis for controlling the push box to stop moving, the part of the push box used to connect the battery pack can accurately and reliably contact the battery pack, so as to improve the accuracy and reliability of the connection between the push box and the battery pack, so as to facilitate the subsequent steps. implement.
  • the disk push box in the process of controlling the disk push box to move toward the battery pack, when the disk push box moves to a preset distance from the battery pack, the disk push box can be controlled to decelerate to move.
  • the above-mentioned preset distance should be smaller than the distance that the push-disc box moves and contacts the battery pack, so that the push-disc box can decelerate before contacting the battery pack, so that the push-disc box maintains a relatively slow speed to contact the battery pack, At the same time, before the push-disc box is not in contact with the battery pack, it can move at a relatively fast speed, so as to ensure the overall efficiency in the process of battery replacement.
  • step S024 the step of judging whether the push-disc box is in contact with the battery pack is completed, specifically including:
  • the preliminary contact signal and the bonding signal in this method refer to the trigger signals at different positions of the push-disc box, and these signals can be realized by setting sensors at different positions of the push-disc box.
  • the method belongs to the prior art, so it is not repeated here.
  • step S02 Preferably, between step S02 and step S03, that is, after the push-disc box contacts and connects the battery pack, the following steps may also be included:
  • step S025 judging whether the push-disc box is in place relative to the battery pack, and if so, execute the step of controlling the unlocking mechanism of the power-swapping device to unlock, that is, execute step S03 .
  • step S03 also includes the following steps:
  • the unlocking mechanism provided on the power-changing device is used to unlock the battery pack located on the battery bracket, so as to improve the unlocking ability through this unlocking method.
  • the accuracy of the power exchange can be improved; at the same time, misoperations are effectively avoided, and the safety and stability are greatly improved.
  • the structure of the unlocking mechanism exists in the prior art, so it is not repeated here.
  • step S04 may specifically include the following steps:
  • the unlocked battery pack is taken out by using the push-disc box that has been connected to the battery pack, so as to improve the process of taking out the battery pack through positioning. Unlocking accuracy and unlocking efficiency, and the battery pack is removed in a translational manner by pushing the disk box to ensure the stability of battery removal, avoid damage to the battery pack, and improve the safety of battery replacement.
  • the height of the power exchange device can be adjusted so as to match the height of the battery tray.
  • the purpose of this step is to keep the height of the battery pack matching the battery holder when the battery pack is removed from the battery holder, so as to prevent the battery pack from being relatively opposite to the battery pack during the removal process. or the battery bay is stuck.
  • the reason for the height deviation of the battery tray relative to the power exchange device during the return of the push tray box is that the battery tray is set on a vehicle with suspension. When the battery pack is moved out from the battery tray, it is equivalent to the overall weight of the vehicle. Gradually become lighter. At this time, under the action of suspension, the height of the vehicle will rise, resulting in a height deviation of the battery bracket relative to the power exchange device.
  • the above solution is designed to solve this situation, that is, the height of the power exchange device is moved up accordingly, so as to match the height of the battery bracket. The included angle will be stuck, so as to ensure the smooth removal of the battery pack.
  • the above-mentioned adjustment of the height of the power-exchange device can be performed in real time during the return of the push-disc box, or it can be a single adjustment after the push-disc box is returned to a specific distance, so as to compensate for the battery tray due to Losing part of the weight of the battery pack causes its height to rise.
  • step S041 after the step of controlling the push-disc box to return to drive the battery pack to move synchronously and take it out from the battery bracket, it also includes the following steps: S042, judging whether the push-disc box is returned in place, and if so, control the battery replacement
  • S042 judging whether the push-disc box is returned in place, and if so, control the battery replacement
  • the double extension mechanism of the power-changing device is driven to return, so as to improve the power-changing reliability of the power-changing device.
  • the present invention also provides a battery pack installation control method, which is used to control the battery swap device to install the battery pack on the battery bracket, so as to realize the locking between the battery pack and the battery bracket, the battery
  • the package installation control method includes these steps:
  • the battery replacement device pushes the battery pack to the battery bracket first, and then drives the unlocking mechanism to lock the battery bracket, so that the battery pack can lock the battery bracket. Installs smoothly and accurately to the battery holder to ensure accuracy, stability and efficiency during battery pack installation.
  • step S11 As shown in FIG. 7, the following steps may be specifically included in step S11:
  • the power exchange device in the process of installing the battery pack, also firstly adjusts the angle according to the current relative position to the battery bracket, and after the angle is adjusted in place, then adjusts the horizontal and vertical directions according to the current relative position to the battery bracket. Orientation adjustment to align the swap device with the battery bay. After the angle of the power exchange device is adjusted in place, that is, after the power exchange device is parallel to the battery bracket, the relative angle between the power exchange device and the battery bracket will not be caused by the displacement of the power exchange device in the horizontal or vertical direction.
  • the change of the power exchange equipment simplifies the position adjustment process of the power exchange equipment and improves the positioning efficiency of the power exchange equipment.
  • step S12 As shown in FIG. 8 , after the alignment between the power exchange device and the battery holder is achieved in step S11, the following steps may be specifically implemented in step S12:
  • the power exchange device after the power exchange device is positioned, it can automatically and accurately control the extension distance of the double extension mechanism according to the acquired image, which is beneficial to improve the power exchange accuracy and power exchange efficiency of the power exchange device.
  • the third depth-of-field value at the position corresponding to the battery bracket in the third image is equal to the fourth depth-of-field value at the position corresponding to the battery bracket in the fourth image, and the battery-swapping device
  • the extension distance of the double extension mechanism can be determined according to the third depth of field value or the fourth depth of field value.
  • step S122 control the push tray of the power exchange device to push the battery pack to the battery bracket.
  • this step can be further subdivided into the following steps:
  • step S123 If the judgment result in step S123 is YES, the pusher cartridge is controlled to stop moving.
  • the method controls whether the battery pack is pushed in place to continue to move or stop, so that the push disc box can stop after the battery pack is pushed in place, thereby ensuring that the battery pack is in an accurate position, so as to further improve the reliability of this method.
  • the method of judging whether the battery pack is pushed in place can be set up with a sensor on the battery replacement device or the battery bracket.
  • a contact sensor is arranged on the inner side of the end plate of the battery tray, and the contact sensor can be triggered when it is in contact with the battery pack, so as to send a stop signal to control the push tray to stop moving. Since its specific implementation belongs to the scope of the prior art, it will not be repeated here.
  • step S123 in the process of pushing the disk case to move the battery pack, it is also possible to adjust the replacement during the movement of the disk case, as implemented in step S041 in the above-mentioned battery pack removal control method.
  • the height of the electrical equipment should match the height of the battery bracket, so as to avoid the overall weight of the battery bracket rising due to the movement of the battery pack, so that the height of the vehicle will drop under the action of suspension, which will lead to the relative replacement of the battery bracket. Electrical equipment has a problem of height deviation.
  • step S124 a preliminary contact signal triggered by the preliminary contact between the disk tray and the battery pack and a bonding signal triggered by the further contact between the disk tray and the battery pack are obtained as the judgment basis.
  • both the preliminary contact signal and the fitting signal are obtained, it can be judged that the push-disc box pushes the battery pack into place.
  • the method effectively avoids the situation where the push-disc box stops pushing the battery pack without accurately sending the battery pack into the battery holder, which affects the subsequent locking operation, and improves the battery-changing reliability of the battery-changing device.
  • step S13 the following steps may be specifically included:
  • the battery pack located on the battery bracket is locked by the unlocking mechanism arranged on the power exchange device, so as to use this locking method
  • the accuracy of locking is improved, thereby improving the power exchange efficiency; at the same time, misoperation is effectively avoided, and the safety and stability are greatly improved.
  • the specific implementation of the above-mentioned battery pack locking is roughly the same as the process of steps S031 and S032 in the battery pack removal control method, the difference is that in the battery pack installation control method, the unlocking mechanism is used to drive the unlocking. If the unlocking mechanism drives the unlocking member to unlock by moving in a certain direction, in this method, the unlocking mechanism drives the unlocking member to achieve locking by moving in the opposite direction.
  • step S132 it can also be judged whether the battery pack is locked on the battery bracket. If it is found that the locking fails, the above battery pack installation steps can be repeated, and the battery pack is re-installed on the battery bracket through the power exchange device, so as to fundamentally prevent the occurrence of locking failure and ensure that the battery pack is firm and reliable. installed on the battery bay.
  • the following steps may be specifically included:
  • the method utilizes the function that the push-disc box can adsorb the battery pack. After the battery pack is locked in the battery bracket, the push-disc box adsorbed on the battery pack moves outward to detect whether the battery pack will follow the push-disc box. It is removed from the battery holder again, so as to realize the purpose of judging the locking state of the battery pack.
  • the solution is realized by using the existing structure, which is simple and reliable.
  • the push-disc box and the double-extension mechanism of the power-changing device are driven to return to the initial position.
  • the above steps S12 and S13 can be repeated to lock the battery pack on the battery bracket again by using the push-disc box of the power exchange device superior.
  • the judgment result is that the battery pack fails to be locked, so that the power exchange device can send an error signal, so as to facilitate the maintenance personnel to intervene in the power exchange process.
  • the present invention also provides a power exchange device, which is used for docking with a battery bracket (not shown in the figure) to pick up and place the battery pack 100 (see FIG. 18 ).
  • the device specifically includes a device frame 1, a battery tray 803, and a position adjustment mechanism.
  • the battery tray 803 is used to place the battery packs required for the battery swap operation, and can move relative to the battery tray 803 in the front-rear direction of the battery tray 803 (see FIG. 10 ).
  • the front and rear direction of the battery tray 803 is the Y direction), so as to achieve the purpose of taking out or placing the battery pack from the battery tray along the Y direction.
  • the position adjustment mechanism includes a rotation mechanism, a horizontal movement mechanism and a vertical movement mechanism for adjusting the position and angle of the battery tray 803 relative to the battery bracket.
  • the directions in this embodiment may refer to the X direction, the Y direction and the Z direction shown in FIG. 1 .
  • the X direction refers to the direction parallel to the driving direction of the electric vehicle
  • the Y direction refers to the direction of the battery tray toward the body of the electric vehicle.
  • Status refers to the height direction of the battery tray, and the power exchange device adjusts the Z direction to make the height of the battery tray flush with the height of the battery tray on the electric vehicle.
  • the rotation mechanism is used to adjust the angle of the battery tray 803 according to the obtained angular rotation amount until each component on the battery tray 803 reaches a preset angle
  • the horizontal movement mechanism is used to perform horizontal adjustment according to the obtained horizontal displacement
  • the vertical movement mechanism It is used to perform vertical adjustment according to the obtained vertical displacement until each component on the battery tray 803 reaches a preset relative position relative to the battery tray. Specifically, a position where the unlocking mechanism on the battery tray 803 is aligned with the unlocking member on the battery tray is reached.
  • the rotating mechanism specifically includes a turntable 811 and a rotary driver 812.
  • the turntable 811 is sleeved on the bottom of the battery tray 803.
  • the rotary driver 812 is connected to the turntable 811 and is used to drive the turntable 811 to drive the battery tray 803 to rotate according to the angular rotation amount.
  • the battery swapping device of this embodiment adjusts the posture of the battery tray 803 by rotating the rotating mechanism, so that the posture of the battery tray 803 is different from the posture of the battery tray 803 to be swapped.
  • the parking state of the battery-swapping vehicle is matched so that the components on the battery tray 803 are aligned with the battery bracket, thereby realizing an efficient and accurate battery-swapping operation.
  • the horizontal moving mechanism specifically includes a track, a guide wheel and a horizontal driver, and the horizontal driver is used to drive the guide wheel to move along the track according to the horizontal displacement.
  • the track includes an overhead rail 701 and a ground rail 702
  • the guide wheels include an overhead rail guide wheel 703 and a ground rail guide wheel 704 .
  • the sky rail guide wheel 703 is arranged corresponding to the sky rail 701
  • the ground rail guide wheel 704 is arranged corresponding to the ground rail 702 .
  • the horizontal driver respectively drives the overhead rail guide wheels 703 to move along the overhead rail 701 in the X-axis direction (ie, the horizontal direction), and drives the ground rail guide wheels 704 to move along the ground rail 702, thereby realizing the horizontal movement of the power exchange device as a whole.
  • Fig. 10 It can be seen from Fig. 10 that the X axis, the Y axis and the Z axis are perpendicular to each other.
  • the frame of the battery tray 803 is shown in FIG. 10 , but the specific structure is not shown.
  • the specific structure of the power-changing actuator can be realized by those skilled in the art, and will not be repeated here.
  • the battery swapping device can move the battery tray 803 according to the obtained horizontal displacement.
  • the position of the battery tray 803 can be matched with the position of the battery bracket of the vehicle to be swapped in the horizontal direction, which has high precision and provides a guarantee for accurately picking and placing the battery pack.
  • the horizontal drive can automatically drive the battery tray 803 to move in the horizontal direction according to the horizontal displacement, and the efficiency and stability of the battery tray 803 in the horizontal direction can be improved by the cooperation of the rail and the guide rail.
  • the vertical movement mechanism specifically includes a first vertical driver 61, a second vertical driver 62, a first lifting mechanism, a second lifting mechanism and a battery tray 803.
  • the first vertical driver is connected to the first lifting mechanism
  • the second vertical driver is connected to the second vertical driver.
  • Lifting mechanism, the first lifting mechanism and the second lifting mechanism are respectively connected to the two ends of the battery tray 803 to drive the two ends of the battery tray 803 to lift and move;
  • the first vertical driver is used for the first vertical displacement obtained by the detection of the power exchange equipment
  • the first lifting mechanism is driven, and the second vertical driver is used for driving the second lifting mechanism according to the obtained second vertical displacement.
  • the first lifting mechanism includes a first chain 706 and a corresponding first sprocket 611 .
  • the first chain 706 drives the first sprocket 611 to move along the Z-axis direction (ie, the vertical direction) under the driving of the first vertical driver 61 . , so as to drive the battery tray 803 to move in the vertical direction.
  • the second lifting mechanism includes a second chain 621 and a corresponding second sprocket 622.
  • the second chain 621 drives the second sprocket 622 along the moving in the vertical direction to drive the battery tray 803 to move in the vertical direction.
  • the battery tray 803 When the vehicle to be swapped is parked in the parking space and ready to be swapped, if there is a vertical deviation between the parking state of the vehicle to be swapped and the accurate swap position, the battery tray 803 is moved according to the obtained vertical displacement, so that the The battery tray 803 matches the position of the battery bracket of the vehicle to be replaced in the vertical direction, and has high precision, which provides a guarantee for accurate unlocking.
  • the angular rotation amount, horizontal displacement amount and vertical displacement amount required to adjust the position adjustment mechanism can be collected by the image acquisition module 41 disposed on the battery tray 803 of the power exchange device to collect the first images located at at least two positions on the battery tray. It is realized by means of one image and the second image. The specific implementation has been described in Example 1, so it will not be repeated here.
  • the battery tray 803 is provided with a double extension mechanism 3 , an unlocking mechanism 21 and a push-disc box 22 .
  • the push box 22 moves along the Y direction relative to the battery tray 803 to realize the function of picking and placing the battery pack.
  • the push box 22 includes the push box body 22a and the connecting portion 23, and the connection portion 23 is disposed in the push box.
  • the connecting portion 23 can connect the battery pack when in contact with the battery pack, so as to realize the function of taking the battery pack out of the battery holder.
  • the unlocking mechanism 21 is used for docking with the retrieval piece on the battery tray, so as to achieve the purpose of controlling the unlocking/locking state of the unlocking mechanism 21 on the battery tray.
  • the dual extension mechanism 3 is used to drive the battery tray 803 to approach the battery bracket, and the activation timing of the dual extension mechanism 3 can be arranged after the power exchange device reaches a preset relative position relative to the battery bracket, so that the dual extension mechanism 3
  • the battery tray 803 can be accurately driven close to the battery tray.
  • two processes can be performed respectively: one is to control the direction of the push tray 22 toward the battery tray 803. The direction of the battery pack is moved, and it is judged whether the push tray 22 is in contact with the battery pack; the other is to control the unlocking mechanism 21 to unlock or lock the battery tray.
  • the first process may be performed first, that is, controlling the push tray 22 to move in the direction of the battery pack, and judging whether the push tray 22 is in contact with the battery pack.
  • a preferred implementation structure of the battery tray 803 and the push-disc box 22 is provided herein for the purpose of determining whether the push-disc box 22 is in contact with the battery pack.
  • the disc push box 22 may include a detection module and a control module, wherein the detection module is used to detect the contact state between the disc push box body 22a and the battery pack; the control module is electrically connected to the detection module, and the control module is used to control the movement of the disc push box body 22a state, when the detection module detects that the pusher box body 22a is in contact with the battery pack, the control module controls the pusher box body 22a to execute a corresponding movement state.
  • the connecting portion 23 can move in the Y-direction relative to the push-disc box body 22a, and the detection module detects the displacement on the connecting portion 23 to determine the contact state between the connecting portion 23 and the battery pack based on the detection module. Connection Status.
  • the connection part 23 includes a first connection part 232 and a second connection part 233
  • the detection module correspondingly includes a first detection module 241 and a second detection module 242 .
  • the connection part 23 is used for The adsorption device 231 for realizing the adsorption connection function is disposed on the first connecting member 232
  • the second connecting member 233 is disposed on the adsorption surface 2311 of the adsorption device 231 .
  • the first detection module 241 is used for detecting the first contact state between the first connector 232 and the battery pack
  • the second detection module 242 is used for detecting the second contact state between the second connector 233 and the battery pack.
  • the first detection module 241 and the second detection module 242 are both sensors, and generate a signal after the corresponding first connection member 232 and the second connection member 233 are in contact with the battery pack.
  • the second detection module 242 is disposed on the adsorption surface 2311 of the adsorption device 231 to generate a signal when the adsorption surface 2311 is close to the battery pack (ie, the second contact state). Therefore, the signal generated by the second detection module 242 is a preliminary contact signal, and after the preliminary contact signal is sent to the control module, the control module can know that the push tray 22 has approached the battery pack. In this embodiment, after the control module acquires the preliminary contact signal generated by the sensor of the second detection module 242 , it does not substantially change the moving state of the push-disc box 22 .
  • the first detection module 241 is provided on the push-disc box body 22a, and is used to detect the movement of the first connector 232 based on the movement (( i.e. in the first contact state) to generate a signal. Therefore, the signal generated by the first detection module 241 is a fitting signal. After the fitting signal is sent to the control module, the control module can know that the push-disc box 22 (the suction surface 2311 of the suction device 231) has completely contacted the battery pack, At this time, the control module can control the push tray 22 to stop moving, so as to achieve the purpose of precise displacement control.
  • control module can be configured to: only when the preliminary contact signal and the fitting signal are obtained, it is determined that the contact between the push tray 22 and the battery pack is completed, so as to further implement the operation of controlling the push tray 22 to stop moving.
  • the purpose of this control scheme is to prevent one of the first detection module 241 and the second detection module 242 from being triggered by mistake, causing the disk pusher 22 to stop when it is not in contact with the battery pack.
  • the control module can also control the disc push box 22 to decelerate to move, so that the push disc box 22 can contact the battery pack at a lower speed.
  • an adsorption device 231 is provided on the side of the first connecting member 232 facing the battery bracket, and the first connecting member 232 can be displaced in the Y direction relative to the disc cartridge body 22a, so that the first detection module 241 can pass through The displacement state of the first connecting member 232 is detected to obtain the above-mentioned fitting signal sent to the control module.
  • the connecting portion 23 further includes a movable portion 234.
  • the first connecting member 232 is movable relative to the disc cartridge body 22a by connecting with the movable portion 234.
  • the movable portion 234 can also make the first connecting member 232 move.
  • the pusher case body 22a is compressible in the moving direction, and the sensor of the first detection module 241 is arranged on the compression path of the movable portion 234 to detect the displacement of the first connecting member 232 and determine whether it is in the first a contact state.
  • the movable portion 234 specifically includes a sliding structure and an elastic structure.
  • the first connecting member 232 is positioned on the push-disc box body 22a through the sliding structure of the movable portion 234.
  • the sliding structure, the elastic structure and the first connecting member 232 together form a relative push-disc box body.
  • 22a has a movable and compressible floating plate structure, so that the adsorption device 231 fixed on the first connecting member 232 can float relative to the push disc cartridge body 22a along the Y direction.
  • the sliding structure guides the first connecting member 232 provided with the adsorption device 231 to move along the sliding path (ie, the Y direction), and the first detection module 241 is disposed on the sliding path of the sliding structure , and is used to detect whether the first connecting member 232 is compressed to the preset position, and if the first connecting member 232 is compressed to the preset position, a fitting signal is generated to the control module.
  • the elastic structure exerts a force on the first connecting member 232, so that when the adsorption device 231 on the first connecting member 232 is not in contact with the battery pack, the first connecting member 232 is driven by the elastic structure to return to the original position (Fig. 17 where the first connector 232 is located).
  • the sliding structure includes four support rods with end stops, one end of these support rods is connected to the push-disc box body 22a, and the first connecting portion 23 is sleeved on the through hole on the surface of the support rod. on the other end of the support rod to achieve the purpose of sliding on the support rod.
  • the elastic structure includes elastic elements 2342, which are coil springs in this embodiment. The number of the elastic elements 2342 is the same as that of the support rods. The elastic elements 2342 are respectively sleeved on the support rods.
  • the first detection module 241 includes a proximity sensor, and the proximity sensor detects the movement state of the end of the support rod to realize the purpose of judging the first contact state and generating a fitting signal.
  • the second connecting member 233 is disposed on the first connecting member 232 along the direction of the push-disc box body 22a toward the battery bracket.
  • the second connecting member 233 is displaced relative to the first connecting member 232 , This enables the second detection module 242 to detect the preliminary contact signal when the second connector 233 is displaced.
  • the second connecting member 233 includes a detection rod 2331.
  • the detection rod 2331 passes through the adsorption device 231 and protrudes from the adsorption surface 2311 of the adsorption device 231 in the initial position, (ie, the position of the detection rod 2331 in FIG. 17).
  • the 2331 can move relative to the adsorption device 231 along the Y direction, and the second detection module 242 is disposed on the moving path of the detection rod 2331 to generate a corresponding signal based on the movement of the detection rod 2331 .
  • the end of the detection rod 2331 will first contact the battery pack and then be compressed to generate a preliminary contact signal. After that, when the battery pack is in contact with the adsorption surface 2311 of the adsorption device 231 , the adsorption device 231 and the first connecting member 232 can be further compressed to generate a fitting signal.
  • the second detection module 242 also includes a proximity sensor, and the proximity sensor of the second detection module 242 realizes the purpose of judging the second contact state and generating a preliminary contact signal by detecting the movement state of the end of the detection rod 2331 .
  • the length of the detection rod 2331 is relatively long, and its end passes through the first connecting piece 232 and the part of the push-disc box body 22a for the first connecting piece 232 .
  • the preferred setting of the proximity sensor of the second detection module 242 is The position is shown in Figure 15, which is used to detect the displacement of the end of the detection rod 2331, and a return spring 2332 is also provided on the detection rod 2331 to drive the detection rod 2331 to return to the position when the detection rod 2331 is not in contact with the battery pack. initial position.
  • FIG. 19 it is a schematic diagram of the positional relationship between the battery tray and the battery pack when the push tray case body 22a moves toward and approaches the battery pack 100 in the direction of the arrow in the figure.
  • the end of the detection rod 2331 is protruded from the adsorption surface 2311, so that when the detection rod 2331 is in contact with the battery pack, the detection rod 2331 moves in the direction of the second detection module 242, and the second detection rod 2331 moves in the direction of the second detection module 242.
  • the detection module 242 is disposed at the other end portion 2331a of the detection rod 2331 .
  • the detection rod 2331 is in contact with the battery pack 100 and is compressed, so that the second detection module 242 can detect the end of the detection rod 2331 2331a is displaced, thereby generating a preliminary contact signal.
  • the pusher case body 22a is opposite to the battery pack 100 .
  • the thrust force becomes the reaction force of compressing the elastic element 2342 on the support rod 2341, so that the first connecting piece 232 and the adsorption device 231 move backwards, and the to-be-detected ends 232a fixed on both sides of the first connecting piece 232 move closer
  • the direction of the first detection module 241 moves, so that the first detection module 241 can detect the displacement of the end 232a to be detected and generate a fitting signal. It can be seen from FIG. 21 that the battery pack 100 must have been attached to the adsorption device 231 when the attaching signal is generated.
  • the adsorption device 231 on the push tray case 22 is in complete contact with the battery pack 100 , the adsorption device 231 is powered on to adsorb the iron blocks on the battery pack 100 .
  • the procedure of electrifying the adsorption device 231 can be performed first and after a delay of at least 1 second, after ensuring that the adsorption device 231 has completely absorbed the battery pack 100, the subsequent process of controlling the unlocking device to unlock the battery pack can be performed to ensure that the battery pack Reliably and securely connected to the push tray 22.
  • the push disc case 22 is controlled to move back, as shown in FIG. 18 , so that the battery pack 100 is moved to the battery tray 803 by the push disc case 22 .
  • the first image and the second image at at least two positions on the battery tray may be acquired by the image acquisition module disposed on the battery tray 803 , and generated based on these images.
  • the vertical adjustment amount is used to realize the purpose of adjusting the height of the power exchange device to match the height of the battery bracket during the process of removing the battery pack through the vertical movement mechanism.
  • the height position between the battery tray 803 and the battery tray can be measured in real time in a manner that can obtain the vertical adjustment amount. Adjustment to avoid sticking of battery pack during translation in or out.
  • the push tray 22 stops moving. At this time, the double extension mechanism 3 can be retracted.
  • a vertical retraction detection sensor 235 may be provided at the front end of the battery tray 803 for detecting the double extension mechanism 3 fully retracted. Specifically, after the double extension mechanism 3 is fully retracted, no object should be detected within the detection range of the retraction detection sensor 235. If so, it is determined that the retraction is successful, and subsequent steps can be performed.
  • the above-mentioned detection module for generating the fitting signal and the preliminary contact signal can also have and perform different functions during the battery pack installation process and the battery pack removal process, such as the following:
  • the push tray box 22 needs to push the battery pack to move so as to push the battery pack to the battery bracket.
  • the fitting signal generated by the first detection module 241 can be used as the basis for judging that the battery pack has been pushed to the battery tray.
  • the elastic element can be set to be relatively hard, so that during the process of pushing the battery pack to move by the adsorption device 231 , the resistance generated by the sliding of the battery pack cannot cause the elastic element to be compressed, so that the fitting signal generated by the first detection module 241 is prevented. .
  • the push tray 22 pushes the battery pack to the battery bracket and in place, the battery pack cannot move.
  • the control module controls the push-disc box 22 to stop moving based on the above-mentioned fitting signal, so that the push-disc box 22 has the advantage of being able to push the battery pack in place and stop accurately during the battery pack installation process.
  • the preliminary contact signal generated by the second detection module 242 can be used as a signal for judging whether the battery pack has been locked on the battery holder. in accordance with.
  • the power supply voltage of the adsorption device 231 is 24V, and the suction force generated at this time is 80kg.
  • the power supply voltage of the adsorption device 231 is reduced to 5V, and the adsorption force is correspondingly reduced to 10kg .
  • the firmness of the adsorption connection is relatively low.
  • the push-disc box 22 is controlled to retreat a certain distance, and it is detected whether the preliminary contact signal is sent out, and based on this, it is determined whether the battery pack is successfully locked or failed to be locked.
  • the preliminary contact signal of the second connector 233 is detected, it means that there is still an object on the adsorption surface 2311 of the adsorption device 231. At this time, based on the received preliminary contact signal, it can be considered that the battery pack is still adsorbed on the adsorption surface 2311. device 231, so the locking mechanism of the battery tray is not successfully locked. At this time, the unlocking mechanism 21 and the push tray box 22 on the battery tray 803 can be continuously controlled to perform the battery pack installation process.
  • the preliminary contact signal is not detected, it means that there is no object on the adsorption surface 2311 of the adsorption device 231, and it can be considered that the battery pack is not adsorbed on the adsorption device 231, and the locking mechanism of the battery holder is successfully locked, resulting in the battery pack. and the adsorption device 231 were separated from each other under the adsorption force of 10 kg. At this time, the push-disc box 22 can be controlled to continue to retreat, and after that, the double-extension mechanism 3 of the power exchange device can be controlled to retreat.
  • reducing the adsorption force to 10 kg is only a relatively preferred adsorption parameter in this embodiment, and the above-mentioned purpose can also be achieved by using other adsorption forces to connect the battery pack.
  • the push-disc box 22 in this embodiment is connected to the battery pack by means of adsorption
  • the connecting portion 23 can also be connected to the battery pack through other connection methods, and based on the push-disc box 22 In the case of retreating a certain distance, the connection status of the connection portion 23 and the battery pack is detected, so as to achieve the same purpose of detecting and judging whether the battery pack is successfully locked or failed to be locked.
  • the so-called distance should be greater than the stroke of the movement of the detection lever 2331 .
  • it should be larger than the travel of the support rod, so that both the first connecting piece 232 and the second connecting piece 233 are in their respective initial positions (see FIG. 17 ), avoiding the first connecting piece 232 And the second connecting member 233 has not moved in place and is still in a compressed state, so that although the battery pack has been separated from the adsorption surface 2311 , the first detection module 241 and the second detection module 242 can still generate corresponding signals.
  • the detection module can also be used to detect whether the disk push box 22 is located in the preset area of the battery tray 803 , when the detection module detects the battery tray 803 is located on the preset area, and the detection module can send a signal to the control module electrically connected to it, so that the control module can change the moving state of the disk tray 22 .
  • the so-called moving state includes acceleration, deceleration, stop and so on.
  • the detection module includes a pair of matching first detection members 243 and second detection members 244 , wherein the first detection member 243 is disposed on the battery tray 803 , and the second detection member 243 The detection member 244 is provided on the push tray 22 .
  • the first detection member 243 is a sensing block or a sensing belt, and is disposed on the surface of the battery tray 803 facing the side of the tray box body 22a to form a so-called preset area on the surface of the battery tray 803 .
  • the second detection member 244 in this embodiment is a proximity sensor, and the detection end 244a of the end thereof is disposed toward the surface of the battery tray 803 to detect the preset formed by the first detection member 243 . area, and based on whether the second detection member 244 sends out an induction signal, it is determined whether the push-disc box 22 is located in the preset area.
  • the detection end 244a of the second detection member 244 is close to the first detection member 243, the second detection member 244 can generate a corresponding signal, so that the control module can change the moving state of the disk tray 22 to achieve precise control.
  • the preset area in this embodiment includes a deceleration area, a reset area, and a limit area.
  • these regions are respectively formed by different first detection parts 243 and also respectively implemented by different second detection parts 244 .
  • the first detection member 243 for forming the deceleration area is the deceleration detection member 243a, which is disposed on the side of the battery tray 803 facing the tray case 22, and is disposed close to the battery tray.
  • the specific shape of the deceleration detection member 243a is a long strip, and extends along the moving direction of the push tray case 22 toward the battery tray.
  • the control module is used to drive the push tray 22 to decelerate and move.
  • the setting position of the deceleration area should match the distance that the push tray case 22 moves and contacts the battery pack.
  • the setting position of the deceleration area should be set such that when the disc push box 22 moves toward the battery pack located in the battery tray, the push disc box 22 first moves into the deceleration area, so as to execute the push-down area after the second detection member 244 sends a signal.
  • the disc cartridge 22 decelerates, and then a fitting signal and a preliminary contact signal are generated through the displacement of the first connecting member 232 and the second connecting member 233, so that the push disc cartridge 22 stops moving.
  • the first detector 243 for forming the reset area is a reset detector 243b
  • the reset detector 243b is installed in the battery tray 803 at a position between the two ends in the moving direction of the disk cartridge 22 , and set it away from the battery bay.
  • the reset detection member 243b is a rectangle.
  • the control module is used to drive the disk push box 22 to stop moving, so as to realize the push disk box 22 During the reset process, it can be stopped at a relatively precise position, so as to improve the repeatability and reliability of the power exchange device.
  • the first detection member 243 for forming the limit area is the limit detection member 243c.
  • the purpose of setting the limit area is to indicate the movement limit of the push-disc cartridge 22.
  • the setting positions of the two limit detection members 243c are the areas where the push-disc cartridge 22 does not enter during normal movement, that is, in the When the second detection part 244 detects that the push-disc box 22 has entered the limit area, it indicates that there is a problem with the operation of the power-changing device, and at this time, the push-disc box 22 should be stopped from moving.
  • the second detectors 244 are four proximity sensors for detecting the deceleration detector 243a, the reset detector 243b and the two limit detectors 243c respectively, so that the second detector 244 and the first detector 243 One-to-one pairing is arranged to avoid the reliability risk caused by the repeated use of sensors. It is used to form a deceleration area, a reset area and two limit areas).
  • the second detection member 244 detects that the tray tray 22 is located in the preset area, it is not necessary to control the control module to change the moving state of the tray tray 22, but should The movement direction of the box 22 relative to the preset action generated by the battery tray 803 is combined to make a unified judgment.
  • the second detection member 244 detects that it is located in the deceleration area, it should control the push tray 22 to decelerate;
  • the second detection member 244 detects that it is in the reset area, it should not control the disk ejector 22 to stop, because at this time the disk ejector 22 may just start from the reset area and start to move in the direction of the deceleration area.
  • the push-disc box 22 should be controlled.
  • the second detection member 244 detects that it is in the deceleration area, it should not control the pusher cartridge 22 to decelerate, because at this time the pusher cartridge 22 may just start from the deceleration area and start to move toward the reset area.
  • the signal priority should be set to the highest, and when the second detection part 244 detects that the push-disc box 22 is located in the limit area, it should immediately stop the operation of the entire power exchange device to avoid safety accidents.
  • the push tray case 22 in this embodiment further includes two balance parts 25 , and the connecting parts 23 are on both sides of the push tray case body 22 a in the lateral direction (ie, the X direction in FIG. 16 ).
  • a balance part 25 is respectively provided, and the balance part 25 can balance the moving state of the battery pack during the process of pushing or pulling the battery pack, so that the battery pack can be pushed by the adsorption device 231 on the push tray box 22. By supporting the battery pack by the balance part 25, the battery pack maintains a relatively accurate moving posture.
  • the two balance parts 25 are respectively arranged at equal distances on both sides of the connection part 23 , so that the balance parts 25 can correct the deviation of both ends of the battery pack 100 at the same angle, no matter which direction the battery pack 100 is offset. can be corrected in a timely manner.
  • the so-called movement posture of the battery pack refers to the position posture of the battery pack when it moves between the battery tray 803 and the battery holder, that is, the inclination of the battery pack when it moves between the battery tray 803 and the battery holder (see Fig. 18. At this time, the position and posture of the battery pack 100 is good.)
  • the moving posture of the battery pack is poor, the battery pack is likely to interfere with the side guide wheel 4 of the battery tray 803 or the side guide wheel of the battery bracket, causing the battery pack to interfere.
  • the pack is stuck on the battery tray 803 or the battery holder.
  • the connecting portion 23 is arranged at the middle position of the push-disc box body 22a along the X direction, and the two balancing portions 25 are respectively arranged at equal distances on both sides of the connecting portion 23, so that the two balancing blocks can face each other. Balanced support for the battery pack.
  • connection portion 23 facing the connection surface of the battery pack (ie, the adsorption surface 2311 ) and the balance surface of the balance portion 25 facing the battery pack are not on the same plane.
  • the connecting portion 23 protrudes from the disk box body 22a to the first width D 1 , and the balance is
  • the portion 25 protruding from the disc cartridge body 22a has a second width D 2 , and the first width D 1 is greater than or equal to the second width D 2 .
  • the balance surface is set farther away from the battery pack than the adsorption surface 2311, and the connection portion 23 protrudes toward the side of the battery pack 100 relative to the balance portion 25, so that when the push tray 22 is in contact with the battery pack with a relatively normal moving posture, the connection portion
  • the adsorption surface 2311 of 23 can be in contact with the battery pack first, and only when the position and posture of the battery pack 100 is poor (or misaligned), the surface of the battery pack 100 may be in contact with the balance part 25, so that the battery The moving state of the bag 100 is adjusted to balance by the balancer 25 here.
  • the balance part 25 in this embodiment includes a push block 251, the push block 251 is in the shape of a cube, and the rectangular surface facing the battery pack is used for contacting the battery pack to correct the movement posture of the battery pack.
  • the push block 251 is installed on the side of the push tray box body 22a facing the battery bracket through the adapter structure 252.
  • the push block 251 is used to contact the battery pack.
  • the push block 251 is made of elastic polyurethane material, so that the push block 251 has both elasticity and support.
  • the push block 251 When (the adsorption device 231) is compressed, the push block 251 can relieve a certain distance deviation through its own compression, so as to avoid the rigidity of the push block 251 and the inability of the battery pack to push the first connector 232 and the second connector 233 Compress so that the detection module triggers the fit signal and the preliminary contact signal.
  • the centers of the two balancing parts 25 and the center of the connecting part 23 are not on the same straight line.
  • the centers of the two balance parts 25 and the center of the connection part 23 are not on the same straight line L in the height direction (ie, the Z direction), that is, the two balance parts 25 and the connection part 23
  • This structural arrangement can make the contact surface of the balance part 25 and the battery pack and the contact surface of the connection part and the battery pack not in the same direction, so as to strengthen the connection stability of the battery pack and reduce the offset during the movement of the battery pack.
  • the battery tray 803 and the push-disc box 22 shown in the drawings of this embodiment are only used to illustrate specific structures.
  • FIG. 26 in order to facilitate the demonstration of the internal structure of the push-disc box 22 , in other drawings except FIG. 26 , the outer casing of the push-disc box 22 is hidden.
  • This embodiment provides a control method for picking and placing a battery pack.
  • the battery pack has a first position on a battery bay in a battery compartment or an electric vehicle and a second position on the battery swap device.
  • the control method for picking and placing a battery pack includes the following steps:
  • Step S11 driving the battery pack to move to switch positions between the first position and the second position.
  • Step S12 during the movement of the battery pack, adjust the height of the power exchange device according to the height of the battery bracket.
  • the control method for taking and placing a battery pack in this embodiment, during the movement of the battery pack, the height of the battery-changing device is adjusted according to the height of the battery bracket, that is, the height of the battery-changing device is moved up accordingly, so as to match the height of the battery bracket.
  • the height of the battery pack matches the height of the battery pack, so that the battery pack can be prevented from being stuck due to an excessive angle formed between the battery pack and the battery holder, thereby ensuring the smooth removal of the battery pack.
  • the height of the battery-swap device is adjusted according to the height of the battery bracket, that is, the height of the battery-swap device is moved down accordingly, so as to match the height of the battery bracket.
  • the height of the battery pack matches the height of the battery pack, so that the battery pack can be prevented from being stuck due to an excessively large angle formed between the battery pack and the battery holder, thereby ensuring the smooth installation of the battery pack.
  • control method for picking and placing battery packs in this embodiment can effectively avoid the occurrence of changes in the height of the electric vehicle (that is, changes in the height of the battery bracket) caused by changes in the weight of the vehicle body during the process of picking and placing the battery packs.
  • the battery pack is stuck and difficult to remove or insert.
  • step S12 includes the following steps:
  • Step S121 acquiring a first image of a first part of the battery tray; acquiring a second image of a second part of the battery tray.
  • Step S122 Perform image processing on the first image and the second image to obtain the vertical displacement.
  • Step S123 adjusting the height of the power exchange device to match the height of the battery bracket according to the vertical displacement.
  • step S121 it is implemented by using the first visual sensor 501 and the second visual sensor 502 provided on the power exchange device 5 .
  • the first visual sensor 501 is used to acquire a first image of the first part A of the battery tray 7 ; the second visual sensor 502 is used to acquire a second image of the second part B of the battery tray 7 .
  • the battery pack is initially in the first position on the battery bracket in the electric vehicle. First, align the position of the mobile swap device with the battery bay. At this time, the first visual sensor 501 is used to acquire the image of the battery tray 7 as the first reference image; the second visual sensor 502 is used to acquire the image of the battery tray 7 as the second reference image. That is, the first reference image is a reference image including the first part when the height of the power exchange device matches the battery holder, and the second reference image is a reference image including the second part when the height of the power exchange device matches the battery holder image.
  • Fig. 30 shows a schematic diagram of the first reference image G1.
  • the first reference image G1 includes the first part A on the battery holder 7 .
  • the position acquisition unit obtains the position of the pixel corresponding to the first part A on the battery holder 7 in the first reference image G1 in the first reference image G1, as a reference for positioning, for the convenience of description , called the "target location".
  • the process of obtaining the target position by the position obtaining unit can be implemented by using algorithms already disclosed in the art, which can be realized by those skilled in the art, and will not be repeated here.
  • the push-disc box of the power-exchange device extends and attracts the battery pack, and then the push-disc box is slowly retracted to slowly pull out the battery pack.
  • the electromagnet on the push tray case attracts the corresponding target device on the battery pack.
  • the adsorption connection determination unit determines whether the electromagnet on the push tray box and the corresponding target device on the battery pack remain in the adsorption state.
  • the adsorption connection judgment unit sends an alarm signal at this time.
  • the first visual sensor 501 acquires the first image of the first part A of the battery tray 7 in real time; the second visual sensor 502 acquires the second image of the second part B of the battery tray 7 in real time.
  • the first vertical displacement amount is acquired according to the first image and the first reference image, and the second vertical displacement amount is acquired according to the second image and the second reference image.
  • FIG. 31 shows a schematic diagram of the first image G11.
  • the first position A on the battery tray 7 is included in the first image G11 .
  • the position obtaining unit obtains the position of the pixel corresponding to the first position A on the battery tray 7 in the first image G11, which is called a real-time position for convenience of description.
  • the process of obtaining the target position by the position obtaining unit can be implemented by using algorithms already disclosed in the art, which can be realized by those skilled in the art, and will not be repeated here.
  • the position obtaining unit obtains the first vertical displacement amount according to the target position and the real-time position.
  • the height of the power exchange device can be made consistent with the height of the battery bracket.
  • the process of obtaining the first vertical displacement by the position acquiring unit can be implemented by using algorithms already disclosed in the art, which can be implemented by those skilled in the art, and will not be repeated here.
  • By moving the corresponding vertical displacement amount the corresponding vertical displacement can be achieved, so that the height of the power exchange device matches the height of the battery holder.
  • the matching mentioned here refers to making the height of the power exchange device and the height of the battery bracket reach a state of matching during the power exchange process, such as the same height or only a small gap, to prevent the battery pack from being stuck during the movement process.
  • the purpose of achieving a smooth and smooth movement effect is not limited to the state of complete consistency in the process of changing points.
  • the position obtaining unit obtains the second vertical displacement amount according to the second image and the second reference image.
  • the power exchange device 5 passes through the first lifting mechanism 706 and the second lifting mechanism (arranged on the opposite side of the first lifting mechanism 706 , which are blocked in the figure because of and not shown) is driven to move up and down.
  • the power exchange device 5 includes a push-disc box 802 .
  • the first lifting mechanism 706 drives the power exchange device 5 to ascend and descend according to the first vertical displacement
  • the second lifting mechanism drives the power exchange device 5 to ascend and descend according to the second vertical displacement.
  • the first lifting mechanism and the second lifting mechanism are respectively controlled to perform lifting and lowering operations on the power exchange device, which can improve the stability of the lifting process.
  • the first visual sensor 501 acquires the image of the battery tray 7 as a new first reference image
  • the second visual sensor 502 acquires the image of the battery tray 7 as a new first reference image A new second reference image to use as a reference for the next adjustment.
  • the corresponding vertical adjustment amount can be obtained in real time, and the height of the power exchange device can be adjusted in real time, so that the height of the power exchange device follows the change of the height of the battery bracket, thereby ensuring the smooth removal of the battery pack.
  • the height of the power exchange device is adjusted in real time, so that the height of the power exchange device and the height of the battery bracket can be followed, that is, the height of the battery pack can be raised or lowered at the same time. In a stable state, it is conducive to the movement of the battery pack.
  • the push tray 802 of the power exchange device 5 absorbs the battery pack and moves to a preset position matching the battery holder.
  • the image of the battery tray 7 is acquired by the first visual sensor 501 as the first reference image; the image of the battery tray 7 is acquired by the second visual sensor 502 as the second reference image.
  • the push tray 802 pushes the battery pack to extend toward the battery bracket synchronously, so that the battery pack moves from the second position to the first position.
  • the first visual sensor 501 acquires the first image of the first part A of the battery tray 7 in real time
  • the second visual sensor 502 acquires the second image of the second part B of the battery tray 7 in real time.
  • the first vertical displacement amount is acquired according to the first image and the first reference image
  • the second vertical displacement amount is acquired according to the second image and the second reference image.
  • the height of the power exchange device is adjusted according to the first vertical displacement amount and the second vertical displacement amount, so that the height of the power exchange device matches the height of the battery holder.
  • the above-mentioned height adjustment operation is repeated, and the battery pack is smoothly pushed into the battery bracket, so that the battery pack is moved to the first position on the battery bracket in the electric vehicle.
  • the vertical displacement is obtained by visual image acquisition combined with image processing, which can obtain high precision and ensure the smooth progress of the battery pack picking and placing process.
  • the first vertical displacement is acquired according to the first image and the first reference image, or the first vertical displacement is acquired according to the second image and the second reference image The second vertical displacement amount. Then, according to any one of the first vertical displacement amount or the second vertical displacement amount, the height of the power exchange device is adjusted so that the height of the power exchange device matches the height of the battery holder.
  • the heights of the two are the same.
  • the difference between the heights of the two is within a preset range.
  • the difference in height between the two is small enough, so the angle between the battery pack and the battery holder is small enough that the battery pack won't get stuck and affect access.
  • the battery pack when the battery pack is removed, the battery pack is initially in the battery pack having a first position within the battery compartment.
  • the control method for taking and placing a battery pack in this embodiment those skilled in the art can implement taking out and putting in a battery pack, and the specific process will not be repeated here.
  • This embodiment provides a control method for picking and placing a battery pack.
  • the control method for taking and placing the battery pack in this embodiment is generally the same as the control method for taking and placing the battery pack in the fourth embodiment.
  • the difference is that, in this embodiment, the height of the battery swapping device is not adjusted when the battery pack starts to move, but the height of the battery swapping device is controlled and adjusted according to at least one preset position between the first position and the second position. That is, when the battery pack moves to the preset position, the height of the power-swap device starts to be adjusted.
  • the first visual sensor 501 is used to acquire the image of the battery tray 7 as the first reference image
  • the second visual sensor 502 is used to acquire the image of the battery tray 7 as the second reference image.
  • the push-disc box of the power-exchange device extends and attracts the battery pack, and then the push-disc box is slowly retracted to slowly pull out the battery pack.
  • the first visual sensor 501 acquires the first image of the first part A of the battery tray 7 ; the second visual sensor 502 acquires the second part of the battery tray 7 Second image of B. After acquiring the first image and the second image, the first vertical displacement amount is acquired according to the first image and the first reference image, and the second vertical displacement amount is acquired according to the second image and the second reference image.
  • the height of the power exchange device is adjusted according to the first vertical displacement amount and the second vertical displacement amount, so that the height of the power exchange device matches the height of the battery holder.
  • the first visual sensor 501 acquires the image of the battery tray 7 as a new first reference image
  • the second visual sensor 502 acquires the image of the battery tray 7 as a new second reference image, which is used as a reference for the next adjustment .
  • the push tray of the power exchange device absorbs the battery pack and moves to a preset position matching the battery holder.
  • the image of the battery tray 7 is acquired by the first visual sensor 501 as the first reference image; the image of the battery tray 7 is acquired by the second visual sensor 502 as the second reference image.
  • the push tray pushes the battery pack to extend toward the battery bracket synchronously, so that the battery pack moves from the second position to the first position.
  • the height change of the battery holder of the electric vehicle is still very small, and it is not easy for the battery pack to get stuck, so it is not necessary to adjust it first.
  • the first visual sensor 501 acquires the first image of the first part A of the battery tray 7 ; the second visual sensor 502 acquires the second part of the battery tray 7 Second image of B. After acquiring the first image and the second image, the first vertical displacement amount is acquired according to the first image and the first reference image, and the second vertical displacement amount is acquired according to the second image and the second reference image.
  • the height of the power exchange device is adjusted according to the first vertical displacement amount and the second vertical displacement amount, so that the height of the power exchange device matches the height of the battery holder.
  • the first visual sensor 501 acquires the image of the battery tray 7 as a new first reference image
  • the second visual sensor 502 acquires the image of the battery tray 7 as a new second reference image, which is used as a reference for the next adjustment .
  • adjusting the height of the battery swapping device can reduce the number of swaps during the battery pack picking and placing process. The number of times of height adjustment of electrical equipment to improve the efficiency of battery pack pick and place.
  • this embodiment provides a control method for picking and placing a battery pack.
  • the height of the battery swapping device is adjusted based on the first preset height.
  • the first preset height can be reasonably set according to the model and weight of the battery pack, and the height of the power exchange device can be adjusted by one or more adjustments.
  • the corresponding vertical adjustment amount and the corresponding tire pressure of the electric vehicle by acquiring and analyzing the experimental data of the movement stroke of the corresponding battery pack during the pick-and-place process of the battery pack, the corresponding vertical adjustment amount and the corresponding tire pressure of the electric vehicle , and generate the corresponding relationship between the tire pressure of the electric vehicle and the first preset height.
  • the first preset height can be reasonably set according to the real-time tire pressure of the electric vehicle, and the height of the power exchange equipment can be adjusted by one or more adjustments.
  • this embodiment provides a control method for picking and placing a battery pack.
  • the height of the power exchange device is adjusted based on the second preset height.
  • the second preset height can be reasonably set according to the movement stroke according to the model and weight of the battery pack, and the height of the power exchange equipment can be realized by one-time adjustment according to the movement stroke. adjustment.
  • the experimental data of the movement stroke of the corresponding battery pack, the corresponding vertical adjustment amount and the corresponding tire pressure of the electric vehicle during the process of taking the battery pack out of the battery bracket The acquisition and analysis of the electric vehicle generates the corresponding relationship between the tire pressure of the electric vehicle, the travel distance, and the second preset height.
  • the second preset height can be reasonably set according to the real-time tire pressure and moving stroke of the electric vehicle, and the height of the power exchange equipment can be adjusted at one time according to the moving stroke. adjustment.
  • this embodiment provides a control method for picking and placing a battery pack.
  • the height of the power exchange device is adjusted based on the second preset height.
  • different models and weights of battery packs of different models and weights are generated by acquiring and analyzing the movement strokes and the corresponding vertical adjustment amount of the experimental data during the process of placing the battery packs in the battery tray.
  • the second preset height can be reasonably set according to the movement stroke for the model and weight of the battery pack, so as to realize the height adjustment of the power exchange device.
  • the second preset height can be reasonably set according to the real-time tire pressure and moving stroke of the electric vehicle, and the height of the power exchange equipment can be adjusted one or more times. adjustment.

Abstract

本发明公开了一种电池包取出控制方法和电池包安装控制方法,包括以下步骤:调整所述换电设备的位置直至换电设备相对所述电池托架达到预设相对位置;控制换电设备伸出并连接电池包,或者将电池包移动至所述电池托架上;控制所述换电设备的解锁机构进行解锁或锁止。该电池包取出控制方法和安装控制方法中,通过在使换电设备与电池托架对准之后,换电设备先从电池托架处连接电池包或先将电池包推至电池托架,再驱动解锁机构对电池托架进行解锁或锁止,使得被电池包能够顺利、准确地从电池托架上被取出或安装,以保证电池包取出和安装过程中的准确性、稳定性,提高换电效率。

Description

电池包取出控制方法、电池包安装控制方法
本申请要求申请日为2020年7月6日的中国专利申请2020106432875、2020106427241的优先权。本申请引用上述中国专利申请的全文。
技术领域
本发明涉及换电领域,特别涉及一种电池包取出控制方法、电池包安装控制方法。
背景技术
电动车发展迅速,得到越来越广泛的应用。在电量不足时,用户可以将电动车驶入换电站更换电池包,电池包是否安装到位是换电是否成功的关键。
在通过换电设备从电池托架上拿取或安放电池包时,如何准确地将换电设备相对电池托架精确对准成为了电池包成功取出或安放的关键点。然而,在现有的换电的过程中,往往难以快速准确地实现换电设备与电池托架的准确定位和对接,并且在换电设备相对电池托架取放电池包的过程中,难以保证放置或取出的稳定性,导致换电工序的稳定性低、效率低下、存在安全隐患等。
发明内容
本发明要解决的技术问题是为了克服现有技术中换电效率低、稳定性低、安全性差的缺陷,提供一种电池包取出控制方法和电池包安装控制方法。
本发明是通过下述技术方案来解决上述技术问题:
一种电池包取出控制方法,其用于控制换电设备从电池仓内或电动车内取出电池包,所述电池包被锁止于所述电池仓或所述电动车内的电池托架上,所述电池包拿取控制方法包括以下步骤:
调整所述换电设备的位置直至所述换电设备相对所述电池托架达到预设相对位置;
控制所述换电设备伸出并连接所述电池包;
控制所述换电设备的解锁机构进行解锁;
控制所述换电设备取出被解锁的所述电池包。
该电池包取出控制方法中,在换电设备与电池托架对准之后,换电设备先从与电池包相连接后,再对电池包进行解锁使其与电池托架解除锁止状态,最后取出被解锁的电池包,换电工序合理,保证电池包能够顺利、准确地从电池托架上被取出,提高换电效 率。
较佳地,调整所述换电设备的位置直至所述换电设备相对所述电池托架达到预设相对位置的步骤中包括以下步骤:
获取待换电车辆的电池托架上至少两个位置的第一图像和第二图像;
根据所述第一图像和所述第二图像获取角度旋转量;
根据所述角度旋转量控制所述换电设备进行角度调整,直至所述换电设备与所述电池托架达到预设角度;
在所述换电设备与所述电池托架达到预设角度时,获取所述电池托架上至少两个位置的第三图像和第四图像;
根据所述第三图像和所述第四图像获取水平位移量和垂直位移量;
根据所述水平位移量控制所述换电设备进行水平调整,和/或,根据所述垂直位移量控制所述换电设备进行垂直调整,直至所述换电设备与所述电池托架达到预设相对位置。
在本方案中,换电设备进行角度调整,并在角度调整到位后,再进行水平方向、垂直方向上的调整,以使得换电设备与电池托架定位,简化了换电设备的位置调整流程,提高了换电设备的定位效率。
较佳地,控制所述换电设备伸出并连接所述电池包的步骤包括以下步骤:
获取所述第三图像中所述电池托架对应位置的第三景深值或者获取所述第四图像中所述电池托架对应位置的第四景深值;
根据所述第三景深值或者第四景深值控制所述换电设备的双伸出机构伸出。
在本方案中,换电设备在定位完成之后,可以根据获取到的图像自动且准确地控制双伸出机构的伸出距离,有利于提高换电设备的换电准确率和换电效率。
较佳地,控制所述换电设备伸出并连接所述电池包的步骤包括以下步骤:
控制所述换电设备的推盘盒朝向所述电池包移动;
判断所述推盘盒是否与所述电池包接触完成;
若是,则控制所述推盘盒停止移动并连接所述电池包。
该方法,通过在控制推盘盒靠近并接触电池包时,以推盘盒与电池包是否接触为依据控制推盘盒停止移动,使推盘盒用于连接电池包的部分能够准确接触电池包,以提高推盘盒与电池包连接的准确性。
较佳地,控制所述推盘盒朝向所述电池包移动的过程中,在所述推盘盒移动至与所述电池包为预设距离时,控制所述推盘盒减速移动。
该方法,使得推盘盒在与电池包接触之前能够减速,以保持一个相对较慢的速度与 电池包进行接触。同时,在推盘盒不与电池包接触之前,能够以一个相对较快的速度移动,以保证取换电过程中的整体效率。
较佳地,判断所述推盘盒是否与所述电池包接触完成的步骤包括,获取所述推盘盒与所述电池包初步接触触发的初步接触信号以及所述推盘盒与所述电池包进一步接触触发的贴合信号,当所述初步接触信号和所述贴合信号都被获取到时,判断所述推盘盒与所述电池包接触完成。
该方法有效避免了推盘盒在未与电池包紧密且充分接触时就停止移动导致电池包连接不牢固的情况,可提高换电设备与电池包连接的可靠性,提高换电效率。
较佳地,控制所述换电设备伸出并连接所述电池包的步骤之后,还包括:
判断所述换电设备的推盘盒是否连接到位,若是,则执行控制所述换电设备的解锁机构进行解锁的步骤。
该方法通过在换电设备的解锁机构在进行解锁的步骤之前,先确定推盘盒相对电池包是否连接到位,以保证该电池包取出控制方法之中的各步骤都能够被准确执行,避免换电设备未与电池包连接到位的情况下就对电池包进行解锁,可提高换电设备的换电可靠性。
较佳地,控制所述换电设备的解锁机构进行解锁的步骤包括以下步骤:
控制所述解锁机构朝所述电池托架的解锁件移动至配合到位;
控制所述解锁机构驱动所述解锁件进行解锁。
该方法在通过换电设备取出电池包的过程中,利用设置在换电设备上的解锁机构对位于电池托架上的电池包进行解锁,以通过这种解锁方式提高解锁的精确度,从而可提高换电效率;同时,有效避免了发生误操作,大大提高了安全稳定性。
较佳地,控制所述换电设备取出被解锁的所述电池包的步骤包括以下步骤:
控制所述推盘盒退回,以带动所述电池包同步移动并从所述电池托架上取出。
该方法通过在解锁机构对位于电池托架上的电池包进行解锁后,利用已经连接于电池包的推盘盒将解锁后的电池包取出,而且通过推盘盒以平移方式取出电池包,保证电池取出的稳定性,避免对电池包造成损伤,提高换电安全性。
较佳地,在所述推盘盒退回的过程中,调整所述换电设备的高度至与所述电池托架的高度相匹配。
该方法通过在推盘盒退回过程中,调整该换电设备的高度至与电池托架的高度相匹配,避免电池包从电池托架上移出过程中,因电池托架相对换电设备在高度方向的偏差而导致电池包拉取过程中被卡住的情况发生。
较佳地,控制所述推盘盒退回,以带动所述电池包同步移动并从所述电池托架上取出的步骤之后,还包括:
判断所述推盘盒是否退回到位,若是,则控制所述换电设备的双伸出机构退回。
该方法在推盘盒将电池包从电池托架内取出并退回到位的情况下,再控制伸出机构退回,使电池包被安全取出至换电设备上,能够提高换电设备的换电可靠性。
一种电池包安装控制方法,其用于控制换电设备将电池包安装于电池仓或电动车的电池托架上,所述电池包安装控制方法包括以下步骤:
调整所述换电设备的位置直至所述换电设备相对所述电池托架达到预设相对位置;
控制所述换电设备将所述电池包移动至所述电池托架上;
控制所述换电设备的解锁机构进行锁止。
该电池安装控制方法中,在换电设备与电池托架对准之后,换电设备先将电池包推送至电池托架,再驱动解锁机构对电池托架进行锁止,使得被电池包能够顺利、准确地安装至电池托架上,以保证电池包安装过程中的准确性和稳定性,提高换电效率。
较佳地,调整所述换电设备的位置直至所述换电设备相对所述电池托架达到预设相对位置的步骤中包括以下步骤:
获取待换电车辆的电池托架上至少两个位置的第一图像和第二图像;
根据所述第一图像和所述第二图像获取角度旋转量;
根据所述角度旋转量控制所述换电设备进行角度调整,直至所述换电设备与所述电池托架达到预设角度;
在所述换电设备与所述电池托架达到预设角度时,获取所述电池托架上至少两个位置的第三图像和第四图像;
根据所述第三图像和所述第四图像获取水平位移量和垂直位移量;
根据所述水平位移量控制所述换电设备进行水平调整,和/或,根据所述垂直位移量控制所述换电设备进行垂直调整,直至所述换电设备与所述电池托架达到预设相对位置。
在本方案中,换电设备进行角度调整,并在角度调整到位后,再进行水平方向、垂直方向上的调整,以使得换电设备与电池托架定位,简化了换电设备的位置调整流程,提高了换电设备的定位效率。
较佳地,控制所述换电设备将所述电池包移动至所述电池托架上的步骤包括以下步骤:
获取所述第三图像中所述电池托架对应位置的第三景深值或者获取所述第四图像中所述电池托架对应位置的第四景深值;
根据所述第三景深值或者第四景深值控制所述换电设备的双伸出机构伸出。
在本方案中,换电设备在定位完成之后,可以根据获取到的图像自动且准确地控制双伸出机构的伸出距离,有利于提高换电设备的换电准确率和换电效率。
较佳地,根据所述第三景深值或者第四景深值控制所述换电设备的双伸出机构伸出的步骤之后,还包括:
控制所述换电设备的推盘盒将所述电池包推送至电池托架上。
该方法,在双伸出机构伸出准确伸出到位之后控制推盘盒将电池包推送到位,以保证电池包能够准确地被安装在电池托架上。
较佳地,控制所述换电设备的推盘盒将所述电池包推送至电池托架上的步骤包括以下步骤:
控制所述推盘盒推动所述电池包朝所述电池托架的方向移动;
判断所述推盘盒是否将所述电池包推送到位;
若是,则控制所述推盘盒停止移动。
该方法将电池包是否推送到位作为依据来控制推盘盒继续移动或停止,使得推盘盒能够在电池包推送到位之后才停止,进而保证电池包位于准确的位置,以提高本方法的可靠性。
较佳地,判断所述推盘盒是否将所述电池包推送到位的步骤包括:
获取所述推盘盒与所述电池包初步接触触发的初步接触信号以及所述推盘盒与所述电池包进一步接触触发的贴合信号,当所述初步接触信号和所述贴合信号都被获取到时,判断所述推盘盒将所述电池包推送到位。
该方法有效避免了推盘盒在未将电池包准确地送入电池托架内就停止推送而影响后续的锁止操作的情况提高换电设备的换电可靠性。
较佳地,在控制所述推盘盒推动所述电池包朝所述电池托架的方向移动的过程中,调整所述换电设备的高度至与所述电池托架的高度相匹配。
该方法通过在推盘盒朝电池托架移动过程中,调整该换电设备的高度至与电池托架的高度相匹配,避免电池包移入至电池托架的过程中,因电池托架相对换电设备在高度方向的偏差而导致电池包在推送过程中被卡住的情况发生。
较佳地,控制所述换电设备的解锁机构进行锁止的步骤包括以下步骤:
控制所述解锁机构朝所述电池托架的解锁件移动至配合到位;
控制所述解锁机构驱动所述解锁件进行锁止。
该方法在将电池包安装至电池托架的过程中,利用设置在换电设备上的解锁机构对 位于电池托架上的电池包进行锁止,以通过这种锁止方式提高锁止的精确度,从而可提高换电效率;同时,有效避免了发生误操作,大大提高了安全稳定性。
较佳地,控制所述换电设备的解锁机构进行锁止的步骤之后包括以下步骤:
判断所述电池包是否锁紧在所述电池托架上。
该方法通过在电池包安装完成后检测电池包是否锁紧,以保证电池包牢固的、可靠的安装在电池托架上,避免电池包脱落的隐患发生。
较佳地,判断所述电池包是否锁紧在所述电池托架上的步骤包括以下步骤:
控制所述换电设备的推盘盒对电池包的吸附力达到至预设值;
控制所述推盘盒朝退回预设距离以判断所述电池包的锁止状态。
该方法利用推盘盒对电池包能够产生吸附的功能,在电池包锁紧在电池托架后,通过吸附于电池包的推盘盒向外移动的方式,检测电池包是否会跟着推盘盒再次从电池托架上被移出,从而实现了判断电池包的锁止状态的目的。该方案利用现有的结构实现,简单可靠。
较佳地,当判断所述电池包的锁止状态的结果为所述电池包锁止成功之后还包括以下步骤:
控制所述推盘盒退回;
控制所述换电设备的双伸出机构退回。
该方法,在保证电池包成功锁止之后,再驱动换电设备的推盘盒和双伸出机构退回至初始位置,以确保电池包安装控制方法的可靠实施。
一种取放电池包的控制方法,电池包具有位于电池仓内或电动汽车内的电池托架上的第一位置以及位于换电设备上的第二位置,包括以下步骤:
驱动电池包移动以在第一位置与第二位置之间进行位置切换;
在电池包移动过程中,根据电池托架的高度调整换电设备的高度。
在本方案中,根据电池托架的高度调整换电设备的高度,可以保证换电设备的高度与电池托架的高度相适应,有效避免由于电池包取放过程中,电动汽车因车身称重变化导致的自身高度的变化(也即电池托架的高度的变化)而发生的电池包卡住难以取出或装入的问题。
较佳地,在电池包移动过程中,实时调整换电设备的高度。
在本方案中,在电池包移动过程中,通过实时调整换电设备的高度,保证电池包移动过程中一直处于平稳状态,移动更顺畅。
较佳地,根据第一位置和第二位置之间的至少一个预设位置,控制调整换电设备的 高度。
在本方案中,根据第一位置和第二位置之间的至少一个预设位置,间歇性控制调整换电设备的高度,在保证电池包能够顺畅移动的前提下,可以减少电池包取放过程中对换电设备的高度的调整的次数,以提高电池包取放的效率。
较佳地,在电池包相对于第一位置移动第一预设行程后,调整换电设备的高度;或,
在电池包相对于第二位置移动第二预设行程后,调整换电设备的高度。
在本方案中,根据电池包移动后的预设行程进行换电设备的高度调整,保证电池包顺利从一个位置过度到另一个位置即可,提高电池包取放的效率。
较佳地,在电池包移动过程中,根据电池托架的高度变化实时调整换电设备的高度至与电池托架的高度相匹配。
在本方案中,根据电池托架的高度变化实时调整换电设备的高度至与电池托架的高度相匹配,实现了换电设备的高度与电池托架的高度之间的随动,即同时升高或降低,近乎齐平的高度使电池包一直处于平稳状态,利于电池包的移动。
较佳地,当电池包移动至预设位置上,基于第一预设高度调整换电设备的高度。
在本方案中,基于第一预设高度调整换电设备的高度,可以针对不同型号、重量的电池包,或者根据电动汽车的胎压状况,给定预设值对换电设备的高度按阶段进行调整,即可分多次进行调整,使换电设备的高度与电池托架的高度保持在预定范围内,不会影响电池包的移动。
较佳地,在电池包移动第一预设行程或第二预设行程时,基于第二预设高度调节换电设备的高度。
在本方案中,基于第二预设高度调整换电设备的高度,可以针对不同型号、重量的电池包,或者根据电动汽车的胎压状况,在电池包移动出预设行程后对换电设备进行一次性的高度调整,不必专门设置检测电池托架高度变化的装置,简化了设备的结构。
较佳地,根据电池托架的高度调整换电设备的高度的步骤包括:
获取电池托架的第一局部的第一图像;和/或
获取电池托架的第二局部的第二图像;
对第一图像和/或第二图像进行图像处理以获取垂直位移量;
根据垂直位移量调整换电设备的高度至与电池托架的高度相匹配。
在本方案中,通过视觉图像获取并结合图像处理的方式获得垂直位移量进行换电设备的高度调整,能获得较高的调整精度,保证电池包取放过程的顺利进行。
较佳地,垂直位移量包括第一垂直位移量和第二垂直位移量;
对第一图像和/或第二图像进行图像处理以获取垂直位移量的步骤包括:
根据第一图像和第一参考图像获取第一垂直位移量,根据第二图像和第二参考图像获取第二垂直位移量;第一参考图像为换电设备与电池托架的高度相匹配时包括第一局部的参考图像,第二参考图像为换电设备与电池托架的高度相匹配时包括第二局部的参考图像。
在本方案中,通过视觉图像获取并结合图像处理的方式获得两个垂直位移量,从两侧对换电设备的高度分别进行调整,能够适应电池托架的任何姿态,例如发生倾斜的情况,进一步提高调整的准确性,保证电池包取放过程的顺利进行。
较佳地,换电设备通过设置在两端的第一升降机构和第二升降机构驱动进行升降移动;
第一升降机构根据第一垂直位移量驱动换电设备升降,第二升降机构根据第二垂直位移量驱动换电设备升降。
在本方案中,基于第一垂直位移量和第二垂直位移量,控制第一升降机构和第二升降机构对换电设备两侧的高度分别进行升降操作,可以提高换电设备高度调整的准确性。
本发明的积极进步效果在于:
该电池包取出控制方法和安装控制方法中,在使换电设备与电池托架对准之后,换电设备先从电池托架处连接电池包或先将电池包推至电池托架,再驱动解锁机构对电池托架进行解锁或锁止,使得被电池包能够顺利、准确地从电池托架上被取出或安装,以保证电池包取出和安装过程中的准确性和稳定性,提高换电效率。
附图说明
图1为本发明的实施例1的电池包取出控制方法的流程示意图(一)。
图2为本发明的实施例1的电池包取出控制方法的流程示意图(二)。
图3为本发明的实施例1的电池包取出控制方法的流程示意图(三)。
图4为本发明的实施例1的电池包取出控制方法的流程示意图(四)。
图5为本发明的实施例1的电池包取出控制方法的流程示意图(五)。
图6为本发明的实施例1的电池包安装控制方法的流程示意图(一)。
图7为本发明的实施例1的电池包安装控制方法的流程示意图(二)。
图8为本发明的实施例1的电池包安装控制方法的流程示意图(三)。
图9为本发明的实施例1的电池包安装控制方法的流程示意图(四)。
图10为本发明的实施例2的换电设备的立体结构示意图。
图11为本发明的实施例2的电池托盘的立体结构示意图(一)。
图12为本发明的实施例2的换电设备的正视结构示意图。
图13为本发明的实施例2的电池托盘的立体结构示意图(二)。
图14为图13中A部分的局部放大图。
图15为本发明的实施例2的电池托盘的局部结构示意图。
图16为本发明的实施例2的电池托盘的俯视结构示意图。
图17为图16中C部分的局部放大图。
图18为本发明的实施例2的电池托盘与电池包的连接关系示意图。
图19为本发明的实施例2的电池托盘与电池包的位置关系示意图(一)。
图20为本发明的实施例2的电池托盘与电池包的位置关系示意图(二)。
图21为本发明的实施例2的电池托盘与电池包的位置关系示意图(三)。
图22为本发明的实施例2的电池托盘的立体结构示意图(三)。
图23为图18中D部分的局部放大图。
图24为图13中B部分的局部放大图。
图25为本发明的实施例2的电池托盘与电池包的局部结构示意图。
图26为本发明的实施例2的电池托盘的立体结构示意图(三)。
图27为本发明的实施例3的取放电池包的控制方法的流程图。
图28为本发明的实施例4的取放电池包的控制方法的步骤S12的流程图。
图29为本发明的实施例4的取放电池包的控制方法的电池托架和换电设备的示意图。
图30为本发明的实施例4的取放电池包的控制方法的第一参考图像的示意图。
图31为本发明的实施例4的取放电池包的控制方法的第一图像的示意图。
图32为本发明的实施例4的取放电池包的控制方法的第一升降机构和第二升降机构的示意图。
附图标记说明:
图像采集模块41,天轨701,地轨702,天轨导轮703,地轨导轮704,第一垂直驱动器61,第二垂直驱动器62,换电执行机构803,第一链条706,第一链轮611,第二链条621,第二链轮622,电池托盘803,转盘811,旋转驱动器812,设备框架1,解锁机构21,推盘盒22,推盘盒本体22a,连接部23,吸附装置231,吸附面2311,第一连接件232,感应端232a,第二连接件233,检测杆2331,复位弹簧2332,活动部234,支撑杆2341,弹性元件2342,缩回检测传感器235,第一检测模块241,第二检测模块242, 减速检测件243a,复位检测件243b,极限检测件243c,第二检测件244,平衡部25,抵推块251,转接结构252,双伸出机构3,侧导轮4,电池包100
具体实施方式
实施例1
如图1所示,本发明提供一种电池包取出控制方法,其用于控制换电设备从电池仓内或者电动车内取出电池包,并使得电池包被锁止在电池仓或电动车内的电池托架上,该电池包拿取控制方法包括以下步骤:
S01、调整换电设备的位置直至该换电设备相对电池托架达到预设相对位置;
S02、控制换电设备伸出并连接电池包;
S03、控制换电设备的解锁机构进行解锁;
S04、控制换电设备取出被解锁的电池包。
其中,步骤S01中所谓的达到预设相对位置,是指换电设备移动至与电池托架对准的位置处。
该电池包取出控制方法中,通过在使换电设备与电池托架对准之后,先连接该电池包,再驱动解锁机构对电池托架进行解锁,使得被解锁电池包能够顺利、准确地从电池托架上被取出,以保证电池包取出过程中的准确性、稳定性和效率。
如图2所示,在步骤S01中可具体包含以下这些步骤:
S011、获取待换电车辆的电池托架上至少两个位置的第一图像和第二图像;
S012、根据第一图像和第二图像获取角度旋转量;
S013、根据角度旋转量控制换电设备进行角度调整,直至换电设备与电池托架达到预设角度;
S014、在换电设备与电池托架达到预设角度时,获取电池托架上至少两个位置的第三图像和第四图像;
S015、根据第三图像和第四图像获取水平位移量和垂直位移量;
S016、根据水平位移量控制换电设备进行水平调整,和/或,根据垂直位移量控制换电设备进行垂直调整,直至换电设备与电池托架达到预设相对位置。
在本实施例中,并不对电池托架上的至少两个位置进行具体限定,上述位置均可根据实际需求进行相应的调整及选择。
进一步地,在本实施例中,换电设备先根据和电池托架的当前相对位置进行角度调整,并在角度调整到位后,再根据和电池托架的当前相对位置进行水平方向、垂直方向 上的调整,以使得换电设备与电池托架定位。由于换电设备角度调整到位之后,也即,换电设备与电池托架平行之后,不会因为换电设备在水平方向或者垂直方向上的位移而导致换电设备与电池托架之间相对角度的变化,从而简化了换电设备的位置调整流程,提高了换电设备的定位效率。
本实施例的定位方法能够自动且准确地获取换电车辆的电池托架的准确位置,以使得换电设备能够精确地与换电车辆的电池托架定位以进行电池包的拆装,从而极大地提升了换电准确率和换电效率。
如图3所示,在步骤S01实现换电设备和电池托架之间位置的对准之后,在步骤S02中可以具体实施以下步骤:
S021、获取第三图像中电池托架对应位置的第三景深值,或者获取第四图像中电池托架对应位置的第四景深值;
S022、根据第三景深值或者第四景深值控制换电设备的双伸出机构伸出。
在本方案中,换电设备在定位完成之后,可以根据获取到的图像自动且准确地控制双伸出机构的伸出距离,有利于提高换电设备的换电准确率和换电效率。
具体的,在换电设备与电池托架平行的情况下,第三图像中电池托架对应位置的第三景深值与第四图像中电池托架对应位置的第四景深值相等,换电设备的双伸出机构的伸出距离可以根据第三景深值或者第四景深值确定。
之后,在步骤S022之后,换电设备的双伸出机构伸出并靠近电池托架,此时,可以继续执行步骤S02中的后续步骤:
S023、控制换电设备的推盘盒朝向电池包移动;
S024、判断推盘盒是否与电池包接触完成。其中,若判断推盘盒与电池包是否接触完成的结果为是,则控制推盘盒停止移动并连接电池包。
也就是说,在通过推盘盒去拿取电池包的方案中,在双伸出机构靠近电池托架之后,可控制推盘盒靠近并接触电池包,并基于推盘盒与电池包是否接触作为依据控制推盘盒停止移动,使推盘盒用于连接电池包的部分能够准确且可靠地接触电池包,以提高推盘盒与电池包连接的准确性及可靠性,以便于后续步骤的实施。
具体的,在控制推盘盒朝向电池包移动的过程中,可在推盘盒移动至与电池包为预设距离时,控制推盘盒减速移动。其中,上述的预设距离应当小于推盘盒移动并接触电池包的距离,使得推盘盒在与电池包接触之前能够减速,使推盘盒保持一个相对较慢的速度与电池包进行接触,同时,在推盘盒不与电池包接触之前,能够以一个相对较快的速度移动,以保证取换电过程中的整体效率。
优选地,在步骤S024,判断推盘盒是否与电池包接触完成的步骤中,具体包括:
获取推盘盒与电池包初步接触触发的初步接触信号以及推盘盒与电池包进一步接触触发的贴合信号,当初步接触信号和贴合信号都被获取到时,判断推盘盒与电池包接触完成。
也就是说,在本方法中,必须在接受到初步接触信号和贴合信号这两个信号之后,才认为推盘盒已经与电池包接触完成,并驱动推盘盒停止移动,从而避免了因单一信号的误触发而导致推盘盒在未接触到电池包时就停止移动,造成推盘盒不能可靠地与电池包相连接,可提高换电设备的换电可靠性。反过来说,倘若在推盘盒移动过程中,只触发了初步接触信号和贴合信号的其中一个,而另一个信号迟迟没有被触发,则可基本认定设备存在故障,从而应对应执行检查设备是否正常运行的工序。其中,本方法中的初步接触信号和贴合信号,指的是推盘盒的不同位置处的触发信号,这些信号可通过在推盘盒的不同位置处设置传感器等方式来实现,具体的实施方式属于现有技术,因此在此不再赘述。
优选地,在步骤S02和步骤S03之间,即推盘盒接触并连接电池包之后,还可包括以下这些步骤:
S025、判断推盘盒相对电池包是否连接到位,若是,则执行控制换电设备的解锁机构进行解锁的步骤,即执行步骤S03。
通过增加这一检测步骤,使得在换电设备的解锁机构在执行解锁的步骤之前,先确定推盘盒相对电池包是否连接到位,以保证该电池包取出控制方法之中的各步骤都能够被准确执行。
另外,如图4所示,在步骤S03控制换电设备的解锁机构进行解锁的步骤中还包括以下这些步骤:
S031、控制解锁机构朝电池托架的解锁件移动至配合到位;
S032、控制解锁机构驱动解锁件进行解锁。
该电池包取出控制方法,在通过换电设备取出电池包的过程中,利用设置在换电设备上的解锁机构对位于电池托架上的电池包进行解锁,以通过这种解锁方式提高解锁的精确度,从而可提高换电效率;同时,有效避免了发生误操作,大大提高了安全稳定性。其中,解锁机构的结构存在于现有技术中,因此在此不再赘述。
另外,如图5所示,在步骤S04控制换电设备取出被解锁的电池包的步骤中具体可包括以下步骤:
S041、控制推盘盒退回,以带动电池包同步移动并从电池托架上取出。
通过上述的方案,在解锁机构对位于电池托架上的电池包进行解锁后,利用已经连接于电池包的推盘盒将解锁后的电池包取出,以通过定位提高了取出电池包过程中的解锁准确性和解锁效率,而且通过推盘盒以平移方式取出电池包,保证电池取出的稳定性,避免对电池包造成损伤,提高换电安全性。
优选地,在步骤S041中的推盘盒退回过程中,可调整该换电设备的高度,以至与电池托架的高度相匹配。
具体来说,实施该步骤的目的是为了在电池包从电池托架上移出的过程中,换电设备的高度能够保持与电池托架相匹配,以避免电池包在移出过程中相对换电设备或电池托架卡住。其中,电池托架相对换电设备在推盘盒退回过程中产生高度偏差的原因是在于电池托架是设置在具有悬挂的车辆上的,当电池包相对电池托架移出时,相当车辆整体重量逐渐变轻,此时,车辆在悬挂作用下,其高度会上升,从而导致电池托架相对换电设备出现高度偏差。上述的方案就是为了解决该情况而设置的,即,将换电设备的高度相应地上移,从而与电池托架的高度相匹配,这样,可以避免因为电池包与电池托架之间形成过大的夹角而卡住,从而保证电池包顺利取出。
具体的,上述对换电设备的高度的调整可以是在推盘盒退回过程中实时进行的,也可以是在推盘盒退回特定距离之后进行的单次调整,以用于弥补电池托架因失去电池包的部分重量而导致其高度的上升。
此外,在步骤S041,控制推盘盒退回,以带动电池包同步移动并从电池托架上取出的步骤后,还包括以下步骤:S042、判断推盘盒是否退回到位,若是,则控制换电设备的双伸出机构退回。
通过设置该步骤,使得在确认了推盘盒退回到位之后,再驱动换电设备的双伸出机构退回,以提高换电设备的换电可靠性。
如图6所示,本发明还提供一种电池包安装控制方法,其用于控制换电设备将电池包安装在电池托架上,以实现电池包与电池托架之间的锁定,该电池包安装控制方法包括以下这些步骤:
S11、调整换电设备的位置直至换电设备相对电池托架达到预设相对位置;
S12、控制换电设备将电池包移动至电池托架上;
S13、控制换电设备的解锁机构进行锁止。
该电池安装控制方法中通过在使换电设备与电池托架对准之后,换电设备先将电池包推至电池托架,再驱动解锁机构对电池托架进行锁止,使得被电池包能够顺利、准确地安装至电池托架上,以保证电池包安装过程中的准确性、稳定性和效率。
如图7所示,在步骤S11中可具体包含以下这些步骤:
S111、获取待换电车辆的电池托架上至少两个位置的第一图像和第二图像;
S112、根据第一图像和第二图像获取角度旋转量;
S113、根据角度旋转量控制换电设备进行角度调整,直至换电设备与电池托架达到预设角度;
S114、在换电设备与电池托架达到预设角度时,获取电池托架上至少两个位置的第三图像和第四图像;
S115、根据第三图像和第四图像获取水平位移量和垂直位移量;
S116、根据水平位移量控制换电设备进行水平调整,和/或,根据垂直位移量控制换电设备进行垂直调整,直至换电设备与电池托架达到预设相对位置。
上述步骤的实施与电池包取出控制方法中的S011~S016一致。因此,在安装电池包的过程中,换电设备同样先根据和电池托架的当前相对位置进行角度调整,并在角度调整到位后,再根据和电池托架的当前相对位置进行水平方向、垂直方向上的调整,以使得换电设备与电池托架定位。由于换电设备角度调整到位之后,也即,换电设备与电池托架平行之后,不会因为换电设备在水平方向或者垂直方向上的位移而导致换电设备与电池托架之间相对角度的变化,从而简化了换电设备的位置调整流程,提高了换电设备的定位效率。
如图8所示,在步骤S11实现换电设备和电池托架之间位置的对准之后,在步骤S12中可以具体实施以下步骤:
S121、获取第三图像中电池托架对应位置的第三景深值或者获取第四图像中电池托架对应位置的第四景深值;
S122、根据第三景深值或者第四景深值控制换电设备的双伸出机构伸出。
在本方案中,换电设备在定位完成之后,可以根据获取到的图像自动且准确地控制双伸出机构的伸出距离,有利于提高换电设备的换电准确率和换电效率。
具体的,在换电设备与电池托架平行的情况下,第三图像中电池托架对应位置的第三景深值与第四图像中电池托架对应位置的第四景深值相等,换电设备的双伸出机构的伸出距离可以根据第三景深值或者第四景深值确定。
在此基础上,当步骤S122被执行,使得双伸出机构能够准确伸出到位后,还可继续执行以下:控制换电设备的推盘盒将电池包推送至电池托架上。其中,该步骤可进一步被细分为实施以下这些步骤:
S123、控制推盘盒推动电池包朝电池托架的方向移动;
S124、判断推盘盒是否将电池包推送到位;
倘若步骤S123中的判断结果为是,则控制推盘盒停止移动。
也就是说,该方法将电池包是否推送到位作为依据来控制推盘盒继续移动或停止,使得推盘盒能够在电池包推送到位之后才停止,进而保证电池包位于准确的位置,以进一步提高本方法的可靠性。
其中,判断电池包是否推送到位的方法,可以在换电设备或电池托架上设置传感器。例如,在电池托架的端板内侧设置接触传感器,接触传感器能够在与电池包进行接触时被触发,以发出停止信号来控制推盘盒停止移动。其具体的实施方案,由于属于现有技术的范畴,因此在此不再赘述。
其中,在步骤S123中,在推盘盒推动电池包移动的过程中,也可以如同上述电池包取出控制方法中在步骤S041中所实施的那样,在推盘盒的移动过程中,调整该换电设备的高度,以至与电池托架的高度相匹配,以避免电池托架因电池包移入的关系,导致整体重量上升,使得车辆在悬挂作用下,其高度下降,从而导致电池托架相对换电设备出现高度偏差的问题。
另外,在步骤S124中,获取推盘盒与电池包初步接触触发的初步接触信号以及推盘盒与电池包进一步接触触发的贴合信号作为判断依据。当初步接触信号和贴合信号都被获取到时,可判断推盘盒将电池包推送到位。
该方法有效避免了推盘盒在未将电池包准确地送入电池托架内就停止推送而影响后续的锁止操作的情况提高换电设备的换电可靠性。
如图9所示,在步骤S13中,具体可包括以下这些步骤:
S131、控制解锁机构朝电池托架的解锁件移动至配合到位;
S132、控制解锁机构驱动解锁件进行锁止。
该电池包安装控制方法,在将电池包安装至电池托架的过程中,利用设置在换电设备上的解锁机构对位于电池托架上的电池包进行锁止,以通过这种锁止方式提高锁止的精确度,从而可提高换电效率;同时,有效避免了发生误操作,大大提高了安全稳定性。
上述的电池包锁止的具体实施方案,与电池包取出控制方法中的步骤S031和步骤S032的流程是大致相同,不同之处在于,在电池包安装控制方法中,解锁机构是用于驱动解锁件进行锁止,倘若解锁机构是通过沿某一方向移动的方式驱动解锁件进行解锁的话,在本方法中,解锁机构就是通过沿相反方向移动的方式驱动解锁件实现锁止目的。
其中,在步骤S132被实施之后,还可以对电池包是否锁紧在电池托架上进行判断。倘若发现锁止失败了,可重复上述的电池包安装步骤,通过换电设备将电池包再次安装 在电池托架上,以从根本上杜绝锁止失败的情况发生,保证电池包牢固的、可靠的安装在电池托架上。
具体的,在判断电池包是否锁紧在电池托架上的步骤中,具体可包括以下这些步骤:
S133、控制换电设备的推盘盒对电池包的吸附力达到至预设值;
S134、控制推盘盒朝退回预设距离以判断电池包的锁止状态。
该方法利用推盘盒对电池包能够产生吸附的功能,在电池包锁紧在电池托架后,通过吸附于电池包的推盘盒向外移动的方式,检测电池包是否会跟着推盘盒再次从电池托架上被移出,从而实现了判断电池包的锁止状态的目的。该方案利用现有的结构实现,简单可靠。
具体的,在判断电池包是否锁止时,倘若电池包跟着推盘盒被移出了,则电池包未锁止成功;倘若电池包没有跟着推盘盒被移出,而是在电池托架的锁紧力作用下相对推盘盒分离了,则电池包已锁止成功。
进一步,判断电池包的锁止状态,且判断结果为电池包锁止成功之后,还可包括以下步骤:
S135、控制推盘盒退回;
S136、控制换电设备的双伸出机构退回。
从而在保证电池包成功锁止之后,再驱动换电设备的推盘盒和双伸出机构退回至初始位置。
而倘若在判断电池包的锁止状态,且判断结果为电池包锁止失败之后,可重复上述的步骤S12和S13,以利用换电设备的推盘盒再次将电池包锁紧在电池托架上。当多次实施上述操作,判断结果均为电池包锁止失败,以可以使换电设备发出错误信号,以方便维护人员介入该换电流程中。
实施例2
如图10-图12所示,本发明还提供一种换电设备,其用于与电池托架(图中未示出)进行对接以取放电池包100(参见图18),该换电设备具体包括设备框架1、电池托盘803和位置调整机构,电池托盘803用于放置执行换电操作所需的电池包,并能够相对电池托盘803沿电池托盘803的前后方向进行移动(参见图10,本实施例中电池托盘803的前后方向为Y向),以实现从电池托架上沿Y向取出或放置电池包的目的。而位置调整机构包括旋转机构、水平移动机构以及垂直移动机构,用于调整电池托盘803相对电池托架的位置和角度。
其中,本实施例中的方向可参考图1所示的X向、Y向和Z向。其中,X向是指与 电动车辆的行驶方向相平行的方向;Y向是指电池托盘朝向电动车辆的车身的方向,通过Y向的调整使电池托盘与电动车辆的电池托架达到相对应的状态;Z向是指电池托盘的高度方向,换电设备通过Z向调整使电池托盘的高度与电动车辆上电池托架的高度相齐平。
旋转机构用于根据获得的角度旋转量对电池托盘803的角度进行调整,直至电池托盘803上的各部件达到预设角度,水平移动机构用于根据获得的水平位移量进行水平调整,垂直移动机构用于根据获得的垂直位移量进行垂直调整,直至电池托盘803上的各部件相对电池托架达到预设相对位置。具体为,达到使电池托盘803上的解锁机构与电池托架上的解锁件相对准的位置。
其中,旋转机构具体包括转盘811和旋转驱动器812,转盘811套在电池托盘803的底部,旋转驱动器812连接于转盘811并用于根据角度旋转量驱动转盘811带动电池托盘803实现旋转。
当待换电车辆停放在停车位上准备换电时,如果待换电车辆的停车状态与准确的换电位置存在角度上的偏差,则电池推盘的双伸出机构3将难以对准电池托架。本实施例的换电设备在获取待换电车辆的停车状态与准确的换电位置的角度偏差后,通过旋转机构进行旋转的方式调整电池托盘803的姿态,从而使得电池托盘803的姿态与待换电车辆的停车状态相匹配,以便电池托盘803上的各部件与电池托架相对准,从而实现高效准确的换电操作。
水平移动机构具体包括轨道、导轮和水平驱动器,水平驱动器用于根据水平位移量驱动导轮沿轨道移动。如图11所示,轨道包括天轨701和地轨702,导轮包括天轨导轮703和地轨导轮704。天轨导轮703与天轨701对应设置,地轨导轮704与地轨702对应设置。水平驱动器分别驱动天轨导轮703沿天轨701在X轴方向(即水平方向)上移动,驱动地轨导轮704沿地轨702移动,从而实现换电设备整体的水平移动。从图10中可以看出,X轴、Y轴、Z轴两两垂直。图10中示出了电池托盘803的框架,未示出具体结构,换电执行机构的具体结构是本领域技术人员能够实现的,此处不再赘述。
当待换电车辆停放在停车位上准备换电时,如果待换电车辆的停车状态与准确的换电位置在水平方向上存在偏差,换电设备可根据获得的水平位移量移动电池托盘803,可以使得电池托盘803在水平方向上与待换电车辆的电池托架的位置相匹配,具有较高的精度,为准确取放电池包提供了保障。在本实施例中,通过水平驱动器可以根据水平位移量自动驱动电池托盘803在水平方向的移动,通过轨道和导轨的配合可以提高电池托盘803在水平方向运动的效率及稳定性。
垂直移动机构具体包括第一垂直驱动器61、第二垂直驱动器62、第一升降机构、第二升降机构和电池托盘803,第一垂直驱动器连接于第一升降机构,第二垂直驱动器连接于第二升降机构,第一升降机构、第二升降机构分别连接于电池托盘803的两端以带动电池托盘803的两端升降移动;第一垂直驱动器用于根据换电设备检测获得的第一垂直位移量驱动第一升降机构,第二垂直驱动器用于根据获得的第二垂直位移量驱动第二升降机构。
具体地,第一升降机构包括第一链条706和对应设置的第一链轮611,第一链条706在第一垂直驱动器61的驱动下带动第一链轮611沿Z轴方向(即垂直方向移动,以带动电池托盘803沿垂直方向移动。第二升降机构包括第二链条621和对应设置的第二链轮622,第二链条621在第二垂直驱动器62的驱动下带动第二链轮622沿垂直方向移动,以带动电池托盘803沿垂直方向移动。
当待换电车辆停放在停车位上准备换电时,如果待换电车辆的停车状态与准确的换电位置在垂直方向上存在偏差,则根据获得的垂直位移量移动电池托盘803,可以使得电池托盘803在垂直方向上与待换电车辆的电池托架的位置相匹配,具有较高的精度,为准确解锁提供了保障。
其中,调整位置调整机构所需的角度旋转量、水平位移量和垂直位移量可通过设置在换电设备的电池托盘803上的图像采集模块41采集位于电池托架上的至少两个位置的第一图像和第二图像的方式来实现,具体实施方案在实施例1中已经说明,因此在此不再赘述。
如图13-图15所示,电池托盘803上设置有双伸出机构3、解锁机构21和推盘盒22。其中,推盘盒22通过相对电池托盘803沿Y向进行移动,以实现取放电池包的功能,推盘盒22包括推盘盒本体22a以及连接部23,该连接部23设置在推盘盒本体22a朝向电池托架一侧的表面上,该连接部23在与电池包接触时能够连接电池包,以实现将电池包从电池托架上取出的功能。而解锁机构21用于与电池托架上的检索件进行对接,以实现控制电池托架上的解锁机构21的解锁/锁止状态的目的。
而双伸出机构3用于驱动电池托盘803接近电池托架,双伸出机构3的启动时机可以被安排在换电设备相对电池托架达到预设相对位置之后,以使得双伸出机构3能够准确地带动电池托盘803靠近电池托架。
在电池托盘803在双伸出机构3的驱动下而靠近电池托盘803之后,倘若要将电池包从电池托架上解锁并取出,可以分别执行两个工序:其中一个是控制推盘盒22朝向电池包的方向移动,并判断该推盘盒22是否与电池包接触完成;另一个是控制解锁机构21 对电池托架进行解锁或锁止。
本实施例,可以先执行第一个工序,即控制推盘盒22朝向电池包的方向移动,并判断该推盘盒22是否与电池包接触完成。在此提供一种电池托盘803及推盘盒22的较佳实施结构,以用于实现判断推盘盒22是否与电池包接触完成的目的。
推盘盒22可包括检测模块和控制模块,其中,检测模块用于检测推盘盒本体22a与电池包接触状态;控制模块电连接于检测模块,控制模块用于控制推盘盒本体22a的移动状态,当检测模块检测到推盘盒本体22a与电池包接触完成后,控制模块控制推盘盒本体22a执行相应的移动状态。
本实施例中连接部23相对于推盘盒本体22a能够沿着Y向方向进行移动,检测模块通过检测连接部23上的位移,以基于此判断连接部23与电池包之间的接触状态和连接状态。
具体的,如图14和15所示,连接部23包括第一连接件232和第二连接件233,而检测模块对应包括第一检测模块241和第二检测模块242,连接部23中用于实现吸附连接功能的吸附装置231被设置在第一连接件232上,第二连接件233则设置在吸附装置231的吸附面2311上。第一检测模块241用于检测第一连接件232与电池包的第一接触状态,而第二检测模块242用于检测第二连接件233与电池包的第二接触状态。
本实施例中的第一检测模块241和第二检测模块242均为传感器,并在对应的第一连接件232和第二连接件233与电池包接触之后产生信号。具体的,第二检测模块242是设置在吸附装置231的吸附面2311上的,用于在吸附面2311靠近电池包时(即第二接触状态)产生信号。因此,第二检测模块242产生的信号为初步接触信号,该初步接触信号发送至控制模块后,使得控制模块能够获知推盘盒22已经接近电池包。本实施例中,控制模块在获取第二检测模块242的传感器产生的初步接触信号后,并不会对推盘盒22的移动状态进行实质改变。
而第一检测模块241使设置在推盘盒本体22a上的,其用于在设置于第一连接件232上的吸附装置231完全与电池包进行接触之后,基于第一连接件232的移动(即处于第一接触状态)产生信号。因此,第一检测模块241产生的信号为贴合信号,该贴合信号发送至控制模块后,使得控制模块能够获知推盘盒22(的吸附装置231的吸附面2311)已经完全接触电池包,此时,控制模块可控制推盘盒22停止移动,以实现精确的位移控制的目的。
优选地,控制模块可以被设置为:只有在初步接触信号和贴合信号都被获取到时,才判断推盘盒22与电池包接触完成,以进一步实施控制推盘盒22停止移动的操作。这 种控制方案目的是为了避免第一检测模块241和第二检测模块242中的其中一个误触发而导致推盘盒22在未与电池包接触时就停止。另外,进一步优选地,在控制模块获取初步接触信号之后,也可以先控制推盘盒22减速移动,使得推盘盒22能够以一个较低的速度与电池包进行接触。
如图14所示,第一连接件232朝向电池托架的一侧设置有吸附装置231,第一连接件232相对推盘盒本体22a能够沿Y向进行位移,以使得第一检测模块241通过检测第一连接件232的位移状态,以获得上述的发送至控制模块的贴合信号。具体的,该连接部23还包括活动部234,第一连接件232是通过与活动部234相连的方式,以相对推盘盒本体22a能够移动的,活动部234还能够使得第一连接件232在推盘盒本体22a的运动方向可压缩,第一检测模块241的传感器设置在该活动部234的压缩路径上,以用于检测第一连接件232的位移情况,并以此判断是否处于第一接触状态。
其中,活动部234具体包括滑动结构和弹性结构第一连接件232通过活动部234的滑动结构定位在推盘盒本体22a上滑动结构、弹性结构和第一连接件232共同形成相对推盘盒本体22a可活动可压缩的浮动板结构,以使得固定在第一连接件232上的吸附装置231可相对推盘盒本体22a沿Y向进行浮动的目的。
在电池包与吸附装置231接触时,滑动结构导引设有吸附装置231的第一连接件232沿该滑动路径(即Y向)移动,第一检测模块241设在该滑动结构的滑动路径上,并用于检测第一连接件232是否被压缩到预设位置,倘若第一连接件232被压缩到预设位置,则产生贴合信号至控制模块。而弹性结构则通过向第一连接件232施加作用力,使得第一连接件232上的吸附装置231在不与电池包接触时,通过弹性结构带动第一连接件232回复至初始位置(即图17中的第一连接件232所在位置)。
具体的,如图14和15所示,滑动结构包括四根具有末端限位的支撑杆,这些支撑杆的一端连接于推盘盒本体22a,第一连接部23通过其表面的通孔套在支撑杆的另一端上,以实现在支撑杆上进行滑动的目的。而弹性结构包括弹性元件2342,本实施例中为螺旋弹簧,该弹性元件2342的数量与支撑杆一直,弹性元件2342分别套在支撑杆上,弹性元件2342的一端抵住推盘盒本体22a上,弹性元件2342的另一端抵住第一连接部23,以使得第一连接部23相对推盘盒本体22a的靠近动作能够压缩该弹性元件2342。本实施例中,第一检测模块241包括接近传感器,接近传感器通过检测支撑杆的末端的移动状态,实现判断第一接触状态并产生贴合信号的目的。
如图15所示,第二连接件233沿着推盘盒本体22a朝向电池托架的方向设置在第一连接件232上,第二连接件233通过相对第一连接件232进行位移的方式,使得第二 检测模块242在第二连接件233产生位移时能够检出初步接触信号。
第二连接件233包括检测杆2331,检测杆2331在初始位置时穿过吸附装置231并凸出于吸附装置231的吸附面2311设置,(即图17中的检测杆2331所在位置),检测杆2331沿Y向能够相对吸附装置231进行活动,而第二检测模块242设置在检测杆2331的活动路径上,以基于检测杆2331的活动情况产生对应信号。
具体的,在推盘盒22靠近电池包的过程中,检测杆2331的末端会先与电池包接触,进而被压缩,以产生初步接触信号。之后,当电池包与吸附装置231的吸附面2311接触后,能够进一步压缩吸附装置231和第一连接件232,以产生贴合信号。
另外,第二检测模块242同样包括接近传感器,第二检测模块242的接近传感器通过检测检测杆2331的末端的移动状态,实现判断第二接触状态并产生初步接触信号的目的。本实施例中,检测杆2331的长度较长,其末端穿过第一连接件232和推盘盒本体22a上用于第一连接件232的部分,第二检测模块242的接近传感器的优选设置位置如图15所示,其用于检测检测杆2331的末端位移情况,在检测杆2331上还设置有复位弹簧2332,以用于在检测杆2331不与电池包接触时带动检测杆2331回复至初始位置。
如图19所示,其为推盘盒本体22a沿图中箭头方向朝着电池包100移动并靠近时,电池托盘与电池包的位置关系示意图。从图中可以看出,检测杆2331的末端是凸出于吸附面2311设置的,以用于在检测杆2331与电池包接触时,检测杆2331朝第二检测模块242的方向移动,第二检测模块242设置在检测杆2331的另一侧端部2331a处。
如图20所示,在推盘盒本体22a沿箭头方向朝电池包100方向移动时,检测杆2331与电池包100接触并被压缩,使得第二检测模块242能够检测出检测杆2331的端部2331a位移,从而产生初步接触信号。
之后,如图21所示,在推盘盒本体22a继续沿箭头方向朝电池包100方向移动的过程中,由于电池包100完全固定在电池托架上,因此推盘盒本体22a对电池包100的推力变为压缩支撑杆2341上的弹性元件2342的反作用力,以使得第一连接件232和吸附装置231朝后移动,并使固定在第一连接件232两侧的待检测端232a朝靠近第一检测模块241的方向移动,使得第一检测模块241能够检测出待检测端232a的位移后产生贴合信号。从图21中可以看出,在产生贴合信号时,电池包100必然已经和吸附装置231相贴合。
在位于推盘盒22上的吸附装置231与电池包100完全接触后,吸附装置231通电以吸附电池包100上的铁块。此时,可先执行吸附装置231通电的程序并在延迟至少1 秒之后,在确保吸附装置231已经完全吸住电池包100之后,再执行后续的控制解锁设备解锁电池包的工序,保证电池包可靠安全的连接在推盘盒22上。
其中,解锁机构21的具体结构与原理由于属于现有技术范畴,因此在此不再赘述。
之后,控制推盘盒22往回移动,如图18所示,以通过推盘盒22电池包100移至电池托盘803上。在将电池包100移回电池托盘803期间,可通过设置在电池托盘803上的图像采集模块采集位于电池托架上的至少两个位置的第一图像和第二图像,并以此为依据产生垂直调整量,以通过垂直移动机构实现在电池包移出过程中调整换电设备的高度至与电池托架的高度相匹配的目的。当然,在执行电池包安装方法过程中,在推盘盒22将电池包推入电池托架时,以可通过获取垂直调整量的方式对电池托盘803和电池托架之间的高度位置进行实时调节,以避免电池包在移入或移出的平移过程中出现卡住的情况。
另外,在电池包被完全取回之后,推盘盒22停止移动。此时,双伸出机构3能够缩回,在双伸出机构3缩回之后,在电池托盘803的前端还可设有垂直设置的缩回检测传感器235,以用于检测双伸出机构3是否完全缩回。具体的,在双伸出机构3完全缩回之后,在缩回检测传感器235的检测范围内应该无法检测到任何物体,若是,则判断缩回成功,并且可执行后续步骤。
该换电设备在执行电池包安装过程时,各部件的工作原理与电池包取出过程大致相同,在此不再重复赘述。
不过,上述用于产生贴合信号和初步接触信号的检测模块在电池包安装过程还可具备并执行与电池包取出过程中不同的功能,在此举例如下:
在电池包安装过程中,推盘盒22需要推动电池包移动,以将电池包推至电池托架。其中,可利用第一检测模块241产生的贴合信号作为判断电池包已经被推送至电池托架的依据。具体来说,弹性元件可以设置得较硬,使得通过吸附装置231推动电池包移动的过程中,电池包滑动产生的阻力无法使得弹性元件被压缩,从而使第一检测模块241产生的贴合信号。而当推盘盒22将电池包推至电池托架并到位时,电池包无法移动,此时,作用在弹性元件上的作用力增大,使得第一连接件232被压缩从而产生贴合信号,控制模块基于上述的贴合信号控制推盘盒22停止移动,使推盘盒22具备在电池包安装过程中能够将电池包推送到位并准确停止的优点。
另外,在电池包安装过程中,在解锁机构21将电池包锁止在电池托架上之后,可利用第二检测模块242产生的初步接触信号作为判断电池包是否已经锁定在电池托架上的 依据。
首先,改变吸附装置231对电池包的吸力,例如,吸附装置231供电电压为24V,此时产生的吸力为80kg,此时,将吸附装置231供电电压下降为5V,将吸附力也对应下降至10kg。此时,虽然吸附装置231与电池包保持吸附连接,但吸附连接的牢固程度相对较低。
之后,控制推盘盒22退回一定的距离,并检测初步接触信号有没有发出,并以此为依据判断电池包是锁止成功还是锁止失败。
具体的,倘若检测到第二连接件233的初步接触信号,说明吸附装置231的吸附面2311上还存在物体,此时,基于接收到的初步接触信号即可认为:电池包还被吸附在吸附装置231上,因此电池托架的锁止机构并未成功锁止。此时,可继续控制电池托盘803上的解锁机构21和推盘盒22执行电池包安装工序。
而倘若未检测到初步接触信号,说明吸附装置231的吸附面2311不存在物体,即可认为:电池包没有被吸附在吸附装置231上,电池托架的锁止机构成功锁止,导致电池包和吸附装置231在10kg的吸附力下相互脱离。此时,可控制推盘盒22继续退回,之后,再控制换电设备的双伸出机构3退回。
其中,将吸附力下降至10kg仅为本实施例中一种较为优选的吸附参数,使用其他吸附力连接电池包也同样能够实现上述目的。进一步的,虽然本实施例中的推盘盒22是利用吸附的方式连接电池包,但是在其他实施方式中,连接部23也可通过其他连接方式与电池包相连,并且在基于推盘盒22退回一定的距离的情况下检测连接部23与电池包的连接状况,以同样实现检测并判断电池包是锁止成功还是锁止失败的目的。
另外,在控制推盘盒22退回一定的距离的步骤中,所谓的距离应当大于检测杆2331移动的行程。本实施例中,在此基础上,还应大于支撑杆移动的行程,以使得第一连接件232和第二连接件233均处于各自的初始位置(参见图17),避免第一连接件232和第二连接件233未移动到位,还处于压缩状态,从而导致虽然电池包已脱离吸附面2311,但第一检测模块241和第二检测模块242仍旧能够产生相应的信号。
另外,如图13和图16所示,本实施例的推盘盒22中,检测模块还能够用于检测推盘盒22是否位于电池托盘803的预设区域上,当检测模块检测到电池托盘803位于预设区域上,检测模块可通过向与之电连接的控制模块发送信号,以使控制模块改变推盘盒22的移动状态。其中,所谓的移动状态包括加速、减速、停止等等。
具体的,本实施例中,如图23所示,检测模块包括一对相配合的第一检测件243和第二检测件244,其中,第一检测件243设置在电池托盘803上,第二检测件244设 置在推盘盒22上。具体的,第一检测件243为感应块或感应带,通过设置在电池托盘803朝向推盘盒本体22a一侧的表面上,以在电池托盘803的表面形成所谓的预设区域。
具体的,如图23所示,本实施例中的第二检测件244为接近传感器,其末端的检测端244a朝向电池托盘803表面设置,以用于检测由第一检测件243形成的预设区域,并基于第二检测件244是否发出感应信号,判断推盘盒22是否位于预设区域。当第二检测件244的检测端244a靠近第一检测件243时,第二检测件244能够产生对应信号,以使得控制模块改变推盘盒22的移动状态,实现精确控制的目的。
具体的,本实施例中的预设区域包括减速区域、复位区域和极限区域。其中,这些区域分别由不同的第一检测件243来形成,也分别由不同的第二检测件244来实施检测。
如图16所示,用于形成减速区域的第一检测件243为减速检测件243a,其设置在电池托盘803且朝向推盘盒22的一侧,并接近电池托架设置。具体的,从图16中可以看出,减速检测件243a的具体形态为长条形的,并沿着推盘盒22朝向电池托架的移动方向延伸,当设置在推盘盒本体22a上的第二检测件244检测到该减速区域后,控制模块用于驱动推盘盒22减速移动。该减速区域的设置位置应当与推盘盒22移动并接触电池包的距离相匹配。具体的,该减速区域的设置位置应当被设置为:推盘盒22朝向位于电池托架的电池包移动时,推盘盒22先移入减速区域,以在第二检测件244发出信号之后执行推盘盒22减速,再通过第一连接件232和第二连接件233的位移产生贴合信号和初步接触信号,以使得推盘盒22停止移动。
如图22和图23所示,用于形成复位区域的第一检测件243为复位检测件243b,复位检测件243b安装在电池托盘803中推盘盒22的移动方向的两端之间的位置,并远离电池托架设置。具体的,复位检测件243b为矩形,当设置在推盘盒本体22a上的第二检测件244检测到该复位区域后,控制模块用于驱动推盘盒22停止移动,以实现推盘盒22在复位过程中能够停止在相对精确的位置,以提高换电设备的重复性和可靠性。
如图16所示,用于形成极限区域的第一检测件243为极限检测件243c,该极限检测件243c有两个,分别被安装在电池托盘803中推盘盒22的移动方向的两端之间的位置,并且相对减速检测件243a和复位检测件243b设置在电池托盘803的外侧。该极限区域的设置目的是为了指示出推盘盒22的移动界限,因此,两个极限检测件243c的设置位置为推盘盒22在正常移动时并不会进入的区域,也就是说,在第二检测件244检测到推盘盒22进入极限区域时,说明换电设备的运行存在问题,此时应当使推盘盒22 停止移动。优选地,还可以停止整个换电设备的运行,并发出错误警报,以使维护工程师介入并解决问题。
本实施例中,第二检测件244为四个接近传感器,以分别用于检测减速检测件243a、复位检测件243b和两个极限检测件243c,使得第二检测件244与第一检测件243一一配对设置,避免传感器重复利用而带来的可靠性风险,这四个接近传感器分别被设置的推盘盒本体22a的四个角位置处,以分别对应四个第一检测件243(分别用于形成包括减速区域、复位区域和两个极限区域)。
需要具体说明的是,本实施例中,在第二检测件244检测到推盘盒22位于预设区域时,并非一定要控制控制模块改变推盘盒22的移动状态,而还应当与推盘盒22相对电池托盘803产生的预设动作的移动方向进行结合,以统一进行判断。
例如,当推盘盒22相对电池托盘803产生的预设动作为推盘盒22相对电池托盘803伸出时,倘若第二检测件244检测到位于减速区域时,应当控制推盘盒22减速;而当第二检测件244检测到位于复位区域时,则不应当控制推盘盒22停止,因为此时推盘盒22可能刚好从复位区域启动并开始朝减速区域的方向移动。
与至相反的,当推盘盒22相对电池托盘803产生的预设动作为推盘盒22由伸出状态缩回时,倘若第二检测件244检测到位于复位区域时,应当控制推盘盒22停止;而当第二检测件244检测到位于减速区域时,则不应当控制推盘盒22减速,因为此时推盘盒22可能刚好从减速区域启动并开始朝复位区域的方向移动。
而第二检测件244检测到推盘盒22位于极限区域的信号优先级应当被设置为最高,当第二检测件244检测到推盘盒22位于极限区域,应当立刻停止整个换电设备的运行,以避免引发安全事故。
如图16和图24所示,本实施例中的推盘盒22还包括两个平衡部25,连接部23沿推盘盒本体22a的横向方向(即图16中的X向)的两侧分别设置有一个平衡部25,该平衡部25可以在推送或拉取电池包的过程中对电池包的移动状态进行平衡,使得电池包在推盘盒22上的吸附装置231的推动下,能够通过平衡部25对电池包的支撑,使电池包保持相对准确的移动姿态。其中,将两个平衡部25分别设置在连接部23的两侧的等间距的位置,可使得平衡部25对电池包100的两端的纠偏角度相同,无论电池包100朝哪一个方向偏移都能够得到及时纠正。
其中,所谓电池包的移动姿态,是指电池包在电池托盘803和电池托架之间移动时的位置姿态,即电池包在电池托盘803和电池托架之间移动时的倾斜情况(参见图18,此时,电池包100的位置姿态较好),当电池包的移动姿态较差时,电池包容易和电池 托盘803的侧导轮4或电池托架的侧导轮发生干涉,导致电池包在电池托盘803或电池托架上卡死。
本实施例中的连接部23设置在推盘盒本体22a沿X向的中间位置处,两个平衡部25分别设置在连接部23两侧等间距的位置上,以使得两个平衡块能够相对平衡地对电池包实现支撑。
具体的,连接部23朝向电池包的连接面的一侧(即吸附面2311)与平衡部25朝向电池包的平衡面并不在同一平面上。在此基础上,如图25所示,基于推盘盒本体22a向电池托架的移动方向(即Y向),该连接部23凸出于推盘盒本体22a为第一宽度D 1,平衡部25凸出于推盘盒本体22a为第二宽度D 2,第一宽度D 1大于等于第二宽度D 2。即:平衡面相对吸附面2311更加远离电池包设置,连接部23相对于平衡部25朝向电池包100一侧凸出,使得推盘盒22在与移动姿态较为正常的电池包接触时,连接部23的吸附面2311能够先与电池包进行接触,而只有当电池包100的位置姿态较差(或产生错位)的情况下,电池包100的表面才可能会与平衡部25接触,从而使电池包100移动状态被平衡部25在此调整至平衡。
本实施例中的平衡部25包括抵推块251,抵推块251呈立方体形状,朝向电池包一侧的矩形表面用于与电池包进行接触,以纠正电池包的移动姿态。该抵推块251通过转接结构252被安装在推盘盒本体22a朝向电池托架的侧面上,该抵推块251用于与电池包进行接触,通过将上述的抵推块251安装在推盘盒本体22a上,使得平衡部25支撑电池包所受到的反作用力能够直接被施加在推盘盒22本体上。优选地,该抵推块251由具有弹性的聚氨酯材料制成,以使得抵推块251同时具备弹性和支撑性,其中,抵推块251具备弹性的目的是使得抵推块251在连接部23(的吸附装置231)被压缩时,抵推块251能够通过自身的压缩而缓解一定的距离偏差,避免抵推块251为刚性而导致电池包无法推动第一连接件232和第二连接件233压缩以使检测模块触发贴合信号和初步接触信号。
优选的,两个平衡部25的中心与连接部23的中心不在同一直线上。本实施例中,如图25所示,两个平衡部25的中心与连接部23的中心在高度方向(即Z向)上不在同一直线L上,即:两个平衡部25与连接部23的设置高度存在偏差。这种结构设置可使得平衡部25与电池包的接触面以及连接部与电池包的接触面不在同一方向上,以加强电池包连接的稳定性,减少电池包移动过程中产生偏移。
需要具体说明的是,本实施例的附图中展示的电池托盘803和推盘盒22的仅用于说明示意具体的结构。另外,如图26所示,为便于展示推盘盒22中的内部结构,除了图26以外的其他附图中,推盘盒22的外罩壳均被隐藏。
实施例3
本实施例提供一种取放电池包的控制方法。电池包具有位于电池仓内或电动汽车内的电池托架上的第一位置以及位于换电设备上的第二位置。参照图27,该取放电池包的控制方法包括以下步骤:
步骤S11、驱动电池包移动以在第一位置与第二位置之间进行位置切换。
步骤S12、在电池包移动过程中,根据电池托架的高度调整换电设备的高度。
在电池包移动过程中,以从电池托架上取出电池包为例,随着电池包的移动,电动汽车的称重减小,电动汽车的重心上移,车身的高度上移,电池托架的高度上升。根据本实施例的取放电池包的控制方法,在电池包移动过程中,根据电池托架的高度调整换电设备的高度,即,将换电设备的高度相应地上移,从而与电池托架的高度相匹配,这样,可以避免因为电池包与电池托架之间形成过大的夹角而卡住,从而保证电池包顺利取出。
同样地,在将电池包装入电池托架的过程中,随着电池包的移动,电动汽车的称重增大,电动汽车的重心下移,车身的高度下移,电池托架的高度下降。根据本实施例的取放电池包的控制方法,在电池包移动过程中,根据电池托架的高度调整换电设备的高度,即,将换电设备的高度相应地下移,从而与电池托架的高度相匹配,这样,可以避免因为电池包与电池托架之间形成过大的夹角而卡住,从而保证电池包顺利装入。
因此,本实施例的取放电池包的控制方法可以有效避免由于电池包取放过程中,电动汽车因车身称重变化导致的自身高度的变化(也即电池托架的高度的变化)而发生的电池包卡住难以取出或装入的问题。
实施例4
在实施例3的基础上,本实施例提供一种取放电池包的控制方法。具体实施时,参照图28,步骤S12包括以下步骤:
步骤S121、获取电池托架的第一局部的第一图像;获取电池托架的第二局部的第二图像。
步骤S122、对第一图像、第二图像进行图像处理以获取垂直位移量。
步骤S123、根据垂直位移量调整换电设备的高度至与电池托架的高度相匹配。
作为一种可选的实施方式,在步骤S121中,参照图29,采用设置于换电设备5上的第一视觉传感器501和第二视觉传感器502实现。第一视觉传感器501用于获取电池托架7的第一局部A的第一图像;第二视觉传感器502用于获取电池托架7的第二局部B的第二图像。
以取出电池包为例,电池包初始时处于电动汽车内的电池托架上的第一位置。首先 移动换电设备与电池托架的位置相对准。此时,采用第一视觉传感器501获取电池托架7的图像作为第一参考图像;第二视觉传感器502获取电池托架7的图像作为第二参考图像。即,第一参考图像为换电设备与电池托架的高度相匹配时包括第一局部的参考图像,第二参考图像为换电设备与电池托架的高度相匹配时包括第二局部的参考图像。
图30给出了第一参考图像G1的一种示意。第一参考图像G1包括电池托架7上的第一局部A。通过分析第一参考图像G1,位置获取单元得到电池托架7上的第一局部A在第一参考图像G1中对应的像素在第一参考图像G1中的位置,作为定位的参考,为了便于说明,称为“目标位置”。位置获取单元得到目标位置的过程可以采用本领域已经公开的算法实现,是本领域技术人员能够实现的,此处不再赘述。
换电设备与电池托架的位置相匹配之后,换电设备的推盘盒伸出并吸附电池包,然后推盘盒缓慢收回以将电池包缓慢拉出。作为一种可选的实施方式,推盘盒上的电磁铁吸附电池包上的对应目标装置。在将电池包取出的整个过程中,吸附连接判断单元判断推盘盒上的电磁铁与电池包上的对应目标装置是否保持吸附状态。如果保持吸附状态,则说明两者吸附良好,能够拉取电池包;如果变为非吸附状态,则说明电池包已脱离,此时吸附连接判断单元发出报警信号。
在电池包移动的过程中,第一视觉传感器501实时获取电池托架7的第一局部A的第一图像;第二视觉传感器502实时获取电池托架7的第二局部B的第二图像。在获取第一图像和第二图像之后,根据第一图像和第一参考图像获取第一垂直位移量,根据第二图像和第二参考图像获取第二垂直位移量。
图31给出了第一图像G11的一种示意。第一图像G11中包括电池托架7上的第一位置A。通过分析第一图像G11,位置获取单元得到电池托架7上的第一位置A在第一图像G11中对应的像素在第一图像G11中的位置,为了便于说明,称为实时位置。位置获取单元得到目标位置的过程可以采用本领域已经公开的算法实现,是本领域技术人员能够实现的,此处不再赘述。
根据图像处理算法,位置获取单元根据目标位置和实时位置得到第一垂直位移量。通过将换电设备移动第一垂直位移量,可以使得换电设备的高度与电池托架的高度一致。位置获取单元得到第一垂直位移量的过程可以采用本领域已经公开的算法实现,是本领域技术人员能够实现的,此处不再赘述。通过移动相应的垂直位移量,可以实现对应的垂直位移,以使得换电设备的高度与电池托架的高度相匹配。这里所说的相匹配是指让换电设备的高度与电池托架的高度达到换电过程中相配合的状态,如高度一致或者仅有微小差距,以防止电池包移动过程中被卡住,达到平稳且顺畅移动效果为目的,并不仅 限于换点过程中高度完全一致等状态。
类似地,位置获取单元根据第二图像和第二参考图像得到第二垂直位移量。
在一种可选的实施方式中,参照图32,换电设备5通过设置在两端的第一升降机构706和第二升降机构(设置于第一升降机构706的对侧,图中因被遮挡而未示出)驱动进行升降移动。换电设备5包括推盘盒802。第一升降机构706根据第一垂直位移量驱动换电设备5升降,第二升降机构根据第二垂直位移量驱动换电设备5升降。基于第一垂直位移量和第二垂直位移量,分别控制第一升降机构和第二升降机构对换电设备进行升降操作,可以提高升降过程的稳定性。
在换电设备5的高度与电池托架的高度重新匹配时,第一视觉传感器501获取电池托架7的图像作为新的第一参考图像;第二视觉传感器502获取电池托架7的图像作为新的第二参考图像,以作为下一步调整的参考。
据此,根据实时获取的图像,可以实时得到相应的垂直调整量,实时调整换电设备的高度,使得换电设备的高度跟随电池托架的高度的变化,从而保证电池包顺利取出。在电池包移动过程中,实时调整换电设备的高度,实现了换电设备的高度与电池托架的高度之间的随动,即同时升高或降低,近乎齐平的高度使电池包一直处于平稳状态,利于电池包的移动。
将电池包移动至电池托架时,换电设备5的推盘盒802吸附电池包,并移动至与电池托架相匹配的预设位置。采用第一视觉传感器501获取电池托架7的图像作为第一参考图像;第二视觉传感器502获取电池托架7的图像作为第二参考图像。
然后,推盘盒802推动电池包同步朝向电池托架伸出,使电池包由第二位置移动至第一位置。在电池包移动的过程中,第一视觉传感器501实时获取电池托架7的第一局部A的第一图像;第二视觉传感器502实时获取电池托架7的第二局部B的第二图像。在获取第一图像和第二图像之后,根据第一图像和第一参考图像获取第一垂直位移量,根据第二图像和第二参考图像获取第二垂直位移量。
然后,根据第一垂直位移量、第二垂直位移量调整换电设备的高度,以使换电设备的高度与电池托架的高度相匹配。
整个移动过程中,重复上述高度调整操作,平稳地将电池包推入电池托架上,使电池包移动至处于电动汽车内的电池托架上的第一位置。
通过视觉图像获取并结合图像处理的方式获得垂直位移量,能获得较高的精度,保证电池包取放过程的顺利进行。
在另一种可选的实施方式中,在获取第一图像和第二图像之后,根据第一图像和第 一参考图像获取第一垂直位移量,或者,根据第二图像和第二参考图像获取第二垂直位移量。然后,根据第一垂直位移量或者第二垂直位移量中的任何一个,调整换电设备的高度,以使换电设备的高度与电池托架的高度相匹配。
在一种可选的实施方式中,换电设备的高度与电池托架的高度相匹配时,两者的高度相同。
在其他可选的实施方式中,换电设备的高度与电池托架的高度相匹配时,两者的高度的差异在一个预设的范围内。两者的高度的差异足够小,因此电池包与电池托架之间的角度足够小,电池包不会因为卡住而影响取放。
在另一种可选的实施方式中,在取出电池包时,电池包初始时处于电池包具有位于电池仓内的第一位置。参照本实施例的取放电池包的控制方法,本领域技术人员能够实现取出和放入电池包,具体过程,此处不再赘述。
实施例5
本实施例提供一种取放电池包的控制方法。本实施例的取放电池包的控制方法与实施例4的取放电池包的控制方法整体相同。区别在于,在本实施例中,不是从电池包开始移动即调整换电设备的高度,而是根据第一位置和第二位置之间的至少一个预设位置,控制调整换电设备的高度。也即,当电池包移动至预设位置时,开始调整换电设备的高度。
在取出电池包的过程中,首先移动换电设备与电池托架的位置相匹配。此时,采用第一视觉传感器501获取电池托架7的图像作为第一参考图像;第二视觉传感器502获取电池托架7的图像作为第二参考图像。
换电设备与电池托架的位置相匹配之后,换电设备的推盘盒伸出并吸附电池包,然后推盘盒缓慢收回以将电池包缓慢拉出。
当电池包移动距离较小时,电动汽车的电池托架的高度变化还非常小,尚不易发生电池包卡住的现象,可以先不进行调整。
当电池包相对于第一位置移动第一预设行程后,第一视觉传感器501获取电池托架7的第一局部A的第一图像;第二视觉传感器502获取电池托架7的第二局部B的第二图像。在获取第一图像和第二图像之后,根据第一图像和第一参考图像获取第一垂直位移量,根据第二图像和第二参考图像获取第二垂直位移量。
然后,根据第一垂直位移量、第二垂直位移量调整换电设备的高度,以使换电设备的高度与电池托架的高度相匹配。
接下来,第一视觉传感器501获取电池托架7的图像作为新的第一参考图像;第二 视觉传感器502获取电池托架7的图像作为新的第二参考图像,以作为下一步调整的参考。
然后,推盘盒将电池包继续向外拉出。当电池包再次移动第一预设行程后,再次对换电设备的高度进行调整,以使换电设备的高度再次与电池托架的高度相匹配。
移动过程中,重复上述高度调整操作,逐步将电池包取出,使电池包到达换电设备上的第二位置。
在放入电池包的过程中,换电设备的推盘盒吸附电池包,并移动至与电池托架相匹配的预设位置。采用第一视觉传感器501获取电池托架7的图像作为第一参考图像;第二视觉传感器502获取电池托架7的图像作为第二参考图像。
然后,推盘盒推动电池包同步朝向电池托架伸出,使电池包由第二位置移动至第一位置。在电池包被推入电池托架的初期,当电池包移动距离较小时,电动汽车的电池托架的高度变化还非常小,尚不易发生电池包卡住的现象,可以先不进行调整。
当电池包相对于第二位置移动第二预设行程后,第一视觉传感器501获取电池托架7的第一局部A的第一图像;第二视觉传感器502获取电池托架7的第二局部B的第二图像。在获取第一图像和第二图像之后,根据第一图像和第一参考图像获取第一垂直位移量,根据第二图像和第二参考图像获取第二垂直位移量。
然后,根据第一垂直位移量、第二垂直位移量调整换电设备的高度,以使换电设备的高度与电池托架的高度相匹配。
接下来,第一视觉传感器501获取电池托架7的图像作为新的第一参考图像;第二视觉传感器502获取电池托架7的图像作为新的第二参考图像,以作为下一步调整的参考。
然后,推盘盒将电池包继续向电池托架内推入。当电池包再次移动第一预设行程后,再次对换电设备的高度进行调整,以使换电设备的高度再次与电池托架的高度相匹配。
整个移动过程中,重复上述高度调整操作,逐步将电池包推入电池托架,到达电动汽车内的电池托架上的第一位置。
在电池包相对于第一位置移动第一预设行程后,或者在电池包相对于第二位置移动第二预设行程后,调整换电设备的高度,可以减少电池包取放过程中对换电设备的高度的调整的次数,以提高电池包取放的效率。
实施例6
在实施例3的基础上,本实施例提供一种取放电池包的控制方法。具体实施时,当电池包移动至预设位置上,基于第一预设高度调整换电设备的高度。
在一种可选的实施方式中,通过对不同型号、重量的电池包在该电池包的取放过程中的移动行程与对应的垂直调整量的实验数据的获取和分析,生成不同型号、重量的电池包与第一预设高度的对应关系。在调整换电设备的高度的过程中,基于上述对应关系,即可根据电池包的型号、重量合理设置第一预设高度,通过一次或多次的调整实现换电设备的高度的调整。基于本实施方式,在电池包取放的过程中,可以不必专门设置检测电池托架高度变化的装置,简化了设备的结构;并且,可以针对不同型号、重量的电池包,进行适应性的设置,便于提高调整的精度,提高本方案对不同场景的适用性。
在另一种可选的实施方式中,通过对相应的电池包在该电池包的取放过程中的移动行程、对应的垂直调整量以及对应的电动汽车的胎压的实验数据的获取和分析,生成电动汽车的胎压与第一预设高度的对应关系。在调整换电设备的高度的过程中,基于上述对应关系,即可根据电动汽车的实时胎压合理设置第一预设高度,通过一次或多次的调整实现换电设备的高度的调整。基于本实施方式,在电池包取放的过程中,可以不必专门设置检测电池托架高度变化的装置,简化了设备的结构;并且,可以针对在电池包取放过程中电动汽车的实时胎压,进行适应性的设置,便于提高调整的精度,提高本方案对不同场景的适用性。
实施例7
在实施例3的基础上,本实施例提供一种取放电池包的控制方法。具体实施时,在电池包相对于第一位置移动第一预设行程后,基于第二预设高度调节换电设备的高度。
在一种可选的实施方式中,通过对不同型号、重量的电池包在该电池包从电池托架中取出的过程中的移动行程与对应的垂直调整量的实验数据的获取和分析,生成不同型号、重量的电池包与相应的移动行程、第二预设高度的对应关系。在调整换电设备的高度的过程中,基于上述对应关系,即可针对电池包的型号、重量,根据移动行程合理设置第二预设高度,根据移动行程通过一次性调整实现换电设备的高度的调整。基于本实施方式,在电池包取放的过程中,可以不必专门设置检测电池托架高度变化的装置,简化了设备的结构;并且,可以针对不同型号、重量的电池包,进行适应性的设置,便于提高调整的精度,提高本方案对不同场景的适用性。
在另一种可选的实施方式中,通过对相应的电池包在该电池包从电池托架中取出的过程中的移动行程、对应的垂直调整量以及对应的电动汽车的胎压的实验数据的获取和分析,生成电动汽车的胎压与移动行程、第二预设高度的对应关系。在调整换电设备的高度的过程中,基于上述对应关系,即可根据电动汽车的实时胎压、移动行程,合理设置第二预设高度,根据移动行程通过一次性调整实现换电设备的高度的调整。基于本实施 方式,在电池包取放的过程中,可以不必专门设置检测电池托架高度变化的装置,简化了设备的结构;并且,可以针对在电池包取放过程中电动汽车的实时胎压,进行适应性的设置,便于提高调整的精度,提高本方案对不同场景的适用性。
实施例8
在实施例3的基础上,本实施例提供一种取放电池包的控制方法。具体实施时,在电池包相对于第二位置移动第二预设行程后,基于第二预设高度调节换电设备的高度。
在一种可选的实施方式中,通过对不同型号、重量的电池包在该电池包放入电池托架的过程中的移动行程与对应的垂直调整量的实验数据的获取和分析,生成不同型号、重量的电池包与相应的移动行程、第二预设高度的对应关系。在调整换电设备的高度的过程中,基于上述对应关系,即可针对电池包的型号、重量,根据移动行程合理设置第二预设高度,从而实现换电设备的高度的调整。基于本实施方式,在电池包取放的过程中,可以不必专门设置检测电池托架高度变化的装置,简化了设备的结构;并且,可以针对不同型号、重量的电池包,进行适应性的设置,便于提高调整的精度,提高本方案对不同场景的适用性。
在另一种可选的实施方式中,通过对相应的电池包在该电池包放入电池托架的过程中的移动行程、对应的垂直调整量以及对应的电动汽车的胎压的实验数据的获取和分析,生成电动汽车的胎压与移动行程、第二预设高度的对应关系。在调整换电设备的高度的过程中,基于上述对应关系,即可根据电动汽车的实时胎压、移动行程,合理设置第二预设高度,通过一次或多次的调整实现换电设备的高度的调整。基于本实施方式,在电池包取放的过程中,可以不必专门设置检测电池托架高度变化的装置,简化了设备的结构;并且,可以针对在电池包取放过程中电动汽车的实时胎压,进行适应性的设置,便于提高调整的精度,提高本方案对不同场景的适用性。
虽然以上描述了本发明的具体实施方式,但是本领域的技术人员应当理解,这些仅是举例说明,在不背离本发明的原理和实质的前提下,可以对这些实施方式做出多种变更或修改。因此,本发明的保护范围由所附权利要求书限定。

Claims (23)

  1. 一种电池包取出控制方法,其用于控制换电设备从电池仓内或电动车内取出电池包,所述电池包被锁止于所述电池仓或所述电动车内的电池托架上,其特征在于,所述电池包拿取控制方法包括以下步骤:
    调整所述换电设备的位置直至所述换电设备相对所述电池托架达到预设相对位置;
    控制所述换电设备伸出并连接所述电池包;
    控制所述换电设备的解锁机构进行解锁;
    控制所述换电设备取出被解锁的所述电池包。
  2. 如权利要求1所述的电池包取出控制方法,其特征在于,调整所述换电设备的位置直至所述换电设备相对所述电池托架达到预设相对位置的步骤中包括以下步骤:
    获取待换电车辆的电池托架上至少两个位置的第一图像和第二图像;
    根据所述第一图像和所述第二图像获取角度旋转量;
    根据所述角度旋转量控制所述换电设备进行角度调整,直至所述换电设备与所述电池托架达到预设角度;
    在所述换电设备与所述电池托架达到预设角度时,获取所述电池托架上至少两个位置的第三图像和第四图像;
    根据所述第三图像和所述第四图像获取水平位移量和垂直位移量;
    根据所述水平位移量控制所述换电设备进行水平调整,和/或,根据所述垂直位移量控制所述换电设备进行垂直调整,直至所述换电设备与所述电池托架达到预设相对位置;
    优选地,控制所述换电设备伸出并连接所述电池包的步骤包括以下步骤:
    获取所述第三图像中所述电池托架对应位置的第三景深值或者获取所述第四图像中所述电池托架对应位置的第四景深值;
    根据所述第三景深值或者第四景深值控制所述换电设备的双伸出机构伸出。
  3. 如权利要求2所述的电池包取出控制方法,其特征在于,控制所述换电设备伸出并连接所述电池包的步骤包括以下步骤:
    控制所述换电设备的推盘盒朝向所述电池包移动;
    判断所述推盘盒是否与所述电池包接触完成;
    若是,则控制所述推盘盒停止移动并连接所述电池包。
  4. 如权利要求3所述的电池包取出控制方法,其特征在于,控制所述推盘盒朝向所述电池包移动的过程中,在所述推盘盒移动至与所述电池包为预设距离时,控制所述推盘 盒减速移动;
    和/或,判断所述推盘盒是否与所述电池包接触完成的步骤包括,获取所述推盘盒与所述电池包初步接触触发的初步接触信号以及所述推盘盒与所述电池包进一步接触触发的贴合信号,当所述初步接触信号和所述贴合信号都被获取到时,判断所述推盘盒与所述电池包接触完成。
  5. 如权利要求1所述的电池包取出控制方法,其特征在于,控制所述换电设备伸出并连接所述电池包的步骤之后,还包括:
    判断所述换电设备的推盘盒是否连接到位,若是,则执行控制所述换电设备的解锁机构进行解锁的步骤;
    优选地,控制所述换电设备的解锁机构进行解锁的步骤包括以下步骤:
    控制所述解锁机构朝所述电池托架的解锁件移动至配合到位;
    控制所述解锁机构驱动所述解锁件进行解锁;
    优选地,控制所述换电设备取出被解锁的所述电池包的步骤包括以下步骤:
    控制所述推盘盒退回,以带动所述电池包同步移动并从所述电池托架上取出。
  6. 如权利要求5所述的电池包取出控制方法,其特征在于,在所述推盘盒退回的过程中,调整所述换电设备的高度至与所述电池托架的高度相匹配。
  7. 如权利要求6所述的电池包取出控制方法,其特征在于,所述电池包具有位于电池仓内或电动汽车内的电池托架上的第一位置以及位于换电设备上的第二位置,调整所述换电设备的高度至与所述电池托架的高度相匹配包括以下步骤:
    驱动所述电池包移动以在所述第一位置与所述第二位置之间进行位置切换;
    在所述电池包移动过程中,根据所述电池托架的高度调整所述换电设备的高度。
  8. 如权利要求7所述的电池包取出控制方法,其特征在于,在所述电池包移动过程中,实时调整所述换电设备的高度;
    优选地,在所述电池包移动过程中,根据所述电池托架的高度变化实时调整所述换电设备的高度至与所述电池托架的高度相匹配。
  9. 如权利要求7所述的电池包取出控制方法,其特征在于,根据所述第一位置和所述第二位置之间的至少一个预设位置,控制调整所述换电设备的高度;
    优选地,当所述电池包移动至所述预设位置上,基于第一预设高度调整换电设备的高度。
  10. 如权利要求7所述的电池包取出控制方法,其特征在于,在所述电池包相对于所述第一位置移动第一预设行程后,调整所述换电设备的高度;或,
    在所述电池包相对于所述第二位置移动第二预设行程后,调整所述换电设备的高度;
    优选地,在所述电池包移动所述第一预设行程或所述第二预设行程时,基于第二预设高度调节换电设备的高度。
  11. 如权利要求7所述的电池包取出控制方法,其特征在于,根据所述电池托架的高度调整所述换电设备的高度的步骤包括:
    获取所述电池托架的第一局部的第一图像;和/或
    获取所述电池托架的第二局部的第二图像;
    对所述第一图像和/或所述第二图像进行图像处理以获取垂直位移量;
    根据所述垂直位移量调整所述换电设备的高度至与所述电池托架的高度相匹配;
    优选地,所述垂直位移量包括第一垂直位移量和第二垂直位移量;
    对所述第一图像和/或所述第二图像进行图像处理以获取垂直位移量的步骤包括:
    根据所述第一图像和第一参考图像获取所述第一垂直位移量,根据所述第二图像和第二参考图像获取所述第二垂直位移量;所述第一参考图像为所述换电设备与所述电池托架的高度相匹配时包括所述第一局部的参考图像,所述第二参考图像为所述换电设备与所述电池托架的高度相匹配时包括所述第二局部的参考图像;
    优选地,所述换电设备通过设置在两端的第一升降机构和第二升降机构驱动进行升降移动;
    所述第一升降机构根据所述第一垂直位移量驱动所述换电设备升降,所述第二升降机构根据所述第二垂直位移量驱动所述换电设备升降。
  12. 如权利要求6所述的电池包取出控制方法,其特征在于,控制所述推盘盒退回,以带动所述电池包同步移动并从所述电池托架上取出的步骤之后,还包括:
    判断所述推盘盒是否退回到位,若是,则控制所述换电设备的双伸出机构退回。
  13. 一种电池包安装控制方法,其用于控制换电设备将电池包安装于电池仓或电动车的电池托架上,其特征在于,所述电池包安装控制方法包括以下步骤:
    调整所述换电设备的位置直至所述换电设备相对所述电池托架达到预设相对位置;
    控制所述换电设备将所述电池包移动至所述电池托架上;
    控制所述换电设备的解锁机构进行锁止。
  14. 如权利要求13所述的电池包安装控制方法,其特征在于,调整所述换电设备的位置直至所述换电设备相对所述电池托架达到预设相对位置的步骤中包括以下步骤:
    获取待换电车辆的电池托架上至少两个位置的第一图像和第二图像;
    根据所述第一图像和所述第二图像获取角度旋转量;
    根据所述角度旋转量控制所述换电设备进行角度调整,直至所述换电设备与所述电池托架达到预设角度;
    在所述换电设备与所述电池托架达到预设角度时,获取所述电池托架上至少两个位置的第三图像和第四图像;
    根据所述第三图像和所述第四图像获取水平位移量和垂直位移量;
    根据所述水平位移量控制所述换电设备进行水平调整,和/或,根据所述垂直位移量控制所述换电设备进行垂直调整,直至所述换电设备与所述电池托架达到预设相对位置;
    优选地,控制所述换电设备将所述电池包移动至所述电池托架上的步骤包括以下步骤:
    获取所述第三图像中所述电池托架对应位置的第三景深值或者获取所述第四图像中所述电池托架对应位置的第四景深值;
    根据所述第三景深值或者第四景深值控制所述换电设备的双伸出机构伸出;
    优选地,根据所述第三景深值或者第四景深值控制所述换电设备的双伸出机构伸出的步骤之后,还包括:
    控制所述换电设备的推盘盒将所述电池包推送至电池托架上;
    优选地,控制所述换电设备的推盘盒将所述电池包推送至电池托架上的步骤包括以下步骤:
    控制所述推盘盒推动所述电池包朝所述电池托架的方向移动;
    判断所述推盘盒是否将所述电池包推送到位;
    若是,则控制所述推盘盒停止移动。
  15. 如权利要求14所述的电池包安装控制方法,其特征在于,判断所述推盘盒是否将所述电池包推送到位的步骤包括:
    获取所述推盘盒与所述电池包初步接触触发的初步接触信号以及所述推盘盒与所述电池包进一步接触触发的贴合信号,当所述初步接触信号和所述贴合信号都被获取到时,判断所述推盘盒将所述电池包推送到位。
  16. 如权利要求14所述的电池包安装控制方法,其特征在于,在控制所述推盘盒推动所述电池包朝所述电池托架的方向移动的过程中,调整所述换电设备的高度至与所述电池托架的高度相匹配。
  17. 如权利要求16所述的电池包安装控制方法,其特征在于,所述电池包具有位于电池仓内或电动汽车内的电池托架上的第一位置以及位于换电设备上的第二位置,调整所述换电设备的高度至与所述电池托架的高度相匹配包括以下步骤:
    驱动所述电池包移动以在所述第一位置与所述第二位置之间进行位置切换;
    在所述电池包移动过程中,根据所述电池托架的高度调整所述换电设备的高度。
  18. 如权利要求17所述的电池包安装控制方法,其特征在于,在所述电池包移动过程中,实时调整所述换电设备的高度;
    优选地,在所述电池包移动过程中,根据所述电池托架的高度变化实时调整所述换电设备的高度至与所述电池托架的高度相匹配。
  19. 如权利要求17所述的电池包安装控制方法,其特征在于,根据所述第一位置和所述第二位置之间的至少一个预设位置,控制调整所述换电设备的高度;
    优选地,当所述电池包移动至所述预设位置上,基于第一预设高度调整换电设备的高度。
  20. 如权利要求17所述的电池包安装控制方法,其特征在于,在所述电池包相对于所述第一位置移动第一预设行程后,调整所述换电设备的高度;或,
    在所述电池包相对于所述第二位置移动第二预设行程后,调整所述换电设备的高度;
    优选地,在所述电池包移动所述第一预设行程或所述第二预设行程时,基于第二预设高度调节换电设备的高度。
  21. 如权利要求15所述的电池包安装控制方法,其特征在于,根据所述电池托架的高度调整所述换电设备的高度的步骤包括:
    获取所述电池托架的第一局部的第一图像;和/或
    获取所述电池托架的第二局部的第二图像;
    对所述第一图像和/或所述第二图像进行图像处理以获取垂直位移量;
    根据所述垂直位移量调整所述换电设备的高度至与所述电池托架的高度相匹配;
    优选地,所述垂直位移量包括第一垂直位移量和第二垂直位移量;
    对所述第一图像和/或所述第二图像进行图像处理以获取垂直位移量的步骤包括:
    根据所述第一图像和第一参考图像获取所述第一垂直位移量,根据所述第二图像和第二参考图像获取所述第二垂直位移量;所述第一参考图像为所述换电设备与所述电池托架的高度相匹配时包括所述第一局部的参考图像,所述第二参考图像为所述换电设备与所述电池托架的高度相匹配时包括所述第二局部的参考图像;
    优选地,所述换电设备通过设置在两端的第一升降机构和第二升降机构驱动进行升降移动;
    所述第一升降机构根据所述第一垂直位移量驱动所述换电设备升降,所述第二升降机构根据所述第二垂直位移量驱动所述换电设备升降。
  22. 如权利要求13所述的电池包安装控制方法,其特征在于,控制所述换电设备的解锁机构进行锁止的步骤包括以下步骤:
    控制所述解锁机构朝所述电池托架的解锁件移动至配合到位;
    控制所述解锁机构驱动所述解锁件进行锁止。
  23. 如权利要求13所述的电池包安装控制方法,其特征在于,控制所述换电设备的解锁机构进行锁止的步骤之后包括以下步骤:
    判断所述电池包是否锁紧在所述电池托架上;
    优选地,判断所述电池包是否锁紧在所述电池托架上的步骤包括以下步骤:
    控制所述换电设备的推盘盒对电池包的吸附力达到至预设值;
    控制所述推盘盒朝退回预设距离以判断所述电池包的锁止状态;
    优选地,当判断所述电池包的锁止状态的结果为所述电池包锁止成功之后还包括以下步骤:
    控制所述推盘盒退回;
    控制所述换电设备的双伸出机构退回。
PCT/CN2021/104844 2020-07-06 2021-07-06 电池包取出控制方法、电池包安装控制方法 WO2022007814A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202010642724.1 2020-07-06
CN202010642724.1A CN113895288B (zh) 2020-07-06 2020-07-06 电池包取出控制方法和电池包安装控制方法
CN202010643287.5A CN113895293A (zh) 2020-07-06 2020-07-06 取放电池包的控制方法
CN202010643287.5 2020-07-06

Publications (1)

Publication Number Publication Date
WO2022007814A1 true WO2022007814A1 (zh) 2022-01-13

Family

ID=79552786

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/104844 WO2022007814A1 (zh) 2020-07-06 2021-07-06 电池包取出控制方法、电池包安装控制方法

Country Status (1)

Country Link
WO (1) WO2022007814A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114906007A (zh) * 2022-05-16 2022-08-16 东风汽车动力零部件有限公司 一种商用车快换电池装置及控制方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102180145A (zh) * 2011-04-18 2011-09-14 北京邮电大学 便携式电动汽车的电池更换系统及其更换方法
CN102490694A (zh) * 2011-11-18 2012-06-13 山东鲁能智能技术有限公司 电动公交车电池快换机器人系统及快换方法
US20140002019A1 (en) * 2012-07-01 2014-01-02 Kookmin University Industry Academy Cooperation Foundation Battery exchanging-type charging station system for electric vehicle
CN108128132A (zh) * 2017-04-01 2018-06-08 上海电巴新能源科技有限公司 电池锁止解锁系统、电动汽车换电控制系统及其控制方法
CN212637217U (zh) * 2020-05-15 2021-03-02 奥动新能源汽车科技有限公司 电池箱托盘装置及包含其的换电设备
CN213138542U (zh) * 2020-05-15 2021-05-07 奥动新能源汽车科技有限公司 电池箱托盘装置与换电设备
CN213354220U (zh) * 2020-05-15 2021-06-04 奥动新能源汽车科技有限公司 换电设备的解锁系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102180145A (zh) * 2011-04-18 2011-09-14 北京邮电大学 便携式电动汽车的电池更换系统及其更换方法
CN102490694A (zh) * 2011-11-18 2012-06-13 山东鲁能智能技术有限公司 电动公交车电池快换机器人系统及快换方法
US20140002019A1 (en) * 2012-07-01 2014-01-02 Kookmin University Industry Academy Cooperation Foundation Battery exchanging-type charging station system for electric vehicle
CN108128132A (zh) * 2017-04-01 2018-06-08 上海电巴新能源科技有限公司 电池锁止解锁系统、电动汽车换电控制系统及其控制方法
CN212637217U (zh) * 2020-05-15 2021-03-02 奥动新能源汽车科技有限公司 电池箱托盘装置及包含其的换电设备
CN213138542U (zh) * 2020-05-15 2021-05-07 奥动新能源汽车科技有限公司 电池箱托盘装置与换电设备
CN213354220U (zh) * 2020-05-15 2021-06-04 奥动新能源汽车科技有限公司 换电设备的解锁系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114906007A (zh) * 2022-05-16 2022-08-16 东风汽车动力零部件有限公司 一种商用车快换电池装置及控制方法

Similar Documents

Publication Publication Date Title
WO2022007814A1 (zh) 电池包取出控制方法、电池包安装控制方法
JP7474322B2 (ja) Agvのバッテリ交換方法及びバッテリ交換装置
JP2582642B2 (ja) 無人搬送車のバッテリー自動交換装置
US20130140099A1 (en) Battery mounting apparatus for electric vehicle, battery unit transfer apparatus for electric vehicle, and method for mounting battery unit
JP7372453B2 (ja) Agvのバッテリ着脱機構及びバッテリの取り外し方法
KR20220007157A (ko) 차량용 배터리 팩의 언로킹 방법 및 시스템, 로킹 방법 및 시스템
JP2015522457A (ja) 電気車両を充電するための接続システム
CN110435604B (zh) 一种电池组件浮动安装方法
WO2013144955A2 (en) Battery switch module
WO2022007813A1 (zh) 推盘盒、换电设备及其控制方法
WO2021228258A1 (zh) 电池包取出控制方法和电池包安装控制方法
WO2022089436A1 (zh) 换电控制方法、系统、电子设备及计算机可读存储介质
CN212685308U (zh) 推盘盒
CN212685311U (zh) 推盘盒及包含其的换电设备
CN113895288B (zh) 电池包取出控制方法和电池包安装控制方法
CN212685312U (zh) 换电设备
CN113895286B (zh) 推盘盒及电池包锁紧判断方法
WO2020052560A1 (zh) 电池取放方法及系统
CN115021512A (zh) 一种电机智能化生产系统及工作方法
CN113895291A (zh) 推盘盒、换电设备及用于换电设备的电池包连接控制方法
WO2021043054A1 (zh) Agv的定位机构及定位方法
CN113895294A (zh) 推盘盒
CN113895292A (zh) 换电设备及换电设备的控制方法
WO2023051795A1 (zh) 定位件、换电设备及使用换电设备的解锁方法
CN110962674B (zh) 一种agv换电池装置及agv换电池方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21838384

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 15/05/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21838384

Country of ref document: EP

Kind code of ref document: A1