WO2022004783A1 - Method for producing morphinan derivative - Google Patents

Method for producing morphinan derivative Download PDF

Info

Publication number
WO2022004783A1
WO2022004783A1 PCT/JP2021/024733 JP2021024733W WO2022004783A1 WO 2022004783 A1 WO2022004783 A1 WO 2022004783A1 JP 2021024733 W JP2021024733 W JP 2021024733W WO 2022004783 A1 WO2022004783 A1 WO 2022004783A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
substituent
carbon atoms
production method
moiety
Prior art date
Application number
PCT/JP2021/024733
Other languages
French (fr)
Japanese (ja)
Inventor
雅朗 廣瀬
Original Assignee
日本ケミファ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ケミファ株式会社 filed Critical 日本ケミファ株式会社
Publication of WO2022004783A1 publication Critical patent/WO2022004783A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/47Quinolines; Isoquinolines
    • A61K31/485Morphinan derivatives, e.g. morphine, codeine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/04Centrally acting analgesics, e.g. opioids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/30Drugs for disorders of the nervous system for treating abuse or dependence
    • A61P25/36Opioid-abuse
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D489/00Heterocyclic compounds containing 4aH-8, 9 c- Iminoethano-phenanthro [4, 5-b, c, d] furan ring systems, e.g. derivatives of [4, 5-epoxy]-morphinan of the formula:
    • C07D489/02Heterocyclic compounds containing 4aH-8, 9 c- Iminoethano-phenanthro [4, 5-b, c, d] furan ring systems, e.g. derivatives of [4, 5-epoxy]-morphinan of the formula: with oxygen atoms attached in positions 3 and 6, e.g. morphine, morphinone
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Definitions

  • the present invention relates to a method for producing a morphinan derivative having a buprenorphine skeleton.
  • the present application claims priority based on Japanese Patent Application No. 202-112310 filed in Japan on June 30, 2020, the contents of which are incorporated herein by reference.
  • Buprenorphine is a partial opioid agonist for opioid receptors and is a compound used for analgesia and treatment of opioid addiction. It was first launched by Reckitt & Colman as an analgesic, and high-dose tablets are approved by the US Food and Drug Administration (FDA) for the treatment of opioid addiction.
  • FDA US Food and Drug Administration
  • Buprenorphine has been pointed out to be dependent on long-term administration as a side effect, and has been designated as Schedule III drug in the Convention on Psychotropic Drugs of the International Convention, and is a second-class psychotropic drug under the Narcotics and Psychotropics Control Law. It has become. Even now, drug discovery research aimed at creating new drugs aimed at reducing these side effects of buprenorphine is being actively conducted. For example, in Non-Patent Document 1, side chain derivatives having several buprenorphine skeletons are being actively conducted. Synthetic examples of are reported. In addition, Non-Patent Document 2 reports on BU08028, which is a side chain derivative of buprenorphine.
  • Non-Patent Document 3 describes drug design and synthesis of opioid ⁇ receptor agonists in which the side chain site is converted to an amide.
  • the law is mentioned.
  • the existence of several subtypes of opioid receptors is known, such as ⁇ , ⁇ , ⁇ and ⁇ .
  • Morphine which has a strong affinity for ⁇ receptors, has long been used as an analgesic.
  • opioid ⁇ receptor agonists are known to cause adverse events such as dependence formation and respiratory depression via the ⁇ receptor.
  • ⁇ -receptor agonists also have analgesic effects, but are known not to be involved in the adverse events seen in morphine. Therefore, ⁇ -receptor-selective agonists are expected as excellent analgesics.
  • Patent Document 1 reports a compound represented by the following formula (A).
  • Patent Document 1 discloses, in Reference Example 10, an example in which compound 70 is reduced with palladium / carbon under a hydrogen atmosphere and compound 71 having a buprenorphine skeleton is synthesized as an intermediate.
  • Non-Patent Document 1 discloses an example of synthesis of a derivative having ⁇ opioid receptor agonist activity.
  • Scheme 4 discloses a synthesis example of a compound having a buprenorphine skeleton in which compounds 3C and 3G having a double bond in the molecule are reduced with palladium / carbon under a hydrogen atmosphere and converted into a single bond.
  • the intermediate having a buprenorphine skeleton disclosed in Patent Document 1 and Non-Patent Document 1 is useful as a production intermediate for obtaining a final target product.
  • a special reaction vessel such as an autoclave may be required. In that case, some facilities did not have a huge reaction vessel in industrial scale manufacturing, and it was sometimes difficult to carry out.
  • An object of the present invention is to provide a method for producing an intermediate for producing a morphinan derivative having a buprenorphine skeleton.
  • R 1 is a hydrogen atom, a C 1-10 alkyl group which may have a substituent, and a cycloalkylalkyl group which may have a substituent (the number of carbon atoms in the cycloalkyl moiety is 3 to 3 to In 6, the number of carbon atoms of the alkylene moiety is 1 to 5), and the aralkyl group which may have a substituent (the number of carbon atoms of the aryl moiety is 6 to 10 and the number of carbon atoms of the alkylene moiety is 1).
  • heteroarylalkyl group which may have a substituent
  • heteroaryl contains 1 to 4 heteroatoms selected from N, O and S as ring-constituting atoms, and is an alkylene moiety.
  • the number of carbon atoms indicates 1 to 5
  • R 2 and R 3 are a hydrogen atom, a C 1-10 alkyl group which may have a substituent, and an aralkyl group which may have a substituent (the number of carbon atoms in the aryl portion is 6 to 10, and the alkylene group is used.
  • R 4 , R 5 and R 6 are the same or different hydrogen atoms, C 1-10 alkyl groups which may have substituents, C 3-6 cycloalkyl groups which may have substituents, substitutions.
  • R 4 and R 5 represents an C 3-6 saturated hydrocarbon ring which may have a substituent bonded, which may have a substituent bonded
  • R 5 and R 6 are C 3- Represents a C 3-6 cycloalkene which may have a 6- saturated hydrocarbon ring or substituents.
  • R 7 is a hydrogen atom, a C 1-10 alkyl group which may have a substituent, a C 3-6 cycloalkyl group which may have a substituent, and a cycloalkyl which may have a substituent.
  • Alkyl group (the number of carbon atoms in the cycloalkyl moiety is 3 to 6 and the number of carbon atoms in the alkylene moiety is 1 to 5), and the aralkyl group which may have a substituent (the number of carbon atoms in the aryl moiety is 1 to 5).
  • the number of carbon atoms of the alkylene moiety indicates 1 to 5
  • a heteroarylalkyl group which may have a substituent heteroaryl is 1 to 4 selected from N, O and S.
  • the heteroatom of the above is contained as a ring-constituting atom, and the number of carbon atoms of the alkylene moiety indicates 1 to 5), which may have a C 6-10 aryl group or a substituent. It represents a heteroaryl group (heteroaryl contains 1 to 4 heteroatoms selected from N, O and S as ring-constituting atoms, and the number of carbon atoms in the alkylene moiety indicates 1 to 5).
  • R 8 is a C 1-10 alkyl group which may have a substituent, a C 3-6 cycloalkyl group which may have a substituent, and a cycloalkyl alkyl group which may have a substituent
  • the cycloalkyl moiety has 3 to 6 carbon atoms, the alkylene moiety has 1 to 5 carbon atoms), and an aralkyl group which may have a substituent (the aryl moiety has 6 to 10 carbon atoms).
  • the number of carbon atoms in the alkylene moiety is 1 to 5
  • a heteroarylalkyl group which may have a substituent heteroaryl is 1 to 4 heteroatoms selected from N, O and S).
  • the number of carbon atoms in the alkylene moiety is 1 to 5
  • an aryl group which may have a substituent or a heteroaryl group which may have a substituent heteroaryl is It contains 1 to 4 heteroatoms selected from N, O and S as ring-constituting atoms, and the number of carbon atoms in the alkylene moiety indicates 1 to 5
  • the present invention relates to a method for producing a compound represented by the above.
  • R 2 may have a hydrogen atom or a substituent C 1-10 alkyl group
  • R 3 may have a hydrogen atom or a substituent C 1-10 alkyl.
  • the present invention relates to the production method according to the above [1], which is a group or a hydroxy protective group.
  • the present invention also comprises the above [1] or [2], wherein R 2 is a hydrogen atom or a methyl group, and R 3 is a C 1-10 alkyl group or a hydroxy protecting group which may have a substituent.
  • the manufacturing method according to any one.
  • R 2 is a hydrogen atom or a methyl group
  • R 3 is a methyl group or a silyl protecting group.
  • R 7 has a hydrogen atom, a C 1-10 alkyl group which may have a substituent, and a cycloalkylalkyl group which may have a substituent (carbon atom of the cycloalkyl moiety).
  • the number is 3 to 6, and the number of carbon atoms in the alkylene moiety is 1 to 5.
  • an aralkyl group which may have a substituent (the number of carbon atoms in the aryl moiety is 6 to 10, and the carbon in the alkylene moiety).
  • the number of atoms indicates 1 to 5
  • Aryl contains 1 to 4 heteroatoms selected from N, O and S as ring-constituting atoms, and the number of carbon atoms in the alkylene moiety is 1 to 5). Any one of the above [1] to [4].
  • R 1 may have a C 1-10 alkyl group having a substituent and a cycloalkyl alkyl group may have a substituent (the number of carbon atoms in the cycloalkyl moiety is 3). 6 to 6, the number of carbon atoms in the alkylene moiety is 1 to 5) or an aralkyl group which may have a substituent (the number of carbon atoms in the aryl moiety is 6 to 10, and the number of carbon atoms in the alkylene moiety is 1 to 5), the production method according to any one of the above [1] to [5], which is a substituent selected from.
  • R 1 may have a C 1-10 alkyl group which may have a substituent or a cycloalkyl alkyl group which may have a substituent (the number of carbon atoms of the cycloalkyl moiety is 3). 6; the production method according to any one of the above [1] to [6], which is a substituent according to any one of (1 to 5), the number of carbon atoms in the alkylene moiety is 1.
  • the present invention indicates a cycloalkylalkyl group in which R 1 may have a substituent (the number of carbon atoms in the cycloalkyl moiety is 3 to 6 and the number of carbon atoms in the alkylene moiety is 1 to 5).
  • the present invention relates to the production method according to the above [8], wherein the cycloalkylalkyl group which may have the substituent according to the above [8] is a cyclopropylmethyl group.
  • the present invention also relates to the production method according to any one of the above [1] to [7], wherein R 1 is a C 1-10 alkyl group which may have a substituent.
  • R 1 is a C 1-10 alkyl group which may have a substituent.
  • the present invention also relates to the production method according to the above [10], wherein the C 1-10 alkyl group which may have the substituent according to the above [10] is a methyl group.
  • the present invention relates to the production method according to any one of the above [1] to [11], wherein the palladium catalyst according to the above [1] is a palladium-supported catalyst.
  • the present invention also relates to the production method according to the above [12], wherein the palladium-supporting catalyst according to the above [12] is selected from palladium / carbon, palladium / carbon hydroxide, palladium / alumina, and palladium / barium sulfate.
  • the present invention also relates to the production method according to the above [13], wherein the palladium-supported catalyst according to the above [13] is selected from palladium / carbon and palladium / carbon hydroxide.
  • the amount of the palladium-supported catalyst according to the above [12] to [14] is 5 to 100% by weight based on the compound of the general formula (I).
  • the amount of the palladium-supported catalyst according to the above [12] to [14] is 10 to 60% by weight based on the compound of the general formula (I).
  • the present invention is the production method according to any one of the above [1] to [16], wherein the salt in the formic acid or the salt thereof according to the above [1] is a salt with ammonia, amines or an alkali metal.
  • the present invention also relates to the production method according to the above [17], wherein the salt in the formic acid or a salt thereof according to the above [17] is potassium formate.
  • the present invention also relates to the production method according to any one of the above [1] to [16], wherein the trialkylamine in the mixture of formic acid and trialkylamine according to the above [1] is triethylamine.
  • the present invention also relates to the production method according to the above [19], wherein the molar ratio of the mixture of formic acid and triethylamine according to the above [19] is 10: 1 to 1: 1.
  • the present invention also relates to the production method according to the above [20], wherein the molar ratio of the mixture of formic acid and triethylamine according to the above [20] is 1: 1.
  • the solvent according to the above [1] is selected from an alcohol-based solvent, a ketone-based solvent, an ether-based solvent, an aprotonic polar solvent, a hydrocarbon-based solvent, an ester-based solvent, water, or a mixed solution thereof.
  • the present invention also relates to the production method according to the above [21], wherein the solvent according to the above [21] is selected from an alcohol solvent, an ether solvent, an ester solvent, water or a mixed solution thereof.
  • the present invention relates to the production method according to the above [23], wherein the solvent according to the above [23] is selected from an alcohol solvent, water or a mixed solution thereof.
  • the present invention relates to the production method according to the above [1] to [24], wherein the production method according to the above [1] to [24] is based on flow chemistry.
  • the compound represented by the general formula (II) is a compound selected from the compounds represented by the following numbers 1 to 58 or a salt thereof. The manufacturing method according to any one.
  • FIG. 1 shows an example of a reaction device in flow chemistry.
  • FIG. 2 shows an example in which reaction devices in flow chemistry are connected.
  • the C 1-10 alkyl group in the C 1-10 alkyl group which may have the substituents represented by R 1 to R 8 includes a methyl group, an ethyl group, an n-propyl group and iso.
  • -Clinical or branched alkyl groups such as propyl group, n-butyl group, iso-butyl group, tert-butyl group, pentyl group, hexyl group, heptyl group and octyl group are preferable, and C 1-6 is preferable.
  • these alkyl groups may be deuterated, and examples of the deuterated alkyl groups include methyl-d3, ethyl-1,1-d2, ethyl-d5 and the like.
  • substituent include those described in paragraph [0048], preferably a halogen atom and more preferably a fluorine atom, and examples of the alkyl group substituted with the fluorine atom include a trifluoromethyl group and a pentafluoromethyl group. And so on.
  • R 1, R 7 and the carbon atom number of good cycloalkylalkyl group (the cycloalkyl moiety may have a substituent group represented by R 8 is 3-6, carbon atoms in the alkylene moiety represents 1 to 5
  • the cycloalkylalkyl group in () include a methyl group substituted with a C 3-6 cycloalkyl group such as a cyclopropyl group, a cyclobutyl group, a cyclopentyl group or a cyclohexyl group, an ethyl group and the like, and cyclopropylmethyl is preferable.
  • Examples thereof include a group, a cyclopropylethyl group, a cyclobutylmethyl group, a cyclobutylethyl group and the like, but a cyclopropylmethyl group is more preferable.
  • the cycloalkylalkyl group may be dehydrogenated, and examples thereof include a (cyclopropyl-d5) methyl group and a cyclopropylmethyl-d2 group.
  • the C 3-6 cycloalkyl group in the C 3-6 cycloalkyl group which may have the substituents represented by R 1 , R 4 to R 8 includes a cyclopropyl group, a cyclobutyl group, a cyclopentyl group or a cyclohexyl group. And the like, preferably a cyclopropyl group.
  • the C 3-6 saturated hydrocarbon ring in the C 3-6 saturated hydrocarbon ring which may have a substituent formed by bonding R 4 and R 5 or R 5 and R 6 is a cyclopropane ring. , Cyclobutane ring, cyclopentane ring, cyclohexane ring and the like.
  • the C 3-6 cycloalkene at the R 5 and optionally C 3-6 cycloalkene R 6 is not a bond to a substituent, cyclopentene and cyclohexene.
  • Aralkyl groups may have substituents represented by R 1 , R 2 , R 3 , R 7 and R 8 (the number of carbon atoms in the aryl moiety is 6 to 10 and the number of carbon atoms in the alkylene moiety is Examples of the aralkyl group in 1 to 5) include a methyl group substituted with a phenyl group or a naphthyl group, an ethyl group and the like, and preferably a methyl group substituted with a phenyl group (benzyl group). ..
  • Heteroaryl alkyl group which may have a substituent represented by R 1 , R 7 and R 8 (heteroaryl contains 1 to 4 heteroatoms selected from N, O and S as ring-constituting atoms. , The number of carbon atoms in the alkylene moiety is 1 to 5), as the heteroarylalkyl group, a (pyridine-2-yl) methyl group having 5 to 10 ring-constituting atoms of the heteroaryl, (pyridine-3-3).
  • methyl group methyl group, (pyridine-4-yl) methyl group, 2- (pyridine-2-yl) ethyl group, (fran-2-yl) methyl group, (fran-3-yl) methyl group, (imidazole- 2-yl) Methyl group, (imidazole-4-yl) methyl group, (imidazole-5-yl) methyl group, (thiazol-2-yl) methyl group, (thiazol-4-yl) methyl group, (thiazol-) Monocyclic heteroarylalkyl groups such as 5-yl) methyl group, (thiophen-2-yl) methyl group, 2- (thiophen-2-yl) ethyl group or (1H-tetrazole-5-yl) methyl group, Examples thereof include a bicyclic heteroarylalkyl group such as a (quinolin-3-yl) methyl group and a (indole-3-yl) methyl group.
  • Examples of the C 6-10 aryl group which may have a substituent represented by R 1 , R 4 to R 8 include a phenyl group and a naphthyl group.
  • Examples thereof include a monocyclic heteroaryl group such as a group, a bicyclic heteroaryl group such as a quinolyl group and an indrill group.
  • Examples of the hydroxy protective group represented by R 2 and R 3 include generally known hydroxy protective groups (for example, the hydroxy protective group described in Non-Patent Document 2), such as a benzyl group, a 4-methoxybenzyl group or a trityl.
  • Examples thereof include an aralkyl group which may have a substituent such as a group; an acyl group such as an acetyl group; a silyl group having a substituent such as a trimethylsilyl group or a tert-butyldimethylsilyl.
  • Substituents described herein include linear or branched C 1-6 alkyl groups such as methyl, ethyl, propyl, iso-propyl, butyl, tert-butyl groups; fluoro.
  • Methyl halide group such as methyl group, difluoromethyl group, trifluoromethyl group; C 2-6 alkenyl group such as 2-propenyl group; C 3-8 cycloalkyl group such as cyclopropyl group and cyclohexyl group; phenyl group and the like C 6-10 aryl group; heteroaryl group such as pyridyl group, frill group, imidazolyl group; halogen atom such as fluorine atom, chlorine atom; C 1-6 alkylamino group, di-C 1-6 alkylamino group, Amino group which may have a substituent such as an acylamino group, an amino group which may have a protective group; an acyl group
  • Suitable morphinan derivatives (II) in the present embodiment include the following compounds Nos. 1 to 58.
  • Examples of the acid addition salt of the morphinan derivative (IV) include salts with mineral acids such as hydrochloric acid and sulfuric acid, and organic carboxylics such as formic acid, oxalic acid, acetic acid, citric acid, trichloroacetic acid, trifluoroacetic acid, fumaric acid and maleic acid.
  • Examples thereof include salts with acids, salts with sulfonic acids such as methanesulfonic acid, benzenesulfonic acid, p-toluenesulfonic acid, mesitylenesulfonic acid and naphthalenesulfonic acid.
  • R 1 is a C 1-10 alkyl group and a cycloalkyl alkyl group (the number of carbon atoms in the cycloalkyl moiety is 3 to 6, and the number of carbon atoms in the alkylene moiety is 3 to 6).
  • R 3 is a hydrogen atom, a C 1-10 alkyl group, a hydroxy protective group, preferably a C 1-10 alkyl group, a hydroxy protective group and R 4 to R 6 are the same or different hydrogen atoms, C.
  • R 7 is a hydrogen atom, which may have a substituent C 1-10 alkyl group which may have a substituent cycloalkylalkyl group (cycloalkyl).
  • the moiety has 3 to 6 carbon atoms, the alkylene moiety has 1 to 5 carbon atoms), and an aralkyl group which may have a substituent (the aryl moiety has 6 to 10 carbon atoms).
  • the number of carbon atoms in the alkylene moiety is 1 to 5), an aryl group which may have a substituent, a heteroaryl group which may have a substituent, or a heteroaryl which may have a substituent.
  • the heteroaryl include N, 1 to 4 hetero atoms selected from O and S as a ring-constituting atom, the carbon atoms in the alkylene moiety 1-5.
  • R 8 examples thereof include an aralkyl group which may be used (the aryl moiety has 6 to 10 carbon atoms and the alkylene moiety has 1 to 5 carbon atoms).
  • the compound represented by the general formula (I) can be produced by a generally known method, for example, the method described in Patent Document 1, Patent Document 2, Non-Patent Document 1, and the like.
  • a morphinan derivative having a buprenorfin skeleton represented by the general formula (II) is carried out by using a compound of the general formula (I) in a solvent or in the presence of a palladium catalyst and formic acid or a salt thereof or a mixture of formic acid and trialkylamine. It can be done by acting in the absence.
  • the palladium-supported catalyst means a catalyst in which palladium is supported on a carrier.
  • the palladium-supported catalyst include palladium / carbon, palladium / carbon hydroxide / carbon, palladium / alumina, palladium / barium sulfate and the like, and preferably palladium / carbon or palladium / carbon hydroxide.
  • the amount of the palladium catalyst used in this reaction can be 5 to 100% by weight, preferably 10 to 60% by weight, based on the compound of the general formula (I).
  • metal salts such as lithium formate, potassium formate, sodium formate, cesium formate, ammonium formate and the like can be used, and potassium formate is preferable.
  • trialkylamine used in this reaction examples include trimethylamine, triethylamine, tripropylamine, N-methylmorpholine, N-methylpiperidine and the like, and triethylamine is preferable.
  • the amount of the trialkylamine used can be in the range of 10: 1 to 1: 1 with respect to formic acid, preferably 5: 1 and more preferably 1: 1.
  • the solvent used in this reaction includes alcohol solvents such as metanol, etanol, 2,2,2-trifluoroethanol, 1-propanol and 2-propanol, and ketones such as acetone.
  • System solvents nitrile solvents such as acetonitrile, ether solvents such as tetrahydrofuran, aprotonic polar solvents such as N, N-dimethylformamide and dimethyl sulfoxide, hydrocarbon solvents such as benzene, toluene and xylene, ethyl acetate and the like.
  • Examples thereof include an ester solvent and water, preferably an alcohol solvent, an ether solvent, an ester solvent, water or a mixed solution thereof, and more preferably an alcohol solvent or a mixed solvent with water thereof.
  • Ethanol is mentioned as a preferable alcohol solvent.
  • the amount of the solvent used is not particularly limited, but is preferably in the range of 1 to 10 times by weight with respect to compound (I).
  • the reaction temperature is 0 ° C. to 120 ° C., preferably room temperature to 100 ° C., more preferably 40 ° C. to 90 ° C., still more preferably 50 ° C. to 70 ° C., and the reaction time is 5 minutes to 300 hours. It is preferably completed in 1 to 20 hours.
  • the present invention can be carried out using the batch method or flow chemistry.
  • the batch method is a method in which a raw material is put into a reaction vessel each time in the production of a compound, a reaction is carried out, and after the reaction is completed, the reaction product is isolated and produced to obtain a reaction product each time. It can be done based on the conditions.
  • a generally known method can be used. For example, a starting material or the like is continuously charged from one end of a reaction device such as a column, and a product is continuously obtained from the other end. be able to.
  • a step of filling the reaction apparatus with a catalyst (b) a step of dissolving compound (I) and formic acid or a salt thereof or a mixture of formic acid and trialkylamine in a solvent to prepare a solution.
  • the target compound (II) is obtained by (c) sending the solution to a reaction apparatus filled with a palladium catalyst at a specific temperature, and (d) recovering the solution and distilling off the solvent if necessary.
  • the reaction device that can be used for flow chemistry include commercially available ones, and for example, reaction devices such as cartridges, columns, and microreactors can be used.
  • the solution of (b) can be sent to the reaction apparatus by using a liquid feeding pump or the like.
  • the liquid feeding rate in this case can be appropriately adjusted depending on the concentration of the solution, and can be set, for example, in the range of 0.1 mL / min to 200 mL / min, preferably 0.3 mL / min to 150 mL / min.
  • the reaction temperature is 0 ° C. to 120 ° C., preferably room temperature to 100 ° C., more preferably 40 ° C. to 90 ° C., and further preferably 50 ° C. to 70 ° C.
  • the reaction time depends on the amount of the raw material and the size of the reaction device such as a cartridge, but is from several seconds to 10 hours, preferably from several seconds to 5 hours.
  • the flow chemistry of the present invention is shown, for example, as shown in FIG. Further, when the reaction amount is large, it is also possible to carry out the reaction by connecting the reaction devices as shown in FIG. 2, for example.
  • the compound of the example was named ChemDraw ver. By Cambridgesoft.
  • the structural formula drawn using No. 15 was converted into an English name by the naming algorithm installed in the software, and then translated into Japanese.
  • Example 1 The potassium formate of Example 1 was changed to formic acid / triethylamine, and the following experiment was carried out in the same manner.
  • 4R, 4aR, 7R, 7aR, 12bS, 14S -7-benzyl-3- (cyclopropylmethyl) -7-hydroxy-9-methoxy-1,2,3,4,7, 7a-Hexahydro-7,4a-Etano-4,12-methanobenzoflo [3,2-e] isoquinoline-14-carboxamide (9.00 kg, 1 equivalent), ethanol (202.5 L), tetrahydrofuran (67.5 L) and Water (54.0 L) was added.
  • Example 2 The production of Example 2 was carried out using flow chemistry as follows. To a 1000 L reactor, (4R, 4aR, 7R, 7aR, 12bS, 14S) -7-benzyl-3- (cyclopropylmethyl) -7-hydroxy-9-methoxy-1,2,3,4,7, 7a-Hexahydro-7,4a-Etano-4,12-methanobenzoflo [3,2-e] isoquinolin-14-carboxamide (9.0 kg, 1 eq), ethanol (202 L), tetrahydrofuran (67 L), water (54 L) , Formic acid (16.65 kg, 20 eq) and triethylamine (36.54 kg, 20 eq) were added and stirred at room temperature for 30 minutes to give a clear solution.
  • 4R, 4aR, 7R, 7aR, 12bS, 14S -7-benzyl-3- (cyclopropylmethyl) -7-hydroxy-9-methoxy-1,2,
  • Each of the 19 fixed bed reactors was filled with 10% palladium / carbon (0.18 kg, total 3.42 kg). After that, the mixed solution was sent to each stationary phase reactor heated to 70-80 ° C. at a flow rate of 126 mL / min for 3 hours each. Each reaction solution was combined and concentrated to 60 L. Water (45 L) was added to the remaining aqueous layer, and the mixture was extracted with ethyl acetate (45 L ⁇ 2 times). The combined organic layer was washed with 8% aqueous sodium hydrogen carbonate solution (90 L) and water (90 L), and the organic layer was concentrated to 10 L. Ethyl acetate (27 L) was added and stirred at 60-70 ° C.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Neurology (AREA)
  • Neurosurgery (AREA)
  • Biomedical Technology (AREA)
  • Addiction (AREA)
  • Pain & Pain Management (AREA)
  • Psychiatry (AREA)
  • Emergency Medicine (AREA)
  • Epidemiology (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

This method for producing a morphinan derivative by means of a reduction reaction using formic acid or the like is represented by the following general formula (II).

Description

モルヒナン誘導体の製造方法Method for producing morphinan derivative
 本発明は、ブプレノルフィン骨格を有するモルヒナン誘導体の製造方法に関する。
 本願は、2020年6月30日に、日本に出願された特願2020-112310号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a method for producing a morphinan derivative having a buprenorphine skeleton.
The present application claims priority based on Japanese Patent Application No. 202-112310 filed in Japan on June 30, 2020, the contents of which are incorporated herein by reference.
 ブプレノルフィン(Buprenorphine)は、オピオイド受容体に対するオピオイド部分作動薬であり、鎮痛や、オピオイド依存症の治療に用いられる化合物である。鎮痛剤としてはReckitt & Colman社により初めて上市され、オピオイド依存症の治療薬としては高用量の錠剤がアメリカ食品医薬品局(FDA)の認可を受けている化合物である。 Buprenorphine is a partial opioid agonist for opioid receptors and is a compound used for analgesia and treatment of opioid addiction. It was first launched by Reckitt & Colman as an analgesic, and high-dose tablets are approved by the US Food and Drug Administration (FDA) for the treatment of opioid addiction.
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
 ブプレノルフィンは長期投与による副作用としての依存性が指摘されており、国際条約の向精神薬に関する条約におけるスケジュ-ルIII薬物として指定されており、麻薬及び向精神薬取締法における第二種向精神薬となっている。
 現在でも、ブプレノルフィンのこれらの副作用の軽減を目的とした新しい医薬品の創製を目指した創薬研究は活発に行われており、例えば非特許文献1には、いくつかのブプレノルフィン骨格を有する側鎖誘導体の合成例が報告されている。また、非特許文献2にはブプレノルフィンの側鎖誘導体であるBU08028についての報告がされている。
Buprenorphine has been pointed out to be dependent on long-term administration as a side effect, and has been designated as Schedule III drug in the Convention on Psychotropic Drugs of the International Convention, and is a second-class psychotropic drug under the Narcotics and Psychotropics Control Law. It has become.
Even now, drug discovery research aimed at creating new drugs aimed at reducing these side effects of buprenorphine is being actively conducted. For example, in Non-Patent Document 1, side chain derivatives having several buprenorphine skeletons are being actively conducted. Synthetic examples of are reported. In addition, Non-Patent Document 2 reports on BU08028, which is a side chain derivative of buprenorphine.
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
 上記のごとく、ブプレノルフィン骨格を有する側鎖誘導体の変換は興味深いメディシナルケミストリ-の対象であり、非特許文献3には側鎖部位をアミドに変換したオピオイドε受容体作動薬のドラッグデザイン及びその合成法について述べられている。
 オピオイド受容体にはμ、δ、κそしてεといったいくつかのサブタイプの存在が知られている。μ受容体に対して強い親和性を示すモルヒネは、古くから鎮痛薬として使用されている。しかし、オピオイドμ受容体アゴニストは、μ受容体を介して依存形成、呼吸抑制等の有害事象を引き起こすことが知られている。
 一方δ受容体アゴニストも鎮痛作用を有するが、モルヒネで見られる有害事象には関与しないことが知られている。そのため、δ受容体選択的アゴニストは優れた鎮痛剤として期待されている。
As described above, the conversion of side chain derivatives having a buprenorphine skeleton is an interesting subject of medical chemistry, and Non-Patent Document 3 describes drug design and synthesis of opioid ε receptor agonists in which the side chain site is converted to an amide. The law is mentioned.
The existence of several subtypes of opioid receptors is known, such as μ, δ, κ and ε. Morphine, which has a strong affinity for μ receptors, has long been used as an analgesic. However, opioid μ receptor agonists are known to cause adverse events such as dependence formation and respiratory depression via the μ receptor.
On the other hand, δ-receptor agonists also have analgesic effects, but are known not to be involved in the adverse events seen in morphine. Therefore, δ-receptor-selective agonists are expected as excellent analgesics.
 例えば特許文献1には、次式(A)、で表わされる化合物が報告されている。 For example, Patent Document 1 reports a compound represented by the following formula (A).
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
 これらの誘導体は、高いδ受容体選択性及び鎮痛作用を有することから、鎮痛薬等の薬剤への適用が期待される。
 特許文献1には、参考例10に化合物70を水素雰囲気下、パラジウム/炭素で還元し、ブプレノルフィン骨格を有する化合物71を中間体として合成する例が開示されている。
Since these derivatives have high δ receptor selectivity and analgesic action, they are expected to be applied to drugs such as analgesics.
Patent Document 1 discloses, in Reference Example 10, an example in which compound 70 is reduced with palladium / carbon under a hydrogen atmosphere and compound 71 having a buprenorphine skeleton is synthesized as an intermediate.
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
 また非特許文献1には、εオピオイドレセプターアゴニスト活性を有する誘導体の合成例が開示されている。その中でスキーム4には二重結合を分子内に有する化合物3C及び3Gを水素雰囲気下、パラジウム/炭素で還元し、単結合に変換したブプレノルフィン骨格を有する化合物の合成例が開示されている。 Further, Non-Patent Document 1 discloses an example of synthesis of a derivative having ε opioid receptor agonist activity. Among them, Scheme 4 discloses a synthesis example of a compound having a buprenorphine skeleton in which compounds 3C and 3G having a double bond in the molecule are reduced with palladium / carbon under a hydrogen atmosphere and converted into a single bond.
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
 特許文献1及び非特許文献1に開示されたブプレノルフィン骨格を有する中間体は最終目的物を得るための製造中間体として有用である。
 しかし、従来方法では(i)爆発性のある水素ガスを用いる必要があること、(ii)中圧水素雰囲気下で反応を行う必要があり、オートクレーブなどの特殊な反応容器を必要とする場合があること、その場合工業的規模の製造において巨大な反応容器を有さない施設もあり、実施が困難な場合があった。また、(iii)基質にシクロプロピルメチル基がある場合には、副反応としてシクロプロピルメチル基の脱落あるいはシクロプロピル部分の開環が起こり、除去することが困難な副生物が生じる,などの問題があった。
The intermediate having a buprenorphine skeleton disclosed in Patent Document 1 and Non-Patent Document 1 is useful as a production intermediate for obtaining a final target product.
However, in the conventional method, (i) it is necessary to use explosive hydrogen gas, (ii) it is necessary to carry out the reaction in a medium pressure hydrogen atmosphere, and a special reaction vessel such as an autoclave may be required. In that case, some facilities did not have a huge reaction vessel in industrial scale manufacturing, and it was sometimes difficult to carry out. Further, when the (iii) substrate has a cyclopropylmethyl group, there are problems such as the loss of the cyclopropylmethyl group or the opening of the cyclopropyl moiety as a side reaction, resulting in a by-product that is difficult to remove. was there.
国際公開第2013/035833号International Publication No. 2013/035833 国際公開第2019/189749号International Publication No. 2019/189479
 本発明の目的は、ブプレノルフィン骨格を有するモルヒナン誘導体製造のための中間体の製造方法を提供することにある。 An object of the present invention is to provide a method for producing an intermediate for producing a morphinan derivative having a buprenorphine skeleton.
 斯かる実情の下、本発明者らは、前記中間体の製造方法について鋭意検討を行った結果、水素源としてギ酸塩等を用いることにより、前記(I)~(iii)の問題が改善され、工業生産に適用可能な製造方法を見出し、本発明を完成するに至った。
 即ち、本発明の一の態様は、
次の一般式(I)、
Figure JPOXMLDOC01-appb-C000020
(式中、Rは水素原子、置換基を有していてもよいC1-10アルキル基、置換基を有していてもよいシクロアルキルアルキル基(シクロアルキル部分の炭素原子数は3~6で、アルキレン部分の炭素原子数は1~5を示す。)、置換基を有していてもよいアラルキル基(アリール部分の炭素原子数は6~10で、アルキレン部分の炭素原子数は1~5を示す。)、置換基を有していてもよいヘテロアリールアルキル基(ヘテロアリールはN、O及びSから選択される1~4個のヘテロ原子を環構成原子として含み、アルキレン部分の炭素原子数は1~5を示す。)、置換基を有していてもよいC3-6シクロアルキル基又は置換基を有していてもよいC6-10アリール基を表し、
 R及びRは水素原子、置換基を有していてもよいC1-10アルキル基、置換基を有していてもよいアラルキル基(アリール部分の炭素原子数は6~10で、アルキレン部分の炭素原子数は1~5を示す。)又はヒドロキシ保護基を表し、
 R、R、Rは同一又は異なって水素原子、置換基を有していてもよいC1-10アルキル基、置換基を有していてもよいC3-6シクロアルキル基、置換基を有していてもよいC6-10アリール基を表すか、
とRが結合して置換基を有していてもよいC3-6飽和炭化水素環を表し、RとRが結合して置換基を有していてもよいC3-6飽和炭化水素環又は置換基を有していてもよいC3-6シクロアルケンを表し、
 Rは水素原子、置換基を有していてもよいC1-10アルキル基、置換基を有していてもよいC3-6シクロアルキル基、置換基を有していてもよいシクロアルキルアルキル基(シクロアルキル部分の炭素原子数は3~6で、アルキレン部分の炭素原子数は1~5を示す。)、置換基を有していてもよいアラルキル基(アリール部分の炭素原子数は6~10で、アルキレン部分の炭素原子数は1~5を示す。)、置換基を有していてもよいヘテロアリールアルキル基(ヘテロアリールはN、O及びSから選択される1~4個のヘテロ原子を環構成原子として含み、アルキレン部分の炭素原子数は1~5を示す。)、置換基を有していてもよいC6-10アリール基又は置換基を有していてもよいヘテロアリール基(ヘテロアリールはN、O及びSから選択される1~4個のヘテロ原子を環構成原子として含み、アルキレン部分の炭素原子数は1~5を示す。)を表し、
 Rは置換基を有していてもよいC1-10アルキル基、置換基を有していてもよいC3-6シクロアルキル基、置換基を有していてもよいシクロアルキルアルキル基(シクロアルキル部分の炭素原子数は3~6で、アルキレン部分の炭素原子数は1~5を示す。)、置換基を有していてもよいアラルキル基(アリール部分の炭素原子数は6~10で、アルキレン部分の炭素原子数は1~5を示す。)、置換基を有していてもよいヘテロアリールアルキル基(ヘテロアリールはN、O及びSから選択される1~4個のヘテロ原子を環構成原子として含み、アルキレン部分の炭素原子数は1~5を示す。)、置換基を有していてもよいアリール基又は置換基を有していてもよいヘテロアリール基(ヘテロアリールはN、O及びSから選択される1~4個のヘテロ原子を環構成原子として含み、アルキレン部分の炭素原子数は1~5を示す。)、アミノ基を表す。)で表される化合物を、パラジウム触媒及びギ酸若しくはその塩又はギ酸及びトリアルキルアミンの混合物の存在下、溶媒中又は溶媒の非存在下で作用させることによる次の一般式(II)
Figure JPOXMLDOC01-appb-C000021
(式中、R~Rは前記と同じものを示す。)で表される化合物の製造方法に関する。
[2]また本発明は、Rが水素原子又は置換基を有していてもよいC1-10アルキル基、Rが水素原子、置換基を有していてもよいC1-10アルキル基又はヒドロキシ保護基である前記 [1]記載の製造方法に関する。
[3]また本発明は、Rが水素原子又はメチル基、Rが置換基を有していてもよいC1-10アルキル基又はヒドロキシ保護基である前記[1]又は[2]のいずれか一に記載の製造方法に関する。
[4]また本発明は、Rが水素原子又はメチル基、Rがメチル基又はシリル系保護基である前記[1]~[3]のいずれか一に記載の製造方法。
[5]また本発明は、Rが水素原子、置換基を有していてもよいC1-10アルキル基、置換基を有していてもよいシクロアルキルアルキル基(シクロアルキル部分の炭素原子数は3~6で、アルキレン部分の炭素原子数は1~5を示す。)、置換基を有していてもよいアラルキル基(アリール部分の炭素原子数は6~10で、アルキレン部分の炭素原子数は1~5を示す)、置換基を有していてもよいアリール基、置換基を有していてもよいヘテロアリール基又は置換基を有していてもよいヘテロアリールアルキル基(ヘテロアリールはN、O及びSから選択される1~4個のヘテロ原子を環構成原子として含み、アルキレン部分の炭素原子数は1~5。)である前記[1]~[4]のいずれか一に記載の製造方法に関する。
[6]また本発明は、Rが置換基を有していてもよいC1-10アルキル基、置換基を有していてもよいシクロアルキルアルキル基(シクロアルキル部分の炭素原子数は3~6で、アルキレン部分の炭素原子数は1~5を示す。)又は置換基を有していてもよいアラルキル基(アリール部分の炭素原子数は6~10で、アルキレン部分の炭素原子数は1~5を示す。)、から選択される置換基である前記[1]~[5]のいずれか一に記載の製造方法に関する。
[7]また本発明は、Rが置換基を有していてもよいC1-10アルキル基又は置換基を有していてもよいシクロアルキルアルキル基(シクロアルキル部分の炭素原子数は3~6で、アルキレン部分の炭素原子数は1~5を示す。)のいずれかの置換基である前記[1]~[6]のいずれか一に記載の製造方法に関する。
[8]また本発明は、Rが置換基を有していてもよいシクロアルキルアルキル基(シクロアルキル部分の炭素原子数は3~6で、アルキレン部分の炭素原子数は1~5を示す。)である前記[1]~[7]のいずれか一に記載の製造方法に関する。
[9]本発明は、前記[8]記載の置換基を有していてもよいシクロアルキルアルキル基がシクロプロピルメチル基である前記[8]記載の製造方法に関する。
[10]また本発明は、Rが置換基を有していてもよいC1-10アルキル基である前記[1]~[7]のいずれか一に記載の製造方法に関する。
[11]また本発明は、前記[10]記載の置換基を有していてもよいC1-10アルキル基がメチル基である前記[10]記載の製造方法に関する。
[12]また本発明は、前記[1]記載のパラジウム触媒がパラジウム担持触媒である前記[1]~[11]のいずれか一に記載の製造方法に関する。
[13] また本発明は、前記[12]記載のパラジウム担持触媒がパラジウム/炭素、水酸化パラジウム/炭素、パラジウム/アルミナ、パラジウム/硫酸バリウムから選択される前記[12]記載の製造方法。に関する
[14] また本発明は、前記[13]記載のパラジウム担持触媒がパラジウム/炭素、水酸化パラジウム/炭素から選択される前記[13]記載の製造方法に関する。
[15] また本発明は、前記[12]~[14]記載のパラジウム担持触媒の使用量が一般式(I)の化合物に対し5~100重量%である前記[12]~[14]のいずれか一に記載の製造方法に関する。
[16] また本発明は、前記[12]~[14]記載のパラジウム担持触媒の使用量が一般式(I)の化合物に対し10~60重量%である前記[12]~[14]のいずれか一に記載の製造方法に関する。
[17] また本発明は、前記[1]記載のギ酸又はその塩における塩がアンモニア、アミン類又はアルカリ金属との塩である前記[1]~[16]のいずれか一に記載の製造方法に関する。
[18]また本発明は、前記[17]記載のギ酸又はその塩における塩がギ酸カリウムである前記[17]記載の製造方法に関する。
[19]また本発明は、前記[1]記載のギ酸とトリアルキルアミンの混合物におけるトリアルキルアミンがトリエチルアミンである前記[1]~[16]のいずれか一に記載の製造方法に関する。
[20]また本発明は、前記[19]記載のギ酸とトリエチルアミンの混合物のモル比が10:1~1:1である前記[19]記載の製造方法に関する。
[21]また本発明は、前記[20]記載のギ酸とトリエチルアミンの混合物のモル比が1:1である前記[20]記載の製造方法に関する。
[22]また本発明は、前記[1]記載の溶媒がアルコール系溶媒、ケトン系溶媒、エーテル系溶媒、非プロトン性極性溶媒、炭化水素系溶媒、エステル系溶媒、水又はこれらの混液から選択される前記[1]~[21]のいずれか一に記載の製造方法に関する。
[23]また本発明は、前記[21]記載の溶媒がアルコール系溶媒、エーテル系溶媒、エステル系溶媒、水又はこれらの混液から選択される前記[21]記載の製造方法に関する。
[24]また本発明は、前記[23]記載の溶媒がアルコール系溶媒、水又はこれらの混液から選択される前記[23]記載の製造方法に関する。
[25]また本発明は、前記[1]~[24]記載の製造方法がフローケミストリーによるものである前記[1]~[24]記載の製造方法に関する。
[26]また本発明は、前記一般式(II)で表される化合物が、下記の番号1~58で示される化合物から選択される化合物又はその塩である前記[1]~[25]のいずれか一に記載の製造方法に関する。
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
Under such circumstances, as a result of diligent studies on the method for producing the intermediate, the present inventors have improved the problems (I) to (iii) by using formate or the like as a hydrogen source. , A manufacturing method applicable to industrial production was found, and the present invention was completed.
That is, one aspect of the present invention is
The following general formula (I),
Figure JPOXMLDOC01-appb-C000020
(In the formula, R 1 is a hydrogen atom, a C 1-10 alkyl group which may have a substituent, and a cycloalkylalkyl group which may have a substituent (the number of carbon atoms in the cycloalkyl moiety is 3 to 3 to In 6, the number of carbon atoms of the alkylene moiety is 1 to 5), and the aralkyl group which may have a substituent (the number of carbon atoms of the aryl moiety is 6 to 10 and the number of carbon atoms of the alkylene moiety is 1). ~ 5;), a heteroarylalkyl group which may have a substituent (heteroaryl contains 1 to 4 heteroatoms selected from N, O and S as ring-constituting atoms, and is an alkylene moiety. The number of carbon atoms indicates 1 to 5), which represents a C 3-6 cycloalkyl group which may have a substituent or a C 6-10 aryl group which may have a substituent.
R 2 and R 3 are a hydrogen atom, a C 1-10 alkyl group which may have a substituent, and an aralkyl group which may have a substituent (the number of carbon atoms in the aryl portion is 6 to 10, and the alkylene group is used. The number of carbon atoms in the moiety indicates 1 to 5) or represents a hydroxy protective group.
R 4 , R 5 and R 6 are the same or different hydrogen atoms, C 1-10 alkyl groups which may have substituents, C 3-6 cycloalkyl groups which may have substituents, substitutions. Representing a C 6-10 aryl group which may have a group
R 4 and R 5 represents an C 3-6 saturated hydrocarbon ring which may have a substituent bonded, which may have a substituent bonded R 5 and R 6 are C 3- Represents a C 3-6 cycloalkene which may have a 6- saturated hydrocarbon ring or substituents.
R 7 is a hydrogen atom, a C 1-10 alkyl group which may have a substituent, a C 3-6 cycloalkyl group which may have a substituent, and a cycloalkyl which may have a substituent. Alkyl group (the number of carbon atoms in the cycloalkyl moiety is 3 to 6 and the number of carbon atoms in the alkylene moiety is 1 to 5), and the aralkyl group which may have a substituent (the number of carbon atoms in the aryl moiety is 1 to 5). 6 to 10, the number of carbon atoms of the alkylene moiety indicates 1 to 5), a heteroarylalkyl group which may have a substituent (heteroaryl is 1 to 4 selected from N, O and S). The heteroatom of the above is contained as a ring-constituting atom, and the number of carbon atoms of the alkylene moiety indicates 1 to 5), which may have a C 6-10 aryl group or a substituent. It represents a heteroaryl group (heteroaryl contains 1 to 4 heteroatoms selected from N, O and S as ring-constituting atoms, and the number of carbon atoms in the alkylene moiety indicates 1 to 5).
R 8 is a C 1-10 alkyl group which may have a substituent, a C 3-6 cycloalkyl group which may have a substituent, and a cycloalkyl alkyl group which may have a substituent ( The cycloalkyl moiety has 3 to 6 carbon atoms, the alkylene moiety has 1 to 5 carbon atoms), and an aralkyl group which may have a substituent (the aryl moiety has 6 to 10 carbon atoms). The number of carbon atoms in the alkylene moiety is 1 to 5), a heteroarylalkyl group which may have a substituent (heteroaryl is 1 to 4 heteroatoms selected from N, O and S). As a ring-constituting atom, the number of carbon atoms in the alkylene moiety is 1 to 5), an aryl group which may have a substituent or a heteroaryl group which may have a substituent (heteroaryl is It contains 1 to 4 heteroatoms selected from N, O and S as ring-constituting atoms, and the number of carbon atoms in the alkylene moiety indicates 1 to 5), representing an amino group. ) Is allowed to act in the presence of a palladium catalyst and formic acid or a salt thereof or a mixture of formic acid and trialkylamine, in a solvent or in the absence of a solvent, according to the following general formula (II).
Figure JPOXMLDOC01-appb-C000021
(In the formula, R 1 to R 8 indicate the same as above.) The present invention relates to a method for producing a compound represented by the above.
[2] Further, in the present invention, R 2 may have a hydrogen atom or a substituent C 1-10 alkyl group, and R 3 may have a hydrogen atom or a substituent C 1-10 alkyl. The present invention relates to the production method according to the above [1], which is a group or a hydroxy protective group.
[3] The present invention also comprises the above [1] or [2], wherein R 2 is a hydrogen atom or a methyl group, and R 3 is a C 1-10 alkyl group or a hydroxy protecting group which may have a substituent. The manufacturing method according to any one.
[4] The production method according to any one of the above [1] to [3], wherein R 2 is a hydrogen atom or a methyl group, and R 3 is a methyl group or a silyl protecting group.
[5] Further, in the present invention, R 7 has a hydrogen atom, a C 1-10 alkyl group which may have a substituent, and a cycloalkylalkyl group which may have a substituent (carbon atom of the cycloalkyl moiety). The number is 3 to 6, and the number of carbon atoms in the alkylene moiety is 1 to 5.), an aralkyl group which may have a substituent (the number of carbon atoms in the aryl moiety is 6 to 10, and the carbon in the alkylene moiety). The number of atoms indicates 1 to 5), an aryl group which may have a substituent, a heteroaryl group which may have a substituent, or a heteroarylalkyl group which may have a substituent (hetero). Aryl contains 1 to 4 heteroatoms selected from N, O and S as ring-constituting atoms, and the number of carbon atoms in the alkylene moiety is 1 to 5). Any one of the above [1] to [4]. The manufacturing method described in 1.
[6] Further, in the present invention, R 1 may have a C 1-10 alkyl group having a substituent and a cycloalkyl alkyl group may have a substituent (the number of carbon atoms in the cycloalkyl moiety is 3). 6 to 6, the number of carbon atoms in the alkylene moiety is 1 to 5) or an aralkyl group which may have a substituent (the number of carbon atoms in the aryl moiety is 6 to 10, and the number of carbon atoms in the alkylene moiety is 1 to 5), the production method according to any one of the above [1] to [5], which is a substituent selected from.
[7] Further, in the present invention, R 1 may have a C 1-10 alkyl group which may have a substituent or a cycloalkyl alkyl group which may have a substituent (the number of carbon atoms of the cycloalkyl moiety is 3). 6; the production method according to any one of the above [1] to [6], which is a substituent according to any one of (1 to 5), the number of carbon atoms in the alkylene moiety is 1.
[8] Further, the present invention indicates a cycloalkylalkyl group in which R 1 may have a substituent (the number of carbon atoms in the cycloalkyl moiety is 3 to 6 and the number of carbon atoms in the alkylene moiety is 1 to 5). The production method according to any one of the above [1] to [7].
[9] The present invention relates to the production method according to the above [8], wherein the cycloalkylalkyl group which may have the substituent according to the above [8] is a cyclopropylmethyl group.
[10] The present invention also relates to the production method according to any one of the above [1] to [7], wherein R 1 is a C 1-10 alkyl group which may have a substituent.
[11] The present invention also relates to the production method according to the above [10], wherein the C 1-10 alkyl group which may have the substituent according to the above [10] is a methyl group.
[12] Further, the present invention relates to the production method according to any one of the above [1] to [11], wherein the palladium catalyst according to the above [1] is a palladium-supported catalyst.
[13] The present invention also relates to the production method according to the above [12], wherein the palladium-supporting catalyst according to the above [12] is selected from palladium / carbon, palladium / carbon hydroxide, palladium / alumina, and palladium / barium sulfate. Regarding
[14] The present invention also relates to the production method according to the above [13], wherein the palladium-supported catalyst according to the above [13] is selected from palladium / carbon and palladium / carbon hydroxide.
[15] In the present invention, the amount of the palladium-supported catalyst according to the above [12] to [14] is 5 to 100% by weight based on the compound of the general formula (I). The manufacturing method according to any one.
[16] In the present invention, the amount of the palladium-supported catalyst according to the above [12] to [14] is 10 to 60% by weight based on the compound of the general formula (I). The manufacturing method according to any one.
[17] Further, the present invention is the production method according to any one of the above [1] to [16], wherein the salt in the formic acid or the salt thereof according to the above [1] is a salt with ammonia, amines or an alkali metal. Regarding.
[18] The present invention also relates to the production method according to the above [17], wherein the salt in the formic acid or a salt thereof according to the above [17] is potassium formate.
[19] The present invention also relates to the production method according to any one of the above [1] to [16], wherein the trialkylamine in the mixture of formic acid and trialkylamine according to the above [1] is triethylamine.
[20] The present invention also relates to the production method according to the above [19], wherein the molar ratio of the mixture of formic acid and triethylamine according to the above [19] is 10: 1 to 1: 1.
[21] The present invention also relates to the production method according to the above [20], wherein the molar ratio of the mixture of formic acid and triethylamine according to the above [20] is 1: 1.
[22] Further, in the present invention, the solvent according to the above [1] is selected from an alcohol-based solvent, a ketone-based solvent, an ether-based solvent, an aprotonic polar solvent, a hydrocarbon-based solvent, an ester-based solvent, water, or a mixed solution thereof. The production method according to any one of the above [1] to [21].
[23] The present invention also relates to the production method according to the above [21], wherein the solvent according to the above [21] is selected from an alcohol solvent, an ether solvent, an ester solvent, water or a mixed solution thereof.
[24] Further, the present invention relates to the production method according to the above [23], wherein the solvent according to the above [23] is selected from an alcohol solvent, water or a mixed solution thereof.
[25] Further, the present invention relates to the production method according to the above [1] to [24], wherein the production method according to the above [1] to [24] is based on flow chemistry.
[26] In the present invention, the compound represented by the general formula (II) is a compound selected from the compounds represented by the following numbers 1 to 58 or a salt thereof. The manufacturing method according to any one.
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
図1はフローケミストリーにおける反応装置の一例を示したものである。FIG. 1 shows an example of a reaction device in flow chemistry. 図2はフローケミストリーにおける反応装置を連結した例を示したものである。FIG. 2 shows an example in which reaction devices in flow chemistry are connected.
 次に本発明をさらに詳しく説明する。
 上記一般式(I)及び(II)で表されるモルヒナン誘導体、該化合物の互変異性体、立体異性体(幾何異性体、光学異性体)、若しくはその塩又はそれらの溶媒和物のうち、好ましくは次のものが挙げられる。また、重水素、13Cなどの安定同位体も含まれる。
Next, the present invention will be described in more detail.
Of the morphinan derivatives represented by the above general formulas (I) and (II), homomorphs of the compounds, stereoisomers (geometric isomers, optical isomers), salts thereof, or solvates thereof. The following are preferable. It also contains stable isotopes such as deuterium and 13C.
 本明細書において、R~Rで示される置換基を有していてもよいC1-10アルキル基におけるC1-10アルキル基としては、メチル基、エチル基、n-プロピル基、iso-プロピル基、n-ブチル基、iso-ブチル基、tert-ブチル基、ペンチル基、ヘキシル基、ヘプチル基及びオクチル基等の直鎖又は分岐状のアルキル基が挙げられ、好ましくはC1-6アルキル基、より好ましくはC1-3アルキル基が挙げられ、さらに好ましくはメチル基が挙げられる。また、これらのアルキル基は重水素化されていてもよく、重水素化されたアルキル基としてはメチル-d3、エチル-1,1-d2、エチル-d5等が挙げられる。
 置換基としては段落[0048]に記載のものが挙げられるが、好ましくはハロゲン原子、より好ましくはフッ素原子が挙げられ、フッ素原子で置換されたアルキル基としてはトリフルオロメチル基、ペンタフルオロメチル基等が挙げられる。
In the present specification, the C 1-10 alkyl group in the C 1-10 alkyl group which may have the substituents represented by R 1 to R 8 includes a methyl group, an ethyl group, an n-propyl group and iso. -Clinical or branched alkyl groups such as propyl group, n-butyl group, iso-butyl group, tert-butyl group, pentyl group, hexyl group, heptyl group and octyl group are preferable, and C 1-6 is preferable. An alkyl group, more preferably a C1-3 alkyl group, and even more preferably a methyl group. Further, these alkyl groups may be deuterated, and examples of the deuterated alkyl groups include methyl-d3, ethyl-1,1-d2, ethyl-d5 and the like.
Examples of the substituent include those described in paragraph [0048], preferably a halogen atom and more preferably a fluorine atom, and examples of the alkyl group substituted with the fluorine atom include a trifluoromethyl group and a pentafluoromethyl group. And so on.
 R、R及びRで示される置換基を有していてもよいシクロアルキルアルキル基(シクロアルキル部分の炭素原子数は3~6で、アルキレン部分の炭素原子数は1~5を示す。)におけるシクロアルキルアルキル基としては、シクロプロピル基、シクロブチル基、シクロペンチル基又はシクロヘキシル基等のC3-6シクロアルキル基で置換されたメチル基、エチル基等が挙げられ、好ましくはシクロプロピルメチル基、シクロプロピルエチル基、シクロブチルメチル基及びシクロブチルエチル基等が挙げられるが、より好ましくはシクロプロピルメチル基である。また、シクロアルキルアルキル基は重水素化されていてもよく、例えば(シクロプロピル-d5)メチル基、シクロプロピルメチル-d2基等が挙げられる。 R 1, R 7 and the carbon atom number of good cycloalkylalkyl group (the cycloalkyl moiety may have a substituent group represented by R 8 is 3-6, carbon atoms in the alkylene moiety represents 1 to 5 Examples of the cycloalkylalkyl group in () include a methyl group substituted with a C 3-6 cycloalkyl group such as a cyclopropyl group, a cyclobutyl group, a cyclopentyl group or a cyclohexyl group, an ethyl group and the like, and cyclopropylmethyl is preferable. Examples thereof include a group, a cyclopropylethyl group, a cyclobutylmethyl group, a cyclobutylethyl group and the like, but a cyclopropylmethyl group is more preferable. Further, the cycloalkylalkyl group may be dehydrogenated, and examples thereof include a (cyclopropyl-d5) methyl group and a cyclopropylmethyl-d2 group.
 R、R~Rで示される置換基を有していてもよいC3-6シクロアルキル基におけるC3-6シクロアルキル基としては、シクロプロピル基、シクロブチル基、シクロペンチル基又はシクロヘキシル基等が挙げられ、好ましくはシクロプロピル基が挙げられる。 The C 3-6 cycloalkyl group in the C 3-6 cycloalkyl group which may have the substituents represented by R 1 , R 4 to R 8 includes a cyclopropyl group, a cyclobutyl group, a cyclopentyl group or a cyclohexyl group. And the like, preferably a cyclopropyl group.
 RとR又はRとRが結合して形成される置換基を有していてもよいC3-6飽和炭化水素環におけるC3-6飽和炭化水素環としては、シクロプロパン環、シクロブタン環、シクロペンタン環、シクロヘキサン環等が挙げられる。 The C 3-6 saturated hydrocarbon ring in the C 3-6 saturated hydrocarbon ring which may have a substituent formed by bonding R 4 and R 5 or R 5 and R 6 is a cyclopropane ring. , Cyclobutane ring, cyclopentane ring, cyclohexane ring and the like.
 RとRが結合して置換基を有していてもよいC3-6シクロアルケンにおけるC3-6シクロアルケンとしては、シクロペンテン、シクロヘキセン等が挙げられる。 The C 3-6 cycloalkene at the R 5 and optionally C 3-6 cycloalkene R 6 is not a bond to a substituent, cyclopentene and cyclohexene.
 R、R、R、R及びRで示される置換基を有していてもよいアラルキル基(アリ-ル部分の炭素原子数は6~10で、アルキレン部分の炭素原子数は1~5を示す。)におけるアラルキル基としては、フェニル基又はナフチル基等で置換されたメチル基、エチル基等が挙げられ、好ましくはフェニル基で置換されたメチル基(ベンジル基)が挙げられる。 Aralkyl groups may have substituents represented by R 1 , R 2 , R 3 , R 7 and R 8 (the number of carbon atoms in the aryl moiety is 6 to 10 and the number of carbon atoms in the alkylene moiety is Examples of the aralkyl group in 1 to 5) include a methyl group substituted with a phenyl group or a naphthyl group, an ethyl group and the like, and preferably a methyl group substituted with a phenyl group (benzyl group). ..
 R、R及びRで示される置換基を有していてもよいヘテロアリールアルキル基(ヘテロアリールはN、O及びSから選択される1~4個のヘテロ原子を環構成原子として含み、アルキレン部分の炭素原子数は1~5を示す。)におけるヘテロアリールアルキル基としては、ヘテロアリールの環構成原子数が5~10の(ピリジン-2-イル)メチル基、(ピリジン-3-イル)メチル基、(ピリジン-4-イル)メチル基、2-(ピリジン-2-イル)エチル基、(フラン-2-イル)メチル基、(フラン-3-イル)メチル基、(イミダゾール-2-イル)メチル基、(イミダゾール-4-イル)メチル基、(イミダゾール-5-イル)メチル基、(チアゾール-2-イル)メチル基、(チアゾール-4-イル)メチル基、(チアゾール-5-イル)メチル基、(チオフェン-2-イル)メチル基、2-(チオフェン-2-イル)エチル基又は(1H-テトラゾール-5-イル)メチル基等の単環式ヘテロアリールアルキル基、(キノリン-3-イル)メチル基、(インドール-3-イル)メチル基等の2環式ヘテロアリールアルキル基が挙げられる。 Heteroaryl alkyl group which may have a substituent represented by R 1 , R 7 and R 8 (heteroaryl contains 1 to 4 heteroatoms selected from N, O and S as ring-constituting atoms. , The number of carbon atoms in the alkylene moiety is 1 to 5), as the heteroarylalkyl group, a (pyridine-2-yl) methyl group having 5 to 10 ring-constituting atoms of the heteroaryl, (pyridine-3-3). Il) methyl group, (pyridine-4-yl) methyl group, 2- (pyridine-2-yl) ethyl group, (fran-2-yl) methyl group, (fran-3-yl) methyl group, (imidazole- 2-yl) Methyl group, (imidazole-4-yl) methyl group, (imidazole-5-yl) methyl group, (thiazol-2-yl) methyl group, (thiazol-4-yl) methyl group, (thiazol-) Monocyclic heteroarylalkyl groups such as 5-yl) methyl group, (thiophen-2-yl) methyl group, 2- (thiophen-2-yl) ethyl group or (1H-tetrazole-5-yl) methyl group, Examples thereof include a bicyclic heteroarylalkyl group such as a (quinolin-3-yl) methyl group and a (indole-3-yl) methyl group.
 R、R~Rで示される置換基を有していてもよいC6-10アリ-ル基としては、フェニル基又はナフチル基が挙げられる。 Examples of the C 6-10 aryl group which may have a substituent represented by R 1 , R 4 to R 8 include a phenyl group and a naphthyl group.
 R及びR示される置換基を有していてもよいヘテロアリール基におけるヘテロアリール基としては環構成原子数が5~10のピリジル基、フリル基、イミダゾリル基、ピリミジニル基、ピラジニル基又はチアゾリル基等の単環式ヘテロアリール基、キノリル基、インドリル基等の2環式ヘテロアリール基が挙げられる。 Pyridyl group of R 7 and R 8 ring constituting atoms of 5 to 10 as the heteroaryl group in heteroaryl group optionally having a substituent represented, furyl group, imidazolyl group, pyrimidinyl group, pyrazinyl group or thiazolyl Examples thereof include a monocyclic heteroaryl group such as a group, a bicyclic heteroaryl group such as a quinolyl group and an indrill group.
 R及びRで示されるヒドロキシ保護基としては、ヒドロキシ保護基としては一般公知のもの(例えば、非特許文献2記載のヒドロキシ保護基)が挙げられ、ベンジル基、4-メトキシベンジル基又はトリチル基等の置換基を有していてもよいアラルキル基;アセチル基等のアシル基;トリメチルシリル基又はtert-ブチルジメチルシリル等の置換基を有するシリル基等が挙げられる。 Examples of the hydroxy protective group represented by R 2 and R 3 include generally known hydroxy protective groups (for example, the hydroxy protective group described in Non-Patent Document 2), such as a benzyl group, a 4-methoxybenzyl group or a trityl. Examples thereof include an aralkyl group which may have a substituent such as a group; an acyl group such as an acetyl group; a silyl group having a substituent such as a trimethylsilyl group or a tert-butyldimethylsilyl.
 本明細書中で説明される置換基としては、メチル基、エチル基、プロピル基、iso-プロピル基、ブチル基、tert-ブチル基等の直鎖又は分岐鎖のC1-6アルキル基;フルオロメチル基、ジフルオロメチル基、トリフルオロメチル基等のハロゲン化メチル基;2-プロペニル基等のC2-6アルケニル基;シクロプロピル基、シクロヘキシル基等のC3-8シクロアルキル基;フェニル基等のC6-10アリール基;ピリジル基、フリル基、イミダゾリル基等のヘテロアリール基;フッ素原子、塩素原子等のハロゲン原子;C1-6アルキルアミノ基、ジ-C1-6アルキルアミノ基、アシルアミノ基等の置換基を有していてもよいアミノ基、保護基を有していてもよいアミノ基;ホルミル基、アセチル基、シクロプロピルカルボニル基、ベンゾイル基等のアシル基;ヒドロキシ基、グアニジル基又はシアノ基等が挙げられる。 Substituents described herein include linear or branched C 1-6 alkyl groups such as methyl, ethyl, propyl, iso-propyl, butyl, tert-butyl groups; fluoro. Methyl halide group such as methyl group, difluoromethyl group, trifluoromethyl group; C 2-6 alkenyl group such as 2-propenyl group; C 3-8 cycloalkyl group such as cyclopropyl group and cyclohexyl group; phenyl group and the like C 6-10 aryl group; heteroaryl group such as pyridyl group, frill group, imidazolyl group; halogen atom such as fluorine atom, chlorine atom; C 1-6 alkylamino group, di-C 1-6 alkylamino group, Amino group which may have a substituent such as an acylamino group, an amino group which may have a protective group; an acyl group such as a formyl group, an acetyl group, a cyclopropylcarbonyl group and a benzoyl group; a hydroxy group and a guanidyl. Examples include a group or a cyano group.
 本実施形態における好適なモルヒナン誘導体(II)は、以下の化合物番号1~58のものが挙げられる。 Suitable morphinan derivatives (II) in the present embodiment include the following compounds Nos. 1 to 58.
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000045
 モルヒナン誘導体(IV)の酸付加塩としては、例えば塩酸、硫酸などの鉱酸との塩、ギ酸、シュウ酸、酢酸、クエン酸、トリクロロ酢酸、トリフルオロ酢酸、フマル酸、マレイン酸などの有機カルボン酸との塩、メタンスルホン酸、ベンゼンスルホン酸、p-トルエンスルホン酸、メシチレンスルホン酸、ナフタレンスルホン酸などのスルホン酸との塩が挙げられる。 Examples of the acid addition salt of the morphinan derivative (IV) include salts with mineral acids such as hydrochloric acid and sulfuric acid, and organic carboxylics such as formic acid, oxalic acid, acetic acid, citric acid, trichloroacetic acid, trifluoroacetic acid, fumaric acid and maleic acid. Examples thereof include salts with acids, salts with sulfonic acids such as methanesulfonic acid, benzenesulfonic acid, p-toluenesulfonic acid, mesitylenesulfonic acid and naphthalenesulfonic acid.
 斯かる置換基において、より好ましい置換基の組合せとしては、RとしてはC1-10アルキル基、シクロアルキルアルキル基(シクロアルキル部分の炭素原子数は3~6で、アルキレン部分の炭素原子数は1~5を示す。)、好ましくはシクロアルキルアルキル基(シクロアルキル部分の炭素原子数は3~6で、アルキレン部分の炭素原子数は1~5を示す。)かつRとしては水素原子又はメチル基、Rとしては水素原子、C1-10アルキル基、ヒドロキシ保護基、好ましくはC1-10アルキル基、ヒドロキシ保護基かつR~Rとしては同一又は異なって水素原子、C1-10アルキル基、好ましくは水素原子、Rとしては水素原子、置換基を有していてもよいC1-10アルキル基、置換基を有していてもよいシクロアルキルアルキル基(シクロアルキル部分の炭素原子数は3~6で、アルキレン部分の炭素原子数は1~5を示す。)、置換基を有していてもよいアラルキル基(アリール部分の炭素原子数は6~10で、アルキレン部分の炭素原子数は1~5を示す)、置換基を有していてもよいアリール基、置換基を有していてもよいヘテロアリール基又は置換基を有していてもよいヘテロアリールアルキル基(ヘテロアリールはN、O及びSから選択される1~4個のヘテロ原子を環構成原子として含み、アルキレン部分の炭素原子数は1~5。)かつRとしては置換基を有していてもよいアラルキル基(アリール部分の炭素原子数は6~10で、アルキレン部分の炭素原子数は1~5を示す)が挙げられる。 In such a substituent, as a more preferable combination of substituents, R 1 is a C 1-10 alkyl group and a cycloalkyl alkyl group (the number of carbon atoms in the cycloalkyl moiety is 3 to 6, and the number of carbon atoms in the alkylene moiety is 3 to 6). represents 1 to 5.), preferably the number of carbon atoms of a cycloalkyl group (the cycloalkyl moiety with 3-6 carbon atoms in the alkylene moiety represents 1 to 5.) and hydrogen atoms as R 2 Alternatively, a methyl group, R 3 is a hydrogen atom, a C 1-10 alkyl group, a hydroxy protective group, preferably a C 1-10 alkyl group, a hydroxy protective group and R 4 to R 6 are the same or different hydrogen atoms, C. 1-10 alkyl group, preferably a hydrogen atom, as R 7 is a hydrogen atom, which may have a substituent C 1-10 alkyl group which may have a substituent cycloalkylalkyl group (cycloalkyl The moiety has 3 to 6 carbon atoms, the alkylene moiety has 1 to 5 carbon atoms), and an aralkyl group which may have a substituent (the aryl moiety has 6 to 10 carbon atoms). The number of carbon atoms in the alkylene moiety is 1 to 5), an aryl group which may have a substituent, a heteroaryl group which may have a substituent, or a heteroaryl which may have a substituent. alkyl group (the heteroaryl include N, 1 to 4 hetero atoms selected from O and S as a ring-constituting atom, the carbon atoms in the alkylene moiety 1-5.) and have a substituent as R 8 Examples thereof include an aralkyl group which may be used (the aryl moiety has 6 to 10 carbon atoms and the alkylene moiety has 1 to 5 carbon atoms).
 一般式(I)で示される化合物は、一般公知の方法、例えば特許文献1、特許文献2あるいは非特許文献1等に記載の方法により製造することができる。 The compound represented by the general formula (I) can be produced by a generally known method, for example, the method described in Patent Document 1, Patent Document 2, Non-Patent Document 1, and the like.
 一般式(II)で示されるブプレノルフィン骨格を有するモルヒナン誘導体の製造は、一般式(I)の化合物をパラジウム触媒及びギ酸若しくはその塩又はギ酸及びトリアルキルアミンの混合物の存在下、溶媒中又は溶媒の非存在下で作用させることにより行うことができる。 The production of a morphinan derivative having a buprenorfin skeleton represented by the general formula (II) is carried out by using a compound of the general formula (I) in a solvent or in the presence of a palladium catalyst and formic acid or a salt thereof or a mixture of formic acid and trialkylamine. It can be done by acting in the absence.
Figure JPOXMLDOC01-appb-C000046
(式中、R~Rは前記と同じものを示す。)
Figure JPOXMLDOC01-appb-C000046
(In the formula, R 1 to R 8 indicate the same as above.)
 本反応で用いられるパラジウム触媒としては、パラジウム担持触媒を用いることができる。パラジウム担持触媒とは、パラジウムが担体に担持された触媒を意味する。
 パラジウム担持触媒としては、パラジウム/炭素、水酸化パラジウム/炭素、パラジウム/アルミナ、パラジウム/硫酸バリウム等が挙げられ、好ましくはパラジウム/炭素又は水酸化パラジウム/炭素が挙げられる。
 本反応で用いられるパラジウム触媒の使用量は、一般式(I)の化合物に対し5~100重量%、好ましくは10~60重量%用いることができる。
As the palladium catalyst used in this reaction, a palladium-supported catalyst can be used. The palladium-supported catalyst means a catalyst in which palladium is supported on a carrier.
Examples of the palladium-supported catalyst include palladium / carbon, palladium / carbon hydroxide / carbon, palladium / alumina, palladium / barium sulfate and the like, and preferably palladium / carbon or palladium / carbon hydroxide.
The amount of the palladium catalyst used in this reaction can be 5 to 100% by weight, preferably 10 to 60% by weight, based on the compound of the general formula (I).
 本反応で用いられるギ酸塩としては、ギ酸リチウム、ギ酸カリウム、ギ酸ナトリウム、ギ酸セシウム等の金属塩、ギ酸アンモニウム等を用いることができ、好ましくはギ酸カリウムである。 As the formate used in this reaction, metal salts such as lithium formate, potassium formate, sodium formate, cesium formate, ammonium formate and the like can be used, and potassium formate is preferable.
 本反応で用いられるトリアルキルアミンとしては、トリメチルアミン、トリエチルアミン、トリプロピルアミン、N-メチルモルホリン、N-メチルピぺリジン等が挙げられ、好ましくはトリエチルアミンである。
 トリアルキルアミンの使用量は、ギ酸に対し10:1~1:1の範囲で用いることができ、好ましくは5:1、より好ましくは1:1である。
Examples of the trialkylamine used in this reaction include trimethylamine, triethylamine, tripropylamine, N-methylmorpholine, N-methylpiperidine and the like, and triethylamine is preferable.
The amount of the trialkylamine used can be in the range of 10: 1 to 1: 1 with respect to formic acid, preferably 5: 1 and more preferably 1: 1.
 本反応で用いられる溶媒としては、メタノ-ル、エタノ-ル、2,2,2-トリフルオロエタノ-ル、1-プロパノ-ル、2-プロパノ-ル等のアルコール系溶媒、アセトン等のケトン系溶媒、アセトニトリル等のニトリル系溶媒、テトラヒドロフラン等のエーテル系溶媒、N,N-ジメチルホルムアミド、ジメチルスルホキシド等の非プロトン性極性溶媒、ベンゼン、トルエン、キシレン等の炭化水素系溶媒、酢酸エチルなどのエステル系溶媒及び水等が挙げられ、好ましくはアルコール系溶媒、エーテル系溶媒、エステル系溶媒、水又はこれらの混液が挙げられ、より好ましくはアルコール系溶媒あるいはその水との混合溶媒が挙げられる。好ましいアルコール系溶媒としてはエタノールが挙げられる。アルコール系溶媒と水の混合比は任意であるが、アルコール/水=50/1~1/1の範囲で用いることができる。
 また、無溶媒条件で反応を行うことも可能である。溶媒を使う場合には、溶媒の使用量には特に制限はないが、化合物(I)に対して1から10重量倍の範囲が好ましい。
 反応温度としては、0℃~120℃、好ましくは室温~100℃、より好ましくは40℃~90℃、さらに好ましくは50℃~70℃の範囲で行われ、反応時間は5分間から300時間、好ましくは1時間から20時間で終了する。
The solvent used in this reaction includes alcohol solvents such as metanol, etanol, 2,2,2-trifluoroethanol, 1-propanol and 2-propanol, and ketones such as acetone. System solvents, nitrile solvents such as acetonitrile, ether solvents such as tetrahydrofuran, aprotonic polar solvents such as N, N-dimethylformamide and dimethyl sulfoxide, hydrocarbon solvents such as benzene, toluene and xylene, ethyl acetate and the like. Examples thereof include an ester solvent and water, preferably an alcohol solvent, an ether solvent, an ester solvent, water or a mixed solution thereof, and more preferably an alcohol solvent or a mixed solvent with water thereof. Ethanol is mentioned as a preferable alcohol solvent. The mixing ratio of the alcohol solvent and water is arbitrary, but it can be used in the range of alcohol / water = 50/1 to 1/1.
It is also possible to carry out the reaction under solvent-free conditions. When a solvent is used, the amount of the solvent used is not particularly limited, but is preferably in the range of 1 to 10 times by weight with respect to compound (I).
The reaction temperature is 0 ° C. to 120 ° C., preferably room temperature to 100 ° C., more preferably 40 ° C. to 90 ° C., still more preferably 50 ° C. to 70 ° C., and the reaction time is 5 minutes to 300 hours. It is preferably completed in 1 to 20 hours.
 本発明はバッチ法あるいはフローケミストリーを用いて実施することができる。バッチ法は、化合物の製造において反応容器に一回ごとに原料を入れ反応を行い、反応終了後に単離生成して都度反応物を得る方法であり、一般的に行われる方法であり、前記反応条件に基づき行うことができる。
 一方、フローケミストリーを用いる方法では、一般公知の方法により行うことができるが、例えば、カラム等の反応装置の一端から出発原料等を連続的に投入し、生成物を他端から連続的に得ることができる。本発明においては、(a)反応装置内に触媒を充填する工程、(b)化合物(I)とギ酸若しくはその塩又はギ酸及びトリアルキルアミンの混合物を溶媒に溶解して溶液を調整する工程、(c)この溶液をパラジウム触媒を充填した反応装置に特定の温度下で送液する工程、(d)溶液を回収し必要に応じて溶媒を留去する工程、により目的化合物(II)を得ることができる。
 フローケミストリーに用いることができる反応装置としては市販のものが挙げられ、例えば、カートリッジ、カラム、マイクロリアクター等の反応装置を用いることができる。
 また、(b)の溶液は送液ポンプ等を用いて反応装置へ送液することができる。この場合の送液速度は溶液の濃度により適宜調整することができるが、例えば0.1mL/分~200mL/分、好ましくは0.3mL/分~150mL/分の範囲で設定することができる。
 また、フローケミストリーを用いた場合の反応温度としては、0℃~120℃、好ましくは室温~100℃、より好ましくは40℃~90℃、さらに好ましくは50℃~70℃の範囲で行われ、反応時間は原料の量やカートリッジ等反応装置の大きさにもよるが、数秒から10時間、好ましくは数秒からから5時間である。 
 本発明のフローケミストリーは、例えば図1のように示される。また、反応量が多い場合には、反応装置を例えば図2のように連結して実施することも可能である。
The present invention can be carried out using the batch method or flow chemistry. The batch method is a method in which a raw material is put into a reaction vessel each time in the production of a compound, a reaction is carried out, and after the reaction is completed, the reaction product is isolated and produced to obtain a reaction product each time. It can be done based on the conditions.
On the other hand, in the method using flow chemistry, a generally known method can be used. For example, a starting material or the like is continuously charged from one end of a reaction device such as a column, and a product is continuously obtained from the other end. be able to. In the present invention, (a) a step of filling the reaction apparatus with a catalyst, (b) a step of dissolving compound (I) and formic acid or a salt thereof or a mixture of formic acid and trialkylamine in a solvent to prepare a solution. The target compound (II) is obtained by (c) sending the solution to a reaction apparatus filled with a palladium catalyst at a specific temperature, and (d) recovering the solution and distilling off the solvent if necessary. be able to.
Examples of the reaction device that can be used for flow chemistry include commercially available ones, and for example, reaction devices such as cartridges, columns, and microreactors can be used.
Further, the solution of (b) can be sent to the reaction apparatus by using a liquid feeding pump or the like. The liquid feeding rate in this case can be appropriately adjusted depending on the concentration of the solution, and can be set, for example, in the range of 0.1 mL / min to 200 mL / min, preferably 0.3 mL / min to 150 mL / min.
When the flow chemistry is used, the reaction temperature is 0 ° C. to 120 ° C., preferably room temperature to 100 ° C., more preferably 40 ° C. to 90 ° C., and further preferably 50 ° C. to 70 ° C. The reaction time depends on the amount of the raw material and the size of the reaction device such as a cartridge, but is from several seconds to 10 hours, preferably from several seconds to 5 hours.
The flow chemistry of the present invention is shown, for example, as shown in FIG. Further, when the reaction amount is large, it is also possible to carry out the reaction by connecting the reaction devices as shown in FIG. 2, for example.
 次に、実施例及び試験例を挙げ、本発明を更に詳細に説明するが、本発明はこれらに限定されるものではない。なお、実施例化合物の命名はケンブリッジソフト社製 ChemDraw ver.15を用いて描画した構造式を同ソフトウェア搭載の命名アルゴリズムによって英語名として変換した後に日本語翻訳した。 Next, the present invention will be described in more detail with reference to Examples and Test Examples, but the present invention is not limited thereto. The compound of the example was named ChemDraw ver. By Cambridgesoft. The structural formula drawn using No. 15 was converted into an English name by the naming algorithm installed in the software, and then translated into Japanese.
(4R,4aS,6S,7R,7aR,12bS)―N-ベンジル-3-(シクロプロピルメチル)-7-ヒドロキシ-9-メトキシ-1,2,3,4,5,6,7,7a-オクタヒドロ-4a,7-エタノ-4,12-メタノベンゾフロ[3,2-e]イソキノリン-6-カルボキサミドの製造 (4R, 4aS, 6S, 7R, 7aR, 12bS) -N-benzyl-3- (cyclopropylmethyl) -7-hydroxy-9-methoxy-1,2,3,4,5,6,7a- Production of Octahydro-4a, 7-Etano-4,12-methanobenzoflo [3,2-e] isoquinoline-6-carboxamide
Figure JPOXMLDOC01-appb-C000047
 100Lの反応装置へ、(4R,4aR,7R,7aR,12bS,14S)―N-ベンジル-3-(シクロプロピルメチル)-7-ヒドロキシ-9-メトキシ-1,2,3,4,7,7a-ヘキサヒドロ-7,4a-エタノ-4,12-メタノベンゾフロ[3,2-e]イソキノリン-14-カルボキサミド(2.84kg,1当量)、エタノール(29L)と水(29L)を加えた。得られた溶液へ、ギ酸カリウム(9.77kg,20当量)および10%パラジウム/炭素(1.45kg)を加え75―80度で8時間攪拌した。
 反応混合物を室温まで冷却後、セライトパッドで濾過し不溶物を除去した。パッドをエタノールで洗浄し、濾液と洗液を合わせ、減圧下にてエタノールを濃縮した。残った水層を酢酸エチル(10L×3回)で抽出した。合わせた有機層を水(10L×2回)で洗浄、無水硫酸ナトリウム上で乾燥し、濾別後、減圧下で濃縮し、表題化合物粗体(2.81kg)を得た。
 得られた粗体をn-ヘプタンおよび酢酸エチルの3:1混合溶液で結晶化し、表題化合物(2.62kg,92%収率,98.03%純度)を白色個体として得た。

 得られた化合物のプロトンNMRは特許文献1記載の化合物70(参考例10)の値と一致した。
Figure JPOXMLDOC01-appb-C000047
To a 100 L reactor, (4R, 4aR, 7R, 7aR, 12bS, 14S) -7-benzyl-3- (cyclopropylmethyl) -7-hydroxy-9-methoxy-1,2,3,4,7, 7a-Hexahydro-7,4a-Etano-4,12-methanobenzoflo [3,2-e] isoquinoline-14-carboxamide (2.84 kg, 1 eq), ethanol (29 L) and water (29 L) were added. Potassium formate (9.77 kg, 20 eq) and 10% palladium / carbon (1.45 kg) were added to the resulting solution and stirred at 75-80 ° C. for 8 hours.
The reaction mixture was cooled to room temperature and then filtered through a Celite pad to remove insoluble matter. The pad was washed with ethanol, the filtrate and the washing liquid were combined, and ethanol was concentrated under reduced pressure. The remaining aqueous layer was extracted with ethyl acetate (10 L × 3 times). The combined organic layers were washed with water (10 L × 2 times), dried over anhydrous sodium sulfate, filtered off, and concentrated under reduced pressure to give the title compound crude (2.81 kg).
The obtained crude product was crystallized from a 3: 1 mixed solution of n-heptane and ethyl acetate to give the title compound (2.62 kg, 92% yield, 98.03% purity) as a white solid.

The proton NMR of the obtained compound was in agreement with the value of compound 70 (Reference Example 10) described in Patent Document 1.
 実施例1のギ酸カリウムをギ酸/トリエチルアミンに変更し、同様に以下の実験を行った。 1000Lの反応装置へ、(4R,4aR,7R,7aR,12bS,14S)―N-ベンジル-3-(シクロプロピルメチル)-7-ヒドロキシ-9-メトキシ-1,2,3,4,7,7a-ヘキサヒドロ-7,4a-エタノ-4,12-メタノベンゾフロ[3,2-e]イソキノリン-14-カルボキサミド(9.00kg,1当量)、エタノール(202.5L)、テトラヒドロフラン(67.5L)及び水(54.0L)を加えた。得られた溶液へ、ギ酸(16.5kg,20当量)及びトリエチルアミン(36.8kg,20当量)を加え、室温で30分攪拌し、透明な溶液とした。反応混合物に10%パラジウム/炭素(3.64kg)を加え60-70度で2時間攪拌した。
 反応混合物を室温まで冷却後、セライトパッドで濾過し不溶物を除去した。パッドをエタノールで洗浄し、濾液と洗液を合わせ、減圧下にて60Lまで濃縮した。残った水層に水(45L)を加え、酢酸エチル(45L×3回)で抽出した。合わせた有機層を8%炭酸水素ナトリウム水溶液(90L)及び水(82L)で洗浄し、有機層を10Lまで濃縮した。酢酸エチル(27L)を加え60-70度で30分攪拌後、n-ヘプタン(81L)をそのままの温度で加えた。得られた混合液を60-70度で30分攪拌し、その後10-20度まで冷却し、6時間攪拌した。混合液中の固体を濾別し、乾燥することで表題化合物粗体(7.95kg,88%収率、98.10%純度)を白色個体として得た。

 得られた化合物のプロトンNMRは特許文献1記載の化合物70(参考例10)の値と一致した。
The potassium formate of Example 1 was changed to formic acid / triethylamine, and the following experiment was carried out in the same manner. To a 1000 L reactor, (4R, 4aR, 7R, 7aR, 12bS, 14S) -7-benzyl-3- (cyclopropylmethyl) -7-hydroxy-9-methoxy-1,2,3,4,7, 7a-Hexahydro-7,4a-Etano-4,12-methanobenzoflo [3,2-e] isoquinoline-14-carboxamide (9.00 kg, 1 equivalent), ethanol (202.5 L), tetrahydrofuran (67.5 L) and Water (54.0 L) was added. Formic acid (16.5 kg, 20 eq) and triethylamine (36.8 kg, 20 eq) were added to the obtained solution, and the mixture was stirred at room temperature for 30 minutes to prepare a transparent solution. 10% Palladium / carbon (3.64 kg) was added to the reaction mixture, and the mixture was stirred at 60-70 ° C. for 2 hours.
The reaction mixture was cooled to room temperature and then filtered through a Celite pad to remove insoluble matter. The pad was washed with ethanol, the filtrate and the washing liquid were combined, and concentrated to 60 L under reduced pressure. Water (45 L) was added to the remaining aqueous layer, and the mixture was extracted with ethyl acetate (45 L × 3 times). The combined organic layer was washed with 8% aqueous sodium hydrogen carbonate solution (90 L) and water (82 L), and the organic layer was concentrated to 10 L. Ethyl acetate (27 L) was added and stirred at 60-70 ° C. for 30 minutes, and then n-heptane (81 L) was added at the same temperature. The resulting mixture was stirred at 60-70 ° C for 30 minutes, then cooled to 10-20 ° C and stirred for 6 hours. The solid in the mixture was filtered off and dried to give the title compound crude (7.95 kg, 88% yield, 98.10% purity) as a white solid.

The proton NMR of the obtained compound was in agreement with the value of compound 70 (Reference Example 10) described in Patent Document 1.
 実施例2の製造をフローケミストリーを用い以下のように実験を行った。
 1000Lの反応装置へ、(4R,4aR,7R,7aR,12bS,14S)―N-ベンジル-3-(シクロプロピルメチル)-7-ヒドロキシ-9-メトキシ-1,2,3,4,7,7a-ヘキサヒドロ-7,4a-エタノ-4,12-メタノベンゾフロ[3,2-e]イソキノリン-14-カルボキサミド(9.0kg,1当量)、エタノール(202L)、テトラヒドロフラン(67L)、水(54L)、ギ酸(16.65kg,20当量)及びトリエチルアミン(36.54kg,20当量)を加え、室温で30分攪拌し透明な溶液とした。19個の固定床反応装置にそれぞれ10%パラジウム/炭素(0.18kg,合計3.42kg)を充填した。その後70-80度に加温した各固定相反応装置へ上記混合溶液を流速126mL/分の流速にてそれぞれ3時間ずつ送液した。各反応液を合わせ、60Lまで濃縮した。残った水層に水(45L)を加え、酢酸エチル(45L×2回)で抽出した。合わせた有機層を8%炭酸水素ナトリウム水溶液(90L)及び水(90L)で洗浄し、有機層を10Lまで濃縮した。酢酸エチル(27L)を加え60-70度で30分攪拌後、n-ヘプタン(81L)をそのままの温度で加えた。得られた混合液を65-70度で30分攪拌し、その後10-20度まで冷却し、6時間攪拌した。混合液中の固体を濾別し、乾燥することで表題化合物粗体(8.08kg、90%収率、99.55%純度)を白色固体として得た。

 得られた化合物のプロトンNMRは特許文献1記載の化合物70(参考例10)の値と一致した。
The production of Example 2 was carried out using flow chemistry as follows.
To a 1000 L reactor, (4R, 4aR, 7R, 7aR, 12bS, 14S) -7-benzyl-3- (cyclopropylmethyl) -7-hydroxy-9-methoxy-1,2,3,4,7, 7a-Hexahydro-7,4a-Etano-4,12-methanobenzoflo [3,2-e] isoquinolin-14-carboxamide (9.0 kg, 1 eq), ethanol (202 L), tetrahydrofuran (67 L), water (54 L) , Formic acid (16.65 kg, 20 eq) and triethylamine (36.54 kg, 20 eq) were added and stirred at room temperature for 30 minutes to give a clear solution. Each of the 19 fixed bed reactors was filled with 10% palladium / carbon (0.18 kg, total 3.42 kg). After that, the mixed solution was sent to each stationary phase reactor heated to 70-80 ° C. at a flow rate of 126 mL / min for 3 hours each. Each reaction solution was combined and concentrated to 60 L. Water (45 L) was added to the remaining aqueous layer, and the mixture was extracted with ethyl acetate (45 L × 2 times). The combined organic layer was washed with 8% aqueous sodium hydrogen carbonate solution (90 L) and water (90 L), and the organic layer was concentrated to 10 L. Ethyl acetate (27 L) was added and stirred at 60-70 ° C. for 30 minutes, and then n-heptane (81 L) was added at the same temperature. The resulting mixture was stirred at 65-70 ° C for 30 minutes, then cooled to 10-20 ° C and stirred for 6 hours. The solid in the mixture was filtered off and dried to give the title compound crude (8.08 kg, 90% yield, 99.55% purity) as a white solid.

The proton NMR of the obtained compound was in agreement with the value of compound 70 (Reference Example 10) described in Patent Document 1.

Claims (26)

  1. Figure JPOXMLDOC01-appb-C000001
    (式中、Rは水素原子、置換基を有していてもよいC1-10アルキル基、置換基を有していてもよいシクロアルキルアルキル基(シクロアルキル部分の炭素原子数は3~6で、アルキレン部分の炭素原子数は1~5を示す。)、置換基を有していてもよいアラルキル基(アリール部分の炭素原子数は6~10で、アルキレン部分の炭素原子数は1~5を示す。)、置換基を有していてもよいヘテロアリールアルキル基(ヘテロアリールはN、O及びSから選択される1~4個のヘテロ原子を環構成原子として含み、アルキレン部分の炭素原子数は1~5を示す。)、置換基を有していてもよいC3-6シクロアルキル基又は置換基を有していてもよいC6-10アリール基を表し、
     R及びRは水素原子、置換基を有していてもよいC1-10アルキル基、置換基を有していてもよいアラルキル基(アリール部分の炭素原子数は6~10で、アルキレン部分の炭素原子数は1~5を示す。)又はヒドロキシ保護基を表し、
     R、R、Rは同一又は異なって水素原子、置換基を有していてもよいC1-10アルキル基、置換基を有していてもよいC3-6シクロアルキル基、置換基を有していてもよいC6-10アリール基を表すか、
    とRが結合して置換基を有していてもよいC3-6飽和炭化水素環を表し、RとRが結合して置換基を有していてもよいC3-6飽和炭化水素環又は置換基を有していてもよいC3-6シクロアルケンを表し、
     Rは水素原子、置換基を有していてもよいC1-10アルキル基、置換基を有していてもよいC3-6シクロアルキル基、置換基を有していてもよいシクロアルキルアルキル基(シクロアルキル部分の炭素原子数は3~6で、アルキレン部分の炭素原子数は1~5を示す。)、置換基を有していてもよいアラルキル基(アリール部分の炭素原子数は6~10で、アルキレン部分の炭素原子数は1~5を示す。)、置換基を有していてもよいヘテロアリールアルキル基(ヘテロアリールはN、O及びSから選択される1~4個のヘテロ原子を環構成原子として含み、アルキレン部分の炭素原子数は1~5を示す。)、置換基を有していてもよいC6-10アリール基又は置換基を有していてもよいヘテロアリール基(ヘテロアリールはN、O及びSから選択される1~4個のヘテロ原子を環構成原子として含み、アルキレン部分の炭素原子数は1~5を示す。)を表し、
     Rは置換基を有していてもよいC1-10アルキル基、置換基を有していてもよいC3-6シクロアルキル基、置換基を有していてもよいシクロアルキルアルキル基(シクロアルキル部分の炭素原子数は3~6で、アルキレン部分の炭素原子数は1~5を示す。)、置換基を有していてもよいアラルキル基(アリール部分の炭素原子数は6~10で、アルキレン部分の炭素原子数は1~5を示す。)、置換基を有していてもよいヘテロアリールアルキル基(ヘテロアリールはN、O及びSから選択される1~4個のヘテロ原子を環構成原子として含み、アルキレン部分の炭素原子数は1~5を示す。)、置換基を有していてもよいアリール基又は置換基を有していてもよいヘテロアリール基(ヘテロアリールはN、O及びSから選択される1~4個のヘテロ原子を環構成原子として含み、アルキレン部分の炭素原子数は1~5を示す。)、アミノ基を表す。)で表される化合物を、パラジウム触媒及びギ酸若しくはその塩又はギ酸及びトリアルキルアミンの混合物の存在下、溶媒中又は溶媒の非存在下で作用させることによる次の一般式(II)
    Figure JPOXMLDOC01-appb-C000002
    (式中、R~Rは前記と同じものを示す。)で表される化合物の製造方法。
    Figure JPOXMLDOC01-appb-C000001
    (In the formula, R 1 is a hydrogen atom, a C 1-10 alkyl group which may have a substituent, and a cycloalkylalkyl group which may have a substituent (the number of carbon atoms in the cycloalkyl moiety is 3 to 3 to In 6, the number of carbon atoms of the alkylene moiety is 1 to 5), and the aralkyl group which may have a substituent (the number of carbon atoms of the aryl moiety is 6 to 10 and the number of carbon atoms of the alkylene moiety is 1). ~ 5;), a heteroarylalkyl group which may have a substituent (heteroaryl contains 1 to 4 heteroatoms selected from N, O and S as ring-constituting atoms, and is an alkylene moiety. The number of carbon atoms indicates 1 to 5), which represents a C 3-6 cycloalkyl group which may have a substituent or a C 6-10 aryl group which may have a substituent.
    R 2 and R 3 are a hydrogen atom, a C 1-10 alkyl group which may have a substituent, and an aralkyl group which may have a substituent (the number of carbon atoms in the aryl portion is 6 to 10, and the alkylene group is used. The number of carbon atoms in the moiety indicates 1 to 5) or represents a hydroxy protective group.
    R 4 , R 5 and R 6 are the same or different hydrogen atoms, C 1-10 alkyl groups which may have substituents, C 3-6 cycloalkyl groups which may have substituents, substitutions. Representing a C 6-10 aryl group which may have a group
    R 4 and R 5 represents an C 3-6 saturated hydrocarbon ring which may have a substituent bonded, which may have a substituent bonded R 5 and R 6 are C 3- Represents a C 3-6 cycloalkene which may have a 6- saturated hydrocarbon ring or substituents.
    R 7 is a hydrogen atom, a C 1-10 alkyl group which may have a substituent, a C 3-6 cycloalkyl group which may have a substituent, and a cycloalkyl which may have a substituent. Alkyl group (the number of carbon atoms in the cycloalkyl moiety is 3 to 6 and the number of carbon atoms in the alkylene moiety is 1 to 5), and the aralkyl group which may have a substituent (the number of carbon atoms in the aryl moiety is 1 to 5). 6 to 10, the number of carbon atoms of the alkylene moiety indicates 1 to 5), a heteroarylalkyl group which may have a substituent (heteroaryl is 1 to 4 selected from N, O and S). The heteroatom of the above is contained as a ring-constituting atom, and the number of carbon atoms of the alkylene moiety indicates 1 to 5), which may have a C 6-10 aryl group or a substituent. It represents a heteroaryl group (heteroaryl contains 1 to 4 heteroatoms selected from N, O and S as ring-constituting atoms, and the number of carbon atoms in the alkylene moiety indicates 1 to 5).
    R 8 is a C 1-10 alkyl group which may have a substituent, a C 3-6 cycloalkyl group which may have a substituent, and a cycloalkyl alkyl group which may have a substituent ( The cycloalkyl moiety has 3 to 6 carbon atoms, the alkylene moiety has 1 to 5 carbon atoms), and an aralkyl group which may have a substituent (the aryl moiety has 6 to 10 carbon atoms). The number of carbon atoms in the alkylene moiety is 1 to 5), a heteroarylalkyl group which may have a substituent (heteroaryl is 1 to 4 heteroatoms selected from N, O and S). As a ring-constituting atom, the number of carbon atoms in the alkylene moiety is 1 to 5), an aryl group which may have a substituent or a heteroaryl group which may have a substituent (heteroaryl is It contains 1 to 4 heteroatoms selected from N, O and S as ring-constituting atoms, and the number of carbon atoms in the alkylene moiety indicates 1 to 5), representing an amino group. ) Is allowed to act in the presence of a palladium catalyst and formic acid or a salt thereof or a mixture of formic acid and trialkylamine, in a solvent or in the absence of a solvent, according to the following general formula (II).
    Figure JPOXMLDOC01-appb-C000002
    (In the formula, R 1 to R 8 indicate the same as above.) A method for producing a compound represented by the above.
  2.  Rが水素原子又は置換基を有していてもよいC1-10アルキル基、Rが水素原子、置換基を有していてもよいC1-10アルキル基又はヒドロキシ保護基である請求項1記載の製造方法。 Claimed that R 2 is a C 1-10 alkyl group which may have a hydrogen atom or a substituent, and R 3 is a C 1-10 alkyl group or a hydroxy protective group which may have a hydrogen atom or a substituent. Item 1. The manufacturing method according to Item 1.
  3.  Rが水素原子又はメチル基、Rが置換基を有していてもよいC1-10アルキル基又はヒドロキシ保護基である請求項1又は2のいずれか一項記載の製造方法。 The production method according to any one of claims 1 or 2, wherein R 2 is a hydrogen atom or a methyl group, and R 3 is a C 1-10 alkyl group or a hydroxy protecting group which may have a substituent.
  4.  Rが水素原子又はメチル基、Rがメチル基又はシリル系保護基である請求項1~3のいずれか一項記載の製造方法。 The production method according to any one of claims 1 to 3, wherein R 2 is a hydrogen atom or a methyl group, and R 3 is a methyl group or a silyl protecting group.
  5.  Rが水素原子、置換基を有していてもよいC1-10アルキル基、置換基を有していてもよいシクロアルキルアルキル基(シクロアルキル部分の炭素原子数は3~6で、アルキレン部分の炭素原子数は1~5を示す。)、置換基を有していてもよいアラルキル基(アリール部分の炭素原子数は6~10で、アルキレン部分の炭素原子数は1~5を示す)、置換基を有していてもよいアリール基、置換基を有していてもよいヘテロアリール基又は置換基を有していてもよいヘテロアリールアルキル基(ヘテロアリールはN、O及びSから選択される1~4個のヘテロ原子を環構成原子として含み、アルキレン部分の炭素原子数は1~5。)である請求項1~4のいずれか一項記載の製造方法。 R 7 is a hydrogen atom, a C 1-10 alkyl group which may have a substituent, and a cycloalkylalkyl group which may have a substituent (the cycloalkyl moiety has 3 to 6 carbon atoms and is alkylene. The number of carbon atoms in the moiety indicates 1 to 5), the aralkyl group which may have a substituent (the number of carbon atoms in the aryl moiety is 6 to 10, and the number of carbon atoms in the alkylene moiety indicates 1 to 5). ), An aryl group which may have a substituent, a heteroaryl group which may have a substituent, or a heteroarylalkyl group which may have a substituent (heteroaryl is from N, O and S). The production method according to any one of claims 1 to 4, wherein 1 to 4 selected heteroatoms are contained as ring-constituting atoms, and the number of carbon atoms in the alkylene moiety is 1 to 5).
  6.  Rが置換基を有していてもよいC1-10アルキル基、置換基を有していてもよいシクロアルキルアルキル基(シクロアルキル部分の炭素原子数は3~6で、アルキレン部分の炭素原子数は1~5を示す。)又は置換基を有していてもよいアラルキル基(アリール部分の炭素原子数は6~10で、アルキレン部分の炭素原子数は1~5を示す。)、から選択される置換基である請求項1~5のいずれか一項記載の製造方法。 C 1-10 alkyl group in which R 1 may have a substituent, cycloalkylalkyl group in which a substituent may be present (the number of carbon atoms in the cycloalkyl moiety is 3 to 6, and the carbon in the alkylene moiety). The number of atoms indicates 1 to 5) or an aralkyl group which may have a substituent (the number of carbon atoms in the aryl moiety is 6 to 10 and the number of carbon atoms in the alkylene moiety indicates 1 to 5). The production method according to any one of claims 1 to 5, which is a substituent selected from.
  7.  Rが置換基を有していてもよいC1-10アルキル基又は置換基を有していてもよいシクロアルキルアルキル基(シクロアルキル部分の炭素原子数は3~6で、アルキレン部分の炭素原子数は1~5を示す。)のいずれかの置換基である請求項1~6のいずれか一項記載の製造方法。 R 1 may have a substituent C 1-10 alkyl group or a cycloalkyl alkyl group which may have a substituent (the number of carbon atoms in the cycloalkyl moiety is 3 to 6 and the carbon in the alkylene moiety). The production method according to any one of claims 1 to 6, which is a substituent according to any one of (1 to 5).
  8.  Rが置換基を有していてもよいシクロアルキルアルキル基(シクロアルキル部分の炭素原子数は3~6で、アルキレン部分の炭素原子数は1~5を示す。)である請求項1~7のいずれか一項記載の製造方法。 Claims 1 to 1 to which R 1 is a cycloalkylalkyl group which may have a substituent (the number of carbon atoms of the cycloalkyl moiety is 3 to 6 and the number of carbon atoms of the alkylene moiety is 1 to 5). The manufacturing method according to any one of 7.
  9.  請求項8記載の置換基を有していてもよいシクロアルキルアルキル基がシクロプロピルメチル基である請求項8記載の製造方法。 The production method according to claim 8, wherein the cycloalkylalkyl group which may have the substituent according to claim 8 is a cyclopropylmethyl group.
  10.  Rが置換基を有していてもよいC1-10アルキル基である請求項1~7のいずれか一項記載の製造方法。 The production method according to any one of claims 1 to 7, wherein R 1 is a C 1-10 alkyl group which may have a substituent.
  11.  請求項10記載の置換基を有していてもよいC1-10アルキル基がメチル基である請求項10記載の製造方法。 The production method according to claim 10 , wherein the C 1-10 alkyl group which may have the substituent according to claim 10 is a methyl group.
  12.  請求項1記載のパラジウム触媒がパラジウム担持触媒である請求項1~11のいずれか一項記載の製造方法。 The production method according to any one of claims 1 to 11, wherein the palladium catalyst according to claim 1 is a palladium-supported catalyst.
  13.  請求項12記載のパラジウム担持触媒がパラジウム/炭素、水酸化パラジウム/炭素、パラジウム/アルミナ、パラジウム/硫酸バリウムから選択される請求項12記載の製造方法。 The production method according to claim 12, wherein the palladium-supporting catalyst according to claim 12 is selected from palladium / carbon, palladium / carbon hydroxide, palladium / alumina, and palladium / barium sulfate.
  14.  請求項13記載のパラジウム担持触媒がパラジウム/炭素、水酸化パラジウム/炭素から選択される請求項13記載の製造方法。 The production method according to claim 13, wherein the palladium-supporting catalyst according to claim 13 is selected from palladium / carbon and palladium / carbon hydroxide.
  15.  請求項12~14記載のパラジウム担持触媒の使用量が一般式(I)の化合物に対し5~100モル%である請求項12~14のいずれか一項記載の製造方法。 The production method according to any one of claims 12 to 14, wherein the amount of the palladium-supported catalyst used according to claims 12 to 14 is 5 to 100 mol% with respect to the compound of the general formula (I).
  16.  請求項12~14記載のパラジウム担持触媒の使用量が一般式(I)の化合物に対し10~60モル%である請求項12~14のいずれか一項記載の製造方法。 The production method according to any one of claims 12 to 14, wherein the amount of the palladium-supported catalyst used according to claims 12 to 14 is 10 to 60 mol% with respect to the compound of the general formula (I).
  17.  請求項1記載のギ酸又はその塩における塩がアンモニア、アミン類又はアルカリ金属との塩である請求項1~16のいずれか一項記載の製造方法。 The production method according to any one of claims 1 to 16, wherein the salt of formic acid or a salt thereof according to claim 1 is a salt with ammonia, amines or an alkali metal.
  18.  請求項17記載のギ酸又はその塩における塩がギ酸カリウムである請求項15記載の製造方法。 The production method according to claim 15, wherein the salt in the formic acid or a salt thereof according to claim 17 is potassium formate.
  19.  請求項1記載のギ酸とトリアルキルアミンの混合物におけるトリアルキルアミンがトリエチルアミンである請求項1~16のいずれか一項記載の製造方法。 The production method according to any one of claims 1 to 16, wherein the trialkylamine in the mixture of formic acid and trialkylamine according to claim 1 is triethylamine.
  20.  請求項19記載のギ酸とトリエチルアミンの混合物のモル比が10:1~1:1である請求項19記載の製造方法。 The production method according to claim 19, wherein the molar ratio of the mixture of formic acid and triethylamine according to claim 19 is 10: 1 to 1: 1.
  21.  請求項20記載のギ酸とトリエチルアミンの混合物のモル比が1:1である請求項20記載の製造方法。 The production method according to claim 20, wherein the molar ratio of the mixture of formic acid and triethylamine according to claim 20 is 1: 1.
  22.  請求項1記載の溶媒がアルコール系溶媒、ケトン系溶媒、エーテル系溶媒、非プロトン性極性溶媒、炭化水素系溶媒、エステル系溶媒、水又はこれらの混液から選択される請求項1~21のいずれか一項記載の製造方法。 Any of claims 1 to 21, wherein the solvent according to claim 1 is selected from an alcohol solvent, a ketone solvent, an ether solvent, an aprotonic polar solvent, a hydrocarbon solvent, an ester solvent, water, or a mixed solution thereof. The manufacturing method described in item 1.
  23.  請求項21記載の溶媒がアルコール系溶媒、エーテル系溶媒、エステル系溶媒、水又はこれらの混液から選択される請求項21記載の製造方法。 The production method according to claim 21, wherein the solvent according to claim 21 is selected from an alcohol solvent, an ether solvent, an ester solvent, water, or a mixed solution thereof.
  24.  請求項23記載の溶媒がアルコール系溶媒、水又はこれらの混液から選択される請求項23記載の製造方法。 The production method according to claim 23, wherein the solvent according to claim 23 is selected from an alcohol solvent, water, or a mixed solution thereof.
  25.  請求項1~24記載の製造方法がフローケミストリーによるものである請求項1~24記載の製造方法。 The manufacturing method according to claims 1 to 24, wherein the manufacturing method according to claims 1 to 24 is based on flow chemistry.
  26.  前記一般式(II)で表される化合物が、下記の番号1~58で示される化合物から選択される化合物又はその塩である請求項1~25のいずれか一項記載の製造方法。
    Figure JPOXMLDOC01-appb-C000003
    Figure JPOXMLDOC01-appb-C000004
    Figure JPOXMLDOC01-appb-C000005
    Figure JPOXMLDOC01-appb-C000006
    Figure JPOXMLDOC01-appb-C000007
    Figure JPOXMLDOC01-appb-C000008
    Figure JPOXMLDOC01-appb-C000009
    Figure JPOXMLDOC01-appb-C000010
    Figure JPOXMLDOC01-appb-C000011
    Figure JPOXMLDOC01-appb-C000012
    Figure JPOXMLDOC01-appb-C000013
    Figure JPOXMLDOC01-appb-C000014
    The production method according to any one of claims 1 to 25, wherein the compound represented by the general formula (II) is a compound selected from the compounds represented by the following numbers 1 to 58 or a salt thereof.
    Figure JPOXMLDOC01-appb-C000003
    Figure JPOXMLDOC01-appb-C000004
    Figure JPOXMLDOC01-appb-C000005
    Figure JPOXMLDOC01-appb-C000006
    Figure JPOXMLDOC01-appb-C000007
    Figure JPOXMLDOC01-appb-C000008
    Figure JPOXMLDOC01-appb-C000009
    Figure JPOXMLDOC01-appb-C000010
    Figure JPOXMLDOC01-appb-C000011
    Figure JPOXMLDOC01-appb-C000012
    Figure JPOXMLDOC01-appb-C000013
    Figure JPOXMLDOC01-appb-C000014
PCT/JP2021/024733 2020-06-30 2021-06-30 Method for producing morphinan derivative WO2022004783A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020112310A JP2023113976A (en) 2020-06-30 2020-06-30 Method for producing morphinan derivative
JP2020-112310 2020-06-30

Publications (1)

Publication Number Publication Date
WO2022004783A1 true WO2022004783A1 (en) 2022-01-06

Family

ID=79316292

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/024733 WO2022004783A1 (en) 2020-06-30 2021-06-30 Method for producing morphinan derivative

Country Status (2)

Country Link
JP (1) JP2023113976A (en)
WO (1) WO2022004783A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012013671A1 (en) * 2010-07-27 2012-02-02 Universität Innsbruck Processes for the production of 14 - oxygenated morphinan - 6 - ones
WO2013035833A1 (en) * 2011-09-09 2013-03-14 学校法人北里研究所 Morphinan derivative
JP2016534999A (en) * 2013-11-07 2016-11-10 マリンクロッド エルエルシー Preparation of 6-hydroxymorphinan without isolation of intermediate

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012013671A1 (en) * 2010-07-27 2012-02-02 Universität Innsbruck Processes for the production of 14 - oxygenated morphinan - 6 - ones
WO2013035833A1 (en) * 2011-09-09 2013-03-14 学校法人北里研究所 Morphinan derivative
JP2016534999A (en) * 2013-11-07 2016-11-10 マリンクロッド エルエルシー Preparation of 6-hydroxymorphinan without isolation of intermediate

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
FUJII H, ET AL.: "DRUG DESIGN AND SYNTHESIS OF EPSILON OPIOID RECEPTOR AGONIST: 17-(CYCLOPROPYLMETHYL)-4,5ALPHA-EPOXY-3,6BETA-DIHYDROXY-6,14-ENDOETHENOMORPHINAN-7ALPHA-(N-METHYL-N-PHENETHYL)CARBOXAMIDE (TAN-821) INDUCING ANTINOCICEPTION MEDIATED BY PUTATIVE EPSILON OPIOID", BIOORGANIC, ELSEVIER, AMSTERDAM, NL, vol. 12, no. 15, 1 January 2004 (2004-01-01), AMSTERDAM, NL, pages 4133 - 4145, XP008050503, ISSN: 0968-0896, DOI: 10.1016/j.bmc.2004.05.024 *
HAN, Y. ET AL.: "Synthesis of a novel 7,14 beta -ethano-bridged opiate", HETEROCYCLES, vol. 51, no. 10, 1999, pages 2343 - 2347 *

Also Published As

Publication number Publication date
JP2023113976A (en) 2023-08-17

Similar Documents

Publication Publication Date Title
JP5587204B2 (en) Process for producing (+)-"null" morphinan compounds
WO2007092641A2 (en) Method for substituted 1h-imidazo[4,5-c]pyridines
CA2988594C (en) Methods of making protein deacetylase inhibitors
US11976060B2 (en) Method for preparing beta-lactam derivative
JP6127040B2 (en) Transition metal catalyzed process and its use for the preparation of N-allyl compounds
KR20020048427A (en) Process and intermediates for the preparation of imidazolidinone alpha V integrin antagonists
TWI527826B (en) A process for the preparation of regadenoson
TW201738229A (en) Process for the preparation of N-[(5-pyrimidinyl)methyl]-2-pyridinamines
JP2014077007A (en) Process for preparing normorphinan salt
CA3226980A1 (en) Method for preparing a tryptamine derivative.
WO2022004783A1 (en) Method for producing morphinan derivative
EP3722289A1 (en) Method for producing 2-substituted-3-ethylsulfonyl pyridine compound and like
TW202003522A (en) Process for preparation of morphinan derivatives
MX2013004968A (en) Method for preparing 2,2-difluoroethylamine derivatives starting from n-(2,2-difluoroethyl)prop-2-en-1-amine.
AU2020317503A1 (en) Method for producing phenol derivative
CN114127076A (en) Process for producing morphinan derivative
EP3328865B1 (en) New process for preparing hydromorphone and derivatives thereof
JP6664170B2 (en) Method for producing aminohydroxypyridine compound
KR102147971B1 (en) Method for preparing chemoselective triazole derivatives through miscibility with reaction solvent
CN109456332B (en) Stable aza [3.3.3] propellane carbene and preparation method thereof
WO2019168025A1 (en) Method for producing morphinan derivatives
CN107954981B (en) Method for synthesizing alpha-ethyl azacycloheptane-2-ketone substituted pyridine compound
KR20170080190A (en) Method for preparing eight-membered heterocycles using catalytic cycloaddition of 1,5-dipole and eight-membered heterocycles prepared thereby
JP2022022550A (en) Novel production method for apixaban
CN112279849A (en) N-difluoromethyl azaindole compound and synthesis method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21834385

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21834385

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP