WO2022004523A1 - Method for manufacturing coated tool - Google Patents

Method for manufacturing coated tool Download PDF

Info

Publication number
WO2022004523A1
WO2022004523A1 PCT/JP2021/023785 JP2021023785W WO2022004523A1 WO 2022004523 A1 WO2022004523 A1 WO 2022004523A1 JP 2021023785 W JP2021023785 W JP 2021023785W WO 2022004523 A1 WO2022004523 A1 WO 2022004523A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
coating layer
region
hardness
tool
Prior art date
Application number
PCT/JP2021/023785
Other languages
French (fr)
Japanese (ja)
Inventor
健二 熊井
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to CN202180040569.9A priority Critical patent/CN115916454A/en
Publication of WO2022004523A1 publication Critical patent/WO2022004523A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B27/00Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
    • B23B27/14Cutting tools of which the bits or tips or cutting inserts are of special material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P15/00Making specific metal objects by operations not covered by a single other subclass or a group in this subclass
    • B23P15/28Making specific metal objects by operations not covered by a single other subclass or a group in this subclass cutting tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24CABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
    • B24C1/00Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods
    • B24C1/10Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods for compacting surfaces, e.g. shot-peening
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24CABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
    • B24C11/00Selection of abrasive materials or additives for abrasive blasts
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides

Definitions

  • This disclosure relates to a method for manufacturing a covering tool.
  • a covering tool used for a cutting tool or the like has a coating layer on a substrate.
  • the coating layer is formed by a CVD method or a PVD method.
  • Examples of the coating layer formed by the CVD method include a coating layer in which a TiN layer, a TiCN layer, and an Al 2 O 3 layer are sequentially laminated on a substrate.
  • the coating film formed by the CVD method may have a large residual stress. Ceramic particles are projected onto the coating layer to relieve the residual stress.
  • Patent Document 1 Japanese Patent No. 4739235 (Patent Document 1) describes that the coating layer is blasted with ceramic abrasive grains.
  • An example of a method for manufacturing a covering tool which is not limited to the present disclosure, is a method for manufacturing a covering tool having a substrate and a coating layer located on the substrate.
  • HV hardness
  • FIG. 1 It is a perspective view which shows the covering tool of an embodiment which is not limited in this disclosure. It is sectional drawing of the II-II cross section in the covering tool shown in FIG. It is an enlarged view near the covering layer in the covering tool shown in FIG. It is an electron microscope (SEM) photograph of spherical ceramic particles. It is an electron microscope (SEM) photograph of the angular ceramic particles. It is a perspective view which shows the cutting tool of embodiment which is not limited in this disclosure.
  • the covering tool 1 may include any component not shown in each of the referenced figures. Further, the dimensions of the members in each drawing do not faithfully represent the dimensions of the actual constituent members and the dimensional ratio of each member.
  • 1 to 3 show a cutting insert applicable to a cutting tool as an example of the covering tool 1.
  • the covering tool 1 can be applied to, for example, wear-resistant parts such as sliding parts and dies, tools such as excavation tools and blades, and impact-resistant parts.
  • the application of the covering tool 1 is not limited to the illustrated one.
  • the covering tool 1 may have a base 2 and a covering layer 3 located on the base 2.
  • Examples of the material of the substrate 2 include hard alloys, ceramics and metals.
  • the hard alloy comprises, for example, WC (tungsten carbide) and, if desired, at least one selected from the group of carbides, nitrides, and carbon nitrides of Group 4, 5, and 6 metals of the Periodic Table other than WC.
  • Examples thereof include cemented carbide in which a hard phase is bonded with a bonded phase made of an iron group metal such as Co (cobalt) or Ni (nickel).
  • Ti-based cermet and the like may be mentioned.
  • the ceramics include Si 3 N 4 (silicon nitride), Al 2 O 3 (aluminum oxide), diamond and cBN (cubic boron nitride).
  • Examples of the metal may include carbon steel, high speed steel, alloy steel and the like.
  • the material of the substrate 2 is not limited to the example.
  • the coating layer 3 may cover the entire surface 4 of the substrate 2, or may cover only a part of the surface 4. When the coating layer 3 covers only a part of the surface 4 of the substrate 2, it can be said that the coating layer 3 is located at least a part on the substrate 2.
  • the coating layer 3 may be formed by a chemical vapor deposition (CVD) method.
  • the coating layer 3 may be a CVD film.
  • the coating layer 3 is not limited to a specific thickness.
  • the thickness of the covering layer 3 may be set to 1 to 30 ⁇ m.
  • the thickness and structure of the coating layer 3 and the shape of the crystals constituting the coating layer 3 may be measured, for example, by observing a cross section using an electron microscope. Examples of the electron microscope include a scanning electron microscope (SEM) and a transmission electron microscope (TEM).
  • the covering tool 1 has a first surface 5 (upper surface), a second surface 6 (side surface) adjacent to the first surface 5, and a first surface 5 and a first surface, as in the case of the unrestricted example shown in FIGS. 1 and 2.
  • a cutting edge 7 located at least a part of the ridgeline portion of the two surfaces 6 may be provided.
  • the first surface 5 may be a rake surface.
  • the entire surface of the first surface 5 may be a rake surface, or a part thereof may be a rake surface.
  • the region of the first surface 5 along the cutting edge 7 may be a rake surface.
  • the second surface 6 may be an escape surface.
  • the entire surface of the second surface 6 may be a flank, or a part thereof may be a flank.
  • the region of the second surface 6 along the cutting edge 7 may be a flank.
  • the cutting edge 7 may be located in a part of the ridgeline portion, or may be located in the entire ridgeline portion.
  • the cutting edge 7 can be used for cutting a work material.
  • the covering tool 1 may have a square plate shape as in the case of the unrestricted example shown in FIG.
  • the shape of the covering tool 1 is not limited to the square plate shape.
  • the first surface 5 may be triangular, pentagonal, hexagonal or circular.
  • the covering tool 1 may have a pillar shape.
  • the covering tool 1 is not limited to a specific size.
  • the length of one side of the first surface 5 may be set to about 3 to 20 mm.
  • the height from the first surface 5 to the surface (lower surface) located on the opposite side of the first surface 5 may be set to about 5 to 20 mm.
  • the covering layer 3 may have an Al 2 O 3 layer 8 as in the case of the unrestricted example shown in FIG.
  • the Al 2 O 3 layer 8 may be a layer containing Al 2 O 3 particles. Further, the Al 2 O 3 layer 8 may be a layer containing Al 2 O 3 as a main component.
  • the "main component” may mean a component having the largest mass% value as compared with other components. These points may be similarly defined in other layers.
  • the Al 2 O 3 layer 8 may have a first region.
  • the fracture toughness value may be 5 MPa ⁇ m 0.5 or more. This fracture toughness value may be a value when the fracture toughness value of the Al 2 O 3 layer 8 is measured on the surface 9 of the coating layer 3 parallel to the surface 4 of the substrate 2.
  • the above-mentioned "parallel” is not limited to strict parallelism, and may mean that an inclination of about ⁇ 10 ° is allowed.
  • the fracture toughness value shall be measured by indenting the mirrored surface with a nanoindenter and observing cracks in the obtained indentations using a field emission scanning electron microscope (FE-SEM). It may be measured with.
  • FE-SEM field emission scanning electron microscope
  • a diamond paste with an average particle size of 1 to 3 ⁇ m manufactured by Tomei Diamond Co., Ltd. and olive oil manufactured by Sankei Sangyo Co., Ltd. adjusted to a paste concentration of 20 to 30% by mass were used. May be good.
  • an ultra-fine indentation hardness tester ENT-1100b / a manufactured by Elionix Inc. may be used for measurement.
  • the pushing load is 700 (mN)
  • the indenter used for the measurement may be a Berkovich indenter ENT-20-13 manufactured by Toyo Technica Co., Ltd.
  • the fracture toughness value may be measured according to JIS R 1607: 2015. The cracks may be observed using JSM-7100F manufactured by JEOL Ltd.
  • the coating layer 3 is unlikely to be chipped, so that the chipping resistance is excellent.
  • the coating layer 3 is unlikely to be chipped, so that the chipping resistance is excellent.
  • the Al 2 O 3 layer 8 may be all the Al 2 O 3 layer 8 consists of a first region, a portion of the Al 2 O 3 layer 8 may be composed of a first region.
  • the fracture toughness value in the first region is referred to as a first fracture toughness value.
  • the upper limit of the first fracture toughness value may be 10 MPa ⁇ m 0.5.
  • the Al 2 O 3 layer 8 may have a first region on each of the first surface 5 and the second surface 6. In this case, the first surface 5 and the second surface 6 are unlikely to be damaged.
  • the Al 2 O 3 layer 8 may have a second region.
  • the Al 2 O 3 layer 8 in the covering tool 1 need not have high fracture toughness in all regions.
  • the second region may be located in a region that is not involved in cutting or a region that is involved in cutting but is not subject to a large force or impact.
  • the region not involved in cutting may be a region separated from the cutting edge 7 in the directions of the first surface 5 and the second surface 6 by 1 mm or more.
  • the fracture toughness value may be less than 5 MPa ⁇ m 0.5. This fracture toughness value may be a value when the fracture toughness value of the Al 2 O 3 layer 8 is measured on the surface 9 of the coating layer 3 parallel to the surface 4 of the substrate 2.
  • the first region of the present disclosure is obtained, for example, by undergoing a blast treatment step using a spherical ceramic powder having a predetermined hardness.
  • a blast treatment step using a spherical ceramic powder having a predetermined hardness.
  • so-called drive last or wet blast may be used.
  • Wet blasting has the advantage of excellent handling of ceramic powder.
  • the fracture toughness value in the second region is referred to as a second fracture toughness value.
  • the lower limit of the second fracture toughness value may be 0.3 MPa ⁇ m 0.5.
  • the second hardness may be larger than the first hardness. In this case, the wear resistance of the covering tool 1 is high.
  • the first hardness and the second hardness are not limited to specific values.
  • the first hardness may be set to about 10 to 30 GPa.
  • the second hardness may be set to about 15 to 30 GPa.
  • the first hardness and the second hardness may be measured by an indentation test using a nanoindenter in the same manner as the measurement of the fracture toughness value of the Al 2 O 3 layer 8, for example.
  • a nanoindenter for example, an ultra-fine indentation hardness tester ENT-1100b / a manufactured by Elionix Inc. may be used for measurement.
  • the pushing load is 700 (mN), and the indenter used for the measurement may be a Berkovich indenter ENT-20-13 manufactured by Toyo Technica Co., Ltd.
  • the Al 2 O 3 layer 8 may have a first region on the first surface 5 or a second region on the second surface 6. In this case, the wear resistance and the fracture resistance of the covering tool 1 are high.
  • the coating layer 3 may have a Ti-based coating layer 10 between the substrate 2 and the Al 2 O 3 layer 8.
  • the Ti-based coating layer 10 may be a layer containing TiCN particles, TiC particles, or TiN particles. Further, the Ti-based coating layer 10 may be a layer containing TiCN as a main component.
  • the Ti-based coating layer 10 may have a third region.
  • the fracture toughness value may be 10 MPa ⁇ m 0.5 or more. This fracture toughness value may be a value when the fracture toughness value of the Ti-based coating layer 10 is measured on the surface 9 of the coating layer 3 parallel to the surface 4 of the substrate 2.
  • the coating layer 3 is unlikely to be chipped, so that the chipping resistance is excellent.
  • all of the Ti-based coating layer 10 may be composed of the third region, or a part of the Ti-based coating layer 10 may be composed of the third region.
  • the fracture toughness value in the third region is referred to as a third fracture toughness value.
  • the upper limit of the third fracture toughness value may be 20 MPa ⁇ m 0.5.
  • the Ti-based coating layer 10 may have a fourth region.
  • the Ti-based coating layer 10 in the covering tool 1 does not have to have high fracture toughness in all regions.
  • the fourth region may be located in a region that is not involved in cutting or a region that is involved in cutting but is not subject to a large force or impact.
  • the region not involved in cutting may be a region separated from the cutting edge 7 in the directions of the first surface 5 and the second surface 6 by 1 mm or more.
  • the fracture toughness value may be less than 10 MPa ⁇ m 0.5. This fracture toughness value may be a value when the fracture toughness value of the Ti-based coating layer 10 is measured on the surface 9 of the coating layer 3 parallel to the surface 4 of the substrate 2.
  • the third region of the present disclosure is obtained, for example, by undergoing a blast treatment step using a spherical ceramic powder having a predetermined hardness.
  • so-called drive last or wet blast may be used.
  • Wet blasting has the advantage of excellent handling of ceramic powder.
  • the time of the blasting step can be shortened, and the covering tool 1 can be manufactured at low cost.
  • the fracture toughness value in the fourth region is referred to as a fourth fracture toughness value.
  • the lower limit of the fourth fracture toughness value may be 1.5 MPa ⁇ m 0.5.
  • the third hardness may be larger than the fourth hardness. In this case, the wear resistance of the covering tool 1 is high.
  • the third hardness and the fourth hardness are not limited to specific values.
  • the third hardness may be set to about 15 to 30 GPa.
  • the fourth hardness may be set to about 10 to 30 GPa.
  • the third hardness and the fourth hardness may be measured in the same manner as the first hardness and the second hardness.
  • the first region may be located above the third region, and the second region may be located above the fourth region.
  • the chipping resistance is high, the time of the blasting process can be shortened, and the covering tool 1 can be manufactured at low cost.
  • the half width of the (104) plane of the Al 2 O 3 layer 8 may be 0.15 ° or more in X-ray diffraction. In this case, the coating layer 3 is less likely to be chipped, and the chipping resistance is excellent.
  • the half width of the (104) plane of the Al 2 O 3 layer 8 may be measured as follows.
  • the (104) plane may be based on the JCPDS card number 00-010-0173.
  • the XRD measurement may be performed on the mirror surface obtained by mirror polishing the surface of the exposed Al 2 O 3 layer 8.
  • the Al 2 O 3 layer 8 may be performed XRD measurement specular exposed in the Al 2 O 3 layer 8 .
  • the XRD measurement of the Al 2 O 3 layer 8 may be performed by selecting a surface having less unevenness on the surface.
  • the XRD measurement may be performed using a MiniFlex 600 manufactured by Rigaku Corporation.
  • the measurement conditions are that the characteristic X-ray is CuK ⁇ ray, the output is 40 kV, 15 mA, the transmitting side solar slit is 2.5 °, the longitudinal limiting slit is 5.0 mm, the divergent slit is 0.625 °, and the scatter slit is 8.0 mm.
  • the light receiving side solar slit 2.5 °, the light receiving slit 13.0 mm, the step width may be 0.01 °
  • the measurement speed may be 2.0 ° / min
  • the scan angle may be 20 ° to 90 °.
  • the upper limit of the half width of the (104) plane of the Al 2 O 3 layer 8 may be 2.0 °.
  • the coating layer 3 may have a layer other than the Al 2 O 3 layer 8 and the Ti-based coating layer 10.
  • Examples of the other layer may include a TiC layer and a TiN layer.
  • Coating layer 3 is, as one non-limiting example shown in Figure 3, may be configured such that the TiN layer 11, Ti-based coating layer 10, Al 2 O 3 layer 8 in this order on the substrate 2 are laminated, further , The TiN layer 12 or the like may be laminated on the Al 2 O 3 layer 8.
  • the Al 2 O 3 layer 8 may be in contact with the Ti-based coating layer 10.
  • the TiN layer 11 may be referred to as the first TiN layer 11 and the TiN layer 12 may be referred to as the second TiN layer 12 for convenience.
  • each of the first TiN layer 11, the Ti-based coating layer 10, the Al 2 O 3 layer 8 and the second TiN layer 12 is not limited to a specific value.
  • the thickness of the first TiN layer 11 may be set to 0.1 to 3.0 ⁇ m.
  • the thickness of the Ti-based coating layer 10 may be set to 1.0 to 20 ⁇ m.
  • the thickness of the Al 2 O 3 layer 8 may be set to 1.0 to 20 ⁇ m.
  • the thickness of the second TiN layer 12 may be set to 0.1 to 10 ⁇ m.
  • the covering tool 1 may have a through hole 13.
  • the through hole 13 can be used to attach a fixing screw, a clamp member, or the like when holding the covering tool 1 in the holder.
  • the through hole 13 may be formed from the first surface 5 to the surface (lower surface) located on the opposite side of the first surface 5, or may be open in these surfaces. It should be noted that there is no problem even if the through hole 13 is configured to open in a region facing each other on the second surface 6.
  • the substrate 2 may be manufactured first.
  • a metal powder, a carbon powder, or the like may be appropriately added and mixed with an inorganic powder such as a metal carbide, a nitride, a carbonitride, or an oxide that can form a substrate 2 by firing to obtain a mixed powder.
  • this mixed powder may be molded into a predetermined tool shape by a known molding method such as press molding, casting molding, extrusion molding, cold hydrostatic press molding, or the like to obtain a molded product.
  • the obtained molded product may be fired in a vacuum or in a non-oxidizing atmosphere to obtain a substrate 2.
  • the surface 4 of the substrate 2 may be subjected to a polishing process or a honing process.
  • the coating film 3 may be formed on the surface 4 of the obtained substrate 2 by a CVD method. Further, the coated layer 3 formed on the film may be subjected to a wet blast treatment.
  • the covering layer 3 and the covering tool 1 in a state before the wet blast treatment is referred to as an untreated coating layer and an untreated covering tool.
  • the untreated coating layer subjected to the wet blast treatment is referred to as a coating layer 3, and the untreated coating tool is referred to as a coating tool 1.
  • the step before the wet blast treatment may be said to be the first step of preparing an untreated coating tool having an untreated coating layer on the substrate 2.
  • an untreated coating layer for example, it may be formed the first 1TiN layer 11, Ti-based coating layer 10, Al 2 O 3 layer 8 in this order on the substrate 2. Further, a second TiN layer 12 or the like may be formed on the Al 2 O 3 layer 8.
  • the first TiN layer 11 may be formed as follows. First, as the reaction gas composition, a mixed gas consisting of titanium tetrachloride (TiCl 4 ) gas in an amount of 0.1 to 10% by volume, nitrogen (N 2 ) gas in an amount of 10 to 60% by volume, and the rest being hydrogen (H 2 ) gas is used. You may adjust. Then, this mixed gas may be introduced into the chamber, the temperature may be set to 800 to 1010 ° C., the pressure may be set to 10 to 85 kPa, and the first TiN layer 11 may be formed into a film. This film forming condition is also applicable to the second TiN layer 12.
  • a mixed gas consisting of titanium tetrachloride (TiCl 4 ) gas in an amount of 0.1 to 10% by volume, nitrogen (N 2 ) gas in an amount of 10 to 60% by volume, and the rest being hydrogen (H 2 ) gas is used. You may adjust. Then, this mixed gas may be introduced into the chamber, the temperature may be set to 800
  • the Ti-based coating layer 10 may be formed as follows. First, as the reaction gas composition, titanium tetrachloride (TiCl 4 ) gas is 0.1 to 10% by volume, acetonitrile (CH 3 CN) gas is 0.1 to 3.0% by volume, and the rest is hydrogen (H 2 ) gas. The mixed gas composed of may be adjusted. Then, this mixed gas may be introduced into the chamber, the temperature may be set to 800 to 1050 ° C., the pressure may be set to 5 to 30 kPa, and the Ti-based coating layer 10 may be formed.
  • TiCl 4 titanium tetrachloride
  • CH 3 CN acetonitrile
  • H 2 hydrogen
  • the Al 2 O 3 layer 8 may be formed as follows. First, as the reaction gas composition, aluminum trichloride (AlCl 3 ) gas is 0.5 to 5% by volume, hydrogen chloride (HCl) gas is 0.5 to 3.5% by volume, and carbon dioxide (CO 2 ) gas is 0. A mixed gas consisting of 5 to 5% by volume, 0.5% by volume or less of hydrogen sulfide (H 2 S) gas, and the balance of hydrogen (H 2 ) gas may be adjusted. Then, this mixed gas may be introduced into the chamber, the temperature may be set to 930 to 1010 ° C., the pressure may be set to 5 to 10 kPa, and the Al 2 O 3 layer 8 may be formed.
  • AlCl 3 aluminum trichloride
  • HCl hydrogen chloride
  • CO 2 carbon dioxide
  • a step of applying a wet blast treatment to the formed untreated coating layer may be performed.
  • This step may be a second step of colliding spherical ceramic particles having a hardness (HV) of 1000 or more with the untreated coating layer.
  • HV (Vickers hardness) may be measured in accordance with JIS Z 2244: 2009.
  • the upper limit of the hardness (HV) of the spherical ceramic particles may be 2500.
  • the hardness of media such as spherical ceramic particles may be measured by hardness measurement by a load-unloading test.
  • a cured product prepared by mixing the media and the embedded resin and then curing the mixture may be used.
  • the surface of the cured product may be polished to measure the hardness of the medium exposed on the polished surface.
  • the embedded resin for example, Technovit 4004 manufactured by Kulzer may be used.
  • the media to be measured and the embedded resin may be mixed at a ratio of 3: 1 (mass ratio) to form a cured product, and the surface may be polished. After polishing, the hardness may be measured on the exposed portion of the media of the cured product. The measurement may be performed using a dynamic ultrafine hardness tester DUH-211S.
  • the measuring indenter has a ridge angle of 115 °, a triangular cone indenter (made of diamond), a test force of 49 (mN), a load speed of 2.665 (mN / sec), and a holding time of 5 seconds. You may.
  • the number of measurements may be 10 points, and the average value thereof may be measured.
  • the second step may be performed on the entire surface of the untreated coating layer, or may be performed on a part of the surface.
  • the Al 2 O 3 layer 8 tends to have a first region
  • the Ti-based coating layer 10 tends to have a third region.
  • the second step was not part of the untreated coating layer is liable to the Al 2 O 3 layer 8 is to have a second region, also, Ti-based coating layer 10 is liable to have a fourth region.
  • a blast liquid containing spherical ceramic particles in the liquid may be projected onto the untreated coating layer.
  • the blast liquid is also called a slurry.
  • the liquid for example, water may be used.
  • the spherical ceramic particles may mean that they are not obtained by crushing a raw material. In order to distinguish it from spherical ceramic particles, the ceramic particles obtained by crushing the raw material may be referred to as angular ceramic particles.
  • FIG. 4 shows a photograph of spherical ceramic particles.
  • FIG. 5 shows a photograph of the angular ceramic particles.
  • the spherical ceramic particles may have a specific gravity of 6 g / cm 3 or less. Spherical ceramic particles having a specific gravity of 6 g / cm 3 or less are suitable for wet blasting because they have a relatively small specific gravity and are easily dispersed in water. For example, the specific gravity of Al 2 O 3 particles is about 4 g / cm 3 .
  • the angular ceramic particles may be amorphous and have angles.
  • the angular ceramic particles may be produced by crushing raw material particles or the like, or may have crushed surfaces and corners formed in the pulverization step. It is the angular ceramic particles that are used in the conventional wet blasting process.
  • the spherical ceramic particles may have a shape close to a true sphere without any corners.
  • the shape of the spherical ceramic particles does not have to be a true sphere, and some deformation from the sphere is acceptable as long as there are no crushed surfaces or sharp angles.
  • Spherical metal particles may be mentioned as similar in shape to the spherical ceramic particles.
  • Spherical metal particles are similar in shape to spherical ceramic particles, but have a heavier specific gravity and are softer than spherical ceramic particles.
  • the specific gravity of the spherical metal particles is 7 to 8 g / cm 3 .
  • the hardness (HV) of the spherical metal particles is less than 1000. Although it is presumed that this is due to such characteristics, when spherical metal particles are used, it is difficult to obtain a covering tool 1 having a first region or a third region. Further, due to the heavy specific gravity, the spherical metal particles are difficult to disperse in water and are not suitable for wet blasting.
  • spherical ceramic particles of various sizes can be used.
  • the average particle size of the spherical ceramic particles may be 200 ⁇ m or less.
  • the average particle size of the spherical ceramic particles may be 30 ⁇ m or more and 100 ⁇ m or less. When spherical ceramic particles in this range are used, various untreated coating layers can be blasted with good reproducibility.
  • the average particle size of the spherical ceramic particles may be measured by a laser diffraction method.
  • the blast solution is dried, the spherical ceramic particles are extracted by the SEM photograph, and the circle of 100 individual spherical ceramic particles obtained from the photograph. It may be an average value of equivalent diameters.
  • the average circularity of the spherical ceramic particles may be 0.82 or more.
  • the average circularity of the spherical ceramic particles may be 0.88 or more.
  • the chipping resistance of the coated tool to be manufactured is high.
  • the upper limit of the average circularity may be 0.98.
  • the average circularity may be measured as follows. First, after taking a particle image with SEM or TEM, the projected area (S) and peripheral length (L) of the particles are measured using image analysis software (for example, "Mac-View Version.4" manufactured by Mountech). It may be measured. Next, the obtained measured value may be applied to the formula: 4 ⁇ S / L 2 to calculate the circularity. The circularity may be calculated for 100 arbitrarily selected particles, and the average value thereof may be used as the average circularity.
  • image analysis software for example, "Mac-View Version.4" manufactured by Mountech
  • Examples of the material of the spherical ceramic particles include Al 2 O 3 , ZrO 2 and SiC. When spherical ceramic particles made of a material having a large specific gravity are used, the average particle size may be reduced. When spherical ceramic particles made of a material having a small specific gravity are used, the average particle size may be increased.
  • a blast liquid may be prepared by containing 10 to 40% by volume of spherical ceramic particles with respect to water.
  • the projection conditions of the blast liquid may be a projection pressure of 0.15 to 0.30 MPa and a projection time of 0.4 to 10.0 seconds. If the projection time of the blast liquid exceeds 10.0 seconds, the untreated coating layer tends to peel off, which is not suitable. When the blast liquid is projected onto the untreated coating layer, at least a part of the Al 2 O 3 layer 8 may remain.
  • the covering tool 1 can be manufactured by the above-mentioned process.
  • the manufactured covering tool 1 has excellent fracture resistance.
  • the blast liquid may partially contain angular ceramic particles. In such a case, 50% by volume or more of the ceramic particles may be spherical ceramic particles.
  • the blast liquid containing the angular ceramic particles Before projecting the blast liquid containing the spherical ceramic particles, the blast liquid containing the angular ceramic particles may be projected. Further, the blast liquid containing the angular ceramic particles may be projected after the blast liquid containing the spherical ceramic particles is projected.
  • the fracture toughness value of the coating layer 3 increased by projecting the blast solution containing the spherical ceramic particles is unlikely to decrease even when the blast solution containing the angular ceramic particles is projected.
  • a commercially available wet blasting apparatus may be used.
  • the untreated coating layer may have tensile stress.
  • the tensile stress is not limited to a specific value.
  • the absolute value of the tensile stress may be set to about 50 to 500 MPa.
  • the untreated coating layer may have compressive stress.
  • the compressive stress is not limited to a specific value.
  • the absolute value of the compressive stress may be set to about 50 to 2000 MPa.
  • the tensile stress and the compressive stress may be measured by the sin2 ⁇ method using an X-ray stress measuring device (XRD).
  • XRD X-ray stress measuring device
  • the Al 2 O 3 layer 8 may be measured by selecting the (116) plane of the ⁇ -type Al 2 O 3.
  • the Ti-based coating layer 10 may be measured by selecting the (422) plane of TiCN.
  • the area including the cutting edge 7 may be polished. As a result, the region including the cutting edge 7 becomes smooth. As a result, welding of the work material is suppressed, and the cutting edge 7 has high fracture resistance.
  • the obtained covering tool 1 can be applied to a cutting tool.
  • the cutting tool 101 of the embodiment without limitation of the present disclosure will be described in detail with reference to FIG. 6, taking as an example the case where the covering tool 1 is provided.
  • the cutting tool 101 includes a holder 102 having a length extending from the first end 102a to the second end 102b and having a pocket 103 located on the side of the first end 102a, as in an unrestricted example shown in FIG. It may have a covering tool 1 located in the pocket 103.
  • the covering tool 1 since the covering tool 1 has excellent fracture resistance, stable cutting can be performed for a long period of time.
  • the pocket 103 may be a portion where the covering tool 1 is mounted.
  • the pocket 103 may be open on the outer peripheral surface of the holder 102 and the end surface on the side of the first end 102a.
  • the covering tool 1 may be mounted in the pocket 103 so that the cutting edge 7 protrudes outward from the holder 102. Further, the covering tool 1 may be attached to the pocket 103 by the fixing screw 104. That is, the covering tool 1 is formed by inserting the fixing screw 104 into the through hole 13 of the covering tool 1, inserting the tip of the fixing screw 104 into the screw hole formed in the pocket 103, and screwing the screw portions together. It may be attached to the pocket 103. A sheet may be sandwiched between the covering tool 1 and the pocket 103.
  • Examples of the material of the holder 102 include steel and cast iron. When the material of the holder 102 is steel, the toughness of the holder 102 is high.
  • a cutting tool 101 used for so-called turning is illustrated.
  • the turning process include inner diameter processing, outer diameter processing, grooving processing, and the like.
  • the application of the cutting tool 101 is not limited to turning. For example, there is no problem even if the cutting tool 101 is used for milling.
  • a substrate was prepared. Specifically, with respect to the average particle diameter 1.2 ⁇ m of WC powder, average particle metal Co powder of diameter 1.5 [mu] m 6 wt%, 2.0 wt% of TiC (titanium carbide) powder, Cr 3 C 2 (Chromium carbide) powder was added at a ratio of 0.2% by mass and mixed to prepare a mixed raw material powder. Next, the mixed raw material powder was press-molded and molded into a cutting tool shape (CNMG120408) to obtain a molded body. The obtained molded product was subjected to a binder removal treatment and fired at 1400 ° C. for 1 hour in a vacuum of 0.5 to 100 Pa to prepare a substrate made of cemented carbide. The rake face (first surface) of the produced substrate was brushed to perform cutting edge treatment (R honing).
  • an untreated coating layer was formed on this substrate. Specifically, a first TiN layer, a Ti-based coating layer, an Al 2 O 3 layer, and a second TiN layer were formed on the substrate in this order from the side of the substrate.
  • the film formation conditions and thickness are as follows. The thickness is a value obtained by cross-sectional measurement by SEM.
  • Ti-based coating layer TiCl 4 gas: 7.0% by volume CH 3 CN gas: 0.5% by volume H 2 gas: remaining temperature: 850 ° C Pressure: 10 kPa Thickness: 7.0 ⁇ m
  • AlCl 3 gas 4.2% by volume HCl gas: 0.9% by volume CO 2 gas: 4.5% by volume H 2 S gas: 0.3% by volume H 2 gas: remaining temperature: 950 ° C Pressure: 9kPa Thickness: 8.0 ⁇ m
  • spherical Al 2 O 3 particles having an average particle size shown in Table 1, spherical particles made of zircon (ZrSiO 4 ), and angular Al 2 O 3 particles are contained in water.
  • the blast solution was adjusted in this way.
  • the hardness (HV) of the media is a value measured as follows.
  • the hardness of the media used in the blasting process was measured by measuring the hardness by the load-unloading test.
  • the media to be measured was fixed with an embedded resin (Technovit4004 manufactured by Kulzer), and the surface was polished.
  • 3 g of Al 2 O 3 powder is added to 1 g of a resin obtained by mixing a liquid curing resin and a curing agent at a ratio of 3: 1 (mass ratio), and after mixing, the temperature is 1 hour at room temperature (23 ° C). It was cured to some extent to obtain a cured product. Then, the procedure of polishing this cured product was used. After polishing, the hardness was measured on the exposed portion of the cured media.
  • the measurement was performed using a dynamic ultrafine hardness tester DUH-211S. Measured under the conditions that the measuring indenter has a ridge angle of 115 °, a triangular cone indenter (made of diamond), a test force of 49 (mN), a load speed of 2.665 (mN / sec), and a holding time of 5 seconds. did. The number of measurements was 10 points, and the average value was measured.
  • the adjusted blast liquid was projected onto the untreated coating layer at the time shown in Table 1 at a pressure (projection pressure) of compressed air of 0.2 MPa to obtain a coating tool.
  • the blast liquid was projected onto the regions involved in cutting on the first and second surfaces.
  • the region involved in cutting was set to a region of less than 1 mm in the direction of the first surface and the second surface from the cutting edge.
  • the fracture toughness value was measured on the mirror surface obtained by mirror polishing the surface of the exposed Al 2 O 3 layer. If the Al 2 O 3 layer is not exposed, continues to mirror polishing process until the Al 2 O 3 layer is exposed, it was measured fracture toughness value specular exposed in the Al 2 O 3 layer.
  • the fracture toughness value of the Ti-based coating layer was also measured on the mirror surface of the exposed Ti-based coating layer after mirror polishing was performed from the surface of the coating layer until the Ti-based coating layer was exposed.
  • a diamond paste having an average particle size of 1.4 ⁇ m manufactured by Tomei Diamond Co., Ltd. and olive oil manufactured by Sankei Sangyo Co., Ltd. adjusted to have a paste concentration of 25% by mass were used. .. Further, mirror polishing was performed so that the mirror surface was parallel to the surface of the substrate.
  • the half width of the (104) surface of the region involved in the cutting of the wet blasted surface was measured.
  • the (104) plane of the Al 2 O 3 layer was based on the JCPDS card number 00-010-0173.
  • XRD measurement was performed on the mirror surface obtained by mirror polishing the surface of the exposed Al 2 O 3 layer.
  • the Al 2 O 3 layer was not exposed, the mirror polishing process was continued until the Al 2 O 3 layer was exposed, and XRD measurement was performed on the exposed mirror surface of the Al 2 O 3 layer.
  • the XRD measurement of the Al 2 O 3 layer was performed by selecting a surface having less unevenness on the surface.
  • the XRD measurement was performed using a MiniFlex 600 manufactured by Rigaku Co., Ltd.
  • the measurement conditions are that the characteristic X-ray is CuK ⁇ ray, the output is 40 kV, 15 mA, the transmitting side solar slit is 2.5 °, the longitudinal limiting slit is 5.0 mm, the divergent slit is 0.625 °, and the scatter slit is 8.0 mm.
  • the solar slit on the light receiving side was 2.5 °
  • the light receiving slit was 13.0 mm
  • the step width was 0.01 °
  • the measurement speed was 2.0 ° / min
  • the scan angle was 20 ° to 90 °.
  • Sample No. No. 1 did not perform the treatment of projecting the blast liquid onto the untreated coating layer.
  • sample No. Reference numeral 1 denotes a coating tool in which a coating layer is simply formed on a substrate.
  • Sample No. The fracture toughness value of the Al 2 O 3 layer of No. 1 was 0.8 MPa ⁇ m 0.5 on both the first and second surfaces.
  • Sample No. Reference numeral 2 is a projection of the blast liquid containing the angular ceramic particles onto the first surface and the second surface.
  • Sample No. In No. 2 the fracture toughness value of the Al 2 O 3 layer was the untreated sample No. It was slightly higher than 1, and was 1.5 MPa ⁇ m 0.5 on both the first and second surfaces.
  • Sample No. Reference numerals 3 and 4 are projections of a blast liquid containing spherical zircon (ZrSiO 4 ) particles onto the first and second surfaces.
  • Sample No. In 3 and 4 the fracture toughness value of the Al 2 O 3 layer was the untreated sample No. Slightly larger than 1, the higher was 1.5 MPa ⁇ m 0.5 or 2.0 MPa ⁇ m 0.5 in both the first and second surfaces.
  • the Al 2 O 3 layer of 5-11, fracture toughness value has an area of 5.0 MPa ⁇ m 0.5 or more or 6.5 MPa ⁇ m 0.5, and excellent chipping resistance.
  • the average circularity was measured for the angular Al 2 O 3 particles in 2. Specifically, first, after taking a particle image with SEM, the projected area (S) and the peripheral length (L) of the particles are used using image analysis software (“Mac-View Version.4” manufactured by Mountech). Was measured. Next, the obtained measured value was applied to the formula: 4 ⁇ S / L 2 to calculate the circularity. The circularity was calculated for 100 arbitrarily selected particles, and the average value was taken as the average circularity. The measurement results of the average circularity are as follows.

Abstract

A method for manufacturing a coated tool according to the present disclosure, which is not a limiting example thereof, is a method for manufacturing a coated tool having a base and a coating layer located on the base. The method for manufacturing a coated tool includes a first step for preparing an untreated coated tool having an untreated coating layer on the base, and a second step for causing spherical ceramic particles having a hardness (HV) of 1,000 or more to collide with the untreated coating layer.

Description

被覆工具の製造方法Manufacturing method of covering tool 関連出願の相互参照Cross-reference of related applications
 本出願は、2020年6月30日に出願された日本国特許出願2020-112957号の優先権を主張するものであり、この先の出願の開示全体を、ここに参照のために取り込む。 This application claims the priority of Japanese Patent Application No. 2020-112957 filed on June 30, 2020, and the entire disclosure of future applications is incorporated herein by reference.
 本開示は、被覆工具の製造方法に関する。 This disclosure relates to a method for manufacturing a covering tool.
 切削工具などに用いられる被覆工具は、基体の上に被覆層を有している。被覆層は、CVD法やPVD法によって成膜される。CVD法によって成膜された被覆層の例として、基体の上にTiN層やTiCN層、Al23層を順に積層した被覆層が挙げられる。 A covering tool used for a cutting tool or the like has a coating layer on a substrate. The coating layer is formed by a CVD method or a PVD method. Examples of the coating layer formed by the CVD method include a coating layer in which a TiN layer, a TiCN layer, and an Al 2 O 3 layer are sequentially laminated on a substrate.
 CVD法で成膜した被覆層は、大きな残留応力を有する場合がある。その残留応力を緩和するためにセラミック粒子を被覆層に投射することが行われている。 The coating film formed by the CVD method may have a large residual stress. Ceramic particles are projected onto the coating layer to relieve the residual stress.
 例えば、特許第4739235号公報(特許文献1)には、被覆層に対して、セラミック砥粒によるブラスト処理を施すことが記載されている。 For example, Japanese Patent No. 4739235 (Patent Document 1) describes that the coating layer is blasted with ceramic abrasive grains.
 本開示の限定されない一例の被覆工具の製造方法は、基体と、該基体の上に位置する被覆層と、を有する被覆工具の製造方法である。前記基体の上に未処理被覆層を有する、未処理被覆工具を準備する第1工程と、前記未処理被覆層に対して、硬度(HV)が1000以上の球状セラミック粒子を衝突させる第2工程と、を有する。 An example of a method for manufacturing a covering tool, which is not limited to the present disclosure, is a method for manufacturing a covering tool having a substrate and a coating layer located on the substrate. The first step of preparing an untreated coating tool having an untreated coating layer on the substrate, and the second step of colliding spherical ceramic particles having a hardness (HV) of 1000 or more with the untreated coating layer. And have.
本開示の限定されない実施形態の被覆工具を示す斜視図である。It is a perspective view which shows the covering tool of an embodiment which is not limited in this disclosure. 図1に示す被覆工具におけるII-II断面の断面図である。It is sectional drawing of the II-II cross section in the covering tool shown in FIG. 図2に示す被覆工具における被覆層付近の拡大図である。It is an enlarged view near the covering layer in the covering tool shown in FIG. 球状セラミック粒子の電子顕微鏡(SEM)写真である。It is an electron microscope (SEM) photograph of spherical ceramic particles. 角状セラミック粒子の電子顕微鏡(SEM)写真である。It is an electron microscope (SEM) photograph of the angular ceramic particles. 本開示の限定されない実施形態の切削工具を示す斜視図である。It is a perspective view which shows the cutting tool of embodiment which is not limited in this disclosure.
 <被覆工具の製造方法>
 以下、本開示の限定されない実施形態の被覆工具1の製造方法について、図面を用いて詳細に説明する。ただし、以下で参照する各図では、説明の便宜上、実施形態を説明する上で必要な主要部材のみが簡略化して示されている。したがって、被覆工具1は、参照する各図に示されていない任意の構成部材を備え得る。また、各図中の部材の寸法は、実際の構成部材の寸法および各部材の寸法比率などを忠実に表したものではない。
<Manufacturing method of covering tools>
Hereinafter, a method for manufacturing the covering tool 1 according to an embodiment not limited to the present disclosure will be described in detail with reference to the drawings. However, in each of the figures referred to below, for convenience of explanation, only the main members necessary for explaining the embodiment are shown in a simplified manner. Therefore, the covering tool 1 may include any component not shown in each of the referenced figures. Further, the dimensions of the members in each drawing do not faithfully represent the dimensions of the actual constituent members and the dimensional ratio of each member.
 本開示の限定されない実施形態の被覆工具1の製造方法によれば、耐欠損性に優れる被覆工具1が得られ易い。図1~図3においては、被覆工具1の一例として、切削工具に適用可能な切削インサートを示している。被覆工具1は、切削工具の他、例えば、摺動部品や金型などの耐摩部品、掘削工具、刃物などの工具、および、耐衝撃部品などにも適用できる。なお、被覆工具1の用途は、例示したものに限定されない。 According to the method for manufacturing the covering tool 1 of the embodiment without limitation of the present disclosure, it is easy to obtain the covering tool 1 having excellent fracture resistance. 1 to 3 show a cutting insert applicable to a cutting tool as an example of the covering tool 1. In addition to cutting tools, the covering tool 1 can be applied to, for example, wear-resistant parts such as sliding parts and dies, tools such as excavation tools and blades, and impact-resistant parts. The application of the covering tool 1 is not limited to the illustrated one.
 被覆工具1は、基体2と、基体2の上に位置する被覆層3とを有していてもよい。 The covering tool 1 may have a base 2 and a covering layer 3 located on the base 2.
 基体2の材質としては、例えば、硬質合金、セラミックスおよび金属などが挙げられ得る。硬質合金としては、例えば、WC(炭化タングステン)と、所望により、WC以外の周期表第4、5、6族金属の炭化物、窒化物、炭窒化物の群から選ばれる少なくとも1種とからなる硬質相を、Co(コバルト)やNi(ニッケル)などの鉄属金属からなる結合相で結合させた超硬合金などが挙げられ得る。また、他の硬質合金として、Ti基サーメットなども挙げられ得る。セラミックスとしては、例えば、Si34(窒化珪素)、Al23(酸化アルミニウム)、ダイヤモンドおよびcBN(立方晶窒化ホウ素)などが挙げられ得る。金属としては、例えば、炭素鋼、高速度鋼および合金鋼などが挙げられ得る。なお、基体2の材質は、例示したものに限定されない。 Examples of the material of the substrate 2 include hard alloys, ceramics and metals. The hard alloy comprises, for example, WC (tungsten carbide) and, if desired, at least one selected from the group of carbides, nitrides, and carbon nitrides of Group 4, 5, and 6 metals of the Periodic Table other than WC. Examples thereof include cemented carbide in which a hard phase is bonded with a bonded phase made of an iron group metal such as Co (cobalt) or Ni (nickel). Further, as another hard alloy, Ti-based cermet and the like may be mentioned. Examples of the ceramics include Si 3 N 4 (silicon nitride), Al 2 O 3 (aluminum oxide), diamond and cBN (cubic boron nitride). Examples of the metal may include carbon steel, high speed steel, alloy steel and the like. The material of the substrate 2 is not limited to the example.
 被覆層3は、基体2の表面4の全面を覆ってもよく、また、一部のみを覆ってもよい。被覆層3が基体2の表面4の一部のみを被覆しているときは、被覆層3は、基体2の上の少なくとも一部に位置する、といってもよい。 The coating layer 3 may cover the entire surface 4 of the substrate 2, or may cover only a part of the surface 4. When the coating layer 3 covers only a part of the surface 4 of the substrate 2, it can be said that the coating layer 3 is located at least a part on the substrate 2.
 被覆層3は、化学蒸着(CVD)法で成膜されていてもよい。言い換えれば、被覆層3は、CVD膜であってもよい。 The coating layer 3 may be formed by a chemical vapor deposition (CVD) method. In other words, the coating layer 3 may be a CVD film.
 被覆層3は、特定の厚みに限定されない。例えば、被覆層3の厚みは、1~30μmに設定されてもよい。なお、被覆層3の厚み、構造、被覆層3を構成する結晶の形状などの測定は、例えば、電子顕微鏡を用いた断面観察で行ってもよい。電子顕微鏡としては、例えば、走査型電子顕微鏡(SEM)、および、透過電子顕微鏡(TEM)などが挙げられ得る。 The coating layer 3 is not limited to a specific thickness. For example, the thickness of the covering layer 3 may be set to 1 to 30 μm. The thickness and structure of the coating layer 3 and the shape of the crystals constituting the coating layer 3 may be measured, for example, by observing a cross section using an electron microscope. Examples of the electron microscope include a scanning electron microscope (SEM) and a transmission electron microscope (TEM).
 被覆工具1は、図1および図2に示す限定されない一例のように、第1面5(上面)と、第1面5と隣り合う第2面6(側面)と、第1面5と第2面6の稜線部の少なくとも一部に位置する切刃7とを備えていてもよい。 The covering tool 1 has a first surface 5 (upper surface), a second surface 6 (side surface) adjacent to the first surface 5, and a first surface 5 and a first surface, as in the case of the unrestricted example shown in FIGS. 1 and 2. A cutting edge 7 located at least a part of the ridgeline portion of the two surfaces 6 may be provided.
 第1面5は、すくい面であってもよい。第1面5は、その全面がすくい面であってもよく、また、その一部がすくい面であってもよい。例えば、第1面5のうち切刃7に沿った領域が、すくい面であってもよい。 The first surface 5 may be a rake surface. The entire surface of the first surface 5 may be a rake surface, or a part thereof may be a rake surface. For example, the region of the first surface 5 along the cutting edge 7 may be a rake surface.
 第2面6は、逃げ面であってもよい。第2面6は、その全面が逃げ面であってもよく、また、その一部が逃げ面であってもよい。例えば、第2面6のうち切刃7に沿った領域が、逃げ面であってもよい。 The second surface 6 may be an escape surface. The entire surface of the second surface 6 may be a flank, or a part thereof may be a flank. For example, the region of the second surface 6 along the cutting edge 7 may be a flank.
 切刃7は、稜線部の一部に位置していてもよく、また、稜線部の全部に位置していてもよい。切刃7は、被削材の切削に用いることが可能である。 The cutting edge 7 may be located in a part of the ridgeline portion, or may be located in the entire ridgeline portion. The cutting edge 7 can be used for cutting a work material.
 被覆工具1は、図1に示す限定されない一例のように、四角板形状であってもよい。なお、被覆工具1の形状は、四角板形状に限定されない。例えば、第1面5は、三角形、五角形、六角形または円形であってもよい。また、被覆工具1は、柱形状であってもよい。 The covering tool 1 may have a square plate shape as in the case of the unrestricted example shown in FIG. The shape of the covering tool 1 is not limited to the square plate shape. For example, the first surface 5 may be triangular, pentagonal, hexagonal or circular. Further, the covering tool 1 may have a pillar shape.
 被覆工具1は、特定の大きさに限定されない。例えば、第1面5の一辺の長さは、3~20mm程度に設定されてもよい。また、第1面5から第1面5の反対側に位置する面(下面)までの高さは、5~20mm程度に設定されてもよい。 The covering tool 1 is not limited to a specific size. For example, the length of one side of the first surface 5 may be set to about 3 to 20 mm. Further, the height from the first surface 5 to the surface (lower surface) located on the opposite side of the first surface 5 may be set to about 5 to 20 mm.
 ここで、被覆層3は、図3に示す限定されない一例のように、Al23層8を有していてもよい。 Here, the covering layer 3 may have an Al 2 O 3 layer 8 as in the case of the unrestricted example shown in FIG.
 Al23層8は、Al23粒子を含有する層であってもよい。また、Al23層8は、Al23を主成分として含有する層であってもよい。「主成分」とは、他の成分と比較して質量%の値が最も大きい成分のことを意味してもよい。これらの点は、他の層においても同様に定義してもよい。 The Al 2 O 3 layer 8 may be a layer containing Al 2 O 3 particles. Further, the Al 2 O 3 layer 8 may be a layer containing Al 2 O 3 as a main component. The "main component" may mean a component having the largest mass% value as compared with other components. These points may be similarly defined in other layers.
 Al23層8は、第1領域を有していてもよい。第1領域は、破壊靭性値が5MPa・m0.5以上であってもよい。この破壊靭性値は、基体2の表面4に平行な被覆層3の表面9でAl23層8の破壊靭性値を測定した場合の値であってもよい。 The Al 2 O 3 layer 8 may have a first region. In the first region, the fracture toughness value may be 5 MPa · m 0.5 or more. This fracture toughness value may be a value when the fracture toughness value of the Al 2 O 3 layer 8 is measured on the surface 9 of the coating layer 3 parallel to the surface 4 of the substrate 2.
 上記した「平行」とは、厳密な平行に限定されず、±10°程度の傾斜を許容することを意味してもよい。また、破壊靭性値は、鏡面加工した面に対してナノインデンターで押し込み試験を行い、得られた圧痕に対して電界放出型走査電子顕微鏡(FE-SEM)を用いてクラックの観察を行うことで測定してもよい。鏡面研磨には、トーメイダイヤ株式会社製の平均粒径1~3μmのダイヤモンドペーストと、山桂産業株式会社製のオリーブオイルをペースト濃度が20~30質量%となるように調整したものを用いてもよい。ナノインデンターとしては、例えば、株式会社エリオニクス社製の超微小押し込み硬さ試験機ENT-1100b/aを用いて測定してもよい。押し込み荷重が700(mN)で、測定に用いる圧子は株式会社東洋テクニカ社製のバーコビッチ圧子ENT-20-13を用いてもよい。破壊靭性値は、JIS R 1607:2015に準拠して測定してもよい。クラックの観察は日本電子株式会社製のJSM-7100Fを用いて行ってもよい。 The above-mentioned "parallel" is not limited to strict parallelism, and may mean that an inclination of about ± 10 ° is allowed. The fracture toughness value shall be measured by indenting the mirrored surface with a nanoindenter and observing cracks in the obtained indentations using a field emission scanning electron microscope (FE-SEM). It may be measured with. For mirror polishing, a diamond paste with an average particle size of 1 to 3 μm manufactured by Tomei Diamond Co., Ltd. and olive oil manufactured by Sankei Sangyo Co., Ltd. adjusted to a paste concentration of 20 to 30% by mass were used. May be good. As the nano indenter, for example, an ultra-fine indentation hardness tester ENT-1100b / a manufactured by Elionix Inc. may be used for measurement. The pushing load is 700 (mN), and the indenter used for the measurement may be a Berkovich indenter ENT-20-13 manufactured by Toyo Technica Co., Ltd. The fracture toughness value may be measured according to JIS R 1607: 2015. The cracks may be observed using JSM-7100F manufactured by JEOL Ltd.
 Al23層8が上記の第1領域を有する場合には、被覆層3が欠損しにくいため、耐欠損性に優れる。なお、Al23層8の全てが第1領域で構成されていてもよく、また、Al23層8の一部が第1領域で構成されていてもよい。以後、第1領域における破壊靭性値を第1破壊靭性値という。第1破壊靭性値の上限値は、10MPa・m0.5であってもよい。 When the Al 2 O 3 layer 8 has the above-mentioned first region, the coating layer 3 is unlikely to be chipped, so that the chipping resistance is excellent. Incidentally, may be all the Al 2 O 3 layer 8 consists of a first region, a portion of the Al 2 O 3 layer 8 may be composed of a first region. Hereinafter, the fracture toughness value in the first region is referred to as a first fracture toughness value. The upper limit of the first fracture toughness value may be 10 MPa · m 0.5.
 Al23層8は、第1面5および第2面6のそれぞれに第1領域を有していてもよい。この場合には、第1面5および第2面6が欠損しにくい。 The Al 2 O 3 layer 8 may have a first region on each of the first surface 5 and the second surface 6. In this case, the first surface 5 and the second surface 6 are unlikely to be damaged.
 Al23層8は、第2領域を有していてもよい。被覆工具1におけるAl23層8は、全ての領域で高い破壊靭性を備える必要はない。例えば、切削に関与しない領域や、切削に関与する領域であっても大きな力や衝撃が加わらない領域に第2領域が位置していてもよい。なお、切削に関与しない領域とは、切刃7から第1面5および第2面6方向に1mm以上離れた領域であってもよい。第2領域は、破壊靭性値が5MPa・m0.5未満であってもよい。この破壊靭性値は、基体2の表面4に平行な被覆層3の表面9でAl23層8の破壊靭性値を測定した場合の値であってもよい。 The Al 2 O 3 layer 8 may have a second region. The Al 2 O 3 layer 8 in the covering tool 1 need not have high fracture toughness in all regions. For example, the second region may be located in a region that is not involved in cutting or a region that is involved in cutting but is not subject to a large force or impact. The region not involved in cutting may be a region separated from the cutting edge 7 in the directions of the first surface 5 and the second surface 6 by 1 mm or more. In the second region, the fracture toughness value may be less than 5 MPa · m 0.5. This fracture toughness value may be a value when the fracture toughness value of the Al 2 O 3 layer 8 is measured on the surface 9 of the coating layer 3 parallel to the surface 4 of the substrate 2.
 本開示の第1領域は、例えば、所定の硬度を有する球状のセラミック粉末を用いたブラスト処理工程を経ることにより得られる。ブラスト処理工程では、いわゆるドライブラストやウェットブラストを用いてもよい。ウェットブラストはセラミック粉末の取り扱い性に優れるという利点がある。 The first region of the present disclosure is obtained, for example, by undergoing a blast treatment step using a spherical ceramic powder having a predetermined hardness. In the blasting process, so-called drive last or wet blast may be used. Wet blasting has the advantage of excellent handling of ceramic powder.
 Al23層8が上記の第1領域と第2領域を有する場合には、ブラスト処理工程の時間を短縮することもでき、低コストで被覆工具1を作製することができる。以後、第2領域における破壊靭性値を第2破壊靭性値という。なお、第2破壊靭性値の下限値は、0.3MPa・m0.5であってもよい。 When the Al 2 O 3 layer 8 has the above-mentioned first region and the second region, the time of the blasting process can be shortened, and the covering tool 1 can be manufactured at low cost. Hereinafter, the fracture toughness value in the second region is referred to as a second fracture toughness value. The lower limit of the second fracture toughness value may be 0.3 MPa · m 0.5.
 第1領域における硬度を第1硬度とし、第2領域における硬度を第2硬度とした場合、第2硬度は、第1硬度よりも大きくてもよい。この場合には、被覆工具1の耐摩耗性が高い。 When the hardness in the first region is the first hardness and the hardness in the second region is the second hardness, the second hardness may be larger than the first hardness. In this case, the wear resistance of the covering tool 1 is high.
 第1硬度および第2硬度は、特定の値に限定されない。例えば、第1硬度は、10~30GPa程度に設定されてもよい。第2硬度は、15~30GPa程度に設定されてもよい。第1硬度および第2硬度は、例えば、Al23層8の破壊靭性値の測定と同様にナノインデンターを用いた押し込み試験によって測定してもよい。ナノインデンターとしては、例えば、株式会社エリオニクス社製の超微小押し込み硬さ試験機ENT-1100b/aを用いて測定してもよい。押し込み荷重が700(mN)で、測定に用いる圧子は株式会社東洋テクニカ社製のバーコビッチ圧子ENT-20-13を用いてもよい。 The first hardness and the second hardness are not limited to specific values. For example, the first hardness may be set to about 10 to 30 GPa. The second hardness may be set to about 15 to 30 GPa. The first hardness and the second hardness may be measured by an indentation test using a nanoindenter in the same manner as the measurement of the fracture toughness value of the Al 2 O 3 layer 8, for example. As the nano indenter, for example, an ultra-fine indentation hardness tester ENT-1100b / a manufactured by Elionix Inc. may be used for measurement. The pushing load is 700 (mN), and the indenter used for the measurement may be a Berkovich indenter ENT-20-13 manufactured by Toyo Technica Co., Ltd.
 Al23層8は、第1領域を第1面5に有していてもよく、また、第2領域を第2面6に有していてもよい。この場合には、被覆工具1の耐摩耗性および耐欠損性が高い。 The Al 2 O 3 layer 8 may have a first region on the first surface 5 or a second region on the second surface 6. In this case, the wear resistance and the fracture resistance of the covering tool 1 are high.
 被覆層3は、基体2とAl23層8との間にTi系被覆層10を有していてもよい。Ti系被覆層10は、TiCN粒子もしくはTiC粒子またはTiN粒子を含有する層であってもよい。また、Ti系被覆層10は、TiCNを主成分として含有する層であってもよい。 The coating layer 3 may have a Ti-based coating layer 10 between the substrate 2 and the Al 2 O 3 layer 8. The Ti-based coating layer 10 may be a layer containing TiCN particles, TiC particles, or TiN particles. Further, the Ti-based coating layer 10 may be a layer containing TiCN as a main component.
 Ti系被覆層10は、第3領域を有していてもよい。第3領域は、破壊靭性値が10MPa・m0.5以上であってもよい。この破壊靭性値は、基体2の表面4に平行な被覆層3の表面9でTi系被覆層10の破壊靭性値を測定した場合の値であってもよい。 The Ti-based coating layer 10 may have a third region. In the third region, the fracture toughness value may be 10 MPa · m 0.5 or more. This fracture toughness value may be a value when the fracture toughness value of the Ti-based coating layer 10 is measured on the surface 9 of the coating layer 3 parallel to the surface 4 of the substrate 2.
 Ti系被覆層10が上記の第3領域を有する場合には、被覆層3が欠損しにくいため、耐欠損性に優れる。なお、Ti系被覆層10の全てが第3領域で構成されていてもよく、また、Ti系被覆層10の一部が第3領域で構成されていてもよい。以後、第3領域における破壊靭性値を第3破壊靭性値という。第3破壊靭性値の上限値は、20MPa・m0.5であってもよい。 When the Ti-based coating layer 10 has the above-mentioned third region, the coating layer 3 is unlikely to be chipped, so that the chipping resistance is excellent. In addition, all of the Ti-based coating layer 10 may be composed of the third region, or a part of the Ti-based coating layer 10 may be composed of the third region. Hereinafter, the fracture toughness value in the third region is referred to as a third fracture toughness value. The upper limit of the third fracture toughness value may be 20 MPa · m 0.5.
 Ti系被覆層10は、第4領域を有していてもよい。被覆工具1におけるTi系被覆層10は、全ての領域で高い破壊靭性を備える必要はない。例えば、切削に関与しない領域や、切削に関与する領域であっても大きな力や衝撃が加わらない領域に第4領域が位置していてもよい。なお、切削に関与しない領域とは、切刃7から第1面5および第2面6方向に1mm以上離れた領域であってもよい。第4領域は、破壊靭性値が10MPa・m0.5未満であってもよい。この破壊靭性値は、基体2の表面4に平行な被覆層3の表面9でTi系被覆層10の破壊靭性値を測定した場合の値であってもよい。 The Ti-based coating layer 10 may have a fourth region. The Ti-based coating layer 10 in the covering tool 1 does not have to have high fracture toughness in all regions. For example, the fourth region may be located in a region that is not involved in cutting or a region that is involved in cutting but is not subject to a large force or impact. The region not involved in cutting may be a region separated from the cutting edge 7 in the directions of the first surface 5 and the second surface 6 by 1 mm or more. In the fourth region, the fracture toughness value may be less than 10 MPa · m 0.5. This fracture toughness value may be a value when the fracture toughness value of the Ti-based coating layer 10 is measured on the surface 9 of the coating layer 3 parallel to the surface 4 of the substrate 2.
 本開示の第3領域は、例えば、所定の硬度を有する球状のセラミック粉末を用いたブラスト処理工程を経ることにより得られる。ブラスト処理工程では、いわゆるドライブラストやウェットブラストを用いてもよい。ウェットブラストはセラミック粉末の取り扱い性に優れるという利点がある。 The third region of the present disclosure is obtained, for example, by undergoing a blast treatment step using a spherical ceramic powder having a predetermined hardness. In the blasting process, so-called drive last or wet blast may be used. Wet blasting has the advantage of excellent handling of ceramic powder.
 Ti系被覆層10が上記の第3領域と第4領域を有する場合には、ブラスト工程の時間を短縮することもでき、低コストで被覆工具1を作製することができる。以後、第4領域における破壊靭性値を第4破壊靭性値という。なお、第4破壊靭性値の下限値は、1.5MPa・m0.5であってもよい。 When the Ti-based covering layer 10 has the above-mentioned third region and the fourth region, the time of the blasting step can be shortened, and the covering tool 1 can be manufactured at low cost. Hereinafter, the fracture toughness value in the fourth region is referred to as a fourth fracture toughness value. The lower limit of the fourth fracture toughness value may be 1.5 MPa · m 0.5.
 第3領域における硬度を第3硬度とし、第4領域における硬度を第4硬度とした場合、第3硬度は、第4硬度よりも大きくてもよい。この場合には、被覆工具1の耐摩耗性が高い。 When the hardness in the third region is the third hardness and the hardness in the fourth region is the fourth hardness, the third hardness may be larger than the fourth hardness. In this case, the wear resistance of the covering tool 1 is high.
 第3硬度および第4硬度は、特定の値に限定されない。例えば、第3硬度は、15~30GPa程度に設定されてもよい。第4硬度は、10~30GPa程度に設定されてもよい。第3硬度および第4硬度は、第1硬度および第2硬度と同様にして測定してもよい。 The third hardness and the fourth hardness are not limited to specific values. For example, the third hardness may be set to about 15 to 30 GPa. The fourth hardness may be set to about 10 to 30 GPa. The third hardness and the fourth hardness may be measured in the same manner as the first hardness and the second hardness.
 第1領域は、第3領域の上に位置していてもよく、また、第2領域は、第4領域の上に位置していてもよい。この場合には、耐欠損性が高く、ブラスト処理工程の時間を短縮することもでき、低コストで被覆工具1を作製することができる。 The first region may be located above the third region, and the second region may be located above the fourth region. In this case, the chipping resistance is high, the time of the blasting process can be shortened, and the covering tool 1 can be manufactured at low cost.
 Al23層8は、X線回折において、(104)面の半価幅が0.15°以上であってもよい。この場合には、被覆層3が欠損しにくくなり、耐欠損性に優れる。Al23層8の(104)面の半価幅は、以下のように測定してもよい。(104)面は、JCPDSカード番号00-010-0173を基準としてもよい。Al23層8がウェットブラスト処理によって露出している場合には、その露出しているAl23層8の表面を鏡面研磨して得られた鏡面でXRD測定を行ってもよい。Al23層8が露出していない場合には、Al23層8が露出するまで鏡面研磨処理を続けて、Al23層8の露出した鏡面でXRD測定を行ってもよい。Al23層8のXRD測定は、表面の凹凸が少ない面を選んで行ってもよい。XRD測定は、株式会社リガク社製のMiniFlex600を用いて行ってもよい。測定条件は、特性X線をCuKβ線として、出力は40kV、15mAで、発信側ソーラースリット2.5°、長手制限スリット5.0mm、発散スリット0.625°で、スキャッタースリット8.0mm、受光側ソーラースリット2.5°、受光スリット13.0mmで、ステップ幅を0.01°、計測スピードを2.0°/分、スキャン角度を20°~90°で行ってもよい。なお、Al23層8の(104)面の半価幅の上限値は、2.0°であってもよい。 The half width of the (104) plane of the Al 2 O 3 layer 8 may be 0.15 ° or more in X-ray diffraction. In this case, the coating layer 3 is less likely to be chipped, and the chipping resistance is excellent. The half width of the (104) plane of the Al 2 O 3 layer 8 may be measured as follows. The (104) plane may be based on the JCPDS card number 00-010-0173. When the Al 2 O 3 layer 8 is exposed by the wet blast treatment, the XRD measurement may be performed on the mirror surface obtained by mirror polishing the surface of the exposed Al 2 O 3 layer 8. If the Al 2 O 3 layer 8 is not exposed, it continues to mirror polishing process until the Al 2 O 3 layer 8 is exposed, may be performed XRD measurement specular exposed in the Al 2 O 3 layer 8 .. The XRD measurement of the Al 2 O 3 layer 8 may be performed by selecting a surface having less unevenness on the surface. The XRD measurement may be performed using a MiniFlex 600 manufactured by Rigaku Corporation. The measurement conditions are that the characteristic X-ray is CuKβ ray, the output is 40 kV, 15 mA, the transmitting side solar slit is 2.5 °, the longitudinal limiting slit is 5.0 mm, the divergent slit is 0.625 °, and the scatter slit is 8.0 mm. , The light receiving side solar slit 2.5 °, the light receiving slit 13.0 mm, the step width may be 0.01 °, the measurement speed may be 2.0 ° / min, and the scan angle may be 20 ° to 90 °. The upper limit of the half width of the (104) plane of the Al 2 O 3 layer 8 may be 2.0 °.
 被覆層3は、Al23層8およびTi系被覆層10以外の層を有していてもよい。他の層としては、例えば、TiC層およびTiN層などが挙げられ得る。被覆層3は、図3に示す限定されない一例のように、基体2の上に順にTiN層11、Ti系被覆層10、Al23層8が積層された構成であってもよく、さらに、Al23層8の上にTiN層12などが積層された構成であってもよい。Al23層8は、Ti系被覆層10に接していてもよい。なお、TiN層11を第1TiN層11、TiN層12を第2TiN層12と便宜的にいってもよい。 The coating layer 3 may have a layer other than the Al 2 O 3 layer 8 and the Ti-based coating layer 10. Examples of the other layer may include a TiC layer and a TiN layer. Coating layer 3 is, as one non-limiting example shown in Figure 3, may be configured such that the TiN layer 11, Ti-based coating layer 10, Al 2 O 3 layer 8 in this order on the substrate 2 are laminated, further , The TiN layer 12 or the like may be laminated on the Al 2 O 3 layer 8. The Al 2 O 3 layer 8 may be in contact with the Ti-based coating layer 10. The TiN layer 11 may be referred to as the first TiN layer 11 and the TiN layer 12 may be referred to as the second TiN layer 12 for convenience.
 第1TiN層11、Ti系被覆層10、Al23層8および第2TiN層12のそれぞれの厚みは、特定の値に限定されない。例えば、第1TiN層11の厚みは、0.1~3.0μmに設定されてもよい。Ti系被覆層10の厚みは、1.0~20μmに設定されてもよい。Al23層8の厚みは、1.0~20μmに設定されてもよい。第2TiN層12の厚みは、0.1~10μmに設定されてもよい。 The thickness of each of the first TiN layer 11, the Ti-based coating layer 10, the Al 2 O 3 layer 8 and the second TiN layer 12 is not limited to a specific value. For example, the thickness of the first TiN layer 11 may be set to 0.1 to 3.0 μm. The thickness of the Ti-based coating layer 10 may be set to 1.0 to 20 μm. The thickness of the Al 2 O 3 layer 8 may be set to 1.0 to 20 μm. The thickness of the second TiN layer 12 may be set to 0.1 to 10 μm.
 被覆工具1は、貫通孔13を有していてもよい。貫通孔13は、被覆工具1をホルダに保持する際に、固定ネジまたはクランプ部材などを取り付けるために用いることが可能である。貫通孔13は、第1面5から第1面5の反対側に位置する面(下面)にかけて形成されていてもよく、また、これらの面において開口していてもよい。なお、貫通孔13は、第2面6における互いに対向する領域に開口する構成であっても何ら問題ない。 The covering tool 1 may have a through hole 13. The through hole 13 can be used to attach a fixing screw, a clamp member, or the like when holding the covering tool 1 in the holder. The through hole 13 may be formed from the first surface 5 to the surface (lower surface) located on the opposite side of the first surface 5, or may be open in these surfaces. It should be noted that there is no problem even if the through hole 13 is configured to open in a region facing each other on the second surface 6.
 被覆工具1を製造する際には、基体2を最初に作製してもよい。基体2として、硬質合金からなる基体2を作製する場合を例に挙げて説明する。まず、焼成によって基体2を形成できる金属炭化物、窒化物、炭窒化物、酸化物などの無機物粉末に、金属粉末、カーボン粉末などを適宜添加して混合し、混合粉末を得てもよい。次に、この混合粉末を、プレス成形、鋳込成形、押出成形、冷間静水圧プレス成形などの公知の成形方法によって所定の工具形状に成形し、成形体を得てもよい。そして、得られた成形体を真空中または非酸化性雰囲気中で焼成し、基体2を得てもよい。基体2の表面4には、研磨加工やホーニング加工を施してもよい。 When manufacturing the covering tool 1, the substrate 2 may be manufactured first. A case where a substrate 2 made of a hard alloy is produced as the substrate 2 will be described as an example. First, a metal powder, a carbon powder, or the like may be appropriately added and mixed with an inorganic powder such as a metal carbide, a nitride, a carbonitride, or an oxide that can form a substrate 2 by firing to obtain a mixed powder. Next, this mixed powder may be molded into a predetermined tool shape by a known molding method such as press molding, casting molding, extrusion molding, cold hydrostatic press molding, or the like to obtain a molded product. Then, the obtained molded product may be fired in a vacuum or in a non-oxidizing atmosphere to obtain a substrate 2. The surface 4 of the substrate 2 may be subjected to a polishing process or a honing process.
 次に、得られた基体2の表面4にCVD法によって被覆層3を成膜してもよい。また、成膜された被覆層3に対して、ウェットブラスト処理を施してもよい。以下では、ウェットブラスト処理を施す前の状態の被覆層3および被覆工具1を未処理被覆層、未処理被覆工具という。そして、ウェットブラスト処理を施した未処理被覆層を被覆層3、未処理被覆工具を被覆工具1という。ウェットブラスト処理を行う前の工程は、基体2の上に未処理被覆層を有する、未処理被覆工具を準備する第1工程といってもよい。 Next, the coating film 3 may be formed on the surface 4 of the obtained substrate 2 by a CVD method. Further, the coated layer 3 formed on the film may be subjected to a wet blast treatment. Hereinafter, the covering layer 3 and the covering tool 1 in a state before the wet blast treatment is referred to as an untreated coating layer and an untreated covering tool. The untreated coating layer subjected to the wet blast treatment is referred to as a coating layer 3, and the untreated coating tool is referred to as a coating tool 1. The step before the wet blast treatment may be said to be the first step of preparing an untreated coating tool having an untreated coating layer on the substrate 2.
 未処理被覆層として、例えば、基体2の上に順に第1TiN層11、Ti系被覆層10、Al23層8を成膜してもよい。さらに、Al23層8の上に第2TiN層12などを成膜してもよい。 As an untreated coating layer, for example, it may be formed the first 1TiN layer 11, Ti-based coating layer 10, Al 2 O 3 layer 8 in this order on the substrate 2. Further, a second TiN layer 12 or the like may be formed on the Al 2 O 3 layer 8.
 第1TiN層11は、次のように成膜してもよい。まず、反応ガス組成として、四塩化チタン(TiCl4)ガスを0.1~10体積%、窒素(N2)ガスを10~60体積%、残りが水素(H2)ガスからなる混合ガスを調整してもよい。そして、この混合ガスをチャンバ内に導入し、温度を800~1010℃、圧力を10~85kPaに設定し、第1TiN層11を成膜してもよい。なお、この成膜条件は、第2TiN層12にも適用可能である。 The first TiN layer 11 may be formed as follows. First, as the reaction gas composition, a mixed gas consisting of titanium tetrachloride (TiCl 4 ) gas in an amount of 0.1 to 10% by volume, nitrogen (N 2 ) gas in an amount of 10 to 60% by volume, and the rest being hydrogen (H 2 ) gas is used. You may adjust. Then, this mixed gas may be introduced into the chamber, the temperature may be set to 800 to 1010 ° C., the pressure may be set to 10 to 85 kPa, and the first TiN layer 11 may be formed into a film. This film forming condition is also applicable to the second TiN layer 12.
 Ti系被覆層10は、次のように成膜してもよい。まず、反応ガス組成として、四塩化チタン(TiCl4)ガスを0.1~10体積%、アセトニトリル(CH3CN)ガスを0.1~3.0体積%、残りが水素(H2)ガスからなる混合ガスを調整してもよい。そして、この混合ガスをチャンバ内に導入し、温度を800~1050℃、圧力を5~30kPaに設定し、Ti系被覆層10を成膜してもよい。 The Ti-based coating layer 10 may be formed as follows. First, as the reaction gas composition, titanium tetrachloride (TiCl 4 ) gas is 0.1 to 10% by volume, acetonitrile (CH 3 CN) gas is 0.1 to 3.0% by volume, and the rest is hydrogen (H 2 ) gas. The mixed gas composed of may be adjusted. Then, this mixed gas may be introduced into the chamber, the temperature may be set to 800 to 1050 ° C., the pressure may be set to 5 to 30 kPa, and the Ti-based coating layer 10 may be formed.
 Al23層8は、次のように成膜してもよい。まず、反応ガス組成として、三塩化アルミニウム(AlCl3)ガスを0.5~5体積%、塩化水素(HCl)ガスを0.5~3.5体積%、二酸化炭素(CO2)ガスを0.5~5体積%、硫化水素(H2S)ガスを0.5体積%以下、残りが水素(H2)ガスからなる混合ガスを調整してもよい。そして、この混合ガスをチャンバ内に導入し、温度を930~1010℃、圧力を5~10kPaに設定し、Al23層8を成膜してもよい。 The Al 2 O 3 layer 8 may be formed as follows. First, as the reaction gas composition, aluminum trichloride (AlCl 3 ) gas is 0.5 to 5% by volume, hydrogen chloride (HCl) gas is 0.5 to 3.5% by volume, and carbon dioxide (CO 2 ) gas is 0. A mixed gas consisting of 5 to 5% by volume, 0.5% by volume or less of hydrogen sulfide (H 2 S) gas, and the balance of hydrogen (H 2 ) gas may be adjusted. Then, this mixed gas may be introduced into the chamber, the temperature may be set to 930 to 1010 ° C., the pressure may be set to 5 to 10 kPa, and the Al 2 O 3 layer 8 may be formed.
 次に、成膜された未処理被覆層に対して、ウェットブラスト処理を施す工程を行ってもよい。この工程は、未処理被覆層に対して、硬度(HV)が1000以上の球状セラミック粒子を衝突させる第2工程であってもよい。HV(Vickers hardness:ビッカース硬さ)は、JIS Z 2244:2009に準拠して測定してもよい。なお、球状セラミック粒子の硬度(HV)の上限値は、2500であってもよい。 Next, a step of applying a wet blast treatment to the formed untreated coating layer may be performed. This step may be a second step of colliding spherical ceramic particles having a hardness (HV) of 1000 or more with the untreated coating layer. HV (Vickers hardness) may be measured in accordance with JIS Z 2244: 2009. The upper limit of the hardness (HV) of the spherical ceramic particles may be 2500.
 球状セラミック粒子などのメディアの硬度は、負荷-除荷試験による硬さ測定で測定してもよい。硬さの測定にあたり、メディアと、埋め込み樹脂とを混合したのち、混合体を硬化させて作製した硬化体を用いてもよい。この硬化体の表面を研磨して研磨面に露出したメディアに対して硬度を測定してもよい。埋め込み樹脂は、例えば、Kulzer社製のTechnovit4004を用いてもよい。測定を行うメディアと埋め込み樹脂を3:1(質量比)の割合で混合して硬化体とし、表面の研磨を行ってもよい。研磨後に、硬化体のメディアが露出した部分に硬度測定を行ってもよい。測定は、ダイナミック超微小硬度計DUH-211Sを用いて行ってもよい。測定圧子が稜間角115°で、三角すい圧子(ダイヤモンド製)で、試験力が49(mN)で、負荷速度が2.665(mN/秒)で、保持時間が5秒の条件で測定してもよい。測定回数は10点行い、その平均値の測定を行ってもよい。 The hardness of media such as spherical ceramic particles may be measured by hardness measurement by a load-unloading test. In measuring the hardness, a cured product prepared by mixing the media and the embedded resin and then curing the mixture may be used. The surface of the cured product may be polished to measure the hardness of the medium exposed on the polished surface. As the embedded resin, for example, Technovit 4004 manufactured by Kulzer may be used. The media to be measured and the embedded resin may be mixed at a ratio of 3: 1 (mass ratio) to form a cured product, and the surface may be polished. After polishing, the hardness may be measured on the exposed portion of the media of the cured product. The measurement may be performed using a dynamic ultrafine hardness tester DUH-211S. Measured under the conditions that the measuring indenter has a ridge angle of 115 °, a triangular cone indenter (made of diamond), a test force of 49 (mN), a load speed of 2.665 (mN / sec), and a holding time of 5 seconds. You may. The number of measurements may be 10 points, and the average value thereof may be measured.
 第2工程は、未処理被覆層の表面の全面に対して行ってもよく、また、一部に対して行ってもよい。未処理被覆層の第2工程を行った部分は、Al23層8が第1領域を有するようになり易く、また、Ti系被覆層10が第3領域を有するようになり易い。未処理被覆層の第2工程を行わなかった部分は、Al23層8が第2領域を有するようになり易く、また、Ti系被覆層10が第4領域を有するようになり易い。 The second step may be performed on the entire surface of the untreated coating layer, or may be performed on a part of the surface. In the portion of the untreated coating layer where the second step has been performed, the Al 2 O 3 layer 8 tends to have a first region, and the Ti-based coating layer 10 tends to have a third region. The second step was not part of the untreated coating layer is liable to the Al 2 O 3 layer 8 is to have a second region, also, Ti-based coating layer 10 is liable to have a fourth region.
 ウェットブラスト処理では、未処理被覆層に対して、液体中に球状セラミック粒子を含有するブラスト液を投射してもよい。なお、ブラスト液はスラリーともいう。液体は、例えば、水を用いてもよい。 In the wet blast treatment, a blast liquid containing spherical ceramic particles in the liquid may be projected onto the untreated coating layer. The blast liquid is also called a slurry. As the liquid, for example, water may be used.
 球状セラミック粒子とは、原料を粉砕して得られたものではないことを意味してもよい。球状セラミック粒子と区別するために、原料を粉砕して得られたセラミック粒子を角状セラミック粒子といってもよい。図4に球状セラミック粒子の写真を示す。また、図5に角状セラミック粒子の写真を示す。球状セラミック粒子は、比重が6g/cm3以下であってもよい。比重が6g/cm3以下の球状セラミック粒子は比較的、比重が小さいために水に分散させやすく、ウェットブラストに適している。例えば、Al23粒子の比重は約4g/cm3である。 The spherical ceramic particles may mean that they are not obtained by crushing a raw material. In order to distinguish it from spherical ceramic particles, the ceramic particles obtained by crushing the raw material may be referred to as angular ceramic particles. FIG. 4 shows a photograph of spherical ceramic particles. Further, FIG. 5 shows a photograph of the angular ceramic particles. The spherical ceramic particles may have a specific gravity of 6 g / cm 3 or less. Spherical ceramic particles having a specific gravity of 6 g / cm 3 or less are suitable for wet blasting because they have a relatively small specific gravity and are easily dispersed in water. For example, the specific gravity of Al 2 O 3 particles is about 4 g / cm 3 .
 図5に示す写真のように、角状セラミック粒子は、不定形で角を有していてもよい。角状セラミック粒子は、原料粒子を粉砕するなどして製造されたものであってもよく、また、粉砕工程で破砕面および角が形成されたものであってもよい。従来のウェットブラスト処理で用いられているのは、角状セラミック粒子である。 As shown in the photograph shown in FIG. 5, the angular ceramic particles may be amorphous and have angles. The angular ceramic particles may be produced by crushing raw material particles or the like, or may have crushed surfaces and corners formed in the pulverization step. It is the angular ceramic particles that are used in the conventional wet blasting process.
 一方、図4に示す写真のように、球状セラミック粒子は、角がなく真球に近い形状であってもよい。球状セラミック粒子の形状は、真球である必要はなく、破砕面や鋭角の角がなければ、多少の球からの変形は許容できる。 On the other hand, as shown in the photograph shown in FIG. 4, the spherical ceramic particles may have a shape close to a true sphere without any corners. The shape of the spherical ceramic particles does not have to be a true sphere, and some deformation from the sphere is acceptable as long as there are no crushed surfaces or sharp angles.
 なお、球状セラミック粒子に形状が類似するものとして、球状の金属粒子が挙げられ得る。球状金属粒子は形状こそ、球状セラミック粒子に類似しているが、球状セラミック粒子よりも比重が重く、かつ、柔らかい。例えば、球状金属粒子の比重は、7~8g/cm3である。また、球状金属粒子の硬度(HV)は、1000未満である。このような特性に起因すると推察されるが、球状金属粒子を用いた場合には、第1領域や第3領域を有する被覆工具1が得られにくい。また、比重が重いことに起因して、球状金属粒子は、水中に分散しにくく、ウェットブラストには適さない。 Spherical metal particles may be mentioned as similar in shape to the spherical ceramic particles. Spherical metal particles are similar in shape to spherical ceramic particles, but have a heavier specific gravity and are softer than spherical ceramic particles. For example, the specific gravity of the spherical metal particles is 7 to 8 g / cm 3 . Further, the hardness (HV) of the spherical metal particles is less than 1000. Although it is presumed that this is due to such characteristics, when spherical metal particles are used, it is difficult to obtain a covering tool 1 having a first region or a third region. Further, due to the heavy specific gravity, the spherical metal particles are difficult to disperse in water and are not suitable for wet blasting.
 同様の理由で、球状セラミック粒子であっても、硬度(HV)が1000未満のガラスビーズや、ガラス成分を多く含有すると、第1領域や第3領域を有する被覆工具1が得られにくい。 For the same reason, even if it is a spherical ceramic particle, if it contains a large amount of glass beads having a hardness (HV) of less than 1000 or a glass component, it is difficult to obtain a covering tool 1 having a first region or a third region.
 ウェットブラスト処理では、種々の大きさの球状セラミック粒子を使用することができる。平均粒径が大きい球状セラミック粒子を用いると、ブラスト時間が短縮され易い。球状セラミック粒子の平均粒径は、200μm以下としてもよい。 In the wet blast treatment, spherical ceramic particles of various sizes can be used. When spherical ceramic particles having a large average particle size are used, the blast time is likely to be shortened. The average particle size of the spherical ceramic particles may be 200 μm or less.
 また、球状セラミック粒子の平均粒径は、30μm以上、100μm以下であってもよい。この範囲の球状セラミック粒子を用いると、種々の未処理被覆層を再現性良くブラスト処理することができる。 Further, the average particle size of the spherical ceramic particles may be 30 μm or more and 100 μm or less. When spherical ceramic particles in this range are used, various untreated coating layers can be blasted with good reproducibility.
 球状セラミック粒子の平均粒径は、レーザー回折法によって測定してもよい。また、球状セラミック粒子と、角状セラミック粒子が混在している場合には、ブラスト液を乾燥させて、SEM写真で球状セラミックス粒子を抽出し、写真から得られる個々の球状セラミック粒子100個の円相当径の平均値としてもよい。 The average particle size of the spherical ceramic particles may be measured by a laser diffraction method. When the spherical ceramic particles and the angular ceramic particles are mixed, the blast solution is dried, the spherical ceramic particles are extracted by the SEM photograph, and the circle of 100 individual spherical ceramic particles obtained from the photograph. It may be an average value of equivalent diameters.
 球状セラミック粒子の平均円形度は、0.82以上であってもよい。特に、球状セラミック粒子の平均円形度は、0.88以上であってもよい。この場合には、製造する被覆工具の耐欠損性が高い。なお、平均円形度の上限値は、0.98であってもよい。 The average circularity of the spherical ceramic particles may be 0.82 or more. In particular, the average circularity of the spherical ceramic particles may be 0.88 or more. In this case, the chipping resistance of the coated tool to be manufactured is high. The upper limit of the average circularity may be 0.98.
 平均円形度は、次のようにして測定してもよい。まず、SEMまたはTEMで粒子像を撮影した後、画像解析ソフト(例えば、マウンテック社製の「Mac-View Version.4」)を用いて、粒子の投影面積(S)と周囲長(L)を測定してもよい。次に、得られた測定値を、式:4πS/L2に当てはめて、円形度を算出してもよい。円形度の算出は、任意に選んだ100個の粒子について行い、その平均値を平均円形度としてもよい。 The average circularity may be measured as follows. First, after taking a particle image with SEM or TEM, the projected area (S) and peripheral length (L) of the particles are measured using image analysis software (for example, "Mac-View Version.4" manufactured by Mountech). It may be measured. Next, the obtained measured value may be applied to the formula: 4πS / L 2 to calculate the circularity. The circularity may be calculated for 100 arbitrarily selected particles, and the average value thereof may be used as the average circularity.
 球状セラミック粒子の材質としては、例えば、Al23、ZrO2およびSiCなどが挙げられ得る。なお、比重の大きい材質の球状セラミック粒子を用いる場合には、平均粒径を小さめにしてもよい。比重の小さい材質の球状セラミック粒子を用いる場合には、平均粒径を大きめにしてもよい。 Examples of the material of the spherical ceramic particles include Al 2 O 3 , ZrO 2 and SiC. When spherical ceramic particles made of a material having a large specific gravity are used, the average particle size may be reduced. When spherical ceramic particles made of a material having a small specific gravity are used, the average particle size may be increased.
 球状セラミック粒子を水に対して10~40体積%含有させて、ブラスト液を作製してもよい。 A blast liquid may be prepared by containing 10 to 40% by volume of spherical ceramic particles with respect to water.
 ブラスト液の投射条件は、投射圧を0.15~0.30MPa、投射時間を0.4~10.0秒としてもよい。ブラスト液の投射時間は10.0秒を超えると未処理被覆層の剥離が大きくなりやすいため適さない。なお、未処理被覆層に対してブラスト液を投射する際には、Al23層8の少なくとも一部が残るようにしてもよい。 The projection conditions of the blast liquid may be a projection pressure of 0.15 to 0.30 MPa and a projection time of 0.4 to 10.0 seconds. If the projection time of the blast liquid exceeds 10.0 seconds, the untreated coating layer tends to peel off, which is not suitable. When the blast liquid is projected onto the untreated coating layer, at least a part of the Al 2 O 3 layer 8 may remain.
 例えば、上記のような工程で被覆工具1を製造することができる。製造された被覆工具1は、耐欠損性に優れる。
 なお、ブラスト液は、角状のセラミック粒子を一部含有していてもよい。そのような場合には、セラミック粒子のうち、50体積%以上が球状セラミック粒子であってもよい。
For example, the covering tool 1 can be manufactured by the above-mentioned process. The manufactured covering tool 1 has excellent fracture resistance.
The blast liquid may partially contain angular ceramic particles. In such a case, 50% by volume or more of the ceramic particles may be spherical ceramic particles.
 球状セラミック粒子を含有するブラスト液を投射する前に、角状セラミック粒子を含有するブラスト液を投射してもよい。また、球状セラミック粒子を含有するブラスト液を投射した後に、角状セラミック粒子を含有するブラスト液を投射してもよい。球状セラミック粒子を含有するブラスト液を投射することで、高くなった被覆層3の破壊靭性値は、角状セラミック粒子を含有するブラスト液を投射しても低くなりにくい。 Before projecting the blast liquid containing the spherical ceramic particles, the blast liquid containing the angular ceramic particles may be projected. Further, the blast liquid containing the angular ceramic particles may be projected after the blast liquid containing the spherical ceramic particles is projected. The fracture toughness value of the coating layer 3 increased by projecting the blast solution containing the spherical ceramic particles is unlikely to decrease even when the blast solution containing the angular ceramic particles is projected.
 なお、未処理被覆層に球状セラミック粒子を含有するブラスト液を投射する際には、例えば、市販の湿式ブラスト装置を用いてもよい。 When projecting a blast liquid containing spherical ceramic particles on the untreated coating layer, for example, a commercially available wet blasting apparatus may be used.
 未処理被覆工具において、未処理被覆層は引張応力を有していてもよい。なお、引張応力は、特定の値に限定されない。引張応力の絶対値は、50~500MPa程度に設定されてもよい。 In the untreated coating tool, the untreated coating layer may have tensile stress. The tensile stress is not limited to a specific value. The absolute value of the tensile stress may be set to about 50 to 500 MPa.
 未処理被覆層は圧縮応力を有していてもよい。なお、圧縮応力は、特定の値に限定されない。圧縮応力の絶対値は、50~2000MPa程度に設定されてもよい。 The untreated coating layer may have compressive stress. The compressive stress is not limited to a specific value. The absolute value of the compressive stress may be set to about 50 to 2000 MPa.
 引張応力や圧縮応力は、X線応力測定装置(XRD)を用いたsin2ψ法によって測定してもよい。なお、残留応力の測定の際、Al23層8はα型Al23の(116)面を選択して測定してもよい。Ti系被覆層10はTiCNの(422)面を選択して測定してもよい。 The tensile stress and the compressive stress may be measured by the sin2ψ method using an X-ray stress measuring device (XRD). When measuring the residual stress, the Al 2 O 3 layer 8 may be measured by selecting the (116) plane of the α-type Al 2 O 3. The Ti-based coating layer 10 may be measured by selecting the (422) plane of TiCN.
 得られた被覆工具1において、切刃7を含む領域に研磨加工を施してもよい。これにより、切刃7を含む領域が平滑になる。その結果、被削材の溶着が抑制され、切刃7の耐欠損性が高い。 In the obtained covering tool 1, the area including the cutting edge 7 may be polished. As a result, the region including the cutting edge 7 becomes smooth. As a result, welding of the work material is suppressed, and the cutting edge 7 has high fracture resistance.
 <切削工具>
 得られた被覆工具1は、切削工具に適用可能である。次に、本開示の限定されない実施形態の切削工具101について、上記の被覆工具1を有する場合を例に挙げて、図6を参照して詳細に説明する。
<Cutting tool>
The obtained covering tool 1 can be applied to a cutting tool. Next, the cutting tool 101 of the embodiment without limitation of the present disclosure will be described in detail with reference to FIG. 6, taking as an example the case where the covering tool 1 is provided.
 切削工具101は、図6に示す限定されない一例のように、第1端102aから第2端102bに亘る長さを有し、第1端102aの側に位置するポケット103を有するホルダ102と、ポケット103に位置する被覆工具1と、を有していてもよい。切削工具101が被覆工具1を有する場合には、被覆工具1が耐欠損性に優れることから、長期間安定した切削加工を行うことが可能となる。 The cutting tool 101 includes a holder 102 having a length extending from the first end 102a to the second end 102b and having a pocket 103 located on the side of the first end 102a, as in an unrestricted example shown in FIG. It may have a covering tool 1 located in the pocket 103. When the cutting tool 101 has the covering tool 1, since the covering tool 1 has excellent fracture resistance, stable cutting can be performed for a long period of time.
 ポケット103は、被覆工具1が装着される部分であってもよい。ポケット103は、ホルダ102の外周面および第1端102aの側の端面において開口していてもよい。 The pocket 103 may be a portion where the covering tool 1 is mounted. The pocket 103 may be open on the outer peripheral surface of the holder 102 and the end surface on the side of the first end 102a.
 被覆工具1は、切刃7がホルダ102から外方に突出するようにポケット103に装着されていてもよい。また、被覆工具1は、固定ネジ104によって、ポケット103に装着されていてもよい。すなわち、被覆工具1の貫通孔13に固定ネジ104を挿入し、この固定ネジ104の先端をポケット103に形成されたネジ孔に挿入してネジ部同士を螺合させることによって、被覆工具1がポケット103に装着されていてもよい。被覆工具1とポケット103との間には、シートが挟まれていてもよい。 The covering tool 1 may be mounted in the pocket 103 so that the cutting edge 7 protrudes outward from the holder 102. Further, the covering tool 1 may be attached to the pocket 103 by the fixing screw 104. That is, the covering tool 1 is formed by inserting the fixing screw 104 into the through hole 13 of the covering tool 1, inserting the tip of the fixing screw 104 into the screw hole formed in the pocket 103, and screwing the screw portions together. It may be attached to the pocket 103. A sheet may be sandwiched between the covering tool 1 and the pocket 103.
 ホルダ102の材質としては、例えば、鋼および鋳鉄などが挙げられ得る。ホルダ102の材質が鋼の場合には、ホルダ102の靱性が高い。 Examples of the material of the holder 102 include steel and cast iron. When the material of the holder 102 is steel, the toughness of the holder 102 is high.
 図6に示す一例においては、いわゆる旋削加工に用いられる切削工具101を例示している。旋削加工としては、例えば、内径加工、外径加工および溝入れ加工などが挙げられ得る。なお、切削工具101の用途は、旋削加工に限定されない。例えば、切削工具101を転削加工に用いても何ら問題ない。 In the example shown in FIG. 6, a cutting tool 101 used for so-called turning is illustrated. Examples of the turning process include inner diameter processing, outer diameter processing, grooving processing, and the like. The application of the cutting tool 101 is not limited to turning. For example, there is no problem even if the cutting tool 101 is used for milling.
 以下、実施例を挙げて本開示を詳細に説明するが、本開示は以下の実施例に限定されない。 Hereinafter, the present disclosure will be described in detail with reference to examples, but the present disclosure is not limited to the following examples.
 [試料No.1~11]
 <被覆工具の作製>
 まず、基体を作製した。具体的には、平均粒径1.2μmのWC粉末に対して、平均粒径1.5μmの金属Co粉末を6質量%、TiC(炭化チタン)粉末を2.0質量%、Cr32(炭化クロム)粉末を0.2質量%の比率で添加して混合して混合原料粉末を作製した。次に、混合原料粉末をプレス成形して切削工具形状(CNMG120408)に成形し、成形体を得た。得られた成形体に脱バインダ処理を施し、0.5~100Paの真空中、1400℃で1時間焼成し、超硬合金からなる基体を作製した。作製した基体のすくい面(第1面)の側に、ブラシ加工で刃先処理(Rホーニング)を施した。
[Sample No. 1-11]
<Manufacturing of covering tools>
First, a substrate was prepared. Specifically, with respect to the average particle diameter 1.2μm of WC powder, average particle metal Co powder of diameter 1.5 [mu] m 6 wt%, 2.0 wt% of TiC (titanium carbide) powder, Cr 3 C 2 (Chromium carbide) powder was added at a ratio of 0.2% by mass and mixed to prepare a mixed raw material powder. Next, the mixed raw material powder was press-molded and molded into a cutting tool shape (CNMG120408) to obtain a molded body. The obtained molded product was subjected to a binder removal treatment and fired at 1400 ° C. for 1 hour in a vacuum of 0.5 to 100 Pa to prepare a substrate made of cemented carbide. The rake face (first surface) of the produced substrate was brushed to perform cutting edge treatment (R honing).
 次に、この基体の上に未処理被覆層を成膜した。具体的には、基体の上に基体の側から順に第1TiN層、Ti系被覆層、Al23層、第2TiN層を成膜した。成膜条件および厚みは、以下のとおりである。なお、厚みは、SEMによる断面測定で得た値である。 Next, an untreated coating layer was formed on this substrate. Specifically, a first TiN layer, a Ti-based coating layer, an Al 2 O 3 layer, and a second TiN layer were formed on the substrate in this order from the side of the substrate. The film formation conditions and thickness are as follows. The thickness is a value obtained by cross-sectional measurement by SEM.
 (第1TiN層)
 TiCl4ガス:1.0体積%
 N2ガス:55.0体積%
 H2ガス:残部
 温度:850℃
 圧力:16kPa
 厚み:1.0μm
(1st TiN layer)
TiCl 4 gas: 1.0% by volume
N 2 gas: 55.0% by volume
H 2 gas: remaining temperature: 850 ° C
Pressure: 16kPa
Thickness: 1.0 μm
 (Ti系被覆層)
 TiCl4ガス:7.0体積%
 CH3CNガス:0.5体積%
 H2ガス:残部
 温度:850℃
 圧力:10kPa
 厚み:7.0μm
(Ti-based coating layer)
TiCl 4 gas: 7.0% by volume
CH 3 CN gas: 0.5% by volume
H 2 gas: remaining temperature: 850 ° C
Pressure: 10 kPa
Thickness: 7.0 μm
 (Al23層)
 AlCl3ガス:4.2体積%
 HClガス:0.9体積%
 CO2ガス:4.5体積%
 H2Sガス:0.3体積%
 H2ガス:残部
 温度:950℃
 圧力:9kPa
 厚み:8.0μm
(Al 2 O 3 layer)
AlCl 3 gas: 4.2% by volume
HCl gas: 0.9% by volume
CO 2 gas: 4.5% by volume
H 2 S gas: 0.3% by volume
H 2 gas: remaining temperature: 950 ° C
Pressure: 9kPa
Thickness: 8.0 μm
 (第2TiN層)
 TiCl4ガス:3.0体積%
 N2ガス:40.0体積%
 H2ガス:残部
 温度:1010℃
 圧力:30kPa
 厚み:2.0μm
(2nd TiN layer)
TiCl 4 gas: 3.0% by volume
N 2 gas: 40.0% by volume
H 2 gas: remaining temperature: 1010 ° C
Pressure: 30 kPa
Thickness: 2.0 μm
 次に、メディアとして、表1に示す平均粒径の球状Al23粒子、ジルコン(ZrSiO4)からなる球状粒子、角状Al23粒子をそれぞれ、水に対して25体積%含まれるようにしてブラスト液を調整した。なお、メディアの硬度(HV)は、以下のようにして測定した値である。 Next, as the medium, 25% by volume of spherical Al 2 O 3 particles having an average particle size shown in Table 1, spherical particles made of zircon (ZrSiO 4 ), and angular Al 2 O 3 particles are contained in water. The blast solution was adjusted in this way. The hardness (HV) of the media is a value measured as follows.
 (メディア硬度)
 ブラスト処理で用いたメディアの硬度は、負荷-除荷試験による硬さ測定で測定した。まず、測定を行うメディアを埋め込み樹脂(Kulzer社製のTechnovit4004)で固定して表面の研磨を行った。具体的には、液状の硬化樹脂と硬化剤を3:1(質量比)で混合した樹脂1gに対して、Al23粉末を3g加え、混合した後、常温(23℃)で1時間程度硬化させて硬化体を得た。その後、この硬化体を研磨する手順を用いた。研磨後に、硬化体のメディアが露出した部分に硬度測定を行った。測定は、ダイナミック超微小硬度計DUH-211Sを用いて行った。測定圧子が稜間角115°で、三角すい圧子(ダイヤモンド製)で、試験力が49(mN)で、負荷速度が2.665(mN/秒)で、保持時間が5秒の条件で測定した。測定回数は10点行い、その平均値の測定を行った。
(Media hardness)
The hardness of the media used in the blasting process was measured by measuring the hardness by the load-unloading test. First, the media to be measured was fixed with an embedded resin (Technovit4004 manufactured by Kulzer), and the surface was polished. Specifically, 3 g of Al 2 O 3 powder is added to 1 g of a resin obtained by mixing a liquid curing resin and a curing agent at a ratio of 3: 1 (mass ratio), and after mixing, the temperature is 1 hour at room temperature (23 ° C). It was cured to some extent to obtain a cured product. Then, the procedure of polishing this cured product was used. After polishing, the hardness was measured on the exposed portion of the cured media. The measurement was performed using a dynamic ultrafine hardness tester DUH-211S. Measured under the conditions that the measuring indenter has a ridge angle of 115 °, a triangular cone indenter (made of diamond), a test force of 49 (mN), a load speed of 2.665 (mN / sec), and a holding time of 5 seconds. did. The number of measurements was 10 points, and the average value was measured.
 調整したブラスト液を、圧縮空気の圧力(投射圧)を0.2MPaとして、表1に示す時間で未処理被覆層に投射し、被覆工具を得た。なお、ブラスト液は、第1面および第2面の切削に関与する領域に対して投射した。切削に関与する領域は、切刃から第1面および第2面の方向に1mm未満の領域とした。 The adjusted blast liquid was projected onto the untreated coating layer at the time shown in Table 1 at a pressure (projection pressure) of compressed air of 0.2 MPa to obtain a coating tool. The blast liquid was projected onto the regions involved in cutting on the first and second surfaces. The region involved in cutting was set to a region of less than 1 mm in the direction of the first surface and the second surface from the cutting edge.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 <評価>
 得られた被覆工具について、第1~第4破壊靭性値および第1~第4硬度を測定した。また、切削に関与する領域の(104)面の半価幅を測定した。さらに、得られた被覆工具を用いて切削評価を行い、耐欠損性を評価した。測定方法を以下に示すとともに、結果を表2および表3に示す。
<Evaluation>
The first to fourth fracture toughness values and the first to fourth hardness of the obtained coated tool were measured. In addition, the half width of the (104) plane of the region involved in cutting was measured. Furthermore, cutting evaluation was performed using the obtained covering tool, and the fracture resistance was evaluated. The measurement method is shown below, and the results are shown in Tables 2 and 3.
 (第1~第4破壊靭性値)
 鏡面加工した面に対してナノインデンターで押し込み試験を行い、得られた圧痕に対して電界放出型走査電子顕微鏡(FE-SEM)を用いてクラックの観察を行い、破壊靭性値を測定した。ナノインデンターとしては、株式会社エリオニクス社製の超微小押し込み硬さ試験機ENT-1100b/aを用いて測定を行った。押し込み荷重が700(mN)で、測定に用いる圧子は株式会社東洋テクニカ社製のバーコビッチ圧子ENT-20-13を用いて測定した。破壊靭性値は、JIS R 1607:2015に準拠して測定を行った。クラックの観察は日本電子株式会社製のJSM-7100Fを用いて行った。
(1st to 4th fracture toughness values)
A indentation test was performed on the mirrored surface with a nanoindenter, and cracks were observed in the obtained indentations using a field emission scanning electron microscope (FE-SEM), and the fracture toughness value was measured. As the nano indenter, the measurement was performed using an ultra-fine indentation hardness tester ENT-1100b / a manufactured by Elionix Inc. The indentation load was 700 (mN), and the indenter used for the measurement was measured using a Berkovich indenter ENT-20-13 manufactured by Toyo Technica Co., Ltd. The fracture toughness value was measured according to JIS R 1607: 2015. The cracks were observed using JSM-7100F manufactured by JEOL Ltd.
 Al23層がウェットブラスト処理によって露出している場合には、その露出しているAl23層の表面を鏡面研磨して得られた鏡面で破壊靭性値を測定した。Al23層が露出していない場合には、Al23層が露出するまで鏡面研磨処理を続けて、Al23層の露出した鏡面で破壊靭性値を測定した。 When the Al 2 O 3 layer was exposed by the wet blast treatment, the fracture toughness value was measured on the mirror surface obtained by mirror polishing the surface of the exposed Al 2 O 3 layer. If the Al 2 O 3 layer is not exposed, continues to mirror polishing process until the Al 2 O 3 layer is exposed, it was measured fracture toughness value specular exposed in the Al 2 O 3 layer.
 Ti系被覆層の破壊靭性値も、被覆層の表面からTi系被覆層が露出するまで鏡面研磨を施し、その露出したTi系被覆層の鏡面で測定した。 The fracture toughness value of the Ti-based coating layer was also measured on the mirror surface of the exposed Ti-based coating layer after mirror polishing was performed from the surface of the coating layer until the Ti-based coating layer was exposed.
 なお、鏡面研磨には、トーメイダイヤ株式会社製の平均粒径1.4μmのダイヤモンドペーストと、山桂産業株式会社製のオリーブオイルをペースト濃度が25質量%となるように調整したものを用いた。また、鏡面研磨は、基体の表面に対して鏡面が平行となるように行った。 For mirror polishing, a diamond paste having an average particle size of 1.4 μm manufactured by Tomei Diamond Co., Ltd. and olive oil manufactured by Sankei Sangyo Co., Ltd. adjusted to have a paste concentration of 25% by mass were used. .. Further, mirror polishing was performed so that the mirror surface was parallel to the surface of the substrate.
 (第1~第4硬度)
 ナノインデンターを用いた押し込み試験によって測定した。ナノインデンターとしては、株式会社エリオニクス社製の超微小押し込み硬さ試験機ENT-1100b/aを用いた。押し込み荷重が700(mN)で、測定に用いる圧子は株式会社東洋テクニカ社製のバーコビッチ圧子ENT-20-13を用いた。
(1st to 4th hardness)
Measured by indentation test using nano indenter. As the nanoindenter, an ultrafine indentation hardness tester ENT-1100b / a manufactured by Elionix Inc. was used. The pushing load was 700 (mN), and the indenter used for the measurement was a Berkovich indenter ENT-20-13 manufactured by Toyo Technica Co., Ltd.
 (切削に関与する領域の(104)面の半価幅)
 ウェットブラスト処理を施した面の切削に関与する領域の(104)面の半価幅を測定した。Al23層の(104)面は、JCPDSカード番号00-010-0173を基準とした。Al23層がウェットブラスト処理によって露出している場合には、その露出しているAl23層の表面を鏡面研磨して得られた鏡面でXRD測定を行った。Al23層が露出していない場合には、Al23層が露出するまで鏡面研磨処理を続けて、Al23層の露出した鏡面でXRD測定を行った。Al23層のXRD測定は表面の凹凸が少ない面を選んで行った。XRD測定は、株式会社リガク社製のMiniFlex600を用いて行った。測定条件は、特性X線をCuKβ線として、出力は40kV、15mAで、発信側ソーラースリット2.5°、長手制限スリット5.0mm、発散スリット0.625°で、スキャッタースリット8.0mm、受光側ソーラースリット2.5°、受光スリット13.0mmで、ステップ幅を0.01°、計測スピードを2.0°/分、スキャン角度を20°~90°で行った。
(Half width at half maximum of the (104) plane of the region involved in cutting)
The half width of the (104) surface of the region involved in the cutting of the wet blasted surface was measured. The (104) plane of the Al 2 O 3 layer was based on the JCPDS card number 00-010-0173. When the Al 2 O 3 layer was exposed by the wet blast treatment, XRD measurement was performed on the mirror surface obtained by mirror polishing the surface of the exposed Al 2 O 3 layer. When the Al 2 O 3 layer was not exposed, the mirror polishing process was continued until the Al 2 O 3 layer was exposed, and XRD measurement was performed on the exposed mirror surface of the Al 2 O 3 layer. The XRD measurement of the Al 2 O 3 layer was performed by selecting a surface having less unevenness on the surface. The XRD measurement was performed using a MiniFlex 600 manufactured by Rigaku Co., Ltd. The measurement conditions are that the characteristic X-ray is CuKβ ray, the output is 40 kV, 15 mA, the transmitting side solar slit is 2.5 °, the longitudinal limiting slit is 5.0 mm, the divergent slit is 0.625 °, and the scatter slit is 8.0 mm. The solar slit on the light receiving side was 2.5 °, the light receiving slit was 13.0 mm, the step width was 0.01 °, the measurement speed was 2.0 ° / min, and the scan angle was 20 ° to 90 °.
 (切削評価)
 断続切削試験を以下の条件で行った。
 被削材 :機械構造用炭素鋼(S45C 16本溝入り鋼材)
 工具形状:CNMG120408
 切削速度:48m/分
 送り速度:0.27mm/rev
 切り込み:1.0mm
 その他 :水溶性切削液使用
 評価項目:欠損に至る衝撃回数を測定
(Cutting evaluation)
The intermittent cutting test was performed under the following conditions.
Work material: Carbon steel for machine structure (S45C 16-grooved steel material)
Tool shape: CNMG120408
Cutting speed: 48m / min Feeding speed: 0.27mm / rev
Notch: 1.0 mm
Others: Use of water-soluble cutting fluid Evaluation item: Measure the number of impacts leading to defects
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 試料No.1は、未処理被覆層に対してブラスト液を投射する処理を行わなかった。言い換えると、試料No.1は、基体の上に被覆層を成膜しただけの被覆工具である。試料No.1のAl23層の破壊靭性値は、第1面および第2面ともに0.8MPa・m0.5であった。 Sample No. No. 1 did not perform the treatment of projecting the blast liquid onto the untreated coating layer. In other words, sample No. Reference numeral 1 denotes a coating tool in which a coating layer is simply formed on a substrate. Sample No. The fracture toughness value of the Al 2 O 3 layer of No. 1 was 0.8 MPa · m 0.5 on both the first and second surfaces.
 試料No.2は、角状セラミック粒子を含有するブラスト液を、第1面および第2面に投射したものである。試料No.2では、Al23層の破壊靭性値が、無処理の試料No.1よりも若干、高くなり、第1面および第2面ともに1.5MPa・m0.5であった。 Sample No. Reference numeral 2 is a projection of the blast liquid containing the angular ceramic particles onto the first surface and the second surface. Sample No. In No. 2, the fracture toughness value of the Al 2 O 3 layer was the untreated sample No. It was slightly higher than 1, and was 1.5 MPa · m 0.5 on both the first and second surfaces.
 試料No.3、4は、球状ジルコン(ZrSiO4)粒子を含有するブラスト液を、第1面および第2面に投射したものである。試料No.3、4では、Al23層の破壊靭性値が、無処理の試料No.1よりも若干、高くなり、第1面および第2面ともに1.5MPa・m0.5あるいは2.0MPa・m0.5であった。 Sample No. Reference numerals 3 and 4 are projections of a blast liquid containing spherical zircon (ZrSiO 4 ) particles onto the first and second surfaces. Sample No. In 3 and 4, the fracture toughness value of the Al 2 O 3 layer was the untreated sample No. Slightly larger than 1, the higher was 1.5 MPa · m 0.5 or 2.0 MPa · m 0.5 in both the first and second surfaces.
 試料No.1~4のAl23層の破壊靭性値は、いずれも低い値であった。 Sample No. The fracture toughness values of the Al 2 O 3 layers 1 to 4 were all low.
 これに対して、本開示の被覆工具である試料No.5~11のAl23層は、破壊靭性値が5.0MPa・m0.5以上あるいは6.5MPa・m0.5の領域を有しており、耐欠損性に優れている。 On the other hand, the sample No. which is the covering tool of the present disclosure. The Al 2 O 3 layer of 5-11, fracture toughness value has an area of 5.0 MPa · m 0.5 or more or 6.5 MPa · m 0.5, and excellent chipping resistance.
 なお、試料No.5~11における球状Al23粒子と、試料No.2における角状Al23粒子について、平均円形度を測定した。具体的には、まず、SEMで粒子像を撮影した後、画像解析ソフト(マウンテック社製の「Mac-View Version.4」)を用いて、粒子の投影面積(S)と周囲長(L)を測定した。次に、得られた測定値を、式:4πS/L2に当てはめて、円形度を算出した。円形度の算出は、任意に選んだ100個の粒子について行い、その平均値を平均円形度とした。平均円形度の測定結果は、以下のとおりである。 In addition, sample No. Spherical Al 2 O 3 particles in 5 to 11 and sample No. The average circularity was measured for the angular Al 2 O 3 particles in 2. Specifically, first, after taking a particle image with SEM, the projected area (S) and the peripheral length (L) of the particles are used using image analysis software (“Mac-View Version.4” manufactured by Mountech). Was measured. Next, the obtained measured value was applied to the formula: 4πS / L 2 to calculate the circularity. The circularity was calculated for 100 arbitrarily selected particles, and the average value was taken as the average circularity. The measurement results of the average circularity are as follows.
 (平均円形度)
 試料No.5~11における球状Al23粒子:0.90
 試料No.2における角状Al23粒子:0.74
(Average circularity)
Sample No. Spherical Al 2 O 3 particles in 5 to 11: 0.90
Sample No. Square Al 2 O 3 particles in 2: 0.74
  1・・・被覆工具
  2・・・基体
  3・・・被覆層
  4・・・表面
  5・・・第1面
  6・・・第2面
  7・・・切刃
  8・・・Al23
  9・・・表面
 10・・・Ti系被覆層
 11・・・TiN層(第1TiN層)
 12・・・TiN層(第2TiN層)
 13・・・貫通孔
101・・・切削工具
102・・・ホルダ
102a・・第1端
102b・・第2端
103・・・ポケット
104・・・固定ネジ
1 ... Covering tool 2 ... Base 3 ... Covering layer 4 ... Surface 5 ... First surface 6 ... Second surface 7 ... Cutting edge 8 ... Al 2 O 3 Layer 9 ... Surface 10 ... Ti-based coating layer 11 ... TiN layer (first TiN layer)
12 ... TiN layer (second TiN layer)
13 ... Through hole 101 ... Cutting tool 102 ... Holder 102a ... First end 102b ... Second end 103 ... Pocket 104 ... Fixing screw

Claims (3)

  1.  基体と、
     該基体の上に位置する被覆層と、を有する被覆工具の製造方法であって、
     前記基体の上に未処理被覆層を有する、未処理被覆工具を準備する第1工程と、
     前記未処理被覆層に対して、
      硬度(HV)が1000以上の球状セラミック粒子を衝突させる第2工程と、を有する、被覆工具の製造方法。
    With the substrate
    A method for manufacturing a coating tool having a coating layer located on the substrate.
    The first step of preparing an untreated coating tool having an untreated coating layer on the substrate, and
    For the untreated coating layer
    A method for manufacturing a covering tool, comprising a second step of colliding spherical ceramic particles having a hardness (HV) of 1000 or more.
  2.  前記球状セラミック粒子の平均粒径は、30μm以上、100μm以下である、請求項1に記載の被覆工具の製造方法。 The method for manufacturing a covering tool according to claim 1, wherein the average particle size of the spherical ceramic particles is 30 μm or more and 100 μm or less.
  3.  前記未処理被覆工具において、前記未処理被覆層は引張応力を有する、請求項1または2に記載の被覆工具の製造方法。 The method for manufacturing a covering tool according to claim 1 or 2, wherein in the untreated covering tool, the untreated covering layer has a tensile stress.
PCT/JP2021/023785 2020-06-30 2021-06-23 Method for manufacturing coated tool WO2022004523A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202180040569.9A CN115916454A (en) 2020-06-30 2021-06-23 Method for manufacturing coated cutting tool

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-112957 2020-06-30
JP2020112957 2020-06-30

Publications (1)

Publication Number Publication Date
WO2022004523A1 true WO2022004523A1 (en) 2022-01-06

Family

ID=79316084

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/023785 WO2022004523A1 (en) 2020-06-30 2021-06-23 Method for manufacturing coated tool

Country Status (2)

Country Link
CN (1) CN115916454A (en)
WO (1) WO2022004523A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013042790A1 (en) * 2011-09-22 2013-03-28 株式会社タンガロイ Surface-coated cutting tool
WO2017179218A1 (en) * 2016-04-14 2017-10-19 住友電工ハードメタル株式会社 Surface-coated cutting tool and manufacturing method therefor
WO2020002664A1 (en) * 2018-06-29 2020-01-02 Ab Sandvik Coromant Method of treating a cutting tool, and a cutting tool

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013042790A1 (en) * 2011-09-22 2013-03-28 株式会社タンガロイ Surface-coated cutting tool
WO2017179218A1 (en) * 2016-04-14 2017-10-19 住友電工ハードメタル株式会社 Surface-coated cutting tool and manufacturing method therefor
WO2020002664A1 (en) * 2018-06-29 2020-01-02 Ab Sandvik Coromant Method of treating a cutting tool, and a cutting tool

Also Published As

Publication number Publication date
CN115916454A (en) 2023-04-04

Similar Documents

Publication Publication Date Title
JP4854359B2 (en) Surface coated cutting tool
US10174421B2 (en) Coated tool
JP4942326B2 (en) Surface covering member and cutting tool using surface covering member
JP2013107200A (en) CUTTING TOOL INSERT COATED WITH TEXTURE-CURED α-ALUMINA
JP6604553B2 (en) Surface coated cutting tool
JP4711691B2 (en) Surface covering member and cutting tool
CN110799293B (en) Coated cutting tool, and method for manufacturing cut product
WO2022004523A1 (en) Method for manufacturing coated tool
WO2022004521A1 (en) Coated tool and cutting tool
WO2022004522A1 (en) Coated tool and cutting tool
WO2017057456A1 (en) Coated tool
CN106967960B (en) Hybrid nanocomposite coatings and applications thereof
JP2006205300A (en) Surface-coated member and cutting tool
US11969801B2 (en) Coated tool and cutting tool
WO2021193677A1 (en) Coated tool
JP4936742B2 (en) Surface coating tools and cutting tools
JP7441177B2 (en) Coated tools and cutting tools equipped with the same
JP7213888B2 (en) Coated tool and cutting tool with the same
WO2022085429A1 (en) Coated tool and cutting tool provided with same
JP7471440B2 (en) Coated tool and cutting tool equipped with same
US20240051033A1 (en) CUTTING TOOL WITH A TiAlN COATING HAVING RAKE AND RELIEF SURFACES WITH DIFFERENT RESIDUAL STRESSES
WO2020250626A1 (en) Cutting tool
WO2021020367A1 (en) Coated tool, and cutting tool comprising same
WO2021020368A1 (en) Coated tool, and cutting tool comprising same
WO2019146786A1 (en) Coated tool, and cutting tool comprising same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21832269

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21832269

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP