WO2022004882A1 - Solar cell - Google Patents

Solar cell Download PDF

Info

Publication number
WO2022004882A1
WO2022004882A1 PCT/JP2021/025165 JP2021025165W WO2022004882A1 WO 2022004882 A1 WO2022004882 A1 WO 2022004882A1 JP 2021025165 W JP2021025165 W JP 2021025165W WO 2022004882 A1 WO2022004882 A1 WO 2022004882A1
Authority
WO
WIPO (PCT)
Prior art keywords
photoelectric conversion
conversion efficiency
solar cell
transport layer
organic
Prior art date
Application number
PCT/JP2021/025165
Other languages
French (fr)
Japanese (ja)
Inventor
明伸 早川
哲也 榑林
允子 岡本
祥平 花ノ木
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to JP2022534128A priority Critical patent/JPWO2022004882A1/ja
Publication of WO2022004882A1 publication Critical patent/WO2022004882A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present invention relates to a solar cell capable of exhibiting high photoelectric conversion efficiency even after undergoing a heating step.
  • a solar cell having a laminate (photoelectric conversion layer) in which an N-type semiconductor layer and a P-type semiconductor layer are arranged between facing electrodes has been developed.
  • an optical carrier electron-hole pair
  • an electric field is generated by moving an electron in an N-type semiconductor and a hole in a P-type semiconductor.
  • fullerenes are used. Fullerenes are known to mainly act as N-type semiconductors.
  • Patent Document 1 describes a semiconductor heterojunction film formed by using an organic compound as a P-type semiconductor and fullerenes.
  • the cause of deterioration is fullerenes (see, for example, Non-Patent Document 1), and a material that replaces fullerenes is required. ing.
  • Non-Patent Document 2 a photoelectric conversion material having a perovskite structure using lead, tin, etc. as a central metal, which is called an organic-inorganic hybrid semiconductor, has been discovered and shown to have high photoelectric conversion efficiency (for example, Non-Patent Document 2). ..
  • a hole transport layer is often provided between the photoelectric conversion layer and the anode, and the hole transport layer is tert-in order to improve the photoelectric conversion efficiency.
  • -A pyridine derivative such as butyl pyridine is added.
  • the photoelectric conversion efficiency may decrease after the heating step.
  • An object of the present invention is to provide a solar cell capable of exhibiting high photoelectric conversion efficiency even after undergoing a heating step.
  • the present invention has a cathode, a photoelectric conversion layer, a hole transport layer, and an anode in this order, and the photoelectric conversion layer is AMX (where A is an organic base compound and / or an alkali metal, M is a lead or tin atom, and X is. Is a halogen atom.) Is an organic-inorganic perovskite compound, and the whole transport layer is a solar cell containing a halogenated quaternary amine salt.
  • AMX where A is an organic base compound and / or an alkali metal, M is a lead or tin atom, and X is.
  • A is an organic base compound and / or an alkali metal
  • M is a lead or tin atom
  • X is.
  • the present inventors have found that the cause is the volatilization of the pyridine derivative by heating.
  • the pyridine derivative volatilizes in the heating step, the amount of the pyridine derivative in the hole transport layer decreases. Further, if the pyridine derivative invades the photoelectric conversion layer in the heating step, the photoelectric conversion layer is deteriorated, so that the photoelectric conversion efficiency is lowered.
  • the solar cell of the present invention has a cathode, a photoelectric conversion layer, a hole transport layer, and an anode in this order.
  • the layer means not only a layer having a clear boundary but also a layer having a concentration gradient in which the contained elements gradually change.
  • the elemental analysis of the layer can be performed, for example, by performing FE-TEM / EDS line analysis measurement of the cross section of the solar cell and confirming the elemental distribution of the specific element.
  • the layer means not only a flat thin film-like layer but also a layer capable of forming a complicated and intricate structure together with other layers.
  • cathode material examples include FTO (fluorine-doped tin oxide), ITO (tin-doped indium oxide), sodium, sodium-potassium alloy, lithium, magnesium, aluminum, magnesium-silver mixture, magnesium-indium mixture, and aluminum-lithium alloy.
  • FTO fluorine-doped tin oxide
  • ITO tin-doped indium oxide
  • sodium, sodium-potassium alloy lithium, magnesium, aluminum, magnesium-silver mixture, magnesium-indium mixture, and aluminum-lithium alloy.
  • examples thereof include an Al / Al 2 O 3 mixture and an Al / LiF mixture. These materials may be used alone or in combination of two or more.
  • the thickness of the cathode is not particularly limited, but the preferred lower limit is 10 nm and the preferred upper limit is 1000 nm. When the thickness is 10 nm or more, the cathode can function as an electrode and the resistance can be suppressed. When the thickness is 1000 nm or less, the light transmittance can be further improved. A more preferable lower limit of the thickness of the cathode is 50 nm, and a more preferable upper limit is 500 nm.
  • the photoelectric conversion layer contains an organic-inorganic perovskite compound represented by the general formula AMX (where A is an organic base compound and / or an alkali metal, M is a lead or tin atom, and X is a halogen atom).
  • a solar cell in which the photoelectric conversion layer contains the organic-inorganic perovskite compound is also referred to as an organic-inorganic hybrid type solar cell.
  • the above A is an organic base compound and / or an alkali metal.
  • the organic basic compound include methylamine, ethylamine, propylamine, butylamine, pentylamine, hexylamine, dimethylamine, diethylamine, dipropylamine, dibutylamine, dipentylamine, dihexylamine, trimethylamine, and triethylamine.
  • methylamine, ethylamine, propylamine, butylamine, pentylamine, hexylamine, formamidine, acetoamidine and their ions and phenethylammon are preferable, and methylamine, ethylamine, propylamine, formamidine and these ions are more preferable.
  • the alkali metal include lithium, sodium, potassium, rubidium, cesium and the like.
  • the above M is a metal atom and is a lead or tin atom. These metal atoms may be used alone or in combination of two or more.
  • the X is a halogen atom, and examples of the halogen atom include chlorine, bromine, iodine, sulfur, and selenium. These halogen atoms may be used alone or in combination of two or more.
  • the organic-inorganic perovskite compound becomes soluble in an organic solvent, and can be applied to an inexpensive printing method or the like.
  • X is preferably iodine because the energy band gap of the organic-inorganic perovskite compound is narrowed.
  • the organic-inorganic perovskite compound preferably has a cubic structure in which a metal atom M is arranged at the center of the body, an organic base compound or an alkali metal A is arranged at each apex, and a halogen atom X is arranged at the center of the body.
  • FIG. 1 is an example of a crystal structure of an organic-inorganic perovskite compound, which is a cubic structure in which a metal atom M is arranged at the center of the body, an organic base compound or an alkali metal A is arranged at each apex, and a halogen atom X is arranged at the face center. It is a schematic diagram which shows.
  • the orientation of the octahedron in the crystal lattice can be easily changed by having the above structure, so that the mobility of electrons in the organic-inorganic perovskite compound is high, and the photoelectric of the solar cell is high. It is estimated that the conversion efficiency will improve.
  • the organic-inorganic perovskite compound is preferably a crystalline semiconductor.
  • the crystalline semiconductor means a semiconductor capable of measuring the X-ray scattering intensity distribution and detecting the scattering peak. Since the organic-inorganic perovskite compound is a crystalline semiconductor, the mobility of electrons in the organic-inorganic perovskite compound is increased, and the photoelectric conversion efficiency of the solar cell is improved.
  • the degree of crystallization as an index of crystallization.
  • the scattering peak derived from the crystalline substance detected by the X-ray scattering intensity distribution measurement and the halo derived from the amorphous part are separated by fitting, and the intensity integration of each is obtained, and the crystal part of the whole is obtained. It can be obtained by calculating the ratio of.
  • the preferable lower limit of the crystallinity of the organic-inorganic perovskite compound is 30%. When the crystallinity is 30% or more, the mobility of electrons in the organic-inorganic perovskite compound becomes high, and the photoelectric conversion efficiency of the solar cell is improved.
  • a more preferable lower limit of crystallinity is 50%, and a more preferable lower limit is 70%.
  • a method for increasing the crystallinity of the organic-inorganic perovskite compound for example, thermal annealing, irradiation with strong light such as a laser, plasma irradiation and the like can be mentioned.
  • the photoelectric conversion layer may further contain an organic semiconductor or an inorganic semiconductor in addition to the organic-inorganic perovskite compound as long as the effect of the present invention is not impaired.
  • the organic semiconductor or the inorganic semiconductor referred to here may play a role as a hole transport layer or an electron transport layer.
  • the organic semiconductor include compounds having a thiophene skeleton such as poly (3-alkylthiophene).
  • a conductive polymer having a polyparaphenylene vinylene skeleton, a polyvinylcarbazole skeleton, a polyaniline skeleton, a polyacetylene skeleton and the like can also be mentioned.
  • a compound having a porphyrin skeleton such as a phthalocyanine skeleton, a naphthalocyanine skeleton, a pentacene skeleton, a benzoporphyrin skeleton, a spirobifluorene skeleton, and carbon-containing materials such as carbon nanotubes, graphene, and fullerene which may be surface-modified.
  • a porphyrin skeleton such as a phthalocyanine skeleton, a naphthalocyanine skeleton, a pentacene skeleton, a benzoporphyrin skeleton, a spirobifluorene skeleton, and carbon-containing materials such as carbon nanotubes, graphene, and fullerene which may be surface-modified.
  • a porphyrin skeleton such as a phthalocyanine skeleton, a naphthalocyanine skeleton, a pentacene
  • the inorganic semiconductor e.g., titanium oxide, zinc oxide, indium oxide, tin oxide, gallium oxide, tin sulfide, indium sulfide, zinc sulfide, CuSCN, Cu 2 O, CuI , MoO 3, V 2 O 5, WO 3,
  • the inorganic semiconductor e.g., titanium oxide, zinc oxide, indium oxide, tin oxide, gallium oxide, tin sulfide, indium sulfide, zinc sulfide, CuSCN, Cu 2 O, CuI , MoO 3, V 2 O 5, WO 3,
  • Examples thereof include MoS 2 , MoSe 2 , Cu 2 S and the like.
  • the photoelectric conversion layer is a laminate in which a thin-film organic semiconductor or an inorganic semiconductor moiety and a thin-film organic-inorganic perovskite compound moiety are laminated.
  • it may be a composite film in which an organic semiconductor or an inorganic semiconductor moiety and an organic-inorganic perovskite compound moiety are composited.
  • a laminated body is preferable in terms of simple manufacturing method, and a composite film is preferable in that the charge separation efficiency in the organic semiconductor or the inorganic semiconductor can be improved.
  • the thickness of the thin-film organic-inorganic perovskite compound moiety has a preferable lower limit of 5 nm and a preferable upper limit of 5000 nm.
  • the thickness is 5 nm or more, light can be sufficiently absorbed and the photoelectric conversion efficiency becomes high.
  • the thickness is 5000 nm or less, it is possible to suppress the generation of a region where charge separation is not possible, which leads to improvement in photoelectric conversion efficiency.
  • the more preferable lower limit of the thickness is 10 nm, the more preferable upper limit is 1000 nm, the further preferable lower limit is 20 nm, and the further preferable upper limit is 500 nm.
  • the preferable lower limit of the thickness of the composite film is 30 nm, and the preferable upper limit is 3000 nm.
  • the thickness is 30 nm or more, light can be sufficiently absorbed and the photoelectric conversion efficiency becomes high.
  • the thickness is 3000 nm or less, the electric charge easily reaches the electrode, so that the photoelectric conversion efficiency is high.
  • the more preferable lower limit of the thickness is 40 nm, the more preferable upper limit is 2000 nm, the further preferable lower limit is 50 nm, and the further preferable upper limit is 1000 nm.
  • the method for forming the photoelectric conversion layer is not particularly limited, and examples thereof include a vacuum vapor deposition method, a sputtering method, a vapor phase reaction method (CVD), an electrochemical deposition method, and a printing method. Above all, by adopting the printing method, it is possible to easily form a solar cell capable of exhibiting high photoelectric conversion efficiency in a large area. Examples of the printing method include a spin coating method, a casting method, and the like, and examples of the method using the printing method include a roll-to-roll method.
  • the solar cell of the present invention may have an electron transport layer between the cathode and the photoelectric conversion layer.
  • the material of the electron transport layer is not particularly limited, and for example, N-type conductive polymer, N-type low molecular weight organic semiconductor, N-type metal oxide, N-type metal sulfide, halogenated alkali metal, alkali metal, and surface activity. Examples thereof include cyano group-containing polyphenylene vinylene, boron-containing polymer, vasocuproin, vasophenanthrene, hydroxyquinolinatoaluminum, oxadiazole compound, benzoimidazole compound, naphthalenetetracarboxylic acid compound, perylene derivative, and the like.
  • Examples thereof include phosphine oxide compounds, phosphine sulfide compounds, fluorogroup-containing phthalocyanine, titanium oxide, zinc oxide, indium oxide, tin oxide, gallium oxide, tin sulfide, indium sulfide, and zinc sulfide.
  • the electron transport layer may be composed of only a thin-film electron transport layer, but preferably includes a porous electron transport layer.
  • the photoelectric conversion layer is a composite film in which an organic semiconductor or an inorganic semiconductor moiety and an organic-inorganic perovskite compound moiety are composited, a more complicated composite film (more complicated structure) can be obtained, and the photoelectric conversion efficiency can be obtained. Therefore, it is preferable that the composite film is formed on the porous electron transport layer.
  • the thickness of the electron transport layer has a preferable lower limit of 1 nm and a preferred upper limit of 2000 nm. If the thickness is 1 nm or more, the holes can be sufficiently blocked. When the thickness is 2000 nm or less, it is unlikely to become a resistance during electron transport, and the photoelectric conversion efficiency becomes high.
  • the more preferable lower limit of the thickness of the electron transport layer is 3 nm, the more preferable upper limit is 1000 nm, the further preferable lower limit is 5 nm, and the further preferable upper limit is 500 nm.
  • the material of the hole transport layer is not particularly limited, and the hole transport layer may be made of an organic material.
  • the material of the hole transport layer include a P-type conductive polymer, a P-type low molecular weight organic semiconductor, a P-type metal oxide, a P-type metal sulfide, a surfactant, and the like.
  • examples thereof include compounds having a thiophene skeleton such as poly (3-alkylthiophene).
  • a conductive polymer having a triphenylamine skeleton, a polyparaphenylene vinylene skeleton, a polyvinylcarbazole skeleton, a polyaniline skeleton, a polyacetylene skeleton and the like can be mentioned.
  • compounds having a porphyrin skeleton such as a phthalocyanine skeleton, a naphthalocyanine skeleton, a pentasen skeleton, a benzoporphyrin skeleton, a spirobifluorene skeleton, molybdenum sulfide, tungsten sulfide, copper sulfide, tin sulfide and the like, fluorogroup-containing phosphonic acid, Examples thereof include carbonyl group-containing phosphonic acid, copper compounds such as CuSCN and CuI.
  • the hole transport layer contains a halogenated quaternary amine salt. Since the hole transport layer contains a halogenated quaternary amine salt, the photoelectric conversion efficiency can be improved.
  • Conventional solar cells contain a pyridine derivative as an additive, but the pyridine derivative volatilizes at a high temperature, and if the pyridine derivative invades the photoelectric conversion layer during heating, the photoelectric conversion layer is deteriorated. Therefore, it has been a factor of lowering the photoelectric conversion efficiency.
  • a halogenated quaternary amine salt which has the effect of improving the photoelectric conversion efficiency but does not volatilize, it is possible to exhibit higher photoelectric conversion efficiency than the conventional solar cell.
  • the halogenated quaternary amine salt may be used alone or in combination of two or more.
  • Examples of the quaternary amine constituting the halogenated quaternary amine salt include tetraethylammonium, tetrapropylammonium, tetrabutylammonium, tetrapentylammonium, tetrahexylammonium, tetraoctylammonium, tetradodecylammonium, and benzyltriethylammonium.
  • Examples thereof include 5-azoniaspiro [4.4] nonane, dimethyldioctadecylammonium, trimethyl [2-[(trimethylsilyl) methyl] benzyl] ammonium, (ferrocenylmethyl) trimethylammonium and the like.
  • a quaternary amine in which an alkyl group having 4 or more carbon atoms is bonded to a nitrogen atom, and an alkyl group having 4 or more carbon atoms and 12 or less carbon atoms is a nitrogen atom. It is more preferable that it is a quaternary amine bonded to.
  • the halogen constituting the halogenated quaternary amine salt is not particularly limited, and examples thereof include chlorine, bromine, and iodine. Of these, bromine and iodine are preferable, and iodine is more preferable, because the photoelectric conversion efficiency can be further improved.
  • the content of the halogenated quaternary amine salt in the hole transport layer is preferably 0.05% or more and 30% or less. When the content of the halogenated quaternary amine salt in the hole transport layer is within the above range, the photoelectric conversion efficiency can be further improved.
  • the amount of the halogenated quaternary amine salt added in the hole transport layer is more preferably 0.5% or more, further preferably 1.0% or more, still more preferably 20% or less. It is more preferably 10% or less.
  • the content of the halogenated quaternary amine salt in the hole transport layer can be quantified by extracting the hole transport layer into a soluble solvent and analyzing it with GC-MS or the like.
  • the halogenated quaternary amine salt segregates more on the photoelectric conversion layer side than on the anode side during hole transportation.
  • the halogenated quaternary amine salt segregates a large amount toward the photoelectric conversion layer side, so that charge transfer can be promoted and the photoelectric conversion efficiency can be improved.
  • the amount of the halogenated quaternary amine salt at the photoelectric conversion layer side interface is preferably 2 times or more, more preferably 3 times or more, with respect to the amount of the halogenated quaternary amine salt at the electrode side interface in the hole transport layer. It is preferable, and more preferably 5 times or more.
  • a method for segregating the halogenated quaternary amine salt more on the photoelectric conversion layer side than on the anode side for example, a method of forming a film using a specific organic solvent, a method of segregating by thermal annealing, and the like are used.
  • a method of forming a film using a specific organic solvent, a method of segregating by thermal annealing, and the like are used.
  • Whether or not the halogenated quaternary amine salt is segregated in the hole transport layer is determined by performing time-of-flight secondary ion mass spectrometry (TOF-SIMS) on the surface of the hole transport layer by sputtering for a predetermined time. ) Can be confirmed by repeating the analysis.
  • TOF-SIMS time-of-flight secondary ion mass spectrometry
  • TOF-SIMS Time-of-Fright Second Ion Mass Spectrometry
  • a solid sample is irradiated with an ion beam (primary ion), and ions (secondary ion) emitted from the surface are emitted.
  • the flight time is proportional to the square root of the weight.
  • TOF-SIMS information on elements and molecular species existing in a region of 1 nm in the thickness direction from the sample surface can be obtained with high detection sensitivity.
  • Examples of the analyzer used for TOF-SIMS include "TOF-SIMS5" manufactured by ION-TOF.
  • the ion intensity ratio can be obtained, for example, by using a Bi 3 + ion gun as a primary ion source for measurement and measuring under the condition of 25 keV.
  • an inert gas such as argon is introduced in a vacuum, a negative voltage is applied to the target to generate a glow discharge, the inert gas atom is ionized, and the gas ion collides with the surface of the target at high speed.
  • the surface of the target can be ground to a depth of nanometer to micrometer order. Specifically, for example, by performing sputtering using O 2 +, can go digging the surface of the hole transport layer by 0.01 nm ⁇ 10 nm / dose depth.
  • a part of the hole transport layer may be immersed in the photoelectric conversion layer, or may be arranged in a thin film on the photoelectric conversion layer.
  • the preferable lower limit is 1 nm and the preferable upper limit is 2000 nm.
  • the thickness is 1 nm or more, electrons can be sufficiently blocked.
  • the thickness is 2000 nm or less, resistance during hole transportation is unlikely to occur, and the photoelectric conversion efficiency is high.
  • the more preferable lower limit of the thickness is 3 nm, the more preferable upper limit is 1000 nm, the further preferable lower limit is 5 nm, and the further preferable upper limit is 500 nm.
  • the material of the anode is not particularly limited, and conventionally known materials can be used.
  • the anode material include metals such as gold, copper, aluminum, antimony, and molybdenum, CuI, ITO (indium tin oxide), SnO 2 , AZO (aluminum zinc oxide), IZO (indium zinc oxide), and GZO (.
  • Examples thereof include a conductive transparent material such as gallium-zinc oxide) or a conductive transparent polymer.
  • the anode contains molybdenum because the resistance (light resistance) to the decrease in photoelectric conversion efficiency when exposed to light for a long time is improved. The cause of this is not clear, but it is thought that the interaction between the halogenated quaternary amine salt and molybdenum significantly improves the light resistance.
  • the thickness of the anode is not particularly limited, but the preferred lower limit is 10 nm and the preferred upper limit is 1000 nm.
  • the thickness is 10 nm or more, the anode can function as an electrode and the resistance can be suppressed.
  • the thickness is 1000 nm or less, the light transmittance can be further improved.
  • the more preferable lower limit of the thickness of the anode is 20 nm, and the more preferable upper limit is 100 nm.
  • the solar cell of the present invention is selected from at least a group consisting of carbon, vanadium oxide (VO x ), molybdenum oxide (MoO x ) and nickel oxide (NiO x ) between the hole transport layer and the anode. It is preferable to have an intermediate layer containing one type. By providing the intermediate layer, the photoelectric conversion efficiency can be further improved. The cause of this is not clear, but it is thought that the photoelectric conversion efficiency is significantly improved by the interaction with the quaternary amine. Since the photoelectric conversion efficiency can be further improved, the thickness of the intermediate layer is preferably 1 nm or more, more preferably 5 nm or more, preferably 100 nm or less, and more preferably 50 nm or less.
  • the solar cell of the present invention may further have a substrate or the like.
  • the substrate is not particularly limited, and examples thereof include a transparent glass substrate such as soda lime glass and non-alkali glass, a ceramic substrate, and a transparent plastic substrate.
  • the method for manufacturing the solar cell of the present invention is not particularly limited, and for example, the cathode, the electron transport layer, the photoelectric conversion layer, the hole transport layer, the intermediate layer, and the anode are formed on the substrate in this order. How to do it, etc.
  • the present invention it is possible to provide a solar cell capable of exhibiting high photoelectric conversion efficiency even after undergoing a heating step.
  • FIG. 1 It is a schematic diagram which shows an example of the crystal structure of an organic-inorganic perovskite compound. Normalized with the maximum value of each of Pb ion, Spiro-OMETAD ion, and tetrabutylammonium ion set to 1 on the horizontal axis with the cumulative sputtering time N when TOF-SIMS measurement was performed on the hole transport layer of Example 1. It is a graph in which the calculated values are plotted on the vertical axis.
  • Example 1 An ITO film having a thickness of 200 nm was formed on a glass substrate as a cathode, and was ultrasonically cleaned with pure water, acetone, and methanol in this order for 10 minutes each, and then dried. A thin-film electron transport layer having a thickness of 20 nm was formed on the surface of the ITO film by sputtering. Further, a titanium oxide paste containing titanium oxide (a mixture of an average particle diameter of 10 nm and 30 nm) is applied onto the thin-film electron transport layer by a spin coating method to form a porous electron transport layer having a thickness of 100 nm. Formed.
  • lead iodide as a metal halide compound was dissolved in a mixed solvent of N, N-dimethylformamide (DMF) and dimethyl sulfoxide (DMSO) to prepare a 1 M solution, which was then spun onto the porous electron transport layer. A film was formed by the coating method. Further, methylammonium iodide as an amine compound was dissolved in 2-propanol to prepare an 8 wt% solution. This solution was spin-coated on the lead iodide and annealed at 150 ° C. for 10 minutes to form a layer containing CH 3 NH 3 PbI 3 which is an organic-inorganic perovskite compound.
  • DMF N, N-dimethylformamide
  • DMSO dimethyl sulfoxide
  • Spiro-OMETAD manufactured by Merck
  • tetrabutylammonium iodide 2% by weight as a main agent
  • tetrabutylammonium iodide 2% by weight
  • a hole transport layer having a thickness of 50 nm was formed by spin-coating a chlorobenzene solution containing 1% by weight.
  • MoO x molybdenum oxide
  • a gold film having a thickness of 100 nm was formed as an anode on the obtained intermediate layer by resistance heating and vapor deposition to obtain a solar cell in which a cathode / electron transport layer / photoelectric conversion layer / hole transport layer / intermediate layer / anode was laminated. ..
  • a measurement sample laminated up to the hole transport layer was prepared by the above method.
  • the surface of the obtained measurement sample on the hole transport layer side was sputtered under the following conditions using an Ar cluster, and the operation of performing analysis by TOF-SIMS under the following conditions was repeated 10 times to obtain the hole transport layer.
  • the abundance ratios of Pb, spiro-OMeTAD and tetrabutylammonium in the thickness direction were measured.
  • FIG. 2 shows a graph in which the normalized values are plotted on the vertical axis with the cumulative sputtering time N as the horizontal axis and the maximum values of each of Pb ion, Spiro-OMETAD ion, and tetrabutylammonium ion as 1.
  • N the portion where N is approximately 100 seconds to 300 seconds corresponds to the boundary between the hole transport layer and the photoelectric conversion layer.
  • the tetrabutylammonium ions are on the photoelectric conversion layer side. It can be seen that the surface is segregated.
  • Examples 2 to 56 Comparative Examples 1 to 16
  • Example 1 The same as in Example 1 except that the type of the main agent, the type and content of the additive, the thickness of the hole transport layer, the type of the intermediate layer, the type of the anode and the composition of the photoelectric conversion layer are as shown in Tables 1 to 3. I got a solar cell. In Tables 1 to 3, those with no segregation indicate that there was no segregation as a result of sputtering and TOF-SIMS measurement, and those with segregation of "-" indicate sputtering and TOF-SIMS measurement. It means that you haven't done it.
  • Example 2 the results of sputtering and TOF-SIMS measurement in the same manner as in Example 1 are shown in FIG. Also in FIG. 3, the portion where N is approximately 100 to 300 seconds corresponds to the boundary between the hole transport layer and the photoelectric conversion layer. As shown in FIG. 3, no segregation was observed with tert-butyl pyridine.
  • Normalized initial conversion efficiency value is 1.30 or more 9: Normalized initial conversion efficiency value is 1.25 or more and less than 1.30 8: Normalized initial conversion efficiency value is 1.20 or more 1 Less than .25 7: Normalized initial conversion efficiency value is 1.15 or more and less than 1.20 6: Normalized initial conversion efficiency value is 1.10 or more and less than 1.15 5: Normalized initial conversion efficiency Value is 1.05 or more and less than 1.10 4: Normalized initial conversion efficiency value is 1.00 or more and less than 1.05 3: Normalized initial conversion efficiency value is 0.95 or more and less than 1.00 2: Normalized initial conversion efficiency value is 0.90 or more and less than 0.95 1: Normalized initial conversion efficiency value is less than 0.90
  • the photoelectric conversion efficiency after the heat resistance test is 98% or more with respect to the initial conversion efficiency
  • the photoelectric conversion efficiency after the heat resistance test is 95% or more and less than 98% with respect to the initial conversion efficiency 8: photoelectric after the heat resistance test
  • the conversion efficiency is 90% or more and less than 95% with respect to the initial conversion efficiency 7:
  • the photoelectric conversion efficiency after the heat resistance test is 80% or more and less than 90% with respect to the initial conversion efficiency 6:
  • the photoelectric conversion efficiency after the heat resistance test is 70% or more and less than 80% of the initial conversion efficiency 5:
  • the photoelectric conversion efficiency after the heat resistance test is 60% or more and less than 70% of the initial conversion efficiency 4:
  • 50% or more and less than 60% 3 The photoelectric conversion efficiency after the heat resistance test is 40% or more and less than 50% with respect to the initial conversion efficiency 2:
  • the photoelectric conversion efficiency after the heat resistance test is 30% with respect to the initial conversion efficiency. More than 40% 1:
  • Photoelectric conversion efficiency after voltage application is 98% or more with respect to initial conversion efficiency
  • Photoelectric conversion efficiency after voltage application is 95% or more and less than 98% with respect to initial conversion efficiency
  • Photoelectric after voltage application The conversion efficiency is 90% or more and less than 95% with respect to the initial conversion efficiency 7: The photoelectric conversion efficiency after voltage application is 80% or more and less than 90% with respect to the initial conversion efficiency 6: The photoelectric conversion efficiency after voltage application is 70% or more and less than 80% of the initial conversion efficiency 5: The photoelectric conversion efficiency after voltage application is 60% or more and less than 70% of the initial conversion efficiency 4: The photoelectric conversion efficiency after voltage application is the initial conversion efficiency On the other hand, 50% or more and less than 60% 3: The photoelectric conversion efficiency after voltage application is 40% or more and less than 50% with respect to the initial conversion efficiency 2: The photoelectric conversion efficiency after voltage application is 30% with respect to the initial conversion efficiency. More than 40% 1: The photoelectric conversion efficiency after voltage application is less than 30% of the initial conversion efficiency.
  • the present invention it is possible to provide a solar cell capable of exhibiting high photoelectric conversion efficiency even after undergoing a heating step.

Abstract

The purpose of the present invention is to provide a solar cell capable of exhibiting high photoelectric conversion efficiency even after having passed through a heating step. The present invention is a solar cell having, in the stated order, a negative electrode, a photoelectric conversion layer, a hole transport layer, and a positive electrode. The photoelectric conversion layer contains an organic-inorganic perovskite compound represented by AMX (where A is an organic base compound and/or alkaline metal, M is a lead or tin atom, and X is a halogen atom). The hole transport layer contains a halogenated quaternary amine salt.

Description

太陽電池Solar cell
本発明は、加熱工程を経た場合であっても高い光電変換効率を発揮できる太陽電池に関する。 The present invention relates to a solar cell capable of exhibiting high photoelectric conversion efficiency even after undergoing a heating step.
従来から、対向する電極間にN型半導体層とP型半導体層とを配置した積層体(光電変換層)を備えた太陽電池が開発されている。このような太陽電池では、光励起により光キャリア(電子-ホール対)が生成し、電子がN型半導体を、ホールがP型半導体を移動することで、電界が生じる。 Conventionally, a solar cell having a laminate (photoelectric conversion layer) in which an N-type semiconductor layer and a P-type semiconductor layer are arranged between facing electrodes has been developed. In such a solar cell, an optical carrier (electron-hole pair) is generated by photoexcitation, and an electric field is generated by moving an electron in an N-type semiconductor and a hole in a P-type semiconductor.
現在、実用化されている太陽電池の多くは、シリコン等の無機半導体を用いて製造される無機太陽電池である。しかしながら、無機太陽電池は製造にコストがかかるうえ大型化が困難であり、利用範囲が限られてしまうことから、無機半導体の代わりに有機半導体を用いて製造される有機太陽電池(例えば、特許文献1、2)や、有機半導体と無機半導体とを組み合わせた有機無機太陽電池が注目されている。 Most of the solar cells currently in practical use are inorganic solar cells manufactured by using an inorganic semiconductor such as silicon. However, since inorganic solar cells are costly to manufacture, difficult to increase in size, and have a limited range of use, organic solar cells manufactured using organic semiconductors instead of inorganic semiconductors (for example, patent documents). Attention is being paid to 1, 2) and organic-inorganic solar cells that combine organic semiconductors and inorganic semiconductors.
有機太陽電池や有機無機太陽電池においては、ほとんどの場合フラーレンが用いられている。フラーレンは、主にN型半導体として働くことが知られている。例えば、特許文献1には、P型半導体となる有機化合物とフラーレン類とを用いて形成された半導体ヘテロ接合膜が記載されている。しかしながら、フラーレンを用いて製造される有機太陽電池や有機無機太陽電池において、その劣化の原因はフラーレンであることが知られており(例えば、非特許文献1参照)、フラーレンに代わる材料が求められている。 In most organic solar cells and organic inorganic solar cells, fullerenes are used. Fullerenes are known to mainly act as N-type semiconductors. For example, Patent Document 1 describes a semiconductor heterojunction film formed by using an organic compound as a P-type semiconductor and fullerenes. However, in organic solar cells and organic-inorganic solar cells manufactured using fullerenes, it is known that the cause of deterioration is fullerenes (see, for example, Non-Patent Document 1), and a material that replaces fullerenes is required. ing.
そこで近年、有機無機ハイブリッド半導体と呼ばれる、中心金属に鉛、スズ等を用いたペロブスカイト構造を有する光電変換材料が発見され、高い光電変換効率を有することが示された(例えば、非特許文献2)。 Therefore, in recent years, a photoelectric conversion material having a perovskite structure using lead, tin, etc. as a central metal, which is called an organic-inorganic hybrid semiconductor, has been discovered and shown to have high photoelectric conversion efficiency (for example, Non-Patent Document 2). ..
特開2006-344794号公報Japanese Unexamined Patent Publication No. 2006-344794 特許第4120362号公報Japanese Patent No. 4120362
このようなペロブスカイト構造を有する光電変換材料を用いた太陽電池は、光電変換層と陽極との間にホール輸送層が設けられることが多く、ホール輸送層には光電変換効率を向上させるためにtert-ブチルピリジン等のピリジン誘導体が添加されている。しかしながら、ピリジン誘導体をホール輸送層に添加した場合、加熱工程を経ると光電変換効率が低下してしまうことがある。 In a solar cell using a photoelectric conversion material having such a perovskite structure, a hole transport layer is often provided between the photoelectric conversion layer and the anode, and the hole transport layer is tert-in order to improve the photoelectric conversion efficiency. -A pyridine derivative such as butyl pyridine is added. However, when the pyridine derivative is added to the hole transport layer, the photoelectric conversion efficiency may decrease after the heating step.
本発明は、加熱工程を経た場合であっても高い光電変換効率を発揮できる太陽電池を提供することを目的とする。 An object of the present invention is to provide a solar cell capable of exhibiting high photoelectric conversion efficiency even after undergoing a heating step.
本発明は、陰極、光電変換層、ホール輸送層及び陽極をこの順番に有し、前記光電変換層はAMX(但し、Aは有機塩基化合物及び/又はアルカリ金属、Mは鉛又はスズ原子、Xはハロゲン原子である。)で表される有機無機ペロブスカイト化合物を含有し、前記ホール輸送層はハロゲン化4級アミン塩を含有する太陽電池である。
以下に本発明を詳述する。
The present invention has a cathode, a photoelectric conversion layer, a hole transport layer, and an anode in this order, and the photoelectric conversion layer is AMX (where A is an organic base compound and / or an alkali metal, M is a lead or tin atom, and X is. Is a halogen atom.) Is an organic-inorganic perovskite compound, and the whole transport layer is a solar cell containing a halogenated quaternary amine salt.
The present invention will be described in detail below.
本発明者らは、ホール輸送層にピリジン誘導体を添加した太陽電池において加熱工程を経ると光電変換効率が低下する原因について検討した結果、加熱によるピリジン誘導体の揮発が原因であることを見出した。加熱工程でピリジン誘導体が揮発すると、ホール輸送層中のピリジン誘導体の量が減少してしまう。また、加熱工程によりピリジン誘導体が光電変換層に侵入してしまうと光電変換層を劣化させてしまうため、光電変換効率が低下していた。この知見を基に本発明者らは検討を進めた結果、添加剤をピリジン誘導体からハロゲン化4級アミン塩とすることで、加熱工程を経た場合であっても高い光電変換効率を発揮できることを見出し、本発明を完成させるに至った。 As a result of investigating the cause of the decrease in photoelectric conversion efficiency in a solar cell in which a pyridine derivative is added to a hole transport layer through a heating step, the present inventors have found that the cause is the volatilization of the pyridine derivative by heating. When the pyridine derivative volatilizes in the heating step, the amount of the pyridine derivative in the hole transport layer decreases. Further, if the pyridine derivative invades the photoelectric conversion layer in the heating step, the photoelectric conversion layer is deteriorated, so that the photoelectric conversion efficiency is lowered. As a result of further studies based on this finding, the present inventors have found that by changing the additive from a pyridine derivative to a halogenated quaternary amine salt, high photoelectric conversion efficiency can be exhibited even after a heating step. The finding has led to the completion of the present invention.
本発明の太陽電池は、陰極、光電変換層、ホール輸送層及び陽極をこの順に有する。
本明細書中、層とは、明確な境界を有する層だけではなく、含有元素が徐々に変化する濃度勾配のある層をも意味する。なお、層の元素分析は、例えば、太陽電池の断面のFE-TEM/EDS線分析測定を行い、特定元素の元素分布を確認する等によって行うことができる。また、本明細書中、層とは、平坦な薄膜状の層だけではなく、他の層と一緒になって複雑に入り組んだ構造を形成しうる層をも意味する。
The solar cell of the present invention has a cathode, a photoelectric conversion layer, a hole transport layer, and an anode in this order.
In the present specification, the layer means not only a layer having a clear boundary but also a layer having a concentration gradient in which the contained elements gradually change. The elemental analysis of the layer can be performed, for example, by performing FE-TEM / EDS line analysis measurement of the cross section of the solar cell and confirming the elemental distribution of the specific element. Further, in the present specification, the layer means not only a flat thin film-like layer but also a layer capable of forming a complicated and intricate structure together with other layers.
上記陰極材料として、例えば、FTO(フッ素ドープ酸化スズ)、ITO(スズドープ酸化インジウム)、ナトリウム、ナトリウム-カリウム合金、リチウム、マグネシウム、アルミニウム、マグネシウム-銀混合物、マグネシウム-インジウム混合物、アルミニウム-リチウム合金、Al/Al混合物、Al/LiF混合物等が挙げられる。これらの材料は単独で用いられてもよく、2種以上が併用されてもよい。 Examples of the cathode material include FTO (fluorine-doped tin oxide), ITO (tin-doped indium oxide), sodium, sodium-potassium alloy, lithium, magnesium, aluminum, magnesium-silver mixture, magnesium-indium mixture, and aluminum-lithium alloy. Examples thereof include an Al / Al 2 O 3 mixture and an Al / LiF mixture. These materials may be used alone or in combination of two or more.
上記陰極の厚みは特に限定されないが、好ましい下限は10nm、好ましい上限は1000nmである。上記厚みが10nm以上であれば、上記陰極を電極として機能させたうえで抵抗を抑えることができる。上記厚みが1000nm以下であれば、光の透過性をより向上させることができる。上記陰極の厚みのより好ましい下限は50nm、より好ましい上限は500nmである。 The thickness of the cathode is not particularly limited, but the preferred lower limit is 10 nm and the preferred upper limit is 1000 nm. When the thickness is 10 nm or more, the cathode can function as an electrode and the resistance can be suppressed. When the thickness is 1000 nm or less, the light transmittance can be further improved. A more preferable lower limit of the thickness of the cathode is 50 nm, and a more preferable upper limit is 500 nm.
上記光電変換層は、一般式AMX(但し、Aは有機塩基化合物及び/又はアルカリ金属、Mは鉛又はスズ原子、Xはハロゲン原子である。)で表される有機無機ペロブスカイト化合物を含有する。上記光電変換層が上記有機無機ペロブスカイト化合物を含む太陽電池は、有機無機ハイブリッド型太陽電池とも呼ばれる。
上記光電変換層に上記有機無機ペロブスカイト化合物を用いることにより、太陽電池の光電変換効率を向上させることができる。
The photoelectric conversion layer contains an organic-inorganic perovskite compound represented by the general formula AMX (where A is an organic base compound and / or an alkali metal, M is a lead or tin atom, and X is a halogen atom). A solar cell in which the photoelectric conversion layer contains the organic-inorganic perovskite compound is also referred to as an organic-inorganic hybrid type solar cell.
By using the organic-inorganic perovskite compound in the photoelectric conversion layer, the photoelectric conversion efficiency of the solar cell can be improved.
上記Aは有機塩基化合物及び/又はアルカリ金属である。
上記有機塩基化合物は、具体的には例えば、メチルアミン、エチルアミン、プロピルアミン、ブチルアミン、ペンチルアミン、ヘキシルアミン、ジメチルアミン、ジエチルアミン、ジプロピルアミン、ジブチルアミン、ジペンチルアミン、ジヘキシルアミン、トリメチルアミン、トリエチルアミン、トリプロピルアミン、トリブチルアミン、トリペンチルアミン、トリヘキシルアミン、エチルメチルアミン、メチルプロピルアミン、ブチルメチルアミン、メチルペンチルアミン、ヘキシルメチルアミン、エチルプロピルアミン、エチルブチルアミン、ホルムアミジン、アセトアミジン、グアニジン、イミダゾール、アゾール、ピロール、アジリジン、アジリン、アゼチジン、アゼト、アゾール、イミダゾリン、カルバゾール及びこれらのイオン(例えば、メチルアンモニウム(CHNH)等)やフェネチルアンモニウム等が挙げられる。なかでも、メチルアミン、エチルアミン、プロピルアミン、ブチルアミン、ペンチルアミン、ヘキシルアミン、ホルムアミジン、アセトアミジン及びこれらのイオンやフェネチルアンモニウムが好ましく、メチルアミン、エチルアミン、プロピルアミン、ホルムアミジン及びこれらのイオンがより好ましい。
上記アルカリ金属としては、例えば、リチウム、ナトリウム、カリウム、ルビジウム、セシウム等が挙げられる。
The above A is an organic base compound and / or an alkali metal.
Specific examples of the organic basic compound include methylamine, ethylamine, propylamine, butylamine, pentylamine, hexylamine, dimethylamine, diethylamine, dipropylamine, dibutylamine, dipentylamine, dihexylamine, trimethylamine, and triethylamine. Tripropylamine, tributylamine, tripentylamine, trihexylamine, ethylmethylamine, methylpropylamine, butylmethylamine, methylpentylamine, hexylmethylamine, ethylpropylamine, ethylbutylamine, formamidine, acetoamidine, guanidine, Examples thereof include imidazole, azole, pyrrole, aziridine, azirin, azetidine, azeto, azole, imidazoline, carbazole and ions thereof (for example, methylammonium (CH 3 NH 3 ) and the like), phenethylammonium and the like. Among them, methylamine, ethylamine, propylamine, butylamine, pentylamine, hexylamine, formamidine, acetoamidine and their ions and phenethylammon are preferable, and methylamine, ethylamine, propylamine, formamidine and these ions are more preferable. preferable.
Examples of the alkali metal include lithium, sodium, potassium, rubidium, cesium and the like.
上記Mは金属原子であり鉛又はスズ原子である。これらの金属原子は単独で用いられてもよく、2種以上が併用されてもよい。 The above M is a metal atom and is a lead or tin atom. These metal atoms may be used alone or in combination of two or more.
上記Xはハロゲン原子であり、ハロゲン原子としては、例えば、塩素、臭素、ヨウ素、硫黄、セレン等が挙げられる。これらのハロゲン原子は単独で用いられてもよく、2種以上が併用されてもよい。構造中にハロゲンを含有することで、上記有機無機ペロブスカイト化合物が有機溶媒に可溶になり、安価な印刷法等への適用が可能になる。なかでも、上記有機無機ペロブスカイト化合物のエネルギーバンドギャップが狭くなることから、Xはヨウ素であることが好ましい。 The X is a halogen atom, and examples of the halogen atom include chlorine, bromine, iodine, sulfur, and selenium. These halogen atoms may be used alone or in combination of two or more. By containing a halogen in the structure, the organic-inorganic perovskite compound becomes soluble in an organic solvent, and can be applied to an inexpensive printing method or the like. Among them, X is preferably iodine because the energy band gap of the organic-inorganic perovskite compound is narrowed.
上記有機無機ペロブスカイト化合物は、体心に金属原子M、各頂点に有機塩基化合物又はアルカリ金属A、面心にハロゲン原子Xが配置された立方晶系の構造を有することが好ましい。
図1は、体心に金属原子M、各頂点に有機塩基化合物又はアルカリ金属A、面心にハロゲン原子Xが配置された立方晶系の構造である、有機無機ペロブスカイト化合物の結晶構造の一例を示す模式図である。詳細は明らかではないが、上記構造を有することにより、結晶格子内の八面体の向きが容易に変わることができるため、上記有機無機ペロブスカイト化合物中の電子の移動度が高くなり、太陽電池の光電変換効率が向上すると推定される。
The organic-inorganic perovskite compound preferably has a cubic structure in which a metal atom M is arranged at the center of the body, an organic base compound or an alkali metal A is arranged at each apex, and a halogen atom X is arranged at the center of the body.
FIG. 1 is an example of a crystal structure of an organic-inorganic perovskite compound, which is a cubic structure in which a metal atom M is arranged at the center of the body, an organic base compound or an alkali metal A is arranged at each apex, and a halogen atom X is arranged at the face center. It is a schematic diagram which shows. Although the details are not clear, the orientation of the octahedron in the crystal lattice can be easily changed by having the above structure, so that the mobility of electrons in the organic-inorganic perovskite compound is high, and the photoelectric of the solar cell is high. It is estimated that the conversion efficiency will improve.
上記有機無機ペロブスカイト化合物は、結晶性半導体であることが好ましい。結晶性半導体とは、X線散乱強度分布を測定し、散乱ピークが検出できる半導体を意味している。上記有機無機ペロブスカイト化合物が結晶性半導体であることにより、上記有機無機ペロブスカイト化合物中の電子の移動度が高くなり、太陽電池の光電変換効率が向上する。 The organic-inorganic perovskite compound is preferably a crystalline semiconductor. The crystalline semiconductor means a semiconductor capable of measuring the X-ray scattering intensity distribution and detecting the scattering peak. Since the organic-inorganic perovskite compound is a crystalline semiconductor, the mobility of electrons in the organic-inorganic perovskite compound is increased, and the photoelectric conversion efficiency of the solar cell is improved.
また、結晶化の指標として結晶化度を評価することもできる。結晶化度は、X線散乱強度分布測定により検出された結晶質由来の散乱ピークと非晶質部由来のハローとをフィッティングにより分離し、それぞれの強度積分を求めて、全体のうちの結晶部分の比を算出することにより求めることができる。
上記有機無機ペロブスカイト化合物の結晶化度の好ましい下限は30%である。結晶化度が30%以上であると、上記有機無機ペロブスカイト化合物中の電子の移動度が高くなり、太陽電池の光電変換効率が向上する。結晶化度のより好ましい下限は50%、更に好ましい下限は70%である。
また、上記有機無機ペロブスカイト化合物の結晶化度を上げる方法として、例えば、熱アニール、レーザー等の強度の強い光の照射、プラズマ照射等が挙げられる。
It is also possible to evaluate the degree of crystallization as an index of crystallization. For the crystallinity, the scattering peak derived from the crystalline substance detected by the X-ray scattering intensity distribution measurement and the halo derived from the amorphous part are separated by fitting, and the intensity integration of each is obtained, and the crystal part of the whole is obtained. It can be obtained by calculating the ratio of.
The preferable lower limit of the crystallinity of the organic-inorganic perovskite compound is 30%. When the crystallinity is 30% or more, the mobility of electrons in the organic-inorganic perovskite compound becomes high, and the photoelectric conversion efficiency of the solar cell is improved. A more preferable lower limit of crystallinity is 50%, and a more preferable lower limit is 70%.
Further, as a method for increasing the crystallinity of the organic-inorganic perovskite compound, for example, thermal annealing, irradiation with strong light such as a laser, plasma irradiation and the like can be mentioned.
上記光電変換層は、本発明の効果を損なわない範囲内であれば、上記有機無機ペロブスカイト化合物に加えて、更に、有機半導体又は無機半導体を含んでいてもよい。なお、ここでいう有機半導体又は無機半導体は、ホール輸送層、又は、電子輸送層としての役割を果たしてもよい。
上記有機半導体として、例えば、ポリ(3-アルキルチオフェン)等のチオフェン骨格を有する化合物等が挙げられる。また、例えば、ポリパラフェニレンビニレン骨格、ポリビニルカルバゾール骨格、ポリアニリン骨格、ポリアセチレン骨格等を有する導電性高分子等も挙げられる。更に、例えば、フタロシアニン骨格、ナフタロシアニン骨格、ペンタセン骨格、ベンゾポルフィリン骨格等のポルフィリン骨格、スピロビフルオレン骨格等を有する化合物や、表面修飾されていてもよいカーボンナノチューブ、グラフェン、フラーレン等のカーボン含有材料も挙げられる。
The photoelectric conversion layer may further contain an organic semiconductor or an inorganic semiconductor in addition to the organic-inorganic perovskite compound as long as the effect of the present invention is not impaired. The organic semiconductor or the inorganic semiconductor referred to here may play a role as a hole transport layer or an electron transport layer.
Examples of the organic semiconductor include compounds having a thiophene skeleton such as poly (3-alkylthiophene). Further, for example, a conductive polymer having a polyparaphenylene vinylene skeleton, a polyvinylcarbazole skeleton, a polyaniline skeleton, a polyacetylene skeleton and the like can also be mentioned. Further, for example, a compound having a porphyrin skeleton such as a phthalocyanine skeleton, a naphthalocyanine skeleton, a pentacene skeleton, a benzoporphyrin skeleton, a spirobifluorene skeleton, and carbon-containing materials such as carbon nanotubes, graphene, and fullerene which may be surface-modified. Can also be mentioned.
上記無機半導体として、例えば、酸化チタン、酸化亜鉛、酸化インジウム、酸化スズ、酸化ガリウム、硫化スズ、硫化インジウム、硫化亜鉛、CuSCN、CuO、CuI、MoO、V、WO、MoS、MoSe、CuS等が挙げられる。 As the inorganic semiconductor, e.g., titanium oxide, zinc oxide, indium oxide, tin oxide, gallium oxide, tin sulfide, indium sulfide, zinc sulfide, CuSCN, Cu 2 O, CuI , MoO 3, V 2 O 5, WO 3, Examples thereof include MoS 2 , MoSe 2 , Cu 2 S and the like.
上記光電変換層は、上記有機無機ペロブスカイト化合物と上記有機半導体又は上記無機半導体とを含む場合、薄膜状の有機半導体又は無機半導体部位と薄膜状の有機無機ペロブスカイト化合物部位とを積層した積層体であってもよいし、有機半導体又は無機半導体部位と有機無機ペロブスカイト化合物部位とを複合化した複合膜であってもよい。製法が簡便である点では積層体が好ましく、上記有機半導体又は上記無機半導体中の電荷分離効率を向上させることができる点では複合膜が好ましい。 When the organic-inorganic perovskite compound and the organic semiconductor or the inorganic semiconductor are contained, the photoelectric conversion layer is a laminate in which a thin-film organic semiconductor or an inorganic semiconductor moiety and a thin-film organic-inorganic perovskite compound moiety are laminated. Alternatively, it may be a composite film in which an organic semiconductor or an inorganic semiconductor moiety and an organic-inorganic perovskite compound moiety are composited. A laminated body is preferable in terms of simple manufacturing method, and a composite film is preferable in that the charge separation efficiency in the organic semiconductor or the inorganic semiconductor can be improved.
上記薄膜状の有機無機ペロブスカイト化合物部位の厚みは、好ましい下限が5nm、好ましい上限が5000nmである。上記厚みが5nm以上であれば、充分に光を吸収することができるようになり、光電変換効率が高くなる。上記厚みが5000nm以下であれば、電荷分離できない領域が発生することを抑制できるため、光電変換効率の向上につながる。上記厚みのより好ましい下限は10nm、より好ましい上限は1000nmであり、更に好ましい下限は20nm、更に好ましい上限は500nmである。 The thickness of the thin-film organic-inorganic perovskite compound moiety has a preferable lower limit of 5 nm and a preferable upper limit of 5000 nm. When the thickness is 5 nm or more, light can be sufficiently absorbed and the photoelectric conversion efficiency becomes high. When the thickness is 5000 nm or less, it is possible to suppress the generation of a region where charge separation is not possible, which leads to improvement in photoelectric conversion efficiency. The more preferable lower limit of the thickness is 10 nm, the more preferable upper limit is 1000 nm, the further preferable lower limit is 20 nm, and the further preferable upper limit is 500 nm.
上記光電変換層が、有機半導体又は無機半導体部位と有機無機ペロブスカイト化合物部位とを複合化した複合膜である場合、上記複合膜の厚みの好ましい下限は30nm、好ましい上限は3000nmである。上記厚みが30nm以上であれば、充分に光を吸収することができるようになり、光電変換効率が高くなる。上記厚みが3000nm以下であれば、電荷が電極に到達しやすくなるため、光電変換効率が高くなる。上記厚みのより好ましい下限は40nm、より好ましい上限は2000nmであり、更に好ましい下限は50nm、更に好ましい上限は1000nmである。 When the photoelectric conversion layer is a composite film in which an organic semiconductor or an inorganic semiconductor moiety and an organic-inorganic perovskite compound moiety are composited, the preferable lower limit of the thickness of the composite film is 30 nm, and the preferable upper limit is 3000 nm. When the thickness is 30 nm or more, light can be sufficiently absorbed and the photoelectric conversion efficiency becomes high. When the thickness is 3000 nm or less, the electric charge easily reaches the electrode, so that the photoelectric conversion efficiency is high. The more preferable lower limit of the thickness is 40 nm, the more preferable upper limit is 2000 nm, the further preferable lower limit is 50 nm, and the further preferable upper limit is 1000 nm.
上記光電変換層を形成する方法は特に限定されず、真空蒸着法、スパッタリング法、気相反応法(CVD)、電気化学沈積法、印刷法等が挙げられる。なかでも、印刷法を採用することで、高い光電変換効率を発揮できる太陽電池を大面積で簡易に形成することができる。印刷法として、例えば、スピンコート法、キャスト法等が挙げられ、印刷法を用いた方法としてロールtoロール法等が挙げられる。 The method for forming the photoelectric conversion layer is not particularly limited, and examples thereof include a vacuum vapor deposition method, a sputtering method, a vapor phase reaction method (CVD), an electrochemical deposition method, and a printing method. Above all, by adopting the printing method, it is possible to easily form a solar cell capable of exhibiting high photoelectric conversion efficiency in a large area. Examples of the printing method include a spin coating method, a casting method, and the like, and examples of the method using the printing method include a roll-to-roll method.
本発明の太陽電池は、上記陰極と上記光電変換層との間に、電子輸送層を有していてもよい。
上記電子輸送層の材料は特に限定されず、例えば、N型導電性高分子、N型低分子有機半導体、N型金属酸化物、N型金属硫化物、ハロゲン化アルカリ金属、アルカリ金属、界面活性剤等が挙げられ、具体的には例えば、シアノ基含有ポリフェニレンビニレン、ホウ素含有ポリマー、バソキュプロイン、バソフェナントレン、ヒドロキシキノリナトアルミニウム、オキサジアゾール化合物、ベンゾイミダゾール化合物、ナフタレンテトラカルボン酸化合物、ペリレン誘導体、ホスフィンオキサイド化合物、ホスフィンスルフィド化合物、フルオロ基含有フタロシアニン、酸化チタン、酸化亜鉛、酸化インジウム、酸化スズ、酸化ガリウム、硫化スズ、硫化インジウム、硫化亜鉛等が挙げられる。
The solar cell of the present invention may have an electron transport layer between the cathode and the photoelectric conversion layer.
The material of the electron transport layer is not particularly limited, and for example, N-type conductive polymer, N-type low molecular weight organic semiconductor, N-type metal oxide, N-type metal sulfide, halogenated alkali metal, alkali metal, and surface activity. Examples thereof include cyano group-containing polyphenylene vinylene, boron-containing polymer, vasocuproin, vasophenanthrene, hydroxyquinolinatoaluminum, oxadiazole compound, benzoimidazole compound, naphthalenetetracarboxylic acid compound, perylene derivative, and the like. Examples thereof include phosphine oxide compounds, phosphine sulfide compounds, fluorogroup-containing phthalocyanine, titanium oxide, zinc oxide, indium oxide, tin oxide, gallium oxide, tin sulfide, indium sulfide, and zinc sulfide.
上記電子輸送層は、薄膜状の電子輸送層のみからなっていてもよいが、多孔質状の電子輸送層を含むことが好ましい。特に、光電変換層が、有機半導体又は無機半導体部位と有機無機ペロブスカイト化合物部位とを複合化した複合膜である場合、より複雑な複合膜(より複雑に入り組んだ構造)が得られ、光電変換効率が高くなることから、多孔質状の電子輸送層上に複合膜が製膜されていることが好ましい。 The electron transport layer may be composed of only a thin-film electron transport layer, but preferably includes a porous electron transport layer. In particular, when the photoelectric conversion layer is a composite film in which an organic semiconductor or an inorganic semiconductor moiety and an organic-inorganic perovskite compound moiety are composited, a more complicated composite film (more complicated structure) can be obtained, and the photoelectric conversion efficiency can be obtained. Therefore, it is preferable that the composite film is formed on the porous electron transport layer.
上記電子輸送層の厚みは、好ましい下限が1nm、好ましい上限が2000nmである。上記厚みが1nm以上であれば、充分にホールをブロックできるようになる。上記厚みが2000nm以下であれば、電子輸送の際の抵抗になり難く、光電変換効率が高くなる。上記電子輸送層の厚みのより好ましい下限は3nm、より好ましい上限は1000nmであり、更に好ましい下限は5nm、更に好ましい上限は500nmである。 The thickness of the electron transport layer has a preferable lower limit of 1 nm and a preferred upper limit of 2000 nm. If the thickness is 1 nm or more, the holes can be sufficiently blocked. When the thickness is 2000 nm or less, it is unlikely to become a resistance during electron transport, and the photoelectric conversion efficiency becomes high. The more preferable lower limit of the thickness of the electron transport layer is 3 nm, the more preferable upper limit is 1000 nm, the further preferable lower limit is 5 nm, and the further preferable upper limit is 500 nm.
上記ホール輸送層の材料は特に限定されず、上記ホール輸送層が有機材料からなっていてもよい。上記ホール輸送層の材料として、例えば、P型導電性高分子、P型低分子有機半導体、P型金属酸化物、P型金属硫化物、界面活性剤等が挙げられ、具体的には例えば、ポリ(3-アルキルチオフェン)等のチオフェン骨格を有する化合物等が挙げられる。また、例えば、トリフェニルアミン骨格、ポリパラフェニレンビニレン骨格、ポリビニルカルバゾール骨格、ポリアニリン骨格、ポリアセチレン骨格等を有する導電性高分子等も挙げられる。更に、例えば、フタロシアニン骨格、ナフタロシアニン骨格、ペンタセン骨格、ベンゾポルフィリン骨格等のポルフィリン骨格、スピロビフルオレン骨格等を有する化合物、硫化モリブデン、硫化タングステン、硫化銅、硫化スズ等、フルオロ基含有ホスホン酸、カルボニル基含有ホスホン酸、CuSCN、CuI等の銅化合物等が挙げられる。 The material of the hole transport layer is not particularly limited, and the hole transport layer may be made of an organic material. Examples of the material of the hole transport layer include a P-type conductive polymer, a P-type low molecular weight organic semiconductor, a P-type metal oxide, a P-type metal sulfide, a surfactant, and the like. Examples thereof include compounds having a thiophene skeleton such as poly (3-alkylthiophene). Further, for example, a conductive polymer having a triphenylamine skeleton, a polyparaphenylene vinylene skeleton, a polyvinylcarbazole skeleton, a polyaniline skeleton, a polyacetylene skeleton and the like can be mentioned. Further, for example, compounds having a porphyrin skeleton such as a phthalocyanine skeleton, a naphthalocyanine skeleton, a pentasen skeleton, a benzoporphyrin skeleton, a spirobifluorene skeleton, molybdenum sulfide, tungsten sulfide, copper sulfide, tin sulfide and the like, fluorogroup-containing phosphonic acid, Examples thereof include carbonyl group-containing phosphonic acid, copper compounds such as CuSCN and CuI.
上記ホール輸送層は、ハロゲン化4級アミン塩を含有する。
ホール輸送層がハロゲン化4級アミン塩を含有することで、光電変換効率を向上させることができる。従来の太陽電池では、添加剤としてピリジン誘導体を含有させていたが、ピリジン誘導体は高温で揮発することと、加熱時にピリジン誘導体が光電変換層に侵入してしまうと光電変換層を劣化させてしまうことから、光電変換効率が低下する要因となっていた。本発明では光電変換効率を向上させる効果を持ちながらも揮発しないハロゲン化4級アミン塩を用いることで、従来の太陽電池よりも高い光電変換効率を発揮することができる。上記ハロゲン化4級アミン塩は単独で用いてもよく、複数を組み合わせて用いてもよい。
The hole transport layer contains a halogenated quaternary amine salt.
Since the hole transport layer contains a halogenated quaternary amine salt, the photoelectric conversion efficiency can be improved. Conventional solar cells contain a pyridine derivative as an additive, but the pyridine derivative volatilizes at a high temperature, and if the pyridine derivative invades the photoelectric conversion layer during heating, the photoelectric conversion layer is deteriorated. Therefore, it has been a factor of lowering the photoelectric conversion efficiency. In the present invention, by using a halogenated quaternary amine salt which has the effect of improving the photoelectric conversion efficiency but does not volatilize, it is possible to exhibit higher photoelectric conversion efficiency than the conventional solar cell. The halogenated quaternary amine salt may be used alone or in combination of two or more.
上記ハロゲン化4級アミン塩を構成する4級アミンとしては、例えば、テトラエチルアンモニウム、テトラプロピルアンモニウム、テトラブチルアンモニウム、テトラペンチルアンモニウム、テトラへキシルアンモニウム、テトラオクチルアンモニウム、テトラドデシルアンモニウム、ベンジルトリエチルアンモニウム、5-アゾニアスピロ[4.4]ノナン、ジメチルジオクタデシルアンモニウム、トリメチル[2-[(トリメチルシリル)メチル]ベンジル]アンモニウム、(フェロセニルメチル)トリメチルアンモニウム等が挙げられる。なかでも、光電変換効率をより向上できることから、炭素数が4以上のアルキル基が窒素原子と結合している4級アミンであることが好ましく、炭素数が4以上12以下のアルキル基が窒素原子と結合している4級アミンであることがより好ましい。 Examples of the quaternary amine constituting the halogenated quaternary amine salt include tetraethylammonium, tetrapropylammonium, tetrabutylammonium, tetrapentylammonium, tetrahexylammonium, tetraoctylammonium, tetradodecylammonium, and benzyltriethylammonium. Examples thereof include 5-azoniaspiro [4.4] nonane, dimethyldioctadecylammonium, trimethyl [2-[(trimethylsilyl) methyl] benzyl] ammonium, (ferrocenylmethyl) trimethylammonium and the like. Among them, since the photoelectric conversion efficiency can be further improved, it is preferable to use a quaternary amine in which an alkyl group having 4 or more carbon atoms is bonded to a nitrogen atom, and an alkyl group having 4 or more carbon atoms and 12 or less carbon atoms is a nitrogen atom. It is more preferable that it is a quaternary amine bonded to.
上記ハロゲン化4級アミン塩を構成するハロゲンは特に限定されず、塩素、臭素、ヨウ素等が挙げられる。なかでも、光電変換効率をより向上できることから、臭素、ヨウ素が好ましく、ヨウ素がより好ましい。 The halogen constituting the halogenated quaternary amine salt is not particularly limited, and examples thereof include chlorine, bromine, and iodine. Of these, bromine and iodine are preferable, and iodine is more preferable, because the photoelectric conversion efficiency can be further improved.
上記ハロゲン化4級アミン塩は、ホール輸送層中における含有量が0.05%以上30%以下であることが好ましい。
上記ハロゲン化4級アミン塩のホール輸送層中における含有量が上記範囲であることで、光電変換効率をより向上させることができる。ホール輸送層中における上記ハロゲン化4級アミン塩の添加量は0.5%以上であることがより好ましく、1.0%以上であることが更に好ましく、20%以下であることがより好ましく、10%以下であることが更に好ましい。
なお、ホール輸送層中における上記ハロゲン化4級アミン塩の含有量は、ホール輸送層を溶解可能な溶媒に抽出し、それをGC-MS等で分析することにより定量することができる。
The content of the halogenated quaternary amine salt in the hole transport layer is preferably 0.05% or more and 30% or less.
When the content of the halogenated quaternary amine salt in the hole transport layer is within the above range, the photoelectric conversion efficiency can be further improved. The amount of the halogenated quaternary amine salt added in the hole transport layer is more preferably 0.5% or more, further preferably 1.0% or more, still more preferably 20% or less. It is more preferably 10% or less.
The content of the halogenated quaternary amine salt in the hole transport layer can be quantified by extracting the hole transport layer into a soluble solvent and analyzing it with GC-MS or the like.
さらに上記ハロゲン化4級アミン塩はホール輸送中において、陽極側よりも光電変換層側に多く偏析していることが好ましい。上記ハロゲン化4級アミン塩がホール輸送中において、光電変換層側に多く偏析することにより、電荷移動が促進され光電変換効率を向上させることができる。ホール輸送層中の電極側界面におけるハロゲン化4級アミン塩の量に対する光電変換層側界面におけるハロゲン化4級アミン塩の量は2倍以上であることが好ましく、3倍以上であることがより好ましく、5倍以上であることが更に好ましい。上記ハロゲン化4級アミン塩を陽極側よりも光電変換層側に多く偏析させる方法としては、例えば、特定の有機溶媒を用いて成膜する方法や、熱アニールをすることにより偏析させる方法等が挙げられる。
なお、ホール輸送層中における上記ハロゲン化4級アミン塩が偏析しているかどうかについては、ホール輸送層表面に対して所定の時間スパッタリングを行い、飛行時間型二次イオン質量分析法(TOF-SIMS)によって分析することを繰り返し行うことにより、確認することができる。
Further, it is preferable that the halogenated quaternary amine salt segregates more on the photoelectric conversion layer side than on the anode side during hole transportation. During hole transportation, the halogenated quaternary amine salt segregates a large amount toward the photoelectric conversion layer side, so that charge transfer can be promoted and the photoelectric conversion efficiency can be improved. The amount of the halogenated quaternary amine salt at the photoelectric conversion layer side interface is preferably 2 times or more, more preferably 3 times or more, with respect to the amount of the halogenated quaternary amine salt at the electrode side interface in the hole transport layer. It is preferable, and more preferably 5 times or more. As a method for segregating the halogenated quaternary amine salt more on the photoelectric conversion layer side than on the anode side, for example, a method of forming a film using a specific organic solvent, a method of segregating by thermal annealing, and the like are used. Can be mentioned.
Whether or not the halogenated quaternary amine salt is segregated in the hole transport layer is determined by performing time-of-flight secondary ion mass spectrometry (TOF-SIMS) on the surface of the hole transport layer by sputtering for a predetermined time. ) Can be confirmed by repeating the analysis.
飛行時間型二次イオン質量分析法(TOF-SIMS:Time-of-Flight Secondary Ion Mass Spectrometry)は、固体試料にイオンビーム(一次イオン)を照射し、表面から放出されるイオン(二次イオン)を、その飛行時間差(飛行時間は重さの平方根に比例)を利用して質量分離する方法である。TOF-SIMSでは、試料表面から厚み方向に1nmの領域に存在する元素や分子種に関する情報を高い検出感度で得ることができる。TOF-SIMSに用いる分析装置としては、ION-TOF社製「TOF-SIMS5」等が挙げられる。また、上記イオン強度比は、例えば、Bi イオンガンを測定用の一次イオン源とし、25keVの条件にて測定することで求めることができる。 In the time-of-flight type secondary ion mass spectrometry (TOF-SIMS: Time-of-Fright Second Ion Mass Spectrometry), a solid sample is irradiated with an ion beam (primary ion), and ions (secondary ion) emitted from the surface are emitted. Is a method of mass separation using the flight time difference (the flight time is proportional to the square root of the weight). With TOF-SIMS, information on elements and molecular species existing in a region of 1 nm in the thickness direction from the sample surface can be obtained with high detection sensitivity. Examples of the analyzer used for TOF-SIMS include "TOF-SIMS5" manufactured by ION-TOF. Further, the ion intensity ratio can be obtained, for example, by using a Bi 3 + ion gun as a primary ion source for measurement and measuring under the condition of 25 keV.
スパッタリングは、真空中でアルゴン等の不活性ガスを導入し、ターゲットにマイナスの電圧を印加してグロー放電を発生させ、不活性ガス原子をイオン化し、高速でターゲットの表面にガスイオンを衝突させて激しく叩くものであり、ターゲットの表面をナノメートル~マイクロメートルオーダーの深さで研削していくことができる。
具体的には例えば、O を用いてスパッタリングを行うことにより、0.01nm~10nm/回の深さでホール輸送層の表面を掘り進んでいくことができる。
In sputtering, an inert gas such as argon is introduced in a vacuum, a negative voltage is applied to the target to generate a glow discharge, the inert gas atom is ionized, and the gas ion collides with the surface of the target at high speed. The surface of the target can be ground to a depth of nanometer to micrometer order.
Specifically, for example, by performing sputtering using O 2 +, can go digging the surface of the hole transport layer by 0.01 nm ~ 10 nm / dose depth.
上記ホール輸送層は、その一部が上記光電変換層に浸漬していてもよいし、上記光電変換層上に薄膜状に配置されてもよい。上記ホール輸送層が薄膜状に存在する時の厚みは、好ましい下限は1nm、好ましい上限は2000nmである。上記厚みが1nm以上であれば、充分に電子をブロックできるようになる。上記厚みが2000nm以下であれば、ホール輸送の際の抵抗になり難く、光電変換効率が高くなる。上記厚みのより好ましい下限は3nm、より好ましい上限は1000nmであり、更に好ましい下限は5nm、更に好ましい上限は500nmである。 A part of the hole transport layer may be immersed in the photoelectric conversion layer, or may be arranged in a thin film on the photoelectric conversion layer. When the hole transport layer is present in the form of a thin film, the preferable lower limit is 1 nm and the preferable upper limit is 2000 nm. When the thickness is 1 nm or more, electrons can be sufficiently blocked. When the thickness is 2000 nm or less, resistance during hole transportation is unlikely to occur, and the photoelectric conversion efficiency is high. The more preferable lower limit of the thickness is 3 nm, the more preferable upper limit is 1000 nm, the further preferable lower limit is 5 nm, and the further preferable upper limit is 500 nm.
上記陽極の材料は特に限定されず、従来公知の材料を用いることができる。陽極材料として、例えば、金、銅、アルミニウム、アンチモン、モリブデン等の金属、CuI、ITO(インジウムスズ酸化物)、SnO、AZO(アルミニウム亜鉛酸化物)、IZO(インジウム亜鉛酸化物)、GZO(ガリウム亜鉛酸化物)等の導電性透明材料又は導電性透明ポリマー等が挙げられる。なかでも、光を長時間当てた際の光電変換効率の低下に対する耐性(耐光性)が向上することから、上記陽極はモリブデンを含有することが好ましい。この原因ははっきりとわかっていないが、ハロゲン化4級アミン塩とモリブデンの相互作用により、耐光性が著しく向上するためだと考えられる。 The material of the anode is not particularly limited, and conventionally known materials can be used. Examples of the anode material include metals such as gold, copper, aluminum, antimony, and molybdenum, CuI, ITO (indium tin oxide), SnO 2 , AZO (aluminum zinc oxide), IZO (indium zinc oxide), and GZO (. Examples thereof include a conductive transparent material such as gallium-zinc oxide) or a conductive transparent polymer. Above all, it is preferable that the anode contains molybdenum because the resistance (light resistance) to the decrease in photoelectric conversion efficiency when exposed to light for a long time is improved. The cause of this is not clear, but it is thought that the interaction between the halogenated quaternary amine salt and molybdenum significantly improves the light resistance.
上記陽極の厚みは特に限定されないが、好ましい下限は10nm、好ましい上限は1000nmである。上記厚みが10nm以上であれば、上記陽極を電極として機能させたうえで抵抗を抑えることができる。上記厚みが1000nm以下であれば、光の透過性をより向上させることができる。上記陽極の厚みのより好ましい下限は20nm、より好ましい上限は100nmである。 The thickness of the anode is not particularly limited, but the preferred lower limit is 10 nm and the preferred upper limit is 1000 nm. When the thickness is 10 nm or more, the anode can function as an electrode and the resistance can be suppressed. When the thickness is 1000 nm or less, the light transmittance can be further improved. The more preferable lower limit of the thickness of the anode is 20 nm, and the more preferable upper limit is 100 nm.
本発明の太陽電池は、上記ホール輸送層と上記陽極の間にカーボン、バナジウム酸化物(VO)、モリブデン酸化物(MoO)及びニッケル酸化物(NiO)からなる群より選択される少なくとも1種を含有する中間層を有することが好ましい。
上記中間層を設けることで、光電変換効率をより向上させることができる。この原因ははっきりとわかっていないが、4級アミンとの相互作用により光電変換効率が著しく向上するためだと考えられる。光電変換効率を更に向上できることから、上記中間層の厚みは、1nm以上であることが好ましく、5nm以上であることがより好ましく、100nm以下であることが好ましく、50nm以下であることがより好ましい。
The solar cell of the present invention is selected from at least a group consisting of carbon, vanadium oxide (VO x ), molybdenum oxide (MoO x ) and nickel oxide (NiO x ) between the hole transport layer and the anode. It is preferable to have an intermediate layer containing one type.
By providing the intermediate layer, the photoelectric conversion efficiency can be further improved. The cause of this is not clear, but it is thought that the photoelectric conversion efficiency is significantly improved by the interaction with the quaternary amine. Since the photoelectric conversion efficiency can be further improved, the thickness of the intermediate layer is preferably 1 nm or more, more preferably 5 nm or more, preferably 100 nm or less, and more preferably 50 nm or less.
本発明の太陽電池は、更に、基板等を有していてもよい。上記基板は特に限定されず、例えば、ソーダライムガラス、無アルカリガラス等の透明ガラス基板、セラミック基板、透明プラスチック基板等が挙げられる。 The solar cell of the present invention may further have a substrate or the like. The substrate is not particularly limited, and examples thereof include a transparent glass substrate such as soda lime glass and non-alkali glass, a ceramic substrate, and a transparent plastic substrate.
本発明の太陽電池を製造する方法は特に限定されず、例えば、上記基板上に上記陰極、上記電子輸送層、上記光電変換層、上記ホール輸送層、上記中間層及び上記陽極をこの順で形成する方法等が挙げられる。 The method for manufacturing the solar cell of the present invention is not particularly limited, and for example, the cathode, the electron transport layer, the photoelectric conversion layer, the hole transport layer, the intermediate layer, and the anode are formed on the substrate in this order. How to do it, etc.
本発明によれば、加熱工程を経た場合であっても高い光電変換効率を発揮できる太陽電池を提供することができる。 According to the present invention, it is possible to provide a solar cell capable of exhibiting high photoelectric conversion efficiency even after undergoing a heating step.
有機無機ペロブスカイト化合物の結晶構造の一例を示す模式図である。It is a schematic diagram which shows an example of the crystal structure of an organic-inorganic perovskite compound. 実施例1のホール輸送層に対してTOF-SIMS測定を行った際の、スパッタリング累積時間Nを横軸に、Pbイオン、Spiro-OMETADイオン、テトラブチルアンモニウムイオン各々の最大値を1として規格化した値を縦軸にプロットしたグラフである。Normalized with the maximum value of each of Pb ion, Spiro-OMETAD ion, and tetrabutylammonium ion set to 1 on the horizontal axis with the cumulative sputtering time N when TOF-SIMS measurement was performed on the hole transport layer of Example 1. It is a graph in which the calculated values are plotted on the vertical axis. 比較例2のホール輸送層に対してTOF-SIMS測定を行った際の、スパッタリング累積時間Nを横軸に、Pbイオン、Spiro-OMETADイオン、テトラブチルアンモニウムイオン各々の最大値を1として規格化した値を縦軸にプロットしたグラフである。Normalized with the maximum value of each of Pb ion, Spiro-OMETAD ion, and tetrabutylammonium ion set to 1 on the horizontal axis when the cumulative sputtering time N is measured for the hole transport layer of Comparative Example 2. It is a graph in which the calculated values are plotted on the vertical axis.
以下に実施例を挙げて本発明を更に詳しく説明するが、本発明はこれら実施例のみに限定されない。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
(実施例1)
ガラス基板上に、陰極として厚み200nmのITO膜を形成し、純水、アセトン、メタノールをこの順に用いて各10分間超音波洗浄した後、乾燥させた。
ITO膜の表面上に、スパッタリングにより厚み20nmの薄膜状の電子輸送層を形成した。更に、薄膜状の電子輸送層上に、酸化チタン(平均粒子径10nmと30nmとの混合物)とを含有する酸化チタンペーストをスピンコート法により塗布し、厚み100nmの多孔質状の電子輸送層を形成した。
(Example 1)
An ITO film having a thickness of 200 nm was formed on a glass substrate as a cathode, and was ultrasonically cleaned with pure water, acetone, and methanol in this order for 10 minutes each, and then dried.
A thin-film electron transport layer having a thickness of 20 nm was formed on the surface of the ITO film by sputtering. Further, a titanium oxide paste containing titanium oxide (a mixture of an average particle diameter of 10 nm and 30 nm) is applied onto the thin-film electron transport layer by a spin coating method to form a porous electron transport layer having a thickness of 100 nm. Formed.
次いで、ハロゲン化金属化合物としてヨウ化鉛をN,N-ジメチルホルムアミド(DMF)とジメチルスルホキシド(DMSO)の混合溶媒に溶解させて1Mの溶液を調製し、多孔質状の電子輸送層上にスピンコート法によって製膜した。更に、アミン化合物としてヨウ化メチルアンモニウムを2-プロパノールに溶解させて8wt%の溶液を調製した。この溶液を上記のヨウ化鉛上にスピンコートし、150℃で10分間アニール処理をすることによって有機無機ペロブスカイト化合物であるCHNHPbIを含む層を形成した。 Next, lead iodide as a metal halide compound was dissolved in a mixed solvent of N, N-dimethylformamide (DMF) and dimethyl sulfoxide (DMSO) to prepare a 1 M solution, which was then spun onto the porous electron transport layer. A film was formed by the coating method. Further, methylammonium iodide as an amine compound was dissolved in 2-propanol to prepare an 8 wt% solution. This solution was spin-coated on the lead iodide and annealed at 150 ° C. for 10 minutes to form a layer containing CH 3 NH 3 PbI 3 which is an organic-inorganic perovskite compound.
次いで、光電変換層上に、ホール輸送層中での添加剤含有量が5%となるように、主剤としてSpiro-OMETAD(メルク社製)2重量%、添加剤としてヨウ化テトラブチルアンモニウム0.1重量%を含有するクロロベンゼン溶液をスピンコートすることにより、厚み50nmのホール輸送層を形成した。 Next, on the photoelectric conversion layer, Spiro-OMETAD (manufactured by Merck) 2% by weight as a main agent and tetrabutylammonium iodide as an additive 0. A hole transport layer having a thickness of 50 nm was formed by spin-coating a chlorobenzene solution containing 1% by weight.
次いで、ホール輸送層上に、電子ビーム蒸着法により厚み10nmのモリブデン酸化物(MoO)からなる中間層を形成した。 Next, an intermediate layer made of molybdenum oxide (MoO x ) having a thickness of 10 nm was formed on the hole transport layer by an electron beam vapor deposition method.
得られた中間層上に、抵抗加熱蒸着により陽極として厚み100nmの金膜を形成し、陰極/電子輸送層/光電変換層/ホール輸送層/中間層/陽極が積層された太陽電池を得た。 A gold film having a thickness of 100 nm was formed as an anode on the obtained intermediate layer by resistance heating and vapor deposition to obtain a solar cell in which a cathode / electron transport layer / photoelectric conversion layer / hole transport layer / intermediate layer / anode was laminated. ..
一方、上記の方法でホール輸送層まで積層した測定サンプルを作製した。得られた測定サンプルのホール輸送層側の表面について、Arクラスターを用いて以下の条件でスパッタリングを行い、以下の条件でTOF-SIMSによる分析を行う操作を10回繰り返すことで、ホール輸送層の厚さ方向に対するPb,spiro-OMeTAD及びテトラブチルアンモニウムの存在比を測定した。
<スパッタリング条件>
スパッタイオン:Arガスクラスターイオン
加速電圧:5kV
加速電流:5nA
照射範囲:800μm×800μm
照射時間:60秒間
<TOF-SIMS測定条件>
一次イオン:Bi ++
イオン電圧:30kV
イオン電流:0.5μA
質量範囲:1~1850mass
分析エリア:200μm×200μm(イメージング)
チャージ防止:電子照射中和
On the other hand, a measurement sample laminated up to the hole transport layer was prepared by the above method. The surface of the obtained measurement sample on the hole transport layer side was sputtered under the following conditions using an Ar cluster, and the operation of performing analysis by TOF-SIMS under the following conditions was repeated 10 times to obtain the hole transport layer. The abundance ratios of Pb, spiro-OMeTAD and tetrabutylammonium in the thickness direction were measured.
<Sputtering conditions>
Sputter ion: Ar gas cluster ion Acceleration voltage: 5 kV
Acceleration current: 5nA
Irradiation range: 800 μm x 800 μm
Irradiation time: 60 seconds <TOF-SIMS measurement conditions>
Primary ion: Bi 3 ++
Ion voltage: 30kV
Ion current: 0.5 μA
Mass range: 1 to 1850 mass
Analysis area: 200 μm × 200 μm (imaging)
Charge prevention: Electron irradiation neutralization
スパッタリング累積時間Nを横軸に、Pbイオン、Spiro-OMETADイオン、テトラブチルアンモニウムイオン各々の最大値を1として規格化した値を縦軸にプロットしたグラフを図2に示す。図2では、おおよそNが100秒~300秒の部分がホール輸送層と光電変換層との境界に当たる。図2に示す通り、テトラブチルアンモニウムイオンの存在量はホール輸送層の外部との界面では少なく、光電変換層との界面へ行くに従い増加していることから、テトラブチルアンモニウムイオンは光電変換層側の表面に偏析していることが分かる。 FIG. 2 shows a graph in which the normalized values are plotted on the vertical axis with the cumulative sputtering time N as the horizontal axis and the maximum values of each of Pb ion, Spiro-OMETAD ion, and tetrabutylammonium ion as 1. In FIG. 2, the portion where N is approximately 100 seconds to 300 seconds corresponds to the boundary between the hole transport layer and the photoelectric conversion layer. As shown in FIG. 2, since the abundance of tetrabutylammonium ions is small at the interface with the outside of the hole transport layer and increases toward the interface with the photoelectric conversion layer, the tetrabutylammonium ions are on the photoelectric conversion layer side. It can be seen that the surface is segregated.
(実施例2~56、比較例1~16)
主剤の種類、添加剤の種類及び含有量、ホール輸送層の厚み、中間層の種類、陽極の種類及び光電変換層の組成を表1~3の通りとした以外は実施例1と同様にして太陽電池を得た。なお、表1~3中、偏析が「なし」のものはスパッタリング及びTOF-SIMS測定を行った結果、偏析がなかったことを表し、偏析が「-」のものはスパッタリング及びTOF-SIMS測定を行っていないことを表している。
また、比較例2については、実施例1と同様にスパッタリング及びTOF-SIMS測定を行った結果を図3に示した。図3においても、おおよそNが100~300秒の部分がホール輸送層と光電変換層との境界に当たる。図3に示す通り、tert-ブチルピリジンでは偏析は見られなかった。
(Examples 2 to 56, Comparative Examples 1 to 16)
The same as in Example 1 except that the type of the main agent, the type and content of the additive, the thickness of the hole transport layer, the type of the intermediate layer, the type of the anode and the composition of the photoelectric conversion layer are as shown in Tables 1 to 3. I got a solar cell. In Tables 1 to 3, those with no segregation indicate that there was no segregation as a result of sputtering and TOF-SIMS measurement, and those with segregation of "-" indicate sputtering and TOF-SIMS measurement. It means that you haven't done it.
As for Comparative Example 2, the results of sputtering and TOF-SIMS measurement in the same manner as in Example 1 are shown in FIG. Also in FIG. 3, the portion where N is approximately 100 to 300 seconds corresponds to the boundary between the hole transport layer and the photoelectric conversion layer. As shown in FIG. 3, no segregation was observed with tert-butyl pyridine.
<評価>
実施例及び比較例で得られた太陽電池について、以下の評価を行った。結果を表1~3に示した。
<Evaluation>
The solar cells obtained in Examples and Comparative Examples were evaluated as follows. The results are shown in Tables 1 to 3.
(1)光電変換効率の評価
太陽電池の製造直後、太陽電池の電極間に電源(KEITHLEY社製、236モデル)を接続し、強度100mW/cmのソーラーシミュレーション(山下電装社製)を用いて光電変換効率を測定し、得られた光電変換効率を初期変換効率とした。比較例1より得られた太陽電池の初期変換効率を基準として規格化した。
10:規格化した初期変換効率の値が1.30以上
9:規格化した初期変換効率の値が1.25以上1.30未満
8:規格化した初期変換効率の値が1.20以上1.25未満
7:規格化した初期変換効率の値が1.15以上1.20未満
6:規格化した初期変換効率の値が1.10以上1.15未満
5:規格化した初期変換効率の値が1.05以上1.10未満
4:規格化した初期変換効率の値が1.00以上1.05未満
3:規格化した初期変換効率の値が0.95以上1.00未満
2:規格化した初期変換効率の値が0.90以上0.95未満
1:規格化した初期変換効率の値が0.90未満
(1) Evaluation of photoelectric conversion efficiency Immediately after the manufacture of the solar cell, a power supply (236 model manufactured by KEITHLEY) is connected between the electrodes of the solar cell, and a solar simulation (manufactured by Yamashita Denso Co., Ltd.) with a strength of 100 mW / cm 2 is used. The photoelectric conversion efficiency was measured, and the obtained photoelectric conversion efficiency was used as the initial conversion efficiency. It was standardized based on the initial conversion efficiency of the solar cell obtained from Comparative Example 1.
10: Normalized initial conversion efficiency value is 1.30 or more 9: Normalized initial conversion efficiency value is 1.25 or more and less than 1.30 8: Normalized initial conversion efficiency value is 1.20 or more 1 Less than .25 7: Normalized initial conversion efficiency value is 1.15 or more and less than 1.20 6: Normalized initial conversion efficiency value is 1.10 or more and less than 1.15 5: Normalized initial conversion efficiency Value is 1.05 or more and less than 1.10 4: Normalized initial conversion efficiency value is 1.00 or more and less than 1.05 3: Normalized initial conversion efficiency value is 0.95 or more and less than 1.00 2: Normalized initial conversion efficiency value is 0.90 or more and less than 0.95 1: Normalized initial conversion efficiency value is less than 0.90
(2)耐熱性の評価
太陽電池を100時間窒素下で90℃に加熱して耐熱試験を行った。耐熱試験前後において、上記と同様の方法にて光電変換効率を測定した。
得られた光電変換効率について下記基準で評価した。
10:耐熱試験後の光電変換効率が、初期変換効率に対して98%以上
9:耐熱試験後の光電変換効率が、初期変換効率に対して95%以上98%未満
8:耐熱試験後の光電変換効率が、初期変換効率に対して90%以上95%未満
7:耐熱試験後の光電変換効率が、初期変換効率に対して80%以上90%未満
6:耐熱試験後の光電変換効率が、初期変換効率に対して70%以上80%未満
5:耐熱試験後の光電変換効率が、初期変換効率に対して60%以上70%未満
4:耐熱試験後の光電変換効率が、初期変換効率に対して50%以上60%未満
3:耐熱試験後の光電変換効率が、初期変換効率に対して40%以上50%未満
2:耐熱試験後の光電変換効率が、初期変換効率に対して30%以上40%未満
1:耐熱試験後の光電変換効率が、初期変換効率に対して30%未満
(2) Evaluation of heat resistance The solar cell was heated to 90 ° C. under nitrogen for 100 hours to perform a heat resistance test. Before and after the heat resistance test, the photoelectric conversion efficiency was measured by the same method as above.
The obtained photoelectric conversion efficiency was evaluated according to the following criteria.
10: The photoelectric conversion efficiency after the heat resistance test is 98% or more with respect to the initial conversion efficiency 9: The photoelectric conversion efficiency after the heat resistance test is 95% or more and less than 98% with respect to the initial conversion efficiency 8: photoelectric after the heat resistance test The conversion efficiency is 90% or more and less than 95% with respect to the initial conversion efficiency 7: The photoelectric conversion efficiency after the heat resistance test is 80% or more and less than 90% with respect to the initial conversion efficiency 6: The photoelectric conversion efficiency after the heat resistance test is 70% or more and less than 80% of the initial conversion efficiency 5: The photoelectric conversion efficiency after the heat resistance test is 60% or more and less than 70% of the initial conversion efficiency 4: The photoelectric conversion efficiency after the heat resistance test becomes the initial conversion efficiency On the other hand, 50% or more and less than 60% 3: The photoelectric conversion efficiency after the heat resistance test is 40% or more and less than 50% with respect to the initial conversion efficiency 2: The photoelectric conversion efficiency after the heat resistance test is 30% with respect to the initial conversion efficiency. More than 40% 1: The photoelectric conversion efficiency after the heat resistance test is less than 30% of the initial conversion efficiency.
(3)長期間電圧を印加したときの耐久性(耐光性)評価
太陽電池の電極間に電源(KEITHLEY社製、236モデル)を接続し、強度100mW/cmのソーラーシミュレーション(山下電装社製)を用いて25℃で電圧を印加し、24時間経過後の光電変換効率を測定した。得られた光電変換効率について下記基準で評価した。
10:電圧印加後の光電変換効率が、初期変換効率に対して98%以上
9:電圧印加後の光電変換効率が、初期変換効率に対して95%以上98%未満
8:電圧印加後の光電変換効率が、初期変換効率に対して90%以上95%未満
7:電圧印加後の光電変換効率が、初期変換効率に対して80%以上90%未満
6:電圧印加後の光電変換効率が、初期変換効率に対して70%以上80%未満
5:電圧印加後の光電変換効率が、初期変換効率に対して60%以上70%未満
4:電圧印加後の光電変換効率が、初期変換効率に対して50%以上60%未満
3:電圧印加後の光電変換効率が、初期変換効率に対して40%以上50%未満
2:電圧印加後の光電変換効率が、初期変換効率に対して30%以上40%未満
1:電圧印加後の光電変換効率が、初期変換効率に対して30%未満
(3) Evaluation of durability (light resistance) when a voltage is applied for a long period of time A power supply (236 model manufactured by KEITHLEY) is connected between the electrodes of the solar cell, and a solar simulation with a strength of 100 mW / cm 2 (manufactured by Yamashita Denso Co., Ltd.) ) Was applied at 25 ° C., and the photoelectric conversion efficiency was measured after 24 hours had passed. The obtained photoelectric conversion efficiency was evaluated according to the following criteria.
10: Photoelectric conversion efficiency after voltage application is 98% or more with respect to initial conversion efficiency 9: Photoelectric conversion efficiency after voltage application is 95% or more and less than 98% with respect to initial conversion efficiency 8: Photoelectric after voltage application The conversion efficiency is 90% or more and less than 95% with respect to the initial conversion efficiency 7: The photoelectric conversion efficiency after voltage application is 80% or more and less than 90% with respect to the initial conversion efficiency 6: The photoelectric conversion efficiency after voltage application is 70% or more and less than 80% of the initial conversion efficiency 5: The photoelectric conversion efficiency after voltage application is 60% or more and less than 70% of the initial conversion efficiency 4: The photoelectric conversion efficiency after voltage application is the initial conversion efficiency On the other hand, 50% or more and less than 60% 3: The photoelectric conversion efficiency after voltage application is 40% or more and less than 50% with respect to the initial conversion efficiency 2: The photoelectric conversion efficiency after voltage application is 30% with respect to the initial conversion efficiency. More than 40% 1: The photoelectric conversion efficiency after voltage application is less than 30% of the initial conversion efficiency.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
本発明によれば、加熱工程を経た場合であっても高い光電変換効率を発揮できる太陽電池を提供することができる。

 
According to the present invention, it is possible to provide a solar cell capable of exhibiting high photoelectric conversion efficiency even after undergoing a heating step.

Claims (5)

  1. 陰極、光電変換層、ホール輸送層及び陽極をこの順番に有し、前記光電変換層はAMX(但し、Aは有機塩基化合物及び/又はアルカリ金属、Mは鉛又はスズ原子、Xはハロゲン原子である。)で表される有機無機ペロブスカイト化合物を含有し、前記ホール輸送層はハロゲン化4級アミン塩を含有することを特徴とする太陽電池。 The photoelectric conversion layer has a cathode, a photoelectric conversion layer, a hole transport layer, and an anode in this order, and the photoelectric conversion layer is AMX (where A is an organic base compound and / or an alkali metal, M is a lead or tin atom, and X is a halogen atom. A solar cell containing an organic-inorganic perovskite compound represented by (1), wherein the whole transport layer contains a halogenated quaternary amine salt.
  2. 前記ホール輸送層中において前記ハロゲン化4級アミン塩が前記陽極側よりも前記光電変換層側に多く偏析していることを特徴とする請求項1記載の太陽電池。 The solar cell according to claim 1, wherein the halogenated quaternary amine salt is segregated more on the photoelectric conversion layer side than on the anode side in the hole transport layer.
  3. 前記ハロゲン化4級アミン塩を構成する4級アミンは炭素数4以上のアルキル基が窒素原子と結合していることを特徴とする請求項1又は2記載の太陽電池。 The solar cell according to claim 1 or 2, wherein the quaternary amine constituting the halogenated quaternary amine salt has an alkyl group having 4 or more carbon atoms bonded to a nitrogen atom.
  4. 前記陽極はモリブデンを含有することを特徴とする請求項1、2又は3記載の太陽電池。 The solar cell according to claim 1, 2 or 3, wherein the anode contains molybdenum.
  5. 前記ホール輸送層と前記陽極の間にカーボン、バナジウム酸化物(VO)、モリブデン酸化物(MoO)及びニッケル酸化物(NiO)からなる群より選択される少なくとも1種を含有する中間層を有することを特徴とする請求項1、2、3又は4記載の太陽電池。

     
    An intermediate layer between the hole transport layer and the anode containing at least one selected from the group consisting of carbon, vanadium oxide (VO x ), molybdenum oxide (MoO x ) and nickel oxide (NiO x). The solar cell according to claim 1, 2, 3 or 4, wherein the solar cell has.

PCT/JP2021/025165 2020-07-02 2021-07-02 Solar cell WO2022004882A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022534128A JPWO2022004882A1 (en) 2020-07-02 2021-07-02

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020115071 2020-07-02
JP2020-115071 2020-07-02

Publications (1)

Publication Number Publication Date
WO2022004882A1 true WO2022004882A1 (en) 2022-01-06

Family

ID=79316429

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/025165 WO2022004882A1 (en) 2020-07-02 2021-07-02 Solar cell

Country Status (2)

Country Link
JP (1) JPWO2022004882A1 (en)
WO (1) WO2022004882A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012216847A (en) * 2010-11-16 2012-11-08 Sekisui Chem Co Ltd Organic solar cell
JP2015517736A (en) * 2012-05-18 2015-06-22 イシス イノベイション リミテッド Optoelectronic devices having organometallic perovskites with mixed anions
JP2017222640A (en) * 2016-06-08 2017-12-21 株式会社リコー Tertiary amine compound, photoelectric conversion element, and solar cell
WO2019053967A1 (en) * 2017-09-13 2019-03-21 富士フイルム株式会社 Production method for photoelectric conversion element and production method for solar cell
JP2019068028A (en) * 2017-03-28 2019-04-25 住友化学株式会社 Photoelectric conversion element and method of manufacturing the same
JP2019134159A (en) * 2018-02-01 2019-08-08 パナソニック株式会社 Solar cell
JP2020074416A (en) * 2019-12-26 2020-05-14 株式会社リコー Photoelectric conversion element, solar battery, and synthesis method
CN111333654A (en) * 2020-02-13 2020-06-26 江苏大学 Preparation method and application of organic small molecule functional material with pyrrolopyrrole as core structure

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012216847A (en) * 2010-11-16 2012-11-08 Sekisui Chem Co Ltd Organic solar cell
JP2015517736A (en) * 2012-05-18 2015-06-22 イシス イノベイション リミテッド Optoelectronic devices having organometallic perovskites with mixed anions
JP2017222640A (en) * 2016-06-08 2017-12-21 株式会社リコー Tertiary amine compound, photoelectric conversion element, and solar cell
JP2019068028A (en) * 2017-03-28 2019-04-25 住友化学株式会社 Photoelectric conversion element and method of manufacturing the same
WO2019053967A1 (en) * 2017-09-13 2019-03-21 富士フイルム株式会社 Production method for photoelectric conversion element and production method for solar cell
JP2019134159A (en) * 2018-02-01 2019-08-08 パナソニック株式会社 Solar cell
JP2020074416A (en) * 2019-12-26 2020-05-14 株式会社リコー Photoelectric conversion element, solar battery, and synthesis method
CN111333654A (en) * 2020-02-13 2020-06-26 江苏大学 Preparation method and application of organic small molecule functional material with pyrrolopyrrole as core structure

Also Published As

Publication number Publication date
JPWO2022004882A1 (en) 2022-01-06

Similar Documents

Publication Publication Date Title
EP3252839A1 (en) Solar cell and solar cell manufacturing method
EP3518302A1 (en) Solar cell
EP3331040B1 (en) Solar cell and organic semiconductor material
EP3591726A1 (en) Solar cell and method for manufacturing solar cell
JP2016178290A (en) Solar battery
JP7160820B2 (en) solar cell
JP6989391B2 (en) Solar cell
JP6725221B2 (en) Thin film solar cell
JP7431722B2 (en) solar cells
WO2022004882A1 (en) Solar cell
JP6921582B2 (en) Solar cell
WO2020189615A1 (en) Solar cell
JP2020167325A (en) Manufacturing method of photoelectric conversion element, photoelectric conversion element, and solar battery
JP6856821B2 (en) Photoelectric conversion element, manufacturing method of photoelectric conversion element and solar cell
JP2016082006A (en) Method for manufacturing solar battery
JP7463225B2 (en) Solar Cell
JP2018046056A (en) Solar cell and method of manufacturing the same
JP2013191630A (en) Solar cell
JP2018046055A (en) Solar cell
JP2016115880A (en) Organic/inorganic hybrid solar cell
JP2019067817A (en) Solar cell

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21832281

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022534128

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21832281

Country of ref document: EP

Kind code of ref document: A1