WO2022176118A1 - Biological model - Google Patents

Biological model Download PDF

Info

Publication number
WO2022176118A1
WO2022176118A1 PCT/JP2021/006160 JP2021006160W WO2022176118A1 WO 2022176118 A1 WO2022176118 A1 WO 2022176118A1 JP 2021006160 W JP2021006160 W JP 2021006160W WO 2022176118 A1 WO2022176118 A1 WO 2022176118A1
Authority
WO
WIPO (PCT)
Prior art keywords
model
fascia
resin
skin
muscle
Prior art date
Application number
PCT/JP2021/006160
Other languages
French (fr)
Japanese (ja)
Inventor
信圭 山中
Original Assignee
朝日インテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 朝日インテック株式会社 filed Critical 朝日インテック株式会社
Priority to JP2023500232A priority Critical patent/JPWO2022176118A1/ja
Priority to PCT/JP2021/006160 priority patent/WO2022176118A1/en
Publication of WO2022176118A1 publication Critical patent/WO2022176118A1/en

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B23/00Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes
    • G09B23/28Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes for medicine
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B9/00Simulators for teaching or training purposes

Definitions

  • the present disclosure relates to biological models.
  • Patent Literature 1 discloses a biological model having a structure simulating skin, tissue, and blood vessels for simulating insertion of an injection needle into a blood vessel under ultrasound guidance.
  • Patent Literature 2 discloses a biological model for pressure ulcer diagnosis training using an ultrasonic examination apparatus.
  • a biological model includes a skin model that simulates skin by forming a portion including the surface of the biological model, a fascia/muscle model that simulates tissues including fascia and muscle, and a porous body, wherein the skin is A joint for joining the model and the fascia/muscle model, and a blood vessel model that is embedded in the fascia/muscle model and simulates a blood vessel.
  • the joints are composed of a porous body. Therefore, at least one of the skin model and the fascia/muscle model can be joined via the joint by the constituent material entering the pores of the porous body that constitutes the joint.
  • the skin model contains a first resin
  • the fascia/muscle model contains a second resin different from the first resin
  • the joint includes the The porous body may contain one of the first resin and the second resin.
  • the porous body included in the joint may have pores penetrating through the porous body in the thickness direction.
  • the skin model includes a resin mesh arranged to extend along the surface, and the resin mesh is a resin that constitutes a part of the skin model other than the resin mesh. It may be made of a third resin that is harder.
  • the soft feel of the skin can be reproduced by the resin that constitutes the part other than the resin mesh, and by further providing the resin mesh, the injection needle can be pierced into the skin and the skin can be felt. Since it is possible to improve the reproducibility of the feeling when breaking through the skin, the reproducibility of the skin by the skin model can be improved.
  • the wires forming the resin mesh may have a diameter of 0.5 mm or less.
  • a biological model can preferably be used for training in .
  • the skin model is divided into an upper layer including the surface and a lower layer laminated on the upper layer, and the lower layer is formed of an adhesive gel.
  • the lower layer is formed of an adhesive gel.
  • the present disclosure can be implemented in various forms other than those described above, for example, it can be implemented in the form of a biological model manufacturing method, a human body simulation device including a biological model, and the like.
  • Sectional drawing which represents typically the schematic structure of the biological model of 1st Embodiment.
  • Sectional drawing which represents typically the schematic structure of the biological model of 2nd Embodiment.
  • Sectional drawing which represents typically a schematic structure of the biological model of 3rd Embodiment.
  • Sectional drawing which represents typically schematic structure of the biological model of 4th Embodiment.
  • Sectional drawing which represents typically schematic structure of the biological model of 5th Embodiment.
  • Sectional drawing which represents typically the schematic structure of the biological model of 6th Embodiment.
  • FIG. 1 is a cross-sectional view schematically showing the schematic configuration of the biological model 10 of the first embodiment.
  • the biological model 10 of the present embodiment is used for training of procedures related to puncture of inserting an injection needle into a blood vessel, procedures related to treatment and diagnosis performed by inserting a medical device such as a catheter or a guide wire into a blood vessel, or medical treatment. It is used for purposes such as the development of electronic devices.
  • the biological model 10 of the present embodiment is used for training of the above-described techniques under ultrasound guidance.
  • the biological model 10 includes a skin model 20, joints 30, a fascia/muscle model 40, a blood vessel model 50, and a bone model 60.
  • a skin model 20 , a joint 30 , and a fascia/muscle model 40 are layered in this order from the surface side of the biological model 10 .
  • XYZ axes orthogonal to each other are illustrated in FIG. 1 and each figure after FIG. 3 to be described later.
  • the X-axis direction and the Y-axis direction correspond to the horizontal direction when the biological model 10 is arranged, and the Z-axis direction corresponds to the vertical direction when the biological model 10 is arranged.
  • the biological model 10 may be arranged in a different orientation.
  • the Y-axis direction corresponds to the longitudinal direction, which is the direction in which the blood vessel model 50 extends within the biological model 10 . It should be noted that FIG. 1 does not accurately represent the dimensional ratio of each part.
  • the skin model 20 constitutes a portion including a surface 21, which is the surface of the biological model 10, and simulates the skin of the biological body.
  • the skin model 20 of this embodiment includes a surface layer model 22 including a surface 21 that is the surface of the biological model 10, and a subcutaneous tissue model layered on the surface layer model 22 and provided below the surface layer model 22 (-Z direction side). 24 and.
  • the superficial layer model 22 simulates the epidermis including the stratum corneum and the dermis.
  • Subcutaneous tissue model 24 simulates subcutaneous tissue.
  • the surface layer model 22 is also called “upper layer”
  • the subcutaneous tissue model 24 is also called "lower layer”.
  • the surface model 22 provides a feel similar to that obtained when the skin of a living body is used as a touch when an injection needle or the like is pierced into the living body model 10 during training using the living body model. .
  • the surface layer model 22 is configured by using, for example, an elastomer such as polyurethane, silicone, nylon, or polystyrene, natural rubber, or synthetic rubber, using these polymer materials alone, or by combining a plurality of polymer materials. can do. Physical properties such as frictional characteristics and elastic modulus are improved from the standpoint that it is easy to obtain a feel close to that of the skin of a living body (touch, elasticity felt when an echo observation probe is pressed against it, and how the probe slides). Polyurethanes are desirable, and flexible polyurethanes are particularly desirable, for consideration.
  • an elastomer such as polyurethane, silicone, nylon, or polystyrene, natural rubber, or synthetic rubber
  • the thickness of the surface layer model 22 can be, for example, about 0.5 mm to 1.0 mm from the viewpoint that it is easy to obtain a touch similar to that of the skin of a living body when touching or puncturing. With such a thickness, when the biological model 10 is used under echo guidance, it is possible to sufficiently transmit ultrasonic waves through the surface layer model 22. can be used without any problems.
  • the thickness of the surface layer model 22 is not limited to the above range.
  • constituent materials are used so as to improve the reproducibility of the feel of the skin of a living body and to allow ultrasonic waves to sufficiently pass through the subcutaneous tissue model 24 when performing training under echo guidance.
  • the subcutaneous tissue model 24 can be configured using gel such as silicone gel or polyurethane gel, for example.
  • gel such as silicone gel or polyurethane gel
  • the adhesiveness of the subcutaneous tissue model 24 is used regardless of the type of polymeric material that constitutes the surface model 22. It is desirable because the subcutaneous tissue model 24 and the surface layer model 22 can be easily joined.
  • the surface layer model 22 and the subcutaneous tissue model 24 are directly bonded to each other without using an adhesive or the like. It is desirable to be made of the same kind of polymer material.
  • the same kind of polymer material for example, by applying the material of the surface layer model 22 on the subcutaneous tissue model 24 and hardening it, covalent bonds, hydrogen bonds, etc. can be formed, and the two can be easily adhered to each other.
  • the portion including the surface 25, which is the surface on the side away from the surface 21, which is the surface of the biological model 10, that is, the resin contained in the subcutaneous tissue model 24 is also called "first resin".
  • the fascia/muscle model 40 is provided on the lower side (-Z direction side) of the skin model 20 and simulates tissues including fascia and muscles.
  • the constituent material may be appropriately selected so as to improve the reproducibility of the hardness of the tissue including the fascia and muscle of the living body.
  • the fascia/muscle model 40 has a relatively low acoustic impedance so as to ensure visibility under echo guidance and improve the reproducibility of ultrasound images of tissues including fascia and muscles of a living body. It is only necessary to select the material of construction. From this point of view, it is desirable to use gel as the constituent material of the fascia/muscle model 40 .
  • a hydrogel whose dispersion medium is water is desirable because it easily transmits ultrasonic waves and has good reproducibility of ultrasonic images.
  • Hydrogels used to construct the fascia/muscle model 40 include, for example, agarose gels, methylcellulose gels, hyaluronic acid hydrogels, alginate hydrogels, carboxymethylcellulose gels, and polysaccharide hydrogels such as xanthan gum. . Also, protein hydrogels containing collagen, gelatin, albumin, keratin, etc., synthetic polymer hydrogels containing polyethylene glycol (PEG), polylactic acid, polyacrylic acid, etc., polyvinyl alcohol (PVA) hydrogels, Silicone hydrogels may also be used.
  • PEG polyethylene glycol
  • PVA polyvinyl alcohol
  • urethane gel which is a polymeric material other than hydrogel, can also be suitably used as a constituent material of the fascia/muscle model 40 .
  • polyvinyl alcohol (PVA) hydrogel is easy to handle and has excellent reproducibility of the hardness of tissues including fascia and muscles of the living body and reproducibility of ultrasonic images. desirable.
  • the fascia/muscle model 40 may be configured by combining a plurality of arbitrary polymer materials among the various polymer materials described above. Acoustic impedance in the fascia/muscle model 40 can be adjusted by mixing and using a plurality of polymer materials. For example, when constructing the fascia/muscle model 40 using urethane gel, a desired ultrasonic image can be obtained by further mixing silicone gel to increase the acoustic impedance and adjusting the mixing ratio of the silicone gel. may be
  • the fascia/muscle model 40 may further contain an inorganic material in addition to the polymer material described above.
  • inorganic materials mixed in the fascia/muscle model 40 include cellulose nanofibers and glass beads. By mixing these inorganic materials with relatively high acoustic impedance, the acoustic impedance of the entire fascia/muscle model 40 can be increased, and the ultrasonic image of the fascia/muscle model 40 can be made whiter.
  • the fascia/muscle model 40 can be made harder. Adjust at least one of the type and concentration of the polymer material constituting the fascia/muscle model 40, the type of inorganic material added to the polymer material, the mixing ratio of the inorganic material, the particle size of the inorganic material, and the like.
  • the inorganic material may be fine particles having a particle size of about 10 nm to several hundred nm, for example. Also, by laminating a plurality of layers of mixed inorganic materials with different types and concentrations, an ultrasonic image of muscle as an aggregate of muscle fibers may be simulated.
  • the above-described polymer material that constitutes the fascia/muscle model 40 is a resin different from the already-described "first resin” that constitutes the skin model 20, and is also called a "second resin".
  • the second resin may be composed of a plurality of types of resin.
  • the joint part 30 is arranged between the skin model 20 and the fascia/muscle model 40 so as to be in contact with the skin model 20 and the fascia/muscle model 40 to connect the skin model 20 and the fascia/muscle model 40 together.
  • the joint portion 30 of the present embodiment is configured by a foam containing the second resin, which configures the fascia/muscle model 40 and is described above.
  • the joint 30 may be provided with foamed polyvinyl alcohol (foamed PVA).
  • the joint 30 may be provided with foamed silicone.
  • the joint A difference in acoustic impedance occurs at the interface between 30 and skin model 20, and the boundary between joint 30 and subcutaneous tissue model 24 can be easily visually recognized in the ultrasound image.
  • a resin of the same type as the second resin that constitutes the fascia/muscle model 40 is used to perform foaming and curing steps to form the joint 30.
  • the fascia/muscle model 40 and the joint 30 are joined.
  • the manner in which the fascia/muscle model 40 and the joint 30 are joined may differ depending on the second resin used.
  • PVA polyvinyl alcohol
  • the fascia/muscle model 40 is formed by curing the foamed polyvinyl alcohol on the fascia/muscle model 40 containing the polyvinyl alcohol hydrogel.
  • the reaction accompanying the cross-linking hardening of the joint 30 progresses between the resin forming the fascia/muscle model 40 and the resin forming the joint 30, whereby the fascia/muscle model 40 and At the portion where the joint portion 30 is in contact, a layer in which the resin common to both is dissolved is formed.
  • the foam provided in the joint part 30 bubbles are opened on the surface 31 that is the surface that contacts the skin model 20 , that is, on the interface with the skin model 20 .
  • the first resin forming the skin model 20 that is, the resin forming the subcutaneous tissue model 24 enters inside the bubbles of the foam forming the joint 30 .
  • part of the subcutaneous tissue model 24 enters the foam cells that form the joint 30 , so that the skin model 20 and the joint 30 are joined by the anchor effect.
  • the constituent material of the joint 30 containing the second resin for example, the same material as the material of the gel that constitutes the fascia/muscle model 40
  • the material may be foamed and hardened.
  • foaming agents include low boiling point solvents such as normal pentane (n-pentane), cyclopentane, isopentane, normal butane, isobutane and propane.
  • the ratio of closed air bubbles is small.
  • the ultrasonic waves are reflected by the closed air bubbles, which may cause attenuation of the ultrasonic waves. It is desirable that there are few closed cells inside.
  • the thickness of the joint portion 30 is, for example, 1.5 mm or more and 10 mm.
  • the average value of the bubble diameters formed in the joint portion 30 is 0.5 mm or more and 5 mm or less.
  • the shape of the joint 30 is made into a shape in which the cells open at the interface with the skin model 20, thereby suppressing the formation of closed cells. becomes easier. Further, after the foaming process for forming the joint portion 30 is completed, for example, by crushing the bubbles formed by the foaming to increase the voids, the foam is converted to a porous body with an open cell structure, that is, the thickness A porous body having pores penetrating in the direction may be used. Alternatively, a plurality of gel materials mixed with different foaming agents are prepared, and these gel materials are stacked in order on the fascia/muscle model 40, foamed and cured to form joints having open cells. 30 may be formed.
  • the blood vessel model 50 is embedded in the fascia/muscle model 40, simulates a blood vessel, and is composed of a flexible tubular member.
  • the constituent materials may be appropriately selected so as to improve the reproducibility of the hardness of the blood vessels of the living body and the feeling when a medical device such as an injection needle or a catheter is inserted into the blood vessel.
  • the acoustic impedance is relatively low and the fascia/muscle model 40 has a relatively low acoustic impedance so that an injection needle and a medical device inserted into the blood vessel model 50 can be visually recognized under echo guidance.
  • a constituent material having a relatively small difference from the acoustic impedance of the constituent material may be appropriately selected.
  • the polymer material that constitutes the blood vessel model 50 for example, it is possible to appropriately select and use from the materials described as the constituent materials of the fascia/muscle model 40.
  • the blood vessel model 50 is made of the same material as the fascia/muscle model 40, it is desirable because it facilitates securing of the joint strength between the blood vessel model 50 and the fascia/muscle model 40.
  • the blood vessel model 50 contains an inorganic material in addition to a polymer material such as hydrogel, thereby improving the reproducibility of the hardness of the living body and the reproducibility of the ultrasonic image. can be improved.
  • the blood vessel model 50 may be a single-layer tubular member made of a homogeneous material, or may be a tubular member in which a plurality of layers of mixed inorganic materials with different types and concentrations are laminated. As a result, a blood vessel having an intima, a media, and an adventitia can be simulated.
  • Bone model The bone model 60 is embedded in the fascia/muscle model 40 to simulate a bone.
  • the bone model 60 may be made of a relatively hard material that exhibits an elastic modulus close to that of a living bone.
  • constituent materials of the bone model 60 include acrylic resin, polycarbonate, polyethylene terephthalate (PET), and polyvinyl chloride (PVC).
  • PET polyethylene terephthalate
  • PVC polyvinyl chloride
  • a layer made of a material having a larger acoustic impedance difference with the fascia/muscle model 40 is added to the surface of the bone model 60. may be provided.
  • the bone model 60 when training is performed by inserting an injection needle or a medical device into the blood vessel model 50, for example, it is possible to simulate the influence of the bones existing near the blood vessel on the feeling during operation. can be done.
  • the bone model 60 is not essential, and the bone model 60 may not be provided in the biological model 10 in which the target of the procedure to be trained is a blood vessel.
  • FIG. 2 is a flow chart showing a method for manufacturing the biological model 10. As shown in FIG.
  • blood vessel model 50 and bone model 60 are produced (step T100).
  • the blood vessel model 50 and the bone model 60 may be produced by curing the above-described polymeric material as the constituent material in a mold having a shape corresponding to each shape.
  • the blood vessel model 50 and the bone model 60 produced in step T100 are placed in a molding mold having a shape corresponding to the overall shape of the biological model 10 (step T110). Then, after filling the molding mold with the constituent material of the fascia/muscle model 40, the filled constituent material is gelled to form the fascia/muscle model 40 (step T120).
  • the fascia/muscle model 40 is made of polyvinyl alcohol (PVA)
  • PVA polyvinyl alcohol
  • the polyvinyl alcohol is dissolved in water or an aqueous solution containing a water-soluble organic solvent such as dimethylsulfoxide to form a polyvinyl alcohol solution. make.
  • the polyvinyl alcohol solution is cooled to about ⁇ 30° C., whereby the polyvinyl alcohol molecules are crosslinked and cured. Then, by returning the cooled polyvinyl alcohol solution to room temperature, a polyvinyl alcohol gel is obtained and the fascia/muscle model 40 is formed.
  • step T120 when both the fascia/muscle model 40 and the blood vessel model 50 are formed using polyvinyl alcohol, in step T120, a heated polyvinyl alcohol solution is applied to a molding mold in which the blood vessel model 50 and the bone model 60 are arranged. It should be filled inside. As a result, the surface temperature of the blood vessel model 50 rises and the hydrogen bonds of the polyvinyl alcohol molecules are broken, so that the surface of the blood vessel model 50 partially dissolves and mixes with the polyvinyl alcohol solution filled in the molding mold. After that, the entire molding mold is frozen, and the polyvinyl alcohol molecules are cross-linked to bond the blood vessel model 50 and the fascia/muscle model 40 .
  • the constituent material of the joint 30 is next applied onto the fascia/muscle model 40 (step T130).
  • the fascia/muscle model 40 and the joint 30 are formed using polyvinyl alcohol, in step T130, for example, the above-described gel material used to form the fascia/muscle model 40 in step T120 is used.
  • a foaming agent may be added to the same material as .
  • step T140 the constituent material of the joint 30 applied in step T130 is foamed (step T140).
  • the temperature may be raised to a temperature at which foaming by the foaming agent proceeds.
  • the temperature may be raised to about 50.degree.
  • step T150 After foaming the constituent material of the joint portion 30 in step T140, the cells opened on the surface of the resulting foam layer are filled with the material of the subcutaneous tissue model 24 to gel (step T150).
  • step T150 the liquid material for forming the subcutaneous tissue model 24 is poured onto the foam layer to fill the cells of the foam layer with the liquid material, but the natural degassing of the cells is insufficient. Vacuum degassing may be performed if natural degassing is difficult.
  • step T150 it is desirable to fill the material of the subcutaneous tissue model 24 without leaving air in the bubbles.
  • step T150 after filling the material of the subcutaneous tissue model 24 in the cells of the foam layer, the material of the subcutaneous tissue model 24 is crosslinked and cured under temperature conditions (for example, room temperature) according to the material of the subcutaneous tissue model 24. gel to form a subcutaneous tissue model 24 .
  • temperature conditions for example, room temperature
  • a member that will become the surface layer model 22 is prepared (step T160).
  • a sheet made of the polymer material already described as the material of the surface layer model 22 is prepared.
  • the prepared member to be the surface layer model 22 is pasted onto the subcutaneous tissue model 24 formed in step T150 (step T170) to complete the living body model 10.
  • FIG. For example, when the subcutaneous tissue model 24 is made of an adhesive polyurethane gel, the adhesiveness of the subcutaneous tissue model 24 can be used to bring the surface layer model 22 into close contact with the subcutaneous tissue model 24 without gaps.
  • the subcutaneous tissue model 24 is made of a non-adhesive polymer material, for example, the same material as that of the subcutaneous tissue model 24 is used instead of steps T160 and T170.
  • the subcutaneous tissue model 24 and the surface layer model 22 may be joined by performing a step of applying the constituent material to the subcutaneous tissue model 24 and a step of curing the applied constituent material to form the surface layer model 22. .
  • the biological model 10 can have various shapes such as a rectangular parallelepiped block shape and a cylindrical shape.
  • a model that imitates the shape of a part of the human body having the blood vessel, such as a leg or an arm may be used.
  • a model simulating a wider range of the human body such as a human body model, may be used.
  • FIG. 1 shows an enlarged view of only a part of the biological model 10 thus produced, which includes a blood vessel model 50 to be trained and a skin model 20 in the vicinity thereof.
  • the joint 30 that joins the skin model 20 and the fascia/muscle model 40 is made of a resin foam. Therefore, by firmly joining the skin model 20 and the joining portion 30, the joining strength between the skin model 20 and the fascia/muscle model 40 can be increased. This is because, for example, the resin forming the skin model 20 penetrates into the cells of the foam forming the joint 30, thereby obtaining an anchor effect. As a result, the restriction due to the difficulty of joining when directly joining the skin model 20 and the fascia/muscle model 40 is suppressed, and the materials that make up the skin model and the materials that make up the fascia/muscle model are combined. , and high connection strength can be obtained between the skin model and the fascia/muscle model.
  • the joint 30 and the fascia/muscle model 40 are formed using the same kind of resin, for example, the resin that becomes the joint 30 is cross-linked and cured on the fascia/muscle model 40.
  • the same kind of resin materials can be easily bonded. Therefore, regardless of the constituent materials of the skin model 20 and the fascia/muscle model 40, the strength of the joint between the skin model 20 and the fascia/muscle model 40 via the joint 30 can be further increased.
  • the skin model 20 and the fascia/muscle model 40 are made of different materials, they can be well joined together.
  • Materials can be set arbitrarily.
  • the skin model 20 it is desirable to use a material that has a frictional characteristic and an elastic modulus that can improve the reproducibility of the feel when touching the skin.
  • puncture training is performed using the biological model 10
  • the skin model 20 uses a material having a hardness and an elastic modulus that can improve the reproducibility of the feeling when the injection needle is pricked.
  • the fascia/muscle model 40 it is desirable to use a material with high reproducibility of the hardness of tissue including fascia and muscle in a living body.
  • the fascia/muscle model 40 sufficiently transmits ultrasonic waves to achieve excellent reproducibility of ultrasonic images in the living body. It is preferable to use a gel. In this way, when selecting the constituent materials of the skin model 20 and the fascia/muscle model 40, the combination of the skin model 20 and the fascia/muscle model 40 is not restricted due to difficulty in joining. The skin model 20 and the fascia/muscle model 40 can be satisfactorily joined while appropriately selecting the constituent materials of and according to the required performance.
  • the biological model 10 For each part constituting the biological model 10, when the constituent materials of each part are selected so as to enhance the reproducibility of the part of the living body simulated by each part, the biological model 10 as a whole has performance related to reproducibility such as hardness and touch. In order to obtain a sufficient result, it is important that each part simulating a plurality of tissues is connected with appropriate strength. In this embodiment, by providing the joint portion 30, sufficient joint strength can be obtained. Moreover, when the skin model 20 and the fascia/muscle model 40, which are made of different materials, are layered without providing a structure for bonding, the bonding strength between the two will be insufficient. As a result, air bubbles, for example, may occur between the skin model 20 and the fascia/muscle model 40 .
  • the foam included in the joint 30 has pores penetrating through the foam in the thickness direction.
  • the "pores penetrating the foam in the thickness direction" may be open cells composed of a plurality of cells communicating with each other so as to penetrate the foam in the thickness direction as a whole. It may be a single bubble that penetrates in a direction.
  • the resin constituting the skin model 20 does not enter the closed cells. , air bubbles remain in the joint 30 .
  • the air bubbles hinder the transmission of ultrasonic waves, and the part including the blood vessel model 50 below the air bubbles can be observed with an ultrasonic image. can be difficult. If the pores of the foam are through-holes, the pores can be filled with the resin that constitutes the skin model 20 , thereby suppressing the formation of air bubbles in the joint 30 .
  • the hardness of the biological model 10 since it is not necessary to use an adhesive to join the skin model 20 and the fascia/muscle model 40, the hardness of the biological model 10, for example, The hardness near the skin model 20 is not changed. Furthermore, when an adhesive layer is provided between the skin model 20 and the fascia/muscle model 40, the adhesive layer prevents the transmission of ultrasonic waves, and the blood vessel model in the layer below the adhesive layer. Sites containing 50 can be difficult to observe with ultrasound images. Therefore, when the biological model 10 is used for training of procedures performed under echo guidance, the effect of eliminating the need for an adhesive layer can be obtained particularly remarkably.
  • FIG. 3 is a cross-sectional view schematically showing the schematic configuration of the biological model 110 of the second embodiment.
  • the second embodiment has the same configuration as the first embodiment except that a skin model 120 is provided instead of the skin model 20 of the first embodiment.
  • the same reference number is attached
  • the skin model 120 includes a surface layer model 122 and a subcutaneous tissue model 24.
  • the surface layer model 122 includes a resin layer made of the same resin material as the material forming the surface layer model 22 of the first embodiment, and a resin mesh 126 embedded in this resin layer.
  • the resin mesh 126 is made of resin that is harder than the resin that forms the resin layer, that is, the portion including the surface 21 .
  • the resin mesh 126 is formed not only from the resin that forms the resin layer but also from a resin that is harder than the resin that forms the subcutaneous tissue model 24 .
  • the resin that forms the resin mesh 126 is also called a "third resin".
  • the resin forming the resin mesh 126 for example, polypropylene or polycarbonate can be used.
  • the resin mesh 126 can be a woven fabric or a knitted fabric produced using strands made of the above-described third resin.
  • the resin mesh 126 is formed of the third resin that is harder than the resin constituting the parts other than the resin mesh 126 in the skin model 120, the reproducibility of the skin by the skin model 120 can be improved.
  • the resin constituting the resin layer described above can reproduce the soft feel of the skin, and the provision of the resin mesh 126 further improves the reproducibility of the feel when the injection needle pierces the skin and pierces the skin. can be enhanced.
  • the properties of the skin model 120 as a whole can be adjusted, so that the reproducibility of the skin by the skin model 120 can be further improved.
  • the resin mesh 126 When forming the surface layer model 122 of the second embodiment, when the resin material is cross-linked and cured to form a resin layer, the resin mesh 126 is embedded in the resin material before curing arranged in layers, and then , cross-linking curing of the resin material may be performed. By embedding the resin mesh 126 in the resin material before curing, the resin mesh 126 is impregnated with the resin material that constitutes the resin layer. The resin mesh 126 can be satisfactorily bonded.
  • the wire diameter (average wire diameter) of the strands constituting the resin mesh 126 is set to, for example, 0.5 mm from the viewpoint of obtaining the effect of improving the reproducibility of the feeling of puncturing by the resin mesh 126, for example. It should be 1 mm or more.
  • the resin constituting the resin mesh 126 is a resin that is relatively difficult to transmit ultrasonic waves
  • the biological model Ultrasonic waves can be ensured to penetrate the interior of 110 .
  • the wire diameter of the strands of the resin mesh 126 can be set to, for example, 0.5 mm or less.
  • the surface model 122 is provided with the resin mesh 126, and the irregularities on the surface of the resin mesh 126 form irregularities on the surface 21, which is the surface of the biological model 110, and the surface of the skin.
  • the reproducibility of touch may be further enhanced.
  • the unevenness formed on the surface (surface 21) of the surface layer model 22 is determined by the wire diameter of the wires of the resin mesh 126, the opening of the resin mesh 126, the depth at which the resin mesh 126 is arranged in the surface layer model 122, and the like. You can adjust the size.
  • FIG. 4 is a cross-sectional view schematically showing the schematic configuration of the biological model 210 of the third embodiment.
  • the third embodiment has the same configuration as the second embodiment except that a skin model 220 is provided instead of the skin model 120 of the second embodiment.
  • the same reference number is attached
  • a skin model 220 of the third embodiment includes a surface layer model 222 and a subcutaneous tissue model 24 .
  • the surface layer model 122 of the second embodiment is formed by the resin layer and the resin mesh 126, but the surface layer model 222 of the third embodiment has the same shape as the resin mesh 126 of the second embodiment, and has subcutaneous tissue. It is composed only of a resin mesh formed of a resin harder than the resin forming the model 24 .
  • a surface layer model 222 is formed by arranging a resin mesh on a layer made of the material of the subcutaneous tissue model 24 provided on the joint 30, and then placing the material of the subcutaneous tissue model 24. can be formed by cross-linking and curing. Even with such a configuration, the same effect as in the second embodiment can be obtained.
  • FIG. 5 is a cross-sectional view schematically showing the schematic configuration of the biological model 310 of the fourth embodiment.
  • the fourth embodiment has the same configuration as the first embodiment except that a skin model 320 is provided instead of the skin model 20 of the first embodiment.
  • the same reference number is attached
  • the skin model 320 of the fourth embodiment is made up of a single layer. Even with such a configuration, when the constituent material of the skin model 320 is selected so that the desired characteristics of the skin model 320 can be realized, by providing the joint 30, the skin model 320 and the fascia/muscle model 40 are formed. The effect of increasing the bonding strength with is obtained.
  • the skin model has a two-layer structure as in the first embodiment, or a single layer as in the fourth embodiment, or may be formed by laminating a plurality of layers of three or more layers. may
  • FIG. 6 is a cross-sectional view schematically showing the schematic configuration of the biological model 410 of the fifth embodiment.
  • the fifth embodiment has the same configuration as the first embodiment, except that a joint 430 is provided instead of the joint 30 of the first embodiment.
  • parts common to the biological model 10 of the first embodiment are given the same reference numerals.
  • the joint portion 430 of the fifth embodiment is made of a foam containing the first resin that constitutes the subcutaneous tissue model 24 and is described above.
  • the joint 430 and the skin model 20, which commonly contain the first resin are joined by placing the other material on top of one and then cross-linking and curing the other.
  • the joint portion 430 and the fascia/muscle model 40 are joined by allowing the second resin forming the fascia/muscle model 40 to enter the pores of the joint portion 430 . Even with such a configuration, the same effect as in the first embodiment can be obtained.
  • FIG. 7 is a cross-sectional view schematically showing the schematic configuration of a biological model 510 of the sixth embodiment.
  • the sixth embodiment has the same configuration as the first embodiment except that a joint 530 is provided instead of the joint 30 of the first embodiment.
  • the same reference number is attached
  • the joint portion 530 and the skin model 20 are joined by allowing the first resin forming the subcutaneous tissue model 24 to enter the pores of the joint portion 530 .
  • the joint portion 530 and the fascia/muscle model 40 are joined together by filling the pores of the joint portion 530 with the second resin constituting the fascia/muscle model 40.
  • Such a living body model 510 is obtained, for example, by placing the constituent material of one of the subcutaneous tissue model 24 and the fascia/muscle model 40 on one surface of the joint 530 and then cross-linking and curing the material. The structure may be reversed, and the other constituent material of the subcutaneous tissue model 24 and the fascia/muscle model 40 may be placed on the other surface of the joint 530 and then cross-linked and cured.
  • the same effects as in the first embodiment can be obtained. Further, according to the sixth embodiment, even if the constituent material of the joint 530 is different from the constituent materials of the skin model 20 and the fascia/muscle model 40, the skin model 20 and the fascia/muscle model The bonding strength with 40 can be increased. Further, according to the sixth embodiment, since the constituent material of the joint 530 can be made different from the constituent materials of both the skin model 20 and the fascia/muscle model 40, the selection of the constituent material of the joint 530 is It can increase the degree of freedom.
  • the constituent material of the joint portion 530 may include at least one of the first resin and the second resin.
  • the resin common to the joint 530 enters the pores of the joint 530, and the resin constituting the joint 530 can be fused with each other, the bonding strength can be further increased.
  • the joint portion is made of foam, but may be made of a porous material other than foam.
  • the resin layer is made porous by an irradiation etching method to form a porous body composed of the resin. It is good also as providing the joint part 30 provided.
  • the joint is formed of a porous material different from the foam, the same effect of increasing the joint strength between the skin model and the fascia/muscle model can be obtained.
  • the biological model is used for training of procedures performed under echo guidance, but may have a different configuration.
  • materials for the skin model and fascia/muscle model 40 can be reproduced so that the feel of each part such as the skin surface and blood vessels can be reproduced. can increase the degree of freedom of choice when choosing By providing the connecting portion 30, the skin model and the fascia/muscle model 40, which are made of different materials, can be well connected.
  • the present disclosure is not limited to the above-described embodiments and the like, and can be implemented in various configurations without departing from the scope of the present disclosure.
  • the technical features in the embodiments corresponding to the technical features in the respective modes described in the Summary of the Invention column may be used to solve some or all of the above problems, or Substitutions and combinations may be made as appropriate to achieve part or all.
  • the technical features are not described as essential in this specification, they can be deleted as appropriate.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Educational Technology (AREA)
  • Educational Administration (AREA)
  • Business, Economics & Management (AREA)
  • Computational Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Algebra (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Physics (AREA)
  • Pure & Applied Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Medical Informatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Instructional Devices (AREA)

Abstract

This biological model comprises: a skin model that constitutes a portion including the surface of the biological model, and that simulates skin; a fascia/muscle model that simulates tissues including fascia and muscles; a joining part that comprises a porous body and joins the skin model and the fascia/muscle model; and a blood vessel model that is embedded in the fascia/muscle model.

Description

生体モデルbiological model
 本開示は、 生体モデルに関する。 The present disclosure relates to biological models.
 従来、種々の生体モデルが知られている。このような生体モデルは、例えば、治療や診断に係る各種の技能を高めるためのトレーニングにおいて用いられる。例えば、特許文献1には、超音波ガイド下における血管への注射針の挿入をシミュレートするための、皮膚や組織や血管を模した構造を有する生体モデルが開示されている。また、特許文献2には、超音波検査装置を用いた褥瘡診断訓練用の生体モデルが開示されている。 Conventionally, various biological models are known. Such a biological model is used, for example, in training for improving various skills related to treatment and diagnosis. For example, Patent Literature 1 discloses a biological model having a structure simulating skin, tissue, and blood vessels for simulating insertion of an injection needle into a blood vessel under ultrasound guidance. Further, Patent Literature 2 discloses a biological model for pressure ulcer diagnosis training using an ultrasonic examination apparatus.
特開2010-533025号公報JP 2010-533025 A 特開2016-224396号公報JP 2016-224396 A
 このような生体モデルのうち、特に、注射針を血管に挿入する穿刺に係る手技や、カテーテル等の医療用デバイスを血管に挿入して行う治療や診断に係る手技のトレーニングに用いる生体モデルでは、医療用デバイス等の挿入時に得られる感覚や感触が、トレーニングの質を高める上で重要である。そのため、生体を対象とする場合により近い感触や感覚が得られるトレーニングを可能にする生体モデルが望まれていた。 Among such biological models, in particular, biological models used for training of procedures related to puncture of inserting an injection needle into a blood vessel, and procedures related to treatment and diagnosis performed by inserting a medical device such as a catheter into a blood vessel, Sensation and feel obtained when inserting a medical device or the like are important for improving the quality of training. Therefore, there has been a demand for a biological model that enables training that provides a feel and sensation that is closer to that of a living body.
 本開示は、以下の形態として実現することが可能である。
(1)本開示の一形態によれば、生体モデルが提供される。この生体モデルは、前記生体モデルの表面を含む部分を構成して皮膚を模擬する皮膚モデルと、筋膜および筋肉を含む組織を模擬する筋膜・筋肉モデルと、多孔質体を備え、前記皮膚モデルと前記筋膜・筋肉モデルとを接合する接合部と、前記筋膜・筋肉モデルに埋設されて血管を模擬する血管モデルと、を備える。
 この形態の生体モデルによれば、接合部は、多孔質体によって構成されている。そのため、皮膚モデルと筋膜・筋肉モデルとのうちの少なくとも一方については、構成材料が、接合部を構成する多孔質体の細孔の内部に入り込むことにより、接合部を介した接合が可能になり、皮膚モデルと筋膜・筋肉モデルとの接合強度を高めることができる。その結果、皮膚モデルと筋膜・筋肉モデルとを直接接合する場合の接合の困難性に起因する制限を抑えて、皮膚モデルを構成する材料と、筋膜・筋肉モデルを構成する材料との、組み合わせを選択することができる。このように、所望の特性を有する材料を用いて皮膚モデルおよび筋膜・筋肉モデルを構成することができるため、生体モデルを用いて種々の手技のトレーニングを行うときに、生体を対象とする場合により近い没入感を得ることが可能になる。
The present disclosure can be implemented as the following forms.
(1) According to one aspect of the present disclosure, a biological model is provided. This biological model includes a skin model that simulates skin by forming a portion including the surface of the biological model, a fascia/muscle model that simulates tissues including fascia and muscle, and a porous body, wherein the skin is A joint for joining the model and the fascia/muscle model, and a blood vessel model that is embedded in the fascia/muscle model and simulates a blood vessel.
According to this form of the biological model, the joints are composed of a porous body. Therefore, at least one of the skin model and the fascia/muscle model can be joined via the joint by the constituent material entering the pores of the porous body that constitutes the joint. It becomes possible to increase the bonding strength between the skin model and the fascia/muscle model. As a result, the limitation caused by the difficulty of joining when directly joining the skin model and the fascia/muscle model is suppressed, and the materials that make up the skin model and the materials that make up the fascia/muscle model can be Any combination can be selected. In this way, a skin model and a fascia/muscle model can be constructed using materials having desired properties. It becomes possible to obtain a closer sense of immersion.
(2)上記形態の生体モデルにおいて、前記皮膚モデルは、第1樹脂を含有し、前記筋膜・筋肉モデルは、前記第1樹脂とは異なる第2樹脂を含有し、前記接合部が備える前記多孔質体は、前記第1樹脂および前記第2樹脂のうちの一方の樹脂を含むこととしてもよい。このような構成とすれば、上記一方の樹脂を含む皮膚モデルまたは筋膜・筋肉モデルと接合部との間の接合が容易になり、皮膚モデルと筋膜・筋肉モデルとの間の接合強度をさらに高めることができる。 (2) In the biological model of the above aspect, the skin model contains a first resin, the fascia/muscle model contains a second resin different from the first resin, and the joint includes the The porous body may contain one of the first resin and the second resin. With such a configuration, the joint between the skin model or the fascia/muscle model containing one of the resins is facilitated, and the joint strength between the skin model and the fascia/muscle model is increased. can be further enhanced.
(3)上記形態の生体モデルにおいて、前記接合部が備える前記多孔質体は、前記多孔質体を厚み方向に貫通する細孔を有することとしてもよい。このような構成とすれば、多孔質体の細孔内に、上記他方の樹脂を充填することにより、接合部内における気泡の残留を抑えることができる。 (3) In the biological model of the above aspect, the porous body included in the joint may have pores penetrating through the porous body in the thickness direction. With such a configuration, by filling the pores of the porous body with the other resin, it is possible to prevent air bubbles from remaining in the joint.
(4)上記形態の生体モデルにおいて、前記皮膚モデルは、前記表面に沿って広がるように配置された樹脂メッシュを備え、前記樹脂メッシュは、前記皮膚モデルにおける前記樹脂メッシュ以外の部分を構成する樹脂よりも硬い第3樹脂によって形成されることとしてもよい。このような構成とすれば、例えば、樹脂メッシュ以外の部分を構成する樹脂によって、皮膚の柔らかい感触を再現することができると共に、さらに樹脂メッシュを設けることにより、注射針を皮膚に刺して皮膚を突き破るときの感触等の再現性を高めることができるため、皮膚モデルによる皮膚の再現性を高めることができる。 (4) In the biological model of the above aspect, the skin model includes a resin mesh arranged to extend along the surface, and the resin mesh is a resin that constitutes a part of the skin model other than the resin mesh. It may be made of a third resin that is harder. With such a configuration, for example, the soft feel of the skin can be reproduced by the resin that constitutes the part other than the resin mesh, and by further providing the resin mesh, the injection needle can be pierced into the skin and the skin can be felt. Since it is possible to improve the reproducibility of the feeling when breaking through the skin, the reproducibility of the skin by the skin model can be improved.
(5)上記形態の生体モデルにおいて、前記樹脂メッシュを構成する素線の径は、0.5mm以下であることとしてもよい。このような構成とすれば、例えば、樹脂メッシュを構成する樹脂が、比較的超音波を通し難い樹脂であっても、生体モデルの内部に透過する超音波を確保することができ、エコーガイド下におけるトレーニングのために、生体モデルを好適に用いることができる。 (5) In the biological model of the above aspect, the wires forming the resin mesh may have a diameter of 0.5 mm or less. With such a configuration, for example, even if the resin that constitutes the resin mesh is a resin that is relatively difficult to transmit ultrasonic waves, it is possible to secure ultrasonic waves that pass through the interior of the biological model. A biological model can preferably be used for training in .
(6)上記形態の生体モデルにおいて、前記皮膚モデルは、前記表面を含む上層と、前記上層に積層される下層とに分割されており、前記下層は、粘着性を有するゲルにより形成されることとしてもよい。このような構成とすれば、上層の構成材料の種類にかかわらず、下層を構成するゲルの有する粘着性を利用して、下層と上層とを容易に接合することが可能になり、上層の構成材料の選択の自由度を高めることができる。 (6) In the biological model of the above aspect, the skin model is divided into an upper layer including the surface and a lower layer laminated on the upper layer, and the lower layer is formed of an adhesive gel. may be With such a configuration, regardless of the type of constituent material of the upper layer, it is possible to easily join the lower layer and the upper layer by utilizing the adhesiveness of the gel that constitutes the lower layer. The degree of freedom in material selection can be increased.
 本開示は、上記以外の種々の形態で実現可能であり、例えば、生体モデルの製造方法、生体モデルを備える人体シミュレーション装置などの形態で実現することが可能である。 The present disclosure can be implemented in various forms other than those described above, for example, it can be implemented in the form of a biological model manufacturing method, a human body simulation device including a biological model, and the like.
第1実施形態の生体モデルの概略構成を模式的に表す断面図。BRIEF DESCRIPTION OF THE DRAWINGS Sectional drawing which represents typically the schematic structure of the biological model of 1st Embodiment. 生体モデルの製造方法を表すフローチャート。A flow chart showing a manufacturing method of a living body model. 第2実施形態の生体モデルの概略構成を模式的に表す断面図。Sectional drawing which represents typically the schematic structure of the biological model of 2nd Embodiment. 第3実施形態の生体モデルの概略構成を模式的に表す断面図。Sectional drawing which represents typically a schematic structure of the biological model of 3rd Embodiment. 第4実施形態の生体モデルの概略構成を模式的に表す断面図。Sectional drawing which represents typically schematic structure of the biological model of 4th Embodiment. 第5実施形態の生体モデルの概略構成を模式的に表す断面図。Sectional drawing which represents typically schematic structure of the biological model of 5th Embodiment. 第6実施形態の生体モデルの概略構成を模式的に表す断面図。Sectional drawing which represents typically the schematic structure of the biological model of 6th Embodiment.
A.第1実施形態:
(A-1)生体モデルの全体構成:
 図1は、第1実施形態の生体モデル10の概略構成を模式的に表す断面図である。本実施形態の生体モデル10は、注射針を血管に挿入する穿刺に係る手技や、カテーテルやガイドワイヤ等の医療用デバイスを血管に挿入して行う治療や診断に係る手技のトレーニング、あるいは、医療用デバイスの開発等を目的とした用途のために用いられる。特に、本実施形態の生体モデル10は、超音波ガイド下において、上記した手技のトレーニング等を行うために用いられる。
A. First embodiment:
(A-1) Overall configuration of biological model:
FIG. 1 is a cross-sectional view schematically showing the schematic configuration of the biological model 10 of the first embodiment. The biological model 10 of the present embodiment is used for training of procedures related to puncture of inserting an injection needle into a blood vessel, procedures related to treatment and diagnosis performed by inserting a medical device such as a catheter or a guide wire into a blood vessel, or medical treatment. It is used for purposes such as the development of electronic devices. In particular, the biological model 10 of the present embodiment is used for training of the above-described techniques under ultrasound guidance.
 生体モデル10は、皮膚モデル20と、接合部30と、筋膜・筋肉モデル40と、血管モデル50と、骨モデル60と、を備える。生体モデル10では、生体モデル10の表面側から、皮膚モデル20と、接合部30と、筋膜・筋肉モデル40とが、この順で積層されている。図1、および後述する図3以降の各図には、相互に直交するXYZ軸が図示されている。X軸方向およびY軸方向は、生体モデル10を配置したときの水平方向に対応し、Z軸方向は、生体モデル10を配置したときの鉛直方向に対する。ただし、生体モデル10は、異なる向きに配置してもよい。また、Y軸方向は、生体モデル10内で血管モデル50が延びる方向である長手方向に対応する。なお、図1は、各部の寸法の比率を正確に表すものではない。 The biological model 10 includes a skin model 20, joints 30, a fascia/muscle model 40, a blood vessel model 50, and a bone model 60. In the biological model 10 , a skin model 20 , a joint 30 , and a fascia/muscle model 40 are layered in this order from the surface side of the biological model 10 . XYZ axes orthogonal to each other are illustrated in FIG. 1 and each figure after FIG. 3 to be described later. The X-axis direction and the Y-axis direction correspond to the horizontal direction when the biological model 10 is arranged, and the Z-axis direction corresponds to the vertical direction when the biological model 10 is arranged. However, the biological model 10 may be arranged in a different orientation. Also, the Y-axis direction corresponds to the longitudinal direction, which is the direction in which the blood vessel model 50 extends within the biological model 10 . It should be noted that FIG. 1 does not accurately represent the dimensional ratio of each part.
(A-2)皮膚モデル:
 皮膚モデル20は、生体モデル10の表面である面21を含む部分を構成して生体の皮膚を模擬する。本実施形態の皮膚モデル20は、生体モデル10の表面である面21を含む表層モデル22と、表層モデル22に積層して表層モデル22の下側(-Z方向側)に設けられる皮下組織モデル24と、を備える。表層モデル22は、角質層を含む表皮、および、真皮を模擬する。皮下組織モデル24は、皮下組織を模擬する。表層モデル22は「上層」とも呼び、皮下組織モデル24は「下層」とも呼ぶ。
(A-2) Skin model:
The skin model 20 constitutes a portion including a surface 21, which is the surface of the biological model 10, and simulates the skin of the biological body. The skin model 20 of this embodiment includes a surface layer model 22 including a surface 21 that is the surface of the biological model 10, and a subcutaneous tissue model layered on the surface layer model 22 and provided below the surface layer model 22 (-Z direction side). 24 and. The superficial layer model 22 simulates the epidermis including the stratum corneum and the dermis. Subcutaneous tissue model 24 simulates subcutaneous tissue. The surface layer model 22 is also called "upper layer", and the subcutaneous tissue model 24 is also called "lower layer".
 表層モデル22は、生体モデルを用いたトレーニングの際に、注射針等を生体モデル10に突き刺す際の感触として、生体の皮膚を対象とする場合に得られる感触と近い感触が得られることが望ましい。また、エコーガイド下においてトレーニングを行う際に、表層モデル22を超音波が十分に透過すること、すなわち、音響インピーダンスが比較的低いことが望ましい。そのため、穿刺の際などに、生体の皮膚に近い感触が得られると共に、超音波が皮膚モデル20を十分に透過できるように、皮膚モデル20を構成する材料を選択すると共に、皮膚モデル20の厚みを設定すればよい。 It is desirable that the surface model 22 provides a feel similar to that obtained when the skin of a living body is used as a touch when an injection needle or the like is pierced into the living body model 10 during training using the living body model. . In addition, when performing training under echo guidance, it is desirable that ultrasonic waves sufficiently pass through the surface layer model 22, that is, that the acoustic impedance is relatively low. Therefore, the material constituting the skin model 20 is selected and the thickness of the skin model 20 is selected so that a touch similar to that of the skin of a living body can be obtained at the time of puncture or the like, and ultrasonic waves can sufficiently penetrate the skin model 20. should be set.
 表層モデル22は、例えば、ポリウレタン、シリコーン、ナイロン、ポリスチレン等のエラストマや、天然ゴムあるいは合成ゴムを用いて、これらの高分子材料を単独で、あるいは、複数の高分子材料を組み合わせることにより、構成することができる。生体の皮膚の感触(肌触りや、エコー観察用のプローブを押し当てたときに感じる弾性、および、プローブの滑り具合など)に近い感触を得易いという観点から、摩擦特性や弾性率等の物性を考慮すると、ポリウレタンが望ましく、軟質ポリウレタンが特に望ましい。 The surface layer model 22 is configured by using, for example, an elastomer such as polyurethane, silicone, nylon, or polystyrene, natural rubber, or synthetic rubber, using these polymer materials alone, or by combining a plurality of polymer materials. can do. Physical properties such as frictional characteristics and elastic modulus are improved from the standpoint that it is easy to obtain a feel close to that of the skin of a living body (touch, elasticity felt when an echo observation probe is pressed against it, and how the probe slides). Polyurethanes are desirable, and flexible polyurethanes are particularly desirable, for consideration.
 表層モデル22の厚みは、接触時や穿刺の際などに、生体の皮膚の感触に近い感触を得易いという観点から、例えば、0.5mm~1.0mm程度とすることができる。このような厚みとすることにより、生体モデル10をエコーガイド下で用いる際に、表層モデル22において十分に超音波を透過させることが可能になり、上記したいずれの樹脂も、表層モデル22の材料として支障なく用いることができる。ただし、表層モデル22の厚みは、上記範囲に限定されない。 The thickness of the surface layer model 22 can be, for example, about 0.5 mm to 1.0 mm from the viewpoint that it is easy to obtain a touch similar to that of the skin of a living body when touching or puncturing. With such a thickness, when the biological model 10 is used under echo guidance, it is possible to sufficiently transmit ultrasonic waves through the surface layer model 22. can be used without any problems. However, the thickness of the surface layer model 22 is not limited to the above range.
 皮下組織モデル24においては、生体の皮膚の感触の再現性を向上させるように、また、エコーガイド下においてトレーニングを行う際に、皮下組織モデル24を超音波が十分に透過するように、構成材料を適宜選択すればよい。皮下組織モデル24は、例えば、シリコーンゲルや、ポリウレタンゲルなどのゲルを用いて構成することができる。皮下組織モデル24を、例えば粘着性を有するポリウレタンゲルを用いて構成する場合には、表層モデル22を構成する高分子材料の種類にかかわらず、皮下組織モデル24の有する粘着性を利用して、皮下組織モデル24と表層モデル22とを容易に接合可能となるため望ましい。皮下組織モデル24が十分な粘着性を有しない場合には、接着剤等を用いることなく表層モデル22と皮下組織モデル24とを直接接合させるために、表層モデル22と皮下組織モデル24とは、同種の高分子材料により構成することが望ましい。同種の高分子材料を用いる場合には、例えば皮下組織モデル24上に表層モデル22の材料を塗布して硬化させることにより、皮下組織モデル24と表層モデル22との界面において共有結合や水素結合等を形成させて、両者を容易に密着させることが可能となる。皮下組織モデル24と表層モデル22とを密着させることにより、例えば、皮下組織モデル24と表層モデル22との間に気泡が混入することを抑えることができる。 In the subcutaneous tissue model 24, constituent materials are used so as to improve the reproducibility of the feel of the skin of a living body and to allow ultrasonic waves to sufficiently pass through the subcutaneous tissue model 24 when performing training under echo guidance. can be selected as appropriate. The subcutaneous tissue model 24 can be configured using gel such as silicone gel or polyurethane gel, for example. When the subcutaneous tissue model 24 is constructed using, for example, an adhesive polyurethane gel, the adhesiveness of the subcutaneous tissue model 24 is used regardless of the type of polymeric material that constitutes the surface model 22. It is desirable because the subcutaneous tissue model 24 and the surface layer model 22 can be easily joined. When the subcutaneous tissue model 24 does not have sufficient adhesiveness, the surface layer model 22 and the subcutaneous tissue model 24 are directly bonded to each other without using an adhesive or the like. It is desirable to be made of the same kind of polymer material. When using the same kind of polymer material, for example, by applying the material of the surface layer model 22 on the subcutaneous tissue model 24 and hardening it, covalent bonds, hydrogen bonds, etc. can be formed, and the two can be easily adhered to each other. By bringing the subcutaneous tissue model 24 and the surface layer model 22 into close contact with each other, it is possible to prevent air bubbles from entering between the subcutaneous tissue model 24 and the surface layer model 22, for example.
 なお、皮膚モデル20において、生体モデル10の表面である面21から離間する側の面である面25を含む部分、すなわち、皮下組織モデル24に含まれる樹脂は、「第1樹脂」とも呼ぶ。 In addition, in the skin model 20, the portion including the surface 25, which is the surface on the side away from the surface 21, which is the surface of the biological model 10, that is, the resin contained in the subcutaneous tissue model 24 is also called "first resin".
(A-3)筋膜・筋肉モデル:
 筋膜・筋肉モデル40は、皮膚モデル20の下側(-Z方向側)に設けられており、筋膜および筋肉を含む組織を模擬する。筋膜・筋肉モデル40においては、生体の筋膜および筋肉を含む組織の硬さの再現性を向上させるように、構成材料を適宜選択すればよい。また、筋膜・筋肉モデル40においては、エコーガイド下における視認性が確保されて、生体の筋膜および筋肉を含む組織の超音波画像の再現性を向上させるように、音響インピーダンスが比較的低い構成材料を選択すればよい。このような観点から、筋膜・筋肉モデル40の構成材料としては、ゲルを用いることが望ましい。特に、分散媒が水であるハイドロゲルは、超音波が透過しやすく、超音波画像の再現性が良好であるため望ましい。
(A-3) Fascia/muscle model:
The fascia/muscle model 40 is provided on the lower side (-Z direction side) of the skin model 20 and simulates tissues including fascia and muscles. In the fascia/muscle model 40, the constituent material may be appropriately selected so as to improve the reproducibility of the hardness of the tissue including the fascia and muscle of the living body. In addition, the fascia/muscle model 40 has a relatively low acoustic impedance so as to ensure visibility under echo guidance and improve the reproducibility of ultrasound images of tissues including fascia and muscles of a living body. It is only necessary to select the material of construction. From this point of view, it is desirable to use gel as the constituent material of the fascia/muscle model 40 . In particular, a hydrogel whose dispersion medium is water is desirable because it easily transmits ultrasonic waves and has good reproducibility of ultrasonic images.
 筋膜・筋肉モデル40を構成するために用いるハイドロゲルとしては、例えば、アガロースゲル、メチルセルロースゲル、ヒアルロン酸ハイドロゲル、アルギン酸ハイドロゲル、カルボキシメチルセルロースゲル、キサンタンガム等の多糖類ハイドロゲルを挙げることができる。また、コラーゲン、ゼラチン、アルブミン、あるいはケラチン等を含むタンパク質ハイドロゲルや、ポリエチレングリコール(PEG)、ポリ乳酸、あるいはポリアクリル酸等を含む合成高分子ハイドロゲルや、ポリビニルアルコール(PVA)ハイドロゲルや、シリコーンハイドロゲルを用いてもよい。あるいは、ハイドロゲル以外の高分子材料であるウレタンゲルも、筋膜・筋肉モデル40の構成材料として好適に用いることができる。上記した高分子材料の中でも、ポリビニルアルコール(PVA)ハイドロゲルは、取り扱いが容易であり、生体の筋膜および筋肉を含む組織の硬さの再現性および超音波画像の再現性に優れているため望ましい。 Hydrogels used to construct the fascia/muscle model 40 include, for example, agarose gels, methylcellulose gels, hyaluronic acid hydrogels, alginate hydrogels, carboxymethylcellulose gels, and polysaccharide hydrogels such as xanthan gum. . Also, protein hydrogels containing collagen, gelatin, albumin, keratin, etc., synthetic polymer hydrogels containing polyethylene glycol (PEG), polylactic acid, polyacrylic acid, etc., polyvinyl alcohol (PVA) hydrogels, Silicone hydrogels may also be used. Alternatively, urethane gel, which is a polymeric material other than hydrogel, can also be suitably used as a constituent material of the fascia/muscle model 40 . Among the polymer materials described above, polyvinyl alcohol (PVA) hydrogel is easy to handle and has excellent reproducibility of the hardness of tissues including fascia and muscles of the living body and reproducibility of ultrasonic images. desirable.
 筋膜・筋肉モデル40は、上記のような種々の高分子材料のうちの任意の高分子材料を複数組み合わせて筋膜・筋肉モデル40を構成してもよい。複数の高分子材料を混合して用いることで、筋膜・筋肉モデル40における音響インピーダンスを調節することができる。例えば、ウレタンゲルを用いて筋膜・筋肉モデル40を構成する場合に、さらにシリコーンゲルを混合して音響インピーダンスを高め、シリコーンゲルの混合割合を調節することにより、所望の超音波画像を得ることとしてもよい。 The fascia/muscle model 40 may be configured by combining a plurality of arbitrary polymer materials among the various polymer materials described above. Acoustic impedance in the fascia/muscle model 40 can be adjusted by mixing and using a plurality of polymer materials. For example, when constructing the fascia/muscle model 40 using urethane gel, a desired ultrasonic image can be obtained by further mixing silicone gel to increase the acoustic impedance and adjusting the mixing ratio of the silicone gel. may be
 筋膜・筋肉モデル40は、上記した高分子材料に加えて、さらに、無機材料を含有していてもよい。筋膜・筋肉モデル40に混合する無機材料としては、例えば、セルロースナノファイバーや、ガラスビーズを挙げることができる。音響インピーダンスが比較的高いこれらの無機材料を混合することにより、筋膜・筋肉モデル40全体の音響インピーダンスを高めて、筋膜・筋肉モデル40の超音波画像をより白くすることができ、また、筋膜・筋肉モデル40をより硬くすることができる。筋膜・筋肉モデル40を構成する高分子材料の種類および濃度、高分子材料に添加する無機材料の種類、無機材料の混合割合、および、無機材料の粒径等のうちの少なくとも一つを調節することにより、生体の筋膜および筋肉を含む組織の硬さの再現性および超音波画像の再現性を向上させることができる。筋膜・筋肉モデル40の超音波画像や硬さを均質化するために、上記した無機材料は、例えば、10nm~数百nm程度の粒径の微粒子とすればよい。また、混合された無機材料の種類や濃度の異なる複数の層を積層することにより、筋繊維の集合体としての筋肉の超音波画像を模擬することとしてもよい。 The fascia/muscle model 40 may further contain an inorganic material in addition to the polymer material described above. Examples of inorganic materials mixed in the fascia/muscle model 40 include cellulose nanofibers and glass beads. By mixing these inorganic materials with relatively high acoustic impedance, the acoustic impedance of the entire fascia/muscle model 40 can be increased, and the ultrasonic image of the fascia/muscle model 40 can be made whiter. The fascia/muscle model 40 can be made harder. Adjust at least one of the type and concentration of the polymer material constituting the fascia/muscle model 40, the type of inorganic material added to the polymer material, the mixing ratio of the inorganic material, the particle size of the inorganic material, and the like. By doing so, it is possible to improve the reproducibility of the hardness of tissue including the fascia and muscle of the living body and the reproducibility of the ultrasonic image. In order to homogenize the ultrasonic image and hardness of the fascia/muscle model 40, the inorganic material may be fine particles having a particle size of about 10 nm to several hundred nm, for example. Also, by laminating a plurality of layers of mixed inorganic materials with different types and concentrations, an ultrasonic image of muscle as an aggregate of muscle fibers may be simulated.
 筋膜・筋肉モデル40を構成する上記した高分子材料は、皮膚モデル20を構成する既述した「第1樹脂」とは異なる樹脂であり、「第2樹脂」とも呼ぶ。第2樹脂は、複数種類の樹脂によって構成されていてもよい。 The above-described polymer material that constitutes the fascia/muscle model 40 is a resin different from the already-described "first resin" that constitutes the skin model 20, and is also called a "second resin". The second resin may be composed of a plurality of types of resin.
(A-4)接合部:
 接合部30は、皮膚モデル20および筋膜・筋肉モデル40に接するように、皮膚モデル20と筋膜・筋肉モデル40との間に配置されて、皮膚モデル20と筋膜・筋肉モデル40とを接合する。本実施形態の接合部30は、筋膜・筋肉モデル40を構成する既述した第2樹脂を含む発泡体によって構成される。例えば、筋膜・筋肉モデル40をポリビニルアルコール(PVA)ハイドロゲルを用いて形成する場合には、接合部30は、発泡ポリビニルアルコール(発泡PVA)を備えることとすればよい。また、例えば、筋膜・筋肉モデル40を、シリコーンハイドロゲルを用いて形成する場合には、接合部30は、発泡シリコーンを備えることとすればよい。このとき、接合部30における皮膚モデル20との界面を含む部分を構成する第2樹脂と、皮膚モデル20における接合部30との界面を含む部分を構成する第1樹脂とが異なるため、接合部30と皮膚モデル20との界面では音響インピーダンスの差が生じ、超音波画像において、接合部30と皮下組織モデル24との境界を、容易に視認可能となる。
(A-4) Joint:
The joint part 30 is arranged between the skin model 20 and the fascia/muscle model 40 so as to be in contact with the skin model 20 and the fascia/muscle model 40 to connect the skin model 20 and the fascia/muscle model 40 together. Join. The joint portion 30 of the present embodiment is configured by a foam containing the second resin, which configures the fascia/muscle model 40 and is described above. For example, when forming the fascia/muscle model 40 using polyvinyl alcohol (PVA) hydrogel, the joint 30 may be provided with foamed polyvinyl alcohol (foamed PVA). Further, for example, when the fascia/muscle model 40 is formed using silicone hydrogel, the joint 30 may be provided with foamed silicone. At this time, since the second resin forming the portion including the interface with the skin model 20 in the joint 30 is different from the first resin forming the portion including the interface with the joint 30 in the skin model 20, the joint A difference in acoustic impedance occurs at the interface between 30 and skin model 20, and the boundary between joint 30 and subcutaneous tissue model 24 can be easily visually recognized in the ultrasound image.
 本実施形態では、筋膜・筋肉モデル40上において、筋膜・筋肉モデル40を構成する第2樹脂と同種の樹脂を用いて発泡および硬化の工程を行って接合部30を形成することにより、筋膜・筋肉モデル40と接合部30とを接合している。筋膜・筋肉モデル40と接合部30とが接合される態様は、用いる第2樹脂により異なり得る。例えば、第2樹脂としてポリビニルアルコール(PVA)を用いる場合には、ポリビニルアルコールハイドロゲルを含む筋膜・筋肉モデル40上で、発泡させたポリビニルアルコールを硬化させることで、筋膜・筋肉モデル40を構成するポリビニルアルコールと、発泡体を構成するポリビニルアルコールとの間で、架橋硬化に伴って、水素結合による物理架橋が形成されて、筋膜・筋肉モデル40と接合部30とが接合される。また、例えば、第2樹脂としてシリコーンを用いる場合には、シリコーンハイドロゲルを含む筋膜・筋肉モデル40上で、発泡させたシリコーン樹脂を硬化させることで、筋膜・筋肉モデル40を構成するシリコーン樹脂と、発泡体を構成するシリコーン樹脂との間で、架橋硬化に伴って、縮合反応が進行して、筋膜・筋肉モデル40と接合部30とが接合される。このように、筋膜・筋肉モデル40を構成する樹脂と、接合部30を構成する樹脂との間で、接合部30の架橋硬化に伴う反応が進行することにより、筋膜・筋肉モデル40と接合部30とが接する部位では、双方に共通する樹脂が溶け合った層が形成される。接合部30と筋膜・筋肉モデル40との間の接合強度を高めるためには、接合部30において、筋膜・筋肉モデル40との間で共通する構成材料の割合が高いことが望ましく、同じ組成の樹脂により形成されることがより望ましい。 In the present embodiment, on the fascia/muscle model 40, a resin of the same type as the second resin that constitutes the fascia/muscle model 40 is used to perform foaming and curing steps to form the joint 30. The fascia/muscle model 40 and the joint 30 are joined. The manner in which the fascia/muscle model 40 and the joint 30 are joined may differ depending on the second resin used. For example, when polyvinyl alcohol (PVA) is used as the second resin, the fascia/muscle model 40 is formed by curing the foamed polyvinyl alcohol on the fascia/muscle model 40 containing the polyvinyl alcohol hydrogel. Physical cross-linking due to hydrogen bonding is formed between the constituting polyvinyl alcohol and the polyvinyl alcohol constituting the foam as the cross-linking cures, and the fascia/muscle model 40 and the joint portion 30 are joined. Further, for example, when silicone is used as the second resin, the silicone that forms the fascia/muscle model 40 is cured by curing the foamed silicone resin on the fascia/muscle model 40 containing silicone hydrogel. Condensation reaction progresses between the resin and the silicone resin that constitutes the foam as the cross-linking cures, and the fascia/muscle model 40 and the joint portion 30 are joined. As described above, the reaction accompanying the cross-linking hardening of the joint 30 progresses between the resin forming the fascia/muscle model 40 and the resin forming the joint 30, whereby the fascia/muscle model 40 and At the portion where the joint portion 30 is in contact, a layer in which the resin common to both is dissolved is formed. In order to increase the joint strength between the joint 30 and the fascia/muscle model 40, it is desirable that the joint 30 and the fascia/muscle model 40 share a high ratio of constituent materials. It is more desirable to be formed of a resin of composition.
 接合部30が備える発泡体では、皮膚モデル20と接する側の面である面31、すなわち、皮膚モデル20との界面において、気泡が開口している。そして、皮膚モデル20との界面を含む部分では、皮膚モデル20を構成する第1樹脂、すなわち、皮下組織モデル24を構成する樹脂が、接合部30を構成する発泡体の気泡の内部に入り込んでいる。上記のように、接合部30を構成する発泡体の気泡内に皮下組織モデル24の一部が入り込むことで、アンカー効果により、皮膚モデル20と接合部30とが接合されている。 In the foam provided in the joint part 30 , bubbles are opened on the surface 31 that is the surface that contacts the skin model 20 , that is, on the interface with the skin model 20 . In the portion including the interface with the skin model 20 , the first resin forming the skin model 20 , that is, the resin forming the subcutaneous tissue model 24 enters inside the bubbles of the foam forming the joint 30 . there is As described above, part of the subcutaneous tissue model 24 enters the foam cells that form the joint 30 , so that the skin model 20 and the joint 30 are joined by the anchor effect.
 筋膜・筋肉モデル40上で接合部30を形成する際には、第2樹脂を含む接合部30の構成材料(例えば、筋膜・筋肉モデル40を構成するゲルの材料と同様の材料)に発泡剤を混合し、混合した材料を筋膜・筋肉モデル40上に塗布した後に、上記材料の発泡および硬化を行えばよい。発泡剤としては、例えば、ノルマルペンタン(n-ペンタン)、シクロペンタン、イソペンタン、ノルマルブタン、イソブタン、プロパンなどの低沸点溶剤を挙げることができる。発泡剤の種類や、接合部30を構成する高分子材料に発泡剤を混合する際の混合割合や、発泡および硬化時の温度などの条件を適宜設定することにより、得られる発泡体における細孔の大きさ、気孔率、あるいは、連続気泡と独立気泡との割合等を調節することができる。また、発泡体の形成時には、発泡剤に加えて、さらに、界面活性剤などの他の物質を混合してもよい。 When forming the joint 30 on the fascia/muscle model 40, the constituent material of the joint 30 containing the second resin (for example, the same material as the material of the gel that constitutes the fascia/muscle model 40) After mixing the foaming agent and applying the mixed material onto the fascia/muscle model 40, the material may be foamed and hardened. Examples of foaming agents include low boiling point solvents such as normal pentane (n-pentane), cyclopentane, isopentane, normal butane, isobutane and propane. By appropriately setting conditions such as the type of foaming agent, the mixing ratio when the foaming agent is mixed with the polymer material constituting the joint 30, and the temperature during foaming and curing, the pores in the resulting foam can be adjusted. The size, porosity, ratio of open cells and closed cells, etc. can be adjusted. Further, when forming the foam, in addition to the foaming agent, other substances such as a surfactant may be mixed.
 接合部30において、皮膚モデル20との界面において気泡を開口させるためには、独立気泡の割合が少ないことが望ましい。また、接合部30内に独立気泡が存在すると、超音波を用いて生体モデル10を観察する際に、独立気泡において超音波が反射されて、超音波の減衰が引き起こされ得るため、接合部30中に独立気泡が少ないことが望ましい。接合部30の厚みは、例えば1.5mm以上10mmとすることが望ましい。また、接合部30に形成される気泡径の平均値は、0.5mm以上5mm以下とすることが望ましい。このような発泡体が得られるように発泡および硬化に係る条件を調節することで、接合部30の形状を、皮膚モデル20との界面において気泡が開口する形状とし、独立気泡の形成を抑えることが容易になる。また、接合部30を形成するための発泡の工程の終了後、例えば、発泡により形成された気泡を潰して空隙を大きくすることにより、発泡体を、オープンセル構造の多孔質体、すなわち、厚み方向に貫通する細孔を有する多孔質体にしてもよい。あるいは、異なる発泡剤を混合させたゲル材料を複数用意し、これらのゲル材料を、筋膜・筋肉モデル40上に順に積層して配置し、発泡および硬化させることにより、連続気泡を有する接合部30を形成してもよい。 In order to open air bubbles at the interface with the skin model 20 in the joint 30, it is desirable that the ratio of closed air bubbles is small. In addition, if closed air bubbles are present in the joint 30, when the biological model 10 is observed using ultrasonic waves, the ultrasonic waves are reflected by the closed air bubbles, which may cause attenuation of the ultrasonic waves. It is desirable that there are few closed cells inside. It is desirable that the thickness of the joint portion 30 is, for example, 1.5 mm or more and 10 mm. Moreover, it is desirable that the average value of the bubble diameters formed in the joint portion 30 is 0.5 mm or more and 5 mm or less. By adjusting the conditions related to foaming and curing so as to obtain such a foam, the shape of the joint 30 is made into a shape in which the cells open at the interface with the skin model 20, thereby suppressing the formation of closed cells. becomes easier. Further, after the foaming process for forming the joint portion 30 is completed, for example, by crushing the bubbles formed by the foaming to increase the voids, the foam is converted to a porous body with an open cell structure, that is, the thickness A porous body having pores penetrating in the direction may be used. Alternatively, a plurality of gel materials mixed with different foaming agents are prepared, and these gel materials are stacked in order on the fascia/muscle model 40, foamed and cured to form joints having open cells. 30 may be formed.
(A-5)血管モデル:
 血管モデル50は、筋膜・筋肉モデル40に埋設されて、血管を模擬しており、可撓性を有する管状部材によって構成されている。血管モデル50においては、生体の血管の硬さや、血管に注射針やカテーテル等の医療用デバイスを挿入したときの感触の再現性を向上させるように、構成材料を適宜選択すればよい。また、血管モデル50においては、エコーガイド下において、血管モデル50内に挿入した注射針や医療用デバイスの様子を視認可能となるように、音響インピーダンスが比較的低く、筋膜・筋肉モデル40の構成材料の音響インピーダンスとの差が比較的小さい構成材料を、適宜選択すればよい。血管モデル50を構成する高分子材料としては、例えば、筋膜・筋肉モデル40の構成材料として説明した材料から適宜選択して用いることができる。これらの材料の中でも、ポリビニルアルコール(PVA)は、滑り性や弾性が生体の血管に近似しているため望ましい。また、血管モデル50を、筋膜・筋肉モデル40と同種の材料により構成するならば、血管モデル50と筋膜・筋肉モデル40との間の接合強度の確保が容易となり、望ましい。
(A-5) Blood vessel model:
The blood vessel model 50 is embedded in the fascia/muscle model 40, simulates a blood vessel, and is composed of a flexible tubular member. In the blood vessel model 50, the constituent materials may be appropriately selected so as to improve the reproducibility of the hardness of the blood vessels of the living body and the feeling when a medical device such as an injection needle or a catheter is inserted into the blood vessel. In addition, in the blood vessel model 50, the acoustic impedance is relatively low and the fascia/muscle model 40 has a relatively low acoustic impedance so that an injection needle and a medical device inserted into the blood vessel model 50 can be visually recognized under echo guidance. A constituent material having a relatively small difference from the acoustic impedance of the constituent material may be appropriately selected. As the polymer material that constitutes the blood vessel model 50, for example, it is possible to appropriately select and use from the materials described as the constituent materials of the fascia/muscle model 40. FIG. Among these materials, polyvinyl alcohol (PVA) is desirable because its lubricity and elasticity are similar to those of living blood vessels. Further, if the blood vessel model 50 is made of the same material as the fascia/muscle model 40, it is desirable because it facilitates securing of the joint strength between the blood vessel model 50 and the fascia/muscle model 40. FIG.
 血管モデル50は、筋膜・筋肉モデル40と同様に、ハイドロゲルなどの高分子材料に加えて、さらに無機材料を含有することにより、生体の硬さの再現性および超音波画像の再現性を向上させることができる。また、血管モデル50は、均質な材料により構成された単層の管状部材とする他、混合された無機材料の種類や濃度の異なる複数の層を積層した管状部材としてもよい。これにより、内膜、中膜、外膜を備える血管を模擬することができる。 Similar to the fascia/muscle model 40, the blood vessel model 50 contains an inorganic material in addition to a polymer material such as hydrogel, thereby improving the reproducibility of the hardness of the living body and the reproducibility of the ultrasonic image. can be improved. The blood vessel model 50 may be a single-layer tubular member made of a homogeneous material, or may be a tubular member in which a plurality of layers of mixed inorganic materials with different types and concentrations are laminated. As a result, a blood vessel having an intima, a media, and an adventitia can be simulated.
(A-6)骨モデル:
 骨モデル60は、筋膜・筋肉モデル40に埋設されて、骨を模擬している。骨モデル60は、生体の骨の弾性率に近い弾性率を示し、比較的硬い材料により構成すればよい。骨モデル60の構成材料としては、例えば、アクリル樹脂、ポリカーボネート、ポリエチレンテレフタレート(PET)、ポリ塩化ビニル(PVC)を挙げることができる。血管モデル50よりも生体モデル10の深いところに存在する骨モデル60においては、必ずしもエコーガイド下における視認性を確保する必要はないが、過度に超音波を反射しないことが望ましい。また、超音波画像において骨モデル60の視認性を確保したい場合には、骨モデル60の表面に、さらに、筋膜・筋肉モデル40との間の音響インピーダンスの差がより大きい材料から成る層を設けてもよい。
(A-6) Bone model:
The bone model 60 is embedded in the fascia/muscle model 40 to simulate a bone. The bone model 60 may be made of a relatively hard material that exhibits an elastic modulus close to that of a living bone. Examples of constituent materials of the bone model 60 include acrylic resin, polycarbonate, polyethylene terephthalate (PET), and polyvinyl chloride (PVC). In the bone model 60 located deeper in the biological model 10 than the blood vessel model 50, it is not necessary to ensure the visibility under echo guidance, but it is desirable not to reflect ultrasonic waves excessively. Further, when it is desired to ensure the visibility of the bone model 60 in an ultrasonic image, a layer made of a material having a larger acoustic impedance difference with the fascia/muscle model 40 is added to the surface of the bone model 60. may be provided.
 骨モデル60を設けることにより、血管モデル50に対して注射針や医療用デバイスを挿入してトレーニングを行う際に、例えば、血管近傍に存在する骨が操作時の感触に与える影響を模擬することができる。ただし、骨モデル60は必須ではなく、トレーニングする手技の対象が血管である生体モデル10においては、骨モデル60を設けないこととしてもよい。 By providing the bone model 60, when training is performed by inserting an injection needle or a medical device into the blood vessel model 50, for example, it is possible to simulate the influence of the bones existing near the blood vessel on the feeling during operation. can be done. However, the bone model 60 is not essential, and the bone model 60 may not be provided in the biological model 10 in which the target of the procedure to be trained is a blood vessel.
(A-7)生体モデルの製造方法:
 図2は、生体モデル10の製造方法を表すフローチャートである。生体モデル10を製造する際には、まず、血管モデル50および骨モデル60を作製する(工程T100)。血管モデル50および骨モデル60は、各々形状に対応する形状の金型内で、構成材料である既述した高分子材料を硬化させることにより作製すればよい。
(A-7) Method for producing biological model:
FIG. 2 is a flow chart showing a method for manufacturing the biological model 10. As shown in FIG. When manufacturing biological model 10, first, blood vessel model 50 and bone model 60 are produced (step T100). The blood vessel model 50 and the bone model 60 may be produced by curing the above-described polymeric material as the constituent material in a mold having a shape corresponding to each shape.
 次に、生体モデル10の全体形状に対応する形状の金型である成型モールド内に、工程T100で作製した血管モデル50および骨モデル60を配置する(工程T110)。そして、成型モールド内に、筋膜・筋肉モデル40の構成材料を充填した後に、充填した構成材料をゲル化させることにより、筋膜・筋肉モデル40を形成する(工程T120)。例えば、筋膜・筋肉モデル40を、ポリビニルアルコール(PVA)により作製する場合には、ポリビニルアルコールを、水、あるいはさらにジメチルスルホキシド等の水溶性有機溶媒を含む水溶液に溶解させて、ポリビニルアルコール溶液を作製する。このとき、必要に応じて無機材料などの他の成分をさらに加えて、80~130℃程度に加熱して混合し、上記した成型モールド内に充填する。その後、上記ポリビニルアルコール溶液を-30℃程度に冷却することで、ポリビニルアルコールの分子が架橋して硬化する。そして、冷却したポリビニルアルコール溶液を室温に戻すことにより、ポリビニルアルコールゲルが得られて、筋膜・筋肉モデル40が形成される。 Next, the blood vessel model 50 and the bone model 60 produced in step T100 are placed in a molding mold having a shape corresponding to the overall shape of the biological model 10 (step T110). Then, after filling the molding mold with the constituent material of the fascia/muscle model 40, the filled constituent material is gelled to form the fascia/muscle model 40 (step T120). For example, when the fascia/muscle model 40 is made of polyvinyl alcohol (PVA), the polyvinyl alcohol is dissolved in water or an aqueous solution containing a water-soluble organic solvent such as dimethylsulfoxide to form a polyvinyl alcohol solution. make. At this time, if necessary, other components such as inorganic materials are further added, heated to about 80 to 130° C., mixed, and filled in the molding mold described above. After that, the polyvinyl alcohol solution is cooled to about −30° C., whereby the polyvinyl alcohol molecules are crosslinked and cured. Then, by returning the cooled polyvinyl alcohol solution to room temperature, a polyvinyl alcohol gel is obtained and the fascia/muscle model 40 is formed.
 例えば、筋膜・筋肉モデル40および血管モデル50の双方を、ポリビニルアルコールを用いて形成する場合には、工程T120では、加熱したポリビニルアルコール溶液を、血管モデル50および骨モデル60を配置した成型モールド内に充填すればよい。これにより、血管モデル50の表面温度が上昇して、ポリビニルアルコール分子の水素結合が切れることにより、血管モデル50の表面が部分的に溶解して、成型モールドに充填したポリビニルアルコール溶液と混ざり合う。その後、成型モールド全体が冷凍されて、ポリビニルアルコールの分子間が架橋されることにより、血管モデル50と筋膜・筋肉モデル40とが結合される。 For example, when both the fascia/muscle model 40 and the blood vessel model 50 are formed using polyvinyl alcohol, in step T120, a heated polyvinyl alcohol solution is applied to a molding mold in which the blood vessel model 50 and the bone model 60 are arranged. It should be filled inside. As a result, the surface temperature of the blood vessel model 50 rises and the hydrogen bonds of the polyvinyl alcohol molecules are broken, so that the surface of the blood vessel model 50 partially dissolves and mixes with the polyvinyl alcohol solution filled in the molding mold. After that, the entire molding mold is frozen, and the polyvinyl alcohol molecules are cross-linked to bond the blood vessel model 50 and the fascia/muscle model 40 .
 工程T120で筋膜・筋肉モデル40を形成すると、次に、筋膜・筋肉モデル40上に、接合部30の構成材料を塗布する(工程T130)。筋膜・筋肉モデル40および接合部30を、ポリビニルアルコールを用いて形成する場合には、工程T130では、例えば、工程T120で筋膜・筋肉モデル40を形成するために用いた既述したゲル材料と同様の材料に、さらに発泡剤を加えたものを塗布すればよい。 After the fascia/muscle model 40 is formed in step T120, the constituent material of the joint 30 is next applied onto the fascia/muscle model 40 (step T130). When the fascia/muscle model 40 and the joint 30 are formed using polyvinyl alcohol, in step T130, for example, the above-described gel material used to form the fascia/muscle model 40 in step T120 is used. A foaming agent may be added to the same material as .
 その後、工程T130で塗布した接合部30の構成材料を発泡させる(工程T140)。工程T140では、発泡剤による発泡が進行する温度に昇温させればよく、例えば発泡剤としてn-ペンタンを用いる場合には、50℃程度に昇温させればよい。 After that, the constituent material of the joint 30 applied in step T130 is foamed (step T140). In step T140, the temperature may be raised to a temperature at which foaming by the foaming agent proceeds. For example, when n-pentane is used as the foaming agent, the temperature may be raised to about 50.degree.
 工程T140で接合部30の構成材料を発泡させた後、得られた発泡層の表面で開口する気泡内に、皮下組織モデル24の材料を充填して、ゲル化する(工程T150)。工程T150では、皮下組織モデル24を形成するための液状材料を、上記発泡層上に流し込むことで、発泡層の気泡内に液状材料が充填されるが、気泡における自然脱気が不十分である場合、あるいは、自然脱気が困難である場合には、真空脱気を行ってもよい。工程T150では、気泡内に空気を残すことなく皮下組織モデル24の材料を充填することが望ましい。工程T150では、発泡層の気泡内に、皮下組織モデル24の材料を充填した後、皮下組織モデル24の材料に応じた温度条件下(例えば常温)で、皮下組織モデル24の材料を架橋硬化させてゲル化し、皮下組織モデル24を形成する。 After foaming the constituent material of the joint portion 30 in step T140, the cells opened on the surface of the resulting foam layer are filled with the material of the subcutaneous tissue model 24 to gel (step T150). In step T150, the liquid material for forming the subcutaneous tissue model 24 is poured onto the foam layer to fill the cells of the foam layer with the liquid material, but the natural degassing of the cells is insufficient. Vacuum degassing may be performed if natural degassing is difficult. In step T150, it is desirable to fill the material of the subcutaneous tissue model 24 without leaving air in the bubbles. In step T150, after filling the material of the subcutaneous tissue model 24 in the cells of the foam layer, the material of the subcutaneous tissue model 24 is crosslinked and cured under temperature conditions (for example, room temperature) according to the material of the subcutaneous tissue model 24. gel to form a subcutaneous tissue model 24 .
 次に、表層モデル22となる部材を用意する(工程T160)。ここでは、表層モデル22の材料として既述した高分子材料によって構成されるシートを用意する。そして、用意した表層モデル22となる部材を、工程T150で形成した皮下組織モデル24上に貼り付けて(工程T170)、生体モデル10を完成する。例えば、皮下組織モデル24を、粘着性を有するポリウレタンゲルによって構成する場合には、皮下組織モデル24の粘着性を利用して、皮下組織モデル24に表層モデル22を隙間無く密着させることができる。なお、皮下組織モデル24を、粘着性を有しない高分子材料により構成する場合には、工程T160および工程T170に代えて、例えば、皮下組織モデル24の構成材料と同種の材料を、表層モデル22の構成材料として皮下組織モデル24上に塗布する工程と、塗布した構成材料を硬化させて表層モデル22を形成する工程と、を行って、皮下組織モデル24と表層モデル22とを接合すればよい。 Next, a member that will become the surface layer model 22 is prepared (step T160). Here, a sheet made of the polymer material already described as the material of the surface layer model 22 is prepared. Then, the prepared member to be the surface layer model 22 is pasted onto the subcutaneous tissue model 24 formed in step T150 (step T170) to complete the living body model 10. FIG. For example, when the subcutaneous tissue model 24 is made of an adhesive polyurethane gel, the adhesiveness of the subcutaneous tissue model 24 can be used to bring the surface layer model 22 into close contact with the subcutaneous tissue model 24 without gaps. When the subcutaneous tissue model 24 is made of a non-adhesive polymer material, for example, the same material as that of the subcutaneous tissue model 24 is used instead of steps T160 and T170. The subcutaneous tissue model 24 and the surface layer model 22 may be joined by performing a step of applying the constituent material to the subcutaneous tissue model 24 and a step of curing the applied constituent material to form the surface layer model 22. .
 生体モデル10は、直方体のブロック状や、円柱状など、種々の形状とすることができる。あるいは、注射針や医療用デバイスの挿入に係るトレーニングしたい手技の対象となる血管の種類に応じて、当該血管を備える人体の部分、例えば下肢や腕の形状を模したモデルとしてもよい。あるいは、人体模型等、人体のより広い範囲を模したモデルとしてもよい。図1では、このようにして作製した生体モデル10における、トレーニングの対象となる血管モデル50および、その近傍の皮膚モデル20を含む部分のみを拡大して示している。 The biological model 10 can have various shapes such as a rectangular parallelepiped block shape and a cylindrical shape. Alternatively, depending on the type of blood vessel to be trained for a procedure involving insertion of an injection needle or medical device, a model that imitates the shape of a part of the human body having the blood vessel, such as a leg or an arm, may be used. Alternatively, a model simulating a wider range of the human body, such as a human body model, may be used. FIG. 1 shows an enlarged view of only a part of the biological model 10 thus produced, which includes a blood vessel model 50 to be trained and a skin model 20 in the vicinity thereof.
 以上のように構成された本実施形態の生体モデル10によれば、皮膚モデル20と筋膜・筋肉モデル40とを接合する接合部30は、樹脂によって形成された発泡体によって構成されている。そのため、皮膚モデル20と接合部30とを強固に接合することにより、皮膚モデル20と筋膜・筋肉モデル40との接合強度を高めることができる。例えば、皮膚モデル20を構成する樹脂が、接合部30を構成する発泡体の気泡の内部に入り込むことにより、アンカー効果が得られるためである。その結果、皮膚モデル20と筋膜・筋肉モデル40とを直接接合する場合の接合の困難性に起因する制限を抑えて、皮膚モデルを構成する材料と、筋膜・筋肉モデルを構成する材料と、の組み合わせの自由度を確保しつつ、皮膚モデルと筋膜・筋肉モデルとの間で高い接続強度を得ることができる。 According to the biological model 10 of this embodiment configured as described above, the joint 30 that joins the skin model 20 and the fascia/muscle model 40 is made of a resin foam. Therefore, by firmly joining the skin model 20 and the joining portion 30, the joining strength between the skin model 20 and the fascia/muscle model 40 can be increased. This is because, for example, the resin forming the skin model 20 penetrates into the cells of the foam forming the joint 30, thereby obtaining an anchor effect. As a result, the restriction due to the difficulty of joining when directly joining the skin model 20 and the fascia/muscle model 40 is suppressed, and the materials that make up the skin model and the materials that make up the fascia/muscle model are combined. , and high connection strength can be obtained between the skin model and the fascia/muscle model.
 特に、本実施形態では、接合部30と筋膜・筋肉モデル40とは同種の樹脂を用いて形成されるため、例えば筋膜・筋肉モデル40上で接合部30となる樹脂の架橋硬化を行わせることにより、上記した同種の樹脂材料間を容易に結合することができる。そのため、皮膚モデル20および筋膜・筋肉モデル40の構成材料に関わらず、接合部30を介した皮膚モデル20と筋膜・筋肉モデル40との接合の強度を、さらに高めることができる。 In particular, in the present embodiment, since the joint 30 and the fascia/muscle model 40 are formed using the same kind of resin, for example, the resin that becomes the joint 30 is cross-linked and cured on the fascia/muscle model 40. By applying the same kind of resin material, the same kind of resin materials can be easily bonded. Therefore, regardless of the constituent materials of the skin model 20 and the fascia/muscle model 40, the strength of the joint between the skin model 20 and the fascia/muscle model 40 via the joint 30 can be further increased.
 このように、皮膚モデル20と筋膜・筋肉モデル40とを異なる材料によって形成しても、両者を良好に接合することができるため、皮膚モデル20と筋膜・筋肉モデル40とのそれぞれの構成材料を、任意に設定することができる。例えば、皮膚モデル20では、皮膚に触れたときの感触の再現性を高めることができる摩擦特性や弾性率を有する材料を用いることが望まれる。さらに、生体モデル10を用いて穿刺のトレーニングを行う場合には、皮膚モデル20では、注射針を刺したときの感触の再現性を高めることができる硬さや弾性率を有する材料を用いることが望まれる。これに対して筋膜・筋肉モデル40では、生体における筋膜および筋肉を含む組織の硬さの再現性が高い材料を用いることが望まれる。さらに、生体モデル10が、エコーガイド下でのトレーニングを使用目的とする場合には、筋膜・筋肉モデル40は、超音波を十分に透過させて、生体における超音波画像の再現性に優れたゲルを用いることが望ましい。このように、皮膚モデル20と筋膜・筋肉モデル40との構成材料を選択する際に、接合の困難性等に起因する組み合わせの制限を受けることなく、皮膚モデル20と筋膜・筋肉モデル40との各々の構成材料を、要求される性能に応じて適切に選択しつつ、皮膚モデル20と筋膜・筋肉モデル40とを良好に接合することができる。 In this way, even if the skin model 20 and the fascia/muscle model 40 are made of different materials, they can be well joined together. Materials can be set arbitrarily. For example, in the skin model 20, it is desirable to use a material that has a frictional characteristic and an elastic modulus that can improve the reproducibility of the feel when touching the skin. Furthermore, when puncture training is performed using the biological model 10, it is desirable that the skin model 20 uses a material having a hardness and an elastic modulus that can improve the reproducibility of the feeling when the injection needle is pricked. be On the other hand, in the fascia/muscle model 40, it is desirable to use a material with high reproducibility of the hardness of tissue including fascia and muscle in a living body. Furthermore, when the biological model 10 is used for echo-guided training, the fascia/muscle model 40 sufficiently transmits ultrasonic waves to achieve excellent reproducibility of ultrasonic images in the living body. It is preferable to use a gel. In this way, when selecting the constituent materials of the skin model 20 and the fascia/muscle model 40, the combination of the skin model 20 and the fascia/muscle model 40 is not restricted due to difficulty in joining. The skin model 20 and the fascia/muscle model 40 can be satisfactorily joined while appropriately selecting the constituent materials of and according to the required performance.
 生体モデル10を構成する各部について、各部が模擬する生体の部分の再現性が高まるように各部の構成材料を選択したときに、生体モデル10全体として、硬さや感触等の再現性に係る性能を十分に得るためには、複数の組織を模擬する各部が適切な強度で結合されていることが重要である。本実施形態では、接合部30を設けることにより、十分な接合強度を得ることができる。また、異なる材料によって構成される皮膚モデル20と筋膜・筋肉モデル40とを、接合のための構造を設けることなく積層して設けた場合には、両者の間の接合力が不足することに起因して、皮膚モデル20と筋膜・筋肉モデル40との間に例えば気泡が生じる可能性がある。皮膚モデル20と筋膜・筋肉モデル40との間に気泡が生じると、気泡によって超音波の透過が妨げられて、気泡よりも下の血管モデル50を含む部位の超音波画像による観察が困難になり得る。本実施形態では、接合部30を設けることにより、接合力が不足することに起因する上記した不都合を抑えることができる。 For each part constituting the biological model 10, when the constituent materials of each part are selected so as to enhance the reproducibility of the part of the living body simulated by each part, the biological model 10 as a whole has performance related to reproducibility such as hardness and touch. In order to obtain a sufficient result, it is important that each part simulating a plurality of tissues is connected with appropriate strength. In this embodiment, by providing the joint portion 30, sufficient joint strength can be obtained. Moreover, when the skin model 20 and the fascia/muscle model 40, which are made of different materials, are layered without providing a structure for bonding, the bonding strength between the two will be insufficient. As a result, air bubbles, for example, may occur between the skin model 20 and the fascia/muscle model 40 . When air bubbles are generated between the skin model 20 and the fascia/muscle model 40, the air bubbles interfere with the transmission of ultrasonic waves, making it difficult to observe the site including the blood vessel model 50 below the air bubbles with an ultrasonic image. can be. In this embodiment, by providing the joint portion 30, it is possible to suppress the above-described inconvenience caused by insufficient joint strength.
 本実施形態において、接合部30が備える発泡体は、発泡体を厚み方向に貫通する細孔を有することが望ましい。「発泡体を厚み方向に貫通する細孔」は、全体として発泡体を厚み方向に貫通するように互いに連通して設けられた複数の気泡から成る連続気泡であってもよく、発泡体を厚み方向に貫通する単一の気泡であってもよい。このように発泡体を貫通する細孔とは異なり、接合部30の内部に独立気泡が形成される場合には、このような独立気泡には、皮膚モデル20を構成する樹脂が入り込むことがなく、接合部30内に気泡が残留する。接合部30内に気泡が残留すると、エコーガイド下で生体モデル10を用いるときに、気泡によって超音波の透過が妨げられて、気泡よりも下の血管モデル50を含む部位の超音波画像による観察が困難になり得る。発泡体の細孔を貫通孔にすれば、細孔内に、皮膚モデル20を構成する樹脂を充填することにより、接合部30内における気泡の形成を抑えることができる。 In the present embodiment, it is desirable that the foam included in the joint 30 has pores penetrating through the foam in the thickness direction. The "pores penetrating the foam in the thickness direction" may be open cells composed of a plurality of cells communicating with each other so as to penetrate the foam in the thickness direction as a whole. It may be a single bubble that penetrates in a direction. Unlike the pores penetrating the foam, when closed cells are formed inside the joint 30, the resin constituting the skin model 20 does not enter the closed cells. , air bubbles remain in the joint 30 . If air bubbles remain in the joint portion 30, when the biological model 10 is used under echo guidance, the air bubbles hinder the transmission of ultrasonic waves, and the part including the blood vessel model 50 below the air bubbles can be observed with an ultrasonic image. can be difficult. If the pores of the foam are through-holes, the pores can be filled with the resin that constitutes the skin model 20 , thereby suppressing the formation of air bubbles in the joint 30 .
 さらに、本実施形態によれば、皮膚モデル20と筋膜・筋肉モデル40とを接合するために接着剤を用いる必要がないため、接着剤に起因して、生体モデル10の硬さ、例えば、皮膚モデル20近傍の硬さが変更されることがない。さらに、皮膚モデル20と筋膜・筋肉モデル40との間に接着剤層が設けられる場合には、接着剤層によって超音波の透過が妨げられて、接着剤層よりも下の層の血管モデル50を含む部位の超音波画像による観察が困難になり得る。そのため、生体モデル10を、エコーガイド下で行う手技のトレーニングに用いる場合には、接着剤層が不要になることによる効果を、特に顕著に得ることができる。 Furthermore, according to the present embodiment, since it is not necessary to use an adhesive to join the skin model 20 and the fascia/muscle model 40, the hardness of the biological model 10, for example, The hardness near the skin model 20 is not changed. Furthermore, when an adhesive layer is provided between the skin model 20 and the fascia/muscle model 40, the adhesive layer prevents the transmission of ultrasonic waves, and the blood vessel model in the layer below the adhesive layer. Sites containing 50 can be difficult to observe with ultrasound images. Therefore, when the biological model 10 is used for training of procedures performed under echo guidance, the effect of eliminating the need for an adhesive layer can be obtained particularly remarkably.
B.第2実施形態:
 図3は、第2実施形態の生体モデル110の概略構成を模式的に表す断面図である。第2実施形態は、第1実施形態の皮膚モデル20に代えて皮膚モデル120を備える点以外は、第1実施形態と同様の構成を有する。第2実施形態において、第1実施形態の生体モデル10と共通する部分には同じ参照番号を付す。
B. Second embodiment:
FIG. 3 is a cross-sectional view schematically showing the schematic configuration of the biological model 110 of the second embodiment. The second embodiment has the same configuration as the first embodiment except that a skin model 120 is provided instead of the skin model 20 of the first embodiment. In 2nd Embodiment, the same reference number is attached|subjected to the part which is common in the biological model 10 of 1st Embodiment.
 皮膚モデル120は、表層モデル122と、皮下組織モデル24と、を備える。表層モデル122は、第1実施形態の表層モデル22を構成する材料と同様の樹脂材料により形成される樹脂層を備えると共に、この樹脂層に埋め込まれた樹脂メッシュ126を備える。樹脂メッシュ126は、上記樹脂層、すなわち、面21を含む部分を構成する樹脂よりも硬い樹脂により形成される。本実施形態では、樹脂メッシュ126は、上記樹脂層を構成する樹脂だけでなく、皮下組織モデル24を構成する樹脂よりも硬い樹脂により形成される。樹脂メッシュ126を構成する樹脂は、「第3樹脂」とも呼ぶ。 The skin model 120 includes a surface layer model 122 and a subcutaneous tissue model 24. The surface layer model 122 includes a resin layer made of the same resin material as the material forming the surface layer model 22 of the first embodiment, and a resin mesh 126 embedded in this resin layer. The resin mesh 126 is made of resin that is harder than the resin that forms the resin layer, that is, the portion including the surface 21 . In the present embodiment, the resin mesh 126 is formed not only from the resin that forms the resin layer but also from a resin that is harder than the resin that forms the subcutaneous tissue model 24 . The resin that forms the resin mesh 126 is also called a "third resin".
 樹脂メッシュ126を構成する樹脂としては、例えば、ポリプロピレンやポリカーボネートを用いることができる。樹脂メッシュ126は、上記した第3樹脂により構成される素線を用いて作製された織物や編物とすることができる。 As the resin forming the resin mesh 126, for example, polypropylene or polycarbonate can be used. The resin mesh 126 can be a woven fabric or a knitted fabric produced using strands made of the above-described third resin.
 このような構成とすれば、皮膚モデル120における樹脂メッシュ126以外の部分を構成する樹脂よりも硬い第3樹脂により形成される樹脂メッシュ126を備えるため、皮膚モデル120による皮膚の再現性を高めることができる。例えば、上記した樹脂層を構成する樹脂によって、皮膚の柔らかい感触を再現することができると共に、さらに樹脂メッシュ126を設けることにより、注射針を皮膚に刺して皮膚を突き破るときの感触の再現性を高めることができる。このように、皮膚モデル120を構成する各部の構成材料を適宜選択することにより、皮膚モデル120全体の性質を調整できるため、皮膚モデル120による皮膚の再現性を、より向上させることができる。 With such a configuration, since the resin mesh 126 is formed of the third resin that is harder than the resin constituting the parts other than the resin mesh 126 in the skin model 120, the reproducibility of the skin by the skin model 120 can be improved. can be done. For example, the resin constituting the resin layer described above can reproduce the soft feel of the skin, and the provision of the resin mesh 126 further improves the reproducibility of the feel when the injection needle pierces the skin and pierces the skin. can be enhanced. In this way, by appropriately selecting the constituent materials of each part of the skin model 120, the properties of the skin model 120 as a whole can be adjusted, so that the reproducibility of the skin by the skin model 120 can be further improved.
 第2実施形態の表層モデル122を形成する際には、樹脂材料を架橋硬化させて樹脂層を形成する際に、層状に配置された硬化前の樹脂材料内に、樹脂メッシュ126を埋め込み、その後、樹脂材料の架橋硬化を行えばよい。樹脂メッシュ126を硬化前の樹脂材料に埋め込むことにより、樹脂層を構成する樹脂材料が樹脂メッシュ126に含浸されるため、樹脂層と樹脂メッシュ126とが異なる材料により形成されても、樹脂層と樹脂メッシュ126とを良好に接合させることができる。 When forming the surface layer model 122 of the second embodiment, when the resin material is cross-linked and cured to form a resin layer, the resin mesh 126 is embedded in the resin material before curing arranged in layers, and then , cross-linking curing of the resin material may be performed. By embedding the resin mesh 126 in the resin material before curing, the resin mesh 126 is impregnated with the resin material that constitutes the resin layer. The resin mesh 126 can be satisfactorily bonded.
 上記のように、樹脂メッシュ126によって、例えば穿刺の際の感触等の再現性を高める効果を得る観点から、樹脂メッシュ126を構成する素線の線径(平均線径)は、例えば、0.1mm以上とすればよい。また、本実施形態では、樹脂メッシュ126を構成する樹脂が、比較的超音波を通し難い樹脂であっても、メッシュの目開き、および、メッシュにおける開口面積の割合を確保することで、生体モデル110の内部に透過する超音波を確保することができる。超音波の透過を確保する観点から、樹脂メッシュ126の素線の線径は、例えば、0.5mm以下とすることができる。 As described above, the wire diameter (average wire diameter) of the strands constituting the resin mesh 126 is set to, for example, 0.5 mm from the viewpoint of obtaining the effect of improving the reproducibility of the feeling of puncturing by the resin mesh 126, for example. It should be 1 mm or more. In addition, in the present embodiment, even if the resin constituting the resin mesh 126 is a resin that is relatively difficult to transmit ultrasonic waves, by ensuring the opening of the mesh and the ratio of the opening area in the mesh, the biological model Ultrasonic waves can be ensured to penetrate the interior of 110 . From the viewpoint of ensuring transmission of ultrasonic waves, the wire diameter of the strands of the resin mesh 126 can be set to, for example, 0.5 mm or less.
 第2実施形態の生体モデル110は、表層モデル122が樹脂メッシュ126を備えることにより、樹脂メッシュ126の表面の凹凸によって、生体モデル110の表面である面21に凹凸を形成し、皮膚の表面の感触の再現性を、さらに高めることとしてもよい。例えば、樹脂メッシュ126の素線の線径、樹脂メッシュ126の目開き、表層モデル122において樹脂メッシュ126が配置される深さ等により、表層モデル22の表面(面21)に形成される凹凸の大きさを調節することができる。 In the biological model 110 of the second embodiment, the surface model 122 is provided with the resin mesh 126, and the irregularities on the surface of the resin mesh 126 form irregularities on the surface 21, which is the surface of the biological model 110, and the surface of the skin. The reproducibility of touch may be further enhanced. For example, the unevenness formed on the surface (surface 21) of the surface layer model 22 is determined by the wire diameter of the wires of the resin mesh 126, the opening of the resin mesh 126, the depth at which the resin mesh 126 is arranged in the surface layer model 122, and the like. You can adjust the size.
C.第3実施形態:
 図4は、第3実施形態の生体モデル210の概略構成を模式的に表す断面図である。第3実施形態は、第2実施形態の皮膚モデル120に代えて皮膚モデル220を備える点以外は、第2実施形態と同様の構成を有する。第3実施形態において、第2実施形態の生体モデル10と共通する部分には同じ参照番号を付す。
C. Third embodiment:
FIG. 4 is a cross-sectional view schematically showing the schematic configuration of the biological model 210 of the third embodiment. The third embodiment has the same configuration as the second embodiment except that a skin model 220 is provided instead of the skin model 120 of the second embodiment. In 3rd Embodiment, the same reference number is attached|subjected to the part which is common in the biological model 10 of 2nd Embodiment.
 第3実施形態の皮膚モデル220は、表層モデル222と皮下組織モデル24とを備える。第2実施形態の表層モデル122は、樹脂層と樹脂メッシュ126とにより形成したが、第3実施形態の表層モデル222は、第2実施形態の樹脂メッシュ126と同様の形状であって、皮下組織モデル24を構成する樹脂よりも硬い樹脂により形成される樹脂メッシュのみによって構成されている。このような表層モデル222は、例えば、皮膚モデル220を形成する際に、接合部30上に設けた皮下組織モデル24の材料から成る層上に樹脂メッシュを配置した後に、皮下組織モデル24の材料を架橋硬化させることにより形成することができる。このような構成としても、第2実施形態と同様の効果が得られる。 A skin model 220 of the third embodiment includes a surface layer model 222 and a subcutaneous tissue model 24 . The surface layer model 122 of the second embodiment is formed by the resin layer and the resin mesh 126, but the surface layer model 222 of the third embodiment has the same shape as the resin mesh 126 of the second embodiment, and has subcutaneous tissue. It is composed only of a resin mesh formed of a resin harder than the resin forming the model 24 . For example, when the skin model 220 is formed, such a surface layer model 222 is formed by arranging a resin mesh on a layer made of the material of the subcutaneous tissue model 24 provided on the joint 30, and then placing the material of the subcutaneous tissue model 24. can be formed by cross-linking and curing. Even with such a configuration, the same effect as in the second embodiment can be obtained.
D.第4実施形態:
 図5は、第4実施形態の生体モデル310の概略構成を模式的に表す断面図である。第4実施形態は、第1実施形態の皮膚モデル20に代えて皮膚モデル320を備える点以外は、第1実施形態と同様の構成を有する。第4実施形態において、第1実施形態の生体モデル10と共通する部分には同じ参照番号を付す。
D. Fourth embodiment:
FIG. 5 is a cross-sectional view schematically showing the schematic configuration of the biological model 310 of the fourth embodiment. The fourth embodiment has the same configuration as the first embodiment except that a skin model 320 is provided instead of the skin model 20 of the first embodiment. In 4th Embodiment, the same reference number is attached|subjected to the part which is common in the biological model 10 of 1st Embodiment.
 第4実施形態の皮膚モデル320は、単一の層により形成されている。このような構成としても、皮膚モデル320として望ましい特性を実現可能となるように皮膚モデル320の構成材料を選択したときに、接合部30を設けることにより、皮膚モデル320と筋膜・筋肉モデル40との接合強度を高める効果が得られる。なお、皮膚モデルは、第1実施形態のように2層構造とする、あるいは、第4実施形態のように単一の層によって形成する他、3層以上の複数の層を積層して形成してもよい。 The skin model 320 of the fourth embodiment is made up of a single layer. Even with such a configuration, when the constituent material of the skin model 320 is selected so that the desired characteristics of the skin model 320 can be realized, by providing the joint 30, the skin model 320 and the fascia/muscle model 40 are formed. The effect of increasing the bonding strength with is obtained. The skin model has a two-layer structure as in the first embodiment, or a single layer as in the fourth embodiment, or may be formed by laminating a plurality of layers of three or more layers. may
E.第5実施形態:
 図6は、第5実施形態の生体モデル410の概略構成を模式的に表す断面図である。第5実施形態は、第1実施形態の接合部30に代えて接合部430を備える点以外は、第1実施形態と同様の構成を有する。第5実施形態において、第1実施形態の生体モデル10と共通する部分には同じ参照番号を付す。
E. Fifth embodiment:
FIG. 6 is a cross-sectional view schematically showing the schematic configuration of the biological model 410 of the fifth embodiment. The fifth embodiment has the same configuration as the first embodiment, except that a joint 430 is provided instead of the joint 30 of the first embodiment. In the fifth embodiment, parts common to the biological model 10 of the first embodiment are given the same reference numerals.
 第5実施形態の接合部430は、皮下組織モデル24を構成する既述した第1樹脂を含む発泡体によって構成される。第5実施形態では、第1樹脂を共通して含有する接合部430と皮膚モデル20とは、一方の上に他方の材料を配置した後に、他方を架橋硬化させることにより、接合されている。また、接合部430と筋膜・筋肉モデル40とは、接合部430の細孔内に、筋膜・筋肉モデル40を構成する第2樹脂を入り込ませることにより、接合されている。このような構成としても、第1実施形態と同様の効果が得られる。 The joint portion 430 of the fifth embodiment is made of a foam containing the first resin that constitutes the subcutaneous tissue model 24 and is described above. In the fifth embodiment, the joint 430 and the skin model 20, which commonly contain the first resin, are joined by placing the other material on top of one and then cross-linking and curing the other. Also, the joint portion 430 and the fascia/muscle model 40 are joined by allowing the second resin forming the fascia/muscle model 40 to enter the pores of the joint portion 430 . Even with such a configuration, the same effect as in the first embodiment can be obtained.
F.第6実施形態:
 図7は、第6実施形態の生体モデル510の概略構成を模式的に表す断面図である。第6実施形態は、第1実施形態の接合部30に代えて接合部530を備える点以外は、第1実施形態と同様の構成を有する。第6実施形態において、第1実施形態の生体モデル10と共通する部分には同じ参照番号を付す。
F. Sixth embodiment:
FIG. 7 is a cross-sectional view schematically showing the schematic configuration of a biological model 510 of the sixth embodiment. The sixth embodiment has the same configuration as the first embodiment except that a joint 530 is provided instead of the joint 30 of the first embodiment. In 6th Embodiment, the same reference number is attached|subjected to the part which is common in the biological model 10 of 1st Embodiment.
 第6実施形態において、接合部530と皮膚モデル20とは、接合部530の細孔内に、皮下組織モデル24を構成する第1樹脂を入り込ませることにより、接合されている。また、接合部530と筋膜・筋肉モデル40との間も同様に、接合部530の細孔内に、筋膜・筋肉モデル40を構成する第2樹脂を入り込ませることにより、接合されている。このような生体モデル510は、例えば、接合部530の一方の面上に、皮下組織モデル24および筋膜・筋肉モデル40のうちの一方の構成材料を配置した後に架橋硬化させ、その後、得られた構造を反転させて、接合部530の他方の面上に、皮下組織モデル24および筋膜・筋肉モデル40のうちの他方の構成材料を配置した後に架橋硬化させることにより作製すればよい。 In the sixth embodiment, the joint portion 530 and the skin model 20 are joined by allowing the first resin forming the subcutaneous tissue model 24 to enter the pores of the joint portion 530 . Similarly, the joint portion 530 and the fascia/muscle model 40 are joined together by filling the pores of the joint portion 530 with the second resin constituting the fascia/muscle model 40. . Such a living body model 510 is obtained, for example, by placing the constituent material of one of the subcutaneous tissue model 24 and the fascia/muscle model 40 on one surface of the joint 530 and then cross-linking and curing the material. The structure may be reversed, and the other constituent material of the subcutaneous tissue model 24 and the fascia/muscle model 40 may be placed on the other surface of the joint 530 and then cross-linked and cured.
 このような構成としても、第1実施形態と同様の効果が得られる。また、第6実施形態によれば、接合部530の構成材料が、皮膚モデル20および筋膜・筋肉モデル40の構成材料のいずれとも異なる場合であっても、皮膚モデル20と筋膜・筋肉モデル40との接合強度を高めることができる。また、第6実施形態によれば、接合部530の構成材料を、皮膚モデル20および筋膜・筋肉モデル40の構成材料の双方と異ならせることができるため、接合部530の構成材料の選択の自由度を高めることができる。 Even with such a configuration, the same effects as in the first embodiment can be obtained. Further, according to the sixth embodiment, even if the constituent material of the joint 530 is different from the constituent materials of the skin model 20 and the fascia/muscle model 40, the skin model 20 and the fascia/muscle model The bonding strength with 40 can be increased. Further, according to the sixth embodiment, since the constituent material of the joint 530 can be made different from the constituent materials of both the skin model 20 and the fascia/muscle model 40, the selection of the constituent material of the joint 530 is It can increase the degree of freedom.
 第6実施形態において、接合部530の構成材料は、第1樹脂および第2樹脂のうちの少なくとも一方の樹脂を含むこととしてもよい。この場合には、皮膚モデル20および筋膜・筋肉モデル40を構成する樹脂のうちの、接合部530と共通する樹脂は、接合部530の細孔内に入り込むと共に、接合部530を構成する樹脂と溶け合うことができるため、接合強度をさらに高めることができる。 In the sixth embodiment, the constituent material of the joint portion 530 may include at least one of the first resin and the second resin. In this case, among the resins constituting the skin model 20 and the fascia/muscle model 40, the resin common to the joint 530 enters the pores of the joint 530, and the resin constituting the joint 530 can be fused with each other, the bonding strength can be further increased.
G.他の実施形態:
 上記した各実施形態では、接合部は、発泡体により構成したが、発泡体以外の多孔質体により形成してもよい。例えば、筋膜・筋肉モデル40上に、第2樹脂を含み接合部30となる樹脂層を形成した後に、照射エッチング法により当該樹脂層を多孔質化して、樹脂によって構成される多孔質体を備える接合部30を設けることとしてもよい。このように、発泡体とは異なる多孔質体により接合部を構成する場合であっても、皮膚モデルと筋膜・筋肉モデルとの接合強度を高める同様の効果が得られる。
G. Other embodiments:
In each of the above-described embodiments, the joint portion is made of foam, but may be made of a porous material other than foam. For example, after forming a resin layer containing the second resin on the fascia/muscle model 40 and forming the joint 30, the resin layer is made porous by an irradiation etching method to form a porous body composed of the resin. It is good also as providing the joint part 30 provided. As described above, even when the joint is formed of a porous material different from the foam, the same effect of increasing the joint strength between the skin model and the fascia/muscle model can be obtained.
 上記した各実施形態では、生体モデルは、エコーガイド下で行う手技のトレーニングに用いることとしたが、異なる構成としてもよい。エコーガイド下以外の条件下で行う手技のトレーニングに用いる場合であっても、例えば、皮膚表面や血管などの各部の感触を再現可能となるように、皮膚モデルおよび筋膜・筋肉モデル40の材料を選ぶ際の選択の自由度を高めることができる。そして、接合部30を設けることにより、異なる材料により構成される皮膚モデルと筋膜・筋肉モデル40とを、良好に接続することができる。 In each of the above-described embodiments, the biological model is used for training of procedures performed under echo guidance, but may have a different configuration. Even when used for training of procedures performed under conditions other than echo guidance, for example, materials for the skin model and fascia/muscle model 40 can be reproduced so that the feel of each part such as the skin surface and blood vessels can be reproduced. can increase the degree of freedom of choice when choosing By providing the connecting portion 30, the skin model and the fascia/muscle model 40, which are made of different materials, can be well connected.
 本開示は、上述の実施形態等に限られるものではなく、その趣旨を逸脱しない範囲において種々の構成で実現することができる。例えば、発明の概要の欄に記載した各形態中の技術的特徴に対応する実施形態中の技術的特徴は、上述の課題の一部又は全部を解決するために、あるいは、上述の効果の一部又は全部を達成するために、適宜、差し替えや、組み合わせを行うことが可能である。また、その技術的特徴が本明細書中に必須なものとして説明されていなければ、適宜、削除することが可能である。 The present disclosure is not limited to the above-described embodiments and the like, and can be implemented in various configurations without departing from the scope of the present disclosure. For example, the technical features in the embodiments corresponding to the technical features in the respective modes described in the Summary of the Invention column may be used to solve some or all of the above problems, or Substitutions and combinations may be made as appropriate to achieve part or all. Also, if the technical features are not described as essential in this specification, they can be deleted as appropriate.
  10,110,210,310,410,510…生体モデル
  20,120,220,320…皮膚モデル
  21,25,31…面
  22,122,222…表層モデル
  24…皮下組織モデル
  30,430,530…接合部
  40…筋膜・筋肉モデル
  50…血管モデル
  60…骨モデル
  126…樹脂メッシュ
 
10, 110, 210, 310, 410, 510... Living body model 20, 120, 220, 320... Skin model 21, 25, 31... Surface 22, 122, 222... Surface layer model 24... Subcutaneous tissue model 30, 430, 530... Junction 40 Fascia/muscle model 50 Blood vessel model 60 Bone model 126 Resin mesh

Claims (6)

  1.  生体モデルであって、
     前記生体モデルの表面を含む部分を構成して皮膚を模擬する皮膚モデルと、
     筋膜および筋肉を含む組織を模擬する筋膜・筋肉モデルと、
     多孔質体を備え、前記皮膚モデルと前記筋膜・筋肉モデルとを接合する接合部と、
     前記筋膜・筋肉モデルに埋設されて血管を模擬する血管モデルと、
     を備える
     生体モデル。
    a biological model,
    a skin model that simulates the skin by configuring a portion including the surface of the biological model;
    a fascia/muscle model that simulates tissue containing fascia and muscle;
    a joint portion that includes a porous body and joins the skin model and the fascia/muscle model;
    a blood vessel model that is embedded in the fascia/muscle model and simulates a blood vessel;
    a biological model.
  2.  請求項1に記載の生体モデルであって、
     前記皮膚モデルは、第1樹脂を含有し、
     前記筋膜・筋肉モデルは、前記第1樹脂とは異なる第2樹脂を含有し、
     前記接合部が備える前記多孔質体は、前記第1樹脂および前記第2樹脂のうちの一方の樹脂を含む
     生体モデル。
    The biological model according to claim 1,
    The skin model contains a first resin,
    The fascia/muscle model contains a second resin different from the first resin,
    The biological model, wherein the porous body included in the joint includes one of the first resin and the second resin.
  3.  請求項1または2に記載の生体モデルであって、
     前記接合部が備える前記多孔質体は、前記多孔質体を厚み方向に貫通する細孔を有する
     生体モデル。
    The biological model according to claim 1 or 2,
    The biological model, wherein the porous body included in the joint has pores penetrating through the porous body in a thickness direction.
  4.  請求項1から3までのいずれか一項に記載の生体モデルであって、
     前記皮膚モデルは、前記表面に沿って広がるように配置された樹脂メッシュを備え、
     前記樹脂メッシュは、前記皮膚モデルにおける前記樹脂メッシュ以外の部分を構成する樹脂よりも硬い第3樹脂によって形成される
     生体モデル。
    A biological model according to any one of claims 1 to 3,
    The skin model comprises a resin mesh arranged to spread along the surface,
    The biological model, wherein the resin mesh is made of a third resin that is harder than the resin that constitutes the part of the skin model other than the resin mesh.
  5.  請求項4に記載の生体モデルであって、
     前記樹脂メッシュを構成する素線の径は、0.5mm以下である
     生体モデル。
    The biological model according to claim 4,
    The living body model, wherein the wires forming the resin mesh have a diameter of 0.5 mm or less.
  6.  請求項1から5までのいずれか一項に記載の生体モデルであって、
     前記皮膚モデルは、前記表面を含む上層と、前記上層に積層される下層とに分割されており、
     前記下層は、粘着性を有するゲルにより形成される
     生体モデル。
    A biological model according to any one of claims 1 to 5,
    The skin model is divided into an upper layer including the surface and a lower layer laminated on the upper layer,
    The biological model, wherein the lower layer is formed of an adhesive gel.
PCT/JP2021/006160 2021-02-18 2021-02-18 Biological model WO2022176118A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023500232A JPWO2022176118A1 (en) 2021-02-18 2021-02-18
PCT/JP2021/006160 WO2022176118A1 (en) 2021-02-18 2021-02-18 Biological model

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/006160 WO2022176118A1 (en) 2021-02-18 2021-02-18 Biological model

Publications (1)

Publication Number Publication Date
WO2022176118A1 true WO2022176118A1 (en) 2022-08-25

Family

ID=82930350

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/006160 WO2022176118A1 (en) 2021-02-18 2021-02-18 Biological model

Country Status (2)

Country Link
JP (1) JPWO2022176118A1 (en)
WO (1) WO2022176118A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4345798A1 (en) * 2022-09-28 2024-04-03 Hands-on Plus Ultrasound guided percutaneous surgery mannequin

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008011675A1 (en) * 2006-07-27 2008-01-31 Simulation Medical Medical practice device
JP2013190578A (en) * 2012-03-13 2013-09-26 Marui:Kk Simulator for puncture training
JP2018077443A (en) * 2016-11-10 2018-05-17 株式会社東穂 Puncture procedure drill-purpose mock tissue body, and use method of the same
JP2019020691A (en) * 2017-07-21 2019-02-07 大衛株式会社 Injection training instrument

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008011675A1 (en) * 2006-07-27 2008-01-31 Simulation Medical Medical practice device
JP2013190578A (en) * 2012-03-13 2013-09-26 Marui:Kk Simulator for puncture training
JP2018077443A (en) * 2016-11-10 2018-05-17 株式会社東穂 Puncture procedure drill-purpose mock tissue body, and use method of the same
JP2019020691A (en) * 2017-07-21 2019-02-07 大衛株式会社 Injection training instrument

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4345798A1 (en) * 2022-09-28 2024-04-03 Hands-on Plus Ultrasound guided percutaneous surgery mannequin
WO2024068726A3 (en) * 2022-09-28 2024-05-10 Hands-On Plus Ultrasound guided percutaneous surgery mannequin

Also Published As

Publication number Publication date
JPWO2022176118A1 (en) 2022-08-25

Similar Documents

Publication Publication Date Title
JP6623169B2 (en) Simulated incisionable tissue
US20100196867A1 (en) Phantom for ultrasound guided needle insertion and method for making the phantom
WO2022176118A1 (en) Biological model
US4493653A (en) Biopsiable ultrasound phantom
JP2012203153A (en) Training tool for blood vessel puncture
WO2005038751A1 (en) Three-dimensional model
JP5214733B2 (en) Biological model for ultrasonic examination
JP6043936B2 (en) Puncture practice simulator
EP0621974A1 (en) Surgical and/or clinical apparatus.
JP7005500B2 (en) Procedure simulator
AU2012332456A1 (en) Method and device for injecting a fluid into an artificial venous structure
JP2017032694A (en) Simulated organ
JP2016166932A (en) Living body tissue model and surgery simulation system
JP7343109B2 (en) Ultrasound-guided skin model for puncture technique training and method for adjusting needle tip visibility in echo images of the skin model for ultrasound-guided puncture technique training
Greaby et al. Pulsatile flow phantom for ultrasound image-guided HIFU treatment of vascular injuries
JP2019045602A (en) Manipulation simulator
JP2017146413A (en) Biological model
JP2017146414A (en) Container and method for manufacturing biological model
CN202795872U (en) Arm puncture training model used under ultrasonic guidance
JP2016177235A (en) Simulated organ
JP7325732B2 (en) Puncture practice tool
WO2021094428A1 (en) Device for medical training and method for medical training associated therewith
US20160284242A1 (en) Simulated organ and method for preparing simulated organ
JP2017146412A (en) Biological model and manufacturing method
JP2018189761A (en) Organ membrane model and organ model coated thereby

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21926553

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023500232

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21926553

Country of ref document: EP

Kind code of ref document: A1