WO2022005245A1 - 솔더 기판 조립체 - Google Patents

솔더 기판 조립체 Download PDF

Info

Publication number
WO2022005245A1
WO2022005245A1 PCT/KR2021/008416 KR2021008416W WO2022005245A1 WO 2022005245 A1 WO2022005245 A1 WO 2022005245A1 KR 2021008416 W KR2021008416 W KR 2021008416W WO 2022005245 A1 WO2022005245 A1 WO 2022005245A1
Authority
WO
WIPO (PCT)
Prior art keywords
solder
protrusion
electrical components
main board
output port
Prior art date
Application number
PCT/KR2021/008416
Other languages
English (en)
French (fr)
Inventor
박남신
노양필
김재홍
오민욱
신연호
강재원
김동현
김훈
Original Assignee
주식회사 케이엠더블유
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 케이엠더블유 filed Critical 주식회사 케이엠더블유
Priority to CN202190000601.6U priority Critical patent/CN219698012U/zh
Publication of WO2022005245A1 publication Critical patent/WO2022005245A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/18Printed circuits structurally associated with non-printed electric components
    • H05K1/181Printed circuits structurally associated with non-printed electric components associated with surface mounted components
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P3/00Waveguides; Transmission lines of the waveguide type
    • H01P3/12Hollow waveguides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P3/00Waveguides; Transmission lines of the waveguide type
    • H01P3/12Hollow waveguides
    • H01P3/122Dielectric loaded (not air)
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/18Printed circuits structurally associated with non-printed electric components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • H05K3/341Surface mounted components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10007Types of components
    • H05K2201/1006Non-printed filter

Definitions

  • the present invention relates to a solder substrate assembly (PRINTED CIRCUIT BOARD ASSEMBLY WITH SOLDERING STRUCTURE), and more particularly, to a solder substrate assembly with improved substrate adhesion of a ceramic waveguide filter included in a 5G wireless repeater. .
  • the 5G communication system or the pre-5G communication system is called a 4G network after (Beyond 4G Network) communication system or an LTE (Long Term Evolution) system after (Post LTE) system.
  • the 5G communication system is being considered for implementation in a very high frequency (mmWave) band (eg, such as a 60 gigabyte (60 GHz) band).
  • mmWave very high frequency
  • FD-MIMO Full Dimensional MIMO
  • array antenna, analog beamforming, and large scale antenna technologies are being discussed.
  • the solder assembly method of a plurality of filters (especially CWF) on one side of the main board makes it difficult to maintain the balance of the filter with respect to the main board, and it is difficult to maintain the balance of the filter.
  • CWF filters
  • an example of the conventional 5G wireless repeater is vulnerable to external stress changes in that a plurality of filters are soldered in a free state using a solder material such as lead material on one surface of the main board, so cracks are easy to occur, and the filter leads to the problem of shortening the service life of
  • an example of a conventional 5G wireless repeater provides an input post for inputting a signal to each of a plurality of filters and an output post for outputting a signal, and soldering an input terminal pin and an output terminal pin to each post Since each port is implemented by connecting in a (soldering) method, the manufacturing is complicated and productivity is lowered.
  • the present invention has been made to solve the above technical problem, and an object of the present invention is to provide a solder substrate assembly capable of preventing deterioration of filter performance.
  • Another object of the present invention is to provide a solder substrate assembly capable of preventing impedance mismatch while allowing mass production.
  • Another object of the present invention is to provide a solder substrate assembly capable of preventing cracks from occurring due to changes in external stress and improving the lifespan of the filter.
  • Another object of the present invention is to provide a solder substrate assembly that guarantees productivity and reliability of a product by eliminating a separate terminal pin in implementing an input port and an output port.
  • An embodiment of the solder board assembly according to the present invention is a plurality of electrical components, a main board on which a plurality of circuit pattern portions are formed so that the plurality of electrical components are soldered to the front surface, and at least some of the plurality of circuit pattern portions after being located and a solder melt that is melted and solders the rear surfaces of the plurality of electrical components and the front surfaces of the main board to each other, wherein the plurality of electrical components is a space between the plurality of electrical components and the main board, and the solder melt is combined
  • the solder space forming part for maintaining the solder space to be used is integrally formed.
  • solder space forming part may be provided in the form of a protrusion that protrudes more toward the front surface of the main board than the rear surface of the plurality of electrical components by a predetermined length.
  • solder space forming part may be integrally injection-molded with the same material as that of the plurality of electrical components.
  • the plurality of electrical components includes a ceramic waveguide filter (CWF) provided to perform filtering in a specific frequency band through power supply control by RF power supply network components additionally mounted on the main board. can do.
  • CWF ceramic waveguide filter
  • solder space forming unit may include at least two or more corner supporting protrusions respectively formed on the corners of the plurality of electrical components and at least one inner supporting protrusion formed on the inner side except for the corners of the plurality of electric components.
  • the plurality of circuit pattern portions formed on the main board may include a protrusion seating pattern on which the solder space forming part is seated and a solder material seating pattern on which the solder melt is seated.
  • the plurality of electrical components are formed of a ceramic material, a filter body having a plurality of resonant blocks partitioned by partition slots, and each of the plurality of resonant blocks is processed and formed, and has a dielectric constant different from that of the filter body.
  • a plurality of resonator posts formed to be filled with a dielectric material and an input port protrusion and an output port protrusion provided on the filter body to input or output a predetermined signal, wherein the input port protrusion and the output port protrusion are installed on the main board
  • An input port receiving groove and an output port receiving groove to be processed may be formed.
  • the projection seating pattern and the solder material seating pattern are to be formed on one surface of the main board in a range that does not overlap the partition slot, the input port projection, and the output port projection among the rear surfaces of the ceramic waveguide filter mounted on the main board.
  • the input port protrusion and the output port protrusion may be integrally formed with the filter body.
  • the filter body, the solder space forming part, and the input port protrusion and the output port protrusion may be integrally manufactured by a die casting method.
  • the input port protrusion and the output port protrusion may be formed to be equal to or larger than the amount of protrusion of the solder space forming part.
  • solder substrate assembly According to an embodiment of the solder substrate assembly according to the present invention, the following various effects can be achieved.
  • FIG. 1 and 2 are downward and upward perspective views showing electrical components among the configurations of an embodiment of a solder substrate assembly according to the present invention
  • FIG. 3 is a plan view showing a part of one surface of the main board among the configurations of an embodiment of the solder substrate assembly according to the present invention
  • FIGS. 1 to 3 is an exploded perspective view showing an electrical component and a main board among the configurations of FIGS. 1 to 3;
  • FIG. 5 is a plan view and a cross-sectional view taken along line A-A of an electrical component among the configurations of an embodiment of a solder substrate assembly according to the present invention
  • FIG. 6 is a cross-sectional view of a solder substrate assembly according to the present invention, a cross-sectional view taken along line B-B of FIG.
  • FIG. 7 is a PLOT graph illustrating RF characteristics of a solder substrate assembly according to an embodiment of the present invention.
  • main board 3 circuit pattern part
  • FIGS. 1 and 2 are downward and upward perspective views illustrating electrical components in the configuration of an embodiment of the solder substrate assembly according to the present invention
  • FIG. 3 is a part of one surface of the main board in the configuration of an embodiment of the solder substrate assembly according to the present invention.
  • FIG. 4 is an exploded perspective view showing the electrical components and the main board among the configurations of FIGS. 1 to 3 .
  • An embodiment of the solder substrate assembly according to the present invention includes a main board 1 and an electrical component 10 as shown in FIGS. 1 to 4 .
  • main board 1 is not shown in detail in the drawings, as a multi-layer layer is integrally stacked, a circuit pattern may be printed on each layer.
  • the main board 1 may be made of an epoxy resin material.
  • one electrical component 10 is mounted on one main board 1 and is described.
  • This is for convenience of understanding, and is a concept that does not exclude that a plurality of electrical components 10 are installed on one main board 1 .
  • the main board 1 may be the main board 1 installed inside the antenna housing of the 5G antenna repeater (eg, repeater antenna).
  • the main board 1 is inserted and disposed in the installation space of the antenna housing, and a plurality of ceramic waveguide filters 10 as one of the electronic components 10 to be described later are stacked in an array in the front direction of the antenna housing.
  • an antenna board on which a plurality of antenna elements are mounted on the front side of the plurality of ceramic waveguide filters 10 may be stacked.
  • the plurality of electronic components 10 may include a plurality of ceramic waveguide filters 10 (CWF, Ceramic Waveguide Filter).
  • the plurality of ceramic waveguide filters 10 are formed by additionally mounted RF power supply network components on the main board 1 (eg, LNA elements as Rx components, Tr, DA, PA elements as Tx components, etc.) It may be one of the antenna elements provided to perform filtering in a specific frequency band through power supply control.
  • a plurality of resonator posts 31 to 36 each processed and formed at 21 to 26, an input port protrusion 61 and an output port protrusion 62 provided in the filter body 20 to input or output a predetermined signal may include
  • the filter body 20 is formed of a ceramic material, and a plurality of resonant blocks 21 to 26 pass through one surface and the other surface of the filter body 20 and are connected to each other through partition slots 51, 52), it may be possible to distinguish between the adjacent resonant blocks 21 to 26. That is, the term 'compartment' here does not mean a physically complete division between the resonance blocks 21 to 26, but at least a concept that is sufficient if 'division' between the adjacent resonance blocks 21 to 26 is possible. to be.
  • each of the resonance blocks 21 to 26 is made of a ceramic material having a predetermined dielectric constant, and the resonance blocks 21 to 26 have different volumes or different shapes due to the division slots 51 and 52, etc. As a result, it is possible to design filtering of different frequency bands in the process of supplying and outputting an electrical signal through an input port and an output port, which will be described later, as they have different dielectric constants.
  • the plurality of resonator posts 31 to 36 may be formed in a shape in which a dielectric having a dielectric constant different from that of the filter body 20 is filled, as shown in FIGS. 1 and 2 , wherein the dielectric includes air.
  • the meaning of being filled with air may mean processing in the form of an empty space that can be filled with air.
  • the filter body 20 is formed in an approximately hexahedral block shape and has a predetermined thickness, one surface facing the front of the antenna housing and the other surface facing the rear of the antenna housing. It may be coupled to the front surface of the main board 1 by a soldering method so as to face the direction.
  • the front direction of the antenna housing in the filter body 20 is used as a unified term 'front' or 'front', and the rear direction of the antenna housing in the filter body 20 is The terms 'rear' or 'rear' will be used uniformly.
  • the surface to which the filter body 20 of the main board 1 is soldered is used as a unified term 'front' or 'front', and the surface opposite to the front of the main board 1 is 'rear' or The term 'rear' will be unified and used.
  • the resonator posts 31 to 36 which will be described later, have a structure in which air is filled in the dielectric and will be described on the assumption that a part of the filter body 20 is cut and provided in the form of an empty space.
  • the ceramic waveguide filter 10 includes six resonance blocks 21 to 26 in one filter body 20 as shown in FIGS. 1 and 2 . formed, and each resonator post 31 to 36 may be provided on each resonator block 21 to 26 .
  • the six resonance blocks 21 to 26 are partition slots 51 provided with first partition slots 51 and 52 and second partition slots 51 and 52, as shown in FIGS. 1 and 2 . , 52), as described above, may be formed in a shape that distinguishes the adjacent resonance blocks 21 to 26 from each other.
  • the ceramic waveguide filter 10 as shown in FIG. 2, is provided on the rear surface of the filter body 20, the input port protrusion 61 for inputting a predetermined signal and for outputting the predetermined signal
  • the output port protrusion 62 may be integrally formed.
  • the conventional ceramic waveguide filter performs the same function as the above-described input port protrusion 61 and output port protrusion 62, and adopts the same processing method as the other resonator posts 31 to 36, so that the filter body It was provided with an input post and an output post, respectively, in a form in which a part was cut and processed. Then, a ceramic waveguide filter was manufactured in a form in which the input terminal pin and the output terminal pin were fixed to the inside of the input post and the inside of the output post by soldering (soldering).
  • the input port protrusion 61 and the output port protrusion 62 adopts a method of integrally forming with the same material as the filter body 20 . This will be described in more detail later.
  • the plurality of resonator posts 31 to 36 may be formed in a cylindrical shape that is opened in either the front or rear direction of the filter body 20 .
  • all of the six resonator posts 31 to 36 are formed to be opened to the front of the filter body 20 , but it is not necessarily limited thereto, and a specific frequency band It will be natural that each of the resonator posts 31 to 36 may be formed to be opened in different directions by a design value in consideration of the characteristics of the notch formed in .
  • a predetermined signal when a predetermined signal is input through the input force protrusion 61, the signal is sequentially transmitted from the first resonator post 31 closest to the input force protrusion 61 to the second resonator post 32 - The output force is outputted through the output force protrusion 62 via the third resonator post 33 - the fourth resonator post 34 - the fifth resonator post 35 - the sixth resonator post 36.
  • a predetermined electric signal line is built based on the input force protrusion 61 and the output force protrusion 62, and the resonator posts 31 to 36 are sequentially arranged along the electric signal line. .
  • a tuning cover in which tuning adjustment screws, not shown, are respectively disposed, are provided, and a part of the tuning adjustment screw is provided to adjust a gap flowing into each of the resonator posts 31 to 36.
  • the adjacent coupling coupling between the adjacent resonator posts 31 to 36 or at least one of the resonator posts 31 to 36 is crossed. Frequency filtering of a specific band desired by a designer may be possible through cross-coupling.
  • Each of the plurality of electrical components 10 configured as described above may be solder-bonded to the front surface of the main board 1 by a soldering method.
  • a plurality of circuit pattern portions 3 may be formed on the main board 1 so that a plurality of electrical components 10 are soldered to the front surface.
  • an embodiment of the solder board assembly according to the present invention is located on at least a portion of the plurality of circuit pattern portions 3 formed on the main board 1 and then melted to form the rear surface of the plurality of electrical components and the main board 1 ) may further include a solder melt 70 for mutually soldering the front surface.
  • the solder molten body 70 is provided as a solid mass of lead material, melts when provided with heat above a predetermined temperature, and partially fills the solder space forming part 40 integrally formed with a plurality of electrical components 10 to be described later. It performs a role of soldering a plurality of electrical components 10 to the main board (1) while being removed.
  • the maintenance of the coupling flatness of the plurality of ceramic waveguide filters 10, which are one of the antenna elements for the main board 1, is closely related to the aforementioned prevention of degradation of the frequency filtering performance of the specific band and the maintenance of the performance.
  • an antenna board (not shown) is stacked on the front end of the plurality of electrical components 10 mounted on the front surface of the main board 1 , and the ceramic waveguide filter 10 adopted as the plurality of electrical components 10 is This is because, if the coupling flatness is not maintained, errors in the design of frequency filtering of a specific band desired by the designer in relation to the tuning adjustment screw that adjusts the gap between the resonator posts 31 to 36 and the internal element may increase. .
  • solder board assembly as shown in FIGS. 1 to 4 , as a space between the plurality of electrical components 10 and the main board 1 , in the plurality of electrical components 10 ,
  • the above-described solder space forming part 40 for maintaining a solder space to which the solder melt 70 is coupled may be integrally formed.
  • solder space forming unit 40 may be provided in a protrusion shape to protrude more by a predetermined length toward the front surface of the main board 1 than the rear surfaces of the plurality of electrical components 10 .
  • solder space forming unit 40 may be integrally injection-molded with the same material as that of the plurality of electrical components 10 . Therefore, the meaning that the solder space forming part 40 is integrally formed with the plurality of electrical components 10 means that the solder space forming part 40 is also molded at the same time when the ceramic electrical component 10 is molded. I can understand.
  • the solder space forming unit 40 includes at least two or more edge support protrusions 41 respectively formed on the edge portions of the plurality of electrical components 10 , and the plurality of electrical components 10 . ) may include at least one inner support protrusion 42 formed on the inner side except for the corner portion.
  • each of the plurality of electrical components 10 is adopted as a ceramic waveguide filter 10 having an approximately hexahedron shape, and a corner supporting protrusion 41 ) is disposed one at each of the rear corners of the quadrangle, which is one side of the hexahedron, and may be provided with a total of four.
  • the inner support protrusion 42 is, as shown in FIG. 4 , each disposed at a position spaced apart from each other in the center portion of the rear surface of the square, which is one surface of the hexahedron. As a result, it may be provided with a total of two. However, the inner support protrusion 42 does not necessarily have to be provided in two, and it is of course possible to predict the shape and coupling flatness of a plurality of electrical components 10 to be provided in a larger number.
  • a plurality of circuit pattern portions 3 formed on the main board 1, as shown in FIGS. 3 and 4, the projection seating pattern 5 and the solder melt ( 70) may include a solder material seating pattern 7 on which it is mounted.
  • the circuit pattern part 3 here is a concept including a circuit pattern formed on a normal substrate, it is not necessary to pattern-print the pattern with a conductive material, unlike a conventional circuit pattern. That is, the projection seating pattern 5 and the solder material seating pattern 7 determine the installation positions of a plurality of electrical components 10 coupled to the front surface of the main board 1 and at the same time determine the configuration of the electrical components 10 . Since it is sufficient to set the correct position of the solder space forming part 40, it does not have to be provided with a conductive material.
  • the projection seating pattern 5 and the solder material seating pattern 7 are, as shown in FIG. 4 , partition slots 51 and 52 on the rear surface of the ceramic waveguide filter 10 mounted on the main board 1 . , may be formed on one surface of the main board 1 in a range that does not overlap the input port protrusion 61 and the output port protrusion 62 .
  • solder space forming part 40 integrally formed on the rear surface of the ceramic waveguide filter 10 is face-bonded to the protrusion seating pattern 5 formed on the main board 1, respectively, so that the front surface of the main board 1 and the ceramic A predetermined separation distance is secured for the solder melt 70 to be melt-bonded between the rear surfaces of the waveguide filter 10 .
  • the input port protrusion 61 is provided in the filter body 20 to input or output a predetermined signal.
  • the output port protrusion 62, the input port receiving groove (9a) and the output port receiving groove (9b) exposed to the opposite surface may be further processed.
  • the input port protrusion 61 and the output port protrusion 62 are integrally formed to protrude a predetermined length toward the main board 1, similarly to the above-described solder space forming part 40.
  • the filter body 20 , the solder space forming part 40 , the input port protrusion 61 , and the output port protrusion 62 may be integrally manufactured by a die casting method in which all of the same material is molded.
  • the input port protrusion 61 and the output port protrusion 62 may be formed to be equal to or larger than the amount of protrusion of the solder space forming part 40 described above.
  • the input port protrusion 61 and the output port protrusion 62 are opposite to the main pod 1 to facilitate signal connection through the input port receiving groove 9a and the output port receiving groove 9b formed in the main board 1 . It may be exposed to the surface or formed to protrude to the opposite surface through the input port accommodating groove 9a and the output port accommodating groove 9b.
  • the input port protrusion 61 and the output port which are integrally formed with the input port and the output port provided in the form of the conventional input post and output post in the filter body 20 ,
  • the port protrusion 62 in the form, not only the manufacturability of the ceramic waveguide filter 10 is improved, but also the reliability of the ceramic waveguide filter 10 can be improved by removing the soldered portion of the terminal pin.
  • each of the main The amount of protrusion to the board 1 is preferably set in consideration of an effective error range when designing a frequency filter.
  • FIG. 5 is a plan view and a cross-sectional view taken along line AA of an electric component in the configuration of an embodiment of a solder substrate assembly according to the present invention
  • FIG. 6 is a cross-sectional view of a solder substrate assembly according to the present invention, taken along line BB of FIG. It is a cross-sectional view
  • FIG. 7 is a PLOT graph showing RF characteristics of a solder substrate assembly according to an embodiment of the present invention.
  • solder substrate assembly As shown in FIGS. 5 and 6 , a predetermined separation distance between the front surface of the main board 1 and the rear surfaces of the plurality of electrical components 10 mounted thereon
  • the solder space forming part 40 for securing the electrical components 10 is integrally formed with the plurality of electrical components 10 to maintain the coupling flatness when the plurality of electrical components 10 are mounted on the main board 1 by a soldering method.
  • the solder space forming part 40 has the same length from the rear surface of the plurality of electrical components 10 provided with the ceramic waveguide filter 10 toward the main board 1 as shown in FIG. 5 . It is provided in the form of a protrusion protruding a distance, and as shown in FIG. 6 , a solder space for inserting the solder melt 70 is formed between the front surface of the main board 1 and the rear surface of the ceramic waveguide filter 10 . , to enable the uniform soldering method to be combined.
  • the effect of maintaining the coupling flatness of the plurality of electrical components 10 may prevent deterioration of filter performance by balancing the plurality of ceramic waveguide filters 10 .
  • the present invention maintains the flatness of bonding of a plurality of electronic components by using a solder space forming part, prevents deterioration of filter performance by balancing a plurality of ceramic waveguide filters, and can reduce manufacturing costs of products.
  • a substrate assembly is provided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

본 발명은 솔더 기판 조립체에 관한 것으로서, 특히, 다수의 전장부품, 상기 다수의 전장부품이 전면에 솔더링되도록 다수의 회로 패턴부가 형성된 메인 보드 및 상기 다수의 회로 패턴부 중 적어도 일부에 위치된 후 용융되어 상기 다수의 전장부품의 후면과 상기 메인 보드의 전면을 상호 솔더링하는 솔더 용융체를 포함하고, 상기 다수의 전장부품에는, 상기 다수의 전장부품과 상기 메인 보드 사이 공간으로써, 상기 솔더 용융체가 결합되는 솔더 공간을 유지시키는 솔더공간 형성부가 일체로 형성되어, 결합 평탄도를 유지함으로써 조립 공정 및 필터 성능의 신뢰성을 향상시키는 이점을 제공한다.

Description

솔더 기판 조립체
본 발명은 솔더 기판 조립체(PRINTED CIRCUIT BOARD ASSEMBLY WITH SOLDERING STRUCTURE)에 관한 것으로서, 보다 상세하게는, 5G 무선 중계 장치에 포함되는 세라믹 도파관 필터(Ceramic Waveguide Filter)의 기판 접합성이 향상된 솔더 기판 조립체에 관한 것이다.
4G(4세대) 통신 시스템 상용화 이후 증가 추세에 있는 무선 데이터 트래픽 수요를 충족시키기 위해, 개선된 5G(5세대) 통신 시스템 또는 pre-5G 통신 시스템을 개발하기 위한 노력이 이루어지고 있다. 이러한 이유로, 5G 통신 시스템 또는 pre-5G 통신 시스템은 4G 네트워크 이후(Beyond 4G Network) 통신 시스템 또는 LTE(Long Term Evolution) 시스템 이후(Post LTE) 시스템이라 불리어지고 있다.
높은 데이터 전송률을 달성하기 위해, 5G 통신 시스템은 초고주파(mmWave) 대역(예를 들어, 60기가(60GHz) 대역과 같은)에서의 구현이 고려되고 있다. 초고주파 대역에서의 전파의 경로손실 완화 및 전파의 전달 거리를 증가시키기 위해, 5G 통신 시스템에서는 빔포밍(beamforming), 거대 배열 다중 입출력(massive MIMO), 전차원 다중 입출력(Full Dimensional MIMO, FD-MIMO), 어레이 안테나(array antenna), 아날로그 빔포밍(analog beamforming) 및 대규모 안테나(large scale antenna) 기술들이 논의되고 있다.
특히, 어레이 안테나 기술은, 원 보드 형태의 메인 보드의 전면에 안테나 요소 중 하나인 다수의 필터 및 안테나 소자를 집약적으로 실장하여야 하는 한편, 다수의 수신 채널 및 송신 채널 사이의 임피던스 매칭 설계를 위하여 물리적으로 고도의 정밀성을 요구하는 소자 배열 기술이다. 최근 5G 통신 시스템 시장에서 어레이 안테나들 중 주파수 필터링 설계가 용이하고 제작이 쉬운 세라믹 도파관 필터(Ceramic Waveguide Filter)의 수요가 증가하고 있는 추세이고, 세라믹 도파관 필터의 수요량에 맞춰 공급하기 위한 대량 생산 기술이 요구되고 있다.
그런데, 종래의 5G 무선 중계 장치의 일 예에 있어서, 메인 보드의 일면에 대한 다수의 필터(특히, CWF)의 솔더 조립 방식은, 메인 보드에 대한 필터의 평형 유지가 어렵고, 필터의 평형 유지를 위해 별도의 스페이서를 제작하여야 하는 문제점이 있다.
또한, 종래의 5G 무선 중계 장치의 일 예는, 메인 보드의 일면에 다수의 필터를 납 재질과 같은 솔더 재질을 이용하여 자유 상태로 솔더링되는 점에서 외부 응력 변화에 취약하여 크랙 발생이 쉽고, 필터의 사용 수명을 단축시키는 문제점으로 이어진다.
아울러, 종래의 5G 무선 중계 장치의 일 예는, 다수의 필터 각각에 신호를 입력하기 위한 입력 포스트 및 신호를 출력하기 위한 출력 포스트를 마련하고, 각각의 포스트에 입력 단자핀 및 출력 단자핀을 납땜(솔더링) 방식으로 연결하여 각 포트를 구현하기 때문에 그 제조가 복잡하여 생산성이 저하됨은 물론, 납땜 부위가 늘어나는 바 상술한 바와 같은 문제로 제품의 신뢰성이 저하될 수 있다.
본 발명은 상기한 기술적 과제를 해결하기 위하여 안출된 것으로서, 필터 성능 저하를 방지할 수 있는 솔더 기판 조립체를 제공하는 것을 그 목적으로 한다.
아울러, 본 발명은 대량 생산이 가능하면서도 임피던스 부정합을 방지할 수 있는 솔더 기판 조립체를 제공하는 것을 다른 목적으로 한다.
또한, 본 발명은 외부 응력 변화에 따른 크랙 발생을 방지하고, 필터의 수명을 향상시킬 수 있는 솔더 기판 조립체를 제공하는 것을 또 다른 목적으로 한다.
또한, 본 발명은 입력 포트 및 출력 포트를 구현함에 있어서 별도의 단자 핀을 삭제하여 제품의 생산성 및 신뢰성을 담보하는 솔더 기판 조립체를 제공하는 것을 또 다른 목적으로 한다.
본 발명의 과제는 이상에서 언급한 과제들로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
본 발명에 따른 솔더 기판 조립체의 일 실시예는, 다수의 전장부품, 상기 다수의 전장부품이 전면에 솔더링되도록 다수의 회로 패턴부가 형성된 메인 보드 및 상기 다수의 회로 패턴부 중 적어도 일부에 위치된 후 용융되어 상기 다수의 전장부품의 후면과 상기 메인 보드의 전면을 상호 솔더링하는 솔더 용융체를 포함하고, 상기 다수의 전장부품에는, 상기 다수의 전장부품과 상기 메인 보드 사이 공간으로써, 상기 솔더 용융체가 결합되는 솔더 공간을 유지시키는 솔더공간 형성부가 일체로 형성된다.
여기서, 상기 솔더공간 형성부는, 상기 다수의 전장부품의 후면보다 상기 메인 보드의 전면을 향하여 기설정된 길이만큼 더 돌출되는 돌기 형태로 구비될 수 있다.
또한, 상기 솔더공간 형성부는, 상기 다수의 전장부품의 재질과 동일한 재질로 일체 사출 성형될 수 있다.
또한, 상기 다수의 전장부품은, 상기 메인 보드에 추가 실장된 RF 급전 네트워크 부품들에 의한 전원 공급 제어를 통해 특정 주파수 대역에서의 필터링이 되도록 구비된 세라믹 도파관 필터(Ceramic Waveguide Filter, CWF)를 포함할 수 있다.
또한, 상기 솔더공간 형성부는, 상기 다수의 전장부품의 모서리 부위에 각각 형성된 적어도 2 이상의 모서리 지지 돌기 및 상기 다수의 전장부품의 모서리 부위를 제외한 내측부에 형성된 적어도 하나의 내측 지지 돌기를 포함할 수 있다.
또한, 상기 메인 보드에 형성된 다수의 회로 패턴부는, 상기 솔더공간 형성부가 안착되는 돌기 안착 패턴 및 상기 솔더 용융체가 안착되는 솔더재 안착 패턴을 포함할 수 있다.
또한, 상기 다수의 전장부품은, 세라믹 재질로 성형되되, 구획 슬롯에 의하여 구획된 다수의 공진 블록을 구비한 필터 바디, 상기 다수의 공진 블록에 각각 가공 형성되되, 상기 필터 바디와 상이한 유전율을 가진 유전체로 채워지도록 형성된 다수의 공진기 포스트 및 상기 필터 바디에 구비되어 소정의 신호를 입력하거나 출력하는 입력 포트 돌기 및 출력 포트 돌기를 포함하고, 상기 메인 보드에는, 상기 입력 포트 돌기 및 출력 포트 돌기가 설치되는 입력 포트 수용홈 및 출력 포트 수용홈이 가공 형성될 수 있다.
또한, 상기 돌기 안착 패턴 및 상기 솔더재 안착 패턴은, 상기 메인 보드에 실장되는 상기 세라믹 도파관 필터의 후면 중 상기 구획 슬롯, 입력 포트 돌기 및 출력 포트 돌기와 겹치지 않는 범위의 상기 메인 보드의 일면에 형성될 수 있다.
또한, 상기 입력 포트 돌기 및 출력 포트 돌기는, 상기 필터 바디와 일체로 형성될 수 있다.
또한, 상기 필터 바디와, 상기 솔더 공간 형성부와, 상기 입력 포트 돌기 및 출력 포트 돌기는, 다이캐스팅 공법으로 일체로 제조될 수 있다,
또한, 상기 입력 포트 돌기 및 출력 포트 돌기는, 상기 솔더 공간 형성부의 돌출량과 같거나 더 크게 형성될 수 있다.
본 발명에 따른 솔더 기판 조립체의 일 실시예에 따르면 다음과 같은 다양한 효과를 달성할 수 있다.
첫째, 솔더 공간 형성부를 이용하여 다수의 전장부품의 결합 평탄도를 유지할 수 있으므로, 외부 응력 변화에 대한 크랙 발생을 방지하여 다수의 전장부품의 수명을 증가시키는 효과를 가진다.
둘째, 다수의 전장부품의 결합 평탄도 유지를 통해, 다수의 세라믹 도파관 필터의 균형을 맞추어 줌으로써 필터 성능의 저하를 방지할 수 있는 효과를 가진다.
셋째, 다수의 전장부품의 결합 평탄도 유지를 위한 별도의 스페이서와 같은 구성을 구비하지 않아도 되므로, 조립 공정 및 제조 단가의 상승을 방지할 수 있는 효과를 가진다.
본 발명의 효과는 이상에서 언급한 효과로 제한되지 않으며, 언급되지 않은 또 다른 효과들은 청구범위의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
도 1 및 도 2는 본 발명에 따른 솔더 기판 조립체의 일 실시예의 구성 중 전장부품을 나타낸 하향 및 상향 사시도이고,
도 3은 본 발명에 따른 솔더 기판 조립체의 일 실시예의 구성 중 메인 보드의 일면 일부를 나타낸 평면도이며,
도 4는 도 1 내지 도 3의 구성 중 전장부품과 메인 보드를 나타낸 분해 사시도이고,
도 5는 본 발명에 따른 솔더 기판 조립체의 일 실시예의 구성 중 전장부품의 평면도 및 A-A선에 따른 단면도이며,
도 6은 본 발명에 따른 솔더 기판 조립체의 단면도로써, 도 5의 B-B선을 따라 취한 단면도이고,
도 7은 본 발명의 일 실시예에 따른 솔더 기판 조립체의 RF 특성을 나타낸 플롯(PLOT) 그래프이다.
<부호의 설명>
1: 메인 보드 3: 회로 패턴부
5: 돌기 안착 패턴 7: 솔더재 안착 패턴
9a: 입력 포스트 수용홈 9b: 출력 포스트 수용홈
10: 전장부품(세라믹 도파관 필터) 20: 필터 바디
21~26: 공진 블록 31~36: 공진기 포스트
40: 솔더공간 형성부 41: 모서리 지지 돌기
42: 내측 지지 돌기 51,52: 구획 슬롯
61: 입력 포스트 62: 출력 포스트
70: 솔더 용융체
이하, 본 발명에 따른 솔더 기판 조립체의 일 실시예를 첨부된 도면을 참조하여 상세하게 설명하기로 한다.
각 도면의 구성요소들에 참조부호를 부가함에 있어서, 동일한 구성요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가지도록 하고 있음에 유의해야 한다. 또한, 본 발명의 실시예를 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 실시예에 대한 이해를 방해한다고 판단되는 경우에는 그 상세한 설명은 생략한다.
본 발명의 실시예의 구성요소를 설명하는 데 있어서, 제1, 제2, A, B, (a), (b) 등의 용어를 사용할 수 있다. 이러한 용어는 그 구성요소를 다른 구성요소와 구별하기 위한 것일 뿐, 그 용어에 의해 해당 구성요소의 본질이나 차례 도는 순서 등이 한정되지 않는다. 또한, 다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가진다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련기술의 문맥상 가지는 의미와 일치하는 의미를 가진 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.
도 1 및 도 2는 본 발명에 따른 솔더 기판 조립체의 일 실시예의 구성 중 전장부품을 나타낸 하향 및 상향 사시도이고, 도 3은 본 발명에 따른 솔더 기판 조립체의 일 실시예의 구성 중 메인 보드의 일면 일부를 나타낸 평면도이며, 도 4는 도 1 내지 도 3의 구성 중 전장부품과 메인 보드를 나타낸 분해 사시도이다.
본 발명에 따른 솔더 기판 조립체의 일 실시예는, 도 1 내지 도 4에 참조된 바와 같이, 메인 보드(1) 및 전장부품(10)을 포함한다.
여기서, 메인 보드(1)는, 도면에 상세하게 도시되어 있지 않지만, 멀티 레이어층이 일체로 적층 형성된 것으로서, 각 층마다 회로 패턴이 인쇄될 수 있다. 아울러, 메인 보드(1)는, 에폭시 수지 재질로 이루어질 수 있다.
또한, 본 발명에 따른 솔더 기판 조립체의 일 실시예에서는, 도 3 및 도 4에 참조된 바와 같이, 하나의 메인 보드(1)에 하나의 전장부품(10)이 실장된 것을 도해하여 설명하고 있지만, 이는 이해의 편의를 위한 것으로서, 하나의 메인 보드(1)에는 다수 개의 전장부품(10)이 설치된 것을 제외하지 않는 개념이다.
본 발명에 따른 솔더 기판 조립체의 일 실시예에서, 메인 보드(1)는, 5G 안테나 중계 장치(예를 들면, 중계기 안테나)의 안테나 하우징 내부에 설치되는 메인 보드(1)일 수 있다.
도면에 도시되지 않았지만, 메인 보드(1)는 안테나 하우징의 설치 공간에 삽입 배치되고, 안테나 하우징의 전면 방향에는 후술하는 전장부품(10) 중 하나로써 다수의 세라믹 도파관 필터(10)가 어레이 적층 배열되며, 다수의 세라믹 도파관 필터(10)의 전단부에는 전면에 다수의 안테나 소자가 실장된 안테나 보드가 적층 배치될 수 있다.
한편, 다수의 전장부품(10)은, 상술한 바와 같이, 다수의 세라믹 도파관 필터(10)(CWF, Ceramic Waveguide Filter)를 포함할 수 있다. 여기서, 다수의 세라믹 도파관 필터(10)는, 메인 보드(1)에 추가 실장된 RF 급전 네트워크 부품들(예를 들면, Rx 부품으로써 LNA 소자, Tx 부품으로써 Tr, DA, PA 소자 등)에 의한 전원 공급 제어를 통해 특정 주파수 대역에서의 필터링이 되도록 구비된 안테나 요소 중 하나일 수 있다.
다수의 세라믹 도파관 필터(10)는, 도 1 및 도 2에 참조된 바와 같이, 구획슬롯에 의하여 구획된 다수의 공진 블록(21~26)을 구비한 필터 바디(20)와, 다수의 공진 블록(21~26)에 각각 가공 형성된 다수의 공진기 포스트(31~36)와, 필터 바디(20)에 구비되어 소정의 신호를 입력하거나 출력하는 입력 포트 돌기(61) 및 출력 포트 돌기(62)를 포함할 수 있다.
여기서, 필터 바디(20)는, 세라믹(ceramic) 재질로 성형되고, 다수의 공진 블록(21~26)은 필터 바디(20)의 일면과 타면을 상호 관통하여 연결되도록 구비된 구획 슬롯(51,52)에 의하여 인접하는 공진 블록(21~26) 간 구분이 가능할 수 있다. 즉, 여기서의 '구획'이라는 용어는, 각 공진 블록(21~26) 간의 물리적으로 완전한 구획을 의미하는 것은 아니고, 적어도 인접하는 공진 블록(21~26) 간 '구분'이 가능한 정도면 족한 개념이다.
각 공진 블록(21~26)은 상술한 바와 같이, 소정의 유전율을 가진 세라믹 재질로 구비되되, 공진 블록(21~26)이 구분 슬롯(51,52)에 의하여 각기 갖는 상이한 부피 또는 상이한 형상 등에 의하여 상이한 유전율을 가지는 바, 후술하는 입력 포트 및 출력 포트를 통한 전기적인 신호의 공급 및 출력 과정에서 상이한 주파수 대역의 필터링 설계가 가능하게 되는 것이다.
다수의 공진기 포스트(31~36)는, 도 1 및 도 2에 참조된 바와 같이, 필터 바디(20)와 상이한 유전율을 가진 유전체가 채워지는 형상으로 형성될 수 있는데, 여기서의 유전체는 공기를 포함하는 바, 공기가 채워진다는 의미는 공기가 채워질 수 있는 빈 공간 형태로 가공됨을 의미할 수 있다.
필터 바디(20)는, 도 1 및 도 2에 참조된 바와 같이, 대략 6면체의 블록 형상으로 형성되고, 소정의 두께를 가지되, 일면은 안테나 하우징의 전면 방향을 향하고 타면은 안테나 하우징의 후면 방향을 향하도록 메인 보드(1)의 전면에 솔더링 방식으로 결합될 수 있다.
이하에서는, 이해의 혼동을 방지하기 위하여, 필터 바디(20) 중 안테나 하우징의 전면 방향은 '전면' 또는 '전방'이라는 용어로 통일하여 사용하고, 필터 바디(20) 중 안테나 하우징의 후면 방향은 '후면' 또는 '후방'이라는 용어로 통일하여 사용하기로 한다. 마찬가지로, 메인 보드(1) 중 필터 바디(20)가 솔더링 결합되는 면은 '전면' 또는 '전방'이라는 용어로 통일하여 사용하고, 메인 보드(1)의 전면에 반대되는 면은 '후면' 또는 '후방'이라는 용어로 통일하여 사용하기로 한다. 또한, 후술하는 공진기 포스트(31~36)는 유전체 중 공기가 채워지는 구조로써 필터 바디(20)의 일부가 절개되어 삭제된 빈 공간 형태로 구비되는 것으로 전제하여 설명하기로 한다.
본 발명의 일 실시예에 따른 솔더 기판 조립체에서, 세라믹 도파관 필터(10)는, 도 1 및 도 2에 참조된 바와 같이, 하나의 필터 바디(20)에 6개의 공진 블록(21~26)이 형성되고, 각각의 공진 블록(21~26)에 각각의 공진기 포스트(31~36)가 구비될 수 있다.
여기서, 6개의 공진 블록(21~26)은, 도 1 및 도 2에 참조된 바와 같이, 제1구획 슬롯(51,52) 및 제2구획 슬롯(51,52)으로 구비된 구획 슬롯(51,52)에 의하여 상술한 바와 같이 인접하는 공진 블록(21~26) 상호 간을 구분짓는 형상으로 형성될 수 있다.
아울러, 세라믹 도파관 필터(10)는, 도 2에 참조된 바와 같이, 필터 바디(20)의 후면에 구비되되, 소정의 신호를 입력하기 위한 입력 포트 돌기(61) 및 소정의 신호를 출력하기 위한 출력 포트 돌기(62)가 일체로 형성될 수 있다.
종래의 세라믹 도파관 필터는, 상술한 입력 포트 돌기(61) 및 출력 포트 돌기(62)와 동일한 기능을 수행하는 것으로써, 다른 공진기 포스트(31~36)와 동일한 가공 방식을 채택하여, 필터 바디의 일부가 삭제 가공되는 형태로 각각 입력 포스트 및 출력 포스트를 구비하였다. 그리고, 입력 단자 핀 및 출력 단자 핀을 입력 포스트의 내부 및 출력 포스트의 내부에 납땜(솔더링) 방식으로 고정시키는 형태로 세라믹 도파관 필터를 제조하였다.
그러나, 종래의 세라믹 도파관 필터의 제조 방식은, 입력 단자 핀 및 출력 단자 핀을 별도로 납땜(솔더링)하는 조립 공정이 추가됨은 물론, 납땜 부위가 증가하여 외부 응력에 따른 크랙 발생으로 여전히 제품의 신뢰성을 저하시키는 문제점이 있었다.
본 발명의 일 실시예에 따른 솔더 기판 조립체는, 상술한 종래의 입력 포스트 및 출력 포스트에 대한 입력 포트 및 출력 포트의 구조 상의 문제점을 해결하고자, 입력 포트 돌기(61) 및 출력 포트 돌기(62)를 필터 바디(20)와 동일한 재질로 일체 형성하는 방식을 채택한다. 이에 대해서는, 뒤에 보다 상세하게 설명하기로 한다.
다수의 공진기 포스트(31~36)는, 필터 바디(20)의 전면 또는 후면 방향 중 어느 하나의 방향으로 개구된 원통 형상으로 형성될 수 있다. 본 발명의 일 실시예에 따른 솔더 기판 조립체에서는, 6개의 공진기 포스트(31~36) 모두가 필터 바디(20)의 전방으로 개구되게 형성된 것을 채택하고 있으나, 반드시 이에 한정되는 것은 아니고, 특정 주파수 대역에서 형성하는 노치 특성을 고려한 설계값에 의하여 각 공진기 포스트(31~36)마다 상이한 방향으로 개구되게 형성될 수 있음은 당연하다고 할 것이다.
여기서, 입력 포스 돌기(61)를 통하여 소정의 신호가 입력되면, 입력 포스 돌기(61)에 가장 인접하는 제1공진기 포스트(31)를 시작점으로 하여 순차적으로 신호가 제2공진기 포스트(32) - 제3공진기 포스트(33) - 제4공진기 포스트(34) - 제5공진기 포스트(35) - 제6공진기 포스트(36)를 경유하여 출력 포스 돌기(62)를 통하여 출력된다. 이를 위해, 입력 포스 돌기(61)와 출력 포스 돌기(62)를 기준으로 소정의 전기적인 신호 라인이 구축되고, 상기 전기적인 신호 라인을 따라 순차적으로 각 공진기 포스트(31~36)가 배열되는 것이다.
특히, 각 공진기 포스트(31~36)의 전방 측에는 미도시의 튜닝 조절 나사가 각각 배치된 튜닝 커버가 구비되고, 튜닝 조절 나사의 일부가 각 공진기 포스트(31~36) 내부로 유입되는 간극을 조절함으로써 특정 대역의 주파수 튜닝 설계가 가능할 수 있다.
입력 포스트(61)를 통하여 출력 포스트(62)까지 신호가 전송되는 과정 동안, 인접하는 공진기 포스트(31~36)끼리 커플링시키는 인접 커플링 또는 적어도 어느 하나의 공진기 포스트(31~36)를 건너 커플링시키는 크로스 커플링을 통해 설계자가 원하는 특정 대역의 주파수 필터링이 가능할 수 있다.
이와 같은 구성으로 이루어진 다수의 전장부품(10) 각각은, 메인 보드(1)의 전면에 솔더링 방식으로 솔더 결합될 수 있다. 이를 위해, 메인 보드(1)에는, 다수의 전장부품(10)이 전면에 솔더링되도록 다수의 회로 패턴부(3)가 형성될 수 있다.
아울러, 본 발명에 따른 솔더 기판 조립체의 일 실시예는, 메인 보드(1)에 형성된 다수의 회로 패턴부(3) 중 적어도 일부에 위치된 후 용융되어 다수의 전장 부품의 후면과 메인 보드(1)의 전면을 상호 솔더링하는 솔더 용융체(70)를 더 포함할 수 있다.
솔더 용융체(70)는, 납 재질의 고체 덩어리로 구비되고, 소정의 온도 이상의 열을 제공받으면 용융되어 후술하는 다수의 전장부품(10)에 일체로 형성된 솔더공간 형성부(40)에 부분적으로 채워지면서 메인 보드(1)에 다수의 전장부품(10)을 솔더링 결합시키는 역할을 수행한다.
여기서, 메인 보드(1)에 대한 안테나 요소 중 하나인 다수의 세라믹 도파관 필터(10)의 결합 평탄도 유지는 상술한 특정 대역의 주파수 필터링 성능 저하 방지 및 성능 유지와 매우 밀접한 관련이 있다.
즉, 메인 보드(1)의 전면에 실장된 다수의 전장부품(10)의 전단부에는 미도시의 안테나 보드가 적층 배치되는데, 다수의 전장부품(10)으로 채택된 세라믹 도파관 필터(10)의 결합 평탄도가 유지되지 않게 되면, 공진기 포스트(31~36)들 내부 요소와의 간극을 조절하는 튜닝 조절 나사와의 관계에서 설계자가 원하는 특정 대역의 주파수 필터링 설계의 오류가 증가할 수 있기 때문이다.
본 발명에 따른 솔더 기판 조립체의 일 실시예는, 도 1 내지 도 4에 참조된 바와 같이, 다수의 전장부품(10)에는, 다수의 전장부품(10)과 메인 보드(1) 사이 공간으로써, 솔더 용융체(70)가 결합되는 솔더 공간을 유지시키는 상술한 솔더공간 형성부(40)가 일체로 형성될 수 있다.
보다 상세하게는, 솔더공간 형성부(40)는, 다수의 전장부품(10)의 후면보다 메인 보드(1)의 전면을 향하여 기설정된 길이만큼 더 돌출되게 돌기 형태로 구비될 수 있다.
아울러, 솔더공간 형성부(40)는, 다수의 전장부품(10)의 재질과 동일한 재질로 일체 사출 성형될 수 있다. 그러므로, 솔더공간 형성부(40)가 다수의 전장부품(10)과 일체로 형성된다는 의미는, 세라믹 재질의 전장부품(10)을 몰딩 성형할 때 솔더공간 형성부(40) 또한 동시에 성형되는 것으로 이해할 수 있다.
솔더공간 형성부(40)는, 도 1 내지 도 4에 참조된 바와 같이, 다수의 전장부품(10)의 모서리 부위에 각각 형성된 적어도 2 이상의 모서리 지지 돌기(41)와, 다수의 전장부품(10)의 모서리 부위를 제외한 내측부에 형성된 적어도 하나의 내측 지지 돌기(42)를 포함할 수 있다.
본 발명에 따른 솔더 기판 조립체의 일 실시예에서, 도 4에 참조된 바와 같이, 다수의 전장부품(10) 각각은 대략 6면체의 세라믹 도파관 필터(10)로 채택되는 바, 모서리 지지 돌기(41)는 6면체의 일면인 사각형의 후면 모서리 부위 각각에 하나씩 배치되는 것으로써, 총 4개로 구비될 수 있다.
또한, 본 발명에 따른 솔더 기판 조립체의 일 실시예에서, 내측 지지 돌기(42)는, 도 4에 참조된 바와 같이, 6면체의 일면인 사각형의 후면 중앙 부분의 상호 이격되는 위치에 각각 하나씩 배치되는 것으로써, 총 2개로 구비될 수 있다. 그러나, 내측 지지 돌기(42)는 반드시 2개로 구비되어야 하는 것은 아니고, 다수의 전장부품(10)의 형상 및 결합 평탄도를 예측하여 그 이상의 개수로 구비되는 것도 가능함은 당연하다.
한편, 메인 보드(1)에 형성된 다수의 회로 패턴부(3)는, 도 3 및 도 4에 참조된 바와 같이, 솔더공간 형성부(40)가 안착되는 돌기 안착 패턴(5) 및 솔더 용융체(70)가 안착되는 솔더재 안착 패턴(7)을 포함할 수 있다.
여기서의 회로 패턴부(3)는, 통상 기판에 형성된 회로 패턴을 포함하는 개념이기는 하지만, 통상의 회로 패턴과는 달리 전도성 재질로 패턴 인쇄될 필요는 없다. 즉, 돌기 안착 패턴(5) 및 솔더재 안착 패턴(7)은, 메인 보드(1)의 전면에 결합되는 다수의 전장부품(10)의 설치 위치를 결정함과 동시에 전장부품(10)의 구성 중 솔더공간 형성부(40)의 정위치를 설정해주는 것으로 족하므로 전도성 재질로 구비되어야 하는 것은 아니다.
여기서, 돌기 안착 패턴(5) 및 솔더재 안착 패턴(7)은, 도 4에 참조된 바와 같이, 메인 보드(1)에 실장되는 세라믹 도파관 필터(10)의 후면 중 구획 슬롯(51,52), 입력 포트 돌기(61) 및 출력 포트 돌기(62)와 겹치지 않는 범위의 메인 보드(1)의 일면에 형성될 수 있다.
이와 같이, 메인 보드(1)에 형성된 돌기 안착 패턴(5)에 각각 세라믹 도파관 필터(10)의 후면에 일체로 형성된 솔더공간 형성부(40)가 면착됨으로써, 메인 보드(1)의 전면과 세라믹 도파관 필터(10)의 후면 사이에 솔더 용융체(70)가 용융 접합되기 위한 소정의 이격 거리를 확보해주게 된다.
아울러, 메인 보드(1)에는, 다수의 전장부품(10)이 세라믹 도파관 필터(10)로 채택된 경우, 필터 바디(20)에 구비되어 소정의 신호를 입력하거나 출력하는 입력 포트 돌기(61) 및 출력 포트 돌기(62)가 반대면으로 노출되는 입력 포트 수용홈(9a) 및 출력 포트 수용홈(9b)이 더 가공 형성될 수 있다.
한편, 필터 바디(20)에는, 입력 포트 돌기(61) 및 출력 포트 돌기(62)가 상술한 솔더공간 형성부(40)와 마찬가지로 메인 보드(1)를 향하여 소정길이 돌출되는 형태로 일체로 형성될 수 있다.
여기서, 필터 바디(20)와, 솔더 공간 형성부(40)와, 입력 포트 돌기(61) 및 출력 포트 돌기(62)는 모두 동일한 재질로 몰딩 형성되는 다이캐스팅 공법으로 일체로 제조될 수 있다.
또한, 입력 포트 돌기(61) 및 출력 포트 돌기(62)는, 상술한 솔더공간 형성부(40)의 돌출량과 같거나 더 크게 형성될 수 있다. 입력 포트 돌기(61) 및 출력 포트 돌기(62)는 메인 보드(1)에 형성된 입력 포트 수용홈(9a) 및 출력 포트 수용홈(9b)을 통해 신호 연결이 용이하도록 메인 포드(1)의 반대면으로 노출되거나 입력 포트 수용홈(9a) 및 출력 포트 수용홈(9b)을 관통하여 그 반대면으로 돌출되도록 형성될 수 있다.
이와 같이, 본 발명의 일 실시예에 따른 솔더 기판 조립체는, 종래 입력 포스트 및 출력 포스트 형태로 구비된 입력 포트 및 출력 포트를 필터 바디(20)에 일체로 형성되는 입력 포트 돌기(61) 및 출력 포트 돌기(62) 형태로 구비함으로써, 세라믹 도파관 필터(10)의 제조성을 향상시킴은 물론, 단자 핀의 납땜 부위를 삭제하여 세라믹 도파관 필터(10)의 신뢰성을 향상시킬 수 있는 이점을 가진다.
다만, 솔더공간 형성부(40)와 입력 포트 돌기(61) 및 출력 포트 돌기(62)는 적어도 어느 하나의 공진블록(21~26)의 일부와 일체로 성형되는 돌출되는 점에서, 각각의 메인 보드(1)로의 돌출량은 주파수 필터 설계 시의 유효한 오차범위를 고려하여 설정됨이 바람직하다.
이는, 솔더공간 형성부(40)와 입력 포트 돌기(61) 및 출력 포트 돌기(62)의 직경 또는 돌출량 등이 과도하게 크게 형성될 경우, 해당 공진블록(21~26)의 전체 형상 또는 부피의 변화를 초래하게 되고, 이에 따라 주파수 필터 설계 시의 유효한 오차범위를 벗어나는 것을 방지하기 위함이다.
도 5는 본 발명에 따른 솔더 기판 조립체의 일 실시예의 구성 중 전장부품의 평면도 및 A-A선에 따른 단면도이고, 도 6은 본 발명에 따른 솔더 기판 조립체의 단면도로써, 도 5의 B-B선을 따라 취한 단면도이며, 도 7은 본 발명의 일 실시예에 따른 솔더 기판 조립체의 RF 특성을 나타낸 플롯(PLOT) 그래프이다.
본 발명에 따른 솔더 기판 조립체의 일 실시예는, 도 5 및 도 6에 참조된 바와 같이, 메인 보드(1)의 전면과 이에 실장되는 다수의 전장부품(10)의 후면 사이에 소정의 이격거리를 확보하기 위한 솔더공간 형성부(40)가 다수의 전장부품(10)에 일체로 형성되어, 솔더링 방식으로 다수의 전장부품(10)을 메인 보드(1)에 실장시킬 때 결합 평탄도를 유지할 수 있다.
즉, 솔더공간 형성부(40)는, 도 5에 참조된 바와 같이, 세라믹 도파관 필터(10)로 구비된 다수의 전장부품(10)의 후면으로부터 각각 동일한 길이로 메인 보드(1)를 향하여 소정거리 돌출되는 돌기 형태로 구비되어, 도 6에 참조된 바와 같이, 메인 보드(1)의 전면과 세라믹 도파관 필터(10)의 후면 사이에 솔더 용융체(70)가 삽입되기 위한 솔더 공간을 형성하는 바, 일률적인 솔더링 방식의 결합이 가능하도록 한다.
이와 같이, 다수의 전장부품(10)에 일체로 형성된 솔더공간 형성부(40)에 의하여 솔더 용융체(70)가 솔더링 방식으로 용융 결합되는 경우, 다수의 전장부품(10)의 결합 평탄도를 유지할 수 있으므로, 외부 응력 변화에 대한 크랙 발생을 방지하여 다수의 전장부품(10)의 수명을 증가시킬 수 있다.
또한, 다수의 전장부품(10)의 결합 평탄도 유지 효과는, 다수의 세라믹 도파관 필터(10)의 균형을 맞추어 줌으로써 필터 성능의 저하를 방지할 수 있다.
아울러, 다수의 전장부품(10)의 결합 평탄도 유지를 위한 별도의 스페이서를 구비하지 않아도 되므로, 조립 공정 및 제조 단가의 상승을 방지할 수 있다.
또한, 필터 바디(20)에 솔더공간 형성부(40) 및 입력 포트 돌기(61)와 출력 포트 돌기(62)를 일체로 형성하는 경우에도, 도 7에 참조된 바와 같은 유효한 설계 오차 범위 내에서의 주파수 응답특성을 획득할 수 있음을 알 수 있다.
이상, 본 발명에 따른 솔더 기판 조립체의 일 실시예를 첨부된 도면을 참조하여 상세하게 설명하였다. 그러나, 본 발명의 실시예가 반드시 상술한 일 실시예에 의하여 한정되는 것은 아니고, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의한 다양한 변형 및 균등한 범위에서의 실시가 가능함은 당연하다고 할 것이다. 그러므로, 본 발명의 진정한 권리범위는 후술하는 청구범위에 의하여 정해진다고 할 것이다.
본 발명은, 솔더 공간 형성부를 이용하여 다수의 전장부품의 결합 평탄도를 유지하고, 다수의 세라믹 도파관 필터의 균형을 맞추어 줌으로써 필터 성능의 저하를 방지하며, 제품의 제조 비용을 절감할 수 있는 솔더기판 조립체를 제공한다.

Claims (11)

  1. 다수의 전장부품;
    상기 다수의 전장부품이 전면에 솔더링되도록 다수의 회로 패턴부가 형성된 메인 보드; 및
    상기 다수의 회로 패턴부 중 적어도 일부에 위치된 후 용융되어 상기 다수의 전장부품의 후면과 상기 메인 보드의 전면을 상호 솔더링하는 솔더 용융체; 를 포함하고,
    상기 다수의 전장부품에는, 상기 다수의 전장부품과 상기 메인 보드 사이 공간으로써, 상기 솔더 용융체가 결합되는 솔더 공간을 유지시키는 솔더공간 형성부가 일체로 형성된, 솔더 기판 조립체.
  2. 청구항 1에 있어서,
    상기 솔더공간 형성부는, 상기 다수의 전장부품의 후면보다 상기 메인 보드의 전면을 향하여 기설정된 길이만큼 더 돌출되는 돌기 형태로 구비된, 솔더 기판 조립체.
  3. 청구항 1에 있어서,
    상기 솔더공간 형성부는, 상기 다수의 전장부품의 재질과 동일한 재질로 일체 사출 성형된, 솔더 기판 조립체.
  4. 청구항 1에 있어서,
    상기 다수의 전장부품은, 상기 메인 보드에 추가 실장된 RF 급전 네트워크 부품들에 의한 전원 공급 제어를 통해 특정 주파수 대역에서의 필터링이 되도록 구비된 세라믹 도파관 필터(Ceramic Waveguide Filter, CWF); 를 포함하는, 솔더 기판 조립체.
  5. 청구항 1 내지 청구항 4 중 어느 한 항에 있어서,
    상기 솔더공간 형성부는,
    상기 다수의 전장부품의 모서리 부위에 각각 형성된 적어도 2 이상의 모서리 지지 돌기; 및
    상기 다수의 전장부품의 모서리 부위를 제외한 내측부에 형성된 적어도 하나의 내측 지지 돌기; 를 포함하는, 솔더 기판 조립체.
  6. 청구항 1에 있어서,
    상기 메인 보드에 형성된 다수의 회로 패턴부는,
    상기 솔더공간 형성부가 안착되는 돌기 안착 패턴; 및
    상기 솔더 용융체가 안착되는 솔더재 안착 패턴; 을 포함하는, 솔더 기판 조립체.
  7. 청구항 6에 있어서,
    상기 다수의 전장부품은,
    세라믹 재질로 성형되되, 구획 슬롯에 의하여 구획된 다수의 공진 블록을 구비한 필터 바디;
    상기 다수의 공진 블록에 각각 가공 형성되되, 상기 필터 바디와 상이한 유전율을 가진 유전체로 채워지도록 형성된 다수의 공진기 포스트; 및
    상기 필터 바디에 구비되어 소정의 신호를 입력하거나 출력하는 입력 포트 돌기 및 출력 포트 돌기; 를 포함하고,
    상기 메인 보드에는, 상기 입력 포트 돌기 및 출력 포트 돌기가 반대면으로 노출되는 입력 포트 수용홈 및 출력 포트 수용홈; 이 가공 형성된, 솔더 기판 조립체.
  8. 청구항 7에 있어서,
    상기 돌기 안착 패턴 및 상기 솔더재 안착 패턴은, 상기 메인 보드에 실장되는 상기 세라믹 도파관 필터의 후면 중 상기 격벽, 구획 슬롯, 다수의 공진기 포스트, 입력 포트 돌기 및 출력 포트 돌기와 겹치지 않는 범위의 상기 메인 보드의 일면에 형성된, 솔더 기판 조립체.
  9. 청구항 7에 있어서,
    상기 입력 포트 돌기 및 출력 포트 돌기는, 상기 필터 바디와 일체로 형성된, 솔더 기판 조립체.
  10. 청구항 7에 있어서,
    상기 필터 바디와, 상기 솔더 공간 형성부와, 상기 입력 포트 돌기 및 출력 포트 돌기는, 다이캐스팅 공법으로 일체로 제조되는, 솔더 기판 조립체.
  11. 청구항 7에 있어서,
    상기 입력 포트 돌기 및 출력 포트 돌기는, 상기 솔더 공간 형성부의 돌출량과 같거나 더 크게 형성된, 솔더 기판 조립체.
PCT/KR2021/008416 2020-07-02 2021-07-02 솔더 기판 조립체 WO2022005245A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202190000601.6U CN219698012U (zh) 2020-07-02 2021-07-02 具有焊接结构的印刷电路板组件

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2020-0081729 2020-07-02
KR1020200081729A KR20220003902A (ko) 2020-07-02 2020-07-02 솔더 기판 조립체

Publications (1)

Publication Number Publication Date
WO2022005245A1 true WO2022005245A1 (ko) 2022-01-06

Family

ID=79317091

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/008416 WO2022005245A1 (ko) 2020-07-02 2021-07-02 솔더 기판 조립체

Country Status (3)

Country Link
KR (1) KR20220003902A (ko)
CN (1) CN219698012U (ko)
WO (1) WO2022005245A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0730317A1 (en) * 1995-02-28 1996-09-04 Plessey Semiconductors Limited Structures for filters and/or resonators
KR20000067769A (ko) * 1999-04-30 2000-11-25 아끼구사 나오유끼 번인 보드 및 반도체 장치의 시험 방법
KR100408948B1 (ko) * 1994-11-15 2004-04-03 폼팩터, 인크. 전자부품을 회로기판에 장착하는 방법
KR20190116175A (ko) * 2019-09-18 2019-10-14 삼성전기주식회사 전자 부품 및 그 실장 기판
KR20200062005A (ko) * 2018-11-26 2020-06-03 주식회사 에이스테크놀로지 세라믹 웨이브가이드 필터 및 이의 제조 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100408948B1 (ko) * 1994-11-15 2004-04-03 폼팩터, 인크. 전자부품을 회로기판에 장착하는 방법
EP0730317A1 (en) * 1995-02-28 1996-09-04 Plessey Semiconductors Limited Structures for filters and/or resonators
KR20000067769A (ko) * 1999-04-30 2000-11-25 아끼구사 나오유끼 번인 보드 및 반도체 장치의 시험 방법
KR20200062005A (ko) * 2018-11-26 2020-06-03 주식회사 에이스테크놀로지 세라믹 웨이브가이드 필터 및 이의 제조 방법
KR20190116175A (ko) * 2019-09-18 2019-10-14 삼성전기주식회사 전자 부품 및 그 실장 기판

Also Published As

Publication number Publication date
CN219698012U (zh) 2023-09-15
KR20220003902A (ko) 2022-01-11

Similar Documents

Publication Publication Date Title
WO2019151655A1 (ko) 무선 주파수 필터
WO2017095035A1 (ko) 크로스 커플링 노치 구조를 구비한 캐비티 타입의 무선 주파수 필터
WO2017030336A1 (ko) 캐비티 필터
WO2021261923A1 (ko) 무선 통신 시스템에서 안테나 필터 및 이를 포함하는 전자 장치
EP0907982B1 (en) Integrated filter
WO2010071304A2 (ko) 커플링을 이용한 전력 분배기
EP2220721B1 (en) A waveguide transition arrangement
WO2022005245A1 (ko) 솔더 기판 조립체
CA2012003C (en) A te___ mode dielectric resonator circuit
WO2020091329A1 (ko) 안테나 장치
WO2022045753A1 (ko) 안테나용 알에프 필터 조립체
WO2020054964A1 (ko) 세라믹 도파관 필터
WO2021256688A1 (ko) 고주파 캐비티 필터의 제조 방법 및 시스템
EP1309031B1 (en) Nonreciprocal circuit device and communication apparatus
WO2022045755A1 (ko) 안테나용 알에프 필터 조립체
WO2021167357A1 (ko) 캐비티 필터 및 그 제조 방법
US6960967B2 (en) Dielectric resonator device, filter, duplexer, and communication apparatus
WO2021241977A1 (ko) 안테나 장치
WO2021177614A1 (ko) 웨이브가이드 필터
WO2021066365A1 (en) Waveguide integrated substrate and fabricating method thereof
WO2021241993A1 (ko) 안테나 장치
WO2023243814A1 (ko) 웨이브가이드필터 및 그 필터를 포함한 전자장치
KR102613544B1 (ko) 안테나용 알에프 필터 조립체
CN115343812B (zh) 输入输出构件和制备方法及封装基座和光器件
WO2024058557A1 (ko) 통신기기용 필터

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21834098

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202190000601.6

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21834098

Country of ref document: EP

Kind code of ref document: A1