WO2022004664A1 - 無線通信装置 - Google Patents
無線通信装置 Download PDFInfo
- Publication number
- WO2022004664A1 WO2022004664A1 PCT/JP2021/024371 JP2021024371W WO2022004664A1 WO 2022004664 A1 WO2022004664 A1 WO 2022004664A1 JP 2021024371 W JP2021024371 W JP 2021024371W WO 2022004664 A1 WO2022004664 A1 WO 2022004664A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- frame
- wireless communication
- communication device
- link
- transmission
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W28/00—Network traffic management; Network resource management
- H04W28/02—Traffic management, e.g. flow control or congestion control
- H04W28/04—Error control
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/04—Wireless resource allocation
Definitions
- the present invention relates to a wireless communication device.
- the present application claims priority with respect to Japanese Patent Application No. 2020-113673 filed in Japan on July 1, 2020, the contents of which are incorporated herein by reference.
- IEEE802.11ax which realizes even higher speed of IEEE802.11, which is a wireless LAN (Local Area Network) standard, is being standardized by IEEE (The Institute of Electrical and Electronics Engineers Inc.) and conforms to the specification draft. Wireless LAN devices have appeared on the market. Currently, standardization activities for IEEE802.11be have been started as a successor standard to IEEE802.11ax. With the rapid spread of wireless LAN devices, in the standardization of IEEE802.11be, further improvement of throughput per user is being studied in an overcrowded environment of wireless LAN devices.
- frame transmission can be performed using an unlicensed band that can carry out wireless communication without the need for permission (license) from the country / region.
- unlicensed band includes 2.4 GHz band and 5 GHz band. While the coverage of the 2.4 GHz band can be relatively wide, the influence of interference between communication devices is large, and the communication bandwidth cannot be wide.
- the 5 GHz band can have a wide communication band, it cannot have a wide coverage. Therefore, in order to realize various service applications on a wireless LAN, it is necessary to appropriately switch the frequency band to be used. However, in the conventional wireless LAN device, it is necessary to disconnect the current connection once in order to switch the frequency band used for communication.
- Non-Patent Document 1 a multi-link operation that enables a communication device to maintain a plurality of connections (links)
- the communication device can maintain a plurality of connections having different settings related to the wireless resources used and communication. That is, by using the MLO, the communication device can maintain the connection of different frequency bands at the same time, so that the frequency band for transmitting the frame can be changed without performing the reconnection operation.
- multiple connections can be used at the same time to transmit frames, and the overall throughput can be increased. It is also possible to send and receive frames independently in multilink. This means that when frame transmission is performed on one link, frame reception can be performed on another link at the same time, which is called simultaneous transmission / reception (Simultaneously Transmission and Reception: STR). It can be said that distributing data over multiple links and transmitting frames can accelerate the completion of data frame transmission, and in another sense, it can be said that delay reduction can be realized.
- One aspect of the present invention has been made in view of the above problems, and an object thereof is to utilize the function of STR in MLO and simultaneously transmit a response frame while receiving an aggregated frame to obtain a frame. It discloses an access point device, a station device, and a communication method that improve the responsiveness of transmission / reception and realize low-delay communication.
- the wireless communication device for solving the above-mentioned problems is as follows.
- the wireless communication device receives control information related to a plurality of connections (multi-link), and receives a data frame associated with the plurality of connections.
- the plurality of connections are composed of two or more connections
- the data frame is composed of two or more DUs (Data Units)
- the data is described in a certain connection.
- the response frame of at least one received DU included in the data frame is transmitted on other connections.
- the control information includes a threshold value for transmission of the response frame, and the length of the data frame is the above. If the threshold is not exceeded, the other connection does not transmit the response frame while receiving the data frame.
- the wireless communication device is described in (1) above, and the control information includes a transmission deadline time related to transmission of the response frame, and the transmission is made by the other connection.
- the response frame is transmitted within the deadline time.
- control information includes response frame connection information related to transmission of the response frame.
- the wireless communication device is described in (4) above, and the response frame connection information prohibits the use of a connection in which the response frame is different from the data frame.
- the wireless communication device is described in (4) above, and the response frame connection information permits the use of a connection in which the response frame is different from the data frame.
- the connection that receives the data frame does not transmit the response frame.
- the wireless communication device includes a transmission unit that transmits a data frame associated with a plurality of connections (multi-link) and a reception unit that receives a response frame for the plurality of connections.
- the plurality of connections are composed of two or more connections
- the data frame is composed of two or more DUs (Data Units)
- one connection is transmitting the data frame
- the other connection is the data.
- the wireless communication device according to one aspect of the present invention is described in (7) above, and the DU constituting the data frame contains the same data and is repeatedly transmitted. It was
- the wireless communication device according to one aspect of the present invention is described in (8) above, and when the response frame received by the other connection shows success, the data frame transmission by the connection is performed. Stop.
- the communication system in the present embodiment includes a wireless transmission device (access point device, base station device: Accesspoint, base station device), and a plurality of wireless reception devices (station device, terminal device: station, terminal device). Further, a network composed of a base station device and a terminal device is called a basic service set (BSS: Basic service set, management range). Further, the station device according to the present embodiment can be provided with the function of the access point device. Similarly, the access point device according to the present embodiment can be provided with the function of a station device. Therefore, in the following, when simply referred to as a communication device, the communication device can refer to both a station device and an access point device.
- BSS Basic service set, management range
- the base station device and the terminal device in the BSS shall communicate with each other based on CSMA / CA (Carrier sense multiple access with collision avoidance).
- the infrastructure mode in which the base station device communicates with a plurality of terminal devices is targeted, but the method of the present embodiment can also be implemented in the ad hoc mode in which the terminal devices directly communicate with each other.
- the terminal device replaces the base station device and forms a BSS.
- BSS in ad hoc mode is also referred to as IBSS (Independent Basic Service Set).
- IBSS Independent Basic Service Set
- the terminal device forming the IBSS in the ad hoc mode can also be regarded as a base station device.
- the method of the present embodiment can also be carried out by WiFi Direct (registered trademark) in which terminal devices directly communicate with each other.
- WiFi Direct the terminal device replaces the base station device and forms a group.
- the terminal device of the Group owner that forms a Group in WiFi Direct can also be regarded as a base station device.
- each device can transmit transmission frames of a plurality of frame types having a common frame format.
- the transmission frame is defined by a physical (PHY) layer, a medium access control (MAC) layer, and a logical link control (LLC: Logical Link Control) layer, respectively.
- PHY physical
- MAC medium access control
- LLC Logical Link Control
- the transmission frame of the PHY layer is called a physical protocol data unit (PPDU: PHY protocol data unit, physical layer frame).
- the PPDU includes a physical layer header (PHY header) containing header information for performing signal processing in the physical layer, and a physical service data unit (PSDU: PHY service data unit, which is a data unit processed in the physical layer. MAC layer frame) etc.
- the PSDU can be composed of an aggregated MPDU (A-MPDU: Aggregated MPDU) in which a plurality of MAC protocol data units (MPDUs: MAC protocol data units), which are retransmission units in the radio section, are aggregated.
- A-MPDU Aggregated MPDU
- MPDUs MAC protocol data units
- a short training field (STF: Short training field) used for signal detection / synchronization, a long training field (LTF: Long training field) used to acquire channel information for data demodulation, etc.
- a reference signal and a control signal such as a signal (Signal: SIG) containing control information for data demodulation are included.
- STFs are Legacy STF (L-STF: Legacy-STF), High Throughput STF (HT-STF: Highthroughput-STF), and Ultra High Throughput STF (VHT-STF: Very), depending on the corresponding standard.
- LTF and SIG are also L-. It is classified into LTF, HT-LTF, VHT-LTF, HE-LTF, L-SIG, HT-SIG, VHT-SIG, HE-SIG, and EHT-SIG. VHT-SIG is further classified into VHT-SIG-A1, VHT-SIG-A2 and VHT-SIG-B. Similarly, HE-SIG is classified into HE-SIG-A1-4 and HE-SIG-B. In addition, a Universal SIGNAL (U-SIG) field containing additional control information can be included, assuming a technical update in the same standard.
- U-SIG Universal SIGNAL
- the PHY header can include information for identifying the BSS of the transmission source of the transmission frame (hereinafter, also referred to as BSS identification information).
- the information that identifies the BSS can be, for example, the SSID (Service Set Identifier) of the BSS or the MAC address of the base station device of the BSS.
- the information for identifying the BSS can be a value unique to the BSS (for example, BSS Color or the like) other than the SSID and the MAC address.
- PPDU is modulated according to the corresponding standard.
- the PPDU is modulated into an orthogonal frequency division multiplexing (OFDM) signal.
- OFDM orthogonal frequency division multiplexing
- the MPDU is a MAC layer header (MAC header) that includes header information for signal processing in the MAC layer, and a MAC service data unit (MSDU: MAC service data unit) that is a data unit processed in the MAC layer. It consists of a frame body and a frame inspection unit (Frame check sequence: FCS) that checks whether there are any errors in the frame. Further, a plurality of MSDUs can be aggregated as an aggregated MSDU (A-MSDU: Aggregated MSDU).
- MAC header MAC layer header
- MSDU MAC service data unit
- FCS frame inspection unit
- A-MSDU Aggregated MSDU
- the frame types of transmission frames in the MAC layer are roughly classified into three types: management frames that manage the connection status between devices, control frames that manage the communication status between devices, and data frames that include actual transmission data. Each is further classified into a plurality of subframe types.
- the control frame includes a reception completion notification (Ack: Acknowledge) frame, a transmission request (RTS: Request to send) frame, a reception preparation completion (CTS: Clear to send) frame, and the like.
- the management frame includes a beacon frame, a probe request frame, a probe response frame, an authentication frame, an association request frame, an association response frame, and the like. included.
- the data frame includes a data frame, a polling (CF-poll) frame, and the like. Each device can grasp the frame type and subframe type of the received frame by reading the contents of the frame control field included in the MAC header.
- Ac may include Block Ac.
- Block Ac can perform reception completion notification to a plurality of MPDUs.
- the beacon frame includes a period (Beacon interval) in which the beacon is transmitted and a field (Field) in which the SSID is described.
- the base station device can periodically notify the beacon frame in the BSS, and the terminal device can grasp the base station device around the terminal device by receiving the beacon frame.
- the fact that the terminal device grasps the base station device based on the beacon frame notified from the base station device is called passive scanning.
- the search for the base station device by the terminal device notifying the probe request frame in the BSS is called active scanning.
- the base station apparatus can transmit a probe response frame as a response to the probe request frame, and the description content of the probe response frame is equivalent to that of the beacon frame.
- the terminal device After recognizing the base station device, the terminal device performs connection processing to the base station device.
- the connection process is classified into an authentication procedure and an association procedure.
- the terminal device sends an authentication frame (authentication request) to the base station device that wishes to connect.
- the base station device receives the authentication frame, it transmits an authentication frame (authentication response) including a status code indicating whether or not the terminal device can be authenticated to the terminal device.
- the terminal device can determine whether or not the own device has been authorized by the base station device.
- the base station device and the terminal device can exchange authentication frames a plurality of times.
- the terminal device sends a connection request frame to perform the connection procedure to the base station device.
- the base station device receives the connection request frame, it determines whether or not to allow the connection of the terminal device, and transmits a connection response frame to notify the fact.
- the association identification number (AID: Association identifier) for identifying the terminal device is described.
- the base station device can manage a plurality of terminal devices by setting different AIDs for the terminal devices for which connection permission has been issued.
- the base station device and the terminal device After the connection process is performed, the base station device and the terminal device perform the actual data transmission.
- a distributed control mechanism DCF: Distributed Coordination Function
- PCF Point Coordination Function
- EDCA Extended distributed channel access
- HCF Hybrid coordination function
- the base station device and the terminal device perform carrier sense (CS: Carrier sense) to confirm the usage status of the wireless channel around the own device prior to communication.
- CS Carrier sense
- CS Carrier sense
- a base station apparatus that is a transmitting station receives a signal on the radio channel higher than a predetermined clear channel evaluation level (CCA level: Clear channel assessment level)
- CCA level Clear channel assessment level
- the transmission of a transmission frame on the radio channel is transmitted. put off.
- a state in which a signal of CCA level or higher is detected is referred to as a busy state
- a state in which a signal of CCA level or higher is not detected is referred to as an idle state.
- Such CS performed based on the power (received power level) of the signal actually received by each device is called physical carrier sense (physical CS).
- the CCA level is also called a carrier sense level (CS level) or a CCA threshold (CCA threshold: CCAT).
- CS level carrier sense level
- CCA threshold CCAT
- the base station device performs carrier sense for the transmission frame to be transmitted only at the frame interval (IFS: Interframe space) according to the type, and determines whether the wireless channel is in the busy state or the idle state.
- the carrier sense period of the base station apparatus depends on the frame type and subframe type of the transmission frame to be transmitted by the base station apparatus from now on.
- IFS Interframe space
- SIFS Short IFS
- the base station device waits only for DIFS, and then waits for a random backoff time to prevent frame collision.
- a random backoff time called a contention window (CW) is used.
- CSMA / CA presupposes that a transmission frame transmitted by a certain transmitting station is received by the receiving station without interference from another transmitting station. Therefore, if the transmitting stations transmit transmission frames at the same timing, the frames collide with each other, and the receiving station cannot receive correctly. Therefore, the frame collision is avoided by each transmitting station waiting for a randomly set time before the transmission starts.
- the base station apparatus determines that the radio channel is in the idle state by the carrier sense, the CW countdown is started, the transmission right is acquired only when the CW becomes 0, and the transmission frame can be transmitted to the terminal apparatus. If the base station apparatus determines that the radio channel is in a busy state by carrier sense during the CW countdown, the CW countdown is stopped. Then, when the radio channel becomes idle, the base station apparatus restarts the countdown of the remaining CW following the previous IFS.
- the terminal device which is the receiving station, receives the transmission frame, reads the PHY header of the transmission frame, and demodulates the received transmission frame. Then, the terminal device can recognize whether or not the transmission frame is addressed to the own device by reading the MAC header of the demodulated signal.
- the terminal device may determine the destination of the transmission frame based on the information described in the PHY header (for example, the group identifier (GID: Group identifier, Group ID) described in VHT-SIG-A). It is possible.
- the terminal device determines that the received transmission frame is addressed to its own device, and if the transmission frame can be demodulated without error, the terminal device transmits an ACK frame indicating that the frame was correctly received to the base station device which is the transmission station.
- the ACK frame is one of the highest priority transmission frames transmitted only by waiting for the SIFS period (no random backoff time is taken).
- the base station apparatus ends a series of communications upon receiving the ACK frame transmitted from the terminal apparatus. If the terminal device cannot receive the frame correctly, the terminal device does not transmit ACK. Therefore, if the base station apparatus does not receive the ACK frame from the receiving station for a certain period (SIFS + ACK frame length) after the frame transmission, the communication is considered to have failed and the communication is terminated.
- the termination of one communication (also called burst) of the IEEE 802.11 system is a special case such as the transmission of a broadcast signal such as a beacon frame or the case where fragmentation for dividing the transmission data is used. Except for this, it is always judged by whether or not the ACK frame is received.
- the terminal device determines that the transmission frame is not addressed to its own device, the terminal device determines that the transmission frame is not addressed to the own device, and based on the length of the transmission frame described in the PHY header or the like, the terminal device (NAV: Network allocation) vector) is set.
- the terminal device does not attempt communication for the period set in NAV. That is, since the terminal device performs the same operation as when the wireless channel is determined to be busy by the physical CS for a period set in NAV, the communication control by NAV is also called virtual carrier sense (virtual CS).
- NAV is set based on the information described in the PHY header, as well as the transmission request (RTS: Request to send) frame introduced to solve the hidden terminal problem and the reception ready (CTS: Clear). to send) It is also set by the frame.
- a control station In contrast to the DCF in which each device performs carrier sense and autonomously acquires the transmission right, in the PCF, a control station called a point coordinator (PC) controls the transmission right of each device in the BSS.
- PC point coordinator
- the base station device becomes a PC, and the transmission right of the terminal device in the BSS is acquired.
- the communication period by PCF includes a non-competitive period (CFP: Contention free period) and a competitive period (CP: Contention period).
- CFRP non-competitive period
- CP competitive period
- the base station device which is a PC, notifies the beacon frame in which the CFP period (CFP Max duration) and the like are described in the BSS prior to the PCF communication.
- PIFS is used to transmit the beacon frame notified at the start of PCF transmission, and the beacon frame is transmitted without waiting for CW.
- the terminal device that has received the beacon frame sets the period of CFP described in the beacon frame to NAV.
- the terminal device After that, until the NAV elapses or a signal for notifying the end of CFP (for example, a data frame including CF-end) is received in the BSS, the terminal device signals the acquisition of the transmission right transmitted from the PC.
- the transmission right can be acquired only when a signal (for example, a data frame including CF-poll) is received. Since no packet collision occurs within the same BSS within the CFP period, each terminal device does not take the random backoff time used in the DCF.
- the wireless medium can be divided into a plurality of resource units (Resource units: RU).
- FIG. 4 is a schematic diagram showing an example of a divided state of the wireless medium.
- the wireless communication device can divide the frequency resource (subcarrier), which is a wireless medium, into nine RUs.
- the wireless communication device can divide the subcarrier, which is a wireless medium, into five RUs.
- the resource division example shown in FIG. 4 is only one example, and for example, a plurality of RUs can be configured by different numbers of subcarriers.
- the radio medium divided as the RU can include not only frequency resources but also spatial resources.
- a wireless communication device can transmit a frame to a plurality of terminal devices (for example, a plurality of STAs) at the same time by arranging frames addressed to different terminal devices in each RU.
- the AP can describe information (Resource allocation information) indicating the division state of the wireless medium as common control information in the PHY header of the frame transmitted by the own device. Further, the AP can describe the information (resource unit assignment information) indicating the RU in which the frame addressed to each STA is arranged in the PHY header of the frame transmitted by the own device as the unique control information.
- a plurality of terminal devices can transmit frames at the same time by arranging frames in their assigned RUs and transmitting them.
- the plurality of STAs can perform frame transmission after receiving a frame (Trigger frame: TF) including trigger information transmitted from the AP and waiting for a predetermined period.
- TF Trigger frame
- Each STA can grasp the RU assigned to its own device based on the information described in the TF.
- each STA can acquire RU by random access based on the TF.
- the AP can assign multiple RUs to one STA at the same time.
- the plurality of RUs may be composed of continuous subcarriers or discontinuous subcarriers.
- the AP can transmit one frame by using a plurality of RUs assigned to one STA, and can transmit a plurality of frames by assigning them to different RUs.
- At least one of the plurality of frames can be a frame containing common control information for a plurality of terminal devices for transmitting Resource allocation information.
- One STA can be assigned multiple RUs from the AP.
- the STA can transmit one frame using a plurality of assigned RUs. Further, the STA can allocate a plurality of frames to different RUs and transmit the plurality of frames by using the plurality of assigned RUs.
- the plurality of frames can be frames of different frame types.
- the AP can assign multiple AIDs to one STA.
- the AP can assign RU to each of a plurality of AIDs assigned to one STA.
- the AP can transmit different frames to a plurality of AIDs assigned to one STA by using the assigned RUs.
- the different frames can be frames of different frame types.
- One STA can be assigned multiple AIDs from the AP.
- One STA can be assigned a RU for each of a plurality of assigned AIDs.
- One STA recognizes that the RUs assigned to the plurality of AIDs assigned to the own device are all the RUs assigned to the own device, and transmits one frame using the plurality of assigned RUs. can do.
- one STA can transmit a plurality of frames by using the plurality of assigned RUs. At this time, in the plurality of frames, information indicating the AID associated with the assigned RU can be described and transmitted.
- the AP can transmit different frames to a plurality of AIDs assigned to one STA by using the assigned RUs.
- the different frames can be frames of different frame types.
- the base station device and the terminal device are collectively referred to as a wireless communication device or a communication device. Further, the information exchanged when one wireless communication device communicates with another wireless communication device is also referred to as data. That is, the wireless communication device includes a base station device and a terminal device.
- FIG. 1 is a diagram showing an example of a PPDU configuration transmitted by a wireless communication device.
- the PPDU corresponding to the IEEE802.11a / b / g standard has a configuration including L-STF, L-LTF, L-SIG and Data frames (MAC Frame, MAC frame, payload, data part, data, information bit, etc.). be.
- the PPDU corresponding to the IEEE802.11n standard has a configuration including L-STF, L-LTF, L-SIG, HT-SIG, HT-STF, HT-LTF and Data frames.
- PPDUs corresponding to the IEEE802.11ac standard include some or all of L-STF, L-LTF, L-SIG, VHT-SIG-A, VHT-STF, VHT-LTF, VHT-SIG-B and MAC frames. It is a composition.
- the PPDUs considered in the IEEE802.11ax standard are RL-SIG, HE-SIG-A, HE-STF, HE- in which L-STF, L-LTF, L-SIG, and L-SIG are repeated in time. It is a configuration including a part or all of the LTF, HE-SIG-B and Data frames.
- the PPDUs being considered in the IEEE802.11be standard are part of the L-STF, L-LTF, L-SIG, RL-SIG, U-SIG, EHT-SIG, EHT-STF, HET-LTF and Data frames or It is a composition that includes everything.
- L-STF, L-LTF and L-SIG surrounded by the dotted line in FIG. 1 have configurations commonly used in the 802.11 standard (hereinafter, L-STF, L-LTF and L-SIG). Collectively referred to as L-header).
- a wireless communication device corresponding to the IEEE 802.11a / b / g standard can appropriately receive the L-header in the PPDU corresponding to the IEEE 802.11n / ac standard.
- a wireless communication device corresponding to the IEEE 802.11a / b / g standard can receive a PPDU corresponding to the IEEE 802.11n / ac standard as a PPDU corresponding to the IEEE 802.11a / b / g standard. ..
- the wireless communication device corresponding to the IEEE802.11a / b / g standard cannot demodulate the PPDU corresponding to the IEEE802.11n / ac standard following the L-header, the transmission address (TA: Transmitter Addless) is not possible. ), Receive address (RA: Receiver Addless), and information about the Duration / ID field used to set NAV cannot be demodulated.
- IEEE 802.11 inserts Duration information into L-SIG. It stipulates how to do it.
- Information on the transmission speed in L-SIG (RATE field, L-RATE field, L-RATE, L_DATRATE, L_DATARATE field), information on the transmission period (LENGTH field, L-LENGTH field, L-LENGTH) is 80.IE.
- a wireless communication device corresponding to the 11a / b / g standard is used to properly set the NAV.
- FIG. 2 is a diagram showing an example of a method of Duration information inserted in L-SIG.
- FIG. 2 shows, as an example, a PPDU configuration corresponding to the IEEE802.11ac standard, but the PPDU configuration is not limited to this.
- a PPDU configuration corresponding to the IEEE802.11n standard and a PPDU configuration corresponding to the IEEE802.11ax standard may be used.
- the TXTIME contains information about the length of the PPDU
- the aPreambleLength contains information about the length of the preamble (L-STF + L-LTF)
- the aPLCPHeaderLength contains information about the length of the PLCP header (L-SIG).
- L_LENGTH is information on the duration of the Signal Extension is a virtual period set for compatibility IEEE802.11 standard, N ops associated with L_RATE, 1 symbol (symbol, OFDM symbol, etc.) ASymbolLength, It is calculated based on aPLCPServiceLength, which indicates the number of bits included in the PLCP Service field, and aPLCPConvolutionalTailLength, which indicates the number of tail bits of the convolution code.
- the wireless communication device can calculate L_LENGTH and insert it into L-SIG. Further, the wireless communication device can calculate the L-SIG Duration.
- the L-SIG Duration shows information about the total period of the PPDU containing L_LENGTH and the Ac and SIFS periods expected to be transmitted from the destination wireless communication device in response.
- FIG. 3 is a diagram showing an example of L-SIG Duration in L-SIG TXOP Protection.
- DATA (frames, payloads, data, etc.) consists of MAC frames and / or parts of PLCP headers.
- BA is Block Ac or Ac.
- the PPDU may include L-STF, L-LTF, L-SIG, and may further comprise any or more of DATA, BA, RTS or CTS.
- L-SIG TXOP Protection using RTS / CTS is shown, but CTS-to-Self may be used.
- MAC Duration is a period indicated by the value of Duration / ID field.
- the Initiator can transmit a CF_End frame to notify the end of the L-SIG TXOP Protection period.
- the wireless communication device that transmits the PPDU provides the PPDU with information (BSS color, BSS identification information, a value unique to the BSS) for identifying the BSS. It is preferable to insert it.
- Information indicating BSS color can be described in HE-SIG-A.
- the wireless communication device can transmit L-SIG multiple times (L-SIG Repetition). For example, the wireless communication device on the receiving side receives the L-SIG transmitted a plurality of times by using MRC (Maximum Rio Combining), so that the demodulation accuracy of the L-SIG is improved. Further, the wireless communication device can interpret that the PPDU including the L-SIG is a PPDU corresponding to the IEEE802.11ax standard when the L-SIG is correctly received by the MRC.
- MRC Maximum Rio Combining
- the wireless communication device performs a reception operation of a part of the PPDU other than the PPDU (for example, a preamble, L-STF, L-LTF, PLCP header, etc. defined by 802.11) even during the reception operation of the PPDU. (Also called double reception operation).
- a reception operation of a part of the PPDU other than the PPDU for example, a preamble, L-STF, L-LTF, PLCP header, etc. defined by 802.11
- the wireless communication device updates a part or all of the destination address, the source address, and the information about the PPDU or the DATA period. Can be done.
- Ack and BA can also be referred to as a response (response frame). Further, a probe response, an authentication response, and a connection response can be referred to as a response. [1. First Embodiment]
- FIG. 5 is a diagram showing an example of a wireless communication system according to the present embodiment.
- the wireless communication system 3-1 includes a wireless communication device 1-1 and wireless communication devices 2-1 to 4.
- the wireless communication device 1-1 is also referred to as a base station device 1-1, and the wireless communication devices 2-1 to 4 are also referred to as terminal devices 2-1 to 4.
- the wireless communication devices 2-1 to 4 and the terminal devices 2-1 to 4 are also referred to as a wireless communication device 2A and a terminal device 2A as devices connected to the wireless communication device 1-1.
- the wireless communication device 1-1 and the wireless communication device 2A are wirelessly connected and are in a state where they can transmit and receive PPDUs to each other.
- the wireless communication system includes a wireless communication system 3-2 in addition to the wireless communication system 3-1.
- the wireless communication system 3-2 includes a wireless communication device 1-2 and wireless communication devices 2-5 to 8.
- the wireless communication device 1-2 is also referred to as a base station device 1-2, and the wireless communication devices 2-5 to 8 are also referred to as terminal devices 2-5 to 8.
- the wireless communication devices 2-5 to 8 and the terminal devices 2-5 to 8 are also referred to as wireless communication devices 2B and terminal devices 2B as devices connected to the wireless communication devices 1-2.
- the wireless communication system 3-1 and the wireless communication system 3-2 form different BSS, but this does not necessarily mean that the ESS (Extended Service Set) is different.
- the ESS indicates a service set that forms a LAN (Local Area Network). That is, wireless communication devices belonging to the same ESS can be regarded as belonging to the same network from the upper layer.
- the wireless communication systems 3-1 and 3-2 may further include a plurality of wireless communication devices.
- the signal transmitted by the wireless communication device 2A reaches the wireless transmission device 1-1 and the wireless communication device 2B, but does not reach the wireless communication device 1-2. do. That is, when the wireless communication device 2A transmits a signal using a certain channel, the wireless communication device 1-1 and the wireless communication device 2B determine that the channel is in a busy state, while the wireless communication device 1-2 determines that the channel is in a busy state. The channel is determined to be idle. Further, it is assumed that the signal transmitted by the wireless communication device 2B reaches the wireless transmission device 1-2 and the wireless communication device 2A, but does not reach the wireless communication device 1-1.
- the wireless communication device 2B transmits a signal using a certain channel
- the wireless communication device 1-2 and the wireless communication device 2A determine that the channel is in a busy state
- the wireless communication device 1-1 determines that the channel is in a busy state.
- the channel is determined to be idle.
- FIG. 6 shows an example of a device configuration of wireless communication devices 1-1, 1-2, 2A and 2B (hereinafter collectively referred to as wireless communication device 10-1 or station device 10-1 or simply station device). It is a figure.
- the wireless communication device 10-1 includes an upper layer unit (upper layer processing step) 10001-1, an autonomous distributed control unit (autonomous distributed control step) 10002-1, a transmission unit (transmission step) 1003-1, and a reception unit. (Reception step)
- the configuration includes the 1004-1 and the antenna unit 1005-1.
- the upper layer unit 10001-1 is connected to another network and can notify the autonomous distributed control unit 10002-1 of information regarding traffic.
- the information related to the traffic may be, for example, information addressed to another wireless communication device, or may be control information included in a management frame or a control frame.
- FIG. 7 is a diagram showing an example of the device configuration of the autonomous distributed control unit 10002-1.
- the autonomous distributed control unit 10002-1 includes a CCA unit (CCA step) 10002a-1, a backoff unit (backoff step) 10002b-1, and a transmission determination unit (transmission determination step) 10002c-1. be.
- CCA step CCA step
- backoff step backoff step
- transmission determination step transmission determination step
- the CCA unit 10002a-1 uses one or both of the information regarding the received signal power received via the radio resource and the information regarding the received signal (including the information after decoding) notified from the receiving unit. ,
- the state of the radio resource can be determined (including the determination of busy or idle).
- the CCA unit 10002a-1 can notify the backoff unit 10002b-1 and the transmission determination unit 10002c-1 of the state determination information of the radio resource.
- the backoff unit 10002b-1 can perform backoff by using the state determination information of the radio resource.
- the back-off unit 10002b-1 generates a CW and has a countdown function. For example, the CW countdown can be executed when the radio resource status determination information indicates idle, and the CW countdown can be stopped when the radio resource status determination information indicates busy.
- the back-off unit 10002b-1 can notify the transmission determination unit 10002c-1 of the value of CW.
- the transmission determination unit 10002c-1 makes a transmission determination using either or both of the radio resource status determination information and the CW value. For example, when the state determination information of the radio resource indicates idle and the CW value is 0, the transmission determination information can be notified to the transmission unit 1003-1. Further, when the state determination information of the radio resource indicates idle, the transmission determination information can be notified to the transmission unit 1003-1.
- the transmission unit 1003-1 is configured to include a physical layer frame generation unit (physical layer frame generation step) 10003a-1 and a wireless transmission unit (wireless transmission step) 1003b-1.
- the physical layer frame generation unit 10003a-1 has a function of generating a physical layer frame (PPDU) based on the transmission determination information notified from the transmission determination unit 10002c-1.
- the physical layer frame generation unit 10003a-1 performs error correction coding, modulation, pre-recording filter multiplication, and the like on the transmission frame sent from the upper layer.
- the physical layer frame generation unit 10003a-1 notifies the radio transmission unit 1003b-1 of the generated physical layer frame.
- FIG. 8 is a diagram showing an example of error correction coding of the physical frame generation unit according to the present embodiment.
- an information bit (systematic bit) series is arranged in the shaded area, and a redundant (parity) bit series is arranged in the white area.
- Bit interleavers are appropriately applied to the information bits and redundant bits.
- the physical frame generator can read out the required number of bits as the start position determined according to the value of the redundancy version (RV) for the arranged bit series. By adjusting the number of bits, it is possible to flexibly change the coding rate, that is, puncture.
- RVs four RVs are shown in FIG. 8, the RV options are not limited to specific values in the error correction coding according to the present embodiment. The position of the RV needs to be shared between the station devices.
- the physical layer frame generator applies error correction coding to the information bits transferred from the MAC layer, but the unit (encoding block length) for performing error correction coding is not limited to anything. No.
- the physical layer frame generator may divide the information bit sequence transferred from the MAC layer into information bit sequences of a predetermined length, apply error correction coding to each, and form a plurality of coding blocks. can. When configuring the coding block, a dummy bit can be inserted into the information bit sequence transferred from the MAC layer.
- the frame generated by the physical layer frame generation unit 10003a-1 contains control information.
- the control information includes information indicating to which RU (where the RU includes both frequency resources and spatial resources) the data destined for each radio communication device is located.
- the frame generated by the physical layer frame generation unit 10037a-1 includes a trigger frame instructing the wireless communication device, which is the destination terminal, to transmit the frame.
- the trigger frame contains information indicating the RU used when the wireless communication device instructed to transmit the frame transmits the frame.
- the radio transmission unit 10003b-1 converts the physical layer frame generated by the physical layer frame generation unit 1003a-1 into a signal in the radio frequency (RF: Radio Frequency) band, and generates a radio frequency signal.
- the processing performed by the wireless transmission unit 1003b-1 includes digital-to-analog conversion, filtering, frequency conversion from the baseband band to the RF band, and the like.
- the receiving unit 1004-1 has a configuration including a wireless receiving unit (radio receiving step) 1004a-1 and a signal demodulation unit (signal demodulation step) 1004b-1.
- the receiving unit 1004-1 generates information on the received signal power from the RF band signal received by the antenna unit 1005-1.
- the receiving unit 1004-1 can notify the CCA unit 10002a-1 of the information regarding the received signal power and the information regarding the received signal.
- the radio receiving unit 10048a-1 has a function of converting an RF band signal received by the antenna unit 1005-1 into a baseband signal and generating a physical layer signal (for example, a physical layer frame).
- the processing performed by the wireless receiver 10004a-1 includes frequency conversion processing from the RF band to the baseband band, filtering, and analog-to-digital conversion.
- the signal demodulation unit 1004b-1 has a function of demodulating the physical layer signal generated by the radio reception unit 1004a-1.
- the processing performed by the signal demodulation unit 1004b-1 includes channel equalization, demapping, error correction and decoding, and the like.
- the signal demodulation unit 1004b-1 can extract, for example, the information included in the physical layer header, the information included in the MAC header, and the information included in the transmission frame from the physical layer signal.
- the signal demodulation unit 1004b-1 can notify the upper layer unit 10001-1 of the extracted information.
- the signal demodulation unit 1004b-1 can extract any or all of the information included in the physical layer header, the information included in the MAC header, and the information included in the transmission frame.
- the antenna unit 1005-1 has a function of transmitting the radio frequency signal generated by the radio transmission unit 1003b-1 to the radio device 0-1 in the radio space. Further, the antenna unit 1005-1 has a function of receiving a radio frequency signal transmitted from the radio device 0-1.
- the wireless communication device 10-1 describes the information indicating the period during which the own device uses the wireless medium in the PHY header and the MAC header of the frame to be transmitted, so that the wireless communication device around the own device is subjected to NAV only during that period. Can be set.
- the wireless communication device 10-1 can describe information indicating the period in the Duration / ID field or the Length field of the frame to be transmitted.
- the NAV period set in the wireless communication device around the own device is referred to as the TXOP period (or simply TXOP) acquired by the wireless communication device 10-1.
- the wireless communication device 10-1 that has acquired the TXOP is referred to as a TXOP acquirer (TXOP holder).
- the frame type of the frame transmitted by the wireless communication device 10-1 to acquire TXOP is not limited to anything, and may be a control frame (for example, an RTS frame or a CTS-to-self frame) or a data frame. But it's okay.
- the wireless communication device 10-1 which is a TXOP holder can transmit a frame between the TXOPs to a wireless communication device other than the own device.
- the wireless communication device 1-1 can transmit a frame to the wireless communication device 2A within the period of the TXOP. Further, the wireless communication device 1-1 can instruct the wireless communication device 2A to transmit a frame addressed to the wireless communication device 1-1 within the TXOP period.
- the wireless communication device 1-1 can transmit a trigger frame including information instructing the wireless communication device 1-1 to transmit a frame to the wireless communication device 2A within the TXOP period.
- the wireless communication device 1-1 may secure TXOP for all communication bands (for example, Operation bandwidth) that may transmit frames, or may secure TXOP for a communication band (for example, Transmission bandwidth) that actually transmits frames. It may be secured for a specific communication band (Band) of.
- the wireless communication device that gives an instruction to transmit a frame within the TXOP period acquired by the wireless communication device 1-1 is not necessarily limited to the wireless communication device connected to the own device.
- the wireless communication device is a wireless communication device that is not connected to the own device in order to transmit a management frame such as a reception frame or a control frame such as an RTS / CTS frame to the wireless communication device in the vicinity of the own device. , You can instruct the transmission of frames.
- TXOP in EDCA which is a data transmission method different from DCF
- the IEEE802.11e standard relates to EDCA, and specifies TXOP from the viewpoint of quality of service (QoS) guarantee for various services such as video transmission and VoIP.
- Services are broadly classified into four access categories: VO (VOice), VI (VIdeo), BE (BestEffort), and BK (BacK ground).
- VO VOice
- VI VI
- BE BestEffort
- BK BacK ground
- the order is VO, VI, BE, BK from the highest priority.
- each access category there are parameters of CW minimum value CWmin, maximum value CWmax, AIFS (Arbitration IFS) which is a kind of IFS, and TXOP limit which is the upper limit of transmission opportunity, so that the height difference of priority can be set.
- the value is set.
- CWmin, CWmax, and AIFS which have the highest priority for voice transmission, are set to values relatively small compared to other access categories, so that the data is prioritized over other access categories. Transmission becomes possible. For example, in VI where the amount of transmission data is relatively large due to video transmission, it is possible to take a longer transmission opportunity than other access categories by setting the TXOP limit large. In this way, the values of the four parameters of each access category are adjusted for the purpose of guaranteeing QoS according to various services.
- the signal demodulation unit of the station device can perform decoding processing on the received signal in the physical layer and perform error detection.
- the decoding process includes a decoding process for the error correction code applied to the received signal.
- the error detection includes error detection using an error detection code (for example, a cyclic redundancy check (CRC) code) given in advance to the received signal, and an error correction code (for example, low density parity) originally provided with an error detection function. Includes error detection by check code (LDPC)).
- CRC cyclic redundancy check
- LDPC error correction code
- the upper layer unit transfers the result of decoding the physical layer in the signal demodulation unit to the MAC layer.
- the signal of the MAC layer is restored from the decoded result of the transferred physical layer.
- error detection is performed, and it is determined whether or not the signal of the MAC layer transmitted by the station device that is the transmission source of the received frame can be correctly restored.
- the wireless communication device implements a procedure (multi-link establishment request, multi-link establishment response) for establishing a plurality of connections (multi-link, Multi-Link), establishes the multi-link, and establishes the multi-link. Can be maintained.
- maintaining multilink means that frames can be transmitted and received based on predetermined settings for multilink. It is also possible to carry out procedures for changing the multi-link settings (multi-link change request, multi-link reply response) while maintaining the multi-link. It is also possible to cancel the multi-link by performing the procedure for canceling the multi-link (multi-link cancellation request, multi-link cancellation response).
- the number of links that make up a multi-link is any number of two or more.
- the carrier frequency of the link includes the 2.4 GHz band, the 5 GHz band, the 6 GHz band, the 60 GHz band, and the like, and may change according to the laws and regulations of each country.
- FIG. 9 shows an outline of the procedure related to the multi-link of the present embodiment by using the wireless communication device 1-1 and the wireless communication device 2-1 as an example of the wireless communication device.
- the wireless communication device 2-1 that transmits the multi-link establishment request (9-1) is called a multi-link initiator and is transmitted to the wireless communication device 1-1.
- the multi-link establishment request may include control information such as multi-link capability information (Capability information) of the own device and multi-link operation mode information requesting establishment.
- the multi-link initiator may be a wireless communication device 1-1 instead of the wireless communication device 2-1.
- the wireless communication device 1-1 that has received the multi-link establishment request transmits the multi-link establishment response to the wireless communication device 2-1.
- the multi-link establishment response (9-2) includes the multi-link capability information of the own device, the establishment status information indicating whether or not the multi-link establishment was successful, the multi-link ID used for identifying the multi-link, and the multi-link operation mode. Control information such as information may be included.
- the multi-link ID may be a TID (Traffic ID) or a value based on the TID.
- the multi-link operation mode information included in the multi-link establishment response includes the multi-link operation mode included in the multi-link establishment request received from the wireless communication device 2-1 and the multi-link operation mode that can be provided by the wireless communication device 1-1. It may be finally decided based on. If the establishment status information indicates success, the multilink is established according to the multilink operation mode information included in the multilink establishment response. If the establishment status information indicates a failure, the multilink cannot be established.
- the multi-link capability information includes channel information (frequency, bandwidth, etc.) that can be used by the own device, STR availability, frame synchronization availability, multi-link aggregation availability, multi-link switch availability, multi-link TXOP (maximum value, minimum value, etc.). ) And other information may be included.
- the multi-link operation mode information includes channel information (frequency, bandwidth, etc.) of each link constituting the multi-link, multi-link TXOP limit, multi-link aggregation, multi-link switch, frame synchronization, frame asynchronous, STR, non-STR,
- the response frame method (response frame connection information, response frame timing information, etc.), response frame parameters (frame length threshold, response frame transmission deadline time, etc.), etc. may be included.
- Multilink TXOP is a parameter that works effectively only at the time of MLO.
- the multi-link TXOP which is a parameter included in the multi-link capability information, has several fields, and the maximum value (value reproduced by the laws and regulations of each country, etc.), recommended value, and minimum value (multi-link) supported by the own device are provided. Information such as (values that must be secured at a minimum for the service guarantee of the initiator, etc.) may be included. If the value of the multi-link TXOP included in the multi-link capability information is set to a special value such as 0 or NULL, the multi-link TXOP may be invalidated and only the TXOP according to the conventional method may be secured. ..
- the multi-link TXOP limit included in the multi-link operation mode information of the multi-link establishment response stores a value determined by negotiation between the wireless communication device 1-1 and the wireless communication device 2-1. Specifically, both the value of the multi-link TXOP included in the multi-link capability information of the wireless communication device 2-1 and the multi-link TXOP included in the multi-link capability information of the wireless communication device 1-1 are satisfied. Will be decided.
- the wireless communication device 1-1 and the wireless communication device 2-1 that established the multi-link were determined within a range not exceeding the multi-link TXOP limit when the transmission right on the wireless medium was secured through carrier sense or the like.
- the multi-link TXOP section can occupy the radio medium and can transmit one or more PPDU frames.
- the established multi-link multi-link TXOP does not know anything other than the wireless communication device 1-1 and the wireless communication device 2-1.
- the wireless communication device describes the information indicating the period during which the own device uses the wireless medium in the PHY header and the MAC header of each PPDU frame to be transmitted, so that the wireless communication device around the own device can be used. Can be set to NAV only during the relevant period.
- the multi-link TXOP limit is a parameter different from the TXOP limit defined in the IEEE802.11e standard.
- the multi-link TXOP limit may be determined in consideration of the TXOP limit defined in the IEEE802.11e standard. Specifically, according to the value of the multi-link TXOP included in the multi-link capability information of the wireless communication device 2-1 and the multi-link TXOP included in the multi-link capability information of the wireless communication device 1-1, and the IEEE802.11e standard. It is determined so as to satisfy the set TXOP limit condition.
- the set TXOP limit may be enabled. This makes it possible to set a multi-link TXOP limit suitable for each access category of VO, VI, BK, and BE.
- response frame method included in the multi-link operation mode information a combination of response frame connection information (response frame link information) and response frame timing information can be selected.
- response frame connection information at least "self-connection (self-link)” and “other connection permission (other link permission)” can be selected, and it is possible to determine which link is used to transmit the response frame.
- the "self-link” is a method according to the prior art, and also transmits a response frame on the same link as the link that receives the PPDU data frame. When “Allow other links” is selected, it is permitted to send a response frame on a link different from the link that receives the PPDU data frame.
- the DU Data Unit
- the DU is a retransmission unit in a radio section to which a MAC header and FCS are added, and examples of the DU include, but are not limited to, MPDU and A-MSDU.
- the condition is a frame length threshold included in the response frame parameter, and if the corresponding PPDU data frame length exceeds the frame length threshold, it is allowed to return a response frame in DU units, that is, , Even during the reception of the corresponding PPDU, it is possible to transmit a response frame including reception status information indicating the success or failure of reception of the received DUs constituting the PPDU.
- the PPDU data frame length is lower than the frame length threshold value, the response frame transmission in DU units is prohibited, and the response frame is returned after the PPDU data frame reception is completed.
- the frame length threshold is an example, and it may be determined whether the response frame is transmitted in PPDU units or DU units based on other specific conditions.
- the response frame transmission deadline time included in the response frame parameter is the time from the completion of reception of the DUs constituting the PPDU to the completion of transmission of the response frame, and the time from the completion of reception of the PPDU to the completion of transmission of the response frame. show.
- the time from the completion of reception of the DU constituting the PPDU to the start of transmission of the response frame, and further, the time from the completion of reception of the PPDU to the start of transmission of the response frame may be indicated.
- the number of multilinks established between the wireless communication device 1-1 and the wireless communication device 2-1 is not limited to one, and it is possible to establish a plurality of multilinks. Each multi-link can also be identified by the multi-link ID.
- FIG. 9 shows a multi-link change request from the wireless communication device 2-1 which is a multi-link initiator to the wireless communication device 1-1, and a multi-link change response (9-) from the wireless communication device 1-1 to the wireless communication device 2-1.
- a multi-link change request may be made from the wireless communication device 1-1 which is not a multi-link initiator, and the wireless communication device 2-1 may return a multi-link change response.
- the multi-link change response includes change status information indicating whether or not the change has been accepted, and it is possible to know whether or not the change such as the operation mode has succeeded or failed.
- a multi-link cancellation request (-5).
- the multi-link to be canceled can be indicated.
- a plurality of wireless communication devices 1-1 and the wireless communication device 2-1 are established. You may cancel the multi-link at once.
- the wireless communication device 2-1 which is the multi-link initiator requests the wireless communication device 1-1 to release the multi-link
- the wireless communication device 1-1 requests the wireless communication device 2-1 to release the multi-link (9-).
- a multi-link cancellation request may be made from a wireless communication device 1-1 that is not a multi-link initiator.
- the multi-link release response may include release status information indicating whether or not the release was accepted.
- the multi-link establishment request may be included in the frame for the connection (Association) procedure or the reconnection (Reassociation) procedure, or it may be dedicated at the required timing after the connection (Association) procedure or the reconnection (Reassociation) procedure. It may be a procedure using the frame of.
- the multi-link release request may be included in the dissociation (Disassociation or Deauthentication) procedure, or may be separately requested at the required timing before the dissociation (Disassociation or Deauthentication) procedure.
- Control information related to multilink such as multilink capability information, multilink operation mode, and multilink setting information may be included in a management frame such as Beacon or ProbeResponse transmitted by the wireless communication device 1-1.
- Information related to multi-link such as multi-link capability information, multi-link operation mode, and multi-link setting information may be treated as MIB (Management Information Base) information.
- FIG. 10 shows an example of communication according to this embodiment.
- the wireless communication device 2-1 according to the present embodiment establishes a multi-link with the wireless communication device 1-1.
- FIG. 10 is an example of a multi-link composed of three links (link 1, link 2, link 3), and each link has a different carrier frequency.
- link 1 has a frequency in the 2.4 GHz band and link 2.
- Is a frequency of W52 (5.15 to 5.25 GHz) in the 5 GHz band
- link 3 is a frequency of W53 (5.25 to 5.35 GHz) in the 5 GHz band.
- FIG. 10 is an example of PPDU transmission in frame synchronization on the time axis at the link 1 and the link 2.
- the frame synchronization referred to here refers to a state in which the head (left end) or the end (right end) of each PPDU transmitted on all links, or the head and the end are aligned. Further, frame asynchronous refers to a state other than frame synchronization.
- the wireless communication device 2-1 transmits a PPDU data frame 10-1 that aggregates a plurality of DUs (Data Units) at link 1.
- PPDU data frame 10-1 is configured by aggregating four DUs 10-2 to 10-5.
- the wireless communication device 2-1 transmits the PPDU data frame 10-11 in which a plurality of DUs are aggregated at the link 2.
- the PPDU data frame 10-11 is composed of four DUs of 10-12 to 10-15 aggregated.
- Each DU is a retransmission unit in a radio section to which a MAC header and FCS are added, and examples of the DU include, but are not limited to, MPDU and A-MSDU.
- the wireless communication device 1-1 indicates reception success / failure of each DU 10-2 to 10-4 after receiving the PPDU data frame 10-1 on which the DU is aggregated at the link 1.
- the response frame 10-6 including the above is transmitted by the link 1.
- the wireless communication device 1-1 is a response including reception status information indicating reception success / failure of each DU 10-12 to 10-14 after receiving the PPDU data frame 10-11 on which the DU is aggregated at the link 2.
- Frames 10-16 are transmitted on link 2.
- the reception status information of the DU 10-2 is set in the response frame 10-6 after the reception of the PPDU data frame 10-1 is completed.
- a delay corresponding to the reception time of the DU 10-3 to 10-5 occurs.
- the response frame 10-16 after the reception of the PPDU data frame 10-11 is completed includes the reception status information of the DU 10-12.
- a delay corresponding to the reception time of DU10-13 to 10-15 occurs in order for the wireless communication device 2-1 to determine whether or not DU10-12 is retransmitted.
- the wireless communication device 2-1 when the response frame connection information of the response frame method included in the operation mode information is "other link permission" and the response frame timing information is "DU unit permission", the wireless communication device 2-1 is connected to the link 1.
- the wireless communication device 1-1 receives the transmitted PPDU data frame 10-1, and the wireless communication device 1-1 receives the PPDU data frame 10-11 transmitted by the wireless communication device 2-1 at the link 2, and the PPDU During data frame reception, the wireless communication device 2-1 receives the response frames 10-20 to 10-23 transmitted by the wireless communication device 1-1 on the other link (link 3 in this example).
- the response frame includes reception status information of the received DU included in the PPDU data frame.
- the response frame 10-20 may include reception status information of DU10-2 or DU10-12.
- the reception status information of DU10-2 and the reception status of DU10-12 may be transmitted on the link 3 as different response frames.
- the response frame 10-21 may include reception status information of DU10-2 to 10-3 and DU10-12 to DU10-13.
- the reception status of each of DU10-2, DU10-3, DU10-12, and DU10-13 may be transmitted on the link 3 as different response frames.
- the response frame 10-22 may include reception status information of DU10-2 to 10-4 and DU10-12 to DU10-14.
- the reception status of each of DU10-2, DU10-3, DU10-4, DU10-12, DU10-13, and DU10-14 may be transmitted on the link 3 as different response frames.
- the response frame 10-23 may include reception status information of DU10-2 to 10-5 and DU10-12 to DU10-15.
- the reception status of each of DU10-2, DU10-3, DU10-4, DU10-5, DU10-12, DU10-13, DU10-14, and DU10-15 is transmitted on the link 3 as different response frames. good.
- the wireless communication device 1-1 effectively utilizes the STR function to include the reception status information of the DU included in the PPDU data frame during the reception of the PPDU data frame from the wireless communication device 2-1.
- the response frame can be transmitted, and the wireless communication device 2-1 can accelerate the determination of whether or not each DU included in the PPDU data frame is resent.
- the PPDU data frame length is the response frame. If the frame length threshold value included in the parameter is not exceeded, the response frame cannot be transmitted in DU units, and the response frame is transmitted after the PPDU data frame reception is completed. That is, in this case, the response frames 10-20, 10-21, and 10-22 are not transmitted on the link 3, but only the response frames 10-23 are transmitted.
- the response frame 10-6 transmitting the wireless communication device 1-1 on the link 1 receives the reception status information of the DU 10-2 to DU 10-5 received by the wireless communication device 1-1 on the link 1 according to the prior art.
- the response frame 10-16 transmitted by the wireless communication device 1-1 on the link 2 includes reception status information of DU10-12 to DU10-15 received by the wireless communication device 1-1 on the link 2 according to the prior art.
- the response frame connection information of the response frame method included in the operation mode information is "other link permission" and the response frame timing information is "”.
- transmission is performed using a link (link 3 in this example) that is not used for PPDU data frame transmission. Therefore, the transmission of the response frames 10-6 and the response frames 10-16 may be omitted.
- the response frame is transmitted for each PPDU unit (that is, the response frame is transmitted after the PPDU data frame reception is completed), but also the response frame is transmitted for each DU unit (that is, the PPDU data is transmitted during the reception of the PPDU data frame). It is possible to transmit a response frame for the received DU that constitutes the frame).
- the response frame is transmitted after the SIFS period after receiving the PPDU data frame.
- the transmission timing of the response frame is not limited to SIFS and can be flexibly determined with a degree of freedom. can do.
- the response frame can be transmitted according to the response frame transmission deadline time included in the response frame parameter of the multi-link operation mode.
- the response frame transmission deadline time is applied as a time from the completion of reception of the DU constituting the PPDU data frame to the completion of transmission of the response frame, and further as a time from the completion of reception of the PPDU data frame to the completion of transmission of the response frame. May be done.
- the time t1 starting from the time when each DU reception is completed indicates the response frame transmission deadline time, and the response frame transmission is completed within the range of the time t1.
- the time from the completion of reception of the DU constituting the PPDU data frame to the start of transmission of the response frame, and further, the time from the completion of reception of the PPDU data frame to the start of transmission of the response frame may be indicated.
- All or part of the DUs constituting the PPDU data frame 10-1 transmitted by the wireless communication device 2-1 on the link 1 may be repeated transmission of the same data. That is, the same data may be repeatedly transmitted in all of DU10-2 to DU10-5.
- the wireless communication device 2-1 may interrupt or stop the transmission of the subsequent DU (DU10-3 to DU10-5, etc.).
- the wireless communication device 2-1 may release the acquired TXOP at an early stage by transmitting the PPDU frame in which the shortened TXOP is set in the PHY header or the MAC header. By stopping the repeated transmission in the middle in this way, the wireless communication devices 1-1 and 2-1 do not wastefully consume the wireless medium.
- the wireless communication device 2-1 may transmit the next DU containing different data, or other than the wireless communication device (wireless communication device 1-1, wireless communication device 2-1) acquires the wireless medium. You may send and receive frames.
- the wireless communication device 2-1 when the wireless communication device 2-1 repeatedly transmits the same data in a part of the DU constituting the PPDU data frame frame 10-1, for example, the same data is transmitted by the DU 10-2 and the DU 10-3, and the same data is transmitted. Other than DU10-4 and DU10-5, different data may be transmitted.
- all or part of the DUs constituting the PPDU data frame 10-11 transmitted by the wireless communication device 2-1 on the link 2 may be repeated transmission of the same data. Repeated transmission in the time direction in this way can reduce the overhead for retransmission in an environment where retransmission occurs due to a bad wireless communication environment or the like.
- the wireless communication device 1-1 has a condition for transmitting a response frame in DU units. If so, it is possible to accelerate the transmission of the response frame including the reception status information.
- the wireless communication device 2-1 can accelerate the transmission of the next DU containing different data, and can transmit the data with low delay.
- the wireless communication device 2-1 may repeatedly transmit the same data on the link 1 and the link 2. That is, the same data may be transmitted in all of DU10-2 to DU10-5 and DU10-12 to DU10-15. Also, some DUs, such as DU10-2, DU10-3, DU10-12, DU10-13, transmit the same data, while others DU10-4, DU10-5, DU10-14, DU10-15 are different. Data may be sent. Repeated transmission in the frequency direction in addition to the time direction in this way causes the wireless communication device 1-1 to accelerate response frame transmission including reception status information, and wireless communication, as compared with the case of repeated transmission only in the time direction. The device 2-1 can accelerate the transmission of the next DU containing different data, and can transmit the data with low delay. [2. Common to all embodiments]
- the communication device can perform communication in a frequency band (frequency spectrum) called an unlicensed band, which does not require a license from a country or region, but can be used. Frequency bands are not limited to this.
- the communication device is actually used for the purpose of preventing interference between frequencies, for example, even though the use permission for a specific service is given by the country or region.
- a frequency band called a non-white band for example, a frequency band assigned for television broadcasting but not used in some areas
- a shared spectrum shared frequency band
- the program that operates in the wireless communication device is a program that controls a CPU or the like (a program that causes a computer to function) so as to realize the functions of the above embodiment according to one aspect of the present invention.
- the information handled by these devices is temporarily stored in RAM at the time of processing, then stored in various ROMs and HDDs, and is read, corrected, and written by the CPU as needed.
- the recording medium for storing the program includes a semiconductor medium (for example, ROM, non-volatile memory card, etc.), an optical recording medium (for example, DVD, MO, MD, CD, BD, etc.), a magnetic recording medium (for example, magnetic tape, etc.). It may be any of flexible disks, etc.).
- a semiconductor medium for example, ROM, non-volatile memory card, etc.
- an optical recording medium for example, DVD, MO, MD, CD, BD, etc.
- a magnetic recording medium for example, magnetic tape, etc.
- the program can be stored and distributed in a portable recording medium, or transferred to a server computer connected via a network such as the Internet.
- the storage device of the server computer is also included in one aspect of the present invention.
- a part or all of the communication device in the above-described embodiment may be realized as an LSI which is typically an integrated circuit.
- Each functional block of the communication device may be individually chipped, or a part or all of them may be integrated into a chip.
- an integrated circuit control unit for controlling them is added.
- the method of making an integrated circuit is not limited to LSI, but may be realized by a dedicated circuit or a general-purpose processor. Further, when an integrated circuit technology that replaces an LSI appears due to advances in semiconductor technology, it is also possible to use an integrated circuit based on this technology.
- the invention of the present application is not limited to the above-described embodiment.
- the wireless communication device of the present invention is not limited to application to mobile station devices, and is not limited to application to mobile station devices, but is stationary or non-movable electronic devices installed indoors and outdoors, such as AV devices, kitchen devices, cleaning / washing. Needless to say, it can be applied to equipment, air conditioning equipment, office equipment, vending machines, and other living equipment.
- One aspect of the present invention is suitable for use in communication devices and communication methods.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
無線通信装置は、複数接続(マルチリンク)に関わる制御情報を受信し、複数接続に紐付けられたデータフレームを受信する受信部と前記複数接続のための応答フレームを送信する送信部、とを備え、前記複数接続は2つ以上の接続から構成され、前記データフレームは2つ以上のDU(Data Unit)から構成され、ある接続で、前記データフレームの受信中に、その他の接続で、前記データフレームに含まれる少なくとも1つの受信完了したDUの応答フレームを送信する。
Description
本発明は、無線通信装置に関する。
本願は、2020年7月1日に日本に出願された特願2020-113673号について優先権を主張し、その内容をここに援用する。
本願は、2020年7月1日に日本に出願された特願2020-113673号について優先権を主張し、その内容をここに援用する。
無線LAN(Local Area Network)規格であるIEEE802.11のさらなる高速化を実現する、IEEE802.11axがIEEE(The Institute of Electrical and Electronics Engineers Inc.)により仕様化が進められており、仕様ドラフトに準拠した無線LANデバイスが市場に登場している。現在、IEEE802.11axの後継規格として、IEEE802.11beの標準化活動が開始されている。無線LANデバイスの急速な普及に伴い、IEEE802.11be標準化においては、無線LANデバイスの過密配置環境においてユーザあたりの更なるスループット向上の検討が行われている。
無線LANでは、国・地域からの許可(免許)を必要とせずに無線通信を実施可能なアンライセンスバンドを用いて、フレーム送信を行うことができる。現在広く使用されているアンライセンスバンド帯としては、2.4GHz帯と5GHz帯がある。2.4GHz帯はカバレッジが比較的広くとれる一方で、通信装置間の干渉の影響が大きく、また通信帯域幅も広くは取れない。一方で、5GHz帯は通信帯域を広くとれる一方で、カバレッジは広く取れない。よって、様々なサービス・アプリケーションを無線LANで実現するためには、使用する周波数バンドを適切に切り替える必要がある。しかし、従来の無線LAN装置においては、通信に用いる周波数バンドを切り替えるためには、一度現在の接続を切断する必要があった。
そこで、IEEE802.11be標準化においては、通信装置が複数の接続(リンク)を維持することを可能とする、複数接続動作(Multi-link Operation:MLO)に関する議論が行われている(非特許文献1参照)。MLOによれば、通信装置は、使用する無線リソースや通信に係る設定が異なる接続を複数維持することができる。すなわち、MLOを用いることで、通信装置は、異なる周波数バンドの接続を同時に維持することができるから、再接続動作を行うことなく、フレームを送信する周波数バンドを変更することが可能となる。
IEEE 802.11-20/0115-04-0be、Jan.2020
MLOでは複数接続(マルチリンク、Multi-Link)を同時に使用してフレーム送信し、全体としてのスループットを増大させることができる。また、マルチリンクにおいて独立にフレームの送受信を行うこともできる。このことは、1つのリンクにおいてフレーム送信を行っているときに、同時に、別のリンクにおいてフレーム受信が行えることを意味しており、同時送受信(Simultaneously Transmission and Reception:STR)と呼んでいる。データをマルチリンクに分散してフレーム送信することはデータフレーム送信完了を早めることができるとも言え、別の意味では遅延低減を実現できているとも言える。一方で、各リンクにおいてアグリゲーション(集約)されたフレーム(A-MPDUなど)が送信される場合、従来技術では、アグリゲーションされたフレームの受信完了後に応答フレーム(Block ACKなど)を送信することとなる。アグリゲーションされたフレームの時間的な長さは、アグリゲーションされていないフレームと比較して長くなる。したがって、例え、データをマルチリンクに分散してフレーム送信したとしても、低遅延が要求されるアプリケーションのための応答性改善に大きくは寄与しない点が課題である。
本発明の一態様は以上の課題を鑑みてなされたものであり、その目的は、MLOにおいてSTRの機能を利用し、アグリゲーションされたフレーム受信中に、同時に応答フレームの送信を行うことで、フレーム送受信の応答性を改善して低遅延通信を実現するアクセスポイント装置、ステーション装置および通信方法を開示するものである。
上述した課題を解決するための本発明の一態様に係る無線通信装置は、次の通りである。
(1)すなわち、本発明の一態様に係る無線通信装置は、複数接続(マルチリンク)に関わる制御情報を受信し、複数接続に紐付けられたデータフレームを受信する受信部と前記複数接続のための応答フレームを送信する送信部、とを備え、前記複数接続は2つ以上の接続から構成され、前記データフレームは2つ以上のDU(Data Unit)から構成され、ある接続において、前記データフレームの受信中に、その他の接続において、前記データフレームに含まれる少なくとも1つの受信完了したDUの応答フレームを送信する。
(2)また、本発明の一態様に係る無線通信装置は、上記(1)に記載され、前記制御情報は前記応答フレームの送信に関するしきい値を含み、前記データフレームの長さが、前記しきい値を超えない場合は、前記その他の接続で、前記データフレームの受信中に前記応答フレームを送信しない。
(3)また、本発明の一態様に係る無線通信装置は、上記(1)に記載され、前記制御情報は前記応答フレームの送信に関わる送信期限時間を含み、前記その他の接続で、前記送信期限時間内に、前記応答フレームを送信する。
(4)また、本発明の一態様に係る無線通信装置は、上記(1)に記載され、前記制御情報は前記応答フレームの送信に関わる応答フレーム接続情報を含む。
(5)また、本発明の一態様に係る無線通信装置は、上記(4)に記載され、前記応答フレーム接続情報が、前記応答フレームが前記データフレームと異なる接続を使用することを禁止する。
(6)また、本発明の一態様に係る無線通信装置は、上記(4)に記載され、前記応答フレーム接続情報が、前記応答フレームが前記データフレームと異なる接続を使用することを許可する場合に、前記データフレームを受信する接続では、応答フレームを送信しない。
(7)本発明の一態様に係る無線通信装置は、複数接続(マルチリンク)に紐付けられたデータフレームを送信する送信部と前記複数接続のための応答フレームを受信する受信部、とを備え前記複数接続は2つ以上の接続から構成され、前記データフレームは2つ以上のDU(Data Unit)から構成され、ある接続で、前記データフレームの送信中に、その他の接続で、前記データフレームに含まれる少なくとも1つの送信完了したDUの応答フレームを受信する。
(8)また、本発明の一態様に係る無線通信装置は、上記(7)に記載され、前記データフレームを構成する前記DUは、同一のデータを含み、繰り返し送信される。
(9)また、本発明の一態様に係る無線通信装置は、上記(8)に記載され、前記その他の接続で受信する前記応答フレームが成功を示す場合、前記ある接続でのデータフレーム送信を停止する。
本発明の一態様によれば、MLOにおいて応答フレームの送信を早めることで、フレーム送受信の応答性を改善して低遅延通信を実現することができる。
本実施形態における通信システムは、無線送信装置(アクセスポイント装置、基地局装置: Access point、基地局装置)、および複数の無線受信装置(ステーション装置、端末装置: station、端末装置)を備える。また、基地局装置と端末装置とで構成されるネットワークを基本サービスセット(BSS: Basic service set、管理範囲)と呼ぶ。また、本実施形態に係るステーション装置は、アクセスポイント装置の機能を備えることができる。同様に、本実施形態に係るアクセスポイント装置は、ステーション装置の機能を備えることができる。そのため、以下では、単に通信装置と述べた場合、該通信装置は、ステーション装置とアクセスポイント装置の両方を示すことができる。
BSS内の基地局装置および端末装置は、それぞれCSMA/CA(Carrier sense multiple access with collision avoidance)に基づいて、通信を行なうものとする。本実施形態においては、基地局装置が複数の端末装置と通信を行なうインフラストラクチャモードを対象とするが、本実施形態の方法は、端末装置同士が通信を直接行なうアドホックモードでも実施可能である。アドホックモードでは、端末装置が、基地局装置の代わりとなりBSSを形成する。アドホックモードにおけるBSSを、IBSS(Independent Basic Service Set)とも呼称する。以下では、アドホックモードにおいてIBSSを形成する端末装置を、基地局装置とみなすこともできる。本実施形態の方法は、端末装置同士が通信を直接行なうWiFi Direct(登録商標)でも実施可能である。WiFi Directでは、端末装置が、基地局装置の代わりとなりGroupを形成する。以下では、WiFi DirectにおいてGroupを形成するGroup ownerの端末装置を、基地局装置とみなすこともできる。
IEEE802.11システムでは、各装置は、共通のフレームフォーマットを持った複数のフレームタイプの送信フレームを送信することが可能である。送信フレームは、物理(Physical:PHY)層、媒体アクセス制御(Medium access control:MAC)層、論理リンク制御(LLC: Logical Link Control)層、でそれぞれ定義されている。
PHY層の送信フレームは、物理プロトコルデータユニット(PPDU: PHY protocol data unit、物理層フレーム)と呼ばれる。PPDUは、物理層での信号処理を行なうためのヘッダ情報等が含まれる物理層ヘッダ(PHYヘッダ)と、物理層で処理されるデータユニットである物理サービスデータユニット(PSDU: PHY service data unit、MAC層フレーム)等から構成される。PSDUは無線区間における再送単位となるMACプロトコルデータユニット(MPDU: MAC protocol data unit)が複数集約された集約MPDU(A-MPDU: Aggregated MPDU)で構成されることが可能である。
PHYヘッダには、信号の検出・同期等に用いられるショートトレーニングフィールド(STF: Short training field)、データ復調のためのチャネル情報を取得するために用いられるロングトレーニングフィールド(LTF: Long training field)などの参照信号と、データ復調のための制御情報が含まれているシグナル(Signal:SIG)などの制御信号が含まれる。また、STFは、対応する規格に応じて、レガシーSTF(L-STF: Legacy-STF)や、高スループットSTF(HT-STF: High throughput-STF)や、超高スループットSTF(VHT-STF: Very high throughput-STF)や、高効率STF(HE-STF: High efficiency-STF)や、超高スループットSTF(EHT-STF:Extremely High Throughput-STF)等に分類され、LTFやSIGも同様にL-LTF、HT-LTF、VHT-LTF、HE-LTF、L-SIG、HT-SIG、VHT-SIG、HE-SIG、EHT-SIGに分類される。VHT-SIGは更にVHT-SIG-A1とVHT-SIG-A2とVHT-SIG-Bに分類される。同様に、HE-SIGは、HE-SIG-A1~4と、HE-SIG-Bに分類される。また、同一規格における技術更新を想定し、追加の制御情報が含まれているUniversal SIGNAL(U-SIG)フィールドが含まれることができる。
さらに、PHYヘッダは当該送信フレームの送信元のBSSを識別する情報(以下、BSS識別情報とも呼称する)を含むことができる。BSSを識別する情報は、例えば、当該BSSのSSID(Service Set Identifier)や当該BSSの基地局装置のMACアドレスであることができる。また、BSSを識別する情報は、SSIDやMACアドレス以外の、BSSに固有な値(例えばBSS Color等)であることができる。
PPDUは対応する規格に応じて変調される。例えば、IEEE802.11n規格であれば、直交周波数分割多重(OFDM: Orthogonal frequency division multiplexing)信号に変調される。
MPDUはMAC層での信号処理を行なうためのヘッダ情報等が含まれるMAC層ヘッダ(MAC header)と、MAC層で処理されるデータユニットであるMACサービスデータユニット(MSDU: MAC service data unit)もしくはフレームボディ、ならびにフレームに誤りがないかをどうかをチェックするフレーム検査部(Frame check sequence:FCS)で構成されている。また、複数のMSDUは集約MSDU(A-MSDU: Aggregated MSDU)として集約されることも可能である。
MAC層の送信フレームのフレームタイプは、装置間の接続状態などを管理するマネージメントフレーム、装置間の通信状態を管理するコントロールフレーム、および実際の送信データを含むデータフレームの3つに大きく分類され、それぞれは更に複数種類のサブフレームタイプに分類される。コントロールフレームには、受信完了通知(Ack: Acknowledge)フレーム、送信要求(RTS: Request to send)フレーム、受信準備完了(CTS: Clear to send)フレーム等が含まれる。マネージメントフレームには、ビーコン(Beacon)フレーム、プローブ要求(Probe request)フレーム、プローブ応答(Probe response)フレーム、認証(Authentication)フレーム、接続要求(Association request)フレーム、接続応答(Association response)フレーム等が含まれる。データフレームには、データ(Data)フレーム、ポーリング(CF-poll)フレーム等が含まれる。各装置は、MACヘッダに含まれるフレームコントロールフィールドの内容を読み取ることで、受信したフレームのフレームタイプおよびサブフレームタイプを把握することができる。
なお、Ackには、Block Ackが含まれても良い。Block Ackは、複数のMPDUに対する受信完了通知を実施可能である。
ビーコンフレームには、ビーコンが送信される周期(Beacon interval)やSSIDを記載するフィールド(Field)が含まれる。基地局装置は、ビーコンフレームを周期的にBSS内に報知することが可能であり、端末装置はビーコンフレームを受信することで、端末装置周辺の基地局装置を把握することが可能である。端末装置が基地局装置より報知されるビーコンフレームに基づいて基地局装置を把握することを受動的スキャニング(Passive scanning)と呼ぶ。一方、端末装置がプローブ要求フレームをBSS内に報知することで、基地局装置を探査することを能動的スキャニング(Active scanning)と呼ぶ。基地局装置は該プローブ要求フレームへの応答としてプローブ応答フレームを送信することが可能であり、該プローブ応答フレームの記載内容は、ビーコンフレームと同等である。
端末装置は基地局装置を認識したあとに、該基地局装置に対して接続処理を行なう。接続処理は認証(Authentication)手続きと接続(Association)手続きに分類される。端末装置は接続を希望する基地局装置に対して、認証フレーム(認証要求)を送信する。基地局装置は、認証フレームを受信すると、該端末装置に対する認証の可否などを示すステータスコードを含んだ認証フレーム(認証応答)を該端末装置に送信する。端末装置は、該認証フレームに記載されたステータスコードを読み取ることで、自装置が該基地局装置に認証を許可されたか否かを判断することができる。なお、基地局装置と端末装置は認証フレームを複数回やり取りすることが可能である。
端末装置は認証手続きに続いて、基地局装置に対して接続手続きを行なうために、接続要求フレームを送信する。基地局装置は接続要求フレームを受信すると、該端末装置の接続を許可するか否かを判断し、その旨を通知するために、接続応答フレームを送信する。接続応答フレームには、接続処理の可否を示すステータスコードに加えて、端末装置を識別するためのアソシエーション識別番号(AID: Association identifier)が記載されている。基地局装置は接続許可を出した端末装置にそれぞれ異なるAIDを設定することで、複数の端末装置を管理することが可能となる。
接続処理が行われたのち、基地局装置と端末装置は実際のデータ伝送を行なう。IEEE802.11システムでは、分散制御機構(DCF: Distributed Coordination Function)と集中制御機構(PCF: Point Coordination Function)、およびこれらが拡張された機構(拡張分散チャネルアクセス(EDCA: Enhanced distributed channel access)や、ハイブリッド制御機構(HCF: Hybrid coordination function)等)が定義されている。以下では、基地局装置が端末装置にDCFで信号を送信する場合を例にとって説明する。
DCFでは、基地局装置および端末装置は、通信に先立ち、自装置周辺の無線チャネルの使用状況を確認するキャリアセンス(CS: Carrier sense)を行なう。例えば、送信局である基地局装置は予め定められたクリアチャネル評価レベル(CCAレベル: Clear channel assessment level)よりも高い信号を該無線チャネルで受信した場合、該無線チャネルでの送信フレームの送信を延期する。以下では、該無線チャネルにおいて、CCAレベル以上の信号が検出される状態をビジー(Busy)状態、CCAレベル以上の信号が検出されない状態をアイドル(Idle)状態と呼ぶ。このように、各装置が実際に受信した信号の電力(受信電力レベル)に基づいて行なうCSを物理キャリアセンス(物理CS)と呼ぶ。なおCCAレベルをキャリアセンスレベル(CS level)、もしくはCCA閾値(CCA threshold:CCAT)とも呼ぶ。なお、基地局装置および端末装置は、CCAレベル以上の信号を検出した場合は、少なくともPHY層の信号を復調する動作に入る。
基地局装置は送信する送信フレームに種類に応じたフレーム間隔(IFS: Inter frame space)だけキャリアセンスを行ない、無線チャネルがビジー状態かアイドル状態かを判断する。基地局装置がキャリアセンスする期間は、これから基地局装置が送信する送信フレームのフレームタイプおよびサブフレームタイプによって異なる。IEEE802.11システムでは、期間の異なる複数のIFSが定義されており、最も高い優先度が与えられた送信フレームに用いられる短フレーム間隔(SIFS: Short IFS)、優先度が比較的高い送信フレームに用いられるポーリング用フレーム間隔(PCF IFS: PIFS)、最も優先度の低い送信フレームに用いられる分散制御用フレーム間隔(DCF IFS: DIFS)などがある。基地局装置がDCFでデータフレームを送信する場合、基地局装置はDIFSを用いる。
基地局装置はDIFSだけ待機したあとで、フレームの衝突を防ぐためのランダムバックオフ時間だけ更に待機する。IEEE802.11システムにおいては、コンテンションウィンドウ(CW: Contention window)と呼ばれるランダムバックオフ時間が用いられる。CSMA/CAでは、ある送信局が送信した送信フレームは、他送信局からの干渉が無い状態で受信局に受信されることを前提としている。そのため、送信局同士が同じタイミングで送信フレームを送信してしまうと、フレーム同士が衝突してしまい、受信局は正しく受信することができない。そこで、各送信局が送信開始前に、ランダムに設定される時間だけ待機することで、フレームの衝突が回避される。基地局装置はキャリアセンスによって無線チャネルがアイドル状態であると判断すると、CWのカウントダウンを開始し、CWが0となって初めて送信権を獲得し、端末装置に送信フレームを送信できる。なお、CWのカウントダウン中に基地局装置がキャリアセンスによって無線チャネルをビジー状態と判断した場合は、CWのカウントダウンを停止する。そして、無線チャネルがアイドル状態となった場合、先のIFSに続いて、基地局装置は残留するCWのカウントダウンを再開する。
受信局である端末装置は、送信フレームを受信し、該送信フレームのPHYヘッダを読み取り、受信した送信フレームを復調する。そして、端末装置は復調した信号のMACヘッダを読み取ることで、該送信フレームが自装置宛てのものか否かを認識することができる。なお、端末装置は、PHYヘッダに記載の情報(例えばVHT-SIG-Aの記載されるグループ識別番号(GID: Group identifier, Group ID))に基づいて、該送信フレームの宛先を判断することも可能である。
端末装置は、受信した送信フレームが自装置宛てのものと判断し、そして誤りなく送信フレームを復調できた場合、フレームを正しく受信できたことを示すACKフレームを送信局である基地局装置に送信しなければならない。ACKフレームは、SIFS期間の待機だけ(ランダムバックオフ時間は取られない)で送信される最も優先度の高い送信フレームの一つである。基地局装置は端末装置から送信されるACKフレームの受信をもって、一連の通信を終了する。なお、端末装置がフレームを正しく受信できなかった場合、端末装置はACKを送信しない。よって基地局装置は、フレーム送信後、一定期間(SIFS+ACKフレーム長)の間、受信局からのACKフレームを受信しなかった場合、通信は失敗したものとして、通信を終了する。このように、IEEE802.11システムの1回の通信(バーストとも呼ぶ)の終了は、ビーコンフレームなどの報知信号の送信の場合や、送信データを分割するフラグメンテーションが用いられる場合などの特別な場合を除き、必ずACKフレームの受信の有無で判断されることになる。
端末装置は、受信した送信フレームが自装置宛てのものではないと判断した場合、PHYヘッダ等に記載されている該送信フレームの長さ(Length)に基づいて、ネットワークアロケーションベクタ(NAV: Network allocation vector)を設定する。端末装置は、NAVに設定された期間は通信を試行しない。つまり、端末装置は物理CSによって無線チャネルがビジー状態と判断した場合と同じ動作をNAVに設定された期間行なうことになるから、NAVによる通信制御は仮想キャリアセンス(仮想CS)とも呼ばれる。NAVは、PHYヘッダに記載の情報に基づいて設定される場合に加えて、隠れ端末問題を解消するために導入される送信要求(RTS: Request to send)フレームや、受信準備完了(CTS:Clear to send)フレームによっても設定される。
各装置がキャリアセンスを行ない、自律的に送信権を獲得するDCFに対して、PCFは、ポイントコーディネータ(PC: Point coordinator)と呼ばれる制御局が、BSS内の各装置の送信権を制御する。一般に基地局装置がPCとなり、BSS内の端末装置の送信権を獲得することになる。
PCFによる通信期間には、非競合期間(CFP: Contention free period)と競合期間(CP: Contention period)が含まれる。CPの間は、前述してきたDCFに基づいて通信が行われ、PCが送信権を制御するのはCFPの間となる。PCである基地局装置は、CFPの期間(CFP Max duration)などが記載されたビーコンフレームをPCFの通信に先立ちBSS内に報知する。なお、PCFの送信開始時に報知されるビーコンフレームの送信にはPIFSが用いられ、CWを待たずに送信される。該ビーコンフレームを受信した端末装置は、該ビーコンフレームに記載されたCFPの期間をNAVに設定する。以降、NAVが経過する、もしくはCFPの終了をBSS内に報知する信号(例えばCF-endを含んだデータフレーム)が受信されるまでは、端末装置はPCより送信される送信権獲得をシグナリングする信号(例えばCF-pollを含んだデータフレーム)を受信した場合のみ、送信権を獲得可能である。なお、CFPの期間内では、同一BSS内でのパケットの衝突は発生しないから、各端末装置はDCFで用いられるランダムバックオフ時間を取らない。
無線媒体は複数のリソースユニット(Resource unit:RU)に分割されることができる。図4は無線媒体の分割状態の1例を示す概要図である。例えば、リソース分割例1では、無線通信装置は無線媒体である周波数リソース(サブキャリア)を9個のRUに分割することができる。同様に、リソース分割例2では、無線通信装置は無線媒体であるサブキャリアを5個のRUに分割することができる。当然ながら、図4に示すリソース分割例はあくまで1例であり、例えば、複数のRUはそれぞれ異なるサブキャリア数によって構成されることも可能である。また、RUとして分割される無線媒体には周波数リソースだけではなく空間リソースも含まれることができる。無線通信装置(例えばAP)は、各RUに異なる端末装置宛てのフレームを配置することで、複数の端末装置(例えば複数のSTA)に同時にフレームを送信することができる。APは、無線媒体の分割の状態を示す情報(Resource allocation information)を、共通制御情報として、自装置が送信するフレームのPHYヘッダに記載することができる。更に、APは、各STA宛てのフレームが配置されたRUを示す情報(resource unit assignment information)を、固有制御情報として、自装置が送信するフレームのPHYヘッダに記載することができる。
また、複数の端末装置(例えば複数のSTA)は、それぞれ割り当てられたRUにフレームを配置して送信することで、同時にフレームを送信することができる。複数のSTAは、APから送信されるトリガ情報を含んだフレーム(Trigger frame:TF)を受信した後、所定の期間待機したのち、フレーム送信を行なうことができる。各STAは、該TFに記載の情報に基づいて自装置に割り当てられたRUを把握することができる。また、各STAは、該TFを基準としたランダムアクセスによりRUを獲得することができる。
APは、1つのSTAに複数のRUを同時に割り当てることができる。該複数のRUは、連続するサブキャリアで構成されることも出来るし、不連続のサブキャリアで構成されることも出来る。APは、1つのSTAに割り当てた複数のRUを用いて、1つのフレームを送信することが出来るし、複数のフレームをそれぞれ異なるRUに割り当てて送信することができる。該複数のフレームの少なくとも1つは、Resource allocation informationを送信する複数の端末装置に対する共通の制御情報を含むフレームであることができる。
1つのSTAは、APより複数のRUを割り当てられることができる。STAは、割り当てられた複数のRUを用いて、1つのフレームを送信することができる。また、STAは割り当てられた複数のRUを用いて、複数のフレームをそれぞれ異なるRUに割り当てて送信することができる。該複数のフレームは、それぞれ異なるフレームタイプのフレームであることができる。
APは、1つのSTAに複数のAIDを割り当てることができる。APは、1つのSTAに割り当てた複数のAIDに対して、それぞれRUを割り当てることができる。APは、1つのSTAに割り当てた複数のAIDに対して、それぞれ割り当てたRUを用いて、それぞれ異なるフレームを送信することができる。該異なるフレームは、それぞれ異なるフレームタイプのフレームであることができる。
1つのSTAは、APより複数のAIDを割り当てられることができる。1つのSTAは割り当てられた複数のAIDに対して、それぞれRUを割り当てられることができる。1つのSTAは、自装置に割り当てられた複数のAIDにそれぞれ割り当てられたRUは、全て自装置に割り当てられたRUと認識し、該割り当てられた複数のRUを用いて、1つのフレームを送信することができる。また、1つのSTAは、該割り当てられた複数のRUを用いて、複数のフレームを送信することができる。このとき、該複数のフレームには、それぞれ割り当てられたRUに関連付けられたAIDを示す情報を記載して送信することができる。APは、1つのSTAに割り当てた複数のAIDに対して、それぞれ割り当てたRUを用いて、それぞれ異なるフレームを送信することができる。該異なるフレームは、異なるフレームタイプのフレームであることができる。
以下では、基地局装置、端末装置を総称して、無線通信装置もしくは通信装置とも呼称する。また、ある無線通信装置が別の無線通信装置と通信を行う際にやりとりされる情報をデータ(data)とも呼称する。つまり、無線通信装置は、基地局装置及び端末装置を含む。
無線通信装置は、PPDUを送信する機能と受信する機能のいずれか、または両方を備える。図1は、無線通信装置が送信するPPDU構成の一例を示した図である。IEEE802.11a/b/g規格に対応するPPDUはL-STF、L-LTF、L-SIG及びDataフレーム(MAC Frame、MACフレーム、ペイロード、データ部、データ、情報ビット等)を含んだ構成である。IEEE802.11n規格に対応するPPDUはL-STF、L-LTF、L-SIG、HT-SIG、HT-STF、HT-LTF及びDataフレームを含んだ構成である。IEEE802.11ac規格に対応するPPDUはL-STF、L-LTF、L-SIG、VHT-SIG-A、VHT-STF、VHT-LTF、VHT-SIG-B及びMACフレームの一部あるいは全てを含んだ構成である。IEEE802.11ax標準で検討されているPPDUは、L-STF、L-LTF、L-SIG、L-SIGが時間的に繰り返されたRL-SIG、HE-SIG-A、HE-STF、HE-LTF、HE-SIG-B及びDataフレームの一部あるいは全てを含んだ構成である。IEEE802.11be標準で検討されているPPDUは、L-STF、L-LTF、L-SIG、RL-SIG、U-SIG、EHT-SIG、EHT-STF、HET-LTF及びDataフレームの一部あるいは全てを含んだ構成である。
図1中の点線で囲まれているL-STF、L-LTF及びL-SIGはIEEE802.11規格において共通に用いられる構成である(以下では、L-STF、L-LTF及びL-SIGをまとめてL-ヘッダとも呼称する)。例えばIEEE 802.11a/b/g規格に対応する無線通信装置は、IEEE802.11n/ac規格に対応するPPDU内のL-ヘッダを適切に受信することが可能である。IEEE 802.11a/b/g規格に対応する無線通信装置は、IEEE802.11n/ac規格に対応するPPDUを、IEEE 802.11a/b/g規格に対応するPPDUとみなして受信することができる。
ただし、IEEE 802.11a/b/g規格に対応する無線通信装置はL-ヘッダの後に続く、IEEE802.11n/ac規格に対応するPPDUを復調することができないため、送信アドレス(TA:Transmitter Address)や受信アドレス(RA:Receiver Address)やNAVの設定に用いられるDuration/IDフィールドに関する情報を復調することができない。
IEEE 802.11a/b/g規格に対応する無線通信装置が適切にNAVを設定する(あるいは所定の期間受信動作を行う)ための方法として、IEEE802.11は、L-SIGにDuration情報を挿入する方法を規定している。L-SIG内の伝送速度に関する情報(RATE field、L-RATE field、L-RATE、L_DATARATE、L_DATARATE field)、伝送期間に関する情報(LENGTH field、L-LENGTH field、L-LENGTH)は、IEEE 802.11a/b/g規格に対応する無線通信装置が適切にNAVを設定するために使用される。
図2は、L-SIGに挿入されるDuration情報の方法の一例を示す図である。図2においては、一例としてIEEE802.11ac規格に対応するPPDU構成を示しているが、PPDU構成はこれに限定されない。IEEE802.11n規格に対応のPPDU構成及びIEEE802.11ax規格に対応するPPDU構成でも良い。TXTIMEは、PPDUの長さに関する情報を備え、aPreambleLengthは、プリアンブル(L-STF+L-LTF)の長さに関する情報を備え、aPLCPHeaderLengthは、PLCPヘッダ(L-SIG)の長さに関する情報を備える。L_LENGTHは、IEEE802.11規格の互換性をとるために設定される仮想的な期間であるSignal Extension、L_RATEに関連するNops、1シンボル(symbol,OFDM symbol等)の期間に関する情報であるaSymbolLength、PLCP Service fieldが含むビット数を示すaPLCPServiceLength、畳みこみ符号のテールビット数を示すaPLCPConvolutionalTailLengthに基づいて算出される。無線通信装置は、L_LENGTHを算出し、L-SIGに挿入することができる。また、無線通信装置は、L-SIG Durationを算出することができる。L-SIG Durationは、L_LENGTHを含むPPDUと、その応答として宛先の無線通信装置より送信されることが期待されるAckとSIFSの期間を合計した期間に関する情報を示す。
図3は、L-SIG TXOP Protectionにおける、L-SIG Durationの一例を示した図である。DATA(フレーム、ペイロード、データ等)は、MACフレームとPLCPヘッダの一部または両方から構成される。また、BAはBlock Ack、またはAckである。PPDUは、L-STF,L-LTF,L-SIGを含み、さらにDATA,BA、RTSあるいはCTSのいずれかまたはいずれか複数を含んで構成されることができる。図3に示す一例では、RTS/CTSを用いたL-SIG TXOP Protectionを示しているが、CTS-to-Selfを用いても良い。ここで、MAC Durationは、Duration/ID fieldの値によって示される期間である。また、InitiatorはL-SIG TXOP Protection期間の終了を通知するためにCF_Endフレームを送信することができる。
続いて、無線通信装置が受信するフレームからBSSを識別する方法について説明する。無線通信装置が、受信するフレームからBSSを識別するためには、PPDUを送信する無線通信装置が当該PPDUにBSSを識別するための情報(BSS color,BSS識別情報、BSSに固有な値)を挿入することが好適である。BSS colorを示す情報は、HE-SIG-Aに記載されることが可能である。
無線通信装置は、L-SIGを複数回送信する(L-SIG Repetition)ことができる。例えば、受信側の無線通信装置は、複数回送信されるL-SIGをMRC(Maximum Ratio Combining)を用いて受信することで、L-SIGの復調精度が向上する。さらに無線通信装置は、MRCによりL-SIGを正しく受信完了した場合に、当該L-SIGを含むPPDUがIEEE802.11ax規格に対応するPPDUであると解釈することができる。
無線通信装置は、PPDUの受信動作中も、当該PPDU以外のPPDUの一部(例えば、IEEE802.11により規定されるプリアンブル、L-STF、L-LTF、PLCPヘッダ等)の受信動作を行うことができる(二重受信動作とも呼称する)。無線通信装置は、PPDUの受信動作中に、当該PPDU以外のPPDUの一部を検出した場合に、宛先アドレスや、送信元アドレスや、PPDUあるいはDATA期間に関する情報の一部または全部を更新することができる。
Ack及びBAは、応答(応答フレーム)とも呼称されることができる。また、プローブ応答や、認証応答、接続応答を応答と呼称することができる。
[1.第1の実施形態]
[1.第1の実施形態]
図5は、本実施形態に係る無線通信システムの一例を示した図である。無線通信システム3-1は、無線通信装置1-1及び無線通信装置2-1~4を備えている。なお、無線通信装置1-1を基地局装置1-1とも呼称し、無線通信装置2-1~4を端末装置2-1~4とも呼称する。また、無線通信装置2-1~4および端末装置2-1~4を、無線通信装置1-1に接続されている装置として、無線通信装置2Aおよび端末装置2Aとも呼称する。無線通信装置1-1及び無線通信装置2Aは、無線接続されており、お互いにPPDUの送受信を行うことができる状態にある。また、本実施形態に係る無線通信システムは、無線通信システム3-1の他に無線通信システム3-2を備える。無線通信システム3-2は、無線通信装置1-2及び無線通信装置2-5~8を備えている。なお、無線通信装置1-2を基地局装置1-2とも呼称し、無線通信装置2-5~8を端末装置2-5~8とも呼称する。また、また、無線通信装置2-5~8および端末装置2-5~8を、無線通信装置1-2に接続されている装置として、無線通信装置2Bおよび端末装置2Bとも呼称する。無線通信システム3-1と無線通信システム3-2は異なるBSSを形成するが、これはESS(Extended Service Set)が異なることを必ずしも意味していない。ESSは、LAN(Local Area Network)を形成するサービスセットを示している。つまり、同じESSに属する無線通信装置は、上位層から同一のネットワークに属しているとみなされることができる。なお、無線通信システム3-1および3-2は、さらに複数の無線通信装置を備えることも可能である。
図5において、以下の説明においては、無線通信装置2Aが送信する信号は、無線送信装置1-1および無線通信装置2Bには到達する一方で、無線通信装置1-2には到達しないものとする。つまり、無線通信装置2Aがあるチャネルを使って信号を送信すると、無線通信装置1-1と、無線通信装置2Bは、当該チャネルをビジー状態と判断する一方で、無線通信装置1-2は、当該チャネルをアイドル状態と判断する。また、無線通信装置2Bが送信する信号は、無線送信装置1-2および無線通信装置2Aには到達する一方で、無線通信装置1-1には到達しないものとする。つまり、無線通信装置2Bがあるチャネルを使って信号を送信すると、無線通信装置1-2と、無線通信装置2Aは、当該チャネルをビジー状態と判断する一方で、無線通信装置1-1は、当該チャネルをアイドル状態と判断する。
図6は、無線通信装置1-1、1-2、2A及び2B(以下では、まとめて無線通信装置10-1もしくはステーション装置10-1もしくは単にステーション装置とも呼称)の装置構成の一例を示した図である。無線通信装置10-1は、上位層部(上位層処理ステップ)10001-1と、自律分散制御部(自律分散制御ステップ)10002-1と、送信部(送信ステップ)10003-1と、受信部(受信ステップ)10004-1と、アンテナ部10005-1と、を含んだ構成である。
上位層部10001-1は、他のネットワークと接続され、自律分散制御部10002-1にトラフィックに関する情報を通知することができる。トラフィックに関する情報とは、例えば、他の無線通信装置宛ての情報であっても良いし、マネージメントフレームやコントロールフレームに含まれる制御情報でも良い。
図7は、自律分散制御部10002-1の装置構成の一例を示した図である。自律分散制御部10002-1は、CCA部(CCAステップ)10002a-1と、バックオフ部(バックオフステップ)10002b-1と、送信判断部(送信判断ステップ)10002c-1とを含んだ構成である。
CCA部10002a-1は、受信部から通知される、無線リソースを介して受信する受信信号電力に関する情報と、受信信号に関する情報(復号後の情報を含む)のいずれか一方、または両方を用いて、当該無線リソースの状態判断(busyまたはidleの判断を含む)を行うことができる。CCA部10002a-1は、当該無線リソースの状態判断情報を、バックオフ部10002b-1及び送信判断部10002c-1に通知することができる。
バックオフ部10002b-1は、無線リソースの状態判断情報を用いて、バックオフを行うことができる。バックオフ部10002b-1は、CWを生成し、カウントダウン機能を有する。例えば、無線リソースの状態判断情報がidleを示す場合に、CWのカウントダウンを実行し、無線リソースの状態判断情報がbusyを示す場合に、CWのカウントダウンを停止することができる。バックオフ部10002b-1は、CWの値を送信判断部10002c-1に通知することができる。
送信判断部10002c-1は、無線リソースの状態判断情報、またはCWの値のいずれか一方、あるいは両方を用いて送信判断を行う。例えば、無線リソースの状態判断情報がidleを示し、CWの値が0の時に送信判断情報を送信部10003-1に通知することができる。また、無線リソースの状態判断情報がidleを示す場合に送信判断情報を送信部10003-1に通知することができる。
送信部10003-1は、物理層フレーム生成部(物理層フレーム生成ステップ)10003a-1と、無線送信部(無線送信ステップ)10003b-1とを含んだ構成である。物理層フレーム生成部10003a-1は、送信判断部10002c-1から通知される送信判断情報に基づき、物理層フレーム(PPDU)を生成する機能を有する。物理層フレーム生成部10003a-1は、上位層から送られる送信フレームに対して誤り訂正符号化、変調、プレコーディングフィルタ乗算等を施す。物理層フレーム生成部10003a-1は、生成した物理層フレームを無線送信部10003b-1に通知する。
図8は本実施形態に係る物理フレーム生成部の誤り訂正符号化の一例を示す図である。図8に示すように、斜線の領域には、情報ビット(システマティックビット)系列、白抜きの領域には冗長(パリティ)ビット系列が配置される。情報ビットおよび冗長ビットはそれぞれ適切にビットインターリーバが適用されている。物理フレーム生成部は配置されたビット系列に対し、リダンダンシーバージョン(RV)の値に応じて決定される開始位置として、必要なビット数を読み出すことができる。ビット数を調整することで符号化率の柔軟な変更、すなわちパンクチャリングが可能となる。なお、図8においては、RVは全部で4通りが示されているが、本実施形態に係る誤り訂正符号化において、RVの選択肢は、特定の値に限定されるものではない。RVの位置については、ステーション装置間で共有されている必要がある。
物理層フレーム生成部は、MACレイヤから転送されてきた情報ビットに対して、誤り訂正符号化を施すが、誤り訂正符号化を施す単位(符号化ブロック長)は何かに限定されるものではない。例えば、物理層フレーム生成部は、MACレイヤから転送されてきた情報ビット系列を所定の長さの情報ビット系列に分割し、それぞれに誤り訂正符号化を施し、複数の符号化ブロックとすることができる。なお、符号化ブロックを構成する際に、MACレイヤから転送されてきた情報ビット系列にダミービットを挿入することもできる。
物理層フレーム生成部10003a-1が生成するフレームには、制御情報が含まれる。該制御情報には、各無線通信装置宛てのデータが、どのRU(ここでRUには周波数リソースと空間リソースの両方を含む)に配置されているかを示す情報が含まれる。また、物理層フレーム生成部10003a-1が生成するフレームには、宛先端末である無線通信装置にフレーム送信を指示するトリガーフレームが含まれる。該トリガーフレームには、フレーム送信を指示された無線通信装置がフレームを送信する際に用いるRUを示す情報が含まれている。
無線送信部10003b-1は、物理層フレーム生成部10003a-1が生成する物理層フレームを、無線周波数(RF: Radio Frequency)帯の信号に変換し、無線周波数信号を生成する。無線送信部10003b-1が行う処理には、デジタル・アナログ変換、フィルタリング、ベースバンド帯からRF帯への周波数変換等が含まれる。
受信部10004-1は、無線受信部(無線受信ステップ)10004a-1と、信号復調部(信号復調ステップ)10004b-1を含んだ構成である。受信部10004-1は、アンテナ部10005-1が受信するRF帯の信号から受信信号電力に関する情報を生成する。受信部10004-1は、受信信号電力に関する情報と、受信信号に関する情報をCCA部10002a-1に通知することができる。
無線受信部10004a-1は、アンテナ部10005-1が受信するRF帯の信号をベースバンド信号に変換し、物理層信号(例えば、物理層フレーム)を生成する機能を有する。無線受信部10004a-1が行う処理には、RF帯からベースバンド帯への周波数変換処理、フィルタリング、アナログ・デジタル変換が含まれる。
信号復調部10004b-1は、無線受信部10004a-1が生成する物理層信号を復調する機能を有する。信号復調部10004b-1が行う処理には、チャネル等化、デマッピング、誤り訂正復号化等が含まれる。信号復調部10004b-1は、物理層信号から、例えば、物理層ヘッダが含む情報と、MACヘッダが含む情報と、送信フレームが含む情報とを取り出すことができる。信号復調部10004b-1は、取り出した情報を上位層部10001-1に通知することができる。なお、信号復調部10004b-1は、物理層ヘッダが含む情報と、MACヘッダが含む情報と、送信フレームが含む情報のいずれか、あるいは全てを取り出すことができる。
アンテナ部10005-1は、無線送信部10003b-1が生成する無線周波数信号を、無線装置0-1に向けて、無線空間に送信する機能を有する。また、アンテナ部10005-1は、無線装置0-1から送信される無線周波数信号を受信する機能を有する。
無線通信装置10-1は、送信するフレームのPHYヘッダやMACヘッダに、自装置が無線媒体を利用する期間を示す情報を記載することにより、自装置周辺の無線通信装置に当該期間だけNAVを設定させることができる。例えば、無線通信装置10-1は送信するフレームのDuration/IDフィールドまたはLengthフィールドに当該期間を示す情報を記載することができる。自装置周辺の無線通信装置に設定されたNAV期間を、無線通信装置10-1が獲得したTXOP期間(もしくは単にTXOP)と呼ぶこととする。そして、該TXOPを獲得した無線通信装置10-1を、TXOP獲得者(TXOP holder、TXOPホルダー)と呼ぶ。無線通信装置10-1がTXOPを獲得するために送信するフレームのフレームタイプは何かに限定されるものではなく、コントロールフレーム(例えばRTSフレームやCTS-to-selfフレーム)でも良いし、データフレームでも良い。
TXOPホルダーである無線通信装置10-1は、該TXOPの間で、自装置以外の無線通信装置に対して、フレームを送信することができる。無線通信装置1-1がTXOPホルダーであった場合、該TXOPの期間内で、無線通信装置1-1は無線通信装置2Aに対してフレームを送信することができる。また、無線通信装置1-1は、該TXOP期間内で、無線通信装置2Aに対して、無線通信装置1-1宛てのフレーム送信を指示することができる。無線通信装置1-1は、該TXOP期間内で、無線通信装置2Aに対して、無線通信装置1-1宛てのフレーム送信を指示する情報を含むトリガーフレームを送信することができる。
無線通信装置1-1は、フレーム送信を行なう可能性のある全通信帯域(例えばOperation bandwidth)に対してTXOPを確保してもよいし、実際にフレームを送信する通信帯域(例えばTransmission bandwidth)等の特定の通信帯域(Band)に対して確保してもよい。
無線通信装置1-1が獲得したTXOPの期間内でフレーム送信の指示を行なう無線通信装置は、必ずしも自装置に接続されている無線通信装置には限定されない。例えば、無線通信装置は、自装置の周辺にいる無線通信装置にReassociationフレームなどのマネージメントフレームや、RTS/CTSフレーム等のコントロールフレームを送信させるために、自装置に接続されていない無線通信装置に、フレームの送信を指示することができる。
さらに、DCFとは異なるデータ伝送方法であるEDCAにおけるTXOPについても説明する。IEEE802.11e規格はEDCAに関わるもので、映像伝送やVoIPなどの各種サービスのためのQoS(Quality of Service)保証の観点からTXOPについて規定されている。サービスは大きくは、VO(VOice)、VI(VIdeo)、BE(BestEffort)、BK(BacK ground)の4つのアクセスカテゴリに分類されている。一般的には、優先度の高い方からVO、VI、BE、BKの順番である。それぞれのアクセスカテゴリでは、CWの最小値CWmin、最大値CWmax、IFSの一種であるAIFS(Arbitration IFS)、送信機会の上限値であるTXOP limitのパラメータがあり、優先度の高低差をつけるように値が設定される。例えば、音声伝送を目的とした優先度の一番高いVOのCWmin,CWmax、AIFSは、他のアクセスカテゴリに比較して相対的に小さい値を設定することで、他のアクセスカテゴリに優先したデータ伝送が可能となる。例えば、映像伝送のため送信データ量が比較的大きくなるVIでは、TXOP limitを大きく設定することで、他のアクセスカテゴリよりも送信機会を長くとることが可能となる。このように、各種サービスに応じたQoS保証を目的として、各アクセスカテゴリの4つのパラメータの値が調整される。
本実施形態において、ステーション装置の信号復調部は、受信した信号に対して、物理レイヤにおいて、復号処理を行い、誤り検出を行うことができる。ここで復号処理は、受信した信号に適用されている誤り訂正符号に対する復号処理を含む。ここで、誤り検出は、受信した信号に予め付与されている誤り検出符号(例えば巡回冗長検査(CRC)符号)を用いた誤り検出や、もともと誤り検出機能を備える誤り訂正符号(例えば低密度パリティ検査符号(LDPC))による誤り検出を含む。物理レイヤにおける復号処理は、符号化ブロック毎に適用されることが可能である。
上位層部は、信号復調部における物理レイヤの復号の結果をMACレイヤに転送する。MACレイヤでは、転送されてきた物理レイヤの復号結果から、MACレイヤの信号を復元する。そして、MACレイヤにおいて、誤り検出を行い、受信フレームの送信元のステーション装置が送信したMACレイヤの信号が正しく復元できたか否かを判断する。
本実施形態に係る無線通信装置は、複数接続(マルチリンク、Multi-Link)を確立するための手続き(マルチリンク確立要求、マルチリンク確立応答)を実施してマルチリンクを確立し、マルチリンクを維持することができる。ここで、マルチリンクを維持するということは、マルチリンクのための所定の設定に基づいてフレームの送受信を行うことができることを意味する。また、マルチリンクを維持しつつ、マルチリンクの設定を変更するための手続き(マルチリンク変更要求、マルチリンク返答応答)を実施することもできる。マルチリンクを解除するための手続き(マルチリンク解除要求、マルチリンク解除応答)を実施してマルチリンクを解除することもできる。
マルチリンクを構成するリンク数は2つ以上の任意の数である。リンクのキャリア周波数は2.4GHz帯、5GHz帯の他に、6GHz帯、60GHz帯などがあり各国の法規制に応じて変化することもある。
図9は、本実施形態のマルチリンクに係る手続きの概要を、無線通信装置の例として無線通信装置1-1と無線通信装置2-1を使用して示す。この場合、マルチリンク確立要求(9-1)を送信する無線通信装置2-1をマルチリンクイニシエータと呼称し、無線通信装置1-1に対して送信している。マルチリンク確立要求には、自装置のマルチリンク能力情報(Capability情報)、確立を要求するマルチリンク動作モード情報、などの制御情報が含まれていてもよい。なお、マルチリンクイニシエータは無線通信装置2-1ではなく、無線通信装置1-1であってもよい。
マルチリンク確立要求を受信した無線通信装置1-1は、マルチリンク確立応答を無線通信装置2-1に送信する。マルチリンク確立応答(9-2)には自装置のマルチリンク能力情報、マルチリンク確立が成功したか否かを示す確立状態情報、マルチリンクの識別に使用されるマルチリンクID、マルチリンク動作モード情報、などの制御情報が含まれてもよい。マルチリンクIDは、TID(Traffic ID)であってもよいし、TIDに基づく値であってもよい。マルチリンク確立応答に含まれるマルチリンク動作モード情報は、無線通信装置2-1から受信したマルチリンク確立要求に含まれるマルチリンク動作モードと無線通信装置1-1が提供可能なマルチリンク動作モードとに基づいて最終的に決定されてもよい。確立状態情報が成功を示す場合、マルチリンク確立応答に含まれるマルチリンク動作モード情報に従ったマルチリンクが確立される。確立状態情報が失敗を示す場合、マルチリンクは確立できない。
マルチリンク能力情報には、自装置が使用可能なチャネル情報(周波数、帯域幅など)、STR可否、フレーム同期可否、マルチリンクアグリゲーション可否、マルチリンクスイッチ可否、マルチリンクTXOP(最大値、最小値など)などの情報が含まれてよい。マルチリンク動作モード情報には、マルチリンクを構成する各リンクのチャネル情報(周波数、帯域幅など)、マルチリンクTXOP limit、マルチリンクアグリゲーション、マルチリンクスイッチ、フレーム同期、フレーム非同期、STR、非STR、応答フレーム方式(応答フレーム接続情報、応答フレームタイミング情報、など)、応答フレームパラメータ(フレーム長しきい値、応答フレーム送信期限時間、など)、などが含まれていてもよい。
マルチリンクTXOPはMLO時のみに有効に作用するパラメータである。マルチリンク能力情報に含まれるパラメータのマルチリンクTXOPは、いくつかのフィールドを設けて、自装置がサポートする最大値(各国の法規制で再現される値など)、推奨値、最小値(マルチリンクイニシエータのサービス保証のために最低限確保が必要となる値など)などの情報が含まれていてもよい。マルチリンク能力情報に含まれるマルチリンクTXOPの値が0、NULLなどの特別な値に設定されている場合は、マルチリンクTXOPは無効とし、従来の手法に従ったTXOPを確保するのみとしてもよい。
マルチリンク確立応答のマルチリンク動作モード情報に含まれるマルチリンクTXOPlimitには、無線通信装置1-1と無線通信装置2-1との間でネゴシエーションして決定した値が格納される。具体的には、無線通信装置2-1のマルチリンク能力情報に含まれるマルチリンクTXOPの値と、無線通信装置1-1のマルチリンク能力情報に含まれるマルチリンクTXOPの双方の条件を満たすように決定される。当該マルチリンクを確立した無線通信装置1-1と無線通信装置2-1は、キャリアセンスなどを経て無線媒体上での送信権を確保した時、マルチリンクTXOP limitを超えない範囲で決定されたマルチリンクTXOP区間は無線媒体を占有することが可能となり、1つもしくは複数のPPDUフレームを送信することが可能となる。
確立されたマルチリンクのマルチリンクTXOPは、無線通信装置1-1と無線通信装置2-1以外は知らない。しかし、前述したように、無線通信装置は、送信する各PPDUフレームのPHYヘッダやMACヘッダに、自装置が無線媒体を利用する期間を示す情報を記載することにより、自装置周辺の無線通信装置に当該期間だけNAVを設定させることができる。
マルチリンクTXOP limitは、IEEE802.11e規格で定められたTXOP limitとは別のパラメータである。前述した、無線通信装置1-1と無線通信装置2-1との間でのネゴシエーション時に、IEEE802.11e規格で定められたTXOP limitも考慮して、マルチリンクTXOP limitを決定してもよい。具体的には、無線通信装置2-1のマルチリンク能力情報に含まれるマルチリンクTXOPの値と、無線通信装置1-1のマルチリンク能力情報に含まれるマルチリンクTXOPと、IEEE802.11e規格に従って設定されたTXOP limitの条件を満たすように決定される。もしくは、マルチリンク能力情報に含まれるマルチリンクTXOPやマルチリンク動作モード情報に含まれるマルチリンクTXOP limitの値を0、NULLなどの特別な値に設定するなどして無効化し、IEEE802.11e規格に従って設定されたTXOP limitを有効とするようにしてもよい。これにより、VO、VI、BK、BEの各アクセスカテゴリに適したマルチリンクTXOP limitを設定することも可能となる。
マルチリンク動作モード情報に含まれる応答フレーム方式は、応答フレーム接続情報(応答フレームリンク情報)と応答フレームタイミング情報の組み合わせを選択できる。応答フレーム接続情報では、少なくとも「自接続(自リンク)」「他接続許可(他リンク許可)」から選択でき、どのリンクで応答フレーム送信するかを決定できる。「自リンク」は、従来技術に従う方式であり、PPDUデータフレームを受信するリンクと同じリンクで応答フレームも送信する。「他リンク許可」選択時は、PPDUデータフレームを受信するリンクと異なるリンクで応答フレームを送信することが許可される。
応答フレーム接続情報から「自リンク」選択時には、応答フレームタイミング情報からは「PPDU単位のみ」しか選択できない、同一リンクでは、同時に送受信出来ないためである。
一方、応答フレーム接続情報から「他リンク許可」選択時には、応答フレームタイミング情報では少なくとも「PPDU単位のみ」「DU単位許可」から選択できる。DU(Data Unit)とはMACヘッダとFCSが付加された無線区間における再送単位であり、DUの例としては、MPDUやA-MSDUがあるが、これらに限られるものではない。「PPDU単位のみ」が選択された場合には、DU単位での応答フレーム送信は禁止され、データを含むPPDUデータフレーム受信完了後に応答フレームを送信する。「DU単位許可」が選択された場合、条件に応じてDU単位での応答フレーム送信が許可されることとなり、前記条件は応答フレームパラメータ(フレーム長しきい値、応答フレーム送信期限時間、など)に含まれていてよい。
例えば、前記条件は応答フレームパラメータに含まれるフレーム長しきい値であり、該当するPPDUデータフレーム長がフレーム長しきい値を上回る場合にはDU単位で応答フレームを返すことが許可される、つまり、該当するPPDU受信中であっても、PPDUを構成する受信済みのDUの受信成功もしくは失敗を示す受信状況情報を含む応答フレームを送信することができる。一方、PPDUデータフレーム長がフレーム長しきい値を下回る場合には、DU単位の応答フレーム送信は禁止され、PPDUデータフレーム受信完了後に応答フレームを返す。なぜなら、PPDU受信完了後に応答フレームを送信したとしても、PPDUデータフレーム長が短いために低遅延性能が確保でき、DU単位での応答フレーム送信が不要と判断できるからである。フレーム長しきい値は一例であり、これに限定されずにその他の特定の条件に基づいて、応答フレームをPPDU単位で送信するか、DU単位で送信するかを決定してもよい。
応答フレームパラメータに含まれる応答フレーム送信期限時間は、PPDUを構成するDUの受信完了後から応答フレームを送信完了するまでの時間、さらにはPPDU受信完了後から応答フレームを送信完了するまでの時間を示す。もしくは、PPDUを構成するDUの受信完了後から応答フレームを送信開始するまでの時間、さらには、PPDU受信完了後から応答フレームを送信開始するまでの時間を示してもよい。
なお、無線通信装置1-1と無線通信装置2-1との間では確立するマルチリンクは一つに限られず、複数のマルチリンクを確立することも可能である。各マルチリンクは前記マルチリンクIDで識別することもできる。
確立されたマルチリンクは、その後、維持される。マルチリンクの動作モードなどを変更する場合は、マルチリンク接続を維持したままで、マルチリンク変更要求(9-3)の手続きを実施することも可能である。マルチリンク変更要求により、マルチリンクTXOP limitの時間長も変更することができる。図9は、マルチリンクイニシエータである無線通信装置2-1から無線通信装置1-1にマルチリンク変更要求し、無線通信装置1-1から無線通信装置2-1にマルチリンク変更応答(9-4)を返す例であるが、逆にマルチリンクイニシエータではない無線通信装置1-1からマルチリンク変更要求をして、無線通信装置2-1がマルチリンク変更応答を返してもよい。マルチリンク変更応答には、変更が受け入れられたか否かを示す変更状態情報が含まれていて、動作モードなどの変更が成功したか失敗したかを知ることができる。
マルチリンク解除要求(9-5)を送信することで解除することが可能である。マルチリンク解除要求に、マルチリンクIDを含めることで解除対象とするマルチリンクを示すことができる。マルチリンク解除要求に、マルチリンクIDを含めない、もしくはマルチリンクIDがNULLなどの特別な値に設定することで、無線通信装置1-1と無線通信装置2-1で確立されている複数のマルチリンクを一度に解除してもよい。図9は、マルチリンクイニシエータである無線通信装置2-1から無線通信装置1-1にマルチリンク解除要求し、無線通信装置1-1から無線通信装置2-1にマルチリンク解除応答(9-6)している例であるが、逆にマルチリンクイニシエータではない無線通信装置1-1からマルチリンク解除要求をしてもよい。マルチリンク解除応答には、解除が受け入れられたか否かを示す解除状態情報が含まれていてもよい。
マルチリンク確立要求は、接続(Association)手続きや再接続(Reassociation)手続きのためのフレームに含めてもよいし、接続(Association)手続きや再接続(Reassociation)手続きの後に必要に応じたタイミングで専用のフレームを使用した手続きであってもよい。マルチリンク解除要求は切断(DisassociationやDeauthentication)手続きに含めてもよいし、切断(DisassociationやDeauthentication)手続きの前の必要に応じたタイミングで別途要求してもよい。
マルチリンク能力情報、マルチリンク動作モード、マルチリンク設定情報などのマルチリンクに関わる制御情報は、無線通信装置1-1が送信するBeaconやProbeResponseなどのマネジメントフレームに含まれていてもよい。マルチリンク能力情報、マルチリンク動作モード、マルチリンク設定情報などのマルチリンクに関わる情報は、MIB(Management Information Base)情報として取り扱われてもよい。
本実施形態に係る通信の一例を図10に示す。本実施形態に係る無線通信装置2-1は、無線通信装置1-1とマルチリンクを確立する。図10は、3つのリンク(リンク1、リンク2、リンク3)で構成されたマルチリンクの例であり、各リンクはキャリア周波数がそれぞれ異なり、例えばリンク1は2.4GHz帯の周波数、リンク2は5GHz帯のW52(5.15~5.25GHz)の周波数、リンク3は5GHz帯のW53(5.25~5.35GHz)の周波数とする。図10は、リンク1、リンク2において時間軸でフレーム同期してPPDU送信する例である。ここで言うフレーム同期は、全リンクで送信する各PPDUの先頭(左端)、もしくは終端(右端)、もしくは先頭および終端とも揃っている状態のことを指す。また、フレーム非同期とは、フレーム同期以外の状態のことを指す。
無線通信装置2-1は、リンク1で、複数のDU(Data Unit)をアグリゲーションしたPPDUデータフレーム10-1を送信する。本例では、PPDUデータフレーム10-1は、10-2~10-5の4つのDUがアグリゲーションされて構成されるものとする。同様に、無線通信装置2-1は、リンク2で、複数のDUをアグリゲーションしたPPDUデータフレーム10-11を送信する。本例では、PPDUデータフレーム10-11は、10-12~10-15の4つのDUがアグリゲーションされて構成されるものとする。各DUはMACヘッダとFCSが付加された無線区間における再送単位であり、DUの例としては、MPDUやA-MSDUがあるが、これらに限られるものではない。
従来技術に基づく場合、無線通信装置1-1はリンク1において、DUがアグリゲーションされたPPDUデータフレーム10-1の受信後に、各DU10-2~10-4の受信成功・失敗を示す受信状況情報を含む応答フレーム10-6をリンク1で送信する。同様に、無線通信装置1-1はリンク2において、DUがアグリゲーションされたPPDUデータフレーム10-11の受信後に、各DU10-12~10-14の受信成功・失敗を示す受信状況情報を含む応答フレーム10-16をリンク2で送信する。
従来技術に基づく場合、無線通信装置1-1がリンク1においてDU10-2の受信完了しても、PPDUデータフレーム10-1の受信完了後の応答フレーム10-6にDU10-2の受信状況情報を含めて送信するため、無線通信装置2-1がDU10-2の再送有無を判断するためにはDU10-3~10-5の受信時間に相当する遅延が生じる。同様に、無線通信装置1-1がリンク2においてDU10-12の受信完了しても、PPDUデータフレーム10-11の受信完了後の応答フレーム10-16にDU10-12の受信状況情報を含めて送信するため、無線通信装置2-1がDU10-12の再送有無を判断するためにはDU10-13~10-15の受信時間に相当する遅延が生じる。
本実施形態では、動作モード情報に含まれる応答フレーム方式の応答フレーム接続情報が「他リンク許可」で応答フレームタイミング情報が「DU単位許可」である場合、リンク1で無線通信装置2-1が送信したPPDUデータフレーム10-1を無線通信装置1-1が受信し、リンク2で無線通信装置2-1が送信したPPDUデータフレーム10-11を無線通信装置1-1が受信し、前記PPDUデータフレーム受信中に、それ以外のリンク(本例においてはリンク3)で無線通信装置1-1が送信した応答フレーム10-20~10-23を無線通信装置2-1が受信する。
前記応答フレームは、前記PPDUデータフレームに含まれる受信完了したDUの受信状況情報を含む。例えば、応答フレーム10-20は、DU10-2やDU10-12の受信状況情報を含んでもよい。または、DU10-2の受信状況情報とDU10-12の受信状況は異なる応答フレームとしてリンク3上で送信されてもよい。応答フレーム10-21は、DU10-2~10-3やDU10-12~DU10-13の受信状況情報を含んでもよい。または、DU10-2、DU10-3、DU10-12、DU10-13各々の受信状況は異なる応答フレームとしてリンク3上で送信されてもよい。応答フレーム10-22は、DU10-2~10-4やDU10-12~DU10-14の受信状況情報を含んでもよい。または、DU10-2、DU10-3、DU10-4、DU10-12、DU10-13、DU10-14各々の受信状況は異なる応答フレームとしてリンク3上で送信されてもよい。応答フレーム10-23は、DU10-2~10-5やDU10-12~DU10-15の受信状況情報を含んでもよい。または、DU10-2、DU10-3、DU10-4、DU10-5、DU10-12、DU10-13、DU10-14、DU10-15各々の受信状況は異なる応答フレームとしてリンク3上で送信されてもよい。
このように、無線通信装置1-1は、STR機能を有効に活用して、無線通信装置2-1からのPPDUデータフレーム受信中に、前記PPDUデータフレームに含まれるDUの受信状況情報を含む応答フレームを送信することができ、無線通信装置2-1が前記PPDUデータフレームに含まれる各DUの再送有無の判断を早めることができる。
なお、前述したように、動作モード情報に含まれる応答フレーム方式で「PPDU単位のみ」が指定されている場合、もしくは「DU単位許可」が指定されているものの、前記PPDUデータフレーム長が応答フレームパラメータに含まれるフレーム長しきい値を超えていない場合、DU単位での応答フレーム送信をすることはできず、PPDUデータフレーム受信完了後に応答フレームを送信する。つまり、この場合、リンク3上では、応答フレーム10-20、10-21、10-22は送信されず、応答フレーム10-23のみが送信される。
図10において、リンク1で無線通信装置1-1送信する応答フレーム10-6は、従来技術に従って、リンク1で無線通信装置1-1が受信したDU10-2~DU10-5の受信状況情報を含む。リンク2で無線通信装置1-1が送信する応答フレーム10-16は、従来技術に従って、リンク2で無線通信装置1-1が受信したDU10-12~DU10-15の受信状況情報を含む。しかし、本実施形態においては、DU10-6とDU10-16に含まれる受信状況情報は、動作モード情報に含まれる応答フレーム方式の応答フレーム接続情報が「他リンク許可」で応答フレームタイミング情報が「DU単位許可」である場合、PPDUデータフレーム送信に使用されていないリンク(本例ではリンク3)で送信している。そのため、応答フレーム10-6、応答フレーム10-16の送信は省いてもよい。
このように、PPDU単位毎に応答フレーム送信する(つまり、PPDUデータフレーム受信完了後に応答フレーム送信する)だけではなく、DU単位毎に応答フレーム送信する(つまり、PPDUデータフレーム受信中に、PPDUデータフレームを構成する受信完了したDUのための応答フレームを送信する)ことが可能となる。
また、従来技術では通常、PPDUデータフレーム受信後にSIFS期間をおいて応答フレームを送信する。本実施形態では、確立されたマルチリンクのために獲得されたマルチリンクTXOPの期間は送信機会を確保しているため、応答フレームの送信タイミングはSIFSに限られず、柔軟に自由度を持って決定することができる。例えば、マルチリンク動作モードの応答フレームパラメータに含まれる応答フレーム送信期限時間に従って応答フレーム送信することもできる。前記応答フレーム送信期限時間は、PPDUデータフレームを構成するDUの受信完了後から応答フレームを送信完了するまでの時間、さらにはPPDUデータフレーム受信完了後から応答フレームを送信完了するまでの時間として適用されてもよい。例えば、図10において、各DU受信完了時点を起点とした時間t1が応答フレーム送信期限時間を示しており、時間t1の範囲内で応答フレーム送信完了している例となる。もしくは、PPDUデータフレームを構成するDUの受信完了後から応答フレームを送信開始するまでの時間、さらには、PPDUデータフレーム受信完了後から応答フレームを送信開始するまでの時間を示してもよい。
無線通信装置2-1がリンク1で送信するPPDUデータフレーム10-1を構成するDUの全てまたは一部は同じデータの繰り返し送信であってもよい。つまりDU10-2~DU10-5の全てで同じデータを繰り返し送信してもよい。無線通信装置1-1が無線通信装置2-1に対して、PPDUデータフレーム送信に使用されていないリンク(本例ではリンク3)で、DU10-2の受信成功を示す受信状況情報を含む応答フレーム10-20で通知した場合、無線通信装置2-1は後続のDU(DU10-3~DU10-5など)の送信を中断、停止してもよい。その場合、前述したように、無線通信装置2-1は短縮したTXOPをPHYヘッダやMACヘッダに設定したPPDUフレームを送信することで、獲得済みであったTXOPを早期に開放してもよい。このように繰り返し送信を途中で停止することにより、無線通信装置1-1および2-1が無線媒体を無駄に消費することはない。無線通信装置2-1は異なるデータを含む次のDUを送信してもよいし、もしくは、当該無線通信機器(無線通信装置1-1、無線通信装置2-1)以外が無線媒体を獲得してフレーム送受信してもよい。
また、無線通信装置2-1がPPDUデータフレームフレーム10-1を構成するDUの一部で同じデータの繰り返し送信をする場合では、例えばDU10-2、DU10-3で同じデータを送信し、それ以外のDU10-4、DU10-5では異なるデータを送信してもよい。
同様に、無線通信装置2-1がリンク2で送信するPPDUデータフレーム10-11を構成するDUの全てまたは一部は同じデータの繰り返し送信であってもよい。このように時間方向に繰り返し送信することは、無線通信環境が悪いなどの理由で再送が発生する環境下においては、再送のためのオーバヘッドを少なくできる。さらには、無線通信装置2-1がデータの送信に使用していないリンク(本例ではリンク3)を使用して、無線通信装置1-1はDU単位で応答フレームを送信する条件が整っている場合には、受信状況情報を含む応答フレーム送信を早めることができる。無線通信装置2-1は異なるデータを含む次のDUの送信を早めることが出来、低遅延でのデータ伝送が可能となる。
さらに、無線通信装置2-1がリンク1とリンク2で同じデータを繰り返し送信してもよい。つまりDU10-2~DU10-5、DU10-12~DU10-15の全てで同じデータを送信してもよい。また、一部のDU、例えばDU10-2、DU10-3、DU10-12、DU10-13で同じデータを送信し、それ以外のDU10-4、DU10-5、DU10-14、DU10-15では異なるデータを送信してもよい。このように時間方向に加えて周波数方向にも繰り返し送信することは、時間方向のみの繰り返し送信する場合よりも、無線通信装置1-1が受信状況情報を含む応答フレーム送信を早めること、無線通信装置2-1が異なるデータを含む次のDUの送信を早めることが出来、低遅延でのデータ伝送が可能となる。
[2.全実施形態共通]
[2.全実施形態共通]
本発明の一態様に係る通信装置は、国や地域からの使用許可を必要としない、いわゆるアンライセンスバンド(unlicensed band)と呼ばれる周波数バンド(周波数スペクトラム)において通信を行うことができるが、使用可能な周波数バンドはこれに限定されない。本発明の一態様に係る通信装置は、例えば、国や地域から特定サービスへの使用許可が与えられているにも関わらず、周波数間の混信を防ぐ等の目的により、実際には使われていないホワイトバンドと呼ばれる周波数バンド(例えば、テレビ放送用として割り当てられたものの、地域によっては使われていない周波数バンド)や、複数の事業者で共用することが見込まれる共用スペクトラム(共用周波数バンド)においても、その効果を発揮することが可能である。
本発明の一態様に係る無線通信装置で動作するプログラムは、本発明の一態様に関わる上記実施形態の機能を実現するように、CPU等を制御するプログラム(コンピュータを機能させるプログラム)である。そして、これら装置で取り扱われる情報は、その処理時に一時的にRAMに蓄積され、その後、各種ROMやHDDに格納され、必要に応じてCPUによって読み出し、修正・書き込みが行なわれる。プログラムを格納する記録媒体としては、半導体媒体(例えば、ROM、不揮発性メモリカード等)、光記録媒体(例えば、DVD、MO、MD、CD、BD等)、磁気記録媒体(例えば、磁気テープ、フレキシブルディスク等)等のいずれであってもよい。また、ロードしたプログラムを実行することにより、上述した実施形態の機能が実現されるだけでなく、そのプログラムの指示に基づき、オペレーティングシステムあるいは他のアプリケーションプログラム等と共同して処理することにより、本発明の機能が実現される場合もある。
また市場に流通させる場合には、可搬型の記録媒体にプログラムを格納して流通させたり、インターネット等のネットワークを介して接続されたサーバコンピュータに転送したりすることができる。この場合、サーバコンピュータの記憶装置も本発明の一態様に含まれる。また、上述した実施形態における通信装置の一部、または全部を典型的には集積回路であるLSIとして実現してもよい。通信装置の各機能ブロックは個別にチップ化してもよいし、一部、または全部を集積してチップ化してもよい。各機能ブロックを集積回路化した場合に、それらを制御する集積回路制御部が付加される。
また、集積回路化の手法はLSIに限らず専用回路、または汎用プロセッサで実現しても良い。また、半導体技術の進歩によりLSIに代替する集積回路化の技術が出現した場合、当該技術による集積回路を用いることも可能である。
なお、本願発明は上述の実施形態に限定されるものではない。本願発明の無線通信装置は、移動局装置への適用に限定されるものではなく、屋内外に設置される据え置き型、または非可動型の電子機器、たとえば、AV機器、キッチン機器、掃除・洗濯機器、空調機器、オフィス機器、自動販売機、その他生活機器などに適用出来ることは言うまでもない。
以上、この発明の実施形態を、図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計等も特許請求の範囲に含まれる。
本発明の一態様は、通信装置、および通信方法に用いて好適である。
1-1、1-2 アクセスポイント装置
2-1~8 ステーション装置
3-1、3-2 管理範囲
10001-1 上位層部
10002-1 自律分散制御部
10002a-1 CCA部
10002b-1 バックオフ部
10002c-1 送信判断部
10003-1 送信部
10003a-1 物理層フレーム生成部
10003b-1 無線送信部
10004-1 受信部
10004a-1 無線受信部
10004b-1 信号復調部
10005-1 アンテナ部
9-1~6 マルチリンク関連の信号
10-1、10-11 PPDUデータフレーム
10-2~10-5、10-12~10-15 DU
10-6、10-16、10-20~10-23 応答フレーム
2-1~8 ステーション装置
3-1、3-2 管理範囲
10001-1 上位層部
10002-1 自律分散制御部
10002a-1 CCA部
10002b-1 バックオフ部
10002c-1 送信判断部
10003-1 送信部
10003a-1 物理層フレーム生成部
10003b-1 無線送信部
10004-1 受信部
10004a-1 無線受信部
10004b-1 信号復調部
10005-1 アンテナ部
9-1~6 マルチリンク関連の信号
10-1、10-11 PPDUデータフレーム
10-2~10-5、10-12~10-15 DU
10-6、10-16、10-20~10-23 応答フレーム
Claims (9)
- 複数接続(マルチリンク)に関わる制御情報を受信し、
複数接続に紐付けられたデータフレームを受信する受信部と
前記複数接続のための応答フレームを送信する送信部、とを備え
前記複数接続は2つ以上の接続から構成され、
前記データフレームは2つ以上のDU(Data Unit)から構成され、
ある接続で、前記データフレームの受信中に、
その他の接続で、前記データフレームに含まれる少なくとも1つの受信完了したDUの応答フレームを送信する、
無線通信装置。 - 前記制御情報は前記応答フレームの送信に関するしきい値を含み、
前記データフレームの長さが、前記しきい値を超えない場合は、
前記その他の接続で、前記データフレームの受信中に前記応答フレームを送信しない、
請求項1記載の無線通信装置。 - 前記制御情報は前記応答フレームの送信に関わる送信期限時間を含み、
前記その他の接続で、前記送信期限時間内に、前記応答フレームを送信する、
請求項1記載の無線通信装置。 - 前記制御情報は前記応答フレームの送信に関わる応答フレーム接続情報を含む、
請求項1記載の無線通信装置。 - 前記応答フレーム接続情報が
前記応答フレームが前記データフレームと異なる接続を使用することを禁止する、
請求項4記載の無線通信装置。 - 前記応答フレーム接続情報が
前記応答フレームが前記データフレームと異なる接続を使用することを許可する場合に、
前記データフレームを受信する接続で、前記応答フレームを送信しない、
請求項4記載の無線通信装置。 - 複数接続(マルチリンク)に紐付けられたデータフレームを送信する送信部と
前記複数接続のための応答フレームを受信する受信部、とを備え
前記複数接続は2つ以上の接続から構成され、
前記データフレームは2つ以上のDU(Data Unit)から構成され、
ある接続で、前記データフレームの送信中に、
その他の接続で、前記データフレームに含まれる少なくとも1つの送信完了したDUの応答フレームを受信する、
無線通信装置。 - 前記データフレームを構成する前記DUは、
同一のデータを含み、繰り返し送信される、
請求項7記載の無線通信装置。 - 前記その他の接続で受信する前記応答フレームが成功を示す場合、
前記ある接続でのデータフレーム送信を停止する、
請求項8記載の無線通信装置。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020113673A JP2023113977A (ja) | 2020-07-01 | 2020-07-01 | 通信装置、通信方法 |
JP2020-113673 | 2020-07-01 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022004664A1 true WO2022004664A1 (ja) | 2022-01-06 |
Family
ID=79316242
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/024371 WO2022004664A1 (ja) | 2020-07-01 | 2021-06-28 | 無線通信装置 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2023113977A (ja) |
WO (1) | WO2022004664A1 (ja) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20180205502A1 (en) * | 2017-01-19 | 2018-07-19 | Qualcomm Incorporated | Multi-link block acknowledgement management |
-
2020
- 2020-07-01 JP JP2020113673A patent/JP2023113977A/ja active Pending
-
2021
- 2021-06-28 WO PCT/JP2021/024371 patent/WO2022004664A1/ja active Application Filing
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20180205502A1 (en) * | 2017-01-19 | 2018-07-19 | Qualcomm Incorporated | Multi-link block acknowledgement management |
Non-Patent Citations (2)
Title |
---|
GUOGANG HUANG (HUAWEI): "Scoreboard Operation for Multi-link Aggregation", IEEE DRAFT; 11-20-0681-00-00BE-SCOREBOARD-OPERATION-FOR-MULTI-LINK-AGGREGATION, 22 April 2020 (2020-04-22), pages 1 - 13, XP068167679, Retrieved from the Internet <URL:https://mentor.ieee.org/802.11/dcn/20/11-20-0681-01-00be-scoreboard-operation-for-multi-link-aggregation.pptx> * |
ROJAN CHITRAKAR (PANASONIC): "Multi-link transmission", IEEE DRAFT; 11-19-1128-00-00BE-MULTI-LINK-TRANSMISSION, 12 July 2019 (2019-07-12), pages 1 - 8, XP068152872, Retrieved from the Internet <URL:https://mentor.ieee.org/802.11/dcn/19/11-19-1128-00-00be-multi-link-transmission.pptx> * |
Also Published As
Publication number | Publication date |
---|---|
JP2023113977A (ja) | 2023-08-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021246250A1 (ja) | 無線通信装置 | |
WO2021246203A1 (ja) | 無線通信装置 | |
WO2016143842A1 (ja) | 端末装置および通信方法 | |
WO2021166924A1 (ja) | ステーション装置、通信方法 | |
WO2022131317A1 (ja) | ステーション装置およびアクセスポイント装置 | |
WO2016140179A1 (ja) | 基地局装置および端末装置 | |
WO2022118741A1 (ja) | 無線通信装置および無線通信方法 | |
WO2022050246A1 (ja) | 無線通信装置および無線通信システム | |
WO2022004664A1 (ja) | 無線通信装置 | |
JP2022045361A (ja) | 基地局装置および通信方法 | |
WO2022004667A1 (ja) | アクセスポイント装置、ステーション装置、及び通信方法 | |
WO2021241452A1 (ja) | 通信装置、通信方法 | |
WO2022004668A1 (ja) | アクセスポイント装置、ステーション装置、及び通信方法 | |
WO2022019265A1 (ja) | ステーション装置、子アクセスポイント装置、及び親アクセスポイント装置 | |
WO2024189759A1 (ja) | アクセスポイント装置、ステーション装置および通信方法 | |
WO2023054153A1 (ja) | アクセスポイント装置、及び通信方法 | |
WO2024202549A1 (ja) | 端末装置、アンビエントIoT端末装置、および通信方法 | |
WO2021166944A1 (ja) | ステーション装置、通信方法 | |
WO2024070605A1 (ja) | 端末装置、基地局装置および通信方法 | |
WO2021166936A1 (ja) | ステーション装置、通信方法 | |
WO2023152843A1 (ja) | 無線通信装置および無線通信方法 | |
WO2021166922A1 (ja) | ステーション装置、通信方法 | |
WO2022102484A1 (ja) | 無線通信装置および無線通信システム | |
US20230254735A1 (en) | Radio communication apparatus and radio communication method | |
US20240040509A1 (en) | Radio communication apparatus, radio terminal apparatus, and radio communication method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21831787 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21831787 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |