WO2022004770A1 - Blood vessel model and method for assessing medical long body - Google Patents

Blood vessel model and method for assessing medical long body Download PDF

Info

Publication number
WO2022004770A1
WO2022004770A1 PCT/JP2021/024687 JP2021024687W WO2022004770A1 WO 2022004770 A1 WO2022004770 A1 WO 2022004770A1 JP 2021024687 W JP2021024687 W JP 2021024687W WO 2022004770 A1 WO2022004770 A1 WO 2022004770A1
Authority
WO
WIPO (PCT)
Prior art keywords
passage
branch
blood vessel
main
main passage
Prior art date
Application number
PCT/JP2021/024687
Other languages
French (fr)
Japanese (ja)
Inventor
健一 堀場
春佳 杉村
大 冨田
春佳 浅見
理樹 影山
Original Assignee
テルモ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by テルモ株式会社 filed Critical テルモ株式会社
Priority to JP2022534071A priority Critical patent/JPWO2022004770A1/ja
Publication of WO2022004770A1 publication Critical patent/WO2022004770A1/en

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B23/00Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes
    • G09B23/28Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes for medicine
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B9/00Simulators for teaching or training purposes

Definitions

  • the present invention relates to a blood vessel model simulating a blood vessel and a method for evaluating a medical long body using the blood vessel model.
  • Patent Document 1 describes a blood vessel model used for testing the operational performance of a medical long body.
  • a microcatheter or a small bifurcated blood vessel that branches from a large main blood vessel to a sharp turn is used. It may be difficult to select because it is selected by the guide wire.
  • the main blood vessel is thick, the microcatheter is easily bent, so that it is difficult to enter the bifurcated blood vessel, or even if it enters, the tip of the microcatheter may come off.
  • the tip of the microcatheter easily comes out of the bifurcated blood vessel, which makes selection more difficult.
  • the inner diameter of the internal iliac artery which is the main blood vessel, is about 2 to 8 mm, and the inner diameter of the bifurcated blood vessel is about 1 mm.
  • the inner diameter of the main blood vessel is about 2 to 5 mm
  • the inner diameter of the bifurcated blood vessel is about 1 mm
  • the bifurcation may be continuous. If the branch is further continuous from the bifurcated vessel, it becomes more difficult to select the bifurcated vessel with a microcatheter or a guide wire.
  • the present invention has been made to solve the above-mentioned problems, and is a vascular model capable of evaluating the selection performance of a medical long body for a bifurcated blood vessel that branches at a sharp angle so as to be folded back from the main blood vessel. And to provide a method for evaluating medical strips.
  • the blood vessel model according to the present invention that achieves the above object is a blood vessel model having a main passage simulating a main blood vessel and a branch passage thinner than the main passage simulating a branch blood vessel branching from the main blood vessel.
  • the branch angle of the branch passage with respect to the main passage is more than 0 degrees and less than 90 degrees when the case where the branch passage is folded back in the opposite direction to the main passage is defined as 0 degrees. It is characterized by.
  • the method for evaluating a medical elongated body according to the present invention is an evaluation method for a medical elongated body using a blood vessel model, which is a main passage simulating a main blood vessel and a branch from the main blood vessel. It has a branch passage thinner than the main passage by simulating a branch blood vessel, and the branch angle of the branch passage with respect to the main passage is a case where the branch passage is folded back in the opposite direction to the main passage.
  • a step of preparing a vascular model that is more than 0 degrees and less than 90 degrees when defined as 0 degrees, and the medical elongated body is inserted into the main passage and reached from the main passage to the branch passage. It is characterized by having a step of attempting to do so and a step of determining whether or not to reach the branch passage.
  • the vascular model configured as described above and the evaluation method for the medical elongate can evaluate the selection performance of the medical elongate for the bifurcated blood vessel that branches at an acute angle so as to be folded back from the main blood vessel. ..
  • the blood vessel model may have a plurality of branch passages having different branch angles with respect to the main passage. This makes it possible to evaluate the selection performance of medical long bodies in bifurcated blood vessels at various bifurcation angles with one blood vessel model.
  • the blood vessel model has a plurality of main passages having different inner diameters, and the branch passages branching from the main passages may be provided. As a result, multiple combinations of main passages and branch passages are provided, so one blood vessel model reproduces a branch blood vessel that branches at an acute angle so that it can be folded back from main blood vessels of various inner diameters, and is a medical long body. It is possible to evaluate the selection performance.
  • the inner diameters of the plurality of main passages having different inner diameters may be gradually decreased toward the peripheral side. This makes it possible to simulate the actual blood vessel diameter and make the blood vessel model compact.
  • the blood vessel model may have at least one peripheral bifurcation passage that branches on the peripheral side of the bifurcation passage away from the main passage. This makes it possible to evaluate the selection performance of a medical long body that continuously passes through a plurality of branches.
  • the blood vessel model has a plurality of branch passages having different branch angles with respect to the main passage, and at least one of the peripheral branch passages provided at the periphery of the branch passage may be another branch passage. ..
  • the peripheral branch passage provided at one periphery of the branch passage can be reproduced by the other branch passage, so that the blood vessel model can be realized compactly.
  • the main passage may be branched and provided in plurality.
  • a blood vessel model having a plurality of main passages can be realized compactly.
  • a plurality of branch passages in which a plurality of branch passages having different branch angles with respect to the main passage are arranged in the extending direction of the main passage may be provided at different positions in the circumferential direction of the main passage. This makes it possible to evaluate the selection performance of medical long bodies in various bifurcated blood vessels with one blood vessel model.
  • the blood vessel model 10 is a model simulating a blood vessel in order to evaluate the selectivity of a bifurcated blood vessel of a medical long body such as a microcatheter or a guide wire.
  • the use of the blood vessel model 10 is not limited to the use for evaluation of a medical long body, and may be used, for example, for training of a procedure.
  • the blood vessel model 10 includes two split simulation portions 11, two holding plates 12 sandwiching the split simulation portions 11, a plurality of connecting tools 13, and an insertion port 14. ing.
  • the two divided simulation units 11 are substantially rectangular flat plates in which a groove simulating a blood vessel is formed on the facing surface 15 side.
  • the two split simulated portions 11 are formed in a plane-symmetrical shape. Therefore, by overlapping on the facing surfaces 15, the grooves overlap, and a blood vessel simulating portion 20 simulating a blood vessel having a substantially circular cross section is formed.
  • the split simulated portion 11 is preferably transparent or translucent so that the inside can be visually recognized, and is preferably formed of a flexible material close to the actual living tissue.
  • the constituent material of the division simulation unit 11 is not particularly limited, and is, for example, a silicone resin, SEBS as various elastomer resins, a polyolefin elastomer, a polyamide elastomer, an acrylic elastomer, a fluoroelastomer, and the like.
  • the constituent material of the split simulated portion 11 is a silicone resin.
  • the division simulation unit 11 is well formed by using a mold, but the forming method is not particularly limited, and the division simulation unit 11 may be formed by, for example, a 3D printer.
  • the holding plate 12 is a member that sandwiches the two split simulated portions 11 in order to hold the two flexible split simulated portions 11 in an overlapping state.
  • Each holding plate 12 is a substantially rectangular flat plate capable of covering the divided simulated portion 11.
  • the holding plate 12 is preferably transparent or translucent so that the inside can be visually recognized, and is preferably formed of a hard material capable of holding the flexible split simulated portion 11.
  • the constituent material of the holding plate 12 is not particularly limited, and is, for example, acrylic resin, ABS resin, acrylic resin, methacrylic resin, polycarbonate, melamine resin, styrene resin, hard vinyl chloride resin, fluororesin, glass and the like.
  • the constituent material of the holding plate 12 is an acrylic resin.
  • the connector 13 is a member for holding the split simulated portion 11 sandwiched between the holding plates 12.
  • the connector 13 is composed of, for example, bolts and nuts capable of sandwiching the two holding plates 12 through the through holes formed in the split simulated portion 11 and the holding plate 12.
  • the configuration of the connector 13 is not particularly limited, and may be, for example, a clamp or the like.
  • the insertion port 14 is a site for inserting a medical long body into the blood vessel model 10.
  • the insertion port 14 is arranged in communication with the groove so as to be sandwiched between the opposite grooves on the side end faces of the two division simulated portions 11.
  • the insertion port 14 is composed of, for example, a hemostatic valve having a three-way stopcock, a Y connector, or the like.
  • the insertion port 14 is connected to a communication passage 21 described later of the blood vessel simulating unit 20 as a site for inserting a medical long body.
  • the insertion port 14 provided with a hemostatic valve or the like may be arranged at an opening other than the connecting passage 21 on the side end faces of the two split simulated portions 11. This makes it easy to fill the inside of the blood vessel simulating portion 20 with a liquid, and it is possible to maintain a good state of being filled with the liquid.
  • the blood vessel model 10 is a model having a substantially planar structure.
  • the plate thickness of the blood vessel model 10 having a substantially planar structure is 100 mm or less, preferably 50 mm or less, and more preferably 30 mm or less.
  • the blood vessel simulation unit 20 formed in the division simulation unit 11 includes a connecting passage 21 through which the insertion port 14 communicates, a plurality of main passages 30 simulating a main blood vessel, and a plurality of branch passages simulating a bifurcated blood vessel branching from the main blood vessel. 40 and an auxiliary passage 50 for bleeding air when filling the inside of the blood vessel simulating portion 20 with a liquid are provided.
  • the plurality of main passages 30 include a base end main passage 31 extending from the connecting passage 21, a first main passage 32 communicating with the base end main passage 31, and a second main passage 33 branching from the base end main passage 31. It has a third main passage 34 communicating with the second main passage 33 and a fourth main passage 35 communicating with the third main passage 34.
  • the base end main passage 31 extends linearly from the connecting passage 21.
  • the inner diameter of the base end main passage 31 is not particularly limited, but is, for example, 5 mm.
  • the first main passage 32 is located on the peripheral side of the proximal main passage 31 and extends linearly from the proximal main passage 31.
  • the first main passage 32 and the base end main passage 31 are arranged coaxially.
  • the inner diameter of the first main passage 32 is larger than the inner diameter of the base end main passage 31.
  • the inner diameter of the first main passage 32 is not particularly limited, but is, for example, 8 mm.
  • the peripheral side means the side away from the insertion port 14 (the side in the traveling direction of the medical long body to be inserted) in the passage.
  • the base end main passage 31 and the first main passage 32 are smoothly connected by expanding the inner diameter from the base end main passage 31 toward the first main passage 32 in a tapered shape.
  • the second main passage 33 is a passage that branches from the base end main passage 31 at a predetermined branch angle ⁇ .
  • the second main passage 33 extends linearly from the base end main passage 31.
  • the inner diameter of the second main passage 33 is equal to the inner diameter of the base end main passage 31.
  • the inner diameter of the second main passage 33 is not particularly limited, but is, for example, 5 mm.
  • the branch angle is the case where when the other passage branches from one passage extending to the peripheral side, the other passage is folded back to the opposite side (insertion port 14 side) on the peripheral side with respect to the one passage. Is defined as 0 degrees, and the case where the other passage extends in the same direction (peripheral side) with respect to one passage is defined as 180 degrees.
  • the third main passage 34 is located on the peripheral side of the second main passage 33 and extends linearly from the second main passage 33.
  • the third main passage 34 and the second main passage 33 are arranged coaxially.
  • the inner diameter of the third main passage 34 is smaller than the inner diameter of the second main passage 33.
  • the inner diameter of the third main passage 34 is not particularly limited, but is, for example, 2 mm.
  • the second main passage 33 and the third main passage 34 are smoothly connected by decreasing the inner diameter from the second main passage 33 toward the third main passage 34 in a tapered shape.
  • the fourth main passage 35 is located on the peripheral side of the third main passage 34 and extends linearly from the third main passage 34.
  • the fourth main passage 35 and the third main passage 34 are arranged coaxially.
  • the inner diameter of the fourth main passage 35 is smaller than the inner diameter of the third main passage 34.
  • the inner diameter of the fourth main passage 35 is not particularly limited, but is, for example, 1.2 mm.
  • a plurality of branch passages that line up in the extending direction of the main passage 30 and branch from the main passage 30 at different branch angles. 40 is connected.
  • the plurality of branch passages 40 have a first branch passage 41, a second branch passage 42, a third branch passage 43, and a fourth branch passage 44 that branch from the second main passage 33.
  • the first branch passage 41, the second branch passage 42, the third branch passage 43, and the fourth branch passage 44 are arranged toward the periphery along the extending direction of the second main passage 33, and branch from the second main passage 33. ing.
  • the axes of the first branch passage 41, the second branch passage 42, the third branch passage 43, and the fourth branch passage 44 are arranged on the same plane.
  • the first branch passage 41 branches from the second main passage 33 at a branch angle ⁇ 1.
  • the second branch passage 42 branches from the second main passage 33 on the peripheral side of the first branch passage 41 at a branch angle ⁇ 2.
  • the branch angle ⁇ 2 is larger than the branch angle ⁇ 1.
  • the third branch passage 43 branches from the second main passage 33 on the peripheral side of the second branch passage 42 at a branch angle ⁇ 3.
  • the branch angle ⁇ 3 is larger than the branch angle ⁇ 2.
  • the fourth branch passage 44 branches from the second main passage 33 on the peripheral side of the third branch passage 43 at a branch angle ⁇ 4.
  • the branch angle ⁇ 4 is larger than the branch angle ⁇ 3.
  • the branch angles ⁇ 1 to ⁇ 4 are more than 0 degrees and less than 90 degrees, preferably 30 degrees or more and 75 degrees or less.
  • the branch angle ⁇ 1 is 30 degrees
  • the branch angle ⁇ 2 is 45 degrees
  • the branch angle ⁇ 3 is 60 degrees
  • the branch angle ⁇ 4 is 75 degrees.
  • the branch passage 40 has a peripheral branch passage 45 that branches from the second branch passage 42, the third branch passage 43, and the fourth branch passage 44 at a branch angle ⁇ .
  • the branch angle ⁇ of the peripheral branch passage 45 is not particularly limited, but is more than 0 degrees and less than 90 degrees, for example, 75 degrees.
  • the peripheral branch passage 45 that branches from the second branch passage 42 is connected so as to communicate with the first branch passage 41. That is, the first branch passage 41 is also a second peripheral branch passage that further branches at the branch angle ⁇ from the peripheral branch passage 45 that branches from the second branch passage 42.
  • the peripheral branch passage 45 that branches from the third branch passage 43 is connected so as to communicate with the second branch passage 42. That is, the second branch passage 42 is also a second peripheral branch passage that further branches at the branch angle ⁇ from the peripheral branch passage 45 that branches from the third branch passage 43.
  • the peripheral branch passage 45 that branches from the fourth branch passage 44 is connected so as to communicate with the third branch passage 43. That is, the third branch passage 43 is also a second peripheral branch passage that further branches at the branch angle ⁇ from the peripheral branch passage 45 that branches from the fourth branch passage 44.
  • the branch angle ⁇ of the second peripheral branch passage is not particularly limited, but is more than 0 degrees and 90 degrees or less, for example, 90 degrees.
  • the inner diameter of the first branch passage 41, the second branch passage 42, the third branch passage 43, the fourth branch passage 44, and the peripheral branch passage 45 is larger than the inner diameter of the second main passage 33, which is the original main passage 30 of the branch. It is small, for example, 1 mm.
  • the branch passage 45 is branched.
  • the branch angles ⁇ 1 to ⁇ 4 of the branch passage 40 with respect to the third main passage 34 or the fourth main passage 35 are preferably the same as the branch angles ⁇ 1 to ⁇ 4 of the branch passage 40 with respect to the second main passage 33 described above, but they match. It doesn't have to be.
  • the branch angle ⁇ of the peripheral branch passage 45 branching on the peripheral side of the third main passage 34 or the fourth main passage 35 and the branch angle ⁇ of the second peripheral branch passage also branch on the peripheral side of the second main passage 33. It is preferable that it matches the branch angle ⁇ of the peripheral branch passage 45 and the branch angle ⁇ of the second peripheral branch passage, but it does not have to match.
  • two branch passage groups 46 including a second branch passage 42, a third branch passage 43, and a fourth branch passage 44 are branched.
  • the two branch passage groups 46 are connected in opposite directions in the circumferential direction of the first main passage 32. Therefore, the first main passage 32 and the two branch passage groups 46 are arranged on the same plane.
  • the tester performing the evaluation test determines the main passage 30 and the branch passage 40 into which the microcatheter 100 is inserted. For example, the tester decides to insert the microcatheter 100 from the first main passage 32 into one of the third branch passages 43, as shown in FIG.
  • the tester injects water, physiological saline, an aqueous solution containing a surfactant, or the like into the blood vessel model 10 through the insertion port 14.
  • water, physiological saline, an aqueous solution containing a surfactant, and the like flow into the blood vessel simulation unit 20 of the blood vessel model 10.
  • the air inside the blood vessel model 10 is discharged to the outside through an opening formed on the side end surface of the blood vessel simulating portion 20, an auxiliary passage 50, and the like.
  • the inside of the blood vessel simulation unit 20 of the blood vessel model 10 is filled with water, a physiological saline solution, an aqueous solution containing a surfactant, or the like.
  • a surfactant or a lubricating polymer may be applied in advance to the inner surface of the blood vessel simulating portion 20, or a hydrophilic lubricating polymer containing acrylamide or a hydrophobic lubricating polymer such as a fluororesin may be applied as the lubricating polymer. ..
  • the tester inserts a guiding catheter (not shown) from the insertion port 14 communicating with the connecting passage 21, reaches the tip of the proximal main passage 31, and inserts the microcatheter 100 inside the guiding catheter 100. It is made to reach the first main passage 32 from the connecting passage 21 through the base end main passage 31.
  • the tester selects the third branch passage 43 by the tip of the microcatheter 100 and attempts to push the microcatheter 100 into the third branch passage 43. Thereby, the tester can evaluate whether or not the microcatheter 100 could select the third branch passage 40 from the first main passage 32 by the blood vessel model 10. Since the inner diameter of the first main passage 32 is 8 mm and the inner diameter of the third branch passage 43 is 1 mm, the difference in inner diameter is large.
  • the microcatheter 100 may bend inside the first main passage 32 and deviate to the peripheral side (prolapse), and may escape from the third branch passage 43.
  • the tester can evaluate whether or not the microcatheter 100 has high support for sending the guide wire passing through the inside to the third branch passage 43 without prolapse.
  • the tester inserts the guide wire inserted into the microcatheter 100 into the third branch passage 43, and then causes the microcatheter 100 to follow the guide wire to peripherally attach the microcatheter 100. It is possible to evaluate whether or not it has bifurcation blood vessel selectivity for pushing it to the side.
  • the examiner inserts the microcatheter 100 from the insertion port 14 and communicates with the microcatheter 100 as shown in FIG. It is made to reach the second main passage 33 from the passage 21 through the base end main passage 31.
  • the tester selects the second bifurcation passage 42 by the tip of the microcatheter 100 and attempts to push the microcatheter 100 into the second bifurcation passage 42. Thereby, the tester can evaluate whether or not the second main passage 33 to the second branch passage 42 can be selected by the microcatheter 100 by the blood vessel model 10.
  • any branch passage 40 is selected from the above-mentioned first main passage 32 by the microcatheter 100. Compared with the case, it is easier to select the branch passage 40.
  • a peripheral branch passage 45 and a second peripheral branch passage are further branched on the peripheral side of the second branch passage 42 that branches from the second main passage 33. Therefore, can the examiner follow the guide wire to reach the peripheral bifurcation passage 45 and the second peripheral bifurcation passage (first bifurcation passage 41) by the blood vessel model 10 without prolapse? You can evaluate whether or not.
  • the first main passage 32 is branched from the base end main passage 31. Therefore, at the bifurcation of the proximal main passage 31 and the first main passage 32, can the microcatheter 100 follow the guide wire without dispersing the force for pushing the microcatheter 100 along the guide wire? You can evaluate whether or not.
  • the performance difference in the followability of the microcatheter 100 to the guide wire is the flexibility of the portion of the microcatheter 100 from the tip to the proximal end side of about 5 mm, the rigidity arrangement up to about 30 mm to the proximal end side, and more.
  • the tester decides to insert the microcatheter 100 from the third main passage 34 into any of the bifurcation passages 40, the tester can use this vessel model 10 to use any of the above-mentioned second main passages 33.
  • the same evaluation as when inserting into the branch passage 40 is possible.
  • the inner diameter of the third main passage 34 is 2 mm, which is smaller than the inner diameter of the second main passage 33, which is 5 mm. Therefore, since the range in which the microcatheter 100 and the guide wire can be bent is narrow (the range in which the pushing force escapes is small), the performance difference in the followability of the microcatheter 100 with respect to the guide wire is unlikely to occur. However, mainly when the difference in flexibility, rigid arrangement, outer diameter, etc. of the tip portion of the microcatheter 100 is relatively large, the performance difference of the microcatheter 100 is likely to appear, so the performance difference is evaluated by this blood vessel model 10. Is valid.
  • the tester decides to insert the microcatheter 100 from the fourth main passage 35 into any of the branch passages 40, the tester can use this vessel model 10 to use any of the above-mentioned second main passages 33.
  • the same evaluation as when inserting into the branch passage 40 is possible.
  • the inner diameter of the fourth main passage 35 is 1.2 mm, which is smaller than the inner diameter of the second main passage 33 of 5 mm and the inner diameter of the third main passage 34 of 2 mm. Therefore, since the range in which the microcatheter 100 and the guide wire can be bent is narrower (the range in which the pushing force escapes is small), the performance difference in the followability of the microcatheter 100 with respect to the guide wire is unlikely to occur.
  • the blood vessel model 10 has a blood vessel having a main passage 30 simulating a main blood vessel and a branch passage 40 thinner than the main passage 30 simulating a branch blood vessel branching from the main blood vessel.
  • the branch angles ⁇ 1 to ⁇ 4 of the branch passage 40 with respect to the main passage 30 exceed 0 degrees when the case where the branch passage 40 is folded back in the opposite direction to the main passage 30 is defined as 0 degrees. Is less than 90 degrees.
  • the blood vessel model 10 configured as described above can evaluate the selection performance of a medical long body for a bifurcated blood vessel that branches at an acute angle so as to be folded back from the main blood vessel.
  • the blood vessel model 10 has a plurality of branch passages 40 having different branch angles ⁇ 1 to ⁇ 4 with respect to the main passage 30. Thereby, one blood vessel model 10 can evaluate the selection performance of the medical long body in the branch passage 40 having various branch angles ⁇ 1 to ⁇ 4.
  • the blood vessel model 10 has a plurality of main passages 30 having different inner diameters, and a branch passage 40 branching from each main passage 30 is provided.
  • a branch passage 40 branching from each main passage 30 is provided.
  • the inner diameters of the plurality of main passages 30 having different inner diameters gradually decrease toward the peripheral side without branching from the main passage 30 or the proximal main passage 31.
  • the inner diameter of the second main passage 33 is 5 mm
  • the inner diameter of the third main passage 34 is 2 mm
  • the inner diameter of the fourth main passage 35 is 1.2 mm, which are gradually reduced.
  • the blood vessel model 10 has at least one peripheral branch passage 45 that branches on the peripheral side away from the main passage 30 of the branch passage 40. This makes it possible to evaluate the selection performance of a medical long body that continuously passes through a plurality of branches.
  • the blood vessel model 10 has a plurality of branch passages 40 having different branch angles with respect to the main passage 30, and at least one of the peripheral branch passages 45 provided on the periphery of the branch passage 40 is another branch passage 40. be.
  • the second peripheral branch passage provided in one periphery of the branch passage 40 can be reproduced by the other branch passage 40, so that the blood vessel model 10 can be realized compactly.
  • a plurality of main passages 30 are branched and provided.
  • the blood vessel model 10 having the plurality of main passages 30 can be compactly realized.
  • a plurality of branch passage groups 46 in which a plurality of branch passages 40 having different branch angles ⁇ 2 to ⁇ 4 with respect to the main passage 30 are arranged in the extending direction of the main passage 30 are provided at different positions in the circumferential direction of the main passage 30. .. Thereby, one blood vessel model 10 can evaluate the selection performance of the medical long body in various branch passages 40.
  • the evaluation method of the long medical body using the blood vessel model 10 according to the present embodiment is thinner than the main passage 30 simulating the main passage and the bifurcated blood vessel branching from the main blood vessel.
  • the branch passage 40 has a branch passage 40, and the branch angles ⁇ 1 to ⁇ 4 with respect to the main passage 30 of the branch passage 40 are 0 when the case where the branch passage 40 is folded back in the opposite direction to the main passage 30 is defined as 0 degrees.
  • a step of preparing a blood vessel model 10 which is more than 90 degrees and less than 90 degrees, a step of inserting a medical elongated body into the main passage 30 and trying to reach the branch passage 40 from the main passage 30, and a branch passage 40. It has a step of determining whether or not to reach.
  • the evaluation method configured as described above can easily evaluate the selection performance of a medical long body for a bifurcated blood vessel that branches at an acute angle so as to be folded back from the main blood vessel.
  • the blood vessel model 10 may be a jig.
  • the blood vessel model 10 may be connected to a sensor such as an autograph. Thereby, it is possible to detect the force acting on the blood vessel model 10 and the amount of movement of the blood vessel model 10 when the medical long body is inserted into the blood vessel model 10.
  • the blood vessel simulated by the blood vessel model 10 is not particularly limited, but is a prostate artery, a uterine artery, or a hepatic artery.
  • a branch passage having a branch angle of 90 degrees or more with respect to the main passage of the branch passage may be provided.
  • Vascular model 11 Divided simulated part 12 Holding plate 13 Connecting tool 14 Insertion port 15 Facing surface 20
  • Vascular simulated part 21 Connecting passage 30
  • Main passage 31 Base end main passage 32 1st main passage 33 2nd main passage 34 3rd main passage 35 4th main passage 40
  • Branch passage 41 1st branch passage 42 2nd branch passage 43 3rd branch passage 44 4th branch passage 45
  • Peripheral branch passage 46 Branch passage group 50 Auxiliary passage 100 Microcatheter (medical long body)

Landscapes

  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Educational Technology (AREA)
  • Educational Administration (AREA)
  • Business, Economics & Management (AREA)
  • Computational Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Algebra (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Physics (AREA)
  • Pure & Applied Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Medical Informatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Instructional Devices (AREA)

Abstract

[Problem] To provide: a blood vessel model that enables assessment of selection performance of a medical long body for a branching blood vessel branched at an acute angle so as to be folded back from a main blood vessel; and a method for assessing the medical long body. [Solution] A blood vessel model (10) has: a main passage (30) that simulates a main blood vessel; and branching passages (40) that simulate branching blood vessels branching from the main blood vessel and that are thinner than the main passage (30). In a case where an angle formed when a branching passage (40) is folded back in a direction opposite to a direction of the main passage (30), is defined as 0 degrees, branching angles θ1 to θ4 of the branching passages (40) with respect to the main passage (30) are each more than 0 degrees but less than 90 degrees.

Description

血管モデルおよび医療用長尺体の評価方法How to evaluate vascular model and medical long body
 本発明は、血管を模擬した血管モデルおよび血管モデルを用いた医療用長尺体の評価方法に関する。 The present invention relates to a blood vessel model simulating a blood vessel and a method for evaluating a medical long body using the blood vessel model.
 近年、カテーテルやガイドワイヤ等の医療用長尺体を、皮膚から血管内に挿入し、血管を通って目的の位置まで到達させて手技を行うインターベンションが行われている。インターベンションは、複雑に屈曲した血管を通して行われるため、カテーテルは、目的の位置まで到達できることが求められる。このため、例えば特許文献1には、医療用長尺体の操作性能などを試験するために用いられる血管モデルが記載されている。 In recent years, an intervention has been performed in which a medical long body such as a catheter or a guide wire is inserted into a blood vessel through the skin and reached a target position through the blood vessel to perform a procedure. Since the intervention is performed through a complexly bent blood vessel, the catheter is required to be able to reach the desired position. Therefore, for example, Patent Document 1 describes a blood vessel model used for testing the operational performance of a medical long body.
特開2017-003637号公報Japanese Unexamined Patent Publication No. 2017-003637
 前立腺肥大の治療法としての前立腺の動脈塞栓や、肝臓がんの治療法しての肝臓の動脈塞栓においては、太い主血管から鋭角に折り返すように分岐している細い分岐血管を、マイクロカテーテルやガイドワイヤで選択するため、選択が困難な場合がある。特に、主血管が太い場合は、マイクロカテーテルが撓みやすいため、分岐血管に入りにくく、あるいは入ってもマイクロカテーテルの先端が抜けてしまう場合がある。また、主血管に対して分岐血管が鋭角な場合は、マイクロカテーテルの先端が分岐血管から抜けやすいため、さらに選択が困難となる。 In the arterial embolization of the prostate as a treatment for prostate enlargement and the arterial embolization of the liver as a treatment for liver cancer, a microcatheter or a small bifurcated blood vessel that branches from a large main blood vessel to a sharp turn is used. It may be difficult to select because it is selected by the guide wire. In particular, when the main blood vessel is thick, the microcatheter is easily bent, so that it is difficult to enter the bifurcated blood vessel, or even if it enters, the tip of the microcatheter may come off. Further, when the bifurcated blood vessel has an acute angle with respect to the main blood vessel, the tip of the microcatheter easily comes out of the bifurcated blood vessel, which makes selection more difficult.
 前立腺の動脈塞栓においては、主血管である内腸骨動脈の内径は2~8mm、分岐血管の内径は1mm程度である。また、肝臓の動脈塞栓においては、主血管の内径は2~5mm、分岐血管の内径は1mm程度であり、さらに分岐が連続している場合がある。分岐血管からさらに分岐が連続する場合には、マイクロカテーテルやガイドワイヤにより分岐血管を選択することは、さらに困難となる。 In the arterial embolism of the prostate, the inner diameter of the internal iliac artery, which is the main blood vessel, is about 2 to 8 mm, and the inner diameter of the bifurcated blood vessel is about 1 mm. Further, in the arterial embolization of the liver, the inner diameter of the main blood vessel is about 2 to 5 mm, the inner diameter of the bifurcated blood vessel is about 1 mm, and the bifurcation may be continuous. If the branch is further continuous from the bifurcated vessel, it becomes more difficult to select the bifurcated vessel with a microcatheter or a guide wire.
 特許文献1に記載の血管モデルは、上述したような主血管から鋭角に分岐する細い分岐血管における、マイクロカテーテルやガイドワイヤ等の医療用長尺体の選択性能の評価を行うことは困難である。 In the blood vessel model described in Patent Document 1, it is difficult to evaluate the selection performance of a medical long body such as a microcatheter or a guide wire in a narrow branch blood vessel that branches at an acute angle from the main blood vessel as described above. ..
 本発明は、上述した課題を解決するためになされたものであり、主血管から折り返されるように鋭角に分岐する分岐血管への医療用長尺体の選択性能の評価を行うことができる血管モデルおよび医療用長尺体の評価方法を提供することを目的とする。 The present invention has been made to solve the above-mentioned problems, and is a vascular model capable of evaluating the selection performance of a medical long body for a bifurcated blood vessel that branches at a sharp angle so as to be folded back from the main blood vessel. And to provide a method for evaluating medical strips.
 上記目的を達成する本発明に係る血管モデルは、主血管を模擬する主通路と、前記主血管から分岐する分岐血管を模擬して前記主通路よりも細い分岐通路と、を有する血管モデルであって、前記分岐通路の前記主通路に対する分岐角度は、前記分岐通路が前記主通路に対して逆方向へ折り返される場合を0度と定義した場合に、0度を超えて90度未満であることを特徴とする。 The blood vessel model according to the present invention that achieves the above object is a blood vessel model having a main passage simulating a main blood vessel and a branch passage thinner than the main passage simulating a branch blood vessel branching from the main blood vessel. The branch angle of the branch passage with respect to the main passage is more than 0 degrees and less than 90 degrees when the case where the branch passage is folded back in the opposite direction to the main passage is defined as 0 degrees. It is characterized by.
 上記目的を達成する本発明に係る医療用長尺体の評価方法は、血管モデルを用いた医療用長尺体の評価方法であって、主血管を模擬する主通路と、前記主血管から分岐する分岐血管を模擬して前記主通路よりも細い分岐通路と、を有し、前記分岐通路の前記主通路に対する分岐角度は、前記分岐通路が前記主通路に対して逆方向へ折り返される場合を0度と定義した場合に、0度を超えて90度未満である血管モデルを準備するステップと、前記医療用長尺体を前記主通路に挿入し、前記主通路から前記分岐通路へ到達させることを試みるステップと、前記分岐通路へ到達するか否かを判別するステップと、を有することを特徴とする。 The method for evaluating a medical elongated body according to the present invention that achieves the above object is an evaluation method for a medical elongated body using a blood vessel model, which is a main passage simulating a main blood vessel and a branch from the main blood vessel. It has a branch passage thinner than the main passage by simulating a branch blood vessel, and the branch angle of the branch passage with respect to the main passage is a case where the branch passage is folded back in the opposite direction to the main passage. A step of preparing a vascular model that is more than 0 degrees and less than 90 degrees when defined as 0 degrees, and the medical elongated body is inserted into the main passage and reached from the main passage to the branch passage. It is characterized by having a step of attempting to do so and a step of determining whether or not to reach the branch passage.
 上記のように構成された血管モデルおよび医療用長尺体の評価方法は、主血管から折り返されるように鋭角に分岐する分岐血管への医療用長尺体の選択性能の評価を行うことができる。 The vascular model configured as described above and the evaluation method for the medical elongate can evaluate the selection performance of the medical elongate for the bifurcated blood vessel that branches at an acute angle so as to be folded back from the main blood vessel. ..
 前記血管モデルは、前記主通路に対する分岐角度が異なる複数の分岐通路を有してもよい。これにより、1つの血管モデルで、様々な分岐角度の分岐血管における医療用長尺体の選択性能の評価を行うことができる。 The blood vessel model may have a plurality of branch passages having different branch angles with respect to the main passage. This makes it possible to evaluate the selection performance of medical long bodies in bifurcated blood vessels at various bifurcation angles with one blood vessel model.
 前記血管モデルは、内径の異なる複数の主通路を有し、各々の前記主通路から分岐する前記分岐通路が設けられてもよい。これにより、主通路と分岐通路の組み合わせが複数設けられるため、1つの血管モデルで、様々な内径の主血管から折り返されるように鋭角に分岐する分岐血管を再現して、医療用長尺体の選択性能の評価を行うことができる。 The blood vessel model has a plurality of main passages having different inner diameters, and the branch passages branching from the main passages may be provided. As a result, multiple combinations of main passages and branch passages are provided, so one blood vessel model reproduces a branch blood vessel that branches at an acute angle so that it can be folded back from main blood vessels of various inner diameters, and is a medical long body. It is possible to evaluate the selection performance.
 前記内径の異なる複数の主通路の内径が末梢側へ向かって段階的に減少してもよい。これにより、実際の血管径を模擬し、血管モデルをコンパクトにすることができる。 The inner diameters of the plurality of main passages having different inner diameters may be gradually decreased toward the peripheral side. This makes it possible to simulate the actual blood vessel diameter and make the blood vessel model compact.
 前記血管モデルは、前記分岐通路の前記主通路から離れた末梢側で分岐する少なくとも1つの末梢分岐通路を有してもよい。これにより、複数の分岐を連続して通過する医療用長尺体の選択性能の評価を行うことができる。 The blood vessel model may have at least one peripheral bifurcation passage that branches on the peripheral side of the bifurcation passage away from the main passage. This makes it possible to evaluate the selection performance of a medical long body that continuously passes through a plurality of branches.
 前記血管モデルは、前記主通路に対する分岐角度が異なる複数の分岐通路を有し、前記分岐通路の末梢に設けられる前記末梢分岐通路の数なくとも1つは、他の分岐通路であってもよい。これにより、分岐通路の1つの末梢に設けられる末梢分岐通路を、他の分岐通路によって再現できるため、血管モデルをコンパクトに実現できる。 The blood vessel model has a plurality of branch passages having different branch angles with respect to the main passage, and at least one of the peripheral branch passages provided at the periphery of the branch passage may be another branch passage. .. As a result, the peripheral branch passage provided at one periphery of the branch passage can be reproduced by the other branch passage, so that the blood vessel model can be realized compactly.
 前記主通路は、分岐して複数設けられてもよい。これにより、複数の主通路を効率よく配置できるため、複数の主通路を有する血管モデルをコンパクトに実現できる。また、分岐する複数の主通路を通過した医療用長尺体の、分岐血管への選択性能の評価を行うことができる。 The main passage may be branched and provided in plurality. As a result, since a plurality of main passages can be efficiently arranged, a blood vessel model having a plurality of main passages can be realized compactly. In addition, it is possible to evaluate the selection performance of a medical long body that has passed through a plurality of branching main passages into a bifurcated blood vessel.
 前記主通路に対する分岐角度が異なる複数の分岐通路を当該主通路の延在方向へ並べた分岐通路群が、当該主通路の周方向の異なる位置に複数設けられてもよい。これにより、1つの血管モデルで、様々な分岐血管における医療用長尺体の選択性能の評価を行うことができる。 A plurality of branch passages in which a plurality of branch passages having different branch angles with respect to the main passage are arranged in the extending direction of the main passage may be provided at different positions in the circumferential direction of the main passage. This makes it possible to evaluate the selection performance of medical long bodies in various bifurcated blood vessels with one blood vessel model.
実施形態に係る血管モデルを示す平面図である。It is a top view which shows the blood vessel model which concerns on embodiment. 実施形態に係る血管モデルを示す側面図である。It is a side view which shows the blood vessel model which concerns on embodiment. 血管モデルを使用している状態を示す平面図である。It is a top view which shows the state which uses the blood vessel model. 血管モデルを使用している状態を示す平面図である。It is a top view which shows the state which uses the blood vessel model.
 以下、図面を参照して、本発明の実施の形態を説明する。なお、図面の寸法は、説明の都合上、誇張されて実際の寸法とは異なる場合がある。また、本明細書及び図面において、実質的に同一の機能を有する構成要素については、同一の符号を付することにより重複説明を省略する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The dimensions of the drawings may be exaggerated and differ from the actual dimensions for convenience of explanation. Further, in the present specification and the drawings, components having substantially the same function are designated by the same reference numerals, so that duplicate description will be omitted.
 本実施形態に係る血管モデル10は、マイクロカテーテルやガイドワイヤ等の医療用長尺体の分岐血管の選択性を評価するために血管を模擬したモデルである。なお、血管モデル10の用途は、医療用長尺体の評価のための使用に  限定されず、例えば手技の訓練のために使用されてもよい。 The blood vessel model 10 according to the present embodiment is a model simulating a blood vessel in order to evaluate the selectivity of a bifurcated blood vessel of a medical long body such as a microcatheter or a guide wire. The use of the blood vessel model 10 is not limited to the use for evaluation of a medical long body, and may be used, for example, for training of a procedure.
 血管モデル10は、図1、2に示すように、2枚の分割模擬部11と、分割模擬部11を挟む2枚の保持板12と、複数の連結具13と、挿入口14とを備えている。2枚の分割模擬部11は、血管を模擬する溝が対向面15側に形成された略長方形の平板である。2枚の分割模擬部11は、面対称形状で形成されている。このため、対向面15で重なることで、溝が重なり、断面が略円形の血管を模擬する血管模擬部20が形成される。分割模擬部11は、内部を目視できるように透明または半透明であり、実際の生体組織に近い柔軟な材料により形成されることが好ましい。分割模擬部11の構成材料は、特に限定されないが、例えばシリコーン樹脂、各種エラストマー樹脂としてSEBS、ポリオレフィンエラストマー、ポリアミドエラストマー、アクリル系エラストマー、含フッ素エラストマーなどである。本実施形態では、分割模擬部11の構成材料は、シリコーン樹脂である。分割模擬部11は、金型を用いて良好に形成されるが、形成方法は特に限定されず、例えば3Dプリンタにより形成されてもよい。 As shown in FIGS. 1 and 2, the blood vessel model 10 includes two split simulation portions 11, two holding plates 12 sandwiching the split simulation portions 11, a plurality of connecting tools 13, and an insertion port 14. ing. The two divided simulation units 11 are substantially rectangular flat plates in which a groove simulating a blood vessel is formed on the facing surface 15 side. The two split simulated portions 11 are formed in a plane-symmetrical shape. Therefore, by overlapping on the facing surfaces 15, the grooves overlap, and a blood vessel simulating portion 20 simulating a blood vessel having a substantially circular cross section is formed. The split simulated portion 11 is preferably transparent or translucent so that the inside can be visually recognized, and is preferably formed of a flexible material close to the actual living tissue. The constituent material of the division simulation unit 11 is not particularly limited, and is, for example, a silicone resin, SEBS as various elastomer resins, a polyolefin elastomer, a polyamide elastomer, an acrylic elastomer, a fluoroelastomer, and the like. In the present embodiment, the constituent material of the split simulated portion 11 is a silicone resin. The division simulation unit 11 is well formed by using a mold, but the forming method is not particularly limited, and the division simulation unit 11 may be formed by, for example, a 3D printer.
 保持板12は、柔軟な2枚の分割模擬部11を重なった状態で保持するために、2枚の分割模擬部11を挟む部材である。各々の保持板12は、分割模擬部11を覆うことができる略長方形の平板である。保持板12は、内部を目視できるように透明または半透明であり、柔軟な分割模擬部11を保持できる硬質の材料により形成されることが好ましい。保持板12の構成材料は、特に限定されないが、例えばアクリル樹脂、ABS樹脂、アクリル樹脂、メタクリル樹脂、ポリカーボネート、メラミン樹脂、スチレン樹脂、硬質塩化ビニル樹脂、フッ素樹脂、ガラス等である。本実施形態では、保持板12の構成材料は、アクリル樹脂である。 The holding plate 12 is a member that sandwiches the two split simulated portions 11 in order to hold the two flexible split simulated portions 11 in an overlapping state. Each holding plate 12 is a substantially rectangular flat plate capable of covering the divided simulated portion 11. The holding plate 12 is preferably transparent or translucent so that the inside can be visually recognized, and is preferably formed of a hard material capable of holding the flexible split simulated portion 11. The constituent material of the holding plate 12 is not particularly limited, and is, for example, acrylic resin, ABS resin, acrylic resin, methacrylic resin, polycarbonate, melamine resin, styrene resin, hard vinyl chloride resin, fluororesin, glass and the like. In the present embodiment, the constituent material of the holding plate 12 is an acrylic resin.
 連結具13は、分割模擬部11を保持板12で挟んだ状態を保持するための部材である。連結具13は、例えば、分割模擬部11および保持板12に形成される貫通孔を貫通して、2枚の保持板12を挟持できるボルトおよびナットにより構成される。なお、連結具13の構成は、特に限定されず、例えばクランプ等であってもよい。 The connector 13 is a member for holding the split simulated portion 11 sandwiched between the holding plates 12. The connector 13 is composed of, for example, bolts and nuts capable of sandwiching the two holding plates 12 through the through holes formed in the split simulated portion 11 and the holding plate 12. The configuration of the connector 13 is not particularly limited, and may be, for example, a clamp or the like.
 挿入口14は、血管モデル10に対して医療用長尺体を挿入する部位である。挿入口14は、2つの分割模擬部11の側端面にて、対向する溝に挟まれるように溝に連通して配置される。挿入口14は、例えば、三方活栓を有する止血弁やYコネクター等により構成される。挿入口14は、医療用長尺体を挿入する部位として、血管模擬部20の後述する連絡通路21に接続される。なお、止血弁等を備える挿入口14は、2つの分割模擬部11の側端面の、連絡通路21以外の開口にも配置されてよい。これにより、血管模擬部20の内部を、液体で満たすことが容易となり、かつ液体で満たした状態を良好に維持できる。 The insertion port 14 is a site for inserting a medical long body into the blood vessel model 10. The insertion port 14 is arranged in communication with the groove so as to be sandwiched between the opposite grooves on the side end faces of the two division simulated portions 11. The insertion port 14 is composed of, for example, a hemostatic valve having a three-way stopcock, a Y connector, or the like. The insertion port 14 is connected to a communication passage 21 described later of the blood vessel simulating unit 20 as a site for inserting a medical long body. The insertion port 14 provided with a hemostatic valve or the like may be arranged at an opening other than the connecting passage 21 on the side end faces of the two split simulated portions 11. This makes it easy to fill the inside of the blood vessel simulating portion 20 with a liquid, and it is possible to maintain a good state of being filled with the liquid.
 血管モデル10は、実質的に平面構造のモデルである。実質的に平面構造の血管モデル10の板厚は、100mm以下であり、好ましくは50mm以下であり、より好ましくは30mm以下である。 The blood vessel model 10 is a model having a substantially planar structure. The plate thickness of the blood vessel model 10 having a substantially planar structure is 100 mm or less, preferably 50 mm or less, and more preferably 30 mm or less.
 次に、分割模擬部11に形成される血管模擬部20について詳述する。
 血管模擬部20は、図1に示すように、挿入口14が連通する連絡通路21と、主血管を模擬する複数の主通路30と、主血管から分岐する分岐血管を模擬する複数の分岐通路40と、血管模擬部20内を液体で満たす際の空気抜き用の補助通路50とを備えている。
Next, the blood vessel simulation unit 20 formed in the division simulation unit 11 will be described in detail.
As shown in FIG. 1, the blood vessel simulating unit 20 includes a connecting passage 21 through which the insertion port 14 communicates, a plurality of main passages 30 simulating a main blood vessel, and a plurality of branch passages simulating a bifurcated blood vessel branching from the main blood vessel. 40 and an auxiliary passage 50 for bleeding air when filling the inside of the blood vessel simulating portion 20 with a liquid are provided.
 複数の主通路30は、連絡通路21から延在する基端主通路31と、基端主通路31に連通する第1主通路32と、基端主通路31から分岐する第2主通路33と、第2主通路33に連通する第3主通路34と、第3主通路34に連通する第4主通路35とを有している。 The plurality of main passages 30 include a base end main passage 31 extending from the connecting passage 21, a first main passage 32 communicating with the base end main passage 31, and a second main passage 33 branching from the base end main passage 31. It has a third main passage 34 communicating with the second main passage 33 and a fourth main passage 35 communicating with the third main passage 34.
 基端主通路31は、連絡通路21から直線的に延在する。基端主通路31の内径は、特に限定されないが、例えば5mmである。 The base end main passage 31 extends linearly from the connecting passage 21. The inner diameter of the base end main passage 31 is not particularly limited, but is, for example, 5 mm.
 第1主通路32は、基端主通路31の末梢側に位置し、基端主通路31から直線的に延在する。第1主通路32と基端主通路31は、同軸上に並んでいる。第1主通路32の内径は、基端主通路31の内径よりも大きい。第1主通路32の内径は、特に限定されないが、例えば8mmである。なお、末梢側とは、通路において、挿入口14から離れる側(挿入される医療用長尺体の進行方向側)を意味する。基端主通路31と第1主通路32の間は、基端主通路31から第1主通路32へ向かって内径がテーパ状に広がることで、滑らかに連結されている。 The first main passage 32 is located on the peripheral side of the proximal main passage 31 and extends linearly from the proximal main passage 31. The first main passage 32 and the base end main passage 31 are arranged coaxially. The inner diameter of the first main passage 32 is larger than the inner diameter of the base end main passage 31. The inner diameter of the first main passage 32 is not particularly limited, but is, for example, 8 mm. The peripheral side means the side away from the insertion port 14 (the side in the traveling direction of the medical long body to be inserted) in the passage. The base end main passage 31 and the first main passage 32 are smoothly connected by expanding the inner diameter from the base end main passage 31 toward the first main passage 32 in a tapered shape.
 第2主通路33は、基端主通路31から所定の分岐角度αで分岐する通路である。第2主通路33は、基端主通路31から直線的に延在する。第2主通路33の内径は、基端主通路31の内径と等しい。第2主通路33の内径は、特に限定されないが、例えば5mmである。なお、分岐角度は、末梢側へ延在する一方の通路から他方の通路が分岐する際に、他方の通路が一方の通路に対して末梢側の反対側(挿入口14側)へ折り返される場合を0度、他方の通路が一方の通路に対して同方向側(末梢側)へ延在する場合を180度と定義する。 The second main passage 33 is a passage that branches from the base end main passage 31 at a predetermined branch angle α. The second main passage 33 extends linearly from the base end main passage 31. The inner diameter of the second main passage 33 is equal to the inner diameter of the base end main passage 31. The inner diameter of the second main passage 33 is not particularly limited, but is, for example, 5 mm. The branch angle is the case where when the other passage branches from one passage extending to the peripheral side, the other passage is folded back to the opposite side (insertion port 14 side) on the peripheral side with respect to the one passage. Is defined as 0 degrees, and the case where the other passage extends in the same direction (peripheral side) with respect to one passage is defined as 180 degrees.
 第3主通路34は、第2主通路33の末梢側に位置し、第2主通路33から直線的に延在する。第3主通路34と第2主通路33は、同軸上に並んでいる。第3主通路34の内径は、第2主通路33の内径よりも小さい。第3主通路34の内径は、特に限定されないが、例えば2mmである。第2主通路33と第3主通路34の間は、第2主通路33から第3主通路34へ向かって内径がテーパ状に減少することで、滑らかに連結されている。 The third main passage 34 is located on the peripheral side of the second main passage 33 and extends linearly from the second main passage 33. The third main passage 34 and the second main passage 33 are arranged coaxially. The inner diameter of the third main passage 34 is smaller than the inner diameter of the second main passage 33. The inner diameter of the third main passage 34 is not particularly limited, but is, for example, 2 mm. The second main passage 33 and the third main passage 34 are smoothly connected by decreasing the inner diameter from the second main passage 33 toward the third main passage 34 in a tapered shape.
 第4主通路35は、第3主通路34の末梢側に位置し、第3主通路34から直線的に延在する。第4主通路35と第3主通路34は、同軸上に並んでいる。第4主通路35の内径は、第3主通路34の内径よりも小さい。第4主通路35の内径は、特に限定されないが、例えば1.2mmである。 The fourth main passage 35 is located on the peripheral side of the third main passage 34 and extends linearly from the third main passage 34. The fourth main passage 35 and the third main passage 34 are arranged coaxially. The inner diameter of the fourth main passage 35 is smaller than the inner diameter of the third main passage 34. The inner diameter of the fourth main passage 35 is not particularly limited, but is, for example, 1.2 mm.
 第1主通路32、第2主通路33、第3主通路34および第4主通路35からは、主通路30の延在方向へ並んで主通路30から異なる分岐角度で分岐する複数の分岐通路40が接続されている。 From the first main passage 32, the second main passage 33, the third main passage 34, and the fourth main passage 35, a plurality of branch passages that line up in the extending direction of the main passage 30 and branch from the main passage 30 at different branch angles. 40 is connected.
 複数の分岐通路40は、第2主通路33から分岐する第1分岐通路41、第2分岐通路42、第3分岐通路43および第4分岐通路44を有している。第1分岐通路41、第2分岐通路42、第3分岐通路43および第4分岐通路44は、第2主通路33の延在方向に沿って末梢側へ並び、第2主通路33から分岐している。第1分岐通路41、第2分岐通路42、第3分岐通路43および第4分岐通路44の軸心は、同一平面上に配置されている。 The plurality of branch passages 40 have a first branch passage 41, a second branch passage 42, a third branch passage 43, and a fourth branch passage 44 that branch from the second main passage 33. The first branch passage 41, the second branch passage 42, the third branch passage 43, and the fourth branch passage 44 are arranged toward the periphery along the extending direction of the second main passage 33, and branch from the second main passage 33. ing. The axes of the first branch passage 41, the second branch passage 42, the third branch passage 43, and the fourth branch passage 44 are arranged on the same plane.
 第1分岐通路41は、第2主通路33から分岐角度θ1で分岐している。 The first branch passage 41 branches from the second main passage 33 at a branch angle θ1.
 第2分岐通路42は、第1分岐通路41よりも末梢側で第2主通路33から分岐角度θ2で分岐している。分岐角度θ2は、分岐角度θ1よりも大きい。 The second branch passage 42 branches from the second main passage 33 on the peripheral side of the first branch passage 41 at a branch angle θ2. The branch angle θ2 is larger than the branch angle θ1.
 第3分岐通路43は、第2分岐通路42よりも末梢側で第2主通路33から分岐角度θ3で分岐している。分岐角度θ3は、分岐角度θ2よりも大きい。 The third branch passage 43 branches from the second main passage 33 on the peripheral side of the second branch passage 42 at a branch angle θ3. The branch angle θ3 is larger than the branch angle θ2.
 第4分岐通路44は、第3分岐通路43よりも末梢側で第2主通路33から分岐角度θ4で分岐している。分岐角度θ4は、分岐角度θ3よりも大きい。 The fourth branch passage 44 branches from the second main passage 33 on the peripheral side of the third branch passage 43 at a branch angle θ4. The branch angle θ4 is larger than the branch angle θ3.
 分岐角度θ1~θ4は、0度を超えて90度未満であり、好ましくは30度以上であって75度以下である。一例として、分岐角度θ1は30度であり、分岐角度θ2は45度であり、分岐角度θ3は60度であり、分岐角度θ4は75度である。 The branch angles θ1 to θ4 are more than 0 degrees and less than 90 degrees, preferably 30 degrees or more and 75 degrees or less. As an example, the branch angle θ1 is 30 degrees, the branch angle θ2 is 45 degrees, the branch angle θ3 is 60 degrees, and the branch angle θ4 is 75 degrees.
 分岐通路40は、第2分岐通路42、第3分岐通路43および第4分岐通路44から分岐角度βで分岐する末梢分岐通路45を有している。末梢分岐通路45の分岐角度βは、特に限定されないが、0度を超えて90度未満であり、例えば75度である。 The branch passage 40 has a peripheral branch passage 45 that branches from the second branch passage 42, the third branch passage 43, and the fourth branch passage 44 at a branch angle β. The branch angle β of the peripheral branch passage 45 is not particularly limited, but is more than 0 degrees and less than 90 degrees, for example, 75 degrees.
 第2分岐通路42から分岐する末梢分岐通路45は、第1分岐通路41に連通するように接続される。すなわち、第1分岐通路41は、第2分岐通路42から分岐する末梢分岐通路45から分岐角度γでさらに分岐する第2末梢分岐通路でもある。 The peripheral branch passage 45 that branches from the second branch passage 42 is connected so as to communicate with the first branch passage 41. That is, the first branch passage 41 is also a second peripheral branch passage that further branches at the branch angle γ from the peripheral branch passage 45 that branches from the second branch passage 42.
 第3分岐通路43から分岐する末梢分岐通路45は、第2分岐通路42に連通するように接続される。すなわち、第2分岐通路42は、第3分岐通路43から分岐する末梢分岐通路45から分岐角度γでさらに分岐する第2末梢分岐通路でもある。 The peripheral branch passage 45 that branches from the third branch passage 43 is connected so as to communicate with the second branch passage 42. That is, the second branch passage 42 is also a second peripheral branch passage that further branches at the branch angle γ from the peripheral branch passage 45 that branches from the third branch passage 43.
 第4分岐通路44から分岐する末梢分岐通路45は、第3分岐通路43に連通するように接続される。すなわち、第3分岐通路43は、第4分岐通路44から分岐する末梢分岐通路45から分岐角度γでさらに分岐する第2末梢分岐通路でもある。 The peripheral branch passage 45 that branches from the fourth branch passage 44 is connected so as to communicate with the third branch passage 43. That is, the third branch passage 43 is also a second peripheral branch passage that further branches at the branch angle γ from the peripheral branch passage 45 that branches from the fourth branch passage 44.
 第2末梢分岐通路の分岐角度γは、特に限定されないが、0度を超えて90度以下であり、例えば90度である。 The branch angle γ of the second peripheral branch passage is not particularly limited, but is more than 0 degrees and 90 degrees or less, for example, 90 degrees.
 第1分岐通路41、第2分岐通路42、第3分岐通路43、第4分岐通路44および末梢分岐通路45の内径は、分岐の元の主通路30である第2主通路33の内径よりも小さく、例えば1mmである。 The inner diameter of the first branch passage 41, the second branch passage 42, the third branch passage 43, the fourth branch passage 44, and the peripheral branch passage 45 is larger than the inner diameter of the second main passage 33, which is the original main passage 30 of the branch. It is small, for example, 1 mm.
 第3主通路34および第4主通路35からは、上述した第2主通路33と同様に、第1分岐通路41、第2分岐通路42、第3分岐通路43、第4分岐通路44および末梢分岐通路45が分岐されている。第3主通路34または第4主通路35に対する分岐通路40の分岐角度θ1~θ4は、上述した第2主通路33に対する分岐通路40の分岐角度θ1~θ4と一致することが好ましいが、一致しなくてよい。また、第3主通路34または第4主通路35の末梢側で分岐する末梢分岐通路45の分岐角度βおよび第2末梢分岐通路の分岐角度γも、第2主通路33の末梢側で分岐する末梢分岐通路45の分岐角度βおよび第2末梢分岐通路の分岐角度γと一致することが好ましいが、一致しなくてよい。 From the third main passage 34 and the fourth main passage 35, the first branch passage 41, the second branch passage 42, the third branch passage 43, the fourth branch passage 44, and the periphery, similar to the second main passage 33 described above. The branch passage 45 is branched. The branch angles θ1 to θ4 of the branch passage 40 with respect to the third main passage 34 or the fourth main passage 35 are preferably the same as the branch angles θ1 to θ4 of the branch passage 40 with respect to the second main passage 33 described above, but they match. It doesn't have to be. Further, the branch angle β of the peripheral branch passage 45 branching on the peripheral side of the third main passage 34 or the fourth main passage 35 and the branch angle γ of the second peripheral branch passage also branch on the peripheral side of the second main passage 33. It is preferable that it matches the branch angle β of the peripheral branch passage 45 and the branch angle γ of the second peripheral branch passage, but it does not have to match.
 第1主通路32からは、第2分岐通路42、第3分岐通路43および第4分岐通路44からなる2つの分岐通路群46が分岐している。2つの分岐通路群46は、第1主通路32の周方向の対向する方向に接続されている。したがって、第1主通路32および2つの分岐通路群46は、同一平面上に配置される。 From the first main passage 32, two branch passage groups 46 including a second branch passage 42, a third branch passage 43, and a fourth branch passage 44 are branched. The two branch passage groups 46 are connected in opposite directions in the circumferential direction of the first main passage 32. Therefore, the first main passage 32 and the two branch passage groups 46 are arranged on the same plane.
 次に、本実施形態に係る血管モデル10を用いた医療用長尺体の評価方法を説明する。 Next, an evaluation method for a medical long body using the blood vessel model 10 according to the present embodiment will be described.
 初めに、評価試験を行う試験者は、マイクロカテーテル100を挿入する主通路30および分岐通路40を決定する。例えば、試験者は、図3に示すように、第1主通路32から一方の第3分岐通路43へマイクロカテーテル100を挿入することを決定する。 First, the tester performing the evaluation test determines the main passage 30 and the branch passage 40 into which the microcatheter 100 is inserted. For example, the tester decides to insert the microcatheter 100 from the first main passage 32 into one of the third branch passages 43, as shown in FIG.
 試験者は、血管モデル10内部に、挿入口14を介して、水、生理食塩水、界面活性剤入り水溶液等を注入する。これにより、血管モデル10の血管模擬部20の内部に、水、生理食塩水、界面活性剤入り水溶液等が流入する。血管モデル10の内部の空気は、血管模擬部20の側端面に形成される開口や、補助通路50等から外部へ排出される。これにより、血管モデル10の血管模擬部20の内部が、水、生理食塩水、界面活性剤入り水溶液等で満たされる。あるいは、血管模擬部20の内面に予め界面活性剤あるいは潤滑性ポリマーを塗布してもよく、潤滑性ポリマーとしてアクリルアミドを含む親水性潤滑ポリマーやフッ素樹脂などの疎水性潤滑ポリマーを塗布してもよい。 The tester injects water, physiological saline, an aqueous solution containing a surfactant, or the like into the blood vessel model 10 through the insertion port 14. As a result, water, physiological saline, an aqueous solution containing a surfactant, and the like flow into the blood vessel simulation unit 20 of the blood vessel model 10. The air inside the blood vessel model 10 is discharged to the outside through an opening formed on the side end surface of the blood vessel simulating portion 20, an auxiliary passage 50, and the like. As a result, the inside of the blood vessel simulation unit 20 of the blood vessel model 10 is filled with water, a physiological saline solution, an aqueous solution containing a surfactant, or the like. Alternatively, a surfactant or a lubricating polymer may be applied in advance to the inner surface of the blood vessel simulating portion 20, or a hydrophilic lubricating polymer containing acrylamide or a hydrophobic lubricating polymer such as a fluororesin may be applied as the lubricating polymer. ..
 次に、試験者は、連絡通路21に連通する挿入口14からガイディングカテーテル(図示せず)を挿入し、基端主通路31に先端を到達させ、その内部にマイクロカテーテル100を挿入し、連絡通路21から基端主通路31を通って第1主通路32まで到達させる。次に、試験者は、マイクロカテーテル100の先端により第3分岐通路43を選択して、マイクロカテーテル100を第3分岐通路43へ押し進めることを試みる。これにより、試験者は、マイクロカテーテル100により第1主通路32から第3位分岐通路40を選択できたか否かを、血管モデル10によって評価できる。なお、第1主通路32の内径は8mmであり、第3分岐通路43の内径は1mmであるため、内径差が大きい。このような条件の場合、第3分岐通路43を選択することが困難となるため、先端部を曲がった状態で形状付けられたマイクロカテーテル100を使用することが有効である。ところで、分岐角度θ3が鋭角であるため、マイクロカテーテル100の先端を第3分岐通路43に挿入しても、マイクロカテーテル100を更に押し込むことで、図3にて一点鎖線で示すように、マイクロカテーテル100は第1主通路32の内部で撓んで末梢側へ逸脱(プロラプス)し、第3分岐通路43から抜けてしまう可能性がある。試験者は、本血管モデル10を用いることで、マイクロカテーテル100が、プロラプスせずに内部を通過するガイドワイヤを第3分岐通路43へ送り込むための高いサポート性を持つか否かを評価できる。また、試験者は、本血管モデル10を用いることで、マイクロカテーテル100に挿入されたガイドワイヤを第3分岐通路43へ挿入した後に、ガイドワイヤにマイクロカテーテル100を追従させてマイクロカテーテル100を末梢側へ押し込むための分岐血管選択性を持つか否かを評価できる。 Next, the tester inserts a guiding catheter (not shown) from the insertion port 14 communicating with the connecting passage 21, reaches the tip of the proximal main passage 31, and inserts the microcatheter 100 inside the guiding catheter 100. It is made to reach the first main passage 32 from the connecting passage 21 through the base end main passage 31. Next, the tester selects the third branch passage 43 by the tip of the microcatheter 100 and attempts to push the microcatheter 100 into the third branch passage 43. Thereby, the tester can evaluate whether or not the microcatheter 100 could select the third branch passage 40 from the first main passage 32 by the blood vessel model 10. Since the inner diameter of the first main passage 32 is 8 mm and the inner diameter of the third branch passage 43 is 1 mm, the difference in inner diameter is large. Under such conditions, it is difficult to select the third branch passage 43, so it is effective to use the microcatheter 100 shaped with the tip bent. By the way, since the branch angle θ3 is an acute angle, even if the tip of the microcatheter 100 is inserted into the third branch passage 43, by further pushing the microcatheter 100, the microcatheter is shown by the alternate long and short dash line in FIG. The 100 may bend inside the first main passage 32 and deviate to the peripheral side (prolapse), and may escape from the third branch passage 43. By using this blood vessel model 10, the tester can evaluate whether or not the microcatheter 100 has high support for sending the guide wire passing through the inside to the third branch passage 43 without prolapse. Further, by using this blood vessel model 10, the tester inserts the guide wire inserted into the microcatheter 100 into the third branch passage 43, and then causes the microcatheter 100 to follow the guide wire to peripherally attach the microcatheter 100. It is possible to evaluate whether or not it has bifurcation blood vessel selectivity for pushing it to the side.
 試験者は、第2主通路33から例えば第2分岐通路42へマイクロカテーテル100を挿入することを決定した場合には、図4に示すように、挿入口14からマイクロカテーテル100を挿入し、連絡通路21から基端主通路31を通って第2主通路33まで到達させる。次に、試験者は、マイクロカテーテル100の先端により第2分岐通路42を選択して、マイクロカテーテル100を第2分岐通路42へ押し進めることを試みる。これにより、試験者は、マイクロカテーテル100により第2主通路33から第2分岐通路42を選択できるか否かを、血管モデル10によって評価できる。なお、第2主通路33の内径は5mmであり、第1主通路32の内径(8mm)よりも小さいため、上述した第1主通路32からいずれかの分岐通路40をマイクロカテーテル100により選択する場合と比較して、分岐通路40を選択しやすい。また、第2主通路33から分岐する第2分岐通路42の末梢側には、末梢分岐通路45および第2末梢分岐通路(第1分岐通路41)が更に分岐している。このため、試験者は、本血管モデル10によって、マイクロカテーテル100が、末梢分岐通路45および第2末梢分岐通路(第1分岐通路41)まで、プロラプスせずにガイドワイヤに追従して到達できるか否かを評価できる。また、第1主通路32は、基端主通路31から分岐している。このため、基端主通路31と第1主通路32の分岐部において、ガイドワイヤに沿ってマイクロカテーテル100を押し進める力が分散することなく、マイクロカテーテル100がプロラプスせずにガイドワイヤに追従できるか否かを評価できる。なお、マイクロカテーテル100のガイドワイヤに対する追従性の性能差は、マイクロカテーテル100の先端から基端側へ約5mmの部分の柔軟性、それよりも基端側へ約30mmまでの剛性配置、それよりもさらに基端側のシャフト剛性、先端の外径、耐キンク性、滑り性、最先端の面取り形状、およびガイドワイヤの剛性や滑り性、マイクロカテーテル100とガイドワイヤのクリアランスなどの複数要因が合わさってもたらされるが、主にマイクロカテーテル100の先端部分の柔軟性、剛性配置および外径に依存する。したがって、上述の複数の要因によってマイクロカテーテル100の性能差が表れる場合には、本血管モデル10による性能差の評価が有効である。 When the tester decides to insert the microcatheter 100 from the second main passage 33 into, for example, the second branch passage 42, the examiner inserts the microcatheter 100 from the insertion port 14 and communicates with the microcatheter 100 as shown in FIG. It is made to reach the second main passage 33 from the passage 21 through the base end main passage 31. Next, the tester selects the second bifurcation passage 42 by the tip of the microcatheter 100 and attempts to push the microcatheter 100 into the second bifurcation passage 42. Thereby, the tester can evaluate whether or not the second main passage 33 to the second branch passage 42 can be selected by the microcatheter 100 by the blood vessel model 10. Since the inner diameter of the second main passage 33 is 5 mm, which is smaller than the inner diameter (8 mm) of the first main passage 32, any branch passage 40 is selected from the above-mentioned first main passage 32 by the microcatheter 100. Compared with the case, it is easier to select the branch passage 40. Further, a peripheral branch passage 45 and a second peripheral branch passage (first branch passage 41) are further branched on the peripheral side of the second branch passage 42 that branches from the second main passage 33. Therefore, can the examiner follow the guide wire to reach the peripheral bifurcation passage 45 and the second peripheral bifurcation passage (first bifurcation passage 41) by the blood vessel model 10 without prolapse? You can evaluate whether or not. Further, the first main passage 32 is branched from the base end main passage 31. Therefore, at the bifurcation of the proximal main passage 31 and the first main passage 32, can the microcatheter 100 follow the guide wire without dispersing the force for pushing the microcatheter 100 along the guide wire? You can evaluate whether or not. The performance difference in the followability of the microcatheter 100 to the guide wire is the flexibility of the portion of the microcatheter 100 from the tip to the proximal end side of about 5 mm, the rigidity arrangement up to about 30 mm to the proximal end side, and more. In addition, multiple factors such as shaft rigidity at the base end, outer diameter of the tip, kink resistance, slipperiness, state-of-the-art chamfering shape, rigidity and slipperiness of the guide wire, and clearance between the microcatheter 100 and the guide wire are combined. However, it mainly depends on the flexibility, rigid arrangement and outer diameter of the tip portion of the microcatheter 100. Therefore, when the performance difference of the microcatheter 100 appears due to the above-mentioned plurality of factors, it is effective to evaluate the performance difference by this blood vessel model 10.
 試験者は、第3主通路34からいずれかの分岐通路40へマイクロカテーテル100を挿入することを決定した場合には、本血管モデル10を用いることで、上述した第2主通路33からいずれかの分岐通路40へ挿入する場合と同様の評価が可能である。なお、第3主通路34の内径は2mmであり、第2主通路33の内径の5mmよりも小さい。このため、マイクロカテーテル100やガイドワイヤが撓むことができる範囲が狭い(押す力が逃げる範囲が少ない)ため、マイクロカテーテル100のガイドワイヤに対する追従性の性能差が生じにくい。しかしながら、主にマイクロカテーテル100の先端部分の柔軟性、剛性配置、外径などの差が比較的大きい場合には、マイクロカテーテル100の性能差が表れやすいため、本血管モデル10による性能差の評価が有効である。 If the tester decides to insert the microcatheter 100 from the third main passage 34 into any of the bifurcation passages 40, the tester can use this vessel model 10 to use any of the above-mentioned second main passages 33. The same evaluation as when inserting into the branch passage 40 is possible. The inner diameter of the third main passage 34 is 2 mm, which is smaller than the inner diameter of the second main passage 33, which is 5 mm. Therefore, since the range in which the microcatheter 100 and the guide wire can be bent is narrow (the range in which the pushing force escapes is small), the performance difference in the followability of the microcatheter 100 with respect to the guide wire is unlikely to occur. However, mainly when the difference in flexibility, rigid arrangement, outer diameter, etc. of the tip portion of the microcatheter 100 is relatively large, the performance difference of the microcatheter 100 is likely to appear, so the performance difference is evaluated by this blood vessel model 10. Is valid.
 試験者は、第4主通路35からいずれかの分岐通路40へマイクロカテーテル100を挿入することを決定した場合には、本血管モデル10を用いることで、上述した第2主通路33からいずれかの分岐通路40へ挿入する場合と同様の評価が可能である。なお、第4主通路35の内径は1.2mmであり、第2主通路33の内径の5mmや、第3主通路34の内径の2mmよりも小さい。このため、マイクロカテーテル100やガイドワイヤが撓むことができる範囲がさらに狭い(押す力が逃げる範囲が少ない)ため、マイクロカテーテル100のガイドワイヤに対する追従性の性能差が生じにくい。しかしながら、主にマイクロカテーテル100の先端部分の柔軟性、剛性配置、外径などの差が比較的大きい場合には、マイクロカテーテル100の性能差が表れやすいため、本血管モデル10による性能差の評価が有効である。 If the tester decides to insert the microcatheter 100 from the fourth main passage 35 into any of the branch passages 40, the tester can use this vessel model 10 to use any of the above-mentioned second main passages 33. The same evaluation as when inserting into the branch passage 40 is possible. The inner diameter of the fourth main passage 35 is 1.2 mm, which is smaller than the inner diameter of the second main passage 33 of 5 mm and the inner diameter of the third main passage 34 of 2 mm. Therefore, since the range in which the microcatheter 100 and the guide wire can be bent is narrower (the range in which the pushing force escapes is small), the performance difference in the followability of the microcatheter 100 with respect to the guide wire is unlikely to occur. However, mainly when the difference in flexibility, rigid arrangement, outer diameter, etc. of the tip portion of the microcatheter 100 is relatively large, the performance difference of the microcatheter 100 is likely to appear, so the performance difference is evaluated by this blood vessel model 10. Is valid.
 以上のように、本実施形態に係る血管モデル10は、主血管を模擬する主通路30と、主血管から分岐する分岐血管を模擬して主通路30よりも細い分岐通路40と、を有する血管モデル10であって、分岐通路40の主通路30に対する分岐角度θ1~θ4は、分岐通路40が主通路30に対して逆方向へ折り返される場合を0度と定義した場合に、0度を超えて90度未満である。 As described above, the blood vessel model 10 according to the present embodiment has a blood vessel having a main passage 30 simulating a main blood vessel and a branch passage 40 thinner than the main passage 30 simulating a branch blood vessel branching from the main blood vessel. In the model 10, the branch angles θ1 to θ4 of the branch passage 40 with respect to the main passage 30 exceed 0 degrees when the case where the branch passage 40 is folded back in the opposite direction to the main passage 30 is defined as 0 degrees. Is less than 90 degrees.
 上記のように構成した血管モデル10は、主血管から折り返されるように鋭角に分岐する分岐血管への医療用長尺体の選択性能の評価を行うことができる。 The blood vessel model 10 configured as described above can evaluate the selection performance of a medical long body for a bifurcated blood vessel that branches at an acute angle so as to be folded back from the main blood vessel.
 血管モデル10は、主通路30に対する分岐角度θ1~θ4が異なる複数の分岐通路40を有する。これにより、1つの血管モデル10で、様々な分岐角度θ1~θ4の分岐通路40における医療用長尺体の選択性能の評価を行うことができる。 The blood vessel model 10 has a plurality of branch passages 40 having different branch angles θ1 to θ4 with respect to the main passage 30. Thereby, one blood vessel model 10 can evaluate the selection performance of the medical long body in the branch passage 40 having various branch angles θ1 to θ4.
 また、血管モデル10は、内径の異なる複数の主通路30を有し、各々の主通路30から分岐する分岐通路40が設けられる。これにより、主通路30と分岐通路40の組み合わせが複数設けられるため、1つの血管モデル10で、様々な内径の主血管から折り返されるように鋭角に分岐する分岐血管を再現して、医療用長尺体の選択性能の評価を行うことができる。 Further, the blood vessel model 10 has a plurality of main passages 30 having different inner diameters, and a branch passage 40 branching from each main passage 30 is provided. As a result, since a plurality of combinations of the main passage 30 and the branch passage 40 are provided, one blood vessel model 10 reproduces a branch blood vessel that branches at an acute angle so as to be folded back from a main blood vessel having various inner diameters, and is used for medical purposes. It is possible to evaluate the selection performance of the scale.
 また、血管モデル10は、主通路30または基端主通路31から内径の異なる複数の主通路が分岐せずに、内径の異なる複数の主通路30の内径が末梢側へ向かって段階的に減少してもよい。本実施形態は、第2主通路33の内径が5mm、第3主通路34の内径が2mm、第4主通路35の内径が1.2mmと段階的に細くなっている。これにより、実際の血管径を模擬できるとともに、内径の異なる複数の主通路を隙間なく効率的な配置して、血管モデル10をコンパクトにすることができる。 Further, in the blood vessel model 10, the inner diameters of the plurality of main passages 30 having different inner diameters gradually decrease toward the peripheral side without branching from the main passage 30 or the proximal main passage 31. You may. In this embodiment, the inner diameter of the second main passage 33 is 5 mm, the inner diameter of the third main passage 34 is 2 mm, and the inner diameter of the fourth main passage 35 is 1.2 mm, which are gradually reduced. As a result, the actual blood vessel diameter can be simulated, and a plurality of main passages having different inner diameters can be efficiently arranged without gaps to make the blood vessel model 10 compact.
 また、血管モデル10は、分岐通路40の主通路30から離れた末梢側で分岐する少なくとも1つの末梢分岐通路45を有する。これにより、複数の分岐を連続して通過する医療用長尺体の選択性能の評価を行うことができる。 Further, the blood vessel model 10 has at least one peripheral branch passage 45 that branches on the peripheral side away from the main passage 30 of the branch passage 40. This makes it possible to evaluate the selection performance of a medical long body that continuously passes through a plurality of branches.
 また、血管モデル10は、主通路30に対する分岐角度が異なる複数の分岐通路40を有し、分岐通路40の末梢に設けられる末梢分岐通路45の数なくとも1つは、他の分岐通路40である。これにより、分岐通路40の1つの末梢に設けられる第2末梢分岐通路を、他の分岐通路40によって再現できるため、血管モデル10をコンパクトに実現できる。 Further, the blood vessel model 10 has a plurality of branch passages 40 having different branch angles with respect to the main passage 30, and at least one of the peripheral branch passages 45 provided on the periphery of the branch passage 40 is another branch passage 40. be. As a result, the second peripheral branch passage provided in one periphery of the branch passage 40 can be reproduced by the other branch passage 40, so that the blood vessel model 10 can be realized compactly.
 また、主通路30は、分岐して複数設けられる。これにより、複数の主通路30を効率よく配置できるため、複数の主通路30を有する血管モデル10をコンパクトに実現できる。また、分岐する複数の主通路30を通過した医療用長尺体の、分岐通路40への選択性能の評価を行うことができる。 In addition, a plurality of main passages 30 are branched and provided. As a result, since the plurality of main passages 30 can be efficiently arranged, the blood vessel model 10 having the plurality of main passages 30 can be compactly realized. In addition, it is possible to evaluate the selection performance of the medical long body that has passed through the plurality of branching main passages 30 to the branch passage 40.
 また、主通路30に対する分岐角度θ2~θ4が異なる複数の分岐通路40を当該主通路30の延在方向へ並べた分岐通路群46が、当該主通路30の周方向の異なる位置に複数設けられる。これにより、1つの血管モデル10で、様々な分岐通路40における医療用長尺体の選択性能の評価を行うことができる。 Further, a plurality of branch passage groups 46 in which a plurality of branch passages 40 having different branch angles θ2 to θ4 with respect to the main passage 30 are arranged in the extending direction of the main passage 30 are provided at different positions in the circumferential direction of the main passage 30. .. Thereby, one blood vessel model 10 can evaluate the selection performance of the medical long body in various branch passages 40.
 また、本実施形態に係る血管モデル10を用いた医療用長尺体の評価方法は、主血管を模擬する主通路30と、主血管から分岐する分岐血管を模擬して主通路30よりも細い分岐通路40と、を有し、分岐通路40の主通路30に対する分岐角度θ1~θ4は、分岐通路40が主通路30に対して逆方向へ折り返される場合を0度と定義した場合に、0度を超えて90度未満である血管モデル10を準備するステップと、医療用長尺体を主通路30に挿入し、主通路30から分岐通路40へ到達させることを試みるステップと、分岐通路40へ到達するか否かを判別するステップと、を有する。 Further, the evaluation method of the long medical body using the blood vessel model 10 according to the present embodiment is thinner than the main passage 30 simulating the main passage and the bifurcated blood vessel branching from the main blood vessel. The branch passage 40 has a branch passage 40, and the branch angles θ1 to θ4 with respect to the main passage 30 of the branch passage 40 are 0 when the case where the branch passage 40 is folded back in the opposite direction to the main passage 30 is defined as 0 degrees. A step of preparing a blood vessel model 10 which is more than 90 degrees and less than 90 degrees, a step of inserting a medical elongated body into the main passage 30 and trying to reach the branch passage 40 from the main passage 30, and a branch passage 40. It has a step of determining whether or not to reach.
 上記のように構成した評価方法は、主血管から折り返されるように鋭角に分岐する分岐血管への医療用長尺体の選択性能を、容易に評価できる。 The evaluation method configured as described above can easily evaluate the selection performance of a medical long body for a bifurcated blood vessel that branches at an acute angle so as to be folded back from the main blood vessel.
 なお、本発明は、上述した実施形態のみに限定されるものではなく、本発明の技術的思想内において当業者により種々変更が可能である。 The present invention is not limited to the above-described embodiment, and various modifications can be made by those skilled in the art within the technical idea of the present invention.
 例えば、血管モデル10は、治具であってもよい。例えば、血管モデル10は、オートグラフ等のセンサに接続されてもよい。これにより、血管モデル10に医療用長尺体を挿入する際に血管モデル10に作用する力や血管モデル10の移動量等を検出できる。また、血管モデル10が模擬する血管は、特に限定されないが、前立腺動脈、子宮動脈あるいは肝動脈である。あるいは、初心者が慣れるために、一部に分岐通路の主通路に対する分岐角度が、90度以上の分岐通路を設けてもよい。 For example, the blood vessel model 10 may be a jig. For example, the blood vessel model 10 may be connected to a sensor such as an autograph. Thereby, it is possible to detect the force acting on the blood vessel model 10 and the amount of movement of the blood vessel model 10 when the medical long body is inserted into the blood vessel model 10. The blood vessel simulated by the blood vessel model 10 is not particularly limited, but is a prostate artery, a uterine artery, or a hepatic artery. Alternatively, for beginners to get used to, a branch passage having a branch angle of 90 degrees or more with respect to the main passage of the branch passage may be provided.
 なお、本出願は、2020年7月1日に出願された日本特許出願2020-114084号に基づいており、それらの開示内容は、参照され、全体として、組み入れられている。 It should be noted that this application is based on Japanese Patent Application No. 2020-114804 filed on July 1, 2020, and the disclosure contents thereof are referred to and incorporated as a whole.
  10  血管モデル
  11  分割模擬部
  12  保持板
  13  連結具
  14  挿入口
  15  対向面
  20  血管模擬部
  21  連絡通路
  30  主通路
  31  基端主通路
  32  第1主通路
  33  第2主通路
  34  第3主通路
  35  第4主通路
  40  分岐通路
  41  第1分岐通路
  42  第2分岐通路
  43  第3分岐通路
  44  第4分岐通路
  45  末梢分岐通路
  46  分岐通路群
  50  補助通路
  100  マイクロカテーテル(医療用長尺体)
10 Vascular model 11 Divided simulated part 12 Holding plate 13 Connecting tool 14 Insertion port 15 Facing surface 20 Vascular simulated part 21 Connecting passage 30 Main passage 31 Base end main passage 32 1st main passage 33 2nd main passage 34 3rd main passage 35 4th main passage 40 Branch passage 41 1st branch passage 42 2nd branch passage 43 3rd branch passage 44 4th branch passage 45 Peripheral branch passage 46 Branch passage group 50 Auxiliary passage 100 Microcatheter (medical long body)

Claims (9)

  1.  主血管を模擬する主通路と、前記主血管から分岐する分岐血管を模擬して前記主通路よりも細い分岐通路と、を有する血管モデルであって、
     前記分岐通路の前記主通路に対する分岐角度は、前記分岐通路が前記主通路に対して逆方向へ折り返される場合を0度と定義した場合に、0度を超えて90度未満であることを特徴とする血管モデル。
    A blood vessel model having a main passage simulating a main blood vessel and a branch passage thinner than the main passage simulating a branch blood vessel branching from the main blood vessel.
    The branch angle of the branch passage with respect to the main passage is characterized by being more than 0 degrees and less than 90 degrees when the case where the branch passage is folded back in the opposite direction to the main passage is defined as 0 degrees. Blood vessel model.
  2.  前記主通路に対する分岐角度が異なる複数の分岐通路を有することを特徴とする請求項1に記載の血管モデル。 The blood vessel model according to claim 1, wherein the blood vessel model has a plurality of branch passages having different branch angles with respect to the main passage.
  3.  内径の異なる複数の主通路を有し、各々の前記主通路から分岐する前記分岐通路が設けられることを特徴とする請求項1または2に記載の血管モデル。 The blood vessel model according to claim 1 or 2, wherein the blood vessel model has a plurality of main passages having different inner diameters, and the branch passages branching from the main passages are provided.
  4.  前記内径の異なる複数の主通路の内径が末梢側へ向かって段階的に減少することを特徴とする請求項1~3のいずれか1項に記載の血管モデル。 The blood vessel model according to any one of claims 1 to 3, wherein the inner diameters of the plurality of main passages having different inner diameters gradually decrease toward the peripheral side.
  5.  前記分岐通路の前記主通路から離れた末梢側で分岐する少なくとも1つの末梢分岐通路を有することを特徴とする請求項1~4のいずれか1項に記載の血管モデル。 The blood vessel model according to any one of claims 1 to 4, wherein the blood vessel model has at least one peripheral branch passage that branches on the peripheral side away from the main passage of the branch passage.
  6.  前記主通路に対する分岐角度が異なる複数の分岐通路を有し、
     前記分岐通路の末梢に設けられる前記末梢分岐通路の数なくとも1つは、他の分岐通路であることを特徴とする請求項5に記載の血管モデル。
    It has a plurality of branch passages having different branch angles with respect to the main passage, and has a plurality of branch passages.
    The blood vessel model according to claim 5, wherein at least one of the peripheral branch passages provided in the periphery of the branch passage is another branch passage.
  7.  前記主通路は、分岐して複数設けられることを特徴とする請求項1~6のいずれか1項に記載の血管モデル。 The blood vessel model according to any one of claims 1 to 6, wherein the main passage is branched and provided in a plurality.
  8.  前記主通路に対する分岐角度が異なる複数の分岐通路を当該主通路の延在方向へ並べた分岐通路群が、当該主通路の周方向の異なる位置に複数設けられることを特徴とする請求項1~7のいずれか1項に記載の血管モデル。 Claims 1 to 1, wherein a plurality of branch passages in which a plurality of branch passages having different branch angles with respect to the main passage are arranged in the extending direction of the main passage are provided at different positions in the circumferential direction of the main passage. 7. The blood vessel model according to any one of 7.
  9.  血管モデルを用いた医療用長尺体の評価方法であって、
     主血管を模擬する主通路と、前記主血管から分岐する分岐血管を模擬して前記主通路よりも細い分岐通路と、を有し、前記分岐通路の前記主通路に対する分岐角度は、前記分岐通路が前記主通路に対して逆方向へ折り返される場合を0度と定義した場合に、0度を超えて90度未満である血管モデルを準備するステップと、
     前記医療用長尺体を前記主通路に挿入し、前記主通路から前記分岐通路へ到達させることを試みるステップと、
     前記分岐通路へ到達するか否かを判別するステップと、を有することを特徴とする医療用長尺体の評価方法。
    It is an evaluation method for medical long bodies using a blood vessel model.
    It has a main passage that simulates a main blood vessel and a branch passage that is thinner than the main passage by simulating a branch blood vessel that branches from the main blood vessel, and the branch angle of the branch passage with respect to the main passage is the branch passage. A step of preparing a blood vessel model that is more than 0 degrees and less than 90 degrees when the case where is folded back in the opposite direction to the main passage is defined as 0 degrees.
    A step of inserting the medical elongated body into the main passage and attempting to reach the branch passage from the main passage.
    A method for evaluating a medical long body, which comprises a step of determining whether or not to reach the branch passage.
PCT/JP2021/024687 2020-07-01 2021-06-30 Blood vessel model and method for assessing medical long body WO2022004770A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022534071A JPWO2022004770A1 (en) 2020-07-01 2021-06-30

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020114084 2020-07-01
JP2020-114084 2020-07-01

Publications (1)

Publication Number Publication Date
WO2022004770A1 true WO2022004770A1 (en) 2022-01-06

Family

ID=79316561

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/024687 WO2022004770A1 (en) 2020-07-01 2021-06-30 Blood vessel model and method for assessing medical long body

Country Status (2)

Country Link
JP (1) JPWO2022004770A1 (en)
WO (1) WO2022004770A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5112228A (en) * 1989-11-13 1992-05-12 Advanced Cardiovascular Systems, Inc. Vascular model
CN204130043U (en) * 2014-09-03 2015-01-28 常州市第一人民医院 Blood vessel gets involved superselective catheterization analog training device
JP2017509924A (en) * 2014-03-26 2017-04-06 アプライド メディカル リソーシーズ コーポレイション Simulated incisionable tissue
JP2020091307A (en) * 2018-12-03 2020-06-11 朝日インテック株式会社 Blood vessel model and organ simulator

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5112228A (en) * 1989-11-13 1992-05-12 Advanced Cardiovascular Systems, Inc. Vascular model
JP2017509924A (en) * 2014-03-26 2017-04-06 アプライド メディカル リソーシーズ コーポレイション Simulated incisionable tissue
CN204130043U (en) * 2014-09-03 2015-01-28 常州市第一人民医院 Blood vessel gets involved superselective catheterization analog training device
JP2020091307A (en) * 2018-12-03 2020-06-11 朝日インテック株式会社 Blood vessel model and organ simulator

Also Published As

Publication number Publication date
JPWO2022004770A1 (en) 2022-01-06

Similar Documents

Publication Publication Date Title
US4198766A (en) Intravenous training/demonstration aid
US9872666B2 (en) Echogenic surface using reuleaux triangle
IL177131A (en) Simulation of invasive procedures
CA2854155C (en) Method and device for injecting a fluid into an artificial venous structure
JP4505572B2 (en) Human body model
CN106691533B (en) Balloon guide catheter
JPWO2010007801A1 (en) Mold for manufacturing simulated blood vessel, method for manufacturing simulated blood vessel, and simulated blood vessel
WO2022004770A1 (en) Blood vessel model and method for assessing medical long body
WO2010016353A1 (en) Biological model for ultrasonic examination
WO2016158294A1 (en) Medical leak inspection device
WO2021107103A1 (en) Valve and medical instrument provided with valve
US20060074372A1 (en) Active capillary
JP5822510B2 (en) Stenosis model and training kit
JP2019045602A (en) Manipulation simulator
WO2021152982A1 (en) Blood vessel model and method for evaluating operability of medical long body
EP3073468A1 (en) Simulated organ and blood vessels
JP2023013409A (en) blood vessel model
CN218684466U (en) Body simulating die for ultrasonic endoscope test
CN209980608U (en) Femoral vein puncture practice model
JP4526608B2 (en) Introducer sheath
WO2022176118A1 (en) Biological model
JPWO2014162444A1 (en) sheath
CN107101869A (en) A kind of multifunctional test machine and its application method for seal wire Mechanics Performance Testing
US11950803B2 (en) Needle assembly with reverberation features to facilitate ultrasound guidance
WO2016093252A1 (en) Passage test device for medical long body, and method for evaluating passage of medical long body

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21832583

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022534071

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21832583

Country of ref document: EP

Kind code of ref document: A1