WO2020091329A1 - 안테나 장치 - Google Patents
안테나 장치 Download PDFInfo
- Publication number
- WO2020091329A1 WO2020091329A1 PCT/KR2019/014244 KR2019014244W WO2020091329A1 WO 2020091329 A1 WO2020091329 A1 WO 2020091329A1 KR 2019014244 W KR2019014244 W KR 2019014244W WO 2020091329 A1 WO2020091329 A1 WO 2020091329A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- unit
- heat
- heat dissipation
- electric
- filter
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/02—Arrangements for de-icing; Arrangements for drying-out ; Arrangements for cooling; Arrangements for preventing corrosion
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/12—Supports; Mounting means
- H01Q1/22—Supports; Mounting means by structural association with other equipment or articles
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H7/00—Multiple-port networks comprising only passive electrical elements as network components
- H03H7/01—Frequency selective two-port networks
Definitions
- the present invention relates to an antenna device (ANTENNA APPARATUS), and more particularly, to an antenna device for wireless communication.
- Wireless communication technology for example, Multiple Input Multiple Output (MIMO) technology
- MIMO Multiple Input Multiple Output
- a transmitter transmits different data through each transmit antenna and receives a receiver.
- the channel capacity increases, so that more data can be transmitted. For example, if the number of antennas is increased to 10, about 10 times the channel capacity is secured using the same frequency band compared to the current single antenna system.
- Massive MIMO technology Up to 8 antennas are used in 4G LTE-advanced, and products with 64 or 128 antennas are currently being developed in the pre-5G phase, and base station equipment with a much larger number of antennas is expected to be used in 5G. , This is called Massive MIMO technology. While the current cell operation is 2-Dimension, 3D-Beamforming becomes possible when Massive MIMO technology is introduced, so it is also called FD-MIMO (Full Dimension).
- Massive MIMO In Massive MIMO technology, as the number of ANT increases, the number of transmitters and filters increases accordingly. Nevertheless, due to the lease cost or space limitation of the installation site, it is necessary to make the RF components (Antenna / Filter / Power Amplifier / Transceiver etc.) small, light, and inexpensive. Massive MIMO needs high power to expand coverage. The resulting power consumption and heat generation are negative factors in reducing weight and size.
- An object of the present invention is to provide an antenna device with improved heat dissipation performance.
- another object of the present invention is to provide an antenna device having a simpler arrangement and matching arrangement of independent heat dissipation units corresponding to a group of heat generating elements having the same specifications and specifications.
- another object of the present invention is to provide an antenna device equipped with a power connector (first interface block connector) and an RF connector (second interface block connector) having excellent compatibility and applicability.
- a filter unit portion arranged to form at least one or more layers (layers), coupled to be spaced apart from the filter unit portion to form a different layer (layer) from the filter unit portion ,
- An electric unit unit in which various electric devices are built a filter unit heat dissipation module and the electric unit that radiate heat generated from the filter unit unit to the outside of the filter unit unit, which is coupled to the opposite surface of the electric unit unit
- a first electric field heat dissipation module coupled to the opposite side of the surface where the filter unit part is coupled, and radiating heat generated from the first heat generating element concentrated to one side of the filter unit part to the outside, and the first electric power
- a second electric heat dissipation module that is provided side by side in the heat dissipation module to dissipate heat generated from the second heat generating element concentratedly disposed on the other side of the filter unit part to the outside.
- the filter unit portion and the electric field unit portion one end is coupled to the filter unit portion, the other end may be spaced a predetermined distance by a plurality of air supporters coupled to the electric unit unit.
- the filter unit unit the filter unit main body provided with a predetermined installation space on one side, the filter unit body is disposed in the installation space, a plurality of signal amplification elements (Main TR for Power Amplifier) mounted on one side of the signal amplifier Printed circuit board for the filter (Power Amplifier PCB) and the printed circuit board for the signal amplifier is arranged to be spaced a predetermined distance apart, a plurality of LPF (Low Pass Filter) is installed on the filter printed circuit board (Filter PCB) Including, it is possible to form two layers (layers) through the printed circuit board for the signal amplifier and the printed circuit board for the filter.
- a plurality of signal amplification elements Main TR for Power Amplifier
- Printed circuit board for the filter Power Amplifier PCB
- LPF Low Pass Filter
- the filter unit heat dissipation module may be provided to radiate heat generated from the plurality of signal amplifying elements through a heat transfer path coupled to the outside of the filter unit body through the filter unit body.
- the filter unit heat dissipation module is attached to the heat generating surface of each of the plurality of signal amplifying elements to collect heat, and is arranged to contact the outer surface of the heat sink plate, and a plurality of heat radiation fins are formed on the outside.
- the first heat sink fin portion, the second heat sink fin portion is arranged to be spaced outward in the horizontal direction with respect to the first heat sink fin portion, and a plurality of heat radiation fins are formed on the outside so as to dissipate heat from the first heat sink fin portion and dissipate a long distance.
- a heat transfer medium block receiving heat from the plate and transferring it to the first heat sink fin part, one end is inserted between the first heat sink pin part and the heat transfer medium block, and the other end is connected to the second heat sink pin part to form the heat transfer medium block. It may include a plurality of heat pipes to transfer the supplied heat to the second heat sink fin portion.
- the shell plate and the heat transfer medium block may be provided with a copper material.
- the electric unit unit portion is opened to the filter unit portion side is provided with at least two partitioned installation spaces, any one of the at least two partitioned installation spaces (hereinafter referred to as 'first installation space', the rest of the installation)
- the space is a part corresponding to the 'second installation space', and an electric field unit in which a plurality of heat radiation fins are integrally provided on a surface opposite to an adjacent surface (hereinafter referred to as an 'outside surface').
- FPGAs Field Progammable Gate Arrays
- the heat dissipation module of the electric unit is disposed to be in thermal contact with the plurality of FPGAs through a plurality of heat transfer holes formed to be opened in the electric unit unit body, and is spaced outwardly more than the plurality of heat dissipation fins formed in the electric unit unit body.
- the first full-length side heat dissipation unit is attached to the heat generating surface of each of the plurality of FPGAs, the heat collecting plate is arranged to contact the outer surface of the heat collecting plate, and a plurality of heat radiation fins are formed on the outside.
- the heat transfer medium block which is supplied and transferred to the first heat sink fin part and one end is inserted between the first heat sink fin part and the heat transfer medium block, and the other end is connected to the second heat sink fin part to heat the heat supplied from the heat transfer medium block. It may include a plurality of heat pipes to be transferred to the second heat sink fin portion.
- the shell plate and the heat transfer medium block may be provided with a copper material.
- a plurality of heat dissipation fins having the same height as the plurality of heat dissipation fins formed on the outer surface of the electric field unit main body may be integrally formed.
- the filter unit portion is provided with at least one filter-side power connection terminal and at least one filter-side signal connection terminal
- the electric unit unit portion has at least one electric-side power connection terminal and at least one electric-side signal connection terminal.
- the first interface block connector and the at least one filter-side signal connection terminal coupled while forming one thickness portion to interconnect the at least one filter-side power connection terminal and the at least one electric-side power connection terminal
- a second interface block connector that is coupled while forming the other thickness portion to interconnect the at least one electric-side signal connection terminal may be further included.
- the present invention has an effect of improving heat dissipation performance.
- the independent heat dissipation units corresponding to the heat generating element groups having the same specifications and specifications are matched and arranged, but as a result of having a simpler arrangement structure, assembleability is improved and heat dissipation design is very effective.
- the present invention can improve compatibility and applicability.
- FIG. 1 is a perspective view showing an embodiment of an antenna device according to the present invention
- Figure 2 is an exploded perspective view of Figure 1
- FIG. 1 is exploded perspective views showing a filter unit part in the configuration of FIG. 1,
- FIG. 4 is an exploded perspective view showing the LPF elements installed on the filter printed circuit board of the filter unit of Figure 3,
- 5A and 5B are exploded perspective views showing a printed circuit board for a signal amplifier among filter unit parts of FIG. 3,
- FIG. 6 is an exploded perspective view showing a filter unit heat dissipation module among the filter unit parts of FIG. 3,
- FIG. 7 is a rear view showing the filter unit of Figure 3,
- FIG. 8 is a cross-sectional view taken along the line A-A of FIG. 7,
- FIG. 10A and 10B are exploded perspective views showing an electric unit unit in the configuration of FIG. 1,
- FIG. 11 is a front view showing the electric unit unit of Figures 10a and 10b,
- FIG. 13 is an exploded perspective view showing a coupling relationship between an air supporter separating the filter unit unit and the electric unit unit from the configuration of FIG. 1.
- antenna unit 100 filter unit unit
- Filter unit body 107a Printed circuit board for filter
- RET port 110 filter unit heat dissipation module
- shell plate 112 heat transfer medium block
- Electric unit main body 210 Electric unit heat radiation module
- first electronics side heat dissipation unit 230 second electronics side heat dissipation unit
- FIG. 1 is a perspective view showing an embodiment of an antenna device according to the present invention
- FIG. 2 is an exploded perspective view of FIG. 1.
- the filter unit unit 100 in which the antenna assembly or filter element is built, and the electric field unit in which various electric devices are embedded Includes part 200.
- the filter unit unit 100 is a portion where antenna assemblies and LPFs 106 (Low Pass Filters) composed of RF elements and digital elements are mounted or coupled.
- the RF elements, the digital elements, and the LPFs 106 may be installed separately in a printed circuit board 107a for a filter implemented with an RF feeding network or a printed circuit board 107b for a signal amplifier.
- FIGS. 5A and 5B are exploded perspective views showing the filter unit unit 100 in the configuration of FIG. 1, and FIG. 4 is an LPF element 105 installed on the filter printed circuit board 107a among the filter unit unit 100 in FIG. 3 ) Is an exploded perspective view, and FIGS. 5A and 5B are exploded perspective views showing a printed circuit board 107b for a signal amplifier among the filter unit parts 100 of FIG. 3, and FIG. 6 is a filter unit part 100 of FIG. 3 Exploded perspective view showing the filter unit heat dissipation module 110, FIG. 7 is a rear view showing the filter unit 100 of FIG. 3, FIG. 8 is a cross-sectional view taken along line AA of FIG. 7, and FIG. It is a sectional view taken along line BB of 7.
- the printed circuit board 107a for a filter and the printed circuit board 107b for a signal amplifier are formed in the filter unit main body 100a forming a skeleton of the filter unit part 100, as shown in FIGS. 3A and 3B. It may be stacked in a predetermined installation space.
- the filter unit main body 100a is formed to be opened to the side where the electric unit unit 200, which will be described later, is coupled, has the above-described installation space therein, and prints the filter circuit board 107a and the signal amplifier in the installation space.
- the circuit board 107b may be stacked and arranged while forming a predetermined thickness.
- the closed inner surface of the filter unit body 100a may be provided with a plurality of heat dissipation installation openings 100b opened outward.
- the filter unit heat dissipation module 110 which will be described later through the plurality of heat dissipation installation holes 100b, may be coupled to be in direct thermal contact with any one of the plurality of signal amplification elements 108a or RF elements.
- the left and right ends of the filter unit main body 100a may be provided with terminal insertion ports 100c for connecting terminals of the first interface block connector 310 and the second interface block connector 320, which will be described later.
- the filter unit unit 100 forms at least one or more layers (layers), but is disposed in the installation space of the filter unit body 100a, and a plurality of The signal amplification element (Main TR for Power Amplifier) 108a is mounted on one side of the signal amplifier printed circuit board 107a (Power Amplifier PCB) and the signal amplifier printed circuit board 107a to be spaced a predetermined distance apart It can be arranged in a stack, and may include a printed circuit board 107b (Filter PCB) for a filter in which a plurality of air strip lines 106 are arranged to constitute an LPF (Low Pass Filter) on one side, and for a signal amplifier. Two layers (layers) may be formed through the printed circuit board 107a and the filter printed circuit board 107b.
- a plurality of PA (Power Amplifier) signal amplifying elements (Main TR) 108a may be mounted on one surface of the signal amplifier printed circuit board 107a, as shown in FIG. 3A.
- the signal amplifying elements (Main TRs) 108a are concentrated heat generating elements, and heat generated by the filter unit heat dissipation module 110 described later may be dissipated to the outside.
- the air strip line 106 provided with eight transmit / receive (TRX) ports is arranged to allow the air strip line 106 to be accommodated.
- TRX transmit / receive
- a number of enclosures 102 may be provided.
- the air strip line 106 has a shape in which four connection ports 102a transmitted and received from the antenna are formed as long and four as short formed.
- the housing 102 may be provided with a housing cover 103 covering the air strip line 106 accommodated therein.
- the housing 102 and the housing cover 103 the same surface as the air strip line 106, is formed on a pocket (Pocket) surface opposite to the surface provided with the connection port (102a) to the size Since it can be designed to the maximum, it has the advantage of greatly improving the RF performance.
- the degree of freedom in designing the LPF 105 on the pocket surface can be improved.
- each of the RET ports 104 connected to the LPF 105 and provided with electronic tilting remotely to control the antenna. It may be provided to be aligned left and right in the drawing.
- a PA Out port 108b connected to the filter input terminal of the LPF 105 is mounted and protected as shown in FIG. 5A, and also protects the circuit during signal reception (Rx).
- a number of circulators 108c for doing so may be provided on one side of the PA Out port 108b.
- the filter printed circuit board 107a and the signal amplification printed circuit board 107b are arranged to be spaced apart at a predetermined distance in the thickness direction by at least the height of the circulator 108c, and the PA Out port 108b and a plurality of circulators 108c is disposed inside the spaced apart from each other.
- the height of the PA Out port 108b is formed larger than the above-described separation distance, and thus can be fixedly inserted into the filter input terminal of the LPF 105.
- the filter unit main body 100a is a filter-side heat dissipation cover, and can be combined to cover the filter printed circuit board 107 and the signal amplification printed circuit board 107.
- a plurality of heat radiation fins 100d are formed on the outside of the filter unit body 100a provided as a filter-side heat dissipation cover, and as an installation space of the filter body 100a, a printed circuit board 107a for filters
- the PA Clamshell 109 is disposed between and the signal amplifying printed circuit board 107b to shield electromagnetic waves from the PA or the signal amplifying printed circuit board 107.
- the filter unit heat dissipation module 110 serves to heat the heat generated from the signal amplification elements (Main TRs) 108a, which are centralized heating elements, and radiate heat to the outside.
- Main TRs Signal amplification elements
- the filter unit heat dissipation module 110 is coupled to the outside of the filter unit body (100a), the plurality of signals through the heat transfer path through the heat dissipation installation port (100b) provided to penetrate the filter unit body (100a) It is provided to discharge heat generated from the amplifying elements (Main TR) (108a).
- the filter unit heat dissipation module 110 as shown in Figs. 6 to 9, a plurality of signal amplification elements (Main TR) (108a) is attached to each of the heat generating surface and the trap plate 111 for collecting heat , Arranged so as to be in contact with the outer surface of the enveloping plate 111, the first heat-dissipating fin portion 113 having a plurality of heat-dissipating fins formed on the outside, and the first heat-dissipating fin portion 113 being horizontally spaced apart from the outside, The first heat-radiating fin part 113 receives heat from the first heat-radiating fin part 113 and is supplied with heat from the second heat-radiating fin part 115 with a plurality of heat-radiating fins formed on the outside so as to dissipate heat over a long distance.
- Main TR signal amplification elements
- the shell plate 111 and the heat transfer mediating block 112 may be provided with a copper plate made of copper.
- the enveloping plate 111 does not necessarily have to be a pure copper material, and may be provided with an alloy material containing copper. This is to enable the heat generated from the signal amplification element (Main TR), which is a centralized heating element, to be effectively externally discharged through a copper-made shell plate 111 and a heat transfer mediating block 112 having higher thermal conductivity.
- Main TR signal amplification element
- the enveloping plate 111 may be provided to be interpolated to a portion of the heat dissipation installation port 100b formed to be opened to correspond to a position where a signal amplifying element Main TR is mounted on the filter unit main body 100a.
- the centralized heating element signal amplification element (Main TR) is effectively using the filter unit heat dissipation module 110 provided as a separate module
- heat generated inside the filter unit body 100a which is not a centralized heating element, is radiated to the outside through a plurality of heat dissipation fins 100d provided outside the filter unit body 100a.
- active heat dissipation design for each heat generating element has an advantage.
- the degree of heat generation of the centralized heating element is calculated in advance to optimize
- a dedicated heat dissipation module with heat dissipation performance can be designed.
- the heat generated from the signal amplification element (Main TR) is saturated by the enveloping plate 111, and then, through the heat transfer intermediary block 112, some of them are directly transferred to the first heat-radiating fin portion 113, while others are It is transferred to a plurality of heat pipes 114, and close to the heat dissipation through the first heat dissipation fin part 113, and dissipates distant heat through the second heat dissipation fin part 115.
- the outer ends of each of the first radiating fin part 113 and the second radiating fin part 115 are provided at an outer side more than at least the front ends of the plurality of radiating fins 100d provided directly on the outer surface of the filter unit body 100a. Bars, heat generated from the installation space of the filter unit main body 100a and heat generated from the signal amplifying element Main TR can be separated from each other to radiate heat.
- FIGS. 10A and 10B are exploded perspective views showing the electric unit unit 200 in the configuration of FIG. 1, FIG. 11 is a front view showing the electric unit unit 200 of FIGS. 10A and 10B, and FIG. 12 is CC of FIG. 11 , DD and EE along the line.
- the electric unit unit 200 is opened toward the filter unit 100 and is provided with at least two partitioned installation spaces 201a and 201b, and at least two partitioned installations As a part corresponding to any one of the spaces 201a and 201b (hereinafter referred to as 'first installation space 201a', and the remaining installation space referred to as 'second installation space 201b'), the filter unit part ( 100) the electric field unit main body 200a in which a plurality of heat dissipation fins 200d are integrally provided on a surface opposite to an adjacent surface (hereinafter referred to as a 'front surface'), and a first of the electric field unit main body 200a.
- a 'front surface' a surface opposite to an adjacent surface
- FPGAs 207 Field Progammable Gate Array
- PSU DC power module 203 mounted on one side facing the front surface of the printed circuit board (206b) for the second electric field Includes.
- first printed circuit board 206a and the second printed circuit board 206b are the first installation space 201a and the second installation space 201b at the same height so as to form one layer (layer). ).
- the full length unit body 200a is opened in a direction in which the filter unit 100 is provided and is formed in a rectangular parallelepiped shape having a predetermined thickness. It is divided into spaces, and a first installation space 201a may be formed on one side and a second installation space 201b may be formed on the other side.
- the second installation space 201b in which a plurality of DC power modules for PSUs 203 are installed may be formed in the form of openings on both sides of the thickness direction side.
- a plurality of heat dissipation fins 200d may be integrally formed on the front surface corresponding to the first installation space 201a of the electric unit unit body 200a to immediately discharge heat inside the first installation space 201a to the outside.
- heat dissipation holes 200b provided to penetrate the electric unit unit body 200a so that the heat generating surfaces of the plurality of FPGAs 207 are exposed to the outside, the plurality of FPGAs 207 It may be formed of a number corresponding to the number of.
- a plurality of FPGAs 207 may be mounted on the first printed circuit board 206a coupled to the first installation space 203a of the electric unit main body 200a.
- the plurality of FPGAs 207 are a kind of a programmable gate array (Field Progammable Gate Array) semiconductor, and are one of the centralized heating elements, like the above-described signal amplifying element (Main TR) 108a.
- the heat dissipation module 210 of the electric unit heats with a plurality of FPGAs 207 through a plurality of heat dissipation holes 200b formed to be opened in the electric unit main body 200a.
- the first electric field side heat dissipation unit 220 disposed in contact and spaced further forward than the plurality of heat dissipation fins 200d formed on the electric unit unit body 200a, and an opening formed to be opened in the electric unit unit body 200a
- a second electric field side coupled to the outer surface of the electric unit unit main body 200a to close (201a), and provided in contact with the plurality of DC power modules for PSUs 203a of the first electric printed circuit board 206a
- a heat dissipation unit 230 may be included.
- a plurality of FPGAs 207 centrally disposed on one side of the electric unit unit body 200a are defined as a 'first heating element', and concentrated on the other side of the electric unit unit body 200a.
- a plurality of DC power supply modules 203 for PSUs are defined as 'second heating elements'.
- the first electric field side heat dissipation unit 220 among the components of the electric unit heat dissipation module 210 has the same configuration and specifications as the filter unit heat dissipation module 110 of the filter unit 100.
- the first electric field side heat dissipation unit 220 is in contact with the heat generating surfaces of each of the plurality of FPGAs 207 to collect heat.
- the plate 211 and the first heat-radiating fin portion 213 disposed to contact the outer surface of the enveloping plate 211 and having a plurality of heat-radiating fins on the outside, and the first heat-radiating fin portion 213 in a horizontal direction to the outside It is arranged to be spaced apart, and receives heat from the first heat dissipation fin part 213 to receive heat from the second heat dissipation fin part 215 with a plurality of heat dissipation fins formed on the outside so as to dissipate heat distantly.
- the heat transfer medium block 212 transferred to the heat dissipation fin part 213 and the first heat dissipation fin part 213 and the heat transfer medium block 212 are inserted at one end, and the other end is connected to the second heat dissipation fin part 215. It will include a plurality of heat pipes 214 to transfer the heat supplied from the heat transfer medium block 212 to the second heat sink fin portion 215 There.
- two FPGAs 207 are installed on the front portion of the first printed circuit board 206a for electric field, and heat is concentrated in the first installation space 201a. To prevent this, one may be mounted to be positioned relatively upward on the drawing and the other to be positioned relatively lower on the drawing.
- the lengths of the second heat sink fin portion 215 and the plurality of heat pipes 214 among the configurations of the first electric field side heat radiator 220 involved in each FPGA 207 may be designed differently.
- the second electric field side heat dissipation unit 230 has a plurality of heat dissipation fins having the same height as the plurality of heat dissipation fins 200d formed on the outer surface of the electric field unit main body 200a, as shown in FIGS. 10A and 10B. 230d) may be integrally formed.
- the second electric field side heat dissipation unit 230 is coupled to one side of the second installation space 201b of the electric field unit main body 200a with both sides open, and closes one side of the second installation space 201b,
- a plurality of heat dissipation fins 200d formed on the outer surface of the unit body 200a may be provided to form an external appearance with a sense of unity.
- a portion of the inner surface of the second electric field side heat dissipation unit 230 is directly in contact with the heat generating surfaces of the DC power modules 203 for a plurality of PSUs, as shown in FIG.
- the heat generated by the DC power module 203 can be immediately radiated to the outside.
- the second electric field side heat dissipation unit 230 may also dissipate heat from the inside of the second installation space 201b to the outside through a plurality of heat dissipation fins 200d.
- a plurality of PSU DC power modules 203 mounted inside the second installation space 201b may be employed for 5V, 12V, and 30V depending on the magnitude of the rectified voltage.
- the DC power supply module 203 for various voltages may be provided depending on the embodiment.
- a DC power module 203 for various voltages may be employed according to an embodiment, and the second installation space 201b is a filter for easy replacement and assembly.
- the unit portion 100 is formed to be opened in the opposite direction of the side provided, the second printed circuit board 206b for electric field is also provided to be detachable from the printed circuit board 206a for the first electric field, each of a different agent Independent heat dissipation is provided through the first electric field side heat dissipation unit 220 and the second electric field side heat dissipation unit 230.
- a power input connector 253 is provided at the front end of the second printed circuit board 206b to supply external power.
- a gore-tex 251 that performs an adjustment function may be provided.
- the outer surface of the plurality of heat dissipation fins 200d among the outer surfaces of the electric unit unit body 200a may be coupled to the electric field unit heat dissipation cover 250 as shown in FIGS. 10A and 10B.
- a plurality of heat dissipation fins 250d are also provided on the outer surface of the electric unit heat dissipation cover 250 to dissipate heat from the first installation space 201a and the second installation space 201b of the electric unit unit body 200a to the outside. Can be.
- FIG. 13 is an exploded perspective view showing a coupling relationship between the filter unit unit 100 and the air supporter 400 separating the electric unit unit 200 from the configuration of FIG. 1.
- the filter unit unit 100 and the electric field unit unit 200 may be arranged such that the surfaces facing each other are spaced apart from each other by a plurality of air supporters 400, as illustrated in FIG. 13.
- the air supporter 400 not only serves to mutually couple the filter unit unit 100 and the electric field unit unit 200, but also is formed on the surface where the filter unit unit 100 and the electric field unit unit 200 face each other.
- the heat dissipation performance can be greatly improved by spacing a predetermined distance so that a space to be dissipated through the plurality of heat dissipation fins 270d is formed.
- At least one filter-side power connection terminal is connected to one side of the printed circuit board 107 for signal amplification among the filter unit parts 100.
- 140 and at least one filter-side signal connection terminal 145 are provided, and at least one electric power-side power connection terminal 240 is provided on the first electric circuit board 206a of the electric unit unit 200.
- at least one electric field-side signal connection terminal 245 may be provided on the second electric circuit board 206b of the electric unit unit 200.
- an embodiment of the antenna device 1 according to the present invention as shown in Figure 13, at least one filter-side power connection terminal 140 and at least one full-length power connection terminal 240 described above
- the first interface block connector 310 coupled while forming one thickness portion to interconnect each other, and at least one filter-side signal connection terminal 145 and at least one full-length signal connection terminal 245 to be interconnected
- a second interface block connector 320 coupled while forming the other thickness portion may be further included.
- the first interface block connector 310 and the second interface block connector 320 are interface objects for transmitting and receiving power or data signals, respectively.
- Conventional power connection lines and the like are wired together with electric components or heating elements.
- Arranged outside the filter unit body 100a and the electric field unit body 200a serves to reduce self-heating.
- the first interface block connector 310 may serve as a connection port for power supply and data signals for electric drive components such as a power supply unit (PSU) and a power amplifier (PA).
- the second interface block connector 320 serves as a port for transmitting and receiving RF signals through various electric components provided on the first printed circuit board 206a and the second printed circuit board 206b. can do.
- the arrangement of signal lines for power supply and transmission of data signals by the first interface block connector 310 and the second interface block connector 320 is performed by replacing or failing parts due to future design changes. It is desirable to standardize to facilitate A / S response such as / repair.
- the heating elements having the same specifications and specifications (that is, the main TR of the filter unit 100, the electric unit unit)
- the FPGA 207 provided in the first installation space 203a of the 200 and the DC power supply module 203 for PSU provided in the second installation space 201a) together with the filter unit heat dissipation module and the electric field unit heat dissipation module It is provided to be assembled by sub-assembly (sub-assembly), thereby creating the advantage of providing a platform structure that facilitates A / S response, such as replacement of parts and failure / repair according to design changes in the future. .
- Sub-assembly of each component as described above can maximize space utilization between the filter unit unit 100 and the electric unit unit 200 and other units added through design changes, as well as the existing assembly process. It can have a designable advantage by generalizing the binding site of.
- a pair is connected to one of the filter unit unit 100 and the electric field unit unit 200 to facilitate manual transfer by an operator of the antenna device according to an embodiment of the present invention.
- the handle part 500 may be connected.
- the present invention provides an antenna device having matching and disposing independent heat dissipation units corresponding to a group of heat generating elements having the same specifications and specifications, and having a simpler arrangement.
Landscapes
- Cooling Or The Like Of Electrical Apparatus (AREA)
- Control Of Motors That Do Not Use Commutators (AREA)
- Transceivers (AREA)
Abstract
본 발명은 안테나 장치에 관한 것으로서, 특히, 적어도 하나 이상의 레이어(층)를 형성하도록 배치된 필터 유닛부, 상기 필터 유닛부와 상이한 레이어(층)를 형성하도록 상기 필터 유닛부와 이격되게 결합되고, 각종 전장 장치가 내장되는 전장 유닛부, 상기 필터 유닛부 중 상기 전장 유닛부가 결합되는 면의 반대면에 결합되어 상기 필터 유닛부로부터 발생된 열을 외부로 방열하는 필터유닛 방열모듈, 상기 전장 유닛부 중 상기 필터 유닛부가 결합되는 면의 반대면에 결합되어 상기 필터 유닛부 중 일측부로 집중 배치된 제1발열 소자로부터 발생된 열을 외부로 방열하는 제1전장부 방열모듈과, 상기 제1전장부 방열모듈에 나란하게 구비되어 상기 필터 유닛부 중 타측부로 집중 배치된 제2발열 소자로부터 발생된 열을 외부로 방열하는 제2전장부 방열모듈을 포함하는 전장부 방열모듈을 포함함으로써, 조립 성능을 향상시키고, 방열 성능을 최대화할 수 있는 이점을 제공한다.
Description
본 발명은 안테나 장치(ANTENNA APPARATUS)에 관한 것으로서, 보다 상세하게는 무선 통신용 안테나 장치에 관한 것이다.
무선 통신 기술, 예를 들어, MIMO(Multiple Input Multiple Output) 기술은, 다수의 안테나를 사용하여 데이터 전송용량을 획기적으로 늘리는 기술로서, 송신기에서는 각각의 송신 안테나를 통해 서로 다른 데이터를 전송하고, 수신기에서는 적절한 신호처리를 통해 송신 데이터들을 구분해 내는 Spatial multiplexing 기법이다.
따라서, 송수신 안테나의 개수를 동시에 증가시킴에 따라 채널 용량이 증가하여 보다 많은 데이터를 전송할 수 있게 한다. 예를 들어 안테나 수를 10개로 증가시키면 현재의 단일 안테나 시스템에 비해 같은 주파수 대역을 사용하여 약 10배의 채널 용량을 확보하게 된다.
4G LTE-advanced에서는 8개의 안테나까지 사용하고 있으며, 현재 pre-5G 단계에서 64 또는 128개의 안테나를 장착한 제품이 개발되고 있고, 5G에서는 훨씬 더 많은 수의 안테나를 갖는 기지국 장비가 사용될 것으로 예상되며, 이를 Massive MIMO 기술이라고 한다. 현재의 Cell 운영이 2-Dimension인데 반해 Massive MIMO 기술이 도입되면 3D-Beamforming이 가능해지므로 FD-MIMO(Full Dimension)라고도 부른다.
Massive MIMO 기술에서는 ANT의 숫자가 늘어나면서 이에 따른 transmitter와 Filter의 숫자도 함께 증가한다. 그럼에도 설치장소의 리스비용이나 공간적인 제약으로 인해, RF 부품(Antenna/Filter/Power Amplifier/Transceiver etc.)을 작고 가벼우며, 값싸게 만드는 것이 Massive MIMO는 Coverage 확장을 위해서는 고출력이 필요한데, 이러한 고출력으로 인한 소모전력과 발열량은 무게 및 사이즈를 줄이는데 부정적인 요인으로 작용한다.
특히, RF 소자들과 디지털 소자들이 구현된 모듈들이 적층 구조로 결합된 MIMO 안테나를 한정된 공간에 설치시, 설치용이성이나 공간 활용성을 극대화하기 위해 MIMO 안테나를 구성하는 복수의 레이어에 대한 컴팩트화 및 소형화 설계의 필요성이 대두되고, 이 경우 복수의 레이어에 실장된 통신부품에서 발생하는 열에 대한 새로운 방열 구조에 관한 설계가 요구된다.
본 발명의 목적은, 방열 성능이 향상된 안테나 장치를 제공함에 있다.
또한, 본 발명의 다른 목적은, 동일한 사양 및 제원의 발열소자군에 대응하는 독립 방열부를 매칭 배치하되, 보다 심플한 배치 구조를 가지는 안테나 장치를 제공함에 있다.
또한, 본 발명의 또 다른 목적은, 호환성 및 적용성이 우수한 파워 커넥터(제1인터페이스 블록 커넥터) 및 RF 커넥터(제2인터페이스 블록 커넥터)가 구비된 안테나 장치를 제공함에 있다.
본 발명의 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급되지 않은 또 다른 기술적 과제들은 아래의 기재들로부터 당업자에게 명확하게 이해될 수 있을 것이다.
본 발명에 따른 안테나 장치의 일 실시예는, 적어도 하나 이상의 레이어(층)를 형성하도록 배치된 필터 유닛부, 상기 필터 유닛부와 상이한 레이어(층)를 형성하도록 상기 필터 유닛부와 이격되게 결합되고, 각종 전장 장치가 내장되는 전장 유닛부, 상기 필터 유닛부 중 상기 전장 유닛부가 결합되는 면의 반대면에 결합되어 상기 필터 유닛부로부터 발생된 열을 외부로 방열하는 필터유닛 방열모듈 및 상기 전장 유닛부 중 상기 필터 유닛부가 결합되는 면의 반대면에 결합되어 상기 필터 유닛부 중 일측부로 집중 배치된 제1발열 소자로부터 발생된 열을 외부로 방열하는 제1전장부 방열모듈과, 상기 제1전장부 방열모듈에 나란하게 구비되어 상기 필터 유닛부 중 타측부로 집중 배치된 제2발열 소자로부터 발생된 열을 외부로 방열하는 제2전장부 방열모듈을 포함한다.
여기서, 상기 필터 유닛부와 상기 전장 유닛부는, 일단부는 상기 필터 유닛부에 결합되고 타단부는 상기 전장 유닛부에 결합되는 다수의 에어 서포터에 의하여 소정거리 이격될 수 있다.
또한, 상기 필터 유닛부는, 일측으로 소정의 설치 공간이 마련된 필터 유닛 본체, 상기 필터 유닛 본체의 설치 공간에 배치되고, 다수의 신호증폭용 소자(Main TR for Power Amplifier)가 일면에 실장된 신호 증폭기용 인쇄회로기판(Power Amplifier PCB) 및 상기 신호 증폭기용 인쇄회로기판에 대하여 소정거리 이격되게 적층 배치되고, 일면에 다수의 LPF(Low Pass Filter)가 배열 설치된 필터용 인쇄회로기판(Filter PCB)를 포함하고, 상기 신호 증폭기용 인쇄회로기판 및 상기 필터용 인쇄회로기판을 통해 2개의 레이어(층)를 형성할 수 있다.
또한, 상기 필터유닛 방열모듈은, 상기 필터 유닛 본체의 외측에 결합되어 상기 필터 유닛 본체를 관통하는 열 전달 경로를 통해 상기 다수의 신호 증폭용 소자로부터 발생한 열을 방출하도록 구비될 수 있다.
또한, 상기 필터유닛 방열모듈은, 상기 다수의 신호 증폭용 소자 각각의 발열면에 접착되어 열을 포집하는 포열 플레이트, 상기 포열 플레이트의 외측면에 접하도록 배치되고, 외측에 다수의 방열 핀이 형성된 제1방열핀부, 상기 제1방열핀부에 대하여 수평방향 외측으로 이격되게 배치되고, 상기 제1방열핀부로부터 열을 전달받아 원거리 방열시키도록 외측에 다수의 방열 핀이 형성된 제2방열핀부, 상기 포열 플레이트로부터 열을 공급받아 상기 제1방열핀부로 전달하는 열전달 매개 블록 및 상기 제1방열핀부와 상기 열전달 매개 블록 사이에 일단부가 삽입되고, 타단부가 상기 제2방열핀부와 연결되어 상기 열전달 매개 블록으로부터 공급되는 열을 상기 제2방열핀부로 전달하는 다수의 히트 파이프를 포함할 수 있다.
또한, 상기 포열 플레이트 및 상기 열전달 매개 블록은 구리 재질로 구비될 수 있다.
또한, 상기 전장 유닛부는, 상기 필터 유닛부 측으로 개구되고 적어도 2개의 구획된 설치 공간이 구비되며, 상기 적어도 2개의 구획된 설치 공간 중 어느 하나(이하, '제1 설치 공간'이라 칭하고, 나머지 설치 공간은 '제2 설치 공간'이라 칭함)에 해당하는 부위로서, 상기 필터 유닛부가 인접되는 면과 반대되는 면(이하, '외측면'이라 함)에 다수의 방열 핀이 일체로 구비된 전장 유닛 본체, 상기 전장 유닛 본체의 제1 설치 공간에 설치되고, 상기 외측면을 향하는 일면에 다수의 FPGA(Field Progammable Gate Array)가 실장된 제1전장용 인쇄회로기판 및 상기 전장 유닛 본체의 제2 설치 공간에 설치되고, 상기 외측면을 향하는 일면에 다수의 PSU용 직류 전원 모듈이 실장된 제2전장용 인쇄회로기판을 포함하고, 상기 제1전장용 인쇄회로기판 및 상기 제2전장용 인쇄회로기판은 하나의 레이어(층)를 형성하도록 동일 높이에 상기 제1 설치 공간과 제2 설치 공간에 의하여 구획되게 배치될 수 있다.
또한, 상기 전장부 방열모듈은, 상기 전장 유닛 본체에 개구되게 형성된 다수의 열전달 구멍을 통하여 상기 다수의 FPGA와 열 접촉되게 배치되고, 상기 전장 유닛 본체에 형성된 상기 다수의 방열 핀보다 외측으로 더 이격되게 배치된 제1 전장측 방열부 및 상기 전장 유닛 본체에 개구되게 형성된 개구부를 폐쇄하도록 상기 전장 유닛 본체의 외측면에 결합되고, 상기 제1전장용 인쇄회로기판의 상기 다수의 PSU용 직류 전원 모듈과 접촉되게 구비된 제2 전장측 방열부를 포함할 수 있다.
또한, 상기 제1 전장측 방열부는, 상기 다수의 FPGA 각각의 발열면에 접착되어 열을 포집하는 포열 플레이트, 상기 포열 플레이트의 외측면에 접하도록 배치되고, 외측에 다수의 방열 핀이 형성된 제1방열핀부, 상기 다이렉트 방열핀부에 대하여 수평방향 외측으로 이격되게 배치되고, 상기 다이렉트 방열핀부로부터 열을 전달받아 원거리 방열시키도록 외측에 다수의 방열 핀이 형성된 제2방열핀부, 상기 포열 플레이트로부터 열을 공급받아 상기 제1방열핀부로 전달하는 열전달 매개 블록 및 상기 제1방열핀부와 상기 열전달 매개 블록 사이에 일단부가 삽입되고, 타단부가 상기 제2방열핀부와 연결되어 상기 열전달 매개 블록으로부터 공급되는 열을 상기 제2방열핀부로 전달하는 다수의 히트 파이프를 포함할 수 있다.
또한, 상기 포열 플레이트 및 상기 열전달 매개 블록은 구리 재질로 구비될 수 있다.
또한, 상기 제2 전장측 방열부는, 상기 전장 유닛 본체의 외측면에 형성된 상기 다수의 방열 핀과 동일한 높이를 가진 다수의 방열 핀이 일체로 형성될 수 있다.
또한, 상기 필터 유닛부에는 적어도 하나의 필터측 파워 접속 단자 및 적어도 하나의 필터측 신호 접속 단자가 구비되고, 상기 전장 유닛부에는 적어도 하나의 전장측 파워 접속 단자 및 적어도 하나의 전장측 신호 접속 단자가 구비되고, 상기 적어도 하나의 필터측 파워 접속 단자 및 적어도 하나의 전장측 파워 접속 단자를 상호 연결시키도록 일측 두께부를 형성하면서 결합되는 제1인터페이스 블록 커넥터 및 기 적어도 하나의 필터측 신호 접속 단자 및 적어도 하나의 전장측 신호 접속 단자를 상호 연결시키도록 타측 두께부를 형성하면서 결합되는 제2인터페이스 블록 커넥터를 더 포함할 수 있다.
본 발명에 따른 안테나 장치의 일 실시예에 따르면 다음과 같은 다양한 효과를 달성할 수 있다.
첫째, 본 발명은, 방열 성능이 향상시키는 효과를 가진다.
둘째, 본 발명은, 동일한 사양 및 제원의 발열소자군에 대응하는 독립 방열부를 매칭 배치하되, 보다 심플한 배치 구조를 가짐으로써 조립성을 향상시킴은 물론 방열 설계가 매우 효과적이다.
셋째, 본 발명은, 호환성 및 적용성을 향상시킬 수 있다.
도 1은 본 발명에 따른 안테나 장치의 일 실시예를 나타낸 사시도이고,
도 2는 도 1의 분해 사시도이며,
도 3a 및 도 3b는 도 1의 구성 중 필터 유닛부를 나타낸 분해 사시도이고,
도 4는 도 3의 필터 유닛부 중 필터용 인쇄회로기판에 설치된 LPF 소자들을 나타낸 분해 사시도이며,
도 5a 및 도 5b는 도 3의 필터 유닛부 중 신호 증폭기용 인쇄회로기판을 나타낸 분해 사시도이고,
도 6은 도 3의 필터 유닛부 중 필터유닛 방열모듈을 나타낸 분해 사시도이며,
도 7은 도 3의 필터 유닛부를 나타낸 배면도이고,
도 8은 도 7의 A-A선을 따라 취한 단면도이며,
도 9는 도 7의 B-B선을 따라 취한 단면도이고,
도 10a 및 도 10b는 도 1의 구성 중 전장 유닛부를 나타낸 분해 사시도이며,
도 11은 도 10a 및 도 10b의 전장 유닛부를 나타낸 정면도이고,
도 12는 도 11의 C-C, D-D 및 E-E선을 따라 취한 단면도이며,
도 13은 도 1의 구성 중 필터 유닛부와 전장 유닛부를 이격시키는 에어 서포터의 결합 관계를 나타낸 분해 사시도이다.
<부호의 설명>
1: 안테나 장치 100: 필터 유닛부
100a: 필터 유닛 본체 107a: 필터용 인쇄회로기판
102: 함체 103: 함체 커버
104: RET 포트 110: 필터유닛 방열모듈
111: 포열 플레이트 112: 열전달 매개 블록
113: 제1방열핀부 114: 히트 파이프
115: 제2방열핀부 200: 전장 유닛부
200a: 전장 유닛 본체 210: 전장유닛 방열모듈
220: 제1전장측 방열부 230: 제2전장측 방열부
310: 제1인터페이스 블록 커넥터
320: 제2인터페이스 블록 커넥터
400: 에어 서포터
이하, 본 발명에 따른 안테나 장치의 일 실시예를 첨부된 도면을 참조하여 상세하게 설명한다. 각 도면의 구성요소들에 참조부호를 부가함에 있어서, 동일한 구성요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가지도록 하고 있음에 유의해야 한다. 또한, 본 발명의 실시예를 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 실시예에 대한 이해를 방해한다고 판단되는 경우에는 그 상세한 설명은 생략한다.
본 발명의 실시예의 구성 요소를 설명하는 데 있어서, 제1, 제2, A, B, (a), (b) 등의 용어를 사용할 수 있다. 이러한 용어는 그 구성 요소를 다른 구성 요소와 구별하기 위한 것일 뿐, 그 용어에 의해 해당 구성 요소의 본질이나 차례 또는 순서 등이 한정되지 않는다. 또한, 다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가진다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥상 가지는 의미와 일치하는 의미를 가진 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.
도 1은 본 발명에 따른 안테나 장치의 일 실시예를 나타낸 사시도이고, 도 2는 도 1의 분해 사시도이다.
본 발명에 따른 안테나 장치(1)의 일 실시예는, 도 1 및 도 2에 참조된 바와 같이, 안테나 어셈블리 또는 필터 소자가 내장되는 필터 유닛부(100)와, 각종 전장 장치가 내장되는 전장 유닛부(200)를 포함한다.
필터 유닛부(100)는, 도면에 도시되지 않았으나 RF 소자들과 디지털 소자들로 이루어진 안테나 어셈블리 및 LPF(106)(Low Pass Filter)들이 실장 또는 결합되는 부위이다. RF 소자들과 디지털 소자들 및 LPF(106)들은 RF 급전 네트워크(feeding network)가 구현된 필터용 인쇄회로기판(107a) 또는 신호 증폭기용 인쇄회로기판(107b)에 나누어 설치될 수 있다.
도 3a 및 도 3b는 도 1의 구성 중 필터 유닛부(100)를 나타낸 분해 사시도이고, 도 4는 도 3의 필터 유닛부(100) 중 필터용 인쇄회로기판(107a)에 설치된 LPF 소자(105)들을 나타낸 분해 사시도이며, 도 5a 및 도 5b는 도 3의 필터 유닛부(100) 중 신호 증폭기용 인쇄회로기판(107b)을 나타낸 분해 사시도이고, 도 6은 도 3의 필터 유닛부(100) 중 필터유닛 방열모듈(110)을 나타낸 분해 사시도이며, 도 7은 도 3의 필터 유닛부(100)를 나타낸 배면도이고, 도 8은 도 7의 A-A선을 따라 취한 단면도이며, 도 9는 도 7의 B-B선을 따라 취한 단면도이다.
필터용 인쇄회로기판(107a) 및 신호 증폭기용 인쇄회로기판(107b)은, 도 3a 및 도 3b에 참조된 바와 같이, 필터 유닛부(100)의 골격을 형성하는 필터 유닛 본체(100a)에 형성된 소정의 설치 공간 내에 적층 배치될 수 있다. 필터 유닛 본체(100a)는 후술하는 전장 유닛부(200)가 결합된 측으로 개구되게 형성되어 그 내부에 상술한 설치 공간을 구비하고, 설치 공간 내에 필터용 인쇄회로기판(107a)및 신호 증폭기용 인쇄회로기판(107b)이 소정의 두께를 형성하면서 적층 배치될 수 있다.
아울러, 필터 유닛 본체(100a)의 폐쇄된 내측면에는 외측으로 개구된 다수의 방열 설치구(100b)가 마련될 수 있다. 다수의 방열 설치구(100b)를 관통하여 후술하는 필터유닛 방열모듈(110)이 다수의 신호 증폭용 소자(108a) 또는 RF 소자 중 어느 하나에 직접 열접촉되도록 결합될 수 있다.
그리고, 필터 유닛 본체(100a)의 좌우측 단부에는 후술하는 제1인터페이스 블록 커넥터(310) 및 제2인터페이스 블록 커넥터(320)의 단자 연결을 위한 단자 삽입구(100c)가 구비될 수 있다.
보다 상세하게는, 필터 유닛부(100)는, 도 3a 및 도 3b에 참조된 바와 같이, 적어도 하나 이상의 레이어(층)를 형성하되, 필터 유닛 본체(100a)의 설치 공간에 배치되고, 다수의 신호 증폭용 소자(Main TR for Power Amplifier)(108a)가 일면에 실장된 신호 증폭기용 인쇄회로기판(107a)(Power Amplifier PCB)과, 신호 증폭기용 인쇄회로기판(107a)에 대하여 소정거리 이격되게 적층 배치되고, 일면에 LPF(105)(Low Pass Filter)를 구성하도록 다수의 에어 스트립 라인(106)이 배열 설치된 필터용 인쇄회로기판(107b)(Filter PCB)를 포함할 수 있고, 신호 증폭기용 인쇄회로기판(107a) 및 필터용 인쇄회로기판(107b)을 통해 2개의 레이어(층)를 형성할 수 있다.
즉, 신호 증폭기용 인쇄회로기판(107a)의 일면에는, 도 3a에 참조된 바와 같이, 다수의 PA(Power Amplifier)의 신호 증폭용 소자(Main TR)(108a)가 실장될 수 있다. 신호 증폭용 소자(Main TR)들(108a)은 집중 발열 소자로서, 후술하는 필터유닛 방열모듈(110)에 의하여 발생된 열이 외부로 방열될 수 있다.
한편, 필터용 인쇄회로기판(107b)에는, 도 4에 참조된 바와 같이, 송수신(TRX) 포트가 8개 구비된 에어 스트립 라인(106)이 배열되고, 에어 스트립 라인(106)이 수용되도록 하기 위한 다수의 함체(102)가 구비될 수 있다. 이와 같이, 에어 스트립 라인(106)은 안테나로부터 송수신되는 연결포트(102a)가 길게 형성된 것 4개 및 짧게 형성된 것 4개로서 상호 반복 배열되어 있는 형태를 가진다.
함체(102)는, 내부에 수용된 에어 스트립 라인(106)을 커버링하는 함체 커버(103)가 각각 구비될 수 있다. 여기서, 함체(102) 및 함체 커버(103)는, 에어 스트립 라인(106)과 같은 면으로서, 연결포트(102a)가 구비된 면에 대하여 반대면인 포켓(Pocket)면에 형성되어 그 사이즈를 최대로 설계 가능하므로 RF 성능을 크게 향상시킬 수 있는 이점을 가진다. 또한, 에어 스트립 라인(106)과 포켓면을 상호 상반된 면에 배치함으로써, 포켓면에의 LPF(105) 구성 설계 시 그 자유도를 향상시킬 수 있다.
한편, 필터용 인쇄회로기판(107b)의 단부에는, 도 4에 참조된 바와 같이, LPF(105)와 각각 연결되되 원격으로 전자적 틸팅이 가능하게 구비되어 안테나 제어를 하는 다수의 RET 포트(104)가 도면상 좌우로 정렬되게 구비될 수 있다.
신호 증폭용 인쇄회로기판(107a)에는, 도 5a에 참조된 바와 같이, LPF(105)의 필터 입력단과 연결되는 PA Out 포트(108b)가 실장 배치됨과 아울러, 신호 수신(Rx)시 회로를 보호하기 위한 다수의 서큘레이터(Circulator)(108c)가 PA Out 포트(108b)의 일측에 구비될 수 있다. 필터용 인쇄회로기판(107a)과 신호 증폭용 인쇄회로기판(107b)은, 적어도 서큘레이터(108c)의 높이만큼 두께 방향으로 소정거리 이격되게 배치되고, PA Out 포트(108b) 및 다수의 서큘레이터(108c)가 상호 이격된 공간 내부에 배치된다. 여기서, PA Out 포트(108b)의 높이는 상술한 이격거리보다 더 크게 형성되어 LPF(105)의 필터 입력단에 삽착 고정될 수 있다.
한편, 도 5a 및 도 5b에 참조된 바와 같이, 필터 유닛 본체(100a는 필터측 방열 겸용 커버로써, 필터용 인쇄회로기판(107)과 신호 증폭용 인쇄회로기판(107)을 덮도록 결합될 수 있다. 필터측 방열 겸용 커버로 구비된 필터 유닛 본체(100a)의 외측에는, 다수의 방열 핀(100d)이 형성되고, 필터 본체(100a)의 설치 공간 내부로써, 필터용 인쇄회로기판(107a)과 신호 증폭용 인쇄회로기판(107b) 사이에는 PA Clamshell(109)이 배치됨으로써, PA 또는 신호 증폭용 인쇄회로기판(107)에 대한 전자파를 차폐할 수 있다.
필터 유닛 본체(100a)의 외측에는, 도 6에 참조된 바와 같이, 다수의 필터유닛 방열모듈(110)이 결합될 수 있다. 필터유닛 방열모듈(110)은, 집중 발열 소자인 신호 증폭용 소자(Main TR)들(108a)로부터 발생되는 열을 포열하여 외부로 방열하는 역할을 한다.
즉, 필터유닛 방열모듈(110)은, 필터 유닛 본체(100a)의 외측에 결합되되 필터 유닛 본체(100a)를 관통하도록 구비된 방열 설치구(100b)를 통한 열 전달 경로를 통해 상기 다수의 신호 증폭용 소자(Main TR)들(108a)로부터 발생한 열을 방출하도록 구비된다.
필터유닛 방열모듈(110)은, 도 6 내지 도 9에 참조된 바와 같이, 다수의 신호 증폭용 소자(Main TR)(108a) 각각의 발열면에 접착되어 열을 포집하는 포열 플레이트(111)와, 포열 플레이트(111)의 외측면에 접하도록 배치되고, 외측에 다수의 방열 핀이 형성된 제1방열핀부(113)와, 제1방열핀부(113)에 대하여 수평방향 외측으로 이격되게 배치되고, 제1방열핀부(113)로부터 열을 전달받아 원거리 방열시키도록 외측에 다수의 방열 핀이 형성된 제2방열핀부(115)와, 포열 플레이트(111)로부터 열을 공급받아 제1방열핀부(113)로 전달하는 열전달 매개 블록(112)과, 제1방열핀부(113)와 열전달 매개 블록(112) 사이에 일단부가 삽입되고, 타단부가 제2방열핀부(115)와 연결되어 열전달 매개 블록(112)으로부터 공급되는 열을 제2방열핀부(115)로 전달하는 다수의 히트 파이프(114)를 포함할 수 있다.
여기서, 포열 플레이트(111) 및 열전달 매개 블록(112)은 구리 재질의 구리 플레이트(Cu plate)로 구비될 수 있다. 그러나, 포열 플레이트(111)가 반드시 순수한 구리 재질일 필요는 없고, 구리가 포함된 합금 재질로 구비되어도 무방하다. 이는 집중 발열 소자인 신호 증폭용 소자(Main TR)로부터 발생한 열을 보다 높은 열전도성을 가진 구리 재질의 포열 플레이트(111) 및 열전달 매개 블록(112)을 통해 효과적으로 외부 방출이 가능하도록 하기 위함이다.
포열 플레이트(111)는, 필터 유닛 본체(100a)에 신호 증폭용 소자(Main TR)가 실장된 위치에 각각 대응되게 개구되도록 형성된 방열 설치구(100b) 부위에 내삽되도록 구비될 수 있다.
본 발명에 따른 안테나 장치(1)의 일 실시예는, 상술한 바와 같이, 집중 발열 소자인 신호 증폭용 소자(Main TR)는 별도의 모듈로 구비된 필터유닛 방열모듈(110)을 이용하여 효과적으로 외부로 방열하도록 함과 아울러, 집중 발열 소자는 아니지만 필터 유닛 본체(100a)의 내부에 생성된 열은 필터 유닛 본체(100a)의 외측에 구비된 다수의 방열 핀(100d)을 통해 외부로 방열하도록 구비됨으로써, 동일한 발열 소자 별 능동적인 방열 설계가 용이한 이점을 가진다.
예컨대, 신호 증폭기용 인쇄회로기판(107)에 실장된 집중 발열 소자가 신호 증폭용 소자(Main TR) 이외에 다른 사양 또는 제원으로 구비된 경우, 해당 집중 발열 소자의 열 발생 정도를 미리 계산하여 최적의 방열 성능을 가지는 전용 방열모듈을 설계할 수 있다.
신호 증폭용 소자(Main TR)로부터 발생된 열은 포열 플레이트(111)에 의하여 포열된 다음, 열전달 매개 블록(112)을 통해 일부는 제1방열핀부(113)로 직접 전달함과 아울러 나머지 일부는 다수의 히트 파이프(114)로 전달하고, 제1방열핀부(113)를 통해 근접 방열하고, 제2방열핀부(115)를 통해 원거리 방열되게 된다. 여기서, 제1방열핀부(113) 및 제2방열핀부(115) 각각의 외측단부는 적어도 필터 유닛 본체(100a)의 외측면에 직접 구비된 다수의 방열핀(100d)의 선단보다 더 외측에 구비되는 바, 필터 유닛 본체(100a)의 설치 공간 상에서 생성된 열과 신호 증폭용 소자(Main TR)로부터 발생된 열을 상호 분리하여 방열할 수 있다.
도 10a 및 도 10b는 도 1의 구성 중 전장 유닛부(200)를 나타낸 분해 사시도이고, 도 11은 도 10a 및 도 10b의 전장 유닛부(200)를 나타낸 정면도이며, 도 12는 도 11의 C-C, D-D 및 E-E선을 따라 취한 단면도이다.
전장 유닛부(200)는, 도 10a 및 도 10b에 참조된 바와 같이, 필터 유닛부(100) 측으로 개구되고 적어도 2개의 구획된 설치 공간(201a,201b)이 구비되며, 적어도 2개의 구획된 설치 공간(201a,201b) 중 어느 하나(이하, '제1 설치 공간(201a)'이라 칭하고, 나머지 설치 공간은 '제2 설치 공간(201b)'이라 칭함)에 해당하는 부위로서, 필터 유닛부(100)가 인접되는 면과 반대되는 면(이하, '전방면'이라 함)에 다수의 방열 핀(200d)이 일체로 구비된 전장 유닛 본체(200a)와, 전장 유닛 본체(200a)의 제1 설치 공간(201a)에 설치되고, 전방면을 향하는 일면에 다수의 FPGA(207)(Field Progammable Gate Array)가 실장된 제1전장용 인쇄회로기판(206a)과, 전장 유닛 본체(200a)의 제2 설치 공간(201b)에 설치되고, 전방면을 향하는 일면에 다수의 PSU용 직류 전원 모듈(203)이 실장된 제2전장용 인쇄회로기판(206b)을 포함한다.
여기서, 제1전장용 인쇄회로기판(206a) 및 제2전장용 인쇄회로기판(206b)은 하나의 레이어(층)를 형성하도록 동일 높이에서 제1 설치 공간(201a)과 제2 설치 공간(201b)에 의하여 구획되게 배치될 수 있다.
보다 상세하게는, 전장 유닛 본체(200a)는, 도 10a 및 도 10b에 참조된 바와 같이, 필터 유닛부(100)가 구비된 방향으로 개구되고 소정의 두께를 가진 직육면체 형상으로 형성되되, 2개의 공간으로 구획되어 일측에는 제1 설치 공간(201a)이 형성되고 타측에는 제2 설치 공간(201b)이 형성될 수 있다. 특히, 다수의 PSU용 직류 전원 모듈(203)이 설치되는 제2 설치 공간(201b)은 두께 방향 측의 양쪽이 모두 개구된 형태로 형성될 수 있다.
전장 유닛 본체(200a)의 제1 설치 공간(201a)에 대응되는 전방면에는 제1 설치 공간(201a) 내부의 열을 즉시 외부로 방출하도록 다수의 방열 핀(200d)이 일체로 형성될 수 있다. 아울러, 다수의 방열 핀(200d)의 사이에는 전장 유닛 본체(200a)를 관통하도록 구비되어 다수의 FPGA(207)의 발열면이 외부로 노출되도록 하는 방열 구멍(200b)이 다수의 FPGA(207)의 개수에 대응하는 개수로 형성될 수 있다.
전장 유닛 본체(200a)의 제1 설치 공간(203a)에 결합되는 제1전장용 인쇄회로기판(206a)에는 다수의 FPGA(207)가 실장될 수 있다. 다수의 FPGA(207)는 프로그래밍화된 게이트 어레이(Field Progammable Gate Array) 반도체의 일종으로서, 상술한 신호 증폭용 소자(Main TR)(108a)와 마찬가지로 집중 발열 소자 중의 하나이다.
한편, 전장부 방열모듈(210)은, 도 10a 및 도 11에 참조된 바와 같이, 상기 전장 유닛 본체(200a)에 개구되게 형성된 다수의 방열 구멍(200b)을 통하여 다수의 FPGA(207)와 열 접촉되게 배치되고, 전장 유닛 본체(200a)에 형성된 다수의 방열 핀(200d)보다 전방으로 더 이격되게 배치된 제1 전장측 방열부(220)와, 전장 유닛 본체(200a)에 개구되게 형성된 개구부(201a)를 폐쇄하도록 전장 유닛 본체(200a)의 외측면에 결합되고, 제1전장용 인쇄회로기판(206a)의 상기 다수의 PSU용 직류 전원 모듈(203)과 접촉되게 구비된 제2 전장측 방열부(230)를 포함할 수 있다.
이하에서는, 설명의 편의를 위하여, 전장 유닛 본체(200a)의 일측부에 집중 배치된 다수의 FPGA(207)를 '제1발열 소자'로 정의하고, 전장 유닛 본체(200a)의 타측부에 집중 배치된 다수의 PSU용 직류 전원 모듈(203)을 '제2발열 소자'로 정의하여 설명한다.
전장부 방열모듈(210)의 구성 중 제1전장측 방열부(220)는 필터 유닛부(100)의 필터유닛 방열모듈(110)과 동일한 구성 및 제원을 가진다.
보다 상세하게는, 도 12의 (a) 및 (b)에 참조된 바와 같이, 제1전장측 방열부(220)는, 다수의 FPGA(207) 각각의 발열면에 접촉되어 열을 포집하는 포열 플레이트(211)와, 포열 플레이트(211)의 외측면에 접하도록 배치되고, 외측에 다수의 방열 핀이 형성된 제1방열핀부(213)와, 제1방열핀부(213)에 대하여 수평방향 외측으로 이격되게 배치되고, 제1방열핀부(213)로부터 열을 전달받아 원거리 방열시키도록 외측에 다수의 방열 핀이 형성된 제2방열핀부(215)와, 포열 플레이트(211)로부터 열을 공급받아 제1방열핀부(213)로 전달하는 열전달 매개 블록(212)과, 제1방열핀부(213)와 열전달 매개 블록(212) 사이에 일단부가 삽입되고, 타단부가 제2방열핀부(215)와 연결되어 열전달 매개 블록(212)으로부터 공급되는 열을 제2방열핀부(215)로 전달하는 다수의 히트 파이프(214)를 포함할 수 있다. 본 발명의 일 실시예에 따른 안테나 장치에 있어서, FPGA(207)는 2개가 제1전장용 인쇄회로기판(206a)의 전면부에 설치되되, 제1 설치 공간(201a) 내에서의 열이 집중되는 것을 방지하도록 하나는 상대적으로 도면상 상측에 위치되고 다른 하나는 상대적으로 도면상 하측에 위치되도록 실장될 수 있다.
따라서, 각 FPGA(207)에 관여하는 제1전장측 방열부(220)의 구성 중 제2방열핀부(215) 및 다수의 히트 파이프(214)의 길이가 상이하게 설계될 수 있다.
제2 전장측 방열부(230)는, 도 10a 및 도 10b에 참조된 바와 같이, 전장 유닛 본체(200a)의 외측면에 형성된 다수의 방열 핀(200d)과 동일한 높이를 가진 다수의 방열 핀(230d)이 일체로 형성될 수 있다. 이와 같은 제2 전장측 방열부(230)는, 양측이 모두 개구된 전장 유닛 본체(200a)의 제2 설치 공간(201b) 일측에 결합되어 제2 설치 공간(201b)의 일측을 폐쇄하고, 전장 유닛 본체(200a)의 외측면에 형성된 다수의 방열 핀(200d)과 함께 일체감을 가진 외형을 이루도록 구비될 수 있다.
제2 전장측 방열부(230)의 내측면 일부는, 도 12의 (c)에 참조된 바와 같이, 다수의 PSU용 직류 전원 모듈(203)의 발열면에 직접 접촉되어 외부로 다수의 PSU용 직류 전원 모듈(203)이 발생시키는 열을 즉시 외부로 방열시킬 수 있다. 나아가, 제2 전장측 방열부(230)는 제2 설치 공간(201b) 내부의 열 또한 다수의 방열 핀(200d)을 통해 외부로 방열시킬 수 있다.
제2 설치 공간(201b) 내부에 실장되는 다수의 PSU용 직류 전원 모듈(203)은 정류 전압의 크기에 따라 5V용, 12V용 및 30V용으로 채용될 수 있다. 그러나, 실시예에 따라서는 다양한 전압용 직류 전원 모듈(203)이 구비될 수 있음은 당연하다고 할 것이다.
이와 같이 본 발명에 따른 안테나 장치의 일 실시예는, 실시예에 따라 다양한 전압용 직류 전원 모듈(203)이 채용될 수 있는 바, 그 교체 및 조립이 용이하도록 제2 설치 공간(201b)은 필터 유닛부(100)가 구비된 측의 반대 방향으로 개구되도록 형성되되, 제2전장용 인쇄회로기판(206b) 또한 제1전장용 인쇄회로기판(206a)과는 분리 가능하도록 구비되고, 각각 상이한 제1전장측 방열부(220) 및 제2전장측 방열부(230)를 통해 독립적인 방열이 이루어지도록 구비된다.
제2전장용 인쇄회로기판(206b) 중 다수의 PSU용 직류 전원 모듈(203)의 일측에는, 도 12의 (c)에 참조된 바와 같이, 서지 보호용 라인 필터(Surge Protector Line Filter)(208)가 구비될 수 있다. 아울러, 제2전장용 인쇄회로기판(206b)의 전단에는 전원입력 커넥터(253)가 구비되어 외부 전원을 공급할 수 있다. 그리고, 제2전장용 인쇄회로기판(206b)의 전단부에는 전장 부품의 작동에 따라 발생하는 열에 의해 제1 설치 공간(201a) 또는 제2 설치 공간(201b) 내부의 압력 상승을 방지하기 위한 압력 조절 기능을 수행하는 고어텍스(251)가 구비될 수 있다.
한편, 전장 유닛 본체(200a)의 외측면 중 다수의 방열 핀(200d)이 형성되지 않은 반대면에는, 도 10a 및 도 10b에 참조된 바와 같이, 전장 유닛 방열 커버(250)가 결합될 수 있다. 전장 유닛 방열 커버(250)의 외측면에도 다수의 방열핀(250d)가 구비되어, 전장 유닛 본체(200a)의 제1 설치 공간(201a) 및 제2 설치 공간(201b)의 열을 외부로 방열시킬 수 있다.
도 13은 도 1의 구성 중 필터 유닛부(100)와 전장 유닛부(200)를 이격시키는 에어 서포터(400)의 결합 관계를 나타낸 분해 사시도이다.
필터 유닛부(100)와 전장 유닛부(200)는, 도 13에 참조된 바와 같이, 다수의 에어 서포터(400)에 의하여 상호 마주보는 면이 이격되게 배치될 수 있다. 에어 서포터(400)는, 필터 유닛부(100)와 전장 유닛부(200)를 상호 결합시키는 역할을 할 뿐만 아니라, 필터 유닛부(100)와 전장 유닛부(200)가 상호 마주보는 면에 형성된 다수의 방열 핀(270d)을 통해 방열되는 공간이 형성되도록 소정거리 이격시킴으로써 방열 성능을 크게 향상시킬 수 있다.
한편, 도 5a 및 도 5b, 도 10a 및 도 10b, 그리고 도 13에 참조된 바와 같이, 필터 유닛부(100) 중 신호 증폭용 인쇄회로기판(107)의 일측에는 적어도 하나의 필터측 파워 접속 단자(140) 및 적어도 하나의 필터측 신호 접속 단자(145)가 구비되고, 전장 유닛부(200) 중 제1전장용 인쇄회로기판(206a)에는 적어도 하나의 전장측 파워 접속 단자(240)가 구비됨과 아울러, 전장 유닛부(200) 중 제2전장용 인쇄회로기판(206b)에는 적어도 하나의 전장측 신호 접속 단자(245)가 구비될 수 있다.
여기서, 본 발명에 따른 안테나 장치(1)의 일 실시예는, 도 13에 참조된 바와 같이, 상술한 적어도 하나의 필터측 파워 접속 단자(140) 및 적어도 하나의 전장측 파워 접속 단자(240)를 상호 연결시키도록 일측 두께부를 형성하면서 결합되는 제1인터페이스 블록 커넥터(310)와, 적어도 하나의 필터측 신호 접속 단자(145) 및 적어도 하나의 전장측 신호 접속 단자(245)를 상호 연결시키도록 타측 두께부를 형성하면서 결합되는 제2인터페이스 블록 커넥터(320)를 더 포함할 수 있다.
제1인터페이스 블록 커넥터(310) 및 제2인터페이스 블록 커넥터(320)는, 각각 전원 또는 데이터 신호 등을 송수신하기 위한 인터페이스 개체로서, 종래 전원 연결선 등이 전장 부품 또는 발열 소자와 함께 내부에 배선되던 것을 필터 유닛 본체(100a) 및 전장 유닛 본체(200a)의 외부로 배치함으로써 자체 발열을 저감시키는 역할을 한다. 또한, 종래의 전원 연결선 등을 외부로 배치함으로써 각 유닛(필터 유닛부(100) 또는 전장 유닛부(200))의 공간 활용도를 최대화시킬 수 있음은 물론, 소켓 결합 방식으로 결합됨으로써 조립 공정이 용이해지는 추가적인 이점을 창출할 수 있다.
제1인터페이스 블록 커넥터(310)는, 파워 서플라이 유닛(PSU) 및 PA(Power Amplifier) 등의 전기적 구동 구성에 대한 전원 공급 및 데이터 신호의 연결 포트 역할을 수행할 수 있다. 아울러, 제2인터페이스 블록 커넥터(320)는, 제1전장용 인쇄회로기판(206a) 및 제2전장용 인쇄회로기판(206b)에 구비된 각종 전장 부품을 통한 RF 신호의 송수신용 포트 역할을 수행할 수 있다.
여기서, 제1인터페이스 블록 커넥터(310) 및 제2인터페이스 블록 커넥터(320)에 의한 전원 공급 및 데이터 신호의 전송을 위한 신호 라인의 배치는, 후술하는 바와 같이 추후 설계 변경에 따른 부품의 교체나 고장/수리 등의 A/S 대응을 용이하게 할 수 있도록 규격화함이 바람직하다.
상기와 같이 구성되는 본 발명에 따른 안테나 장치의 일 실시예는, 도 2에 참조된 바와 같이, 동일한 제원 및 사양을 가진 발열 소자들(즉, 필터 유닛부(100)의 Main TR, 전장 유닛부(200)의 제1 설치 공간(203a)에 구비된 FPGA(207) 및 제2 설치 공간(201a)에 구비된 PSU용 직류 전원 모듈(203))을 필터유닛 방열모듈 및 전장유닛 방열모듈과 함께 서브 어셈블리(sub-assembly)화하여 조립 가능하도록 구비됨으로써, 추후 설계 변경에 따른 부품의 교체 및 고장/수리 등 A/S 대응이 용이한 플랫폼(Flatform) 구조를 마련할 수 있도록 하는 이점을 창출한다. 상기와 같은 각 부품의 서브 어셈블리화는, 필터 유닛부(100) 및 전장 유닛부(200) 그리고 설계 변경을 통해 추가되는 기타 유닛들 사이의 공간 활용을 최대화할 수 있음은 물론, 조립 공정도 기존의 결합 부위를 범용화하여 설계 가능한 이점을 가질 수 있다.
이는, 에어 서포터(400)에 의하여 상호 이격되게 구비된 필터 유닛부(100)와 전장 유닛부(200) 사이의 전원 공급 및 데이터 신호의 연결 포트 역할을 하는 제1인터페이스 블록 커넥터(310) 및 제2인터페이스 블록 커넥터(320)에 의한 공통 라인의 설계 적용을 통해 가능하다.
한편, 도 13에 참조된 바와 같이, 필터 유닛부(100)와 전장 유닛부(200) 중 어느 하나에 연결되어 본 발명의 일 실시예에 따른 안테나 장치의 작업자에 의한 수동 이송이 용이하도록 한 쌍의 손잡이부(500)가 연결될 수 있다.
이상, 본 발명에 따른 안테나 장치의 일 실시예를 첨부된 도면을 참조하여 상세하게 설명하였다. 그러나, 본 발명의 실시예가 반드시 상술한 실시예에 의하여 한정되는 것은 아니고, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의한 다양한 변형 및 균등한 범위에서의 실시가 가능함은 당연하다고 할 것이다. 그러므로, 본 발명의 진정한 권리범위는 후술하는 청구범위에 의하여 정해진다고 할 것이다.
본 발명은, 동일한 사양 및 제원의 발열소자군에 대응하는 독립 방열부를 매칭 배치하되, 보다 심플한 배치 구조를 가지는 안테나 장치를 제공한다.
Claims (12)
- 적어도 하나 이상의 레이어를 형성하도록 배치된 필터 유닛부;상기 필터 유닛부와 상이한 레이어를 형성하도록 상기 필터 유닛부와 이격되게 결합되고, 각종 전장 장치가 내장되는 전장 유닛부;상기 필터 유닛부 중 상기 전장 유닛부가 결합되는 면의 반대면에 결합되어 상기 필터 유닛부로부터 발생된 열을 외부로 방열하는 필터유닛 방열모듈; 및상기 전장 유닛부 중 상기 필터 유닛부가 결합되는 면의 반대면에 결합되어 상기 필터 유닛부 중 일측부로 집중 배치된 제1발열 소자들로부터 발생된 열을 외부로 방열하는 제1전장부 방열모듈과, 상기 제1전장부 방열모듈에 나란하게 구비되어 상기 필터 유닛부 중 타측부로 집중 배치된 제2발열 소자들로부터 발생된 열을 외부로 방열하는 제2전장부 방열모듈, 을 포함하는 전장부 방열모듈; 을 포함하는 안테나 장치.
- 청구항 1에 있어서,상기 필터 유닛부와 상기 전장 유닛부는, 일단부는 상기 필터 유닛부에 결합되고 타단부는 상기 전장 유닛부에 결합되는 다수의 에어 서포터에 의하여 소정거리 이격되는, 안테나 장치.
- 청구항 1에 있어서,상기 필터 유닛부는,일측으로 소정의 설치 공간이 마련된 필터 유닛 본체;상기 필터 유닛 본체의 설치 공간에 배치되고, 다수의 신호증폭용 소자(Main TR for Power Amplifier)가 일면에 실장된 신호 증폭기용 인쇄회로기판(Power Amplifier PCB); 및상기 신호 증폭기용 인쇄회로기판에 대하여 소정거리 이격되게 적층 배치되고, 일면에 다수의 LPF(Low Pass Filter)가 배열 설치된 필터용 인쇄회로기판(Filter PCB); 를 포함하고,상기 신호 증폭기용 인쇄회로기판 및 상기 필터용 인쇄회로기판을 통해 2개의 레이어를 형성하는, 안테나 장치.
- 청구항 3에 있어서,상기 필터유닛 방열모듈은, 상기 필터 유닛 본체의 외측에 결합되어 상기 필터 유닛 본체를 관통하는 열 전달 경로를 통해 상기 다수의 증폭용 소자로부터 발생한 열을 방출하도록 구비된, 안테나 장치.
- 청구항 4에 있어서,상기 필터유닛 방열모듈은,상기 다수의 신호 증폭용 소자 각각의 발열면에 접착되어 열을 포집하는 포열 플레이트;상기 포열 플레이트의 외측면에 접하도록 배치되고, 외측에 다수의 방열 핀이 형성된 제1방열핀부;상기 제1방열핀부에 대하여 수평방향 외측으로 이격되게 배치되고, 상기 제1방열핀부로부터 열을 전달받아 원거리 방열시키도록 외측에 다수의 방열 핀이 형성된 제2방열핀부;상기 포열 플레이트로부터 열을 공급받아 상기 제1방열핀부로 전달하는 열전달 매개 블록; 및상기 제1방열핀부와 상기 열전달 매개 블록 사이에 일단부가 삽입되고, 타단부가 상기 제2방열핀부와 연결되어 상기 열전달 매개 블록으로부터 공급되는 열을 상기 제2방열핀부로 전달하는 다수의 히트 파이프; 를 포함하는, 안테나 장치.
- 청구항 5에 있어서,상기 포열 플레이트 및 상기 열전달 매개 블록은 구리 재질로 구비된, 안테나 장치.
- 청구항 1에 있어서,상기 전장 유닛부는,상기 필터 유닛부 측으로 개구되고 적어도 2개의 구획된 설치 공간이 구비되며, 상기 적어도 2개의 구획된 설치 공간 중 어느 하나(이하, '제1 설치 공간'이라 칭하고, 나머지 설치 공간은 '제2 설치 공간'이라 칭함)에 해당하는 부위로서, 상기 필터 유닛부가 인접되는 면과 반대되는 면(이하, '외측면'이라 함)에 다수의 방열 핀이 일체로 구비된 전장 유닛 본체;상기 전장 유닛 본체의 제1 설치 공간에 설치되고, 상기 외측면을 향하는 일면에 다수의 FPGA(Field Progammable Gate Array)가 실장된 제1전장용 인쇄회로기판; 및상기 전장 유닛 본체의 제2 설치 공간에 설치되고, 상기 외측면을 향하는 일면에 다수의 PSU용 직류 전원 모듈이 실장된 제2전장용 인쇄회로기판; 을 포함하고,상기 제1전장용 인쇄회로기판 및 상기 제2전장용 인쇄회로기판은 하나의 레이어(층)를 형성하도록 동일 높이에 상기 제1 설치 공간과 제2 설치 공간에 의하여 구획되게 배치된, 안테나 장치.
- 청구항 7에 있어서,상기 전장부 방열모듈은,상기 전장 유닛 본체에 개구되게 형성된 다수의 열전달 구멍을 통하여 상기 다수의 FPGA와 열 접촉되게 배치되고, 상기 전장 유닛 본체에 형성된 상기 다수의 방열 핀보다 외측으로 더 이격되게 배치된 제1 전장측 방열부; 및상기 전장 유닛 본체에 개구되게 형성된 개구부를 폐쇄하도록 상기 전장 유닛 본체의 외측면에 결합되고, 상기 제1전장용 인쇄회로기판의 상기 다수의 PSU용 직류 전원 모듈과 접촉되게 구비된 제2 전장측 방열부; 를 포함하는, 안테나 장치.
- 청구항 8에 있어서,상기 제1 전장측 방열부는,상기 다수의 FPGA 각각의 발열면에 접착되어 열을 포집하는 포열 플레이트;상기 포열 플레이트의 외측면에 접하도록 배치되고, 외측에 다수의 방열 핀이 형성된 제1방열핀부;상기 다이렉트 방열핀부에 대하여 수평방향 외측으로 이격되게 배치되고, 상기 다이렉트 방열핀부로부터 열을 전달받아 원거리 방열시키도록 외측에 다수의 방열 핀이 형성된 제2방열핀부;상기 포열 플레이트로부터 열을 공급받아 상기 제1방열핀부로 전달하는 열전달 매개 블록; 및상기 제1방열핀부와 상기 열전달 매개 블록 사이에 일단부가 삽입되고, 타단부가 상기 제2방열핀부와 연결되어 상기 열전달 매개 블록으로부터 공급되는 열을 상기 제2방열핀부로 전달하는 다수의 히트 파이프; 를 포함하는, 안테나 장치.
- 청구항 9에 있어서,상기 포열 플레이트 및 상기 열전달 매개 블록은 구리 재질로 구비된, 안테나 장치.
- 청구항 8에 있어서,상기 제2 전장측 방열부는, 상기 전장 유닛 본체의 외측면에 형성된 상기 다수의 방열 핀과 동일한 높이를 가진 다수의 방열 핀이 일체로 형성된, 안테나 장치.
- 청구항 1에 있어서,상기 필터 유닛부에는 적어도 하나의 필터측 파워 접속 단자 및 적어도 하나의 필터측 신호 접속 단자가 구비되고, 상기 전장 유닛부에는 적어도 하나의 전장측 파워 접속 단자 및 적어도 하나의 전장측 신호 접속 단자가 구비되고,상기 적어도 하나의 필터측 파워 접속 단자 및 적어도 하나의 전장측 파워 접속 단자를 상호 연결시키도록 일측 두께부를 형성하면서 결합되는 제1인터페이스 블록 커넥터; 및상기 적어도 하나의 필터측 신호 접속 단자 및 적어도 하나의 전장측 신호 접속 단자를 상호 연결시키도록 타측 두께부를 형성하면서 결합되는 제2인터페이스 블록 커넥터; 를 더 포함하는, 안테나 장치.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201980072449.XA CN113348591B (zh) | 2018-10-30 | 2019-10-28 | 天线装置 |
JP2021548489A JP7189367B2 (ja) | 2018-10-30 | 2019-10-28 | アンテナ装置 |
US17/241,100 US11831064B2 (en) | 2018-10-30 | 2021-04-27 | Antenna apparatus |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2018-0131191 | 2018-10-30 | ||
KR20180131191 | 2018-10-30 | ||
KR1020190134435A KR102233029B1 (ko) | 2018-10-30 | 2019-10-28 | 안테나 장치 |
KR10-2019-0134435 | 2019-10-28 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/241,100 Continuation US11831064B2 (en) | 2018-10-30 | 2021-04-27 | Antenna apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020091329A1 true WO2020091329A1 (ko) | 2020-05-07 |
Family
ID=70461937
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2019/014244 WO2020091329A1 (ko) | 2018-10-30 | 2019-10-28 | 안테나 장치 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7189367B2 (ko) |
WO (1) | WO2020091329A1 (ko) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114915330A (zh) * | 2022-03-31 | 2022-08-16 | 航天恒星科技有限公司 | 一种基带射频一体化的卫星终端 |
WO2023033552A1 (ko) * | 2021-08-31 | 2023-03-09 | 주식회사 케이엠더블유 | 안테나 장치 |
JP7511028B2 (ja) | 2020-05-25 | 2024-07-04 | ケーエムダブリュ・インコーポレーテッド | アンテナ装置 |
JP7511027B2 (ja) | 2020-05-26 | 2024-07-04 | ケーエムダブリュ・インコーポレーテッド | アンテナ装置 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20160121491A (ko) * | 2016-10-10 | 2016-10-19 | 주식회사 케이엠더블유 | 방열 장치 |
JP2017046121A (ja) * | 2015-08-25 | 2017-03-02 | 住友電気工業株式会社 | アンテナ装置 |
KR101879404B1 (ko) * | 2018-01-17 | 2018-07-18 | 엘아이지넥스원 주식회사 | 장거리 레이더 장치 및 이의 안테나 구조와 방열 장치 |
WO2018182379A1 (ko) * | 2017-03-31 | 2018-10-04 | 주식회사 케이엠더블유 | 안테나 어셈블리 및 안테나 어셈블리를 포함하는 장치 |
WO2018194425A1 (ko) * | 2017-04-21 | 2018-10-25 | 주식회사 케이엠더블유 | 엠아이엠오 안테나 장치 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011155049A (ja) * | 2010-01-26 | 2011-08-11 | Kyocera Corp | 筐体の冷却構造及び基地局 |
EP2922307B1 (en) * | 2012-11-16 | 2020-12-23 | KMW Inc. | Small-sized base station device in mobile communication system |
WO2016065246A1 (en) * | 2014-10-23 | 2016-04-28 | Amphenol Antenna Solutions, Inc. | Active antenna array |
CN207319430U (zh) * | 2017-08-01 | 2018-05-04 | 戴璐璐 | 无线数据采集装置 |
-
2019
- 2019-10-28 WO PCT/KR2019/014244 patent/WO2020091329A1/ko active Application Filing
- 2019-10-28 JP JP2021548489A patent/JP7189367B2/ja active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017046121A (ja) * | 2015-08-25 | 2017-03-02 | 住友電気工業株式会社 | アンテナ装置 |
KR20160121491A (ko) * | 2016-10-10 | 2016-10-19 | 주식회사 케이엠더블유 | 방열 장치 |
WO2018182379A1 (ko) * | 2017-03-31 | 2018-10-04 | 주식회사 케이엠더블유 | 안테나 어셈블리 및 안테나 어셈블리를 포함하는 장치 |
WO2018194425A1 (ko) * | 2017-04-21 | 2018-10-25 | 주식회사 케이엠더블유 | 엠아이엠오 안테나 장치 |
KR101879404B1 (ko) * | 2018-01-17 | 2018-07-18 | 엘아이지넥스원 주식회사 | 장거리 레이더 장치 및 이의 안테나 구조와 방열 장치 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7511028B2 (ja) | 2020-05-25 | 2024-07-04 | ケーエムダブリュ・インコーポレーテッド | アンテナ装置 |
JP7511027B2 (ja) | 2020-05-26 | 2024-07-04 | ケーエムダブリュ・インコーポレーテッド | アンテナ装置 |
WO2023033552A1 (ko) * | 2021-08-31 | 2023-03-09 | 주식회사 케이엠더블유 | 안테나 장치 |
CN114915330A (zh) * | 2022-03-31 | 2022-08-16 | 航天恒星科技有限公司 | 一种基带射频一体化的卫星终端 |
Also Published As
Publication number | Publication date |
---|---|
JP2022509471A (ja) | 2022-01-20 |
JP7189367B2 (ja) | 2022-12-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11831064B2 (en) | Antenna apparatus | |
WO2020091329A1 (ko) | 안테나 장치 | |
WO2018182379A1 (ko) | 안테나 어셈블리 및 안테나 어셈블리를 포함하는 장치 | |
WO2014077634A1 (ko) | 이동통신 시스템의 소형 기지국 장치 | |
KR20200132659A (ko) | 안테나 장치 | |
WO2015041422A1 (ko) | 안테나 장치 및 그를 구비하는 전자 기기 | |
WO2018093176A2 (ko) | 적층구조의 mimo 안테나 어셈블리 | |
WO2016182252A1 (en) | Antenna device and electronic device including the same | |
EP2983302B1 (en) | Radio frequency unit and integrated antenna with improved heat dissipation | |
WO2014119897A1 (en) | Antenna device for portable terminal | |
WO2019112289A1 (ko) | 다중 입출력 안테나 장치 | |
WO1997047168A1 (en) | Housing with internal fins for volumetric cooling | |
WO2021054755A1 (ko) | 안테나 장치 | |
WO2021010646A1 (ko) | 다중 입출력 안테나 장치 | |
WO2010071304A2 (ko) | 커플링을 이용한 전력 분배기 | |
WO2018194425A1 (ko) | 엠아이엠오 안테나 장치 | |
WO2014025075A1 (ko) | 무선 통신기기의 함체 장치 | |
WO2015034179A1 (en) | Signal transfer apparatus having antenna unit | |
WO2020231148A1 (ko) | 안테나 장치 | |
WO2019199078A1 (ko) | 다중 입출력 안테나 장치 | |
WO2021241993A1 (ko) | 안테나 장치 | |
WO2018205377A1 (zh) | 侦听机 | |
WO2017082516A1 (ko) | 동축형 공간 결합기를 구비한 전력 증폭 모듈 | |
WO2020262871A1 (ko) | 안테나 장치 | |
WO2022250381A1 (ko) | 신호 차폐 장치 및 이를 포함하는 안테나 장치 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19879519 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2021548489 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19879519 Country of ref document: EP Kind code of ref document: A1 |