WO2022004415A1 - Method for producing optical fiber base material, and optical fiber base material - Google Patents

Method for producing optical fiber base material, and optical fiber base material Download PDF

Info

Publication number
WO2022004415A1
WO2022004415A1 PCT/JP2021/023094 JP2021023094W WO2022004415A1 WO 2022004415 A1 WO2022004415 A1 WO 2022004415A1 JP 2021023094 W JP2021023094 W JP 2021023094W WO 2022004415 A1 WO2022004415 A1 WO 2022004415A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical fiber
etching
base material
fiber base
glass pipe
Prior art date
Application number
PCT/JP2021/023094
Other languages
French (fr)
Japanese (ja)
Inventor
洋宇 佐久間
雄揮 川口
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to CN202180035885.7A priority Critical patent/CN115667162A/en
Priority to US18/008,471 priority patent/US20230202904A1/en
Priority to JP2022533852A priority patent/JPWO2022004415A1/ja
Publication of WO2022004415A1 publication Critical patent/WO2022004415A1/en
Priority to DKPA202270544A priority patent/DK202270544A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/018Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD] by glass deposition on a glass substrate, e.g. by inside-, modified-, plasma-, or plasma modified- chemical vapour deposition [ICVD, MCVD, PCVD, PMCVD], i.e. by thin layer coating on the inside or outside of a glass tube or on a glass rod
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/018Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD] by glass deposition on a glass substrate, e.g. by inside-, modified-, plasma-, or plasma modified- chemical vapour deposition [ICVD, MCVD, PCVD, PMCVD], i.e. by thin layer coating on the inside or outside of a glass tube or on a glass rod
    • C03B37/01861Means for changing or stabilising the diameter or form of tubes or rods
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01205Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
    • C03B37/01225Means for changing or stabilising the shape, e.g. diameter, of tubes or rods in general, e.g. collapsing
    • C03B37/01228Removal of preform material
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01205Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
    • C03B37/01225Means for changing or stabilising the shape, e.g. diameter, of tubes or rods in general, e.g. collapsing
    • C03B37/01248Means for changing or stabilising the shape, e.g. diameter, of tubes or rods in general, e.g. collapsing by collapsing without drawing
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01466Means for changing or stabilising the diameter or form of tubes or rods
    • C03B37/01473Collapsing
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/018Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD] by glass deposition on a glass substrate, e.g. by inside-, modified-, plasma-, or plasma modified- chemical vapour deposition [ICVD, MCVD, PCVD, PMCVD], i.e. by thin layer coating on the inside or outside of a glass tube or on a glass rod
    • C03B37/01861Means for changing or stabilising the diameter or form of tubes or rods
    • C03B37/01869Collapsing
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C25/00Surface treatment of fibres or filaments made from glass, minerals or slags
    • C03C25/66Chemical treatment, e.g. leaching, acid or alkali treatment
    • C03C25/68Chemical treatment, e.g. leaching, acid or alkali treatment by etching
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/06Glass compositions containing silica with more than 90% silica by weight, e.g. quartz
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/08Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant
    • C03B2201/12Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant doped with fluorine
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/20Doped silica-based glasses doped with non-metals other than boron or fluorine
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • C03B2201/50Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with alkali metals
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • C03B2201/54Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with beryllium, magnesium or alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2201/00Glass compositions
    • C03C2201/06Doped silica-based glasses
    • C03C2201/08Doped silica-based glasses containing boron or halide
    • C03C2201/11Doped silica-based glasses containing boron or halide containing chlorine
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2201/00Glass compositions
    • C03C2201/06Doped silica-based glasses
    • C03C2201/08Doped silica-based glasses containing boron or halide
    • C03C2201/12Doped silica-based glasses containing boron or halide containing fluorine
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2201/00Glass compositions
    • C03C2201/06Doped silica-based glasses
    • C03C2201/30Doped silica-based glasses containing metals
    • C03C2201/50Doped silica-based glasses containing metals containing alkali metals

Definitions

  • This disclosure relates to a method for manufacturing an optical fiber base material and an optical fiber base material.
  • This application claims priority based on Japanese Application No. 2020-115688 filed on July 3, 2020, and incorporates all the contents described in the Japanese application.
  • the core made of silica-based glass contains an alkali metal element or an alkaline earth metal element, the viscosity of the core is reduced when the optical fiber base material is drawn to manufacture the optical fiber, and the glass is regenerated. The sequence is promoted. Therefore, the transmission loss due to the ray scattering of the optical fiber is reduced. As a result, the transmission loss can be reduced.
  • Patent Document 1 Patent Document 2, and Patent Document 3 describe a method of adding a metal element or an alkaline earth metal element to the core portion of an optical fiber base material by a diffusion method.
  • the method for producing the optical fiber base material of the present disclosure is to add an alkali metal element or an alkaline earth metal element to the inner surface of a glass pipe made of silica-based glass, and to reduce the diameter of the glass pipe after the addition. It includes etching the inner surface of a series of longitudinal sections of the glass pipe after diameter and collapsing the glass pipe after etching. At least one of adding, reducing the diameter, etching, and collapsing involves locally etching the inner surface of a section of the glass pipe that is shorter than a series of sections.
  • the method for producing the optical fiber base material of the present disclosure is to add an alkali metal element or an alkaline earth metal element to the inner surface of a glass pipe made of silica-based glass, and to reduce the diameter of the glass pipe after the addition. Etching and etching the inner surface of a series of longitudinal sections of the glass pipe after diameter, and collapsing the glass pipe after etching, and between adding and reducing the diameter. This includes locally etching a section of the inner surface of the glass pipe that is shorter than a series of sections, and at least one of between etching and collapsing.
  • the optical fiber base material of the present disclosure is made of silica-based glass and includes a core portion containing an alkali metal element or an alkaline earth metal element, and the concentration of the alkali metal element or the alkaline earth metal element in the core portion is in the longitudinal direction. It is different for some parts and other parts.
  • the optical fiber base material of the present disclosure is made of silica-based glass and has a core portion containing an alkali metal element or an alkaline earth metal element, and the core portion contains bromine in a part or all in the longitudinal direction.
  • an alkali metal element or an alkaline earth metal element is added to the inner surface of a glass pipe made of silica-based glass, and the diameter of the glass pipe is reduced after the addition.
  • At least one of adding, reducing the diameter, etching, and collapsing involves locally etching the inner surface of a section of the glass pipe that is shorter than a series of sections.
  • local etching is shorter than the fixed length range within or outside the fixed length range in which the heat source moves during addition, reduction, etching, and collapse. It means etching limited to one or more sections. Even in a non-local etching process, the amount of glass to be scraped is not constant due to fluctuations in the moving speed of the heat source and changes in the flow of the etching gas, and there are minute fluctuations in the amount of glass to be scraped.
  • local etching is performed by intentionally changing conditions such as heat source temperature, etching gas flow rate, and heat source transfer speed during addition, diameter reduction, etching, and collapse, or addition, diameter reduction. , Etching, added separately during the collapse process.
  • an alkali metal element or an alkaline earth metal element is added to the inner surface of a glass pipe made of silica-based glass, and the glass pipe is shrunk after the addition.
  • any of the methods for manufacturing an optical fiber base material can be removed. Therefore, it is possible to prevent the defective portion from expanding due to the enlargement of the generated crystal and the fine particles scattered from the crystal causing crystals to be generated at other locations and the number of defective portions to increase. As a result, productivity can be improved while suppressing transmission loss by adding an alkali metal element or an alkaline earth metal element.
  • Local etching may be performed on one or more points in a series of sections. In this case, defective parts such as crystallization generated in the part to be a product can be removed.
  • Local etching may be performed on one or more locations other than a series of sections. In this case, defective parts such as crystallization generated in parts other than the parts to be made into products can be removed.
  • the optical fiber base material according to the embodiment of the present disclosure is made of silica-based glass, includes a core portion containing an alkali metal element or an alkaline earth metal element, and the concentration of the alkali metal element or the alkaline earth metal element in the core portion. Is different for a part in the longitudinal direction and a part other than a part.
  • the concentration of alkali metal element or alkaline earth metal element is locally low due to the effect of local etching.
  • the difference in transmission loss at a wavelength of 1550 nm is small between the optical fiber derived from the locally etched portion and the optical fiber derived from the locally etched portion.
  • the optical fiber base material according to the embodiment of the present disclosure is made of silica-based glass, includes a core portion containing an alkali metal element or an alkaline earth metal element, and the core portion contains bromine in a part or all in the longitudinal direction. Includes.
  • the glass viscosity can be lowered due to the effect of the addition of bromine, and the transmission loss becomes lower than that in the case where the bromine is not added.
  • FIG. 1 is a flowchart illustrating a method for manufacturing an optical fiber according to the present embodiment.
  • the optical fiber includes a preparation process S1, an addition process S2, a diameter reduction process S3, an etching process S4, a collapse process S5, a drawing grinding process S6, a rod-in collapse process S7, an OVD (Outside Vapor Deposition) process S8, and a drawing process S9. Manufactured in order.
  • the optical fiber base material 10 (see FIG. 3) is manufactured through a preparation step S1, an addition step S2, a diameter reduction step S3, an etching step S4, a collapse step S5, a draw grinding step S6, a rod in collapse step S7, and an OVD step S8.
  • the method for manufacturing the optical fiber base material according to the present embodiment includes the preparation step S1, the addition step S2, the diameter reduction step S3, the etching step S4, the collapse step S5, the draw grinding step S6, the rod in collapse step S7, and the OVD step. Including S8.
  • the preparation step S1 is a step of preparing a glass pipe to diffuse the alkali metal group as a dopant.
  • the alkali metal group is a general term for alkali metal elements and alkaline earth metal elements.
  • the glass pipe is made of silica (quartz) glass.
  • the silica-based glass rod that is the basis of this glass pipe is manufactured by, for example, the VAD (Vapor phase axial depression) method.
  • a pipe is manufactured by making a hole in the cylinder and then stretching it.
  • the silica-based glass rod that forms the basis of the glass pipe contains a certain concentration of chlorine and fluorine.
  • the mass fraction of other dopants and impurities is 10 ppm or less.
  • the mass fraction is the ratio of the mass of the element of interest to the total mass, and is expressed as (mass of the element of interest) / (total mass).
  • the mass fraction is referred to as "concentration".
  • the outer diameter (2d) of the glass pipe is 30 mm or more and 50 mm or less.
  • the inner diameter (2i) of the glass pipe is 10 mm or more and 30 mm or less.
  • the glass pipe contains chlorine having an average concentration of 0 or more and 2500 ppm or less, and fluorine having an average concentration of 1000 ppm or more and 5000 ppm or less.
  • the concentration of dopants and impurities other than chlorine and fluorine in the glass pipe is 10 ppm or less.
  • the average concentration is, for example, the concentration represented by the following formula in the case of the average chlorine concentration.
  • Cl (r) represents the local chlorine concentration at the position of the radius r.
  • i represents the inner radius of the glass pipe.
  • d represents the outer radius of the glass pipe.
  • the local concentration is measured by an electron probe microanalyzer (EPMA) as a concentration at each position along a straight line passing through a central position on an end face of a glass pipe and a glass rod.
  • EPMA electron probe microanalyzer
  • the conditions for measurement by EPMA are, for example, an acceleration voltage of 20 kV, a probe beam diameter of 1 ⁇ m or less, and a measurement interval of 100 nm or less.
  • the addition step S2 is a step of adding an alkali metal group to the inner surface of a glass pipe made of silica-based glass.
  • potassium (K) element for example, potassium bromide (KBr) of 6 g or more and 20 g or less is used as a raw material.
  • KBr potassium bromide
  • one or more of KBr, potassium iodide (KI), rubidium bromide (RbBr), rubidium iodide (RbI) and the like may be used as a raw material.
  • FIG. 2 is a diagram illustrating an addition process.
  • a handling glass pipe 5 arranged in the electric furnace 2 is connected to one end of the glass pipe 1.
  • a part of the handling glass pipe 5 is used as a raw material reservoir, and the raw material 3 is installed.
  • a part of the glass pipe 1 may be used as a raw material reservoir.
  • An oxyhydrogen burner 4 is arranged outside the glass pipe 1.
  • the electric furnace 2 is an external heat source for heating the raw material 3
  • the oxyhydrogen burner 4 is an external heat source for heating the glass pipe 1.
  • an induction furnace, a resistance furnace, or the like may be used.
  • the raw material 3 is heated to a temperature of 700 ° C. or higher and 850 ° C. or lower by the electric furnace 2 to generate raw material steam.
  • the glass pipe 1 is heated from the outside by the oxyhydrogen burner 4 while introducing the generated raw material vapor into the inside of the glass pipe 1 together with the carrier gas composed of oxygen.
  • the flow rate of the carrier gas is 1 SLM (volume in the standard state (25 ° C., 100 kPa) of the gas flowing per minute) or more and 3 SLM or less.
  • the glass pipe 1 is heated by moving the oxyhydrogen burner 4 (external heat source) along the longitudinal direction of the glass pipe 1.
  • the heating of the glass pipe 1 is performed by traversing the oxyhydrogen burner 4 at a speed of 30 mm / min or more and 60 mm / min or less so that the temperature of the outer surface of the glass pipe 1 becomes 1400 ° C. or higher and 2000 ° C. or lower for a total of 8 turns. It will be done in 15 turns or less. As a result, the alkali metal group is diffusely added to the inner surface of the glass pipe 1.
  • the diameter reduction step S3 is a step of reducing the diameter of the glass pipe to which the alkali metal group is added after the addition step S2.
  • the glass pipe is heated from the outside by an external heat source while oxygen is flowing inside the glass pipe at 0.5 SLM or more and 1.0 SLM or less.
  • the glass pipe is heated by moving the external heat source along the longitudinal direction of the glass pipe.
  • the heating of the glass pipe is performed in a total of 6 turns or more and 10 turns or less by traversing an external heat source so that the outer surface of the glass pipe becomes 1300 ° C. or higher and 2000 ° C. or lower.
  • the glass pipe is reduced in diameter until the inner diameter is 3 mm or more and 5 mm or less.
  • the etching step S4 is a step of etching the inner surface of a series of longitudinal sections of the glass pipe after the diameter reduction step S3.
  • the glass pipe is heated from the outside by an external heat source. Gas phase etching is performed. By doing so, it is possible to scrape the inner surface of the pipe containing impurities added together with the target dopant at a high concentration, and it is possible to remove these impurities.
  • the glass pipe is heated by moving the external heat source along the longitudinal direction of the glass pipe. The heating of the glass pipe is performed in a total of 1 turn or more and 5 turns or less by traversing an external heat source so that the outer surface of the glass pipe becomes 1300 ° C. or higher and 2000 ° C. or lower.
  • the collapse step S5 is a step of collapsing the glass pipe after the etching step S4.
  • a mixed gas of oxygen (0.1 SLM or more and 0.5 SLM or less) and He (0.5 SLM or more and 1.0 SLM or less) is introduced into the glass pipe, and the absolute pressure in the glass pipe is reduced to 97 kPa or less while reducing the surface surface.
  • the temperature is set to 2000 or more and 2300 ° C. or less, and the glass pipe is closed. As a result, the glass pipe is solidified, and a glass rod (medium substance) having a diameter (outer diameter) of 20 mm or more and 40 mm or less can be obtained.
  • the glass rod is stretched to have a diameter of 20 mm or more and 25 mm or less, and the outer peripheral portion of the glass rod is further ground to have a diameter of 15 mm or more and 20 mm or less.
  • the glass rod (core rod) thus obtained becomes the core portion 11 (see FIG. 3) of the optical fiber base material 10.
  • a core layer containing no alkali metal group may be provided around the core portion 11 by a known method such as an OVD method or a collapse method.
  • the first clad portion 12 (see FIG. 3) is provided on the outside of the core portion 11.
  • a rod-in-collapsing method is used in which the core portion 11 is inserted inside a glass pipe of silica-based glass containing fluorine, and both are heated and integrated by an external heat source.
  • the water content of the core portion 11 and the first clad portion 12 in the vicinity thereof can be suppressed to be sufficiently low.
  • a rod in which the core portion 11 and the first clad portion 12 are integrated is stretched to have a predetermined diameter, and then a second clad portion 13 (see FIG. 3) containing fluorine is attached to the outside of the rod.
  • the optical fiber base material 10 is manufactured by synthesizing by the OVD method.
  • an optical fiber can be obtained by drawing the optical fiber base material 10.
  • the drawing speed is 800 m / min or more and 2300 m / min or less, and the drawing tension is, for example, 0.5 N.
  • the alkali metal group is added to the inner surface of the glass pipe.
  • the glass pipe contains chlorine and fluorine for the suppression of glass defects and the adjustment of the refractive index. Therefore, chlorides and fluorides of the alkali metal group may be generated, and the surrounding silica glass may crystallize with them as nuclei. If the crystallization of silica glass is left unattended and the addition step S2 is advanced, the size of the defective portion increases due to the increase in size of the crystals, and the yield decreases. In addition, the defective portion (crystal portion) may generate crystals having fine particles as nuclei in other portions by scattering fine particles such as glass. As the process of forming the defective portion, there are various cases where not only the case caused by chloride and fluoride but also the case where a minute foreign substance flowing from the upstream of the glass pipe becomes a nucleus.
  • the above-mentioned crystallization may occur in any step from the addition step S2 to the collapse step S5.
  • the problem is that the defective part expands due to the enlargement of the generated crystal, and the fine particles scattered from the crystal cause crystals to be generated at other parts and the number of defective parts increases.
  • the section of the glass pipe shorter than a series of sections is included. Additional local etching is performed only on the surface. The local etching is performed in at least one of the addition step S2, the diameter reduction step S3, the etching step S4, and the collapse step S5. Local etching is performed in at least one of the addition step S2 and the diameter reduction step S3, the diameter reduction step S3 and the etching step S4, and the etching step S4 and the collapse step S5. You may.
  • the defective part which is an abnormal part
  • the defective part By performing additional local etching, it is possible to prevent the defective part, which is an abnormal part, from expanding, and the defective part from being generated at other parts to increase the number of defective parts.
  • Most of the abnormal parts scatter light unlike the normal parts. Therefore, the abnormal portion can be identified by irradiating the light and detecting the scattered light. Local etching may be performed until no light scattering due to the abnormal portion is observed. However, even if the abnormal part is not completely removed, it may be possible to suppress the scattering to other parts by reducing the size of the abnormal part.
  • the alkali metal group added in the addition step S2 may be removed by etching, and the concentration of the alkali metal group may change locally.
  • the concentration of the alkali metal group may change locally.
  • the optical fiber after drawing only the portion having different characteristics becomes a defective portion, so that the reduction in yield can be minimized. Therefore, it is possible to improve the productivity while suppressing the transmission loss by adding the alkali metal group.
  • Local etching is performed on one or more locations within the moving range of an external heat source such as an oxyhydrogen burner in the addition step S2, the diameter reduction step S3, and the etching step S4.
  • Local etching is effective not only for the moving range of the external heat source but also for the abnormal part such as a crystal generated outside the moving range of the external heat source. This is because the fine particles may be scattered from the abnormal portion generated outside the moving range of the external heat source, causing crystals to be generated in other places. Therefore, the local etching may be performed on one or more locations outside the moving range of the external heat source such as the oxyhydrogen burner in the addition step S2, the diameter reduction step S3, and the etching step S4.
  • the local etching is a gas phase etching, in which a mixed gas of SF 6 (0.1 SLM or more and 0.4 SLM or less) and chlorine (0.5 SLM or more and 1.0 SLM or less) is introduced into the glass pipe while being introduced to the outside. This is done by heating the glass pipe with a heat source.
  • the local etching may be performed with the external heat source fixed at the location of the abnormal portion, or may be performed while moving the external heat source.
  • a mixed gas of SF 6 and bromine may be used instead of the mixed gas of SF 6 and chlorine.
  • the gas flowing in the step is temporarily stopped and the above-mentioned flow rate of SF 6 and chlorine is flowed.
  • Local etching may be performed. Local etching is performed with the surface temperature of the pipe set to 1000 ° C. or higher and 1500 ° C. or lower by an external heat source.
  • FIG. 3 is a cross-sectional view of the optical fiber base material according to the present embodiment.
  • the optical fiber base material 10 includes a core portion 11, a first clad portion 12, and a second clad portion 13.
  • the core portion 11 is made of silica-based glass.
  • the core portion 11 contains an alkali metal group, chlorine, and fluorine.
  • the average concentration of the alkali metal group in the core portion 11 is 10 ppm or more and 100 ppm or less.
  • the average concentration of chlorine in the core portion 11 is 50 ppm or more and 2000 ppm or less.
  • the average concentration of fluorine in the core portion 11 is 2000 ppm or more and 3500 ppm or less.
  • the concentration of the alkali metal group in the core portion 11 is different from the portion other than the portion in the longitudinal direction.
  • the concentration of the alkali metal group in the portion where the local etching is performed is lower than the concentration of the alkali metal group in the other portion.
  • the core portion 11 contains bromine in part or all of the longitudinal direction. Bromine is contained in the center of the core portion 11.
  • the first clad portion 12 is provided on the outside of the core portion 11 and surrounds the core portion 11.
  • the first clad portion 12 is made of silica-based glass.
  • the first clad portion 12 contains fluorine.
  • the difference in the refractive index standardized by the refractive index of the pure silica glass between the core portion 11 and the first clad portion 12 is about 0.34% at the maximum.
  • the second clad portion 13 is provided on the outside of the first clad portion 12 and surrounds the first clad portion 12.
  • the second clad portion 13 is made of silica-based glass.
  • the second clad portion 13 contains fluorine.
  • Table 1 is a table summarizing the specifications and evaluation results of Prototype Example 1 to Prototype Example 6.
  • “Cl concentration [ppm]” in Table 1 indicates the average chlorine concentration contained in the glass rod after the collapse step S5 is completed.
  • “F concentration [ppm]” indicates the average fluorine concentration contained in the glass rod after the collapse step S5 is completed.
  • K concentration [ppm]” indicates the average potassium concentration contained in the glass rod after the collapse step S5 is completed.
  • the “abnormal number of parts” indicates the number of abnormal parts such as crystals remaining on the glass rod after the collapse step S5 is completed.
  • “Local etching” indicates the presence or absence of local etching and the etching gas used when there is.
  • “Raw material” indicates a raw material used in the addition step S2.
  • Prototype 1 to Prototype 6 15 g of KBr was used as a raw material in the addition step S2. In Prototype 1 to Prototype 4, local etching was not performed. From the evaluation results of Prototype Example 1 to Prototype Example 4, it was found that the higher the total value of the average chlorine concentration and the average fluorine concentration in the glass pipe, the larger the number of abnormal parts when local etching was not performed. ..
  • Prototype 5 and Prototype 6 local etching was performed using the etching gas as a mixed gas of SF 6 and chlorine. Local etching may be performed immediately when an abnormality occurs, or it may be performed after one or more steps.
  • local etching was performed on the abnormal portion within the moving range of the external heat source in the addition step S2, the diameter reduction step S3, and the etching step S4.
  • the number of abnormal copies could be reduced to 3.
  • local etching was performed not only within the moving range of the external heat source in the addition step S2, the diameter reducing step S3, and the etching step S4, but also on the abnormal portion generated outside the moving range. In Prototype Example 6, the number of abnormal copies could be reduced to zero.
  • An optical fiber was obtained by drawing an optical fiber base material manufactured using the glass rods of Prototype Example 5 and Prototype Example 6. Also in Prototype 5 and Prototype 6 in which local etching was performed, an optical fiber having a transmission loss at a wavelength of 1550 nm of 0.148 dB / km or more and 0.150 dB / km or less was obtained over the entire length of the optical fiber base material. rice field. From this, it was found that there was no significant difference in transmission loss between the portion where the local etching was performed and the portion where the local etching was not performed. This is presumed to be due to the following reasons. That is, in the portion where the local etching is performed, the potassium concentration is reduced, so that the Rayri scattering loss is increased. However, since the inner surface of the glass pipe is smoothed by the extra heating, the loss due to the structural irregularity in the subsequent collapse step S5 is reduced.
  • Table 2 is a table summarizing the specifications and evaluation results of Prototype Example 7 to Prototype Example 12.
  • “Rb concentration [ppm]” in Table 2 indicates the average rubidium concentration contained in the glass rod after the collapse step S5 is completed. The other items are the same as those in Table 1.
  • the average rubidium concentration is obtained by the above formula after measuring the local concentration using the above-mentioned EPMA, similarly to the average chlorine concentration and the average fluorine concentration.
  • Prototype 7 to 12 15 g of RbBr was used as a raw material in the addition step S2. In Prototype Example 7 to Prototype Example 10, local etching was not performed. From the evaluation results of Prototype Example 7 to Prototype Example 10, it was found that the higher the total value of the average chlorine concentration and the average fluorine concentration in the glass pipe, the larger the number of abnormal parts when local etching was not performed. ..
  • Prototype 11 and Prototype 12 local etching was performed in the same manner as in Prototype 5 and Prototype 6.
  • Prototype Example 11 local etching was performed on the abnormal portion within the moving range of the external heat source in the addition step S2 and the diameter reduction step S3.
  • the number of abnormal copies could be reduced to 2.
  • Prototype Example 12 local etching was performed not only within the moving range of the external heat source in the addition step S2, the diameter reducing step S3, and the etching step S4, but also on the abnormal portion generated outside the moving range. In Prototype Example 12, the number of abnormal copies could be reduced to 1.
  • Table 3 is a table summarizing the specifications and evaluation results of Prototype Example 13 to Prototype Example 18. Each item in Table 3 is the same as in Table 1.
  • Prototype 13 to 18 15 g of KI was used as a raw material in the addition step S2. In Prototype 13 to 16, local etching was not performed. From the evaluation results of Prototype Example 13 to Prototype Example 16, it was found that the higher the total value of the average chlorine concentration and the average fluorine concentration in the glass pipe, the larger the number of abnormal parts when local etching was not performed. ..
  • Prototype 17 and Prototype 18 local etching was performed in the same manner as in Prototype 5 and Prototype 6.
  • Prototype Example 17 local etching was performed on the abnormal portion within the moving range of the external heat source in the addition step S2 and the diameter reduction step S3.
  • the number of abnormal copies could be reduced to 3.
  • Prototype Example 18 local etching was performed not only within the moving range of the external heat source in the addition step S2, the diameter reducing step S3, and the etching step S4, but also on the abnormal portion generated outside the moving range. In Prototype Example 18, the number of abnormal copies could be reduced to 1.
  • Table 4 is a table summarizing the specifications and evaluation results of Prototype Example 19 to Prototype Example 24. “Rb concentration [ppm]” in Table 4 indicates the average rubidium concentration contained in the glass rod after the collapse step S5 is completed. The other items are the same as those in Table 1.
  • Prototype 19 to 24 two types of KBr and RbBr were used as raw materials in the addition step S2, and the total mass was unified to 15 g. In Prototype 19 to 22, no local etching was performed. From the evaluation results of Prototype Example 19 to Prototype Example 22, it was found that the higher the total value of the average chlorine concentration and the average fluorine concentration in the glass pipe, the larger the number of abnormal parts when local etching was not performed. ..
  • Prototype 23 and Prototype 24 local etching was performed in the same manner as in Prototype 5 and Prototype 6. In Prototype Example 23, local etching was performed on the abnormal portion within the moving range of the external heat source in the addition step S2 and the diameter reduction step S3. In Prototype Example 23, the number of abnormal copies could be reduced to 2. In Prototype Example 24, local etching was performed not only within the moving range of the external heat source in the addition step S2, the diameter reducing step S3, and the etching step S4, but also on the abnormal portion generated outside the moving range. In Prototype Example 24, the number of abnormal copies could be reduced to 1.
  • Table 5 is a table summarizing the specifications and evaluation results of the prototype 25 to the prototype 30.
  • “Br concentration [ppm]” in Table 5 indicates the bromine concentration detected from the center of the glass rod (medium substance) after the collapse step S5 is completed. The other items are the same as those in Table 1.
  • the bromine concentration can be determined using the above-mentioned EPMA.
  • Prototype Example 25 to Prototype 28 15 g of KBr was used as a raw material in the addition step S2. In Prototype Example 25 to Prototype 28, local etching was not performed. In Prototype 29 and Prototype 30, local etching was performed in the same manner as in Prototype 5 and Prototype 6 except that the etching gas was a mixed gas of SF 6 and bromine. In Prototype Example 29, local etching was performed on the abnormal portion within the moving range of the external heat source in the addition step S2 and the diameter reduction step S3. In Prototype Example 29, the number of abnormal copies could be reduced to 1.
  • Prototype Example 30 local etching was performed not only within the moving range of the external heat source in the addition step S2, the diameter reducing step S3, and the etching step S4, but also on the abnormal portion generated outside the moving range. In Prototype Example 30, the number of abnormal copies could be reduced to zero.
  • An optical fiber was obtained by drawing an optical fiber base material manufactured using the glass rods of Prototype Example 29 and Prototype Example 30.
  • the transmission loss at a wavelength of 1550 nm was 0.148 dB / km or more and 0.149 dB / km or less.
  • the transmission loss at a wavelength of 1550 nm was 0.147 dB / km.
  • bromine is added because the result is that the transmission loss of the locally etched part is lower than the transmission loss of the locally etched part. It is considered that this is because the glass viscosity is lowered and the ray scattering loss is lowered.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Glass Compositions (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

This method for producing an optical fiber base material includes: adding an alkali metal element or an alkaline earth metal element to the inner surface of a glass pipe comprising a silica-based glass; reducing the diameter of the glass pipe following the addition; etching the inner surface in a series of regions in the longitudinal direction of the glass pipe following the diameter reduction; and collapsing the glass pipe following the etching. At least one of the addition, the diameter reduction, the etching and the collapsing includes locally etching the inner surface a region that is shorter than the series of regions in the glass pipe.

Description

光ファイバ母材の製造方法及び光ファイバ母材Manufacturing method of optical fiber base material and optical fiber base material
 本開示は、光ファイバ母材の製造方法及び光ファイバ母材に関する。本出願は、2020年7月3日出願の日本出願第2020-115688号に基づく優先権を主張し、前記日本出願に記載された全ての記載内容を援用するものである。 This disclosure relates to a method for manufacturing an optical fiber base material and an optical fiber base material. This application claims priority based on Japanese Application No. 2020-115688 filed on July 3, 2020, and incorporates all the contents described in the Japanese application.
 シリカ系ガラスからなるコア部がアルカリ金属元素又はアルカリ土類金属元素を含んでいると、光ファイバ母材を線引して光ファイバを製造する際にコアの粘性が低減されるともにガラスの再配列が促進される。よって、光ファイバのレイリ散乱起因の伝送損失が低減される。その結果、伝送損失を下げることができる。 If the core made of silica-based glass contains an alkali metal element or an alkaline earth metal element, the viscosity of the core is reduced when the optical fiber base material is drawn to manufacture the optical fiber, and the glass is regenerated. The sequence is promoted. Therefore, the transmission loss due to the ray scattering of the optical fiber is reduced. As a result, the transmission loss can be reduced.
 特許文献1、特許文献2、及び特許文献3には、拡散法により光ファイバ母材のコア部に金属元素又はアルカリ土類金属元素を添加する方法が記載されている。 Patent Document 1, Patent Document 2, and Patent Document 3 describe a method of adding a metal element or an alkaline earth metal element to the core portion of an optical fiber base material by a diffusion method.
国際公開第2004/020357号International Publication No. 2004/20357 国際公開第2005/021344号International Publication No. 2005/021344 国際公開第2013/111470号International Publication No. 2013/111470
 本開示の光ファイバ母材の製造方法は、シリカ系ガラスからなるガラスパイプの内表面にアルカリ金属元素又はアルカリ土類金属元素を添加することと、添加後にガラスパイプを縮径することと、縮径後にガラスパイプのうち長手方向の一連の区間の内表面をエッチングすることと、エッチング後にガラスパイプをコラプスすることと、を含む。添加すること、縮径すること、エッチングすること、及び、コラプスすることのうち少なくとも1つは、ガラスパイプのうち一連の区間よりも短い区間の内表面を局所的にエッチングすることを含む。 The method for producing the optical fiber base material of the present disclosure is to add an alkali metal element or an alkaline earth metal element to the inner surface of a glass pipe made of silica-based glass, and to reduce the diameter of the glass pipe after the addition. It includes etching the inner surface of a series of longitudinal sections of the glass pipe after diameter and collapsing the glass pipe after etching. At least one of adding, reducing the diameter, etching, and collapsing involves locally etching the inner surface of a section of the glass pipe that is shorter than a series of sections.
 本開示の光ファイバ母材の製造方法は、シリカ系ガラスからなるガラスパイプの内表面にアルカリ金属元素又はアルカリ土類金属元素を添加することと、添加後にガラスパイプを縮径することと、縮径後にガラスパイプのうち長手方向の一連の区間の内表面をエッチングすることと、エッチング後にガラスパイプをコラプスすることと、添加することと縮径することとの間、縮径することとエッチングすることの間、及び、エッチングすることとコラプスすることとの間のうち少なくとも1つにおいて、ガラスパイプの内表面のうち一連の区間よりも短い区間を局所的にエッチングすることと、を含む。 The method for producing the optical fiber base material of the present disclosure is to add an alkali metal element or an alkaline earth metal element to the inner surface of a glass pipe made of silica-based glass, and to reduce the diameter of the glass pipe after the addition. Etching and etching the inner surface of a series of longitudinal sections of the glass pipe after diameter, and collapsing the glass pipe after etching, and between adding and reducing the diameter. This includes locally etching a section of the inner surface of the glass pipe that is shorter than a series of sections, and at least one of between etching and collapsing.
 本開示の光ファイバ母材は、シリカ系ガラスからなり、アルカリ金属元素又はアルカリ土類金属元素を含むコア部を備え、コア部におけるアルカリ金属元素又はアルカリ土類金属元素の濃度は、長手方向の一部で一部以外の箇所に対して異なっている。 The optical fiber base material of the present disclosure is made of silica-based glass and includes a core portion containing an alkali metal element or an alkaline earth metal element, and the concentration of the alkali metal element or the alkaline earth metal element in the core portion is in the longitudinal direction. It is different for some parts and other parts.
 本開示の光ファイバ母材は、シリカ系ガラスからなり、アルカリ金属元素又はアルカリ土類金属元素を含むコア部を備え、コア部は、長手方向の一部又は全部において臭素を含んでいる。 The optical fiber base material of the present disclosure is made of silica-based glass and has a core portion containing an alkali metal element or an alkaline earth metal element, and the core portion contains bromine in a part or all in the longitudinal direction.
実施形態に係る光ファイバの製造方法を示すフローチャートである。It is a flowchart which shows the manufacturing method of the optical fiber which concerns on embodiment. 添加工程について説明する図である。It is a figure explaining the addition process. 実施形態に係る光ファイバ母材の断面図である。It is sectional drawing of the optical fiber base material which concerns on embodiment.
[本開示が解決しようとする課題]
 特許文献1、特許文献2、及び特許文献3に記載の方法では、ガラスパイプの内表面にアルカリ金属元素又はアルカリ土類金属元素を添加し始めた後、ガラスの結晶化が発生し、その部分が不良部になる場合がある。加えて、その結晶から微粒子が飛散し、他の部分にも不良部が広がる場合がある。
[Problems to be solved by this disclosure]
In the methods described in Patent Document 1, Patent Document 2, and Patent Document 3, crystallization of glass occurs after starting to add an alkali metal element or an alkaline earth metal element to the inner surface of a glass pipe, and the portion thereof. May become a defective part. In addition, the fine particles may be scattered from the crystal and the defective portion may spread to other parts.
 本開示は、伝送損失を抑制しながら、生産性を向上可能な光ファイバ母材の製造方法及び光ファイバ母材を提供することを目的とする。 It is an object of the present disclosure to provide a method for manufacturing an optical fiber base material and an optical fiber base material capable of improving productivity while suppressing transmission loss.
[本開示の効果]
 本開示によれば、伝送損失を抑制しながら、生産性を向上可能な光ファイバ母材の製造方法及び光ファイバ母材を提供することができる。
[Effect of this disclosure]
According to the present disclosure, it is possible to provide a method for manufacturing an optical fiber base material and an optical fiber base material capable of improving productivity while suppressing transmission loss.
[本開示の実施形態の説明]
 最初に本開示の実施態様を列記して説明する。本開示の一実施形態に係る光ファイバ母材の製造方法は、シリカ系ガラスからなるガラスパイプの内表面にアルカリ金属元素又はアルカリ土類金属元素を添加することと、添加後にガラスパイプを縮径することと、縮径後にガラスパイプのうち長手方向の一連の区間の内表面をエッチングすることと、エッチング後にガラスパイプをコラプスすることと、を含む。添加すること、縮径すること、エッチングすること、及び、コラプスすることのうち少なくとも1つは、ガラスパイプのうち一連の区間よりも短い区間の内表面を局所的にエッチングすることを含む。ここで、「局所的なエッチング」とは、添加、縮径、エッチング、コラプスを行う際に熱源が移動する一定の長さの範囲の中又は外での、当該一定長さの範囲よりも短い一あるいは複数区間に限定したエッチングを意味する。局所的でないエッチング工程においても、熱源の移動速度の変動やエッチング用ガスの流れの変化により削られるガラスの量は一定とはならず、削られるガラスの量には微小な変動が存在する。しかし、局所的なエッチングは、添加、縮径、エッチング、コラプスを実施中に、意図的に熱源温度、エッチング用ガス流量、熱源移動速度などの条件を変えて行われる、あるいは、添加、縮径、エッチング、コラプス工程の間に別途追加して実施される。
[Explanation of Embodiments of the present disclosure]
First, embodiments of the present disclosure will be listed and described. In the method for producing an optical fiber base material according to an embodiment of the present disclosure, an alkali metal element or an alkaline earth metal element is added to the inner surface of a glass pipe made of silica-based glass, and the diameter of the glass pipe is reduced after the addition. This includes etching the inner surface of a series of longitudinal sections of the glass pipe after diameter reduction and collapsing the glass pipe after etching. At least one of adding, reducing the diameter, etching, and collapsing involves locally etching the inner surface of a section of the glass pipe that is shorter than a series of sections. Here, "local etching" is shorter than the fixed length range within or outside the fixed length range in which the heat source moves during addition, reduction, etching, and collapse. It means etching limited to one or more sections. Even in a non-local etching process, the amount of glass to be scraped is not constant due to fluctuations in the moving speed of the heat source and changes in the flow of the etching gas, and there are minute fluctuations in the amount of glass to be scraped. However, local etching is performed by intentionally changing conditions such as heat source temperature, etching gas flow rate, and heat source transfer speed during addition, diameter reduction, etching, and collapse, or addition, diameter reduction. , Etching, added separately during the collapse process.
 本開示の他の実施形態に係る光ファイバ母材の製造方法は、シリカ系ガラスからなるガラスパイプの内表面にアルカリ金属元素又はアルカリ土類金属元素を添加することと、添加後にガラスパイプを縮径することと、縮径後にガラスパイプのうち長手方向の一連の区間の内表面をエッチングすることと、エッチング後にガラスパイプをコラプスすることと、添加することと縮径することとの間、縮径することとエッチングすることの間、及び、エッチングすることとコラプスすることとの間のうち少なくとも1つにおいて、ガラスパイプのうち一連の区間よりも短い区間の内表面を局所的にエッチングすることと、を含む。 In the method for producing an optical fiber base material according to another embodiment of the present disclosure, an alkali metal element or an alkaline earth metal element is added to the inner surface of a glass pipe made of silica-based glass, and the glass pipe is shrunk after the addition. Shrinking between scaling, etching the inner surface of a series of longitudinal sections of the glass pipe after shrinking, collapsing the glass pipe after etching, adding and shrinking. Locally etching the inner surface of a section of a glass pipe that is shorter than a series of sections in at least one of between calibrating and etching, and between etching and collapsing. And, including.
 いずれの実施形態に係る光ファイバ母材の製造方法でも、ガラスパイプの内表面に発生した結晶化等の不良部を取り除くことができる。よって、発生した結晶が大きくなることにより不良部が拡大すること、及び、結晶から飛散した微粒子により、他の箇所でも結晶が発生して不良部の数が増加することを抑制できる。その結果、アルカリ金属元素又はアルカリ土類金属元素の添加により伝送損失を抑制しながら、生産性を向上することができる。 In any of the methods for manufacturing an optical fiber base material according to any embodiment, defective parts such as crystallization generated on the inner surface of the glass pipe can be removed. Therefore, it is possible to prevent the defective portion from expanding due to the enlargement of the generated crystal and the fine particles scattered from the crystal causing crystals to be generated at other locations and the number of defective portions to increase. As a result, productivity can be improved while suppressing transmission loss by adding an alkali metal element or an alkaline earth metal element.
 局所的なエッチングは、一連の区間内の1箇所以上に対して行われてもよい。この場合、製品とする部分内で発生した結晶化等の不良部を取り除くことができる。 Local etching may be performed on one or more points in a series of sections. In this case, defective parts such as crystallization generated in the part to be a product can be removed.
 局所的なエッチングは、一連の区間以外の1箇所以上に対して行われてもよい。この場合、製品とする部分以外で発生した結晶化等の不良部を取り除くことができる。 Local etching may be performed on one or more locations other than a series of sections. In this case, defective parts such as crystallization generated in parts other than the parts to be made into products can be removed.
 本開示の一実施形態に係る光ファイバ母材は、シリカ系ガラスからなり、アルカリ金属元素又はアルカリ土類金属元素を含むコア部を備え、コア部におけるアルカリ金属元素又はアルカリ土類金属元素の濃度は、長手方向の一部で一部以外の箇所に対して異なっている。 The optical fiber base material according to the embodiment of the present disclosure is made of silica-based glass, includes a core portion containing an alkali metal element or an alkaline earth metal element, and the concentration of the alkali metal element or the alkaline earth metal element in the core portion. Is different for a part in the longitudinal direction and a part other than a part.
 この光ファイバ母材では、局所的にエッチングした影響でアルカリ金属元素又はアルカリ土類金属元素の濃度が局所的に低くなる。しかし、局所的なエッチングをした部分に由来する光ファイバと局所的なエッチングをしていない部分に由来する光ファイバとで、波長1550nmにおける伝送損失の差は小さい。 In this optical fiber base material, the concentration of alkali metal element or alkaline earth metal element is locally low due to the effect of local etching. However, the difference in transmission loss at a wavelength of 1550 nm is small between the optical fiber derived from the locally etched portion and the optical fiber derived from the locally etched portion.
 本開示の一実施形態に係る光ファイバ母材は、シリカ系ガラスからなり、アルカリ金属元素又はアルカリ土類金属元素を含むコア部を備え、コア部は、長手方向の一部又は全部において臭素を含んでいる。 The optical fiber base material according to the embodiment of the present disclosure is made of silica-based glass, includes a core portion containing an alkali metal element or an alkaline earth metal element, and the core portion contains bromine in a part or all in the longitudinal direction. Includes.
 この光ファイバ母材では、局所的にエッチングしたことにより、臭素が添加された影響でガラス粘性を低下でき、臭素が添加されていない場合と比較して低伝送損失になる。 In this optical fiber base material, by locally etching, the glass viscosity can be lowered due to the effect of the addition of bromine, and the transmission loss becomes lower than that in the case where the bromine is not added.
[本開示の実施形態の詳細]
 本開示の光ファイバ母材の製造方法及び光ファイバ母材の具体例を、以下に図面を参照しつつ説明する。なお、本開示はこれらの例示に限定されるものではなく、請求の範囲によって示され、請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。
[Details of Embodiments of the present disclosure]
The manufacturing method of the optical fiber base material and the specific example of the optical fiber base material of the present disclosure will be described below with reference to the drawings. It should be noted that the present disclosure is not limited to these examples, but is shown by the scope of claims and is intended to include all modifications within the meaning and scope equivalent to the scope of claims. In the description of the drawings, the same elements are designated by the same reference numerals, and duplicate description is omitted.
 図1は、本実施形態に係る光ファイバの製造方法を説明するフローチャートである。以下の説明では、具体的な条件の一例についても記載している。光ファイバは、準備工程S1、添加工程S2、縮径工程S3、エッチング工程S4、コラプス工程S5、延伸研削工程S6、ロッドインコラプス工程S7、OVD(Outside Vapor Deposition)工程S8及び線引工程S9を順に経て製造される。光ファイバ母材10(図3参照)は、準備工程S1、添加工程S2、縮径工程S3、エッチング工程S4、コラプス工程S5、延伸研削工程S6、ロッドインコラプス工程S7及びOVD工程S8を経て製造される。つまり、本実施形態に係る光ファイバ母材の製造方法は、準備工程S1、添加工程S2、縮径工程S3、エッチング工程S4、コラプス工程S5、延伸研削工程S6、ロッドインコラプス工程S7及びOVD工程S8を含む。 FIG. 1 is a flowchart illustrating a method for manufacturing an optical fiber according to the present embodiment. The following description also describes an example of specific conditions. The optical fiber includes a preparation process S1, an addition process S2, a diameter reduction process S3, an etching process S4, a collapse process S5, a drawing grinding process S6, a rod-in collapse process S7, an OVD (Outside Vapor Deposition) process S8, and a drawing process S9. Manufactured in order. The optical fiber base material 10 (see FIG. 3) is manufactured through a preparation step S1, an addition step S2, a diameter reduction step S3, an etching step S4, a collapse step S5, a draw grinding step S6, a rod in collapse step S7, and an OVD step S8. Will be done. That is, the method for manufacturing the optical fiber base material according to the present embodiment includes the preparation step S1, the addition step S2, the diameter reduction step S3, the etching step S4, the collapse step S5, the draw grinding step S6, the rod in collapse step S7, and the OVD step. Including S8.
 準備工程S1は、ドーパントとしてアルカリ金属群を拡散させるべきガラスパイプを準備する工程である。ここで、アルカリ金属群は、アルカリ金属元素及びアルカリ土類金属元素の総称である。ガラスパイプは、シリカ(石英)系ガラスからなる。このガラスパイプの元になるシリカ系ガラスロッドは、例えばVAD(Vapor phase axial deposition)法によって製造される。その円柱体に孔空けした後に延伸するなどしてパイプを製造する。ガラスパイプの元になるシリカ系ガラスロッドは、ある濃度の塩素及びフッ素を含む。その他のドーパント及び不純物の質量分率は10ppm以下である。ここで、質量分率は、全体の質量に対する注目する元素の質量の割合であり、(注目する元素の質量)/(全体の質量)で示される。以下では、質量分率を「濃度」という。 The preparation step S1 is a step of preparing a glass pipe to diffuse the alkali metal group as a dopant. Here, the alkali metal group is a general term for alkali metal elements and alkaline earth metal elements. The glass pipe is made of silica (quartz) glass. The silica-based glass rod that is the basis of this glass pipe is manufactured by, for example, the VAD (Vapor phase axial depression) method. A pipe is manufactured by making a hole in the cylinder and then stretching it. The silica-based glass rod that forms the basis of the glass pipe contains a certain concentration of chlorine and fluorine. The mass fraction of other dopants and impurities is 10 ppm or less. Here, the mass fraction is the ratio of the mass of the element of interest to the total mass, and is expressed as (mass of the element of interest) / (total mass). Hereinafter, the mass fraction is referred to as "concentration".
 ガラスパイプの外直径(2d)は、30mm以上50mm以下である。ガラスパイプの内直径(2i)は10mm以上30mm以下である。ガラスパイプは、平均濃度0以上2500ppm以下の塩素、及び、平均濃度1000ppm以上5000ppm以下のフッ素を含む。ガラスパイプにおける塩素及びフッ素以外のドーパント及び不純物の濃度は10ppm以下である。ここで、平均濃度とは、例えば、平均塩素濃度であれば、以下の式で表される濃度とする。 The outer diameter (2d) of the glass pipe is 30 mm or more and 50 mm or less. The inner diameter (2i) of the glass pipe is 10 mm or more and 30 mm or less. The glass pipe contains chlorine having an average concentration of 0 or more and 2500 ppm or less, and fluorine having an average concentration of 1000 ppm or more and 5000 ppm or less. The concentration of dopants and impurities other than chlorine and fluorine in the glass pipe is 10 ppm or less. Here, the average concentration is, for example, the concentration represented by the following formula in the case of the average chlorine concentration.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 上記式において、Cl(r)は、半径rの位置での局所的な塩素濃度を表す。iはガラスパイプの内半径を表す。dはガラスパイプの外半径を表す。なお、ガラスロッドの場合も、iを0とし、dをガラスロッドの外半径とすることで、上記式により平均濃度を表すことができる。局所的な濃度は、ガラスパイプ及びガラスロッドのある端面において、中心位置を通る直線に沿った各位置における濃度として、電子線マイクロアナライザ(EPMA: Electron Probe Micro Analyzer)によって測定される。EPMAによる測定の条件は、例えば、加速電圧が20kVであり、プローブビーム径が1μm以下であり、測定間隔が100nm以下である。 In the above formula, Cl (r) represents the local chlorine concentration at the position of the radius r. i represents the inner radius of the glass pipe. d represents the outer radius of the glass pipe. In the case of the glass rod as well, the average concentration can be expressed by the above formula by setting i to 0 and d to the outer radius of the glass rod. The local concentration is measured by an electron probe microanalyzer (EPMA) as a concentration at each position along a straight line passing through a central position on an end face of a glass pipe and a glass rod. The conditions for measurement by EPMA are, for example, an acceleration voltage of 20 kV, a probe beam diameter of 1 μm or less, and a measurement interval of 100 nm or less.
 添加工程S2は、シリカ系ガラスからなるガラスパイプの内表面にアルカリ金属群を添加する工程である。アルカリ金属群のドーパントとしてカリウム(K)元素を添加する場合、原料として、例えば、6g以上20g以下の臭化カリウム(KBr)を用いる。添加したいアルカリ金属群の種類によって、KBr、ヨウ化カリウム(KI)、臭化ルビジウム(RbBr)及びヨウ化ルビジウム(RbI)等の中から1つあるいは複数を原料として用いてもよい。 The addition step S2 is a step of adding an alkali metal group to the inner surface of a glass pipe made of silica-based glass. When the potassium (K) element is added as a dopant of the alkali metal group, for example, potassium bromide (KBr) of 6 g or more and 20 g or less is used as a raw material. Depending on the type of alkali metal group to be added, one or more of KBr, potassium iodide (KI), rubidium bromide (RbBr), rubidium iodide (RbI) and the like may be used as a raw material.
 図2は、添加工程について説明する図である。図2に示されるように、ガラスパイプ1の一端には、電気炉2内に配置されたハンドリングガラスパイプ5が接続される。ハンドリングガラスパイプ5の一部は、原料溜めとして使用され、原料3が設置される。ガラスパイプ1の一部を原料溜めとして使用してもよい。ガラスパイプ1の外部には酸水素バーナ4が配置される。電気炉2は、原料3を加熱するための外部熱源であり、酸水素バーナ4は、ガラスパイプ1を加熱するための外部熱源である。酸水素バーナ4の代わりに、誘導炉、又は抵抗炉等が用いられてもよい。 FIG. 2 is a diagram illustrating an addition process. As shown in FIG. 2, a handling glass pipe 5 arranged in the electric furnace 2 is connected to one end of the glass pipe 1. A part of the handling glass pipe 5 is used as a raw material reservoir, and the raw material 3 is installed. A part of the glass pipe 1 may be used as a raw material reservoir. An oxyhydrogen burner 4 is arranged outside the glass pipe 1. The electric furnace 2 is an external heat source for heating the raw material 3, and the oxyhydrogen burner 4 is an external heat source for heating the glass pipe 1. Instead of the oxyhydrogen burner 4, an induction furnace, a resistance furnace, or the like may be used.
 原料3を電気炉2により温度700℃以上850℃以下に加熱して、原料蒸気を発生させる。発生させた原料蒸気を酸素からなるキャリアガスと共にガラスパイプ1の内部に導入しながら、ガラスパイプ1を酸水素バーナ4によって外部から加熱する。キャリアガスの流量は、1SLM(一分間あたりに流れる気体の標準状態(25℃、100kPa)における体積)以上3SLM以下とされる。添加工程S2では、酸水素バーナ4(外部熱源)をガラスパイプ1の長手方向に沿って移動させることにより、ガラスパイプ1が加熱される。ガラスパイプ1の加熱は、ガラスパイプ1の外表面の温度が1400℃以上2000℃以下となるように、酸水素バーナ4を30mm/min以上60mm/min以下の速さでトラバースさせて合計8ターン以上15ターン以下で行われる。これにより、アルカリ金属群をガラスパイプ1の内表面に拡散添加させる。 The raw material 3 is heated to a temperature of 700 ° C. or higher and 850 ° C. or lower by the electric furnace 2 to generate raw material steam. The glass pipe 1 is heated from the outside by the oxyhydrogen burner 4 while introducing the generated raw material vapor into the inside of the glass pipe 1 together with the carrier gas composed of oxygen. The flow rate of the carrier gas is 1 SLM (volume in the standard state (25 ° C., 100 kPa) of the gas flowing per minute) or more and 3 SLM or less. In the addition step S2, the glass pipe 1 is heated by moving the oxyhydrogen burner 4 (external heat source) along the longitudinal direction of the glass pipe 1. The heating of the glass pipe 1 is performed by traversing the oxyhydrogen burner 4 at a speed of 30 mm / min or more and 60 mm / min or less so that the temperature of the outer surface of the glass pipe 1 becomes 1400 ° C. or higher and 2000 ° C. or lower for a total of 8 turns. It will be done in 15 turns or less. As a result, the alkali metal group is diffusely added to the inner surface of the glass pipe 1.
 縮径工程S3は、添加工程S2後にアルカリ金属群が添加されたガラスパイプを縮径する工程である。このとき、ガラスパイプの内部に酸素を0.5SLM以上1.0SLM以下流しながら、ガラスパイプを外部熱源によって外部から加熱する。縮径工程S3では、外部熱源をガラスパイプの長手方向に沿って移動させることにより、ガラスパイプが加熱される。ガラスパイプの加熱は、ガラスパイプの外表面が1300℃以上2000℃以下となるように、外部熱源をトラバースさせて合計6ターン以上10ターン以下で行われる。これにより、ガラスパイプは、内直径が3mm以上5mm以下になるまで縮径する。 The diameter reduction step S3 is a step of reducing the diameter of the glass pipe to which the alkali metal group is added after the addition step S2. At this time, the glass pipe is heated from the outside by an external heat source while oxygen is flowing inside the glass pipe at 0.5 SLM or more and 1.0 SLM or less. In the diameter reduction step S3, the glass pipe is heated by moving the external heat source along the longitudinal direction of the glass pipe. The heating of the glass pipe is performed in a total of 6 turns or more and 10 turns or less by traversing an external heat source so that the outer surface of the glass pipe becomes 1300 ° C. or higher and 2000 ° C. or lower. As a result, the glass pipe is reduced in diameter until the inner diameter is 3 mm or more and 5 mm or less.
 エッチング工程S4は、縮径工程S3後にガラスパイプのうち長手方向の一連の区間の内表面をエッチングする工程である。このとき、SF(0.2SLM以上0.4SLM以下)及び塩素(0.5SLM以上1.0SLM以下)の混合ガスをガラスパイプの内部に導入しながら、外部熱源によって外部からガラスパイプを加熱して気相エッチングを行う。このようにすることで、目的のドーパントと共に添加された不純物を高濃度に含むパイプ内表面を削ることができ、この不純物を除去することができる。エッチング工程S4では、外部熱源をガラスパイプの長手方向に沿って移動させることにより、ガラスパイプが加熱される。ガラスパイプの加熱は、ガラスパイプの外表面が1300℃以上2000℃以下となるように、外部熱源をトラバースさせて合計1ターン以上5ターン以下で行われる。 The etching step S4 is a step of etching the inner surface of a series of longitudinal sections of the glass pipe after the diameter reduction step S3. At this time, while introducing a mixed gas of SF 6 (0.2 SLM or more and 0.4 SLM or less) and chlorine (0.5 SLM or more and 1.0 SLM or less) into the inside of the glass pipe, the glass pipe is heated from the outside by an external heat source. Gas phase etching is performed. By doing so, it is possible to scrape the inner surface of the pipe containing impurities added together with the target dopant at a high concentration, and it is possible to remove these impurities. In the etching step S4, the glass pipe is heated by moving the external heat source along the longitudinal direction of the glass pipe. The heating of the glass pipe is performed in a total of 1 turn or more and 5 turns or less by traversing an external heat source so that the outer surface of the glass pipe becomes 1300 ° C. or higher and 2000 ° C. or lower.
 コラプス工程S5は、エッチング工程S4後にガラスパイプをコラプスする工程である。酸素(0.1SLM以上0.5SLM以下)及びHe(0.5SLM以上1.0SLM以下)の混合ガスをガラスパイプの内部に導入し、ガラスパイプ内の絶対圧を97kPa以下に減圧しながら、表面温度を2000以上2300℃以下として、ガラスパイプを閉塞させる。これにより、ガラスパイプが中実化され、直径(外径)20mm以上40mm以下のガラスロッド(中実体)が得られる。 The collapse step S5 is a step of collapsing the glass pipe after the etching step S4. A mixed gas of oxygen (0.1 SLM or more and 0.5 SLM or less) and He (0.5 SLM or more and 1.0 SLM or less) is introduced into the glass pipe, and the absolute pressure in the glass pipe is reduced to 97 kPa or less while reducing the surface surface. The temperature is set to 2000 or more and 2300 ° C. or less, and the glass pipe is closed. As a result, the glass pipe is solidified, and a glass rod (medium substance) having a diameter (outer diameter) of 20 mm or more and 40 mm or less can be obtained.
 延伸研削工程S6では、ガラスロッドを延伸して直径20mm以上25mm以下とし、更にガラスロッドの外周部を研削して直径15mm以上20mm以下とする。これにより得られたガラスロッド(コアロッド)は、光ファイバ母材10のコア部11(図3参照)となる。このコア部11の周りにOVD法又はコラプス法といった公知の方法でアルカリ金属群を含まないコア層を付与しても良い。 In the draw grinding step S6, the glass rod is stretched to have a diameter of 20 mm or more and 25 mm or less, and the outer peripheral portion of the glass rod is further ground to have a diameter of 15 mm or more and 20 mm or less. The glass rod (core rod) thus obtained becomes the core portion 11 (see FIG. 3) of the optical fiber base material 10. A core layer containing no alkali metal group may be provided around the core portion 11 by a known method such as an OVD method or a collapse method.
 ロッドインコラプス工程S7では、コア部11の外側に第1クラッド部12(図3参照)を設ける。このとき、フッ素を含むシリカ系ガラスのガラスパイプの内部にコア部11を挿入して、外部熱源によって両者を加熱し一体化するロッドインコラプス法を用いる。このロッドインコラプス法による第1クラッド部12の付加の結果、コア部11及びその近傍の第1クラッド部12の水分量は十分に低く抑制することが可能である。 In the rod incolapse step S7, the first clad portion 12 (see FIG. 3) is provided on the outside of the core portion 11. At this time, a rod-in-collapsing method is used in which the core portion 11 is inserted inside a glass pipe of silica-based glass containing fluorine, and both are heated and integrated by an external heat source. As a result of the addition of the first clad portion 12 by this rod incollapsing method, the water content of the core portion 11 and the first clad portion 12 in the vicinity thereof can be suppressed to be sufficiently low.
 OVD工程S8では、コア部11及び第1クラッド部12が一体化されてなるロッドを延伸して所定径とした後、そのロッドの外側にフッ素を含む第2クラッド部13(図3参照)をOVD法により合成して、光ファイバ母材10を製造する。 In the OVD step S8, a rod in which the core portion 11 and the first clad portion 12 are integrated is stretched to have a predetermined diameter, and then a second clad portion 13 (see FIG. 3) containing fluorine is attached to the outside of the rod. The optical fiber base material 10 is manufactured by synthesizing by the OVD method.
 線引工程S9では、光ファイバ母材10を線引することで光ファイバを得ることができる。線引き速度は800m/min以上2300m/min以下であり、線引き張力は、例えば0.5Nである。 In the drawing step S9, an optical fiber can be obtained by drawing the optical fiber base material 10. The drawing speed is 800 m / min or more and 2300 m / min or less, and the drawing tension is, for example, 0.5 N.
 上述のように、添加工程S2では、ガラスパイプの内表面にアルカリ金属群が添加される。ガラスパイプは、ガラス欠陥の抑制及び屈折率の調整のために、塩素及びフッ素を含んでいる。したがって、アルカリ金属群の塩化物及びフッ化物等が生成され、それらを核として周辺のシリカガラスが結晶化する場合がある。シリカガラスの結晶化を放置して添加工程S2を進めると、結晶が大きくなることにより、不良部のサイズが大きくなり、歩留まりが低下する。また、不良部(結晶部)は、ガラスなどの微粒子を飛散させることにより、微粒子を核とした結晶を他の箇所に発生させる場合がある。不良部の形成過程として、塩化物及びフッ化物等に起因する場合だけでなく、ガラスパイプの上流から流れてくる微小な異物が核になる場合等が様々存在する。 As described above, in the addition step S2, the alkali metal group is added to the inner surface of the glass pipe. The glass pipe contains chlorine and fluorine for the suppression of glass defects and the adjustment of the refractive index. Therefore, chlorides and fluorides of the alkali metal group may be generated, and the surrounding silica glass may crystallize with them as nuclei. If the crystallization of silica glass is left unattended and the addition step S2 is advanced, the size of the defective portion increases due to the increase in size of the crystals, and the yield decreases. In addition, the defective portion (crystal portion) may generate crystals having fine particles as nuclei in other portions by scattering fine particles such as glass. As the process of forming the defective portion, there are various cases where not only the case caused by chloride and fluoride but also the case where a minute foreign substance flowing from the upstream of the glass pipe becomes a nucleus.
 上述のような結晶化は、添加工程S2からコラプス工程S5までのどの工程でも起こる可能性がある。問題は、発生した結晶が大きくなることにより不良部が拡大すること、及び、結晶から飛散した微粒子により、他の箇所でも結晶が発生して不良部の数が増加することである。 The above-mentioned crystallization may occur in any step from the addition step S2 to the collapse step S5. The problem is that the defective part expands due to the enlargement of the generated crystal, and the fine particles scattered from the crystal cause crystals to be generated at other parts and the number of defective parts increases.
 そこで、本実施形態に係る光ファイバ母材の製造方法では、結晶化等の不良が起きた際、結晶部等の不良部を取り除くために、ガラスパイプのうち一連の区間よりも短い区間の内表面のみに対して局所的なエッチングが追加して行われる。局所的なエッチングは、添加工程S2、縮径工程S3、エッチング工程S4、及びコラプス工程S5のうち少なくとも1つの工程において行われる。局所的なエッチングは、添加工程S2と縮径工程S3との間、縮径工程S3とエッチング工程S4との間、及び、エッチング工程S4とコラプス工程S5との間のうち少なくとも1つにおいて行われてもよい。 Therefore, in the method for manufacturing an optical fiber base material according to the present embodiment, when a defect such as crystallization occurs, in order to remove the defective portion such as the crystal portion, the section of the glass pipe shorter than a series of sections is included. Additional local etching is performed only on the surface. The local etching is performed in at least one of the addition step S2, the diameter reduction step S3, the etching step S4, and the collapse step S5. Local etching is performed in at least one of the addition step S2 and the diameter reduction step S3, the diameter reduction step S3 and the etching step S4, and the etching step S4 and the collapse step S5. You may.
 局所的なエッチングが追加して行われることにより、異常部である不良部が拡大すること、及び、他の箇所でも不良部が発生して不良部の数が増加することが抑制される。異常部の多くは、正常部と異なり光を散乱する。したがって、光を照射して散乱光を検出することにより、異常箇所を特定することができる。局所的なエッチングは、異常部による光散乱が見られなくなるまで行ってもよい。ただし、異常部を完全に取り除かなくても、異常部のサイズを小さくすることにより、他の箇所への飛散を抑制できる場合がある。 By performing additional local etching, it is possible to prevent the defective part, which is an abnormal part, from expanding, and the defective part from being generated at other parts to increase the number of defective parts. Most of the abnormal parts scatter light unlike the normal parts. Therefore, the abnormal portion can be identified by irradiating the light and detecting the scattered light. Local etching may be performed until no light scattering due to the abnormal portion is observed. However, even if the abnormal part is not completely removed, it may be possible to suppress the scattering to other parts by reducing the size of the abnormal part.
 局所的なエッチングを行った箇所では、添加工程S2において添加されたアルカリ金属群がエッチングにより除去され、アルカリ金属群の濃度が局所的に変わる場合がある。これにより、局所的なエッチングを行った箇所における伝送損失の特性と、他の部分における伝送損失の特性との間に差が生じる場合がある。しかしながら、この場合であっても、線引後の光ファイバでは、特性の異なる部分のみが不良部となるので、歩留まりの低減を最小限に抑えることができる。よって、アルカリ金属群の添加により伝送損失を抑制しながら、生産性を向上することができる。 At the location where local etching was performed, the alkali metal group added in the addition step S2 may be removed by etching, and the concentration of the alkali metal group may change locally. As a result, there may be a difference between the characteristics of the transmission loss at the locally etched portion and the characteristics of the transmission loss at the other portion. However, even in this case, in the optical fiber after drawing, only the portion having different characteristics becomes a defective portion, so that the reduction in yield can be minimized. Therefore, it is possible to improve the productivity while suppressing the transmission loss by adding the alkali metal group.
 局所的なエッチングは、添加工程S2、縮径工程S3、及びエッチング工程S4における酸水素バーナ等の外部熱源の移動範囲内の1箇所以上に対して行われる。局所的なエッチングは、外部熱源の移動範囲内だけでなく、外部熱源の移動範囲外で生じた結晶などの異常部に対しても有効である。外部熱源の移動範囲外で生じた異常部から微粒子が飛散することによって、他の場所に結晶を引き起こす場合があるためである。したがって、局所的なエッチングは、添加工程S2、縮径工程S3、及びエッチング工程S4における酸水素バーナ等の外部熱源の移動範囲外の1箇所以上に対して行われてもよい。 Local etching is performed on one or more locations within the moving range of an external heat source such as an oxyhydrogen burner in the addition step S2, the diameter reduction step S3, and the etching step S4. Local etching is effective not only for the moving range of the external heat source but also for the abnormal part such as a crystal generated outside the moving range of the external heat source. This is because the fine particles may be scattered from the abnormal portion generated outside the moving range of the external heat source, causing crystals to be generated in other places. Therefore, the local etching may be performed on one or more locations outside the moving range of the external heat source such as the oxyhydrogen burner in the addition step S2, the diameter reduction step S3, and the etching step S4.
 局所的なエッチングは、気相エッチングであり、SF(0.1SLM以上0.4SLM以下)及び塩素(0.5SLM以上1.0SLM以下)の混合ガスをガラスパイプの内部に導入しながら、外部熱源でガラスパイプを加熱して行われる。局所的なエッチングは、外部熱源が異常部の箇所に固定された状態で行われてもよいし、外部熱源を移動させながら行われてもよい。エッチングガスとして、SF及び塩素の混合ガスの代わりに、SF及び臭素の混合ガスが用いられてもよい。添加工程S2、縮径工程S3、エッチング工程S4、又はコラプス工程S5において局所的なエッチングを行う場合、その工程で流しているガスを一時的に止めて上述の流量のSF及び塩素を流し、局所的なエッチングを行ってもよい。局所的なエッチングは、外部熱源によってパイプの表面温度を1000℃以上1500℃以下とした状態で実施される。 The local etching is a gas phase etching, in which a mixed gas of SF 6 (0.1 SLM or more and 0.4 SLM or less) and chlorine (0.5 SLM or more and 1.0 SLM or less) is introduced into the glass pipe while being introduced to the outside. This is done by heating the glass pipe with a heat source. The local etching may be performed with the external heat source fixed at the location of the abnormal portion, or may be performed while moving the external heat source. As the etching gas, a mixed gas of SF 6 and bromine may be used instead of the mixed gas of SF 6 and chlorine. When local etching is performed in the addition step S2, the diameter reduction step S3, the etching step S4, or the collapse step S5, the gas flowing in the step is temporarily stopped and the above-mentioned flow rate of SF 6 and chlorine is flowed. Local etching may be performed. Local etching is performed with the surface temperature of the pipe set to 1000 ° C. or higher and 1500 ° C. or lower by an external heat source.
 図3は、本実施形態に係る光ファイバ母材の断面図である。図3に示されるように、光ファイバ母材10は、コア部11と、第1クラッド部12と、第2クラッド部13と、を備える。コア部11は、シリカ系ガラスからなる。コア部11は、アルカリ金属群、塩素、及びフッ素を含んでいる。コア部11におけるアルカリ金属群の平均濃度は、10ppm以上100ppm以下である。コア部11における塩素の平均濃度は、50ppm以上2000ppm以下である。コア部11におけるフッ素の平均濃度は、2000ppm以上3500ppm以下である。製造過程で局所的なエッチングが追加して行われることにより、コア部11におけるアルカリ金属群の濃度が長手方向の一部で前記一部以外の箇所に対して異なっている。コア部11において、局所的なエッチングが行われた部分のアルカリ金属群の濃度は、それ以外の部分のアルカリ金属群の濃度よりも低い。局所的なエッチングがSF及び臭素の混合ガスを用いて行われた場合、コア部11は、長手方向の一部又は全部において臭素を含んでいる。臭素は、コア部11の中心に含まれる。 FIG. 3 is a cross-sectional view of the optical fiber base material according to the present embodiment. As shown in FIG. 3, the optical fiber base material 10 includes a core portion 11, a first clad portion 12, and a second clad portion 13. The core portion 11 is made of silica-based glass. The core portion 11 contains an alkali metal group, chlorine, and fluorine. The average concentration of the alkali metal group in the core portion 11 is 10 ppm or more and 100 ppm or less. The average concentration of chlorine in the core portion 11 is 50 ppm or more and 2000 ppm or less. The average concentration of fluorine in the core portion 11 is 2000 ppm or more and 3500 ppm or less. Due to the additional local etching performed in the manufacturing process, the concentration of the alkali metal group in the core portion 11 is different from the portion other than the portion in the longitudinal direction. In the core portion 11, the concentration of the alkali metal group in the portion where the local etching is performed is lower than the concentration of the alkali metal group in the other portion. When the local etching is performed using a mixed gas of SF 6 and bromine, the core portion 11 contains bromine in part or all of the longitudinal direction. Bromine is contained in the center of the core portion 11.
 第1クラッド部12は、コア部11の外側に設けられ、コア部11を取り囲んでいる。第1クラッド部12は、シリカ系ガラスからなる。第1クラッド部12は、フッ素を含んでいる。コア部11と第1クラッド部12との純シリカガラスの屈折率で規格化した屈折率の差は最大で0.34%程度である。 The first clad portion 12 is provided on the outside of the core portion 11 and surrounds the core portion 11. The first clad portion 12 is made of silica-based glass. The first clad portion 12 contains fluorine. The difference in the refractive index standardized by the refractive index of the pure silica glass between the core portion 11 and the first clad portion 12 is about 0.34% at the maximum.
 第2クラッド部13は、第1クラッド部12の外側に設けられ、第1クラッド部12を取り囲んでいる。第2クラッド部13は、シリカ系ガラスからなる。第2クラッド部13は、フッ素を含んでいる。 The second clad portion 13 is provided on the outside of the first clad portion 12 and surrounds the first clad portion 12. The second clad portion 13 is made of silica-based glass. The second clad portion 13 contains fluorine.
 以下では、表1から表5を用いて試作例について説明する。 In the following, a prototype example will be described using Tables 1 to 5.
 表1は、試作例1から試作例6の緒元及び評価結果をまとめた表である。表1の「Cl濃度[ppm]」は、コラプス工程S5を終えた後のガラスロッドに含まれる平均塩素濃度を示す。「F濃度[ppm]」は、コラプス工程S5を終えた後のガラスロッドに含まれる平均フッ素濃度を示す。「K濃度[ppm]」は、コラプス工程S5を終えた後のガラスロッドに含まれる平均カリウム濃度を示す。「異常部数」は、コラプス工程S5を終えた後のガラスロッドに残る結晶などの異常部の数を示す。「局所エッチング」は、局所的なエッチングの有無、及び有りの場合に用いたエッチングガスを示す。「原料」は、添加工程S2で使用する原料を示す。 Table 1 is a table summarizing the specifications and evaluation results of Prototype Example 1 to Prototype Example 6. “Cl concentration [ppm]” in Table 1 indicates the average chlorine concentration contained in the glass rod after the collapse step S5 is completed. "F concentration [ppm]" indicates the average fluorine concentration contained in the glass rod after the collapse step S5 is completed. "K concentration [ppm]" indicates the average potassium concentration contained in the glass rod after the collapse step S5 is completed. The “abnormal number of parts” indicates the number of abnormal parts such as crystals remaining on the glass rod after the collapse step S5 is completed. "Local etching" indicates the presence or absence of local etching and the etching gas used when there is. “Raw material” indicates a raw material used in the addition step S2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 試作例1から試作例6では、添加工程S2で15gのKBrを原料として使用した。試作例1から試作例4では、局所的なエッチングを行わなかった。試作例1から試作例4の評価結果から、局所的なエッチングを行わなかった場合は、ガラスパイプにおける平均塩素濃度及び平均フッ素濃度の合計値が高いほど、異常部の数が増すことがわかった。 In Prototype 1 to Prototype 6, 15 g of KBr was used as a raw material in the addition step S2. In Prototype 1 to Prototype 4, local etching was not performed. From the evaluation results of Prototype Example 1 to Prototype Example 4, it was found that the higher the total value of the average chlorine concentration and the average fluorine concentration in the glass pipe, the larger the number of abnormal parts when local etching was not performed. ..
 試作例5及び試作例6では、エッチングガスをSF及び塩素の混合ガスとして局所的なエッチングを行った。局所的なエッチングは、異常が発生した際にすぐに行われた場合もあれば、ある工程を1つ以上経てから行われた場合もある。試作例5では、添加工程S2、縮径工程S3、及びエッチング工程S4における外部熱源の移動範囲内の異常部に対して局所的なエッチングを行った。試作例5では、異常部数を3まで減らすことができた。試作例6では、添加工程S2、縮径工程S3、及びエッチング工程S4における外部熱源の移動範囲内だけでなく、移動範囲外で生じた異常部に対しても局所的なエッチングを行った。試作例6では、異常部数を0まで減らすことができた。 In Prototype 5 and Prototype 6, local etching was performed using the etching gas as a mixed gas of SF 6 and chlorine. Local etching may be performed immediately when an abnormality occurs, or it may be performed after one or more steps. In Prototype Example 5, local etching was performed on the abnormal portion within the moving range of the external heat source in the addition step S2, the diameter reduction step S3, and the etching step S4. In Prototype Example 5, the number of abnormal copies could be reduced to 3. In Prototype Example 6, local etching was performed not only within the moving range of the external heat source in the addition step S2, the diameter reducing step S3, and the etching step S4, but also on the abnormal portion generated outside the moving range. In Prototype Example 6, the number of abnormal copies could be reduced to zero.
 試作例5及び試作例6のガラスロッドを使って製造した光ファイバ母材を線引することにより光ファイバを得た。局所的なエッチングが行われた試作例5及び試作例6においても、波長1550nmの伝送損失が0.148dB/km以上0.150dB/km以下である光ファイバが光ファイバ母材の全長にわたって得られた。このことから、局所的なエッチングが行われた部分と行われなかった部分とで、伝送損失に大きな差はないことがわかった。これは以下の理由によると推測される。すなわち、局所的なエッチングが行われた部分では、カリウム濃度が減るので、レイリ散乱損失が増加する。しかしながら、余分に加熱されることによってガラスパイプ内面が平滑化されるので、後のコラプス工程S5における構造不整に起因した損失が低減する。 An optical fiber was obtained by drawing an optical fiber base material manufactured using the glass rods of Prototype Example 5 and Prototype Example 6. Also in Prototype 5 and Prototype 6 in which local etching was performed, an optical fiber having a transmission loss at a wavelength of 1550 nm of 0.148 dB / km or more and 0.150 dB / km or less was obtained over the entire length of the optical fiber base material. rice field. From this, it was found that there was no significant difference in transmission loss between the portion where the local etching was performed and the portion where the local etching was not performed. This is presumed to be due to the following reasons. That is, in the portion where the local etching is performed, the potassium concentration is reduced, so that the Rayri scattering loss is increased. However, since the inner surface of the glass pipe is smoothed by the extra heating, the loss due to the structural irregularity in the subsequent collapse step S5 is reduced.
 表2は、試作例7から試作例12の緒元及び評価結果をまとめた表である。表2の「Rb濃度[ppm]」は、コラプス工程S5を終えた後のガラスロッドに含まれる平均ルビジウム濃度を示す。その他の各項目は、表1と同様である。なお、平均ルビジウム濃度は、平均塩素濃度及び平均フッ素濃度と同様に、上述のEPMAを用いて局所的な濃度を測定した後、上述の式により求められる。 Table 2 is a table summarizing the specifications and evaluation results of Prototype Example 7 to Prototype Example 12. “Rb concentration [ppm]” in Table 2 indicates the average rubidium concentration contained in the glass rod after the collapse step S5 is completed. The other items are the same as those in Table 1. The average rubidium concentration is obtained by the above formula after measuring the local concentration using the above-mentioned EPMA, similarly to the average chlorine concentration and the average fluorine concentration.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 試作例7から試作例12では、添加工程S2で15gのRbBrを原料として使用した。試作例7から試作例10では、局所的なエッチングを行わなかった。試作例7から試作例10の評価結果から、局所的なエッチングを行わなかった場合は、ガラスパイプにおける平均塩素濃度及び平均フッ素濃度の合計値が高いほど、異常部の数が増すことがわかった。 In Prototype 7 to 12, 15 g of RbBr was used as a raw material in the addition step S2. In Prototype Example 7 to Prototype Example 10, local etching was not performed. From the evaluation results of Prototype Example 7 to Prototype Example 10, it was found that the higher the total value of the average chlorine concentration and the average fluorine concentration in the glass pipe, the larger the number of abnormal parts when local etching was not performed. ..
 試作例11及び試作例12では、試作例5及び試作例6と同様に局所的なエッチングを行った。試作例11では、添加工程S2及び縮径工程S3における外部熱源の移動範囲内の異常部に対して局所的なエッチングを行った。試作例11では、異常部数を2まで減らすことができた。試作例12では、添加工程S2、縮径工程S3、及びエッチング工程S4における外部熱源の移動範囲内だけでなく、移動範囲外で生じた異常部に対しても局所的なエッチングを行った。試作例12では、異常部数を1まで減らすことができた。 In Prototype 11 and Prototype 12, local etching was performed in the same manner as in Prototype 5 and Prototype 6. In Prototype Example 11, local etching was performed on the abnormal portion within the moving range of the external heat source in the addition step S2 and the diameter reduction step S3. In Prototype Example 11, the number of abnormal copies could be reduced to 2. In Prototype Example 12, local etching was performed not only within the moving range of the external heat source in the addition step S2, the diameter reducing step S3, and the etching step S4, but also on the abnormal portion generated outside the moving range. In Prototype Example 12, the number of abnormal copies could be reduced to 1.
 試作例7から試作例12の評価結果から、カリウムだけでなくルビジウムに対しても、局所的なエッチングによって最終的な異常部数を低減できることがわかった。 From the evaluation results of Prototype Example 7 to Prototype Example 12, it was found that the final number of abnormal copies can be reduced by local etching not only for potassium but also for rubidium.
 表3は、試作例13から試作例18の緒元及び評価結果をまとめた表である。表3の各項目は、表1と同様である。 Table 3 is a table summarizing the specifications and evaluation results of Prototype Example 13 to Prototype Example 18. Each item in Table 3 is the same as in Table 1.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 試作例13から試作例18では、添加工程S2で15gのKIを原料として使用した。試作例13から試作例16では、局所的なエッチングを行わなかった。試作例13から試作例16の評価結果から、局所的なエッチングを行わなかった場合は、ガラスパイプにおける平均塩素濃度及び平均フッ素濃度の合計値が高いほど、異常部の数が増すことがわかった。 In Prototype 13 to 18, 15 g of KI was used as a raw material in the addition step S2. In Prototype 13 to 16, local etching was not performed. From the evaluation results of Prototype Example 13 to Prototype Example 16, it was found that the higher the total value of the average chlorine concentration and the average fluorine concentration in the glass pipe, the larger the number of abnormal parts when local etching was not performed. ..
 試作例17及び試作例18では、試作例5及び試作例6と同様に局所的なエッチングを行った。試作例17では、添加工程S2及び縮径工程S3における外部熱源の移動範囲内の異常部に対して局所的なエッチングを行った。試作例17では、異常部数を3まで減らすことができた。試作例18では、添加工程S2、縮径工程S3、及びエッチング工程S4における外部熱源の移動範囲内だけでなく、移動範囲外で生じた異常部に対しても局所的なエッチングを行った。試作例18では、異常部数を1まで減らすことができた。 In Prototype 17 and Prototype 18, local etching was performed in the same manner as in Prototype 5 and Prototype 6. In Prototype Example 17, local etching was performed on the abnormal portion within the moving range of the external heat source in the addition step S2 and the diameter reduction step S3. In Prototype Example 17, the number of abnormal copies could be reduced to 3. In Prototype Example 18, local etching was performed not only within the moving range of the external heat source in the addition step S2, the diameter reducing step S3, and the etching step S4, but also on the abnormal portion generated outside the moving range. In Prototype Example 18, the number of abnormal copies could be reduced to 1.
 試作例13から試作例18の評価結果から、臭化物だけでなくヨウ化物に対しても、局所的なエッチングによって最終的な異常部数を低減できることがわかった。 From the evaluation results of Prototype Example 13 to Prototype Example 18, it was found that the final number of abnormal parts can be reduced by local etching not only for bromide but also for iodide.
 表4は、試作例19から試作例24の緒元及び評価結果をまとめた表である。表4の「Rb濃度[ppm]」は、コラプス工程S5を終えた後のガラスロッドに含まれる平均ルビジウム濃度を示す。その他の各項目は、表1と同様である。 Table 4 is a table summarizing the specifications and evaluation results of Prototype Example 19 to Prototype Example 24. “Rb concentration [ppm]” in Table 4 indicates the average rubidium concentration contained in the glass rod after the collapse step S5 is completed. The other items are the same as those in Table 1.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 試作例19から試作例24では、添加工程S2でKBr及びRbBrの2種類を原料として使用し、合計質量を15gに統一した。試作例19から試作例22では、局所的なエッチングを行わなかった。試作例19から試作例22の評価結果から、局所的なエッチングを行わなかった場合は、ガラスパイプにおける平均塩素濃度及び平均フッ素濃度の合計値が高いほど、異常部の数が増すことがわかった。 In Prototype 19 to 24, two types of KBr and RbBr were used as raw materials in the addition step S2, and the total mass was unified to 15 g. In Prototype 19 to 22, no local etching was performed. From the evaluation results of Prototype Example 19 to Prototype Example 22, it was found that the higher the total value of the average chlorine concentration and the average fluorine concentration in the glass pipe, the larger the number of abnormal parts when local etching was not performed. ..
 試作例23及び試作例24では、試作例5及び試作例6と同様に局所的なエッチングを行った。試作例23では、添加工程S2及び縮径工程S3における外部熱源の移動範囲内の異常部に対して局所的なエッチングを行った。試作例23では、異常部数を2まで減らすことができた。試作例24では、添加工程S2、縮径工程S3、及びエッチング工程S4における外部熱源の移動範囲内だけでなく、移動範囲外で生じた異常部に対しても局所的なエッチングを行った。試作例24では、異常部数を1まで減らすことができた。 In Prototype 23 and Prototype 24, local etching was performed in the same manner as in Prototype 5 and Prototype 6. In Prototype Example 23, local etching was performed on the abnormal portion within the moving range of the external heat source in the addition step S2 and the diameter reduction step S3. In Prototype Example 23, the number of abnormal copies could be reduced to 2. In Prototype Example 24, local etching was performed not only within the moving range of the external heat source in the addition step S2, the diameter reducing step S3, and the etching step S4, but also on the abnormal portion generated outside the moving range. In Prototype Example 24, the number of abnormal copies could be reduced to 1.
 表5は、試作例25から試作例30の緒元及び評価結果をまとめた表である。表5の「Br濃度[ppm]」は、コラプス工程S5を終えた後のガラスロッド(中実体)の中心から検出される臭素濃度を示す。その他の各項目は、表1と同様である。なお、臭素濃度は、上述のEPMAを用いて求められる。 Table 5 is a table summarizing the specifications and evaluation results of the prototype 25 to the prototype 30. “Br concentration [ppm]” in Table 5 indicates the bromine concentration detected from the center of the glass rod (medium substance) after the collapse step S5 is completed. The other items are the same as those in Table 1. The bromine concentration can be determined using the above-mentioned EPMA.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 試作例25から試作例28では、添加工程S2で15gのKBrを原料として使用した。試作例25から試作例28では、局所的なエッチングを行わなかった。試作例29及び試作例30では、エッチングガスをSF及び臭素の混合ガスとした以外は試作例5及び試作例6と同様に局所的なエッチングを行った。試作例29では、添加工程S2及び縮径工程S3における外部熱源の移動範囲内の異常部に対して局所的なエッチングを行った。試作例29では、異常部数を1まで減らすことができた。試作例30では、添加工程S2、縮径工程S3、及びエッチング工程S4における外部熱源の移動範囲内だけでなく、移動範囲外で生じた異常部に対しても局所的なエッチングを行った。試作例30では、異常部数を0まで減らすことができた。 In Prototype Example 25 to Prototype 28, 15 g of KBr was used as a raw material in the addition step S2. In Prototype Example 25 to Prototype 28, local etching was not performed. In Prototype 29 and Prototype 30, local etching was performed in the same manner as in Prototype 5 and Prototype 6 except that the etching gas was a mixed gas of SF 6 and bromine. In Prototype Example 29, local etching was performed on the abnormal portion within the moving range of the external heat source in the addition step S2 and the diameter reduction step S3. In Prototype Example 29, the number of abnormal copies could be reduced to 1. In Prototype Example 30, local etching was performed not only within the moving range of the external heat source in the addition step S2, the diameter reducing step S3, and the etching step S4, but also on the abnormal portion generated outside the moving range. In Prototype Example 30, the number of abnormal copies could be reduced to zero.
 試作例25から試作例30の評価結果から、エッチングガス種に依存せず、異常部を除去することが最終的な異常部数を低減するために重要であると考えられる。 From the evaluation results of Prototype Example 25 to Prototype Example 30, it is considered that it is important to remove the abnormal part without depending on the etching gas type in order to reduce the final number of abnormal parts.
 試作例29及び試作例30のガラスロッドを使って製造した光ファイバ母材を線引することにより光ファイバを得た。局所的なエッチングが行われなかった部分では、波長1550nmの伝送損失が0.148dB/km以上0.149dB/km以下であった。これに対し、局所的なエッチングが行われた部分では、波長1550nmの伝送損失が0.147dB/kmであった。このように、局所的なエッチングが行われなかった部分の伝送損失よりも、局所的なエッチングが行われた部分の伝送損失の方が低くなる結果が得られたのは、臭素が添加されることによりガラス粘性が下がり、レイリ散乱損失が低下したためと考えられる。 An optical fiber was obtained by drawing an optical fiber base material manufactured using the glass rods of Prototype Example 29 and Prototype Example 30. In the portion where the local etching was not performed, the transmission loss at a wavelength of 1550 nm was 0.148 dB / km or more and 0.149 dB / km or less. On the other hand, in the portion where the local etching was performed, the transmission loss at a wavelength of 1550 nm was 0.147 dB / km. In this way, bromine is added because the result is that the transmission loss of the locally etched part is lower than the transmission loss of the locally etched part. It is considered that this is because the glass viscosity is lowered and the ray scattering loss is lowered.
1…ガラスパイプ
2…電気炉
3…原料
4…酸水素バーナ(外部熱源)
5…ハンドリングガラスパイプ
10…光ファイバ母材
11…コア部
12…第1クラッド部
13…第2クラッド部
1 ... Glass pipe 2 ... Electric furnace 3 ... Raw material 4 ... Oxyhydrogen burner (external heat source)
5 ... Handling glass pipe 10 ... Optical fiber base material 11 ... Core portion 12 ... First clad portion 13 ... Second clad portion

Claims (18)

  1.  シリカ系ガラスからなるガラスパイプの内表面にアルカリ金属元素又はアルカリ土類金属元素を添加することと、
     前記添加後に前記ガラスパイプを縮径することと、
     前記縮径後に前記ガラスパイプのうち長手方向の一連の区間の内表面をエッチングすることと、
     前記エッチング後に前記ガラスパイプをコラプスすることと、を含み、
     前記添加すること、前記縮径すること、前記エッチングすること、及び、前記コラプスすることのうち少なくとも1つは、前記ガラスパイプのうち前記一連の区間よりも短い区間の内表面を局所的にエッチングすることを含む、
     光ファイバ母材の製造方法。
    Adding an alkali metal element or an alkaline earth metal element to the inner surface of a glass pipe made of silica-based glass,
    To reduce the diameter of the glass pipe after the addition,
    After the diameter reduction, etching the inner surface of a series of longitudinal sections of the glass pipe,
    Containing, including collapsing the glass pipe after the etching.
    At least one of the addition, the diameter reduction, the etching, and the collapse locally etches the inner surface of a section of the glass pipe that is shorter than the series of sections. Including to do,
    Manufacturing method of optical fiber base material.
  2.  シリカ系ガラスからなるガラスパイプの内表面にアルカリ金属元素又はアルカリ土類金属元素を添加することと、
     前記添加後に前記ガラスパイプを縮径することと、
     前記縮径後に前記ガラスパイプのうち長手方向の一連の区間の内表面をエッチングすることと、
     前記エッチング後に前記ガラスパイプをコラプスすることと、
     前記添加することと前記縮径することとの間、前記縮径することと前記エッチングすることの間、及び、前記エッチングすることと前記コラプスすることとの間のうち少なくとも1つにおいて、前記ガラスパイプのうち前記一連の区間よりも短い区間の内表面を局所的にエッチングすることと、を含む、
     光ファイバ母材の製造方法。
    Adding an alkali metal element or an alkaline earth metal element to the inner surface of a glass pipe made of silica-based glass,
    To reduce the diameter of the glass pipe after the addition,
    After the diameter reduction, etching the inner surface of a series of longitudinal sections of the glass pipe,
    Collapsing the glass pipe after the etching and
    The glass in at least one of the addition and the diameter reduction, the diameter reduction and the etching, and the etching and the collapse. Locally etching the inner surface of a section of the pipe that is shorter than the series of sections.
    Manufacturing method of optical fiber base material.
  3.  前記局所的にエッチングすることは、前記一連の区間内の1箇所以上に対して行われる、
     請求項1または請求項2に記載の光ファイバ母材の製造方法。
    The local etching is performed on one or more points in the series of sections.
    The method for producing an optical fiber base material according to claim 1 or 2.
  4.  前記局所的にエッチングすることは、前記一連の区間以外の1箇所以上に対して行われる、
     請求項1から請求項3のいずれか一項に記載の光ファイバ母材の製造方法。
    The local etching is performed on one or more places other than the series of sections.
    The method for manufacturing an optical fiber base material according to any one of claims 1 to 3.
  5.  前記ガラスパイプは、塩素及びフッ素を含んでいる、
     請求項1から請求項4のいずれか一項に記載の光ファイバ母材の製造方法。
    The glass pipe contains chlorine and fluorine,
    The method for manufacturing an optical fiber base material according to any one of claims 1 to 4.
  6.  前記局所的にエッチングすることでは、SF及び塩素の混合ガスの混合ガスを用いた気相エッチングが行われる、
     請求項1から請求項5のいずれか一項に記載の光ファイバ母材の製造方法。
    In the local etching, gas phase etching using a mixed gas of SF 6 and a mixed gas of chlorine is performed.
    The method for manufacturing an optical fiber base material according to any one of claims 1 to 5.
  7.  前記局所的にエッチングすることでは、SF及び臭素の混合ガスを用いた気相エッチングが行われる、
     請求項1から請求項6のいずれか一項に記載の光ファイバ母材の製造方法。
    In the local etching, gas phase etching using a mixed gas of SF 6 and bromine is performed.
    The method for manufacturing an optical fiber base material according to any one of claims 1 to 6.
  8.  前記局所的にエッチングすることは、前記ガラスパイプに光を照射して散乱光を検出することにより、異常箇所を特定することを含む、
     請求項1から請求項7のいずれか一項に記載の光ファイバ母材の製造方法。
    The local etching includes identifying an abnormal portion by irradiating the glass pipe with light and detecting scattered light.
    The method for manufacturing an optical fiber base material according to any one of claims 1 to 7.
  9.  前記添加することでは、アルカリ金属元素としてカリウムが添加される、
     請求項1から請求項8のいずれか一項に記載の光ファイバ母材の製造方法。
    By the above addition, potassium is added as an alkali metal element.
    The method for manufacturing an optical fiber base material according to any one of claims 1 to 8.
  10.  前記添加することでは、アルカリ金属元素としてルビジウムが添加される、
     請求項1から請求項8のいずれか一項に記載の光ファイバ母材の製造方法。
    By the above addition, rubidium is added as an alkali metal element.
    The method for manufacturing an optical fiber base material according to any one of claims 1 to 8.
  11.  シリカ系ガラスからなり、アルカリ金属元素又はアルカリ土類金属元素を含むコア部を備え、
     前記コア部における前記アルカリ金属元素又は前記アルカリ土類金属元素の濃度は、長手方向の一部で前記一部以外の箇所に対して異なっている、
     光ファイバ母材。
    It is made of silica-based glass and has a core containing alkali metal elements or alkaline earth metal elements.
    The concentration of the alkali metal element or the alkaline earth metal element in the core portion is different in a part in the longitudinal direction with respect to a part other than the part.
    Optical fiber base material.
  12.  シリカ系ガラスからなり、アルカリ金属元素又はアルカリ土類金属元素を含むコア部を備え、
     前記コア部は、長手方向の一部又は全部において臭素を含んでいる、
     光ファイバ母材。
    It is made of silica-based glass and has a core containing alkali metal elements or alkaline earth metal elements.
    The core portion contains bromine in part or all of the longitudinal direction.
    Optical fiber base material.
  13.  前記コア部は、塩素及びフッ素を含んでいる、
     請求項11または請求項12に記載の光ファイバ母材。
    The core portion contains chlorine and fluorine.
    The optical fiber base material according to claim 11 or 12.
  14.  前記コア部における塩素の平均濃度は、50ppm以上2000ppm以下である、
     請求項13に記載の光ファイバ母材。
    The average concentration of chlorine in the core portion is 50 ppm or more and 2000 ppm or less.
    The optical fiber base material according to claim 13.
  15.  前記コア部におけるフッ素の平均濃度は、2000ppm以上3500ppm以下である、
     請求項13または請求項14に記載の光ファイバ母材。
    The average concentration of fluorine in the core portion is 2000 ppm or more and 3500 ppm or less.
    The optical fiber base material according to claim 13 or 14.
  16.  前記コア部におけるアルカリ金属群の平均濃度は、10ppm以上100ppm以下である、
     請求項11から請求項15のいずれか一項に記載の光ファイバ母材。
    The average concentration of the alkali metal group in the core portion is 10 ppm or more and 100 ppm or less.
    The optical fiber base material according to any one of claims 11 to 15.
  17.  前記コア部は、アルカリ金属元素としてカリウムを含んでいる、
     請求項11から請求項16のいずれか一項に記載の光ファイバ母材。
    The core portion contains potassium as an alkali metal element.
    The optical fiber base material according to any one of claims 11 to 16.
  18.  前記コア部は、アルカリ金属元素としてルビジウムを含んでいる、
     請求項11から請求項16のいずれか一項に記載の光ファイバ母材。
    The core portion contains rubidium as an alkali metal element.
    The optical fiber base material according to any one of claims 11 to 16.
PCT/JP2021/023094 2020-07-03 2021-06-17 Method for producing optical fiber base material, and optical fiber base material WO2022004415A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202180035885.7A CN115667162A (en) 2020-07-03 2021-06-17 Method for manufacturing optical fiber preform and optical fiber preform
US18/008,471 US20230202904A1 (en) 2020-07-03 2021-06-17 Method for producing optical fiber base material, and optical fiber base material
JP2022533852A JPWO2022004415A1 (en) 2020-07-03 2021-06-17
DKPA202270544A DK202270544A1 (en) 2020-07-03 2022-11-09 Method for producing optical fiber base material, and optical fiber base material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020115688 2020-07-03
JP2020-115688 2020-07-03

Publications (1)

Publication Number Publication Date
WO2022004415A1 true WO2022004415A1 (en) 2022-01-06

Family

ID=79316127

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/023094 WO2022004415A1 (en) 2020-07-03 2021-06-17 Method for producing optical fiber base material, and optical fiber base material

Country Status (5)

Country Link
US (1) US20230202904A1 (en)
JP (1) JPWO2022004415A1 (en)
CN (1) CN115667162A (en)
DK (1) DK202270544A1 (en)
WO (1) WO2022004415A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010520140A (en) * 2007-02-28 2010-06-10 コーニング インコーポレイテッド Reduction of fiber optic cane / preform deformation during consolidation
WO2013105459A1 (en) * 2012-01-11 2013-07-18 住友電気工業株式会社 Method for manufacturing optical fiber base material, and optical fiber
WO2016114313A1 (en) * 2015-01-14 2016-07-21 住友電気工業株式会社 Optical fiber
WO2019044833A1 (en) * 2017-08-31 2019-03-07 住友電気工業株式会社 Method for manufacturing optical fiber parent material, and method for manufacturing optical fiber

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003052173A1 (en) * 2001-12-14 2003-06-26 Corning Incorporated Two step etching process for an optical fiber preform
JP2012162410A (en) * 2011-02-03 2012-08-30 Sumitomo Electric Ind Ltd Method for producing optical fiber preform
NL1041529B1 (en) * 2015-10-16 2017-05-02 Draka Comteq Bv A method for etching a primary preform and the etched primary preform thus obtained.

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010520140A (en) * 2007-02-28 2010-06-10 コーニング インコーポレイテッド Reduction of fiber optic cane / preform deformation during consolidation
WO2013105459A1 (en) * 2012-01-11 2013-07-18 住友電気工業株式会社 Method for manufacturing optical fiber base material, and optical fiber
WO2016114313A1 (en) * 2015-01-14 2016-07-21 住友電気工業株式会社 Optical fiber
WO2019044833A1 (en) * 2017-08-31 2019-03-07 住友電気工業株式会社 Method for manufacturing optical fiber parent material, and method for manufacturing optical fiber

Also Published As

Publication number Publication date
DK202270544A1 (en) 2022-11-21
JPWO2022004415A1 (en) 2022-01-06
CN115667162A (en) 2023-01-31
US20230202904A1 (en) 2023-06-29

Similar Documents

Publication Publication Date Title
EP2484644B1 (en) Method for producing a glass optical fiber preform
US10031282B2 (en) Optical fiber
EP2511741B1 (en) Optical fibre with alkali doped core and optical fiber preform
JP6337509B2 (en) Optical fiber preform manufacturing method
EP2952490A1 (en) Optical-fiber preform and method for manufacturing optical-fiber preform
EP2484643B1 (en) Method for producing a glass optical fiber preform
WO2015079987A1 (en) Optical fiber and optical fiber preform
CN110389405B (en) Optical fiber
US10723650B2 (en) Optical fiber preform
EP3040749A1 (en) Optical fiber having an alkali metal doped silica glass core
WO2023157505A1 (en) Optical fiber
JP6579107B2 (en) Optical fiber preform manufacturing method and optical fiber preform
WO2014178361A1 (en) Optical fiber preform
JP2020012933A (en) Optical fiber
WO2022004415A1 (en) Method for producing optical fiber base material, and optical fiber base material
JP5744070B2 (en) Method for manufacturing optical fiber and tubular semi-finished product
JP2013136485A (en) Method for manufacturing optical fiber preform
JPWO2018110234A1 (en) Optical fiber preform manufacturing method, optical fiber preform, and optical fiber
WO2022050190A1 (en) Production method for optical fiber base material, and optical fiber base material
WO2023286608A1 (en) Optical fiber and optical fiber base material
WO2024048356A1 (en) Method for producing optical fiber preform, and optical fiber preform
JP6136164B2 (en) Optical fiber and manufacturing method thereof
WO2021085236A1 (en) Optical fiber
JP6136467B2 (en) Manufacturing method of glass base material for optical fiber, glass base material for optical fiber, optical fiber, and calculation method of optical characteristics of optical fiber

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21834065

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022533852

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: PA202270544

Country of ref document: DK

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21834065

Country of ref document: EP

Kind code of ref document: A1