WO2022007791A1 - 自移动设备地图生成方法、系统和自动工作系统 - Google Patents

自移动设备地图生成方法、系统和自动工作系统 Download PDF

Info

Publication number
WO2022007791A1
WO2022007791A1 PCT/CN2021/104730 CN2021104730W WO2022007791A1 WO 2022007791 A1 WO2022007791 A1 WO 2022007791A1 CN 2021104730 W CN2021104730 W CN 2021104730W WO 2022007791 A1 WO2022007791 A1 WO 2022007791A1
Authority
WO
WIPO (PCT)
Prior art keywords
coordinate data
positioning
self
position points
positioning device
Prior art date
Application number
PCT/CN2021/104730
Other languages
English (en)
French (fr)
Inventor
多尔夫·达维德
Original Assignee
苏州宝时得电动工具有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州宝时得电动工具有限公司 filed Critical 苏州宝时得电动工具有限公司
Priority to EP21838805.6A priority Critical patent/EP4177569A4/en
Publication of WO2022007791A1 publication Critical patent/WO2022007791A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0268Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means
    • G05D1/0274Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means using mapping information stored in a memory device
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/28Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network with correlation of data from several navigational instruments
    • G01C21/30Map- or contour-matching
    • G01C21/32Structuring or formatting of map data
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/20Instruments for performing navigational calculations
    • G01C21/206Instruments for performing navigational calculations specially adapted for indoor navigation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/38Electronic maps specially adapted for navigation; Updating thereof
    • G01C21/3804Creation or updating of map data
    • G01C21/3807Creation or updating of map data characterised by the type of data
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/38Electronic maps specially adapted for navigation; Updating thereof
    • G01C21/3804Creation or updating of map data
    • G01C21/3807Creation or updating of map data characterised by the type of data
    • G01C21/383Indoor data
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/38Electronic maps specially adapted for navigation; Updating thereof
    • G01C21/3804Creation or updating of map data
    • G01C21/3833Creation or updating of map data characterised by the source of data
    • G01C21/3841Data obtained from two or more sources, e.g. probe vehicles

Definitions

  • the present application relates to the technical field of map generation, in particular to a method, system and automatic working system for generating a map from a mobile device.
  • Self-moving devices that perform household functions such as floor cleaning and lawn cutting are readily available consumer products.
  • Self-moving devices can generally include lawn mowers, sweeping robots, and automatic vacuum cleaners.
  • Some self-mobile devices use positioning systems such as GPS (Global Positioning System, Global Positioning System), Beidou satellite navigation system, GLONASS (Global Navigation Satellite System, GLONASS) system and Galileo satellite navigation system to determine the boundaries of the work area , and make route planning according to the obtained map, so as to realize specific functions in the work area.
  • GPS Global Positioning System, Global Positioning System
  • Beidou satellite navigation system GPS (Global Navigation Satellite System, GLONASS) system
  • GLONASS Global Navigation Satellite System
  • Galileo satellite navigation system Galileo satellite navigation system
  • the embodiments of the present specification provide a method, system and automatic working system for generating a map from a mobile device, so as to solve the problem of inaccurate map records of the working area of the self-mobile device in the prior art.
  • An embodiment of the present specification provides a method for generating a map from a mobile device, including: acquiring first coordinate data of multiple location points on the boundary of a working area of a mobile device; determining second coordinate data of at least two location points in the multiple location points Coordinate data; using the second coordinate data of at least two position points to align the first coordinate data of multiple position points to the coordinate system where the second coordinate data is located to generate a target map of the work area; The positioning accuracy of the first positioning device for the first coordinate data of the two position points is higher than the positioning accuracy of the second positioning device for acquiring the second coordinate data of the at least two position points.
  • the target map is used to define the boundary of the working area
  • the position information is obtained from the mobile device through the second positioning device
  • the position in the target map is determined according to the position information, so as to work within the boundary.
  • acquiring the first coordinate data of multiple position points on the boundary of the working area of the mobile device includes: using a first positioning device to obtain, when the mobile device moves along the boundary of the working area, the coordinates of the multiple position points. first coordinate data.
  • the first positioning device is located within a predetermined area in the working area.
  • the first coordinate data of the plurality of position points obtained by using the first positioning device includes: using the first positioning device to obtain the first positioning device from the first positioning device. After the position is moved to the second position, the first coordinate data of the plurality of position points, wherein there is an obstacle between the first position and the self-moving device, and there is no obstacle between the second position and the self-moving device.
  • the at least two position points satisfy a preset position condition
  • the preset position condition is at least one of the following conditions: the distance between any two position points in the at least two position points is greater than the first preset position. A distance is set; the angle formed between any two of the at least two position points and the first positioning device is greater than a preset angle; each of the at least two position points is located in an open area in the working area.
  • determining the second coordinate data of at least two of the plurality of position points includes: using a second positioning device to acquire a plurality of positioning signals corresponding to the at least two position points from a positioning system, wherein a plurality of The positioning signal includes: multiple positioning signals corresponding to at least two position points received from the positioning system when the second positioning device respectively stays at at least two position points for a preset period of time; according to the multiple positioning signals, determining at least one The second coordinate data of the two position points.
  • the positioning system includes a satellite navigation system.
  • the at least two position points include at least three position points; correspondingly, the first coordinate data of the plurality of position points is aligned with the second coordinate data of the at least three position points by using the second coordinate data of the at least three position points. coordinate system to generate a target map of the work area.
  • the first positioning device includes one of the following: an optical interferometer, a microwave interferometer, and a laser rangefinder.
  • An embodiment of the present specification further provides a system for generating a map from a mobile device, including: a first positioning device, a second positioning device, and a control module, wherein the first positioning device is configured to obtain a plurality of working area boundaries from the mobile device The first coordinate data of the position point, and the positioning accuracy of the first positioning device is greater than the positioning accuracy of the second positioning device; the control module is connected in communication with the first positioning device and the second positioning device; the second positioning device is used to determine multiple positions second coordinate data of at least two position points among the points; the control module is configured to use the second coordinate data of the at least two position points to align the first coordinate data of the plurality of position points to the coordinates where the second coordinate data is located system to generate a target map of the work area.
  • the second positioning device is detachably installed in the self-moving device, and when the second positioning device is installed in the self-moving device, it is also used to obtain position information of the self-moving device; The location in the target map to work within the work area defined by the target map.
  • the embodiments of this specification also provide an automatic working system, including a self-moving device, the self-moving device includes: a body; a walking device, which drives the self-moving device to move; the automatic working system further includes a control module, and the control module includes a The first control device of the equipment, the first control device, controls the walking device to drive the self-moving equipment to move, and it is characterized in that the automatic working system further includes: a signal receiving device, which is electrically connected with the control module and is used for receiving the information obtained by the first positioning device.
  • the second positioning device is used to be installed on the fuselage, and is also used to determine the position data when working from the mobile device; the first control device is further configured to compare the position data with the coordinate data on the target map, To control the self-moving equipment to walk in the work area.
  • the first control device is further configured to obtain the distance between the mobile device and the boundary of the work area according to the position data and the coordinate data on the target map, and when judging that the distance is less than the first preset distance, control the automatic The mobile device returns to walk inside the boundary.
  • the first preset distance is greater than or equal to the deviation of the distance caused by the positioning error of the second positioning device.
  • Embodiments of the present specification further provide a computer device, including a processor and a memory for storing instructions executable by the processor, when the processor executes the instructions, the method for generating a map from a mobile device described in any of the foregoing embodiments is implemented A step of.
  • Embodiments of the present specification further provide a computer-readable storage medium on which computer instructions are stored, and when the instructions are executed, implement the steps of the method for generating a map from a mobile device described in any of the foregoing embodiments.
  • a method for generating a map from a mobile device by acquiring first coordinate data of multiple location points on the boundary of a working area of a mobile device and determining the location of at least two location points in the multiple location points.
  • a target map of the work area can be generated based on the first coordinate data of the multiple position points and the second coordinate data of the at least two position points.
  • the positioning accuracy of the first positioning device is higher than the positioning accuracy of the positioning system, the accuracy of the map can be improved, and the working accuracy of the self-mobile device that plans the route according to the generated map can be improved, which is beneficial to improve the user experience.
  • the above solution solves the technical problem that the existing self-mobile device has a large map error in the working area, and achieves the technical effect of effectively improving the map accuracy.
  • FIG. 1 shows a schematic diagram of a self-mobile device in an embodiment of the present specification
  • FIG. 2 shows a module diagram of a self-mobile device in an embodiment of the present specification
  • FIG. 3 shows a flowchart of a method for generating a map from a mobile device in an embodiment of the present specification
  • FIG. 4 shows a schematic diagram of measuring a plurality of relative coordinates of a working area by using a first positioning device in an embodiment of the present specification
  • Fig. 5 shows a schematic diagram of the existence of obstacles in the working area according to an embodiment of the present specification
  • FIG. 6 shows that in an embodiment of the present specification, when there is an obstacle between the self-moving device and the first positioning device, after the first positioning device measures the movement of the first positioning device from the first position to the second position, A schematic diagram of multiple relative coordinates of the work area;
  • FIG. 7 shows a schematic diagram of a target map obtained after adjusting the direction of the relative map according to the position point A and the position point B in an embodiment of the present specification
  • Fig. 8 shows the schematic diagram of the working error analysis of self-moving equipment in the prior art
  • FIG. 9 shows a schematic diagram of the working error analysis of the self-mobile device in an embodiment of the present specification.
  • FIG. 10 shows a schematic diagram of a system for generating a map from a mobile device in an embodiment of the present specification
  • FIG. 11 shows a schematic diagram of a computer device in an embodiment of the present specification.
  • the embodiments of the present application can be implemented as a system, apparatus, method or computer program product. Accordingly, the present disclosure may be embodied in the form of complete hardware, complete software (including firmware, resident software, microcode, etc.), or a combination of hardware and software.
  • FIG. 1 shows a schematic diagram of a self-moving device in an embodiment of the present specification
  • FIG. 2 shows a module diagram of the self-moving device in an embodiment of the present specification
  • the self-moving device 1 may include a signal receiving device 10 , a power supply device 20 , a control device 30 , a traveling device 40 , a working device 50 , and a body 60 .
  • the power supply device 20 supplies power to operate the various devices of the mobile device 1 .
  • the control device 30 is the control center of the self-mobile device 1, connected with other devices, receives information from other devices, and controls the self-mobile device 1 to perform various actions or tasks such as walking, working, returning to the base station, and charging.
  • the control device 30 may specifically include an evaluation unit, a memory, and the like.
  • the signal receiving device 10 is electrically connected to the control device 30 for sending the received signal to the control device 30 ; here the signal receiving device 10 can be set independently from the control device 30 , or can be a part of the control device 30 .
  • the traveling device 40 includes a motor located in the self-moving device 1 and a roller driven by the motor, and is used to receive the command from the control device, and the power supply device 20 provides energy to drive the self-moving device 1 to automatically walk on the ground or other working surfaces.
  • the traveling device 40 specifically includes two driving wheels located on both sides of the self-moving device 1 , two driving motors respectively connected to the two driving wheels, and one or two driving wheels located at the front of the self-moving device 1 . a support wheel.
  • Such an arrangement can control the traveling speed and direction of the traveling device 40 by controlling the speed and speed difference of the two driving wheels, so that the traveling and steering of the self-mobile device 1 is flexible and accurate.
  • the running device 40 may have other forms, for example, it may be a driving wheel and an independent driving motor and an independent steering motor connected to it; it may also be a crawler type and other forms.
  • the working device 50 is used to perform specific work that the mobile device 1 is responsible for.
  • the work apparatus 50 generally includes a work motor and a work unit driven by the work motor. If the self-moving device 1 is a snow plow, the work unit is the snow-plowing part that performs snow-plowing work; if the self-moving device 1 is an automatic lawn mower, the work unit is the cutting part that performs the cutting work, such as output shafts and knives. Discs, blades, etc., will not be repeated here.
  • the following embodiments take an automatic lawn mower as an example for description.
  • a robotic lawnmower may move around the lawn and cut the grass as it travels over the lawn.
  • To prepare the lawnmower for use define the boundaries of the lawn to be mowed.
  • the user can define the boundaries by either a handle attached to the robotic mower or by pushing the mower via a remote control.
  • a first positioning device for example, an optical interferometer, etc.
  • the first coordinate data can include a plurality of relative coordinates, That is, the relative coordinates of multiple position points on the lawn boundary.
  • the first positioning device may transmit the measured relative coordinates of the plurality of position points to the signal receiving device in the automatic lawn mower.
  • a second positioning device eg, a GPS positioning device, an RTK positioning device, etc.
  • the coordinate data may be relative coordinate data or absolute coordinate data.
  • the absolute coordinate data may be geographic coordinates.
  • the second positioning device is removably mounted in the automatic lawn mower.
  • the second positioning device can be held by hand to reach at least two position points among the plurality of position points, and when the second positioning device is at the at least two position points, the second positioning device sends the data through the receiving positioning system
  • the positioning signal is used to determine the second coordinate data of at least two position points, and send it to the signal receiving device of the automatic lawn mower.
  • the second positioning device is installed on the automatic lawn mower, the automatic lawn mower moves to a position where at least two of the plurality of position points are located.
  • the second positioning device determines the second coordinate data of the at least two position points by receiving the positioning signal sent by the positioning system, and sends the second coordinate data to the automatic lawn mower Signal receiving device.
  • the signal receiving device is electrically connected with the control device, and the control device aligns the first coordinate data to the coordinate system where the second coordinate data is located according to the second coordinate data obtained from the signal receiving device, that is, the local coordinate system in which the automatic lawn mower works, to generate a target map of the work area.
  • the positioning accuracy of the first positioning device is greater than the positioning accuracy of the second positioning device.
  • the control device in the automatic lawn mower can control the self-moving device to move on the lawn and cut the grass on the lawn according to the generated target map, so as to complete the designated mowing task.
  • the automatic lawn mower can plan a route according to the work area set by the user, so that the automatic lawn mower is limited to the lawn or other suitable areas, avoiding damage to the non-grass areas of the yard or invading the neighbor's territory. .
  • the first coordinate data of the plurality of position points on the boundary of the work area may include coordinates of each position point relative to the reference point among the plurality of position points on the boundary of the work area.
  • the reference point may be a position selected within the working area or outside the working area and used as the origin of the coordinates.
  • the coordinate data of the multiple position points may be the coordinates of the multiple position points on the boundary of the work area in a coordinate system with the reference point as the coordinate origin.
  • the reference points may include one or more reference points, and the plurality of position points on the boundary of the work area may include a first plurality of position points and a second plurality of position points.
  • the coordinate data of the plurality of position points may include relative coordinates of the first plurality of position points on the boundary with respect to the first reference point and relative coordinates of the second plurality of position points on the boundary with respect to the second reference point.
  • the first coordinate data of multiple position points on the boundary of the work area may be acquired by the first positioning device, that is, the coordinates of each position point relative to the first positioning device in the multiple position points on the measurement boundary.
  • the position where the first positioning device is located is the reference point. That is, a coordinate system can be established with the location where the first positioning device is located as an origin, and the coordinates of each of the multiple location points on the boundary of the work area in the coordinate system can be measured.
  • the automatic lawn mower may acquire the first coordinate data of the plurality of position points of the working area boundary from the first positioning device. In some embodiments, after the first positioning device measures the first coordinate data of the plurality of position points on the boundary of the work area, the first positioning device may automatically send the measured first coordinate data to the automatic lawn mower. In some embodiments, the automatic lawn mower can send an acquisition request to the first positioning device, and the first positioning device can send the measured first coordinate data to the automatic lawn mower in response to the acquisition request.
  • the second positioning device may be a device independently provided with the automatic lawn mower, the automatic lawn mower may send an acquisition request to the second positioning device, and the second positioning device responds to the acquisition request to locate the plurality of position points
  • the second coordinate data of the at least two position points are sent to the automatic lawn mower.
  • the second positioning device may automatically send the determined second coordinate data to the automatic lawn mower.
  • the positioning accuracy of the first positioning device for acquiring the first coordinate data of the multiple position points is higher than the positioning accuracy of the second positioning device for acquiring the second coordinate data of the at least two position points.
  • the positioning accuracy of the second positioning device is on the centimeter level, while the positioning accuracy of the first positioning device is on the millimeter level. Since the positioning accuracy of the first positioning device is higher than the positioning accuracy of the second positioning device, the first coordinates of the multiple position points are calculated by using the second coordinate data of at least two of the multiple position points acquired by the second positioning device.
  • the data is aligned with the coordinate system where the second coordinate data is located, and the accuracy of the generated map of the work area is greater than the accuracy of the map obtained by simply using the second positioning device, thereby improving the work of the self-mobile device that plans the route according to the generated map. Accuracy is conducive to improving the user experience.
  • the positioning algorithm of the method in this embodiment is simple, and the cost can be saved.
  • the first positioning device may include one of the following: an optical interferometer, a microwave interferometer, and a laser range finder.
  • the positioning accuracy of the first positioning device is relatively high.
  • the accuracy of the first positioning device may be in the order of millimeters or micrometers.
  • the laser rangefinder may be a two-dimensional laser rangefinder or a three-dimensional laser rangefinder.
  • Optical interferometers, microwave interferometers, and 2D or 3D laser rangefinders can all measure distances and angles.
  • the first positioning device in the above embodiment is only exemplary, and the present specification is not limited thereto.
  • the positioning system includes a satellite positioning system, and may specifically include one of the following: Beidou satellite navigation system, GLONASS system, Galileo satellite navigation system, GPS system, DGPS system, RTK system and ARTK system.
  • the positioning accuracy of the positioning system is lower than the measurement accuracy of the first positioning device.
  • the accuracy of the positioning system can be in meters or centimeters, etc.
  • the positioning system in the above-described embodiment is only exemplary, and the present specification is not limited thereto.
  • the first positioning device may be located in a preset area of the working area.
  • the preset area is a central area of the working area.
  • the central area refers to the area close to the center of the working area.
  • the center of the work area is the center of the circle.
  • the central area of the working area may be a circular area less than a preset distance from the center of the circle.
  • the preset distance can be set according to the actual situation, for example, it is set as one-half, one-third, etc. of the radius of the working area.
  • the center of the working area may be the center of gravity of the corresponding shape of the area.
  • the central area of the working area may be a circular area less than a preset distance from the center.
  • the work area may be an area of the same shape as the work area but reduced in size.
  • using the first positioning device to obtain the first coordinate data of the multiple position points may include: using the first positioning device to obtain the first positioning device from After the first position is moved to the second position, the first coordinate data of the plurality of position points, wherein there is an obstacle between the first position and the self-moving device, and there is no obstacle between the second position and the self-moving device.
  • the first positioning device can be used to obtain the first coordinate data of multiple position points on the boundary of the work area, that is, to measure the relative position of the self-mobile device relative to the first positioning device. relative coordinates.
  • the first positioning means may be provided in the first position.
  • the first location may be within the work area or outside the work area. Before measuring a relative coordinate from the mobile device, it may be determined whether there is an obstacle between the first position and the first positioning device.
  • the first positioning device may be used to measure the relative coordinates of the self-mobile device with respect to the first position.
  • the first positioning device may be moved from the first position to the second position if it is determined that there is an obstacle between the first position and the first positioning device. Wherein, there is no obstacle between the second position and the self-moving device.
  • the second location may be within the work area or outside the work area. Afterwards, the relative coordinates of the self-moving device relative to the second position are measured by using the moved first positioning device.
  • a first set of relative coordinates of the first set of position points on the boundary of the work area relative to the first position may be measured. Wherein, there is no obstacle between each position point in the first group of position points and the first position.
  • a second set of relative coordinates of the second set of position points on the boundary of the work area relative to the second position may be measured. Wherein, there is no obstacle between each position point in the second group of position points and the second position.
  • Both the first set of position points and the second set of position points include at least two selected position points.
  • the coordinate data of the first group of position points in the coordinate system where the second coordinate data is located may be determined according to the first group of relative coordinates and the second coordinate data of the at least two position points.
  • the coordinate data of the second group of position points in the coordinate system where the second coordinate data is located may be determined according to the second group of relative coordinates and the second coordinate data of the at least two position points.
  • the target map of the work area can be generated according to the coordinate data of the first group of position points in the coordinate system where the second coordinate data is located and the coordinate data of the second group of position points in the coordinate system where the second coordinate data is located.
  • a first set of relative coordinates of the first set of position points on the boundary of the work area relative to the first position may be measured. Wherein, there is no obstacle between each position point in the first group of position points and the first position.
  • a second set of relative coordinates of the second set of position points on the boundary of the work area relative to the second position may be measured. Wherein, there is no obstacle between each position point in the second group of position points and the second position. Relative coordinates of the second location with respect to the first location may also be measured.
  • relative coordinates of the second group of location points relative to the first location may be determined based on the second group of relative coordinates and the relative coordinates of the second location relative to the first location.
  • the first group of position points may include at least two selected position points.
  • the coordinate system in which the first group of position points is located in the second coordinate data may be determined based on the first group of relative coordinates and the relative coordinates of the second group of position points relative to the first position and the second coordinate data of the at least two position points and the coordinate data of the second group of position points in the coordinate system where the second coordinate data is located.
  • the target map of the work area can be generated according to the coordinate data of the first group of position points in the coordinate system where the second coordinate data is located and the coordinate data of the second group of position points in the coordinate system where the second coordinate data is located.
  • the first positioning device is provided at the first position and the second position as an example for description, but the present specification is not limited to this. It can be understood that, the above-mentioned embodiments can be adaptively extended to the case where the positions of the first positioning device include three positions and more than three positions.
  • the first radar-based positioning device may be utilized to circumvent obstacles to measure the first coordinate data of a plurality of location points at the boundary of the work area.
  • At least two position points may be selected from a plurality of position points, and then second coordinate data of the at least two position points are determined. Wherein, the selected at least two position points satisfy the preset position relationship.
  • the preset position relationship is that the distance between any two of the at least two position points is greater than the first preset distance, wherein the first preset distance can be set according to the actual working area. The accuracy of the target map is improved by selecting at least two locations that are far apart from each other.
  • the accuracy of the target map is improved by selecting at least two position points that are far away from the first positioning device; in yet another embodiment, the preset position relationship is that any two position points among the at least two position points and the first positioning point
  • the angle formed by the device is greater than the preset angle, wherein the angle formed by the two position points and the first positioning device is the first angle of the first position point relative to the first positioning device and the second position point relative to the first positioning device.
  • the preset angle may be set to 100°, 120°, 150°, or 180°, and the like. Of course, the preset angle can also be set to other suitable angles. In other embodiments, the preset angle may be set according to the number of at least two position points.
  • the preset angle may be set to 60°.
  • the accuracy of the target map can be improved by selecting at least two position points with a larger angle between them; in yet another embodiment, the preset position relationship is that each of the at least two position points is located in an open area in the work area .
  • the open area may refer to an area in the work area where the signal of the positioning system is strong, for example, it may refer to an area in the work area without shelter.
  • determining the second coordinate data of at least two of the plurality of position points may include: using a second positioning device to obtain, from a positioning system, a plurality of coordinates corresponding to each of the at least two position points. a plurality of positioning signals, wherein the plurality of positioning signals include: a plurality of positioning signals corresponding to each position point received from the positioning system when the second positioning device stays at each of the at least two position points for a preset period of time, respectively ; According to a plurality of positioning signals corresponding to each position point, determine the second coordinate data corresponding to each position point.
  • the preset time period can be set to 1 minute, 3 minutes, or 5 minutes, etc.
  • the second positioning device may receive a plurality of positioning signals corresponding to each position point sent by the positioning system, and based on the at least two A plurality of positioning signals corresponding to each position point in the position points determine a plurality of coordinates corresponding to each position point. After determining the plurality of coordinates corresponding to each position point, the second positioning device may determine the second coordinate data corresponding to each position point according to the plurality of coordinates corresponding to each position point. For example, the second coordinate data of each position point is determined according to the plurality of coordinates corresponding to each position point by using the method of averaging, using the least squares method, or using the random sampling consistency method.
  • the second positioning device determines the second coordinate data corresponding to each position point according to a plurality of positioning signals corresponding to each of the at least two position points. Acquire second coordinate data corresponding to each position point.
  • the present application is not limited to this.
  • the automatic lawn mower may determine the second coordinate data corresponding to each position point according to the plurality of coordinates corresponding to each position point obtained by the second positioning device.
  • the at least two position points include a first position point and a second position point; correspondingly, the first coordinate data of the plurality of position points are aligned with the second coordinate data of the at least two position points
  • the coordinate system where the second coordinate data is located it may include: determining the coordinate system where the second coordinate data is located for a plurality of location points according to the second coordinate data of the first location point and the second location point The coordinates in , generate a target map of the work area.
  • the first coordinate data of the multiple location points determine the geographic coordinates corresponding to each of the multiple location points. For example, for a certain location point, the geographic coordinates corresponding to the location point can be calculated according to the relative coordinates of the location point, the geographic coordinates and relative coordinates of the first location point, and the geographic coordinates and relative coordinates of the second location point. Afterwards, a target map of the work area can be generated based on the geographic coordinates corresponding to each of the multiple location points.
  • the at least two position points include at least three position points; correspondingly, the first coordinate data of the plurality of position points are aligned to the second coordinates using the second coordinate data of the at least three position points The coordinate system in which the data resides to generate a target map of the work area.
  • the geographic coordinates (ie, the second coordinate data) of the at least three location points and the first coordinates of the multiple location points on the boundary of the work area may be used
  • the data (ie, the relative coordinates of the multiple location points) determine the geographic coordinates corresponding to each of the multiple location points.
  • the geographic coordinates corresponding to the location point can be calculated according to the relative coordinates of the location point and the geographic coordinates and relative coordinates of at least three location points.
  • a target map of the work area can be generated according to the geographic coordinates corresponding to each of the multiple location points.
  • the at least three location points include a first location point, a second location point, and a third location point; correspondingly, according to the geographic coordinates of the first location point and the geographic coordinates of the second location point, determine The first coordinates of the plurality of position points; according to the geographical coordinates of the first position point and the geographical coordinates of the third position point, the second coordinates of the plurality of position points are determined; according to the geographical coordinates of the second position point and the third position point The geographic coordinates are used to determine the third coordinates of the multiple location points; the geographic coordinates of the multiple location points are determined based on the first coordinate, the second coordinate and the third coordinate.
  • the relative coordinates of the position point, the first position point and the second position determine the first coordinate corresponding to the position point.
  • the first coordinates may be first geographic coordinates.
  • the second coordinate corresponding to the position point may be determined according to the relative coordinates of the position point, the relative coordinates of the first position point and the third position point, and the geographic coordinates.
  • the second coordinate may be a second geographic coordinate.
  • the third coordinate corresponding to the position point may be determined according to the relative coordinates of the position point, the relative coordinates of the second position point and the third position point, and the geographic coordinates.
  • the third coordinate may be a third geographic coordinate.
  • the geographic coordinates corresponding to the location point may be determined based on the first, second, and third coordinates corresponding to the location point.
  • the geographic coordinates of the location point can be determined based on the first coordinate, the second coordinate and the third coordinate corresponding to the location point by using an average value method.
  • the geographic coordinates of the location point may be determined based on the first coordinate, the second coordinate and the third coordinate corresponding to the location point by using the least squares method.
  • the random sampling consistency method can be used to determine the geographic coordinates of the location point based on the first coordinate, the second coordinate and the third coordinate corresponding to the location point.
  • the geographic coordinates of each of the multiple location points on the relative map are determined based on the geographic coordinates of at least three location points, which can effectively improve the accuracy of the determined geographic coordinates.
  • the above method can be extended to the situation of more than three location points, and the geographic coordinates corresponding to each location point in the multiple location points can be determined based on the geographic coordinates of any two location points among the three or more location points, and obtain: The plurality of geographic coordinates corresponding to each location point, and the final geographic coordinates corresponding to each location point are determined based on the plurality of geographic coordinates corresponding to each location point.
  • the second positioning device is further configured to determine the position data of the self-mobile device when working; the control device is further configured to compare the position data with the coordinate data on the target map, so as to control the self-mobile device in the working area walk inside.
  • the second positioning device may be located in the self-moving device, and when the self-moving device is working, the second positioning device may determine the position data of the self-moving device. For example, when working from the mobile device, the second positioning device may acquire a positioning signal from the positioning system, and determine the position data of the self-mobile device according to the positioning signal.
  • the control device can obtain the position data of the self-mobile device in real time from the second positioning device, compare the obtained position data with the coordinate data in the target map, and control the self-mobile device to walk in the work area according to the comparison result.
  • control apparatus may send an acquisition request to the second positioning apparatus in real time, and the second positioning apparatus may send the determined position data to the control apparatus in response to the acquisition request.
  • the second positioning device may automatically send the determined location data to the control device in real time.
  • the control device may determine whether the self-mobile device is located within the boundary of the work area based on the obtained position data of the self-mobile device and the generated target map of the work area, and when determining that the self-mobile device is located on or outside the boundary of the work area, Control the movement from the mobile device to walking within the boundaries of the work area.
  • control device can also be used to calculate the distance between the self-mobile device and the boundary of the work area according to the position data and the coordinate data on the target map, and when judging that the distance is less than the first preset distance, control the automatic The mobile device walks inside the boundary.
  • the control device can calculate the distance between the self-mobile device and the boundary of the working area according to the position data and the target map when the self-mobile device is working.
  • the control device may determine whether the distance is less than the first preset distance, and in the case of determining that the distance is less than the first preset distance, control the self-mobile device to walk along the interior of the boundary.
  • the first preset distance may be a default distance in the control device, or may be a distance preset by a user according to actual needs. Exemplarily, the first preset distance may be 0.1m, 0.2m or 0.5m.
  • FIG. 3 shows a flowchart of a method for generating a map from a mobile device in an embodiment of the present specification.
  • the present specification provides method operation steps or device structures as shown in the following embodiments or drawings, more or less operation steps or module units may be included in the method or device based on routine or no creative effort. .
  • the execution order of these steps or the module structure of the device are not limited to the execution order or module structure described in the embodiments of this specification and shown in the accompanying drawings.
  • the method for generating a map from a mobile device may include the following steps.
  • Step S301 acquiring first coordinate data of multiple position points on the working area boundary of the mobile device.
  • Self-moving devices can plan routes according to the work area set by the user, so that self-moving devices are confined to lawns or other suitable areas to avoid damaging non-grass areas of the yard or invading neighbors’ territory .
  • the first coordinate data of the plurality of position points on the boundary of the work area may include coordinates of each position point relative to the reference point among the plurality of position points on the boundary of the work area.
  • the reference point may be a position selected within the working area or outside the working area and used as the origin of the coordinates.
  • the first coordinate data of multiple position points on the boundary of the work area may be acquired by the first positioning device, that is, the coordinates of each position point relative to the first positioning device in the multiple position points on the measurement boundary.
  • the position where the first positioning device is located is the reference point.
  • a coordinate system for example, a polar coordinate system
  • the coordinates of each of the multiple location points on the boundary of the working area in the coordinate system can be measured. angles and distances in coordinates).
  • the self-mobile device may acquire the first coordinate data of the plurality of position points of the working area boundary of the self-mobile device from the first positioning means. In some embodiments, after the first positioning device measures the first coordinate data of the plurality of position points on the boundary of the work area, the first positioning device may automatically send the measured first coordinate data to the self-mobile device. In some embodiments, the self-mobile device may send an acquisition request to the first positioning apparatus, and the first positioning apparatus may transmit the measured first coordinate data to the self-mobile device in response to the acquisition request.
  • Step S302 determining the second coordinate data of at least two position points among the plurality of position points.
  • the second coordinate data of at least two of the plurality of position points is acquired by using the second positioning device.
  • the second positioning device may be a GPS positioning device or an RTK positioning device or an ARTK positioning device or a DGPS positioning device or the like.
  • the second positioning device may also be a beacon (beacon) positioning module, such as ultrasonic beacon, UWB beacon, etc., which is not limited here.
  • the second positioning device may be a device provided independently from the self-moving device, or may be provided in the self-moving device.
  • the self-mobile device may acquire second coordinate data of at least two of the plurality of position points from the second positioning device.
  • the self-mobile device may send an acquisition request to the second positioning apparatus, and the second positioning apparatus transmits the second coordinate data to the self-mobile device in response to the acquisition request.
  • the second positioning device automatically sends the data to the self-mobile device.
  • the second coordinate data may be relative coordinates or absolute coordinates.
  • the absolute coordinates can be geographic coordinates.
  • the geographic coordinates may be spherical coordinates representing the position of the ground point by latitude and longitude. Of course, other types of geographic coordinates can be used.
  • a beacon positioning module may be used to obtain relative coordinates of at least two position points among the plurality of position points, and the relative coordinates of the at least two position points may be used to align the first coordinate data of the plurality of position points to The coordinate system in which the relative coordinate data is located to generate a target map of the work area.
  • a GPS positioning device or an RTK positioning device or an ARTK positioning device or a DGPS positioning device may be used to obtain the absolute coordinates of at least two position points in the plurality of position points, and the absolute coordinates of the at least two position points may be used to The first coordinate data of the plurality of position points is aligned with the coordinate system where the absolute coordinate data is located, so as to generate a target map of the working area.
  • the positioning accuracy of the first positioning device for acquiring the first coordinate data of the multiple position points is higher than the positioning accuracy of the second positioning device for acquiring the second coordinate data of the at least two position points.
  • Step S303 using the second coordinate data of the at least two position points to align the first coordinate data of the plurality of position points to the coordinate system where the second coordinate data is located, so as to generate a target map of the work area.
  • the map generating apparatus may be based on the first coordinate data of the plurality of position points and the second coordinate data of the at least two position points.
  • the coordinates of the plurality of position points in the coordinate system where the second coordinate data is located are determined, so as to generate a target map of the work area.
  • the target map of the working area may include second coordinate data of each of the multiple position points on the boundary of the working area.
  • the map generating apparatus may determine the geographical coordinates of the target position point based on the relative coordinates of the target position point and the geographical coordinates and relative coordinates of at least two position points.
  • the map generating device may generate a relative map of the work area based on the first coordinate data of the multiple location points, and then may adjust the direction of the relative map based on the geographic coordinates corresponding to each of the at least two location points, so that the relative map becomes target map.
  • the self-mobile device can plan a work route according to the target map of the work area, and complete the work task specified by the user.
  • the first coordinate data of the multiple position points on the working area boundary of the mobile device is obtained by the first positioning device, and the second position of the at least two position points in the multiple position points is determined based on the positioning system. coordinate data, and use the obtained second coordinate data of at least two position points and the first coordinate data of multiple position points to obtain a target map.
  • the positioning accuracy of the first positioning device is higher than the positioning accuracy of the second positioning device, the accuracy of the map can be improved, and the working accuracy of the self-mobile device that plans the route according to the generated map can be improved, which is beneficial to improve the use of users. experience.
  • the self-mobile device obtains the position information through the second positioning device, and determines the position in the target map according to the position information, so as to work within the boundary.
  • the first positioning device may be used to obtain the first coordinate data of multiple position points when the mobile device moves along the boundary of the work area, that is, the relative position of each position point among the multiple position points on the measurement boundary the coordinates of the first positioning device.
  • the first positioning device is located within a predetermined area in the working area.
  • the preset area is within the central area of the working area.
  • the central area refers to the area close to the center of the working area.
  • At least two position points may be selected from a plurality of position points, and then second coordinate data of the at least two position points are determined. Wherein, the selected at least two position points satisfy the preset position relationship.
  • the preset position relationship is that the distance between any two of the at least two position points is greater than the first preset distance.
  • the preset positional relationship is that the angle formed by any two of the at least two position points and the first positioning device is greater than the preset angle, wherein the angle formed between the two position points and the first positioning device The angle is the absolute value of the difference between the first angle of the first position point relative to the first positioning device and the second angle of the second position point relative to the first positioning device.
  • the preset position relationship is that each of the at least two position points is located in an open area in the work area.
  • the open area may refer to the area in the work area where the signal of the positioning system is strong, for example, it may refer to the area without shelter in the work area.
  • determining the second coordinate data of at least two of the plurality of position points may include: using a second positioning device to obtain, from a positioning system, a plurality of coordinates corresponding to each of the at least two position points. a plurality of positioning signals, wherein the plurality of positioning signals include: a plurality of positioning signals corresponding to each position point received from the positioning system when the second positioning device stays at each of the at least two position points for a preset period of time, respectively ; According to a plurality of positioning signals corresponding to each position point, determine the second coordinate data corresponding to each position point.
  • the at least two position points may include at least three position points, and the at least two position points may include at least three position points; correspondingly, using the second coordinate data of the at least three position points to The first coordinate data of the position point is aligned with the coordinate system where the second coordinate data is located, so as to generate a target map of the work area.
  • the coordinate data of the multiple location points in the coordinate system where the second coordinate data is located may be determined based on the second coordinate data of any two location points among the at least three location points and the first coordinate data of the multiple location points, respectively. , to obtain multiple coordinate data corresponding to each of the multiple location points. Afterwards, based on the multiple coordinate data corresponding to each position point, the final coordinate data of each position point in the coordinate system where the second coordinate data is located is determined by means of averaging, least squares method or random sampling consistency method, and a working area is generated. target map. In the above manner, the accuracy of the generated map can be effectively improved.
  • the first positioning device may include one of the following: an optical interferometer, a microwave interferometer, and a laser range finder.
  • the positioning system may include one of the following: Beidou satellite navigation system, GLONASS system, Galileo satellite navigation system, GPS system, DGPS system, RTK system and ARTK system.
  • a first positioning device eg, an optical or microwave interferometer
  • a first positioning device eg, an optical or microwave interferometer
  • FIG. 4 shows a schematic diagram of measuring the relative coordinates of a plurality of position points on the boundary C of the working area by using the first positioning device 101 .
  • an optical or microwave interferometer 101 is located in the central region of the working area.
  • the optical or microwave interferometer 101 can measure the relative coordinates of a plurality of position points on the boundary C with respect to the optical or microwave interferometer.
  • the multiple position points include position point A and position point B.
  • the second coordinate data of the position point A and the position point B can be determined using the second positioning device.
  • FIG. 5 shows a schematic diagram of the existence of obstacles in the work area.
  • the optical or microwave interferometer is located in the first position E.
  • An obstacle O exists between the first position E and a partial position point on the boundary C of the working area.
  • a radar-based optical or microwave interferometer can be utilized to circumvent the obstacle O.
  • the optical or microwave interferometer can also be controlled to move from the first position to the second position.
  • FIG. 6 shows a schematic diagram of controlling the optical or microwave interferometer to move from the first position E to the second position F under the condition that there is an obstacle between the self-moving device and the optical or microwave interferometer.
  • the optical or microwave interferometer can be moved from the first position E to the first position E.
  • Second position F the relative coordinates of these position points on the boundary C with respect to the second position F are measured using the moved optical or microwave interferometer.
  • FIG. 7 shows a schematic diagram of a target map obtained by adjusting the direction of the relative map according to the position point A and the position point B in an embodiment of the present specification.
  • the self-mobile device can generate a relative map of the work area according to the relative coordinates of multiple location points, and adjust the direction of the relative map according to the geographic coordinates of at least two location points, so that the relative map becomes the target map.
  • FIG. 8 shows a schematic diagram of analyzing the working error of a self-mobile device in the prior art.
  • the working error of the self-mobile device in the prior art refers to the error when the self-mobile device performs work based on the map generated by using the map generation method in the prior art.
  • the map generation method in the prior art may be a map generated by only using the second positioning device, for example, a map generated based on a GPS or RTK system.
  • a of FIG. 8 shows the boundary recording inaccuracy of the map generation method in the prior art. In a of Fig.
  • the solid line 801 is the actual working area boundary
  • the dashed line 802 and the dashed line 803 show the boundary recorded by the map generation method in the prior art
  • the range between the dashed line 802 and the dashed line 803 can represent the boundary record.
  • Accuracy. b of FIG. 8 shows the working inaccuracy of the self-moving device when the self-moving device works according to the boundary recorded by the dotted line 802 .
  • the range between the dotted line 811 and the dotted line 821 in b of FIG. 8 may represent the working inaccuracy of the self-mobile device when the self-mobile device operates according to the boundary recorded by the dotted line 802 .
  • FIG. 8 shows the working inaccuracy of the self-moving device when the self-moving device works according to the boundary recorded by the dotted line 803 .
  • the range between the dotted lines 812 and 831 in c of FIG. 8 may characterize the inaccuracy of the self-mobile device operation when the self-mobile device operates according to the boundary recorded by the dashed line 803 .
  • d of FIG. 8 shows the overall system inaccuracy working from a mobile device when using the prior art map recording method. In d of Figure 8, the range between the dotted line 831 and the dotted line 821 may characterize the overall system inaccuracy working from the mobile device.
  • FIG. 9 shows a schematic diagram of analyzing the working error of the self-mobile device according to an embodiment of the present specification.
  • the solid line 901 is the actual working area boundary
  • the dashed line 902 and the dashed line 903 show the boundary recorded by the map generation method in the embodiment of this description
  • the range between the dashed line 902 and the dashed line 903 can represent the implementation of this specification Boundary recording inaccuracy for the map generation method in the example.
  • the range between the dotted line 921 and the dotted line 931 may represent the overall system inaccuracy when working from the mobile device based on the map generated by the map generation method in the embodiment of the present specification Spend. Since the inaccuracy of boundary recording is greatly reduced by using the map generation method in the embodiment of the present specification, the overall system inaccuracy of working from the mobile device is greatly reduced. It can be seen from FIG. 8 and FIG. 9 , since the inaccuracy of the boundary record of the map generation method in the embodiment of the present specification is close to zero, compared with the prior art, the overall system using the map generation method of the embodiment of the present specification is not The reduction in accuracy is close to 50%.
  • the geographic coordinates of a point and the relative coordinate data of multiple location points can generate a target map, and the relative coordinate data of multiple location points can be recorded through the positioning technology in millimeters, which can almost record the errors introduced by GPS or RTK and other positioning systems. Therefore, the total error of positioning can be effectively reduced, and the working accuracy of the self-mobile device that plans the route according to the generated map can be improved, which is beneficial to improve the user experience. For example, in some cases, it is possible to reduce the total positioning error by 30%, 40%, or even close to 50%, thereby increasing the working accuracy by 30%, 40%, or even close to 50%.
  • FIG. 10 shows a block diagram of the structure of the self-mobile device map generation system. As shown in FIG. 10, it includes: a first positioning device 101, a second positioning device 102 and a control module 103. The structure is described below. instruction.
  • the first positioning device 101 is configured to acquire first coordinate data of multiple position points from the working area boundary of the mobile device, and the positioning accuracy of the first positioning device 101 is greater than the positioning accuracy of the second positioning device 102 .
  • the control module 103 is connected in communication with the first positioning device 101 and the second positioning device 102 .
  • the second positioning device 102 is configured to determine second coordinate data of at least two of the plurality of position points. For example, the second positioning device 102 may acquire positioning signals of at least two position points among the multiple position points from the positioning system, and determine the second coordinate data of the at least two position points according to the positioning signals.
  • the control module 103 is configured to use the second coordinate data of the at least two position points to align the first coordinate data of the plurality of position points to the coordinate system where the second coordinate data is located, so as to generate a target map of the work area.
  • the second positioning device 102 may be detachably installed in the self-moving device.
  • the second positioning device 102 can also be used to obtain the position information of the self-moving device; work in the work area.
  • the second positioning apparatus 102 may be set independently from the mobile device.
  • the embodiments of this specification also provide an automatic working system. Since the principle of the automatic working system to solve the problem is similar to that of the method for generating a map from a mobile device, the implementation of the automatic working system can refer to the implementation of the method for generating a map from a mobile device, and the repetition will not be repeated.
  • the automatic working system may include: a self-moving device, a control module and a signal receiving device, and the structure will be described below.
  • the self-moving device may include a fuselage and a running gear.
  • the walking device can drive the self-moving equipment to move.
  • the control module may include a first control device mounted on the self-moving device.
  • the first control device can control the walking device to drive the self-moving device to move.
  • the signal receiving device may be electrically connected with the control module, and is configured to receive the first coordinate data of the plurality of position points of the working area boundary of the mobile device obtained by the first positioning device.
  • the signal receiving device may also be configured to receive second coordinate data of at least two position points among the plurality of position points acquired by the second positioning device.
  • the positioning accuracy of the first positioning device is greater than the positioning accuracy of the second positioning device.
  • the control module may be configured to use the second coordinate data of the at least two position points to align the first coordinate data of the plurality of position points to a coordinate system where the second coordinate data is located to generate a target map of the work area.
  • the second positioning device may be installed on the body of the self-moving device.
  • the second positioning device can also be used to determine the position data of the self-mobile device when working.
  • the first control device may also be configured to compare the position data with the coordinate data on the target map to control the self-mobile device to walk within the work area.
  • the first control device is further configured to obtain the distance between the mobile device and the boundary of the work area according to the position data and the coordinate data on the target map, and when it is determined that the distance is less than the first preset distance , which controls the self-moving device to return to the inside of the boundary to walk.
  • the first preset distance is greater than or equal to the deviation of the distance caused by the positioning error of the second positioning device.
  • the second positioning device when working from the mobile device, can be used to obtain the position data when working from the mobile device.
  • the first control device can determine the distance between the self-mobile device and the boundary of the work area according to the position data and the coordinate data on the target map. When the distance is less than the first preset distance, the first control device can control the self-mobile device to return to the inside of the boundary. walk. Since the position data when working from the mobile device is obtained by the second positioning device, when setting the first preset distance as the reference distance, the first preset distance is set to be greater than or equal to the positioning error of the second positioning device. The deviation from the distance between the mobile device and the work area boundary. By setting in this way, the misjudgment of whether the self-moving device is within the boundary due to the positioning error of the second positioning device can be avoided.
  • the signal receiving apparatus may be provided in a self-moving device.
  • control module may be provided in a self-moving device.
  • control module in this embodiment is equivalent to the control device 30 in FIG. 2 .
  • the control device 30 in FIG. 2 can realize the function of the first control device in the self-moving map generation system, that is, it can control the walking device to drive the self-moving device to move, and can determine the relationship between the self-moving device and the self-moving device according to the position data and the coordinate data on the target map.
  • the distance of the boundary of the working area when the distance is less than the first preset distance, control the self-mobile device to return to the boundary to walk.
  • the control device 30 in FIG. 2 can also use the second coordinate data of at least two position points to align the first coordinate data of the plurality of position points to the coordinate system where the second coordinate data is located, so as to generate a target map of the work area .
  • the embodiments of the present specification achieve the following technical effects: the first coordinate data of multiple position points on the working area boundary of the mobile device are acquired by the first positioning device, and the multiple position points are determined based on the positioning system.
  • the second coordinate data of at least two of the position points are used, and the target map is obtained by using the obtained second coordinate data of the at least two position points and the first coordinate data of the plurality of position points.
  • the positioning accuracy of the first positioning device is higher than the positioning accuracy of the positioning system, the accuracy of the map can be improved, and the working accuracy of the self-mobile device that plans the route according to the generated map can be improved, which is beneficial to improve the user experience.
  • the embodiment of this specification also provides a computer device.
  • the computer device may specifically include an input device 111 , a processor 112 , and a memory 113 .
  • the memory 113 is used for storing processor executable instructions.
  • the processor 112 executes the instructions, the steps of the method for generating a map from a mobile device described in any of the foregoing embodiments are implemented.
  • the input device may specifically be one of the main apparatuses for information exchange between the user and the computer system.
  • the input device may include a keyboard, a mouse, a camera, a scanner, a light pen, a handwriting input pad, a voice input device, etc.; the input device is used to input raw data and programs for processing these numbers into the computer.
  • the input device can also acquire and receive data transmitted from other modules, units, and devices.
  • the processor may be implemented in any suitable manner.
  • a processor may take the form of, for example, a microprocessor or a processor and a computer readable medium storing computer readable program code (eg software or firmware) executable by the (micro)processor, logic gates, switches, application specific integrated circuits ( Application Specific Integrated Circuit, ASIC), programmable logic controller and embedded microcontroller form, etc.
  • the memory may specifically be a memory device used for storing information in modern information technology. The memory can include multiple levels.
  • a circuit with a storage function that does not have a physical form is also called a memory, such as RAM, FIFO, etc.
  • the storage device with physical form is also called memory, such as memory stick, TF card, etc.
  • Embodiments of the present specification also provide a computer storage medium based on a method for generating a map from a mobile device, where the computer storage medium stores computer program instructions, which, when the computer program instructions are executed, implement the above-mentioned arbitrary embodiments.
  • the steps of a method for generating a map from a mobile device are not limited to a mobile device.
  • the above-mentioned storage medium includes but is not limited to random access memory (Random Access Memory, RAM), read-only memory (Read-Only Memory, ROM), cache (Cache), hard disk (Hard Disk Drive, HDD) Or a memory card (Memory Card).
  • the memory may be used to store computer program instructions.
  • the network communication unit may be an interface for performing network connection communication, which is set according to a standard specified by a communication protocol.
  • each module or each step of the above-mentioned embodiments of the present specification can be implemented by a general-purpose computing device, and they can be centralized on a single computing device, or distributed in multiple computing devices. network, they can optionally be implemented with program code executable by a computing device, so that they can be stored in a storage device and executed by the computing device, and in some cases, can be different from the The illustrated or described steps are performed in order, either by fabricating them separately into individual integrated circuit modules, or by fabricating multiple modules or steps of them into a single integrated circuit module. As such, embodiments of this specification are not limited to any particular combination of hardware and software.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

一种自移动设备(1)地图生成方法、系统和自动工作系统,其中,地图生成方法包括:获取自移动设备(1)的工作区域边界的多个位置点的第一坐标数据(S301);确定多个位置点中至少两个位置点的第二坐标数据(S302);利用至少两个位置点的第二坐标数据将多个位置点的第一坐标数据对准到第二坐标数据所在的坐标系统,以生成工作区域的目标地图(S303);其中,用于获取多个位置点的第一坐标数据的第一定位装置(101)的定位精度高于用于获取至少两个位置点的第二坐标数据的第二定位装置(102)的定位精度。地图生成方法可以生成自移动设备(1)的工作区域的地图,并且可以提高地图的精度,进而可以提高根据生成的地图规划路线的自移动设备(1)的工作精度,有利于改善用户的使用体验。

Description

自移动设备地图生成方法、系统和自动工作系统
本申请要求了申请日为2020年07月06日,申请号为202010639240.1的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及地图生成技术领域,特别涉及一种自移动设备地图生成方法、系统和自动工作系统。
背景技术
目前,执行诸如地板清洁和草坪切割等的家务功能的自移动设备是可以容易获得的消费者产品。自移动设备一般可以包括割草机器人、扫地机器人和自动吸尘器等。一些自移动设备使用诸如GPS(Global Positioning System,全球定位系统)、北斗卫星导航系统、GLONASS(Global Navigation Satellite System,格洛纳斯)系统和伽利略卫星导航系统之类的定位系统确定工作区域的边界的地图,并根据得到的地图进行路线规划,从而在工作区域内实现特定功能。
然而,由于这些定位系统的定位精度不高,导致得到的地图不准确,进而使得基于该地图工作的自移动设备不能在准确的工作范围内工作而导致一系列问题。
针对上述问题,目前尚未提出有效的解决方案。
发明内容
本说明书实施例提供了一种自移动设备地图生成方法、系统和自动工作系统,以解决现有技术中自移动设备工作区域的地图记录不准确的问题。
本说明书实施例提供了一种自移动设备地图生成方法,包括:获取自移动设备的工作区域边界的多个位置点的第一坐标数据;确定多个位置点中至少两个位置点的第二坐标数据;利用至少两个位置点的第二坐标数据将多个位置点的第一坐标数据对准到第二坐标数据所在的坐标系统,以生成工作区域的目标地图;其中,用于获取多个位置点的第一坐标数据的第一定位装置的定位精度高于用于获取至少两个位置点的第二坐标数据的第二定位装置的定位精度。
在一个实施例中,目标地图用于限定工作区域的边界,自移动设备通过第二定位装置获取位置信息,并根据位置信息确定在目标地图中的位置,以在边界内工作。
在一个实施例中,获取自移动设备的工作区域边界的多个位置点的第一坐标数据,包括:利用第一定位装置获取自移动设备沿着工作区域的边界移动时,多个位置点的第一坐标数据。
在一个实施例中,第一定位装置位于工作区域中的预设区域内。
在一个实施例中,在自移动设备沿着工作区域边界移动时,利用第一定位装置获取的多个位置点的第一坐标数据,包括:利用第一定位装置获取第一定位装置从第一位置移动至第二位置后,多个位置点的第一坐标数据,其中,第一位置与自移动设备之间存在障碍物,第二位置与自移动设备之间不存在障碍物。
在一个实施例中,至少两个位置点满足预设位置条件,预设位置条件为以下条件中的至少之一:至少两个位置点中的任两个位置点之间的距离大于第一预设距离;至少两个位置点中的任两个位置点与第一定位装置形成的角度大于预设角度;至少两个位置点中各位置点位于工作区域中的开阔区域内。
在一个实施例中,确定多个位置点中至少两个位置点的第二坐标数据,包括:利用第二定位装置从定位系统获取至少两个位置点对应的多个定位信号,其中,多个定位信号包括:在第二定位装置分别在至少两个位置点停留持续预设时间段时,从定位系统接收到的至少两个位置点对应的多个定位信号;根据多个定位信号,确定至少两个位置点的第二坐标数据。
在一个实施例中,定位系统包括卫星导航系统。
在一个实施例中,至少两个位置点包括至少三个位置点;相应地,利用至少三个位置点的第二坐标数据将多个位置点的第一坐标数据对准到第二坐标数据所在的坐标系统,以生成工作区域的目标地图。
在一个实施例中,第一定位装置包括以下之一:光学干涉仪、微波干涉仪和激光测距仪。
本说明书实施例还提供了一种自移动设备地图生成系统,包括:第一定位装置、第二定位装置、控制模块,其中:第一定位装置用于获取自移动设备的工作区域边界的多个位置点的第一坐标数据,且第一定位装置的定位精度大于第二定位装置的定位精度;控制模块与第一定位装置和第二定位装置通信连接;第二定位装置用于确定多个位置点中至少两个位置点的第二坐标数据;控制模块被配置为利用至少两个位置点的第二坐标数据,将多个位置点的第一坐标数据对准到第二坐标数据所在的坐标系统,以生成工作区域的目标地图。
在一个实施例中,第二定位装置可拆卸地安装于自移动设备中,第二定位装置安装于自移动设备时,还用于获取自移动设备的位置信息;自移动设备根据位置信息确定在目标地图中的位置,以在目标地图所限定的工作区域内工作。
本说明书实施例还提供了一种自动工作系统,包括自移动设备,自移动设备包括:机身;行走装置,带动自移动设备移动;自动工作系统还包括控制模块,控制模块包括安装于自移动设备的第一控制装置,第一控制装置,控制行走装置带动自移动设备移动,其特征在于,自动工作系统还包括:信号接收装置,与控制模块电连接,用于接收第一定位装置获取的自移动设备的工作区域边界的多个位置点的第一坐标数据;信号接收装置还用于接收第二定位装置获取的多个位置点中至少两个位置点的第二坐标数据;控制模块被配置为利用至少两个位置点的第二坐标数据,将多个位置点的第一坐标数据对准到第二坐标数据所在的坐标系统,以生成工作区域的目标地图;其中第一定位装置的定位精度大于第二定位装置的定位精度。
在一个实施例中第二定位装置用于安装在机身上,还用于确定自移动设备工作时的位置数据;第一控制装置还被配置为将位置数据与目标地图上的坐标数据对比,以控制自移动设备在工作区域内行走。
在一个实施例中,第一控制装置还被配置为根据位置数据与目标地图上的坐标数据,获取自移动设备与工作区域边界的距离,并在判断距离小于第一预设距离时,控制自移动设备返回边界内部行走。
在一个实施例中,第一预设距离大于或者等于第二定位装置的定位误差而引起的距离的偏差。
本说明书实施例还提供一种计算机设备,包括处理器以及用于存储处理器可执行指令的存储器,所述处理器执行所述指令时实现上述任意实施例中所述的自移动设备地图生成方法的步骤。
本说明书实施例还提供一种计算机可读存储介质,其上存储有计算机指令,所述指令被执行时实现上述任意实施例中所述的自移动设备地图生成方法的步骤。
在本说明书实施例中,提供了一种自移动设备地图生成方法,通过获取自移动设备的工作区域边界的多个位置点的第一坐标数据并确定多个位置点中至少两个位置点的第二坐标数据,可以基于多个位置点的第一坐标数据和至少两个位置点的第二坐标数据,生成工作区域的目标地图。此外,由于第一定位装置的定位精度高于定位系统的定位精度,因而可以提高地图的精度,进而可以提高根据生成的地图规划路线的自移动设备的工作精度,有利于改善用户的使用体验。通过上述方案解决了现有的自移动设备的工作区域地图误差较大的技术问题,达到了有效提升地图准确度的技术效果。
附图说明
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,并不构成对本申请的限定。在附图中:
图1示出了本说明书一实施例中的自移动设备的示意图;
图2示出了本说明书一实施例中的自移动设备的模块图;
图3示出了本说明书一实施例中的自移动设备地图生成方法的流程图;
图4示出了本说明书一实施例中利用第一定位装置测量工作区域的多个相对坐标的示意图;
图5示出了本说明书一实施例中工作区域中存在障碍物的示意图;
图6示出了本说明书一实施例中在自移动设备与第一定位装置之间存在障碍物的情况下,利于第一定位装置测量第一定位装置从第一位置移动到第二位置后,工作区域的多个相对坐标的示意图;
图7示出了本说明书一实施例中根据位置点A和位置点B调整相对地图的方向后得到的目标地图的示意图;
图8示出了现有技术中的自移动设备工作误差分析示意图;
图9示出了本说明书一实施例中的自移动设备工作误差分析示意图;
图10示出了本说明书一实施例中的自移动设备地图生成系统的示意图;
图11示出了本说明书一实施例中的计算机设备的示意图。
具体实施方式
下面将参考若干示例性实施方式来描述本申请的原理和精神。应当理解,给出这些实施方式仅仅是为了使本领域技术人员能够更好地理解进而实现本申请,而并非以任何方式限制本申请的范围。相反,提供这些实施方式是为了使本申请公开更加透彻和完整,并且能够将本公开的范围完整地传达给本领域的技术人员。
本领域的技术人员知道,本申请的实施方式可以实现为一种系统、装置设备、方法或计算机程序产品。因此,本申请公开可以具体实现为以下形式,即:完全的硬件、完全的软件(包括固件、驻留软件、微代码等),或者硬件和软件结合的形式。
请参考图1和图2,图1示出了本说明书一实施例中的自移动设备的示意图,图2示出了本说明书一实施例中的自移动设备的模块图。如图1和图2,自移动设备1可以包括信号接收装置10、电源装置20、控制装置30、行走装置40、工作装置50、机身60。电源装置20为自移动设备1的各个装置提供工作的能量。控制装置30是自移动设备1的控制中枢,与其他各个装置相连接,接收其他各个装置发来的信息,并控制自移动设备1执行行走、工作、返回基站以及充电等各类动作或任务。控制装置30具体可以包括评估单元、存储器等。信号接收装置10与控制装置30电连接,用于将接收到的信号发送给控制装置30;此处信号接收装置10可以与控制装置30单独设置,也可以是控制装置30的一部分。
行走装置40包括位于自移动设备1内的马达和由所述马达驱动的滚轮,用于接收控制装置的指令,由电源装置20提供能量,带动自移动设备1在地面或者其他工作表面自动行走。在本实施例中,行走装置40具体包括位于自移动设备1两侧的两个驱动轮,分别连接在两个驱动轮上的两个驱动马达,以及位于自移动设备1前部的一个或两个支撑轮。这样的设置能够通过控制两个驱动轮的速度和速度差,来控制行走装置40的行驶速度和方向,使得自移动设备1的行走和转向灵活而准确。行走装置40可以有其他的组成形式,例如其可以为驱动轮以及与之连接的独立驱动马达和独立转向马达;还可以为履带式等其他形式。
工作装置50用于执行自移动设备1所负责的具体工作。工作装置50通常包括工作马达和被工作马达驱动的工作单元。若自移动设备1为扫雪机,则工作单元为执行扫雪工作的扫雪部件;若自移动设备1为自动割草机,则工作单元为执行切割工作的切割部件如:输出轴和刀盘、刀片等,在此不再赘述。以下实施例以自动割草机为例展开说明。
在一个场景示例中,自动割草机可以围绕草坪进行移动并且在其行进于草坪时对草进行切割。为了准备使用自动割草机,需定义待割草的草坪的边界。在一些实施方式中,用户可以通过附接至自动割草机的手柄或通过遥控器推动割草机来定义边界。在推动割草机定义边界时,可以利用第一定位装置(例如,光学干涉仪等)测量割草机相对于第一定位装置的第一坐标数据,第一坐标数据可以包括多个相对坐标,即草坪边界上的多个位置点的相对坐标。第一定位装置可以将测量的多个位置点的相对坐标发送至自动割草机中的信号接收装置。利用第二定位装置(例如,GPS定位装置、RTK定位装置等)测量多个位置点中至少两个位置点的第二坐标数据,其中第二坐标数据为自动割草机在工作区域工作时的本地坐标系统下的至少两个位置点的坐标数据,该坐标数据可以是相对坐标数据,也可以是绝对坐标数据。其中,绝对坐标数据可以是地理坐标。
第二定位装置可拆卸地安装在自动割草机中。当第二定位装置与自动割草机分离时,可手持第二定位装置到达多个位置点中至少两个位置点,并在该至少两个位置点时,第二定位装置通过接收定位系统发送的定位信号以确定至少两个位置点的第二坐标数据,并将其发送给自动割草机的信号接收装置。当第二定位装置安装在自动割草机上时,自动割草机移动至该多个位置点中至少两个位置点所在的位置。在割草机位于至少两个位置点所在的位置时,第二定位装置通过接收定位系统发送的定位信号以确定至少两个位置点的第二坐标数据,并将其发送给自动割草机的信号接收装置。信号接收装置与控制装置电连接,控制装置根据从信号接收装置获取的第二坐标数据将第一坐标数据对准到第二坐标数据所在的坐标系统即自动割草机工作的本地坐标系下,以生成工作区域的目标地图。其中,第一定位装置的定位精度大于第二定位装置的定位精度。自动割 草机中的控制装置可以根据生成的目标地图控制自移动设备在草坪上移动并对草坪上的草进行切割,从而完成指定的割草任务。
更为具体地,自动割草机可以根据用户设定的工作区域来规划路线,使得自动割草机被限制在草坪或者其他适当区域之内,避免损坏院子的非植草区域或者侵入到邻居的领地。
工作区域边界上的多个位置点的第一坐标数据可以包括工作区域的边界上多个位置点中各位置点相对于基准点的坐标。其中,基准点可以是在工作区域内或工作区域外选取的用来作为坐标原点的位置。多个位置点的坐标数据可以为工作区域的边界上多个位置点在以基准点为坐标原点的坐标系中的坐标。基准点可以包括一个或多个基准点,工作区域的边界上的多个位置点可以包括第一多个位置点和第二多个位置点。例如,多个位置点的坐标数据可以包括边界上的第一多个位置点相对于第一基准点的相对坐标和边界上的第二多个位置点相对于第二基准点的相对坐标。
在一些实施方式中,可以通过第一定位装置获取工作区域边界的多个位置点的第一坐标数据,即测量边界上多个位置点中各位置点相对于第一定位装置的坐标。第一定位装置所在的位置即为基准点。即,可以以第一定位装置所在的位置为原点,建立坐标系,测量工作区域边界上的多个位置点中各位置点在该坐标系中的坐标。
自动割草机可以从第一定位装置获取工作区域边界的多个位置点的第一坐标数据。在一些实施方式中,在第一定位装置测量到工作区域边界的多个位置点的第一坐标数据之后,第一定位装置可以自动将测得的第一坐标数据发送至自动割草机。在一些实施方式中,自动割草机可以向第一定位装置发送获取请求,第一定位装置可以响应于获取请求将测得的第一坐标数据发送至自动割草机。
在一些实施方式中,第二定位装置可以是与自动割草机独立设置的装置,自动割草机可以向第二定位装置发送获取请求,第二定位装置响应于获取请求将多个位置点中的至少两个位置点的第二坐标数据发送至自动割草机。又例如,第二定位装置在确定了至少两个位置点的第二坐标数据之后,可以自动将确定的第二坐标数据发送至自动割草机。
其中,用于获取多个位置点的第一坐标数据的第一定位装置的定位精度高于用于获取至少两个位置点的第二坐标数据的第二定位装置的定位精度。例如,第二定位装置的定位精度是厘米级的,而第一定位装置的定位精度是毫米级的。由于第一定位装置的定位精度高于第二定位装置的定位精度,利用第二定位装置获取的多个位置点中的至少两个位置点的第二坐标数据将多个位置点的第一坐标数据对准到第二坐标数据所在的坐标系统,生成的工作区域的地图的精度大于单纯的利用第二定位装置获取的地图的精度,进而可以提高根据生成的地图规划路线的自移动设备的工作精度,有利于改善用户的使用体验。另外,相较于单独利于定位精度高的第一定位装置,本实施方式中的方法的定位算法简单,可以节约成本。
在本说明书一些实施例中,第一定位装置可以包括以下之一:光学干涉仪、微波干涉仪和激光测距仪。其中,第一定位装置的定位精度较高。例如,第一定位装置的精度可以为毫米级或微米级等。其中,激光测距仪可以是二维激光测距仪或三维激光测距仪。光学干涉仪、微波干涉仪和二维或三维激光测距仪均可以测量距离和角度。上述实施例中的第一定位装置仅是示例性的,本说明书不限于此。
在本说明书一些实施例中,定位系统包括卫星定位系统,具体地,可以包括以下之一:北斗卫星导航系统、GLONASS系统、伽利略卫星导航系统、GPS系统、DGPS系统、RTK系统和ARTK系统。一般情况下,定位系统的定位精度低于第一定位装置的测量精度。例如,定位系统的精度可以为米级或厘米级等。上述实施例中的定位系统仅是示例性的,本说明书不限于此。
在本说明书一些实施例中,第一定位装置可以位于工作区域的预设区域,在一实施例中,该预设区域为工作区域的中心区域内。其中,中心区域是指靠近工作区域中心的区域。通过将第一定位装置设置在靠近区域中心的位置,可以有效减小多个位置点的第一坐标数据的测量误差,提高生成的地图的精度。
在一些实施方式中,对于规则的工作区域,例如圆形工作区域,工作区域的中心即为圆心。工作区域的中心区域可以为距离圆心小于预设距离的圆形区域。其中,预设距离可以根据实际情况进行设置,例如设置为工作区域的半径的二分之一、三分之一等。
在一些实施方式中,对于非规则的工作区域,工作区域的中心可以为该区域对应形状的重心。例如,工作区域的中心区域可以为距离中心小于预设距离的圆形区域。又例如,工作区域可以为与工作区域的形状相同但尺寸缩小的区域。
在本说明书一些实施例中,在自移动设备沿着工作区域的边界移动时利用第一定位装置获取多个位置点的第一坐标数据,可以包括:利用第一定位装置获取第一定位装置从第一位置移动至第二位置后,多个位置点的第一坐标数据,其中,第一位置与自移动设备之间存在障碍物,第二位置与自移动设备之间不存在障碍物。
具体的,在自移动设备沿着边界移动时,可以利用第一定位装置来获取工作区域边界上多个位置点的第一坐标数据,即,测量自移动设备相对于第一定位装置的多个相对坐标。第一定位装置可以设置在第一位置。第一位置可以位于工作区域内,也可以位于工作区域外。在测量自移动设备的一个相对坐标之前,可以先确定第一位置与第一定位装置之间是否存在障碍物。
在确定第一位置与第一定位装置之间不存在障碍物的情况下,可以利用第一定位装置测量自移动设备相对于第一位置的相对坐标。
在确定第一位置与第一定位装置之间存在障碍物的情况下,可以将第一定位装置从第一位置移动至第二位置。其中,第二位置与自移动设备之间不存在障碍物。第二位置可以位于工作区域内,也可以位于工作区域外。之后,利用移动后的第一定位装置测量自移动设备相对于第二位置的相对坐标。
在一些实施方式中,在第一定位装置位于第一位置时,可以测量工作区域的边界上的第一组位置点相对于第一位置的第一组相对坐标。其中,第一组位置点中各位置点与第一位置之间不存在障碍物。在第一定位装置位于第二位置时,可以测量工作区域边界上的第二组位置点相对于第二位置的第二组相对坐标。其中,第二组位置点中各位置点与第二位置之间不存在障碍物。第一组位置点和第二组位置点都包括选取的至少两个位置点。可以根据第一组相对坐标和至少两个位置点的第二坐标数据,确定第一组位置点在第二坐标数据所在的坐标系统的坐标数据。可以根据第二组相对坐标和至少两个位置点的第二坐标数据,确定第二组位置点在第二坐标数据所在的坐标系统的坐标数据。之后,可以根据第一组位置点在第二坐标数据所在的坐标系统的坐标数据和第二组位置点在第二坐标数据所在的坐标系统的坐标数据,生成工作区域的目标地图。
在一些实施方式中,在第一定位装置位于第一位置时,可以测量工作区域的边界上的第一组位置点相对于第一位置的第一组相对坐标。其中,第一组位置点中各位置点与第一位置之间不存在障碍物。在第一定位装置位于第二位置时,可以测量工作区域边界上的第二组位置点相对于第二位置的第二组相对坐标。其中,第二组位置点中各位置点与第二位置之间不存在障碍物。还可以测量第二位置相对于第一位置的相对坐标。之后,可以基于第二组相对坐标以及第二位置相对于第一位置的相对坐标,确定第二组位置点相对于第一位置的相对坐标。其中,第一组位置点可以包括选取的至少两个位置点。之后,可以基于第一组相对坐标和第二组位置点相对于第一位置的相对坐标以及至少两个位置点的第二坐标数据,确定第一组位置点在第二坐标数据所在的坐标系统的坐标数据和第二组位置点在第二坐标数据所在的坐标系统的坐标数据。之后,可以根据第一组位置点在第二坐标数据所在的坐标系统的坐标数据和第二组位置点在第二坐标数据所在的坐标系统的坐标数据,生成工作区域的目标地图。
上述实施方式中,以第一定位装置设置在第一位置和第二位置为例进行说明,但本说明书不限于此。可以理解的时,上述实施方式可以适应性地推广至第一定位装置的位置包括三个位置以及三个以上位置的情况。
在其他实施方式中,可以利用基于雷达的第一定位装置来绕过障碍物,以测量工作区域边界的多个位置点的第一坐标数据。
在本说明书的实施例中,可以从多个位置点选取至少两个位置点,之后,确定该至少两个位置点的第二坐标数据。其中,选取的至少两个位置点满足预设位置关系。在一实施例中,预设位置关系为至少两个位置点中的任两个位置点之间的距离大于第一预设距离,其中,第一预设距离可以根据实际工作区域进行设置。通过选取彼此之间的距离较远的至少两个位置点,以提高目标地图精度。通过选取距离第一定位装置较远的至少两个位置点,以提高目标地图精度;在再一实施例中,预设位置关系为至少两个位置点中的任两个位置点与第一定位装置形成的角度大于预设角度,其中,两个位置点与第一定位装置形成的角度即为第一位置点相对于第一定位装置的第一角度与第二位置点相对于第一定位装置的第二角度之差的绝对值。其中,预设角度可以设置为100°、120°、150°或者180°等。当然,预设角度也可以设置为其他合适的角度。在其他实施方式中,预设角度可以根据至少两个位置点的个数进行设置。例如,在至少两个位置点包括5个位置点的情况下,预设角度可以设置为60°。通过选取彼此之间的角度较大的至少两个位置点可以提高目标地图精度;在再一实施例中,预设位置关系为至少两个位置点中各位置点位于工作区域中的开阔区域内。其中,开阔区域可以指工作区域中定位系统的信号较强的区域,例如可以指工作区域中没有遮蔽物的区域。通过选取位于开阔区域内的至少两个位置点,可以提高至少两个位置点的第二坐标数据的准确度,进而提高目标地图的精度。
在本说明书一些实施例中,确定多个位置点中的至少两个位置点的第二坐标数据,可以包括:利用第二定位装置从定位系统获取至少两个位置点中各位置点对应的多个定位信号,其中,多个定位信号包括:在第二定位装置分别在至少两个位置点中各位置点停留持续预设时间段时从定位系统接收到的各位置点对应的多个定位信号;根据各位置点对应的多个定位信号,确定各位置点对应的第二坐标数据。例如,预设时间段可以设置为1分钟、3分钟或5分钟等。在第二定位装置在至少两个位置点中各位置点停留持续预设时间段的过程中,第二定位装置可以接收定位系统发送的各位置点对应的多个定位信号,并根据至少两个位置点中各位置点对应的多个定位信号, 确定各位置点对应的多个坐标。在确定各位置点对应的多个坐标之后,第二定位装置可以根据各位置点对应的多个坐标,确定各位置点对应的第二坐标数据。例如,利用求均值的方法或者利用最小二乘或者采用随机采样一致性方法,根据各位置点对应的多个坐标确定各位置点的第二坐标数据。
上述实施方式中,由第二定位装置根据至少两个位置点中各位置点对应的多个定位信号确定各位置点对应的第二坐标数据,之后,自动割草机可以直接从第二定位装置获取各位置点对应的第二坐标数据。本申请不限于此。在其他实施方式中,自动割草机可以根据第二定位装置获取的各位置点对应的多个坐标,确定各位置点对应的第二坐标数据。
通过上述方式,通过控制第二定位装置在各位置点停留较长时间,获取各位置点对应的多个定位信号,确定各位置点对应的多个坐标,之后根据各位置点的多个坐标确定各位置点最终的第二坐标数据,可以有效提高地理坐标的准确性,进而提高地图准确度。
在本说明书一些实施例中,至少两个位置点包括第一位置点和第二位置点;相应地,利用至少两个位置点的第二坐标数据将多个位置点的第一坐标数据对准到第二坐标数据所在的坐标系统,以生成工作区域的目标地图,可以包括:根据第一位置点和第二位置点的第二坐标数据确定多个位置点在第二坐标数据所在的坐标系统中的坐标,生成工作区域的目标地图。
具体的,在至少两个位置点包括第一位置点和第二位置点的情况下,可以根据第一位置点和第二位置点的地理坐标(即,第二坐标数据)和工作区域边界上多个位置点的第一坐标数据(即,多个位置点的相对坐标),确定多个位置点中各位置点对应的地理坐标。例如,对于某一个位置点,可以根据该位置点的相对坐标、第一位置点的地理坐标和相对坐标、第二位置点的地理坐标和相对坐标,计算出该位置点对应的地理坐标。之后,可以基于多个位置点中各位置点对应的地理坐标,生成工作区域的目标地图。
在本说明书一些实施例中,至少两个位置点包括至少三个位置点;相应地,利用至少三个位置点的第二坐标数据将多个位置点的第一坐标数据对准到第二坐标数据所在的坐标系统,以生成工作区域的目标地图。
具体的,在至少两个位置点包括至少三个位置点的情况下,可以根据至少三个位置点的地理坐标(即,第二坐标数据)和工作区域边界上多个位置点的第一坐标数据(即,多个位置点的相对坐标),确定多个位置点中各位置点对应的地理坐标。例如,对于一位置点,可以根据该位置点的相对坐标以及至少三个位置点的地理坐标和相对坐标,计算出该位置点对应的地理坐标。之后,可以根据多个位置点中各位置点对应的地理坐标,生成工作区域的目标地图。
在本说明书一些实施例中,至少三个位置点包括第一位置点、第二位置点和第三位置点;相应地,根据第一位置点的地理坐标和第二位置点的地理坐标,确定多个位置点的第一坐标;根据第一位置点的地理坐标和第三位置点的地理坐标,确定多个位置点的第二坐标;根据第二位置点的地理坐标和第三位置点的地理坐标,确定多个位置点的第三坐标;基于第一坐标、第二坐标和第三坐标,确定多个位置点的地理坐标。
具体的,在至少三个位置点包括第一位置点、第二位置点和第三位置点的情况下,对于一个位置点,可以根据该位置点的相对坐标、第一位置点和第二位置点的相对坐标和地理坐标,确定该位置点对应的第一坐标。其中,第一坐标可以为第一地理坐标。可以根据该位置点的相对坐标、第一位置点和第三位置点的相对坐标和地理坐标,确定该位置点对应的第二坐标。其中,第二坐 标可以为第二地理坐标。可以根据该位置点的相对坐标、第二位置点和第三位置点的相对坐标和地理坐标,确定该位置点对应的第三坐标。其中,第三坐标可以为第三地理坐标。
在确定该位置点对应的第一坐标、第二坐标和第三坐标之后,可以基于该位置点对应的第一坐标、第二坐标和第三坐标确定该位置点对应的地理坐标。例如,可以利用求均值的方法,基于该位置点对应的第一坐标、第二坐标和第三坐标确定该位置点的地理坐标。例如,可以利用最小二乘法,基于该位置点对应的第一坐标、第二坐标和第三坐标确定该位置点的地理坐标。例如,可以利用随机采样一致性方法,基于该位置点对应的第一坐标、第二坐标和第三坐标确定该位置点的地理坐标。上述实施例中方法,基于至少三个位置点的地理坐标来确定相对地图上多个位置点中各位置点的地理坐标,可以有效提高确定的地理坐标的准确度。
可以理解的是,上述方法可以扩展至三个以上位置点的情况,可以基于三个以上位置点中的任两个位置点的地理坐标确定多个位置点中各位置点对应的地理坐标,得到各位置点对应的多个地理坐标,并基于各位置点对应的多个地理坐标确定各位置点对应的最终地理坐标。
在本说明书一些实施例中,第二定位装置还用于确定自移动设备工作时的位置数据;控制装置还用于将位置数据与目标地图上的坐标数据对比,以控制自移动设备在工作区域内行走。
具体的,第二定位装置可以位于自移动设备中,在自移动设备工作时,第二定位装置可以确定自移动设备的位置数据。例如,在自移动设备工作时,第二定位装置可以从定位系统获取定位信号,并根据定位信号确定自移动设备的位置数据。控制装置可以从第二定位装置实时获取自移动设备的位置数据,并将获得的位置数据与目标地图中的坐标数据进行对比,并根据对比结果控制自移动设备在工作区域内行走。
示例性的,控制装置可以实时向第二定位装置发送获取请求,第二定位装置可以响应于获取请求将确定的位置数据发送至控制装置。又例如,第二定位装置可以自动地实时发送确定的位置数据发送至控制装置。之后,控制装置可以基于获得的自移动设备的位置数据与生成的工作区域的目标地图确定自移动设备是否位于工作区域的边界内,在确定自移动设备位于工作区域的边界上或边界外时,控制自移动设备移动至工作区域边界内行走。
在本说明书一些实施例中,控制装置还可以用于根据位置数据与目标地图上的坐标数据,计算自移动设备与工作区域边界的距离,并在判断距离小于第一预设距离时,控制自移动设备沿边界内部行走。
具体的,控制装置可以根据自移动设备工作时的位置数据与目标地图,计算出自移动设备与工作区域边界的距离。控制装置可以判断距离是否小于第一预设距离,并且在判断出距离小于第一预设距离的情况下,控制自移动设备沿边界内部行走。其中,第一预设距离可以是控制装置中默认的距离,也可以是由用户根据实际需求预先设定的距离。示例性的,第一预设距离可以为0.1m、0.2m或0.5m。
下面结合附图3-图9进行说明,然而,值得注意的是,该具体实施例仅是为了更好地说明本说明书,并不构成对本说明书的不当限定。
本说明书实施例提供了一种自移动设备地图生成方法,图3示出了本说明书一实施例中自移动设备地图生成方法的流程图。虽然本说明书提供了如下述实施例或附图所示的方法操作步骤或装置结构,但基于常规或者无需创造性的劳动在所述方法或装置中可以包括更多或者更少的操作步骤或模块单元。在逻辑性上不存在必要因果关系的步骤或结构中,这些步骤的执行顺序或装置 的模块结构不限于本说明书实施例描述及附图所示的执行顺序或模块结构。所述的方法或模块结构的在实际中的装置或终端产品应用时,可以按照实施例或者附图所示的方法或模块结构连接进行顺序执行或者并行执行(例如并行处理器或者多线程处理的环境,甚至分布式处理环境)。
具体地,如图3所示,本说明书一种实施例提供的自移动设备地图生成方法可以包括以下步骤。
步骤S301,获取自移动设备的工作区域边界的多个位置点的第一坐标数据。
自移动设备(例如自动割草机)可以根据用户设定的工作区域来规划路线,使得自移动设备被限制在草坪或者其他适当区域之内,避免损坏院子的非植草区域或者侵入到邻居的领地。
工作区域边界上的多个位置点的第一坐标数据可以包括工作区域的边界上多个位置点中各位置点相对于基准点的坐标。其中,基准点可以是在工作区域内或工作区域外选取的用来作为坐标原点的位置。在一些实施方式中,可以通过第一定位装置获取工作区域边界的多个位置点的第一坐标数据,即测量边界上多个位置点中各位置点相对于第一定位装置的坐标。第一定位装置所在的位置即为基准点。即,可以以第一定位装置所在的位置为原点,建立坐标系(例如,极坐标系),测量工作区域边界上的多个位置点中各位置点在该坐标系中的坐标(例如,极坐标中的角度和距离)。
自移动设备可以从第一定位装置获取自移动设备的工作区域边界的多个位置点的第一坐标数据。在一些实施方式中,在第一定位装置测量到工作区域边界的多个位置点的第一坐标数据之后,第一定位装置可以自动将测得的第一坐标数据发送至自移动设备。在一些实施方式中,自移动设备可以向第一定位装置发送获取请求,第一定位装置可以响应于获取请求将测得的第一坐标数据发送至自移动设备。
步骤S302,确定多个位置点中至少两个位置点的第二坐标数据。
在一些实施方式中,利用第二定位装置获取多个位置点中至少两个位置点的第二坐标数据。其中第二定位装置可以是GPS定位装置或者RTK定位装置或者ARTK定位装置或者DGPS定位装置等。当然,第二定位装置也可以是beacon(信标)定位模块,例如超声波beacon、UWB beacon等,在此不做限制。
在一些实施方式中,第二定位装置可以是与自移动设备独立设置的装置,也可以设置于自移动设备。自移动设备可以从第二定位装置获取多个位置点中至少两个位置点的第二坐标数据。例如,自移动设备可以向第二定位装置发送获取请求,第二定位装置响应于获取请求将第二坐标数据发送至自移动设备。又例如,第二定位装置在确定了至少两个位置点的第二坐标数据之后,自动将数据送至自移动设备。
其中,第二坐标数据可以是相对坐标,也可以是绝对坐标。其中,绝对坐标可以是地理坐标。其中,地理坐标可以是用纬度和经度表示地面点位置的球面坐标。当然,可以使用其它类型的地理坐标。
在一些实施方式中,可以利用beacon定位模块获取多个位置点中的至少两个位置点的相对坐标,利用该至少两个位置点的相对坐标将多个位置点的第一坐标数据对准到该相对坐标数据所在的坐标系统,以生成工作区域的目标地图。
在一些实施方式中,可以利用GPS定位装置或者RTK定位装置或者ARTK定位装置或者DGPS定位装置获取多个位置点中的至少两个位置点的绝对坐标,利用该至少两个位置点的绝对 坐标将多个位置点的第一坐标数据对准到该绝对坐标数据所在的坐标系统,以生成工作区域的目标地图。
其中,用于获取多个位置点的第一坐标数据的第一定位装置的定位精度高于用于获取至少两个位置点的第二坐标数据的第二定位装置的定位精度。
步骤S303,利用至少两个位置点的第二坐标数据将多个位置点的第一坐标数据对准到第二坐标数据所在的坐标系统,以生成工作区域的目标地图。
在得到多个位置点的第一坐标数据和多个位置点中至少两个位置点的第二坐标数据之后,地图生成装置可以基于多个位置点的第一坐标数据和至少两个位置点的第二坐标数据,确定多个位置点在第二坐标数据所在的坐标系统中的坐标,以生成工作区域的目标地图。其中,工作区域的目标地图可以包括工作区域的边界上的多个位置点中各位置点的第二坐标数据。
例如,对于工作区域上的目标位置点,地图生成装置可以基于该目标位置点的相对坐标和至少两个位置点的地理坐标和相对坐标,确定该目标位置点的地理坐标。又例如,地图生成装置可以基于多个位置点的第一坐标数据生成工作区域的相对地图,之后可以基于至少两个位置点中各位置点对应的地理坐标调整相对地图的方向,使得相对地图成为目标地图。
在一些实施方式中,在生成工作区域的目标地图之后,自移动设备即可根据工作区域的目标地图规划工作路线,完成用户指定的工作任务。
上述实施例中的方法,通过第一定位装置来获取自移动设备的工作区域边界上多个位置点的第一坐标数据,基于定位系统确定多个位置点中的至少两个位置点的第二坐标数据,并利用得到的至少两个位置点的第二坐标数据和多个位置点的第一坐标数据,得到目标地图。此外,由于第一定位装置的定位精度高于第二定位装置的定位精度,因而可以提高地图的精度,进而可以提高根据生成的地图规划路线的自移动设备的工作精度,有利于改善用户的使用体验。
在本说明书的一些实施例中,自移动设备通过第二定位装置获取位置信息,并根据位置信息确定在目标地图中的位置,以在边界内工作。
在本说明书一些实施例中,可以利用第一定位装置获取自移动设备沿着工作区域的边界移动时,多个位置点的第一坐标数据,即测量边界上多个位置点中各位置点相对于第一定位装置的坐标。
在本说明书的一些实施例中,第一定位装置位于工作区域中的预设区域内。在一实施例中,该预设区域为工作区域的中心区域内。其中,中心区域是指靠近工作区域中心的区域。通过将第一定位装置设置在靠近区域中心的位置,可以有效减小多个位置点的第一坐标数据的测量误差,提高生成的地图的精度。
在本说明书的一些实施例中,可以从多个位置点选取至少两个位置点,之后,确定该至少两个位置点的第二坐标数据。其中,选取的至少两个位置点满足预设位置关系。在一实施例中,预设位置关系为至少两个位置点中的任两个位置点之间的距离大于第一预设距离。在再一实施例中,预设位置关系为至少两个位置点中的任两个位置点与第一定位装置形成的角度大于预设角度,其中,两个位置点与第一定位装置形成的角度即为第一位置点相对于第一定位装置的第一角度与第二位置点相对于第一定位装置的第二角度之差的绝对值。在再一实施例中,预设位置关系为至少两个位置点中各位置点位于工作区域中的开阔区域内。其中,开阔区域可以指工作区域中 定位系统的信号较强的区域,例如可以指工作区域中没有遮蔽物的区域。通过上述方式可以提高目标地图的精度。
在本说明书一些实施例中,确定多个位置点中的至少两个位置点的第二坐标数据,可以包括:利用第二定位装置从定位系统获取至少两个位置点中各位置点对应的多个定位信号,其中,多个定位信号包括:在第二定位装置分别在至少两个位置点中各位置点停留持续预设时间段时从定位系统接收到的各位置点对应的多个定位信号;根据各位置点对应的多个定位信号,确定各位置点对应的第二坐标数据。
在本说明书一些实施例中,至少两个位置点可以包括至少三个位置点,至少两个位置点包括至少三个位置点;相应地,利用至少三个位置点的第二坐标数据将多个位置点的第一坐标数据对准到第二坐标数据所在的坐标系统,以生成工作区域的目标地图。
具体的,可以分别基于至少三个位置点中的任两个位置点的第二坐标数据和多个位置点的第一坐标数据确定多个位置点在第二坐标数据所在的坐标系统的坐标数据,得到多个位置点中各位置点对应的多个坐标数据。之后,基于各位置点对应的多个坐标数据,利用求均值、最小二乘法或者随机采样一致性方法来确定各位置点在第二坐标数据所在的坐标系统中的最终坐标数据,生成工作区域的目标地图。通过上述方式,可以有效提高生成的地图的精度。
在本说明书一些实施例中,第一定位装置可以包括以下之一:光学干涉仪、微波干涉仪和激光测距仪。
在本说明书一些实施例中,定位系统可以包括以下之一:北斗卫星导航系统、GLONASS系统、伽利略卫星导航系统、GPS系统、DGPS系统、RTK系统和ARTK系统。
在本说明书一些实施例中,在自移动设备沿工作区域的边界行走时,利用第一定位装置(例如,光学或微波干涉仪)测量自移动设备的工作区域的边界上的多个位置点的相对坐标,将得到多个相对坐标(角度,距离)。
请参考图4,示出了利用第一定位装置101测量工作区域边界C上多个位置点的相对坐标的示意图。在图4中,光学或微波干涉仪101位于工作区域的中心区域。光学或微波干涉仪101可以测量边界C上的多个位置点相对于光学或微波干涉仪的相对坐标。其中,多个位置点包括位置点A和位置点B。位置点A和位置点B的第二坐标数据可以利用第二定位装置确定。
请参考图5,示出了工作区域中存在障碍物的示意图。在图5中,光学或微波干涉仪位于第一位置E。在第一位置E与工作区域边界C上的部分位置点之间存在障碍物O。在这种情况下,可以利用基于雷达的光学或微波干涉仪来绕过障碍物O。还可以控制光学或微波干涉仪从第一位置移动至第二位置。
请参考图6,图6示出了在自移动设备与光学或微波干涉仪之间存在障碍物的情况下控制光学或微波干涉仪从第一位置E移动到第二位置F的示意图。在图6中,对于工作区域的边界C上的与第一位置E之间存在障碍物O的情况下位置点的相对坐标的测量,可以将光学或微波干涉仪从第一位置E移动至第二位置F。利用移动后的光学或微波干涉仪测量边界C上的这些位置点相对于第二位置F的相对坐标。
请参考图7,图7示出了本说明书一实施例中根据位置点A和位置点B调整相对地图的方向后得到的目标地图的示意图。自移动设备可以根据多个位置点的相对坐标生成工作区域的相对地图,并根据至少两个位置点的地理坐标调整相对地图的方向,使得相对地图成为目标地图。
请参考图8,图8示出了现有技术中的自移动设备工作误差分析示意图。其中,现有技术中的自移动设备工作误差是指自移动设备基于采用现有技术中的地图生成方法生成的地图进行工作时的误差。其中,现有技术中的地图生成方法可以是仅采用第二定位装置生成的地图,例如基于GPS或RTK系统生成的地图。图8的a示出了现有技术中的地图生成方法的边界记录不准确度。在图8的a中,实线801为实际工作区域边界,虚线802和虚线803示出了现有技术中的地图生成方法记录的边界,虚线802和虚线803之间的范围可以表征边界记录不准确度。图8的b示出了当自移动设备依据虚线802记录的边界工作时的自移动设备工作不准确度。图8的b中的点虚线811和点虚线821之间的范围可以表征当自移动设备依据虚线802记录的边界工作时的自移动设备工作不准确度。图8的c示出了当自移动设备依据虚线803记录的边界工作时的自移动设备工作不准确度。图8的c中的点虚线812和831之间的范围可以表征当自移动设备依据虚线803记录的边界工作时的自移动设备工作不准确度。图8的d示出了采用现有技术中的地图记录方法时自移动设备工作的总体系统不准确度。在图8的d中,点虚线831和点虚线821之间的范围可以表征自移动设备工作的总体系统不准确度。
请参考图9,图9示出了本说明书一实施例中的自移动设备工作误差分析示意图。在图9中,实线901为实际工作区域边界,虚线902和虚线903示出了采用本说明实施例中的地图生成方法记录的边界,虚线902和虚线903之间的范围可以表征本说明书实施例中的地图生成方法的边界记录不准确度。基于与图8类似的分析,在图9中,点虚线921和点虚线931之间的范围可以表征自移动设备基于采用本说明书实施例中的地图生成方法生成的地图工作时的总体系统不准确度。由于采用本说明书实施例中的地图生成方法将边界记录不准确度大大降低,从而使得自移动设备工作的总体系统不准确度大大降低。从图8和图9可以看出,由于本说明书实施例中的地图生成方法的边界记录不准确度接近零,因此相比于现有技术,采用本说明书实施例的地图生成方法的总体系统不准确度降低接近50%。
上述实施例中,通过获取工作区域边界上多个位置点中各位置点的相对坐标数据以及确定所述多个位置点中的至少两个位置点的地理坐标,并利用得到的至少两个位置点的地理坐标和多个位置点的相对坐标数据,可以生成目标地图,通过以毫米为单位的定位技术记录多个位置点的相对坐标数据,可以将GPS或RTK等定位系统引入的误差记录几乎归零,因此可以有效降低定位的总误差,进而可以提高根据生成的地图规划路线的自移动设备的工作精度,有利于改善用户的使用体验。例如,在一些情况下,可以将定位总误差降低30%、40%甚至接近50%,从而将工作精度提高30%、40%甚至接近50%。
本说明书实施例提供了一种自移动设备地图生成系统。由于自移动设备地图生成系统解决问题的原理与自移动设备地图生成方法相似,因此自移动设备地图生成系统的实施可以参见自移动设备地图生成方法的实施,重复之处不再赘述。请参考图10,图10示出了自移动设备地图生成系统的结构框图,如图10所示,包括:第一定位装置101、第二定位装置102和控制模块103,下面对该结构进行说明。
第一定位装置101用于获取自移动设备的工作区域边界的多个位置点的第一坐标数据,且第一定位装置101的定位精度大于第二定位装置102的定位精度。
控制模块103与第一定位装置101和第二定位装置102通信连接。
第二定位装置102用于确定多个位置点中至少两个位置点的第二坐标数据。例如,第二定位装置102可以从定位系统中获取多个位置点中至少两个位置点的定位信号,并根据定位信号确定至少两个位置点的第二坐标数据。
控制模块103被配置为利用至少两个位置点的第二坐标数据,将多个位置点的第一坐标数据对准到第二坐标数据所在的坐标系统,以生成工作区域的目标地图。
在本说明书一些实施例中,第二定位装置102可以可拆卸地安装于自移动设备中。第二定位装置102安装于自移动设备时,第二定位装置102还可以用于获取自移动设备的位置信息;自移动设备可以根据位置信息确定在目标地图中的位置,以在目标地图所限定的工作区域内工作。
在本说明书一些实施例中,第二定位装置102可以与自移动设备独立设置。
本说明书实施例还提供了一种自动工作系统。由于自动工作系统解决问题的原理与自移动设备地图生成方法相似,因此自动工作系统的实施可以参见自移动设备地图生成方法的实施,重复之处不再赘述。在本实施例中,自动工作系统可以包括:自移动设备、控制模块和信号接收装置,下面对该结构进行说明。
自移动设备可以包括机身和行走装置。行走装置可以带动自移动设备移动。
控制模块可以包括安装于自移动设备的第一控制装置。第一控制装置可以控制行走装置带动自移动设备移动。
信号接收装置可以与控制模块电连接,用于接收第一定位装置获取的自移动设备的工作区域边界的多个位置点的第一坐标数据。信号接收装置还可以用于接收第二定位装置获取的多个位置点中至少两个位置点的第二坐标数据。其中第一定位装置的定位精度大于第二定位装置的定位精度。
控制模块可以被配置为利用至少两个位置点的第二坐标数据,将多个位置点的第一坐标数据对准到第二坐标数据所在的坐标系统,以生成工作区域的目标地图。
在本说明书一些实施例中,第二定位装置可以安装在自移动设备的机身上。第二定位装置还可以用于确定自移动设备工作时的位置数据。第一控制装置还可以被配置为将位置数据与目标地图上的坐标数据对比,以控制自移动设备在工作区域内行走。
在本说明书的一些实施例中,第一控制装置还被配置为根据位置数据与目标地图上的坐标数据,获取自移动设备与工作区域边界的距离,并在判断距离小于第一预设距离时,控制自移动设备返回边界内部行走。
在本说明书的一些实施例中,第一预设距离大于或者等于第二定位装置的定位误差而引起的距离的偏差。
具体的,在自移动设备工作时,可以利用第二定位装置获取自移动设备工作时的位置数据。第一控制装置可以根据位置数据与目标地图上的坐标数据确定自移动设备与工作区域边界的距离,在距离小于第一预设距离的情况下,第一控制装置可以控制自移动设备返回边界内部行走。由于自移动设备工作时的位置数据由第二定位装置获取,因此在设置作为参考距离的第一预设距离时,将第一预设距离设置成大于或等于第二定位装置的定位误差而引起的自移动设备与工作区域边界之间距离的偏差。通过这样设置,可以避免由于第二定位装置的定位误差导致自移动装置是否在边界内的误判。
在本说明书一些实施例中,信号接收装置可以设置在自移动设备中。
在本说明书一些实施例中,控制模块可以设置在自移动设备中。
具体的,在控制模块设置在自移动设备中时,本实施例中的控制模块相当于图2中的控制装置30。图2中的控制装置30可以实现自移动地图生成系统中的第一控制装置的功能,即可以控制行走装置带动自移动设备移动,可以根据位置数据与目标地图上的坐标数据确定自移动设备与工作区域边界的距离,在距离小于第一预设距离的情况下,控制自移动设备返回边界内部行走。图2中的控制装置30还可以利用至少两个位置点的第二坐标数据,将多个位置点的第一坐标数据对准到第二坐标数据所在的坐标系统,以生成工作区域的目标地图。
从以上的描述中,可以看出,本说明书实施例实现了如下技术效果:通过第一定位装置来获取自移动设备的工作区域边界上多个位置点的第一坐标数据,基于定位系统确定多个位置点中的至少两个位置点的第二坐标数据,并利用得到的至少两个位置点的第二坐标数据和多个位置点的第一坐标数据,得到目标地图。此外,由于第一定位装置的定位精度高于定位系统的定位精度,因而可以提高地图的精度,进而可以提高根据生成的地图规划路线的自移动设备的工作精度,有利于改善用户的使用体验。
本说明书实施方式还提供了一种计算机设备,具体可以参阅图11所示的基于本说明书实施例提供的自移动设备地图生成方法的计算机设备组成结构示意图,所述计算机设备具体可以包括输入设备111、处理器112、存储器113。其中,所述存储器113用于存储处理器可执行指令。所述处理器112执行所述指令时实现上述任意实施例中所述的自移动设备地图生成方法的步骤。
在本实施方式中,所述输入设备具体可以是用户和计算机系统之间进行信息交换的主要装置之一。所述输入设备可以包括键盘、鼠标、摄像头、扫描仪、光笔、手写输入板、语音输入装置等;输入设备用于把原始数据和处理这些数的程序输入到计算机中。所述输入设备还可以获取接收其他模块、单元、设备传输过来的数据。所述处理器可以按任何适当的方式实现。例如,处理器可以采取例如微处理器或处理器以及存储可由该(微)处理器执行的计算机可读程序代码(例如软件或固件)的计算机可读介质、逻辑门、开关、专用集成电路(Application Specific Integrated Circuit,ASIC)、可编程逻辑控制器和嵌入微控制器的形式等等。所述存储器具体可以是现代信息技术中用于保存信息的记忆设备。所述存储器可以包括多个层次,在数字系统中,只要能保存二进制数据的都可以是存储器;在集成电路中,一个没有实物形式的具有存储功能的电路也叫存储器,如RAM、FIFO等;在系统中,具有实物形式的存储设备也叫存储器,如内存条、TF卡等。
在本实施方式中,该计算机设备具体实现的功能和效果,可以与其它实施方式对照解释,在此不再赘述。
本说明书实施方式中还提供了一种基于自移动设备地图生成方法的计算机存储介质,所述计算机存储介质存储有计算机程序指令,在所述计算机程序指令被执行时实现上述任意实施例中所述自移动设备地图生成方法的步骤。
在本实施方式中,上述存储介质包括但不限于随机存取存储器(Random Access Memory,RAM)、只读存储器(Read-Only Memory,ROM)、缓存(Cache)、硬盘(Hard Disk Drive,HDD)或者存储卡(Memory Card)。所述存储器可以用于存储计算机程序指令。网络通信单元可以是依照通信协议规定的标准设置的,用于进行网络连接通信的接口。
在本实施方式中,该计算机存储介质存储的程序指令具体实现的功能和效果,可以与其它实施方式对照解释,在此不再赘述。
显然,本领域的技术人员应该明白,上述的本说明书实施例的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,可选地,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本说明书实施例不限制于任何特定的硬件和软件结合。
应该理解,以上描述是为了进行图示说明而不是为了进行限制。通过阅读上述描述,在所提供的示例之外的许多实施方式和许多应用对本领域技术人员来说都将是显而易见的。因此,本申请的范围不应该参照上述描述来确定,而是应该参照前述权利要求以及这些权利要求所拥有的等价物的全部范围来确定。
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请实施例可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (18)

  1. 一种自移动设备地图生成方法,其特征在于,包括:
    获取自移动设备的工作区域边界的多个位置点的第一坐标数据;
    确定所述多个位置点中至少两个位置点的第二坐标数据;
    利用所述至少两个位置点的第二坐标数据将所述多个位置点的第一坐标数据对准到所述第二坐标数据所在的坐标系统,以生成所述工作区域的目标地图;
    其中,用于获取所述多个位置点的第一坐标数据的第一定位装置的定位精度高于用于获取所述至少两个位置点的第二坐标数据的第二定位装置的定位精度。
  2. 根据权利要求1所述的方法,其特征在于,所述目标地图用于限定所述工作区域的边界,所述自移动设备通过所述第二定位装置获取位置信息,并根据所述位置信息确定在所述目标地图中的位置,以在所述边界内工作。
  3. 根据权利要求1所述的方法,其特征在于,获取自移动设备的工作区域边界的多个位置点的第一坐标数据,包括:
    利用所述第一定位装置获取所述自移动设备沿着所述工作区域的边界移动时,所述多个位置点的第一坐标数据。
  4. 根据权利要求1所述的方法,其特征在于,所述第一定位装置位于所述工作区域中的预设区域内。
  5. 根据权利要求3所述的方法,其特征在于,在所述自移动设备沿着所述工作区域边界移动时,利用所述第一定位装置获取的所述多个位置点的第一坐标数据,包括:
    利用所述第一定位装置获取所述第一定位装置从第一位置移动至第二位置后,所述多个位置点的第一坐标数据,其中,所述第一位置与所述自移动设备之间存在障碍物,所述第二位置与所述自移动设备之间不存在障碍物。
  6. 根据权利要求1所述的方法,其特征在于,所述至少两个位置点满足预设位置条件,所述预设位置条件为以下条件中的至少之一:
    所述至少两个位置点中的任两个位置点之间的距离大于第一预设距离;
    所述至少两个位置点中的任两个位置点与所述第一定位装置形成的角度大于预设角度;
    所述至少两个位置点中各位置点位于所述工作区域中的开阔区域内。
  7. 根据权利要求1所述的方法,其特征在于,确定所述多个位置点中至少两个位置点的第二坐标数据,包括:
    利用所述第二定位装置从定位系统获取所述至少两个位置点对应的多个定位信号,其中,所述多个定位信号包括:在所述第二定位装置分别在所述至少两个位置点停留持续预设时间段时,从所述定位系统接收到的所述至少两个位置点对应的多个定位信号;
    根据所述多个定位信号,确定所述至少两个位置点的第二坐标数据。
  8. 根据权利要求7所述的方法,其特征在于,所述定位系统包括卫星导航系统。
  9. 根据权利要求1所述的方法,其特征在于,所述至少两个位置点包括至少三个位置点;
    相应地,利用所述至少三个位置点的第二坐标数据将所述多个位置点的第一坐标数据对准到所述第二坐标数据所在的坐标系统,以生成所述工作区域的目标地图。
  10. 根据权利要求1所述的方法,其特征在于,所述第一定位装置包括以下之一:光学干涉仪、微波干涉仪和激光测距仪。
  11. 一种自移动设备地图生成系统,其特征在于,包括:第一定位装置、第二定位装置、控制模块,其中:
    所述第一定位装置用于获取自移动设备的工作区域边界的多个位置点的第一坐标数据,且所述第一定位装置的定位精度大于所述第二定位装置的定位精度;
    所述控制模块与所述第一定位装置和所述第二定位装置通信连接;
    所述第二定位装置用于确定所述多个位置点中至少两个位置点的第二坐标数据;
    所述控制模块被配置为利用所述至少两个位置点的第二坐标数据,将所述多个位置点的第一坐标数据对准到所述第二坐标数据所在的坐标系统,以生成所述工作区域的目标地图。
  12. 根据权利要求11所述的系统,其特征在于,所述第二定位装置可拆卸地安装于自移动设备中,所述第二定位装置安装于所述自移动设备时,还用于获取所述自移动设备的位置信息;所述自移动设备根据所述位置信息确定在所述目标地图中的位置,以在所述目标地图所限定的工作区域内工作。
  13. 一种自动工作系统,包括自移动设备,所述自移动设备包括:机身;行走装置,带动所述自移动设备移动;所述自动工作系统还包括控制模块,所述控制模块包括安装于所述自移动设备的第一控制装置,所述第一控制装置,控制所述行走装置带动所述自移动设备移动,其特征在于,所述自动工作系统还包括:
    信号接收装置,与所述控制模块电连接,用于接收第一定位装置获取的自移动设备的工作区域边界的多个位置点的第一坐标数据;所述信号接收装置还用于接收第二定位装置获取的所述多个位置点中至少两个位置点的第二坐标数据;所述控制模块被配置为利用所述至少两个位置点的第二坐标数据,将所述多个位置点的第一坐标数据对准到所述第二坐标数据所在的坐标系统,以生成所述工作区域的目标地图;其中所述第一定位装置的定位精度大于所述第二定位装置的定位精度。
  14. 根据权利要求13所述的自动工作系统,其特征在于,所述第二定位装置用于安装在所述机身上,还用于确定所述自移动设备工作时的位置数据;所述第一控制装置还被配置为将所述位置数据与所述目标地图上的坐标数据对比,以控制所述自移动设备在工作区域内行走。
  15. 根据权利要求14所述的自动工作系统,其特征在于,所述第一控制装置还被配置为根据所述位置数据与所述目标地图上的坐标数据,获取所述自移动设备与工作区域边界的距离,并在判断所述距离小于第一预设距离时,控制所述自移动设备返回所述边界内部行走。
  16. 根据权利要求15所述的自动工作系统,其特征在于,所述第一预设距离大于或者等于所述第二定位装置的定位误差而引起的所述距离的偏差。
  17. 一种计算机设备,其特征在于,包括处理器以及用于存储处理器可执行指令的存储器,所述处理器执行所述指令时实现权利要求1至10中任一项所述方法的步骤。
  18. 一种计算机可读存储介质,其上存储有计算机指令,其特征在于,所述指令被执行时实现权利要求1至10中任一项所述方法的步骤。
PCT/CN2021/104730 2020-07-06 2021-07-06 自移动设备地图生成方法、系统和自动工作系统 WO2022007791A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP21838805.6A EP4177569A4 (en) 2020-07-06 2021-07-06 MAP GENERATION METHOD AND SYSTEM FOR SELF-PROPELLED DEVICE, AND AUTOMATIC WORK SYSTEM

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010639240.1A CN113899376B (zh) 2020-07-06 2020-07-06 自移动设备地图生成方法、系统和自动工作系统
CN202010639240.1 2020-07-06

Publications (1)

Publication Number Publication Date
WO2022007791A1 true WO2022007791A1 (zh) 2022-01-13

Family

ID=79186533

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/104730 WO2022007791A1 (zh) 2020-07-06 2021-07-06 自移动设备地图生成方法、系统和自动工作系统

Country Status (3)

Country Link
EP (1) EP4177569A4 (zh)
CN (1) CN113899376B (zh)
WO (1) WO2022007791A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115309764A (zh) * 2022-08-30 2022-11-08 深圳市正浩创新科技股份有限公司 地图传输方法、地图构建方法、地图构建系统以及介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106291463A (zh) * 2016-07-27 2017-01-04 南京崇山通信科技有限公司 一种基于WiFi和声波结合的室内定位方法
CN106662452A (zh) * 2014-12-15 2017-05-10 美国 iRobot 公司 割草机器人的地图构建
KR20170088583A (ko) * 2016-01-25 2017-08-02 충북대학교 산학협력단 이동 로봇의 위치 인식 및 지도 작성 시스템 및 방법
CN107314773A (zh) * 2017-08-18 2017-11-03 广东宝乐机器人股份有限公司 移动机器人的地图创建方法及基于该地图的路径规划方法
CN107525501A (zh) * 2017-06-02 2017-12-29 北京克路德人工智能科技有限公司 一种gps和激光雷达联合的地图构建方法
CN109275093A (zh) * 2018-10-08 2019-01-25 高子庆 基于uwb定位与激光地图匹配的定位方法和移动终端

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10098277B2 (en) * 2011-08-11 2018-10-16 Chien Ouyang Robotic lawn mower with boundary stands
US9269143B2 (en) * 2014-07-10 2016-02-23 Trimble Navigation Limited Camera on a rover surveying system
US9510505B2 (en) * 2014-10-10 2016-12-06 Irobot Corporation Autonomous robot localization
DE17781954T1 (de) * 2016-04-15 2019-05-23 Positec Power Tools (Suzhou) Co., Ltd Automatisches arbeitssystem, mobile vorrichtung und steuerungsverfahren dafür
CN207799086U (zh) * 2016-12-15 2018-08-31 苏州宝时得电动工具有限公司 基于差分定位技术的基站和自动工作系统
CN108575095B (zh) * 2017-01-09 2021-10-15 苏州宝时得电动工具有限公司 自移动设备及其定位系统、定位方法和控制方法
CN109287246B (zh) * 2018-08-24 2020-09-22 宁波市德霖机械有限公司 基于激光雷达构建地图的智能割草机
CN111028658A (zh) * 2019-11-18 2020-04-17 杭州晶一智能科技有限公司 一种基于gps和在线地图的割草机器人电子地图构建方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106662452A (zh) * 2014-12-15 2017-05-10 美国 iRobot 公司 割草机器人的地图构建
KR20170088583A (ko) * 2016-01-25 2017-08-02 충북대학교 산학협력단 이동 로봇의 위치 인식 및 지도 작성 시스템 및 방법
CN106291463A (zh) * 2016-07-27 2017-01-04 南京崇山通信科技有限公司 一种基于WiFi和声波结合的室内定位方法
CN107525501A (zh) * 2017-06-02 2017-12-29 北京克路德人工智能科技有限公司 一种gps和激光雷达联合的地图构建方法
CN107314773A (zh) * 2017-08-18 2017-11-03 广东宝乐机器人股份有限公司 移动机器人的地图创建方法及基于该地图的路径规划方法
CN109275093A (zh) * 2018-10-08 2019-01-25 高子庆 基于uwb定位与激光地图匹配的定位方法和移动终端

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4177569A4 *

Also Published As

Publication number Publication date
CN113899376A (zh) 2022-01-07
EP4177569A1 (en) 2023-05-10
EP4177569A4 (en) 2024-05-08
CN113899376B (zh) 2023-10-20

Similar Documents

Publication Publication Date Title
US10942510B2 (en) Mobile robot and method of controlling the same
US11841710B2 (en) Automatic working system, self-moving device, and methods for controlling same
US20220075376A1 (en) Returning method of self-moving device, self-moving device, storage medium, and server
US11378979B2 (en) Moving object and positioning method therefor, automated working system, and storage medium
EP3232762B1 (en) Robot lawnmower mapping
US6728608B2 (en) System and method for the creation of a terrain density model
US20210302985A1 (en) Moving robot, moving robot system, and method for moving to charging station of moving robot
WO2021058032A1 (zh) 地图建立方法、自移动设备、自动工作系统
US10852738B2 (en) Self-propelled robotic tool navigation
US11944032B2 (en) Autonomous vehicle systems and methods
US20110166705A1 (en) Autonomous cutting element for sculpting grass
KR20200018199A (ko) 이동 로봇, 이동 로봇 시스템 및 이동 로봇 시스템의 제어 방법
WO2022007791A1 (zh) 自移动设备地图生成方法、系统和自动工作系统
US20220121211A1 (en) Mobile robot and control method therefor
Batavia et al. Autonomous coverage operations in semi-structured outdoor environments
Höffmann et al. Coverage path planning and precise localization for autonomous lawn mowers
WO2024055855A1 (en) Autonomous mobile device and method for controlling the same, and computer readable storage medium
EP3761136B1 (en) Control device, mobile body, and program
US20230145470A1 (en) Map generation method and system for self-moving device, and automatic working system
EP3695699B1 (en) Robotic vehicle for boundaries determination
US11951977B1 (en) Autonomous vehicle panel and post detection
US20230345864A1 (en) Smart mowing system
US20240069561A1 (en) Mapping objects encountered by a robotic garden tool
CN114167467A (zh) 一种机器人的定位方法及机器人
Verhoeven Thesis, part 2

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21838805

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021838805

Country of ref document: EP

Effective date: 20230206