WO2015079987A1 - Optical fiber and optical fiber preform - Google Patents

Optical fiber and optical fiber preform Download PDF

Info

Publication number
WO2015079987A1
WO2015079987A1 PCT/JP2014/080590 JP2014080590W WO2015079987A1 WO 2015079987 A1 WO2015079987 A1 WO 2015079987A1 JP 2014080590 W JP2014080590 W JP 2014080590W WO 2015079987 A1 WO2015079987 A1 WO 2015079987A1
Authority
WO
WIPO (PCT)
Prior art keywords
core
optical fiber
alkali metal
atomic ppm
average concentration
Prior art date
Application number
PCT/JP2014/080590
Other languages
French (fr)
Japanese (ja)
Inventor
春名 徹也
平野 正晃
欣章 田村
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Publication of WO2015079987A1 publication Critical patent/WO2015079987A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/018Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD] by glass deposition on a glass substrate, e.g. by inside-, modified-, plasma-, or plasma modified- chemical vapour deposition [ICVD, MCVD, PCVD, PMCVD], i.e. by thin layer coating on the inside or outside of a glass tube or on a glass rod
    • C03B37/01807Reactant delivery systems, e.g. reactant deposition burners
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C13/00Fibre or filament compositions
    • C03C13/04Fibre optics, e.g. core and clad fibre compositions
    • C03C13/045Silica-containing oxide glass compositions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/20Doped silica-based glasses doped with non-metals other than boron or fluorine
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • C03B2201/50Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with alkali metals
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/10Internal structure or shape details
    • C03B2203/22Radial profile of refractive index, composition or softening point
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/10Internal structure or shape details
    • C03B2203/22Radial profile of refractive index, composition or softening point
    • C03B2203/23Double or multiple optical cladding profiles
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/10Internal structure or shape details
    • C03B2203/22Radial profile of refractive index, composition or softening point
    • C03B2203/26Parabolic or graded index [GRIN] core profile
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/34Plural core other than bundles, e.g. double core
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2201/00Glass compositions
    • C03C2201/06Doped silica-based glasses
    • C03C2201/08Doped silica-based glasses containing boron or halide
    • C03C2201/11Doped silica-based glasses containing boron or halide containing chlorine
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2201/00Glass compositions
    • C03C2201/06Doped silica-based glasses
    • C03C2201/08Doped silica-based glasses containing boron or halide
    • C03C2201/12Doped silica-based glasses containing boron or halide containing fluorine
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2201/00Glass compositions
    • C03C2201/06Doped silica-based glasses
    • C03C2201/30Doped silica-based glasses containing metals
    • C03C2201/50Doped silica-based glasses containing metals containing alkali metals
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/036Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Definitions

  • the present invention relates to an optical fiber containing an alkali metal element and an optical fiber preform.
  • a silica glass optical fiber containing an alkali metal element in the core is known (Japanese Patent Publication No. 2005-537210 (Patent Document 1), US Patent Application Publication No. 2006/0130530 (Patent Document 2), Table 2007-504080 (Patent Document 3), JP-T 2008-536190 (Patent Document 4), JP-T 2010-501894 (Patent Document 5), JP-T 2009-541796 (Patent Document 6) JP-T 2010-526749 (Patent Document 7), International Publication No. 98/002389 (Patent Document 8), US Pat. No. 5,146,534 (Patent Document 9), JP 2012-229150 (Patent Document) 10), Japanese Patent Laid-Open No.
  • Patent Documents 1 and 2 describe a diffusion method which is a method of adding an alkali metal element into silica glass.
  • the diffusion method is to heat the glass pipe with an external heat source or to generate plasma in the glass pipe while introducing the raw material vapor such as alkali metal element or alkali metal salt as the raw material into the glass pipe.
  • An alkali metal element is diffusely added to the inner surface of the glass pipe.
  • the glass pipe is heated to reduce the diameter.
  • a certain thickness of the inner surface of the glass pipe is etched for the purpose of removing transition metal elements such as Ni and Fe which are added simultaneously with the addition of the alkali metal element. Since the alkali metal element diffuses faster than the transition metal element, the alkali metal element can remain even if the transition metal element is removed by etching the glass surface with a certain thickness. After the etching, the glass rod is heated and solidified to produce a core rod containing an alkali metal element.
  • An optical fiber preform is manufactured by synthesizing a cladding portion having a refractive index lower than that of the core portion including the core rod outside the core rod including the alkali metal element. And an optical fiber can be manufactured by drawing this optical fiber preform by a known method.
  • An optical fiber comprising a core including a central axis and a clad surrounding the core and having a refractive index smaller than the refractive index of the core, wherein the core includes an alkali metal element and a chlorine element, and the alkali metal element in the core
  • An optical fiber having an average concentration of 0.1 atomic ppm or more and 20 atomic ppm or less, an average concentration of chlorine element in the core of 800 atomic ppm or less, and a transmission loss at a wavelength of 1550 nm of 0.185 dB / km or less is provided. Is done.
  • the average chlorine concentration in the core may be 300 atomic ppm or more.
  • the core may further contain a fluorine element, and the average concentration of dopants other than alkali metal elements, chlorine elements, and fluorine elements in the core may be 10 atomic ppm or less.
  • the core may contain a potassium element as an alkali metal element.
  • a silica part used for obtaining the above optical fiber comprising a core part including a central axis, and a clad part surrounding the core part and having a refractive index smaller than the refractive index of the core
  • a glass-based optical fiber preform wherein the core portion includes a first core portion and a second core portion surrounding the first core portion, and the alkali metal element in the core portion includes the first core portion and the second core portion.
  • the concentration of the alkali metal element in the second core portion is 10 atomic ppm or less
  • the average concentration of the chlorine element in the first core portion is the second core portion.
  • the silica glass includes a core portion including a central axis, and a clad portion surrounding the core portion and having a refractive index smaller than the refractive index of the core, and used for obtaining the above optical fiber.
  • An optical fiber preform of the system wherein the core portion contains an alkali metal element and a chlorine element, and the average concentration of the alkali metal element in the core portion is 5 atomic ppm or more and 100 atomic ppm or less.
  • An optical fiber preform is provided having an average concentration of less than 1000 atomic ppm.
  • the present inventor has obtained the following knowledge in the course of conducting research on an optical fiber made of silica glass containing an alkali metal element in the core. It has been found that silica-based glass containing an alkali metal element is easily crystallized because the glass transition point is lowered to 1000 to 1400 ° C. and the crystallization speed is increased. In addition, if the core rod containing an alkali metal element contains at least one of an alkali metal element and a halogen element in a high concentration, a lot of halogen compounds of the alkali metal element are contained in the glass in the optical fiber preform manufacturing process. As a result, it was found that crystals are easily generated in the glass.
  • FIG. 1 is a cross-sectional view of an optical fiber preform 1 according to an embodiment of the present invention.
  • the optical fiber preform 1 is made of silica glass, and includes a core portion 10 and a clad portion 20 that surrounds the core portion 10.
  • the core part 10 includes the central axis of the optical fiber preform 1, and the refractive index of the core part 10 is larger than the refractive index of the cladding part 20.
  • the core part 10 includes a first core part 11 and a second core part 12 surrounding the first core part 11.
  • the clad part 20 includes a first clad part (optical clad part) 21 surrounding the second core part 12 and a second clad part (physical clad part) 22 surrounding the first clad part 21.
  • FIG. 2 is a graph showing the dependency of crystallization generation in the core 10 on the potassium (K) element concentration and the chlorine (Cl) element concentration. According to this, in order to prevent the occurrence of crystallization, it is desirable that the average concentration of potassium element in the core portion 10 is 100 atomic ppm or less and the average concentration of chlorine element is less than 1000 atomic ppm. As shown in FIGS. 6 and 7, when the optical fiber preform 1 is drawn, both the alkali metal element and the chlorine element contained in the core portion 10 diffuse from the core portion 10 and the average concentration decreases.
  • the preferable value of the average concentration of the alkali metal element in the core in the fiber state is 20 atomic ppm or less, and the preferable value of the average concentration of the chlorine element is 800 atomic ppm or less. Further, if the concentration of the elemental chlorine is too thin, defects increase and cause an increase in transmission loss. Therefore, it is desirable that the concentration is at least 300 atomic ppm or more.
  • the core portion 10 contains potassium element
  • the viscosity of the core portion 10 is reduced when the optical fiber preform 1 is drawn, and the relaxation of the network structure of the silica glass proceeds. Transmission loss can be reduced. From this, it is desirable that the average concentration of potassium element in at least the core portion 10 is 5 atomic ppm or more. As shown in FIG. 6, the preferred value of the average concentration of the alkali metal element in the core in the fiber state is 0.1 atomic ppm or more.
  • Patent Documents 5 and 6 do not substantially contain a metal oxide (GeO 2 , Al 2 O 3, etc.) for increasing the refractive index, and in an optical fiber having a core made of a glass containing an alkali metal element.
  • Lowering the chlorine element concentration can reduce transmission loss, not containing any chlorine element, or desirably having a chlorine element (Cl) concentration of 500 ppm by weight (850 atomic ppm) or less, and oxidation.
  • the potassium (K 2 O) concentration is preferably 50 to 500 ppm by weight (the potassium element (K) concentration is 65 to 650 atomic ppm).
  • a chlorine element weight concentration of 1 ppm by weight was converted to a chlorine element molar concentration of 1.7 atomic ppm
  • a potassium oxide weight concentration of 1 ppm by weight was converted to a potassium element molar concentration of 1.3 atomic ppm. Therefore, according to the techniques described in Patent Documents 5 and 6, crystals are generated in the glass in the manufacturing process of the optical fiber preform, and the transmission loss of the optical fiber tends to increase.
  • the concentration distribution of the alkali metal element and the chlorine element in the core portion 10 may be such that the concentration of the chlorine element in the entire core portion 10 is substantially uniform.
  • potassium element and chlorine element are included so as to decrease outward with the central portion of the core portion 10 as a peak.
  • the average concentration of potassium element in the entire core portion 10 is 100 atomic ppm or less.
  • the average concentration of chlorine element in the entire core portion 10 is 1000 atomic ppm or less.
  • the average concentration of potassium element in the entire core portion 10 is 19.3 atomic ppm, and the average concentration of chlorine element is 924 atomic ppm.
  • the peak concentration of potassium element in the entire core portion 10 is 750 atomic ppm, and the peak concentration of chlorine element is 1270 atomic ppm.
  • the average concentration of potassium element in the core of the optical fiber obtained by drawing the optical fiber preform 1 was 2 atomic ppm, and the average concentration of chlorine element was 600 ppm.
  • the concentration distribution of the alkali metal element and the chlorine element in the core part 10 may be different in the chlorine element concentration between the first core part 11 and the second core part 12, for example, as shown in FIG. .
  • the potassium element has a maximum concentration in the first core portion 11 of the first core portion 11 and the second core portion 12.
  • the peak concentration of potassium element in the first core portion 11 is higher than 1000 atomic ppm, and the average concentration is 250 atomic ppm or more.
  • the average concentration of chlorine element in the first core portion 11 is lower than 80 atomic ppm.
  • the average concentration of alkali metal element (potassium element) in the second core portion 12 is preferably 10 atomic ppm or less (in this example, 1 atomic ppm or less), and the average concentration of chlorine element is 1000 atomic ppm or more. It has become. Further, the average concentration of potassium element in the entire core portion 10 including the first core portion 11 and the second core portion 12 is 100 atomic ppm or less, and the average concentration of chlorine element is 1000 atomic ppm or less.
  • the average concentration of potassium element in the first core portion 11 is 260 atomic ppm, and the average concentration of chlorine element is 77 atomic ppm.
  • the peak concentration of potassium element in the first core portion 11 is 1141 atomic ppm.
  • the average concentration of potassium element in the entire core portion 10 is 7.7 atomic ppm, and the average concentration of chlorine element is 906 atomic ppm.
  • the peak concentration of chlorine element in the entire core portion 10 is 1180 atomic ppm.
  • the average concentration of potassium element in the core of the optical fiber obtained by drawing the optical fiber preform was 1 atomic ppm, and the average concentration of chlorine element was 750 atomic ppm.
  • the optical fiber has a refractive index that increases with compressive stress and decreases with tensile stress due to the photoelastic effect. Therefore, it is desirable that the average refractive index of the second clad provided on the outer periphery of the first clad is 0.01% or more higher in relative refractive index difference than the average refractive index of the first clad.
  • the average concentration of the alkali metal element in the core of the optical fiber is 0.1 atomic ppm or more so that the transmission loss is reduced to 0.185 dB / km or less.
  • the average concentration of the fiber for submarine cables is preferably 20 atomic ppm or less.
  • the average concentration of dopants other than alkali metal elements, chlorine elements and fluorine elements in the core of the optical fiber is desirably 10 atomic ppm or less.
  • the average concentration of the alkali metal element in the cocoon core part 10 is preferably 100 atomic ppm or less as described above from the viewpoint of suppressing crystallization. By doing in this way, it is possible to improve the manufacturability of the core rod containing an alkali metal element. In order to sufficiently reduce the transmission loss, the average concentration is preferably 5 atomic ppm or more.
  • the maximum value of the refractive index of the core portion 10 based on the refractive index of the cladding portion 20 (in the case where the cladding portion 20 has a multilayer structure, the refractive index at a radial position that is about three times the outer periphery of the core portion 10).
  • the relative refractive index difference ( ⁇ c2) may be 0.25 to 0.55%.
  • the radius of the core part 10 may be not less than 3.0 ⁇ m and not more than 7.0 ⁇ m.
  • the transmission loss is preferably as low as possible.
  • the transmission loss at a wavelength of 1550 nm is preferably lower than 0.180 dB / km, more preferably 0.175 dB / km or less, and most preferably 0.170 dB / km or less.
  • the cocoon core portion 10 is preferably silica-based glass containing an alkali metal element such as a halogen element such as chlorine element or fluorine (F) element, potassium element, sodium (Na) element, or rubidium (Rb) element.
  • concentration of dopants other than alkali metal elements such as germanium (Ge) elements, typical metal elements such as aluminum (Al) elements, transition metal elements such as nickel (Ni) and copper (Cu), chlorine elements and fluorine elements Is preferably 10 atom ppm or less, more preferably 1 atom ppm or less, and most preferably 0.1 atom ppm or less.
  • the transmission loss at a wavelength of 1380 nm is preferably lower than 0.8 dB / km, more preferably 0.4 dB / km or less, and most preferably 0.3 dB / km or less.
  • PMD may be 0.2 ps / ⁇ km or less.
  • the cable cutoff wavelength is preferably 1520 nm or less, and more preferably 1450 nm or less, which is the pump wavelength used for Raman amplification.
  • the refractive index of the core part 10 and the clad part 20 does not need to be uniform in each region, and may have various refractive index profiles as shown in FIG. There is no limit. Example 1
  • Example 1 an optical fiber preform and an optical fiber were manufactured as follows, and the transmission characteristics of the optical fiber were examined.
  • a pipe for diffusing an alkali metal element 970 atomic ppm of chlorine element and 6000 atomic ppm of fluorine element are included as dopants, and the concentration of other elements is 10 atomic ppm or less.
  • a pipe (pure silica glass pipe) that is a glass that does not substantially contain a metal oxide (GeO 2 , Al 2 O 3, etc.) for increasing the refractive index is referred to as “pure quartz glass” is prepared. did.
  • This glass pipe had an outer diameter of 35 mm and an inner diameter of about 20 mm.
  • Potassium bromide (KBr) was used as an alkali metal raw material, and this was heated to 840 ° C. by an external heat source to generate potassium bromide vapor. Then, potassium bromide vapor is added together with oxygen at a flow rate of 1 SLM introduced as a carrier gas (1 liter / min in terms of standard state). While being introduced into the pure silica glass pipe, the outer surface of the pure silica glass pipe was heated to 2050 ° C. by a thermal plasma flame as an external heat source. The thermal plasma flame was traversed at a speed of 30 mm / min, heated for a total of 12 turns, and potassium element was diffused and added to the inner surface of the pure silica glass pipe.
  • the core glass rod containing the alkali metal element was ground at an outer peripheral portion so as to have an outer diameter of 20 mm to obtain a core glass.
  • a silica-based glass (first clad portion) containing elemental fluorine was synthesized outside the core glass to obtain a core glass with an optical clad portion.
  • Relative refractive index difference ((n a ⁇ n b1 ) / n SiO2 ⁇ 100 between the core part (refractive index: n a ) and the first cladding part (refractive index: n b1 ), n SiO2 : refractive index of pure SiO 2 ) was about 0.37% at the maximum. 5.
  • an optical fiber preform having a physical cladding part is obtained by synthesizing a silica-based glass (second cladding part) containing fluorine element on the outside. .
  • the optical fiber preform had an outer diameter of the first cladding part of 36 mm and an outer diameter of the second cladding part of 140 mm.
  • Relative refractive index difference ((n a ⁇ n b2 ) / n SiO 2 ⁇ 100 between the core part (refractive index: n a ) and the second cladding part (refractive index: n b2 ), n SiO2 : refractive index of pure SiO 2 ) was about 0.38% at the maximum.
  • a known OVD method was used for the synthesis of the second cladding part. Further, in the optical fiber preform at this time, no crystal was observed in the glass.
  • An optical fiber was manufactured by drawing the optical fiber preform of the above by a known method. At this time, the processing speed for forming an optical fiber during drawing was 2300 m / min, and the tension applied to the optical fiber was 0.5 N.
  • the average concentration of potassium element in the core of the optical fiber manufactured as described above was about 2 atomic ppm.
  • Various characteristics are as shown in Table 1, and an optical fiber with low transmission loss was obtained. (Example 2)
  • Example 2 an optical fiber preform and an optical fiber were manufactured as follows, and the transmission characteristics of the optical fiber were examined.
  • a pipe for diffusing an alkali metal element a pipe containing 930 atomic ppm of chlorine element and 6000 atomic ppm of fluorine element as a dopant, and the concentration of other elements is 10 atomic ppm or less, and is substantially pure silica glass.
  • This glass pipe had an outer diameter of 35 mm and an inner diameter of about 20 mm.
  • Example 2 In the same manner as in Example 1, 1. While being introduced into the pure silica glass pipe, the outer surface of the pure silica glass pipe was heated to 2050 ° C. by a thermal plasma flame as an external heat source. The thermal plasma flame was traversed at a speed of 30 mm / min, heated for a total of 20 turns, and potassium element was diffused and added to the inner surface of the pure silica glass pipe.
  • the pure silica glass pipe was solidified by the same method as in Example 1 to obtain a core glass rod containing an alkali metal element having an outer diameter of 28 mm.
  • the core glass rod had a maximum potassium element concentration of 1140 atomic ppm, and the diameter of the region containing 10 atomic ppm or more of potassium element was 12 mm.
  • the core glass rod containing the alkali metal element was stretched using a known method so as to have an outer diameter of 20 mm, and then the outer peripheral portion was ground so that the outer diameter was 12 mm (first core portion).
  • Silica-based glass (second core portion) containing a chlorine element having a concentration of 1000 atomic ppm was provided outside the core glass rod containing the alkali metal element so as to have an outer diameter of 65 mm. Then, it extended
  • a silica-based glass pipe containing a chlorine element having a concentration of 6000 atomic ppm is prepared.
  • a known rod-in collapse method in which a core glass rod containing an alkali metal element is inserted and heated and integrated by an external heat source was used.
  • the ratio of the diameter (D1) of the first core part to the diameter (D2) of the second core part containing a high concentration of chlorine element: D2 / D1 was 5.8.
  • a silica-based glass (first clad portion) containing elemental fluorine was synthesized outside the core glass to obtain a core glass with an optical clad portion.
  • Relative refractive index difference ((n a2 ⁇ n b1 ) / n SiO2 between the second core part (n a2 : refractive index of the second core part) and the first cladding part (n b1 : refractive index of the first cladding part) ⁇ 100, n SiO2: refractive index of pure SiO 2) was the maximum of about 0.34%.
  • a known rod-in collapse method was used for the synthesis of the first cladding portion. As a result of the synthesis by the rod-in collapse method, it was possible to suppress the moisture content of the core glass and the first clad portion in the vicinity thereof sufficiently low.
  • silica-based glass (second cladding portion) containing fluorine was synthesized outside thereof to obtain an optical fiber preform further having a physical cladding portion.
  • the optical fiber preform had an outer diameter of the first cladding part of 36 mm and an outer diameter of the second cladding part of 140 mm.
  • Relative refractive index difference ((n a2 ⁇ n b2 ) / n SiO 2 between the second core part (n a2 : refractive index of the second core part) and the second cladding part (n b2 : refractive index of the second cladding part) ⁇ 100, n SiO2: refractive index of pure SiO 2) was the maximum of about 0.30%.
  • a known VAD method was used for the synthesis of the second cladding part. Further, in the optical fiber preform at this time, no crystal was observed in the glass.
  • An optical fiber was manufactured by drawing the optical fiber preform of the above by a known method. At this time, the processing speed for forming an optical fiber during drawing was 2300 m / min, and the tension applied to the optical fiber was 0.5 N.
  • the average concentration of potassium element in the core of the optical fiber manufactured as described above was about 1 atomic ppm.
  • Various characteristics are as shown in Table 1, and an optical fiber with low transmission loss was obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Physics & Mathematics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Glass Compositions (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

Provided is an optical fiber with low transmission loss, and an optical fiber preform which is used for obtaining such an optical fiber and in which crystals are not prone to form in the core. This optical fiber is provided with a core that includes the central axis, and a cladding that surrounds the core and has a lower refractive index than that of the core. The core contains an alkali metal element and elemental chlorine. The average concentration of the alkali metal element in the core is 0.1-20 atomic ppm, the average concentration of the elemental chlorine in the core is less than or equal to 800 atomic ppm, and the transmission loss at a wavelength of 1550nm is 0.185dB/km or less.

Description

光ファイバ及び光ファイバ母材Optical fiber and optical fiber preform
  本発明は、アルカリ金属元素を含む光ファイバ及び光ファイバ母材に関する。 The present invention relates to an optical fiber containing an alkali metal element and an optical fiber preform.
  アルカリ金属元素をコアに含むシリカガラス系の光ファイバが知られている(特表2005-537210号公報(特許文献1)、米国特許出願公開第2006/0130530号明細書(特許文献2)、特表2007-504080号公報(特許文献3)、特表2008-536190号公報(特許文献4)、特表2010-501894号公報(特許文献5)、特表2009-541796号公報(特許文献6)、特表2010-526749号公報(特許文献7)、国際公開第98/002389号(特許文献8)、米国特許第5146534号明細書(特許文献9)、特開2012-229150号公報(特許文献10)、特開2013-61620号公報(特許文献11)を参照)。光ファイバ母材のコア部がアルカリ金属元素を含んでいると、光ファイバ母材を線引きするときにコア部の粘性が小さくなり、シリカガラスのネットワーク構造の緩和が進行するため、光ファイバの伝送損失を低減することが可能であるといわれている。 A silica glass optical fiber containing an alkali metal element in the core is known (Japanese Patent Publication No. 2005-537210 (Patent Document 1), US Patent Application Publication No. 2006/0130530 (Patent Document 2), Table 2007-504080 (Patent Document 3), JP-T 2008-536190 (Patent Document 4), JP-T 2010-501894 (Patent Document 5), JP-T 2009-541796 (Patent Document 6) JP-T 2010-526749 (Patent Document 7), International Publication No. 98/002389 (Patent Document 8), US Pat. No. 5,146,534 (Patent Document 9), JP 2012-229150 (Patent Document) 10), Japanese Patent Laid-Open No. 2013-61620 (Patent Document 11)). If the core of the optical fiber preform contains an alkali metal element, the viscosity of the core decreases when the optical fiber preform is drawn, and the relaxation of the silica glass network structure proceeds. It is said that loss can be reduced.
  特許文献1、2は、アルカリ金属元素をシリカガラス中に添加する方法である拡散法を記載している。拡散法は、原料となるアルカリ金属元素又はアルカリ金属塩などの原料蒸気をガラスパイプ内に導入しながら、ガラスパイプを外部熱源により加熱したり、ガラスパイプ内にプラズマを発生させたりすることで、アルカリ金属元素をガラスパイプの内表面に拡散添加するものである。 Patent Documents 1 and 2 describe a diffusion method which is a method of adding an alkali metal element into silica glass. The diffusion method is to heat the glass pipe with an external heat source or to generate plasma in the glass pipe while introducing the raw material vapor such as alkali metal element or alkali metal salt as the raw material into the glass pipe. An alkali metal element is diffusely added to the inner surface of the glass pipe.
  このようにしてアルカリ金属元素をガラスパイプの内表面近傍に添加した後、このガラスパイプを加熱して縮径させる。縮径後、アルカリ金属元素の添加の際に同時に添加されてしまうNiやFeなどの遷移金属元素を除去する目的で、ガラスパイプの内表面のある厚みをエッチングする。アルカリ金属元素は遷移金属元素よりも拡散が速いためガラス表面をある厚みでエッチングして遷移金属元素を除去してもアルカリ金属元素を残留させることが可能である。エッチング後、ガラスパイプを加熱して中実化することで、アルカリ金属元素を含むコアロッドを製造する。このアルカリ金属元素を含むコアロッドの外側に該コアロッドを含むコア部よりも屈折率の低いクラッド部を合成することで光ファイバ母材を製造する。そして、この光ファイバ母材を公知の方法で線引きすることで光ファイバを製造することができる。 後 After adding the alkali metal element in the vicinity of the inner surface of the glass pipe in this way, the glass pipe is heated to reduce the diameter. After the diameter reduction, a certain thickness of the inner surface of the glass pipe is etched for the purpose of removing transition metal elements such as Ni and Fe which are added simultaneously with the addition of the alkali metal element. Since the alkali metal element diffuses faster than the transition metal element, the alkali metal element can remain even if the transition metal element is removed by etching the glass surface with a certain thickness. After the etching, the glass rod is heated and solidified to produce a core rod containing an alkali metal element. An optical fiber preform is manufactured by synthesizing a cladding portion having a refractive index lower than that of the core portion including the core rod outside the core rod including the alkali metal element. And an optical fiber can be manufactured by drawing this optical fiber preform by a known method.
  本発明は、伝送損失が低い光ファイバ、及びこのような光ファイバを得るために使用され、コア部に結晶が発生し難い光ファイバ母材を提供することを目的とする。 The present invention aims to provide an optical fiber with low transmission loss and an optical fiber preform that is used to obtain such an optical fiber and hardly generates crystals in the core.
  中心軸を含むコアと、コアを取り囲み、前記コアの屈折率よりも小さな屈折率を有するクラッドとを備える光ファイバであって、コアはアルカリ金属元素と塩素元素とを含み、コアにおけるアルカリ金属元素の平均濃度は0.1原子ppm以上20原子ppm以下であり、コアにおける塩素元素の平均濃度は800原子ppm以下であり、波長1550nmにおける伝送損失は0.185dB/km以下である光ファイバが提供される。 An optical fiber comprising a core including a central axis and a clad surrounding the core and having a refractive index smaller than the refractive index of the core, wherein the core includes an alkali metal element and a chlorine element, and the alkali metal element in the core An optical fiber having an average concentration of 0.1 atomic ppm or more and 20 atomic ppm or less, an average concentration of chlorine element in the core of 800 atomic ppm or less, and a transmission loss at a wavelength of 1550 nm of 0.185 dB / km or less is provided. Is done.
  本発明の光ファイバは、コアにおける塩素濃度の平均濃度は300原子ppm以上であってもよい。また、本発明の光ファイバは、コアは更にフッ素元素を含み、コアにおけるアルカリ金属元素、塩素元素及びフッ素元素以外のドーパントの平均濃度は10原子ppm以下であってもよい。また、本発明の光ファイバは、コアはアルカリ金属元素としてカリウム元素を含んでもよい。 In the optical fiber of the present invention, the average chlorine concentration in the core may be 300 atomic ppm or more. In the optical fiber of the present invention, the core may further contain a fluorine element, and the average concentration of dopants other than alkali metal elements, chlorine elements, and fluorine elements in the core may be 10 atomic ppm or less. In the optical fiber of the present invention, the core may contain a potassium element as an alkali metal element.
  発明の他の態様として、中心軸を含むコア部と、コア部を取り囲み、前記コアの屈折率よりも小さな屈折率を有するクラッド部とを備え、上記の光ファイバを得るために使用されるシリカガラス系の光ファイバ母材であって、コア部は第一コア部と第一コア部を取り囲む第二コア部とを有し、コア部におけるアルカリ金属元素は第一コア部及び第二コア部のうち第一コア部でその濃度が最大値になっていて、第二コア部におけるアルカリ金属元素の平均濃度は10原子ppm以下であり、第一コア部における塩素元素の平均濃度は第二コア部における塩素元素の平均濃度よりも小さい光ファイバ母材が提供される。 As another aspect of the invention, a silica part used for obtaining the above optical fiber, comprising a core part including a central axis, and a clad part surrounding the core part and having a refractive index smaller than the refractive index of the core A glass-based optical fiber preform, wherein the core portion includes a first core portion and a second core portion surrounding the first core portion, and the alkali metal element in the core portion includes the first core portion and the second core portion. Of the first core portion, the concentration of the alkali metal element in the second core portion is 10 atomic ppm or less, and the average concentration of the chlorine element in the first core portion is the second core portion. An optical fiber preform smaller than the average concentration of elemental chlorine in the part is provided.
  さらに他の態様として、中心軸を含むコア部と、コア部を取り囲み、前記コアの屈折率よりも小さな屈折率を有するクラッド部とを備え、上記の光ファイバを得るために使用されるシリカガラス系の光ファイバ母材であって、コア部はアルカリ金属元素と塩素元素とを含み、コア部におけるアルカリ金属元素の平均濃度は5原子ppm以上100原子ppm以下であり、コア部における塩素元素の平均濃度は1000原子ppm未満である光ファイバ母材が提供される。 As still another aspect, the silica glass includes a core portion including a central axis, and a clad portion surrounding the core portion and having a refractive index smaller than the refractive index of the core, and used for obtaining the above optical fiber. An optical fiber preform of the system, wherein the core portion contains an alkali metal element and a chlorine element, and the average concentration of the alkali metal element in the core portion is 5 atomic ppm or more and 100 atomic ppm or less. An optical fiber preform is provided having an average concentration of less than 1000 atomic ppm.
  本発明によれば、伝送損失が低い光ファイバ、及びこのような光ファイバを得るために使用され、コア部に結晶が発生し難い光ファイバ母材を提供することができる。 According to the present invention, it is possible to provide an optical fiber having a low transmission loss and an optical fiber preform that is used to obtain such an optical fiber and hardly generates crystals in the core portion.
本発明の実施形態の光ファイバ母材の断面図である。It is sectional drawing of the optical fiber preform | base_material of embodiment of this invention.
光ファイバ母材のコア部における結晶化発生のカリウム元素濃度及び塩素元素濃度依存性を示すグラフである。It is a graph which shows the potassium element concentration and chlorine element concentration dependence of crystallization generation | occurrence | production in the core part of an optical fiber preform | base_material.
第一コア部から第二コア部にかけて塩素元素濃度が略一様な場合のコア部におけるアルカリ金属元素及び塩素元素の濃度分布を示すグラフである。It is a graph which shows concentration distribution of the alkali metal element and chlorine element in a core part in case a chlorine element density | concentration is substantially uniform from a 1st core part to a 2nd core part.
第一コア部と第二コア部とで塩素元素濃度が異なる場合のコア部におけるアルカリ金属元素及び塩素元素の濃度分布を示すグラフである。It is a graph which shows concentration distribution of the alkali metal element and chlorine element in a core part in case chlorine element concentration differs in a 1st core part and a 2nd core part.
光ファイバ母材の屈折率プロファイルの例を模式的に示す図である。It is a figure which shows typically the example of the refractive index profile of an optical fiber preform | base_material.
光ファイバ母材のコア部におけるカリウム元素の平均濃度と、この光ファイバ母材を線引きした光ファイバのコアにおけるカリウム元素の平均濃度との関係を示すグラフである。It is a graph which shows the relationship between the average density | concentration of the potassium element in the core part of an optical fiber preform | base_material, and the average concentration of potassium element in the core of the optical fiber which drawn this optical fiber preform | base_material.
光ファイバ母材のコア部における塩素元素の平均濃度と、この光ファイバ母材を線引きした光ファイバのコアにおける塩素元素の平均濃度との関係を示すグラフである。It is a graph which shows the relationship between the average concentration of the chlorine element in the core part of an optical fiber preform, and the average concentration of the chlorine element in the core of the optical fiber which drawn this optical fiber preform.
  しかし、特許文献1~11に記載の技術では、製造工程において光ファイバ母材のコア部に結晶が発生し易かった。そして、このようにコア部に結晶が発生した光ファイバ母材を線引きして得られる光ファイバは、伝送損失が大きくなることがあった。 However, in the techniques described in Patent Documents 1 to 11, crystals are easily generated in the core portion of the optical fiber preform in the manufacturing process. An optical fiber obtained by drawing an optical fiber preform in which a crystal is generated in the core portion as described above may have a large transmission loss.
  以下、添付図面を参照して、本発明を実施するための形態を詳細に説明する。なお、図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。 DETAILED DESCRIPTION Hereinafter, embodiments for carrying out the present invention will be described in detail with reference to the accompanying drawings. In the description of the drawings, the same elements are denoted by the same reference numerals, and redundant description is omitted.
  本発明者は、アルカリ金属元素をコアに含むシリカ系ガラスからなる光ファイバについて研究を行う過程で、以下のような知見を得た。アルカリ金属元素を含むシリカ系ガラスは、ガラス転移点が1000~1400℃に低温化し、その結晶化速度が速くなるため、結晶化し易くなることが判った。また、アルカリ金属元素を含むコアロッドにアルカリ金属元素及びハロゲン元素のうち少なくともどちらか一方が高濃度に含まれていると、光ファイバ母材の製造工程においてアルカリ金属元素のハロゲン化合物がガラス中に多く生成され、ガラス中に結晶が発生し易くなることが判った。 The present inventor has obtained the following knowledge in the course of conducting research on an optical fiber made of silica glass containing an alkali metal element in the core. It has been found that silica-based glass containing an alkali metal element is easily crystallized because the glass transition point is lowered to 1000 to 1400 ° C. and the crystallization speed is increased. In addition, if the core rod containing an alkali metal element contains at least one of an alkali metal element and a halogen element in a high concentration, a lot of halogen compounds of the alkali metal element are contained in the glass in the optical fiber preform manufacturing process. As a result, it was found that crystals are easily generated in the glass.
  図1は、本発明の実施形態の光ファイバ母材1の断面図である。光ファイバ母材1は、シリカ系ガラスからなり、コア部10と、コア部10を取り囲むクラッド部20とを備える。コア部10は光ファイバ母材1の中心軸を含み、コア部10の屈折率はクラッド部20の屈折率よりも大きい。コア部10は、第一コア部11と、第一コア部11を取り囲む第二コア部12とを有する。クラッド部20は、第二コア部12を取り囲む第一クラッド部(光学クラッド部)21と、第一クラッド部21を取り囲む第二クラッド部(物理クラッド部)22とを有する。 FIG. 1 is a cross-sectional view of an optical fiber preform 1 according to an embodiment of the present invention. The optical fiber preform 1 is made of silica glass, and includes a core portion 10 and a clad portion 20 that surrounds the core portion 10. The core part 10 includes the central axis of the optical fiber preform 1, and the refractive index of the core part 10 is larger than the refractive index of the cladding part 20. The core part 10 includes a first core part 11 and a second core part 12 surrounding the first core part 11. The clad part 20 includes a first clad part (optical clad part) 21 surrounding the second core part 12 and a second clad part (physical clad part) 22 surrounding the first clad part 21.
  次に、コア部10におけるアルカリ金属元素及び塩素元素の濃度範囲について説明する。図2は、コア部10における結晶化発生のカリウム(K)元素濃度及び塩素(Cl)元素濃度依存性を示すグラフである。これによれば、結晶化発生を防ぐためには、コア部10におけるカリウム元素の平均濃度は100原子ppm以下、塩素元素の平均濃度は1000原子ppm未満であることが望ましい。また図6、7に示すように光ファイバ母材1を線引きするとコア部10に含まれるアルカリ金属元素及び塩素元素共にコア部10から拡散が進んで平均濃度は小さくなる。そのため、ファイバ状態でのコアのアルカリ金属元素の平均濃度の好適値は20原子ppm以下、塩素元素の平均濃度の好適値は800原子ppm以下であることが望ましい。また塩素元素の濃度は薄すぎると欠陥が増大し、伝送損失増の要因となるため、少なくとも300原子ppm以上であることが望ましい。 Next, the concentration range of the alkali metal element and the chlorine element in the core portion 10 will be described. FIG. 2 is a graph showing the dependency of crystallization generation in the core 10 on the potassium (K) element concentration and the chlorine (Cl) element concentration. According to this, in order to prevent the occurrence of crystallization, it is desirable that the average concentration of potassium element in the core portion 10 is 100 atomic ppm or less and the average concentration of chlorine element is less than 1000 atomic ppm. As shown in FIGS. 6 and 7, when the optical fiber preform 1 is drawn, both the alkali metal element and the chlorine element contained in the core portion 10 diffuse from the core portion 10 and the average concentration decreases. Therefore, it is desirable that the preferable value of the average concentration of the alkali metal element in the core in the fiber state is 20 atomic ppm or less, and the preferable value of the average concentration of the chlorine element is 800 atomic ppm or less. Further, if the concentration of the elemental chlorine is too thin, defects increase and cause an increase in transmission loss. Therefore, it is desirable that the concentration is at least 300 atomic ppm or more.
  また、一方で、コア部10がカリウム元素を含んでいると、光ファイバ母材1を線引きするときにコア部10の粘性が小さくなり、シリカガラスのネットワーク構造の緩和が進行するため、光ファイバの伝送損失を低減することが可能である。このことから少なくともコア部10におけるカリウム元素の平均濃度は5原子ppm以上であることが望ましい。図6に示すようにファイバ状態でのコアのアルカリ金属元素の平均濃度の好適値は、0.1原子ppm以上である。 On the other hand, when the core portion 10 contains potassium element, the viscosity of the core portion 10 is reduced when the optical fiber preform 1 is drawn, and the relaxation of the network structure of the silica glass proceeds. Transmission loss can be reduced. From this, it is desirable that the average concentration of potassium element in at least the core portion 10 is 5 atomic ppm or more. As shown in FIG. 6, the preferred value of the average concentration of the alkali metal element in the core in the fiber state is 0.1 atomic ppm or more.
  特許文献5,6は、屈折率を増加させるための金属酸化物(GeO、Al等)を実質的に含まず、アルカリ金属元素を含むガラスからなるコアを有する光ファイバにおいては、塩素元素濃度を低くした方が伝送損失を低減できること、塩素元素を実質的に含まないか、塩素元素(Cl)濃度が500重量ppm(850原子ppm)以下であることが望ましいこと、及び、酸化カリウム(KO)濃度は50~500重量ppm(カリウム元素(K)濃度は65~650原子ppm)が望ましいことを記載している。ここで、塩素元素重量濃度1重量ppmを塩素元素モル濃度1.7原子ppm、酸化カリウム重量濃度1重量ppmをカリウム元素モル濃度1.3原子ppmのように換算した。従って、特許文献5,6に記載の技術によれば、光ファイバ母材の製造工程においてガラス中に結晶が発生し、光ファイバの伝送損失が大きくなり易い。 Patent Documents 5 and 6 do not substantially contain a metal oxide (GeO 2 , Al 2 O 3, etc.) for increasing the refractive index, and in an optical fiber having a core made of a glass containing an alkali metal element. Lowering the chlorine element concentration can reduce transmission loss, not containing any chlorine element, or desirably having a chlorine element (Cl) concentration of 500 ppm by weight (850 atomic ppm) or less, and oxidation. It describes that the potassium (K 2 O) concentration is preferably 50 to 500 ppm by weight (the potassium element (K) concentration is 65 to 650 atomic ppm). Here, a chlorine element weight concentration of 1 ppm by weight was converted to a chlorine element molar concentration of 1.7 atomic ppm, and a potassium oxide weight concentration of 1 ppm by weight was converted to a potassium element molar concentration of 1.3 atomic ppm. Therefore, according to the techniques described in Patent Documents 5 and 6, crystals are generated in the glass in the manufacturing process of the optical fiber preform, and the transmission loss of the optical fiber tends to increase.
  コア部10におけるアルカリ金属元素及び塩素元素の濃度分布は、例えば、図3に示されるように、コア部10全体の塩素元素濃度が略一様なものであってもよい。図3では、カリウム元素及び塩素元素を、コア部10の中心部をピークに外側に向かって減少するように含んでいる。コア部10全体におけるカリウム元素の平均濃度は100原子ppm以下となっている。コア部10全体における塩素元素の平均濃度は1000原子ppm以下となっている。具体的には、コア部10全体におけるカリウム元素の平均濃度は19.3原子ppm、塩素元素の平均濃度は924原子ppmである。また、コア部10全体におけるカリウム元素のピーク濃度は750原子ppm、塩素元素のピーク濃度は1270原子ppmである。また光ファイバ母材1を線引きし得られた光ファイバのコアのカリウム元素の平均濃度は2原子ppm、塩素元素の平均濃度は600ppmであった。 As shown in FIG. 3, for example, the concentration distribution of the alkali metal element and the chlorine element in the core portion 10 may be such that the concentration of the chlorine element in the entire core portion 10 is substantially uniform. In FIG. 3, potassium element and chlorine element are included so as to decrease outward with the central portion of the core portion 10 as a peak. The average concentration of potassium element in the entire core portion 10 is 100 atomic ppm or less. The average concentration of chlorine element in the entire core portion 10 is 1000 atomic ppm or less. Specifically, the average concentration of potassium element in the entire core portion 10 is 19.3 atomic ppm, and the average concentration of chlorine element is 924 atomic ppm. The peak concentration of potassium element in the entire core portion 10 is 750 atomic ppm, and the peak concentration of chlorine element is 1270 atomic ppm. The average concentration of potassium element in the core of the optical fiber obtained by drawing the optical fiber preform 1 was 2 atomic ppm, and the average concentration of chlorine element was 600 ppm.
  また、コア部10におけるアルカリ金属元素及び塩素元素の濃度分布は、例えば、図4に示されるように第一コア部11と第二コア部12とで塩素元素濃度が異なるものであってもよい。図4では、カリウム元素は、第一コア部11及び第二コア部12のうち第一コア部11の方でその濃度が最大値になっている。第一コア部11におけるカリウム元素のピーク濃度は1000原子ppmより高く、平均濃度は250原子ppm以上となっている。逆に、第一コア部11における塩素元素の平均濃度は80原子ppmより低くなっている。また、第二コア部12におけるアルカリ金属元素(カリウム元素)の平均濃度は10原子ppm以下(本例では1原子ppm以下となっている)が好ましく、塩素元素の平均濃度は1000原子ppm以上となっている。更に、第一コア部11と第二コア部12とを含むコア部10全体におけるカリウム元素の平均濃度は100原子ppm以下、塩素元素の平均濃度は1000原子ppm以下となっている。 Moreover, the concentration distribution of the alkali metal element and the chlorine element in the core part 10 may be different in the chlorine element concentration between the first core part 11 and the second core part 12, for example, as shown in FIG. . In FIG. 4, the potassium element has a maximum concentration in the first core portion 11 of the first core portion 11 and the second core portion 12. The peak concentration of potassium element in the first core portion 11 is higher than 1000 atomic ppm, and the average concentration is 250 atomic ppm or more. On the contrary, the average concentration of chlorine element in the first core portion 11 is lower than 80 atomic ppm. The average concentration of alkali metal element (potassium element) in the second core portion 12 is preferably 10 atomic ppm or less (in this example, 1 atomic ppm or less), and the average concentration of chlorine element is 1000 atomic ppm or more. It has become. Further, the average concentration of potassium element in the entire core portion 10 including the first core portion 11 and the second core portion 12 is 100 atomic ppm or less, and the average concentration of chlorine element is 1000 atomic ppm or less.
 具体的には、第一コア部11におけるカリウム元素の平均濃度は260原子ppm、塩素元素の平均濃度は77原子ppmである。第一コア部11におけるカリウム元素のピーク濃度は1141原子ppmである。また、コア部10全体におけるカリウム元素の平均濃度は7.7原子ppm、塩素元素の平均濃度は906原子ppmである。コア部10全体における塩素元素のピーク濃度は1180原子ppmである。また本光ファイバ母材を線引きし得られた光ファイバのコアのカリウム元素の平均濃度は1原子ppm、塩素元素の平均濃度は750原子ppmであった。 Specifically, the average concentration of potassium element in the first core portion 11 is 260 atomic ppm, and the average concentration of chlorine element is 77 atomic ppm. The peak concentration of potassium element in the first core portion 11 is 1141 atomic ppm. The average concentration of potassium element in the entire core portion 10 is 7.7 atomic ppm, and the average concentration of chlorine element is 906 atomic ppm. The peak concentration of chlorine element in the entire core portion 10 is 1180 atomic ppm. The average concentration of potassium element in the core of the optical fiber obtained by drawing the optical fiber preform was 1 atomic ppm, and the average concentration of chlorine element was 750 atomic ppm.
  光ファイバは光弾性効果により、圧縮応力では屈折率が上昇し、引張り応力では屈折率が減少することが知られている。従って、第一クラッドの外周に設けられる第二クラッドの平均屈折率は、第一クラッドの平均屈折率よりも相対屈折率差で0.01%以上、高いことが望ましい。 It is known that the optical fiber has a refractive index that increases with compressive stress and decreases with tensile stress due to the photoelastic effect. Therefore, it is desirable that the average refractive index of the second clad provided on the outer periphery of the first clad is 0.01% or more higher in relative refractive index difference than the average refractive index of the first clad.
  伝送損失が0.185dB/km以下に低減するように、光ファイバのコアにおけるアルカリ金属元素の平均濃度は0.1原子ppm以上とするのが好適である。また一方で、高濃度に含んでいると、耐放射特性や耐水素特性が著しく劣化するために、海底ケーブル用のファイバとしては、当該平均濃度は20原子ppm以下であることが望ましい。光ファイバのコアにおけるアルカリ金属元素、塩素元素及びフッ素元素以外のドーパントの平均濃度は10原子ppm以下であることが望ましい。 It is preferable that the average concentration of the alkali metal element in the core of the optical fiber is 0.1 atomic ppm or more so that the transmission loss is reduced to 0.185 dB / km or less. On the other hand, if it is contained in a high concentration, the radiation resistance and hydrogen resistance are significantly deteriorated, so that the average concentration of the fiber for submarine cables is preferably 20 atomic ppm or less. The average concentration of dopants other than alkali metal elements, chlorine elements and fluorine elements in the core of the optical fiber is desirably 10 atomic ppm or less.
  コア部10におけるアルカリ金属元素の平均濃度は、結晶化抑制の観点から、上記のとおり100原子ppm以下であることがよい。このようにすることでアルカリ金属元素を含むコアロッドの製造性を向上することが可能である。伝送損失を十分に低減するためには、当該平均濃度は5原子ppm以上であるとよい。 The average concentration of the alkali metal element in the cocoon core part 10 is preferably 100 atomic ppm or less as described above from the viewpoint of suppressing crystallization. By doing in this way, it is possible to improve the manufacturability of the core rod containing an alkali metal element. In order to sufficiently reduce the transmission loss, the average concentration is preferably 5 atomic ppm or more.
  クラッド部20の屈折率(クラッド部20が多層構造の場合には、コア部10外周の3倍程度となる半径位置での屈折率)を基準とした、コア部10の屈折率の最大値の相対屈折率差(Δc2)は0.25~0.55%であってよい。コア部10の半径は3.0μm以上7.0μm以下であってよい。伝送損失は低い程好ましく、波長1550nmにおける伝送損失は0.180dB/kmよりも低いことが望ましく、0.175dB/km以下が更に望ましく、0.170dB/km以下が最も望ましい。 The maximum value of the refractive index of the core portion 10 based on the refractive index of the cladding portion 20 (in the case where the cladding portion 20 has a multilayer structure, the refractive index at a radial position that is about three times the outer periphery of the core portion 10). The relative refractive index difference (Δc2) may be 0.25 to 0.55%. The radius of the core part 10 may be not less than 3.0 μm and not more than 7.0 μm. The transmission loss is preferably as low as possible. The transmission loss at a wavelength of 1550 nm is preferably lower than 0.180 dB / km, more preferably 0.175 dB / km or less, and most preferably 0.170 dB / km or less.
  コア部10は、塩素元素、フッ素(F)元素などのハロゲン元素、カリウム元素、ナトリウム(Na)元素、ルビジウム(Rb)元素などのアルカリ金属元素を含むシリカ系ガラスであることが好ましい。それ以外のゲルマニウム(Ge)元素、アルミニウム(Al)元素などの典型金属元素、ニッケル(Ni)、銅(Cu)などの遷移金属元素といった、アルカリ金属元素、塩素元素及びフッ素元素以外のドーパントの濃度は10原子ppm以下であるとよく、1原子ppm以下であると更に好ましく、0.1原子ppm以下であると最も好ましい。 The cocoon core portion 10 is preferably silica-based glass containing an alkali metal element such as a halogen element such as chlorine element or fluorine (F) element, potassium element, sodium (Na) element, or rubidium (Rb) element. Concentrations of dopants other than alkali metal elements such as germanium (Ge) elements, typical metal elements such as aluminum (Al) elements, transition metal elements such as nickel (Ni) and copper (Cu), chlorine elements and fluorine elements Is preferably 10 atom ppm or less, more preferably 1 atom ppm or less, and most preferably 0.1 atom ppm or less.
  波長1380nmにおける伝送損失は、0.8dB/kmよりも低いことが望ましく、0.4dB/km以下が更に望ましく、0.3dB/km以下が最も望ましい。PMDは0.2ps/√km以下であってよい。ケーブルカットオフ波長は1520nm以下であるとよく、ラマン増幅に用いるポンプ波長となる1450nm以下であると更によい。コア部10及びクラッド部20の屈折率は、それぞれの領域内で一様である必要はなく、例えば、図5に示されるような各種の屈折率プロファイルを有していてもよいが、これらに制限されることはない。
(実施例1)
The transmission loss at a wavelength of 1380 nm is preferably lower than 0.8 dB / km, more preferably 0.4 dB / km or less, and most preferably 0.3 dB / km or less. PMD may be 0.2 ps / √km or less. The cable cutoff wavelength is preferably 1520 nm or less, and more preferably 1450 nm or less, which is the pump wavelength used for Raman amplification. The refractive index of the core part 10 and the clad part 20 does not need to be uniform in each region, and may have various refractive index profiles as shown in FIG. There is no limit.
Example 1
  実施例1では、以下のようにして光ファイバ母材及び光ファイバを製造して、この光ファイバの伝送特性を調べた。 In Example 1, an optical fiber preform and an optical fiber were manufactured as follows, and the transmission characteristics of the optical fiber were examined.
  1.アルカリ金属元素を拡散させるパイプとして、970原子ppmの塩素元素及び6000原子ppmのフッ素元素をドーパントとして含み、その他元素の濃度は10原子ppm以下であって、実質的に純シリカガラス(本明細書では、屈折率を増加させるための金属酸化物(GeO、Al等)を実質的に含まないガラスを「純石英ガラス」と呼ぶ。)であるパイプ(純シリカガラスパイプ)を準備した。このガラスパイプの外直径は35mmであり、内直径は20mm程度であった。 1. As a pipe for diffusing an alkali metal element, 970 atomic ppm of chlorine element and 6000 atomic ppm of fluorine element are included as dopants, and the concentration of other elements is 10 atomic ppm or less. Then, a pipe (pure silica glass pipe) that is a glass that does not substantially contain a metal oxide (GeO 2 , Al 2 O 3, etc.) for increasing the refractive index is referred to as “pure quartz glass” is prepared. did. This glass pipe had an outer diameter of 35 mm and an inner diameter of about 20 mm.
  2.アルカリ金属原料として臭化カリウム(KBr)を用い、これを外部熱源により840℃に加熱して臭化カリウム蒸気を発生させた。そして、キャリアガスとして導入した流量1SLM(標準状態に換算して1リットル/min)の酸素と共に臭化カリウム蒸気を1.の純シリカガラスパイプに導入しながら、外部熱源である熱プラズマ火炎によって純シリカガラスパイプの外表面が2050℃となるように加熱した。熱プラズマ火炎は30mm/minの速さでトラバースさせ、合計12ターン加熱し、カリウム元素を純シリカガラスパイプの内表面に拡散添加させた。 2. Potassium bromide (KBr) was used as an alkali metal raw material, and this was heated to 840 ° C. by an external heat source to generate potassium bromide vapor. Then, potassium bromide vapor is added together with oxygen at a flow rate of 1 SLM introduced as a carrier gas (1 liter / min in terms of standard state). While being introduced into the pure silica glass pipe, the outer surface of the pure silica glass pipe was heated to 2050 ° C. by a thermal plasma flame as an external heat source. The thermal plasma flame was traversed at a speed of 30 mm / min, heated for a total of 12 turns, and potassium element was diffused and added to the inner surface of the pure silica glass pipe.
  3.2.のカリウム元素を含む純シリカガラスパイプ内に酸素(2SLM)を流しながら、外部熱源である熱プラズマ火炎によって純シリカガラスパイプの外表面が2100℃となるように加熱した。熱プラズマ火炎は40mm/minの速さでトラバースさせ、合計6ターン加熱し、カリウム元素を含む純シリカガラスパイプを内直径が3mmになるまで縮径した。 3.2. While flowing oxygen (2SLM) into a pure silica glass pipe containing potassium element, the outer surface of the pure silica glass pipe was heated to 2100 ° C. by a thermal plasma flame as an external heat source. The thermal plasma flame was traversed at a speed of 40 mm / min and heated for a total of 6 turns to reduce the diameter of a pure silica glass pipe containing potassium element until the inner diameter became 3 mm.
  4.3.のカリウム元素及び酸素分子を含む純シリカガラスパイプ内にSF(0.05SLM)、塩素(0.5SLM)及びヘリウム(0.5SLM)の混合ガスを導入しながら、外部熱源で加熱し気相エッチングすることで、純シリカガラスパイプの内直径を3.4mmにした。 4.3. While introducing a mixed gas of SF 6 (0.05 SLM), chlorine (0.5 SLM) and helium (0.5 SLM) into a pure silica glass pipe containing potassium elements and oxygen molecules, the gas phase is heated by an external heat source The inner diameter of the pure silica glass pipe was set to 3.4 mm by etching.
  5.4.の純シリカガラスパイプ内に酸素(1SLM)を導入しながら、純シリカガラスパイプ内の絶対圧を1kPaにまで減圧し、外部熱源によって表面温度を1400℃として中実化し、外直径が28mmのアルカリ金属元素を含むコアガラスロッドとした。このコアガラスロッドのカリウム元素濃度は最大値で1800原子ppmであり、カリウム元素を10原子ppm以上含む領域の外直径は12mmであった。 5.4. While introducing oxygen (1SLM) into the pure silica glass pipe, the absolute pressure in the pure silica glass pipe was reduced to 1 kPa, and the surface temperature was solidified to 1400 ° C. by an external heat source, and the outer diameter was 28 mm. A core glass rod containing a metal element was used. The core glass rod had a maximum potassium element concentration of 1800 atomic ppm, and the outer diameter of a region containing 10 atomic ppm or more of potassium element was 12 mm.
  6.5.のアルカリ金属元素を含むコアガラスロッドを外直径20mmとなるように外周部を研削し、コアガラスとした。 6.5. The core glass rod containing the alkali metal element was ground at an outer peripheral portion so as to have an outer diameter of 20 mm to obtain a core glass.
  7.6.のコアガラスの外側にフッ素元素を含むシリカ系ガラス(第一クラッド部)を合成し、光学クラッド部付きコアガラスとした。コア部(屈折率:n)と第一クラッド部(屈折率:nb1)との相対屈折率差((n-nb1)/nSiO2×100、nSiO2:純SiOの屈折率)は最大で0.37%程度であった。第一クラッド部の合成に際して、フッ素元素を含むシリカ系ガラスパイプを準備し、6.のコアガラスを挿入、外部熱源によって加熱・一体化する公知のロッドインコラプス法を用いた。ロッドインコラプス法による合成の結果、コアガラス及びその近傍の第一クラッド部の水分量を十分に低く抑制することが可能であった。 7.6. A silica-based glass (first clad portion) containing elemental fluorine was synthesized outside the core glass to obtain a core glass with an optical clad portion. Relative refractive index difference ((n a −n b1 ) / n SiO2 × 100 between the core part (refractive index: n a ) and the first cladding part (refractive index: n b1 ), n SiO2 : refractive index of pure SiO 2 ) Was about 0.37% at the maximum. 5. When synthesizing the first cladding part, prepare a silica-based glass pipe containing fluorine element; A known rod-in collapse method was used in which the core glass was inserted and heated and integrated by an external heat source. As a result of the synthesis by the rod-in collapse method, it was possible to suppress the moisture content of the core glass and the first clad portion in the vicinity thereof sufficiently low.
  8.7.の光学クラッド部付きコアガラスを延伸などにより所定径に加工した後、その外側にフッ素元素を含むシリカ系ガラス(第二クラッド部)を合成し、物理クラッド部を更に有する光ファイバ母材とした。光ファイバ母材は、第一クラッド部の外直径が36mm、第二クラッド部の外直径が140mmであった。コア部(屈折率:n)と第二クラッド部(屈折率:nb2)との相対屈折率差((n-nb2)/nSiO2×100、nSiO2:純SiOの屈折率)は最大で0.38%程度であった。第二クラッド部の合成には、公知のOVD法を用いた。またこのときの光ファイバ母材では、ガラス中に結晶は見られなかった。 8.7. After processing the core glass with an optical cladding part into a predetermined diameter by stretching or the like, an optical fiber preform having a physical cladding part is obtained by synthesizing a silica-based glass (second cladding part) containing fluorine element on the outside. . The optical fiber preform had an outer diameter of the first cladding part of 36 mm and an outer diameter of the second cladding part of 140 mm. Relative refractive index difference ((n a −n b2 ) / n SiO 2 × 100 between the core part (refractive index: n a ) and the second cladding part (refractive index: n b2 ), n SiO2 : refractive index of pure SiO 2 ) Was about 0.38% at the maximum. A known OVD method was used for the synthesis of the second cladding part. Further, in the optical fiber preform at this time, no crystal was observed in the glass.
  9.8.の光ファイバ母材を公知の方法で線引きすることで光ファイバを製造した。このとき、線引時の光ファイバ化の加工速度は2300m/minであり、光ファイバに加わる張力は0.5Nであった。 9.8. An optical fiber was manufactured by drawing the optical fiber preform of the above by a known method. At this time, the processing speed for forming an optical fiber during drawing was 2300 m / min, and the tension applied to the optical fiber was 0.5 N.
  以上のようにして製造された光ファイバのコアにおけるカリウム元素の平均濃度は2原子ppm程度であった。諸特性は表1のとおりであり、低伝送損失の光ファイバが得られた。
Figure JPOXMLDOC01-appb-T000001

(実施例2)
The average concentration of potassium element in the core of the optical fiber manufactured as described above was about 2 atomic ppm. Various characteristics are as shown in Table 1, and an optical fiber with low transmission loss was obtained.
Figure JPOXMLDOC01-appb-T000001

(Example 2)
  実施例2では、以下のようにして光ファイバ母材及び光ファイバを製造して、この光ファイバの伝送特性を調べた。 In Example 2, an optical fiber preform and an optical fiber were manufactured as follows, and the transmission characteristics of the optical fiber were examined.
  1.アルカリ金属元素を拡散させるパイプとして、930原子ppmの塩素元素及び、6000原子ppmのフッ素元素をドーパントとして含み、その他元素の濃度は10原子ppm以下であって、実質的に純シリカガラスであるパイプを準備した(純シリカガラスパイプ)。このガラスパイプの外直径は35mmであり、内直径は20mm程度であった。 1. As a pipe for diffusing an alkali metal element, a pipe containing 930 atomic ppm of chlorine element and 6000 atomic ppm of fluorine element as a dopant, and the concentration of other elements is 10 atomic ppm or less, and is substantially pure silica glass. Was prepared (pure silica glass pipe). This glass pipe had an outer diameter of 35 mm and an inner diameter of about 20 mm.
  2.実施例1と同じ方法で、臭化カリウム蒸気を1.の純シリカガラスパイプに導入しながら、外部熱源である熱プラズマ火炎によって純シリカガラスパイプの外表面が2050℃となるように加熱した。熱プラズマ火炎は30mm/minの速さでトラバースさせ、合計20ターン加熱し、カリウム元素を純シリカガラスパイプの内表面に拡散添加させた。 2. In the same manner as in Example 1, 1. While being introduced into the pure silica glass pipe, the outer surface of the pure silica glass pipe was heated to 2050 ° C. by a thermal plasma flame as an external heat source. The thermal plasma flame was traversed at a speed of 30 mm / min, heated for a total of 20 turns, and potassium element was diffused and added to the inner surface of the pure silica glass pipe.
  3.実施例1と同じ方法で、カリウム元素を含む純シリカガラスパイプを内直径が3mmになるまで縮径した。 3. In the same manner as in Example 1, a pure silica glass pipe containing potassium element was reduced in diameter until the inner diameter became 3 mm.
  4.実施例1と同じ方法で、純シリカガラスパイプの内直径を3.4mmにした。 4. In the same manner as in Example 1, the inner diameter of the pure silica glass pipe was 3.4 mm.
  5.4.の純シリカガラスパイプを実施例1と同じ方法で中実化し、外径が28mmのアルカリ金属元素を含むコアガラスロッドとした。このコアガラスロッドのカリウム元素濃度は最大値で1140原子ppmであり、カリウム元素を10原子ppm以上含む領域の直径は12mmであった。 5.4. The pure silica glass pipe was solidified by the same method as in Example 1 to obtain a core glass rod containing an alkali metal element having an outer diameter of 28 mm. The core glass rod had a maximum potassium element concentration of 1140 atomic ppm, and the diameter of the region containing 10 atomic ppm or more of potassium element was 12 mm.
  6.5.のアルカリ金属元素を含むコアガラスロッドを外直径20mmとなるように公知の方法を用いて延伸し、その後、外直径が12mmとなるように外周部を研削した(第一コア部)。 6.5. The core glass rod containing the alkali metal element was stretched using a known method so as to have an outer diameter of 20 mm, and then the outer peripheral portion was ground so that the outer diameter was 12 mm (first core portion).
  7.6.のアルカリ金属元素を含むコアガラスロッドの外側に外直径65mmとなるよう、濃度1000原子ppmの塩素元素を含むシリカ系ガラス(第二コア部)を設けた。その後、外直径24mmとなるように公知の方法を用いて延伸した。更に、外直径が20mmとなるように外周部を研削し、コアガラスとした。第一コア部と第二コア部とをあわせて、光ファイバ母材のコア部となる。このコア部におけるアルカリ金属元素の平均濃度は8原子ppmであった。第二コア部の合成には、ここでは、濃度6000原子ppmの塩素元素を含むシリカ系ガラスパイプを準備し、6.のアルカリ金属元素を含むコアガラスロッドを挿入、外部熱源によって加熱・一体化する公知のロッドインコラプス法を用いた。ロッドインコラプス法による合成の結果、第一コア部の径(D1)と高濃度の塩素元素を含む第二コア部の径(D2)との比:D2/D1は5.8であった。 7.6. Silica-based glass (second core portion) containing a chlorine element having a concentration of 1000 atomic ppm was provided outside the core glass rod containing the alkali metal element so as to have an outer diameter of 65 mm. Then, it extended | stretched using the well-known method so that it might become 24 mm of outer diameters. Furthermore, the outer peripheral portion was ground so that the outer diameter was 20 mm to obtain a core glass. The first core portion and the second core portion are combined to form the core portion of the optical fiber preform. The average concentration of the alkali metal element in the core portion was 8 atomic ppm. For the synthesis of the second core portion, here, a silica-based glass pipe containing a chlorine element having a concentration of 6000 atomic ppm is prepared. A known rod-in collapse method in which a core glass rod containing an alkali metal element is inserted and heated and integrated by an external heat source was used. As a result of the synthesis by the rod in collapse method, the ratio of the diameter (D1) of the first core part to the diameter (D2) of the second core part containing a high concentration of chlorine element: D2 / D1 was 5.8.
  8.7.のコアガラスの外側にフッ素元素を含むシリカ系ガラス(第一クラッド部)を合成し、光学クラッド部付きコアガラスとした。第二コア部(na2:第二コア部の屈折率)と第一クラッド部(nb1:第一クラッド部の屈折率)との相対屈折率差((na2-nb1)/nSiO2×100、nSiO2:純SiOの屈折率)は最大で0.34%程度であった。第一クラッド部の合成には、公知のロッドインコラプス法を用いた。ロッドインコラプス法による合成の結果、コアガラス及びその近傍の第一クラッド部の水分量を十分に低く抑制することが可能であった。 8.7. A silica-based glass (first clad portion) containing elemental fluorine was synthesized outside the core glass to obtain a core glass with an optical clad portion. Relative refractive index difference ((n a2 −n b1 ) / n SiO2 between the second core part (n a2 : refractive index of the second core part) and the first cladding part (n b1 : refractive index of the first cladding part) × 100, n SiO2: refractive index of pure SiO 2) was the maximum of about 0.34%. A known rod-in collapse method was used for the synthesis of the first cladding portion. As a result of the synthesis by the rod-in collapse method, it was possible to suppress the moisture content of the core glass and the first clad portion in the vicinity thereof sufficiently low.
  9.8.の光学クラッド部付きコアガラスを延伸などにより所定径に加工した後、その外側にフッ素を含むシリカ系ガラス(第二クラッド部)を合成し、物理クラッド部を更に有する光ファイバ母材とした。光ファイバ母材は、第一クラッド部の外直径が36mm、第二クラッド部の外直径が140mmであった。第二コア部(na2:第二コア部の屈折率)と第二クラッド部(nb2:第二クラッド部の屈折率)との相対屈折率差((na2-nb2)/nSiO2×100、nSiO2:純SiOの屈折率)は最大で0.30%程度であった。第二クラッド部の合成には、公知のVAD法を用いた。またこのときの光ファイバ母材では、ガラス中に結晶は見られなかった。 9.8. After the core glass with an optical cladding portion was processed into a predetermined diameter by stretching or the like, silica-based glass (second cladding portion) containing fluorine was synthesized outside thereof to obtain an optical fiber preform further having a physical cladding portion. The optical fiber preform had an outer diameter of the first cladding part of 36 mm and an outer diameter of the second cladding part of 140 mm. Relative refractive index difference ((n a2 −n b2 ) / n SiO 2 between the second core part (n a2 : refractive index of the second core part) and the second cladding part (n b2 : refractive index of the second cladding part) × 100, n SiO2: refractive index of pure SiO 2) was the maximum of about 0.30%. A known VAD method was used for the synthesis of the second cladding part. Further, in the optical fiber preform at this time, no crystal was observed in the glass.
  10.9.の光ファイバ母材を公知の方法で線引きすることで光ファイバを製造した。このとき、線引時の光ファイバ化の加工速度は2300m/minであり、光ファイバに加わる張力は0.5Nであった。 10.9. An optical fiber was manufactured by drawing the optical fiber preform of the above by a known method. At this time, the processing speed for forming an optical fiber during drawing was 2300 m / min, and the tension applied to the optical fiber was 0.5 N.
  以上のようにして製造された光ファイバのコアにおけるカリウム元素の平均濃度は1原子ppm程度であった。諸特性は表1のとおりであり、低伝送損失の光ファイバが得られた。 The average concentration of potassium element in the core of the optical fiber manufactured as described above was about 1 atomic ppm. Various characteristics are as shown in Table 1, and an optical fiber with low transmission loss was obtained.
 海底ケーブル用の光ファイバ、陸上ケーブル用の光ファイバとして利用される。 Used as an optical fiber for submarine cables and an optical fiber for land cables.

Claims (6)

  1.   中心軸を含むコアと、前記コアを取り囲み、前記コアの屈折率よりも小さな屈折率を有するクラッドとを備える光ファイバであって、
      前記コアはアルカリ金属元素と塩素元素とを含み、
      前記コアにおけるアルカリ金属元素の平均濃度は0.1原子ppm以上20原子ppm以下であり、
      前記コアにおける塩素元素の平均濃度は800原子ppm以下であり、
      波長1550nmにおける伝送損失は0.185dB/km以下である、光ファイバ。
    An optical fiber comprising a core including a central axis, and a clad surrounding the core and having a refractive index smaller than the refractive index of the core,
    The core includes an alkali metal element and a chlorine element,
    The average concentration of the alkali metal element in the core is 0.1 atomic ppm or more and 20 atomic ppm or less,
    The average concentration of elemental chlorine in the core is 800 atomic ppm or less,
    An optical fiber having a transmission loss of 0.185 dB / km or less at a wavelength of 1550 nm.
  2.   前記コアにおける塩素元素の平均濃度は300原子ppm以上である、請求項1に記載の光ファイバ。 The optical fiber according to claim 1, wherein an average concentration of chlorine element in the core is 300 atomic ppm or more.
  3.   前記コアは更にフッ素元素を含み、
      前記コアにおけるアルカリ金属元素、塩素元素及びフッ素元素以外のドーパントの平均濃度は10原子ppm以下である、請求項1又は2に記載の光ファイバ。
    The core further contains elemental fluorine,
    The optical fiber according to claim 1 or 2, wherein an average concentration of dopants other than alkali metal elements, chlorine elements and fluorine elements in the core is 10 atomic ppm or less.
  4.   前記コアはアルカリ金属元素としてカリウム元素を含む、請求項1~3の何れか1項に記載の光ファイバ。 The optical fiber according to any one of claims 1 to 3, wherein the core includes a potassium element as an alkali metal element.
  5.   中心軸を含むコア部と前記コア部を取り囲み、前記コアの屈折率よりも小さな屈折率を有するクラッド部とを備え、請求項1~4の何れか1項に記載の光ファイバを得るために使用されるシリカガラス系の光ファイバ母材であって、
      コア部は第一コア部と前記第一コア部を取り囲む第二コア部とを有し、
      前記コア部におけるアルカリ金属元素は前記第一コア部及び前記第二コア部のうち前記第一コア部でその濃度が最大値になっていて、
      前記第二コア部におけるアルカリ金属元素の平均濃度は10原子ppm以下であり、
      前記第一コア部における塩素元素の平均濃度は前記第二コア部における塩素元素の平均濃度よりも小さい、光ファイバ母材。
    To obtain the optical fiber according to any one of claims 1 to 4, further comprising: a core portion including a central axis; and a clad portion surrounding the core portion and having a refractive index smaller than a refractive index of the core. A silica glass optical fiber preform used,
    The core part has a first core part and a second core part surrounding the first core part,
    The alkali metal element in the core part has a maximum concentration in the first core part among the first core part and the second core part,
    The average concentration of the alkali metal element in the second core part is 10 atomic ppm or less,
    An optical fiber preform in which an average concentration of chlorine element in the first core portion is smaller than an average concentration of chlorine element in the second core portion.
  6.   中心軸を含むコア部と前記コア部を取り囲み、前記コアの屈折率よりも小さな屈折率を有するクラッド部とを備え、請求項1~4の何れか1項に記載の光ファイバを得るために使用されるシリカガラス系の光ファイバ母材であって、
      前記コア部はアルカリ金属元素と塩素元素とを含み、
      前記コア部におけるアルカリ金属元素の平均濃度は5原子ppm以上100原子ppm以下であり、
      前記コア部における塩素元素の平均濃度は1000原子ppm未満である、光ファイバ母材。
    To obtain the optical fiber according to any one of claims 1 to 4, further comprising: a core portion including a central axis; and a clad portion surrounding the core portion and having a refractive index smaller than a refractive index of the core. A silica glass optical fiber preform used,
    The core portion includes an alkali metal element and a chlorine element,
    The average concentration of the alkali metal element in the core portion is 5 atomic ppm or more and 100 atomic ppm or less,
    An optical fiber preform in which an average concentration of chlorine element in the core portion is less than 1000 atomic ppm.
PCT/JP2014/080590 2013-11-29 2014-11-19 Optical fiber and optical fiber preform WO2015079987A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013247575A JP2015105199A (en) 2013-11-29 2013-11-29 Optical fiber and optical fiber preform
JP2013-247575 2013-11-29

Publications (1)

Publication Number Publication Date
WO2015079987A1 true WO2015079987A1 (en) 2015-06-04

Family

ID=53198931

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/080590 WO2015079987A1 (en) 2013-11-29 2014-11-19 Optical fiber and optical fiber preform

Country Status (2)

Country Link
JP (1) JP2015105199A (en)
WO (1) WO2015079987A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018165237A (en) * 2017-03-28 2018-10-25 住友電気工業株式会社 Manufacturing method of coupling type multicore optic fiber
JP2019191297A (en) * 2018-04-20 2019-10-31 住友電気工業株式会社 Optical fiber
JP2020012933A (en) * 2018-07-17 2020-01-23 住友電気工業株式会社 Optical fiber

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9919955B2 (en) * 2015-07-24 2018-03-20 Ofs Fitel, Llc Optical fiber with low loss and nanoscale structurally homogeneous core
JP6690296B2 (en) * 2016-02-26 2020-04-28 住友電気工業株式会社 Optical fiber
EP3677556A4 (en) * 2017-08-31 2021-05-26 Sumitomo Electric Industries, Ltd. Method for manufacturing optical fiber parent material, and method for manufacturing optical fiber
JP2022190555A (en) 2021-06-14 2022-12-26 古河電気工業株式会社 optical fiber
WO2023157505A1 (en) * 2022-02-16 2023-08-24 住友電気工業株式会社 Optical fiber

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005537210A (en) * 2002-08-28 2005-12-08 コーニング インコーポレイテッド Low loss optical fiber and manufacturing method thereof
JP2007504080A (en) * 2003-08-29 2007-03-01 コーニング インコーポレイテッド Optical fiber containing alkali metal oxide and method and apparatus for manufacturing the same
JP2010526749A (en) * 2007-05-07 2010-08-05 コーニング インコーポレイテッド Optical fiber containing alkali metal oxide
JP2013174867A (en) * 2012-01-23 2013-09-05 Sumitomo Electric Ind Ltd Optical fiber and optical fiber base material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005537210A (en) * 2002-08-28 2005-12-08 コーニング インコーポレイテッド Low loss optical fiber and manufacturing method thereof
JP2007504080A (en) * 2003-08-29 2007-03-01 コーニング インコーポレイテッド Optical fiber containing alkali metal oxide and method and apparatus for manufacturing the same
JP2010526749A (en) * 2007-05-07 2010-08-05 コーニング インコーポレイテッド Optical fiber containing alkali metal oxide
JP2013174867A (en) * 2012-01-23 2013-09-05 Sumitomo Electric Ind Ltd Optical fiber and optical fiber base material

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018165237A (en) * 2017-03-28 2018-10-25 住友電気工業株式会社 Manufacturing method of coupling type multicore optic fiber
JP2019191297A (en) * 2018-04-20 2019-10-31 住友電気工業株式会社 Optical fiber
GB2574317A (en) * 2018-04-20 2019-12-04 Sumitomo Electric Industries Optical fiber
US10656329B2 (en) 2018-04-20 2020-05-19 Sumitomo Electric Industries, Ltd. Optical fiber
US11048040B2 (en) 2018-04-20 2021-06-29 Sumitomo Electric Industries, Ltd. Optical fiber
JP7119531B2 (en) 2018-04-20 2022-08-17 住友電気工業株式会社 optical fiber
GB2574317B (en) * 2018-04-20 2022-08-24 Sumitomo Electric Industries Optical fiber
JP2020012933A (en) * 2018-07-17 2020-01-23 住友電気工業株式会社 Optical fiber
CN110727044A (en) * 2018-07-17 2020-01-24 住友电气工业株式会社 Optical fiber

Also Published As

Publication number Publication date
JP2015105199A (en) 2015-06-08

Similar Documents

Publication Publication Date Title
JP5974455B2 (en) Optical fiber preform, optical fiber manufacturing method, and optical fiber
JP6187644B2 (en) Optical fiber
WO2015079987A1 (en) Optical fiber and optical fiber preform
JP6213262B2 (en) Optical fiber preform and optical fiber preform manufacturing method
JP6337509B2 (en) Optical fiber preform manufacturing method
US10031282B2 (en) Optical fiber
JP6011549B2 (en) Optical fiber preform manufacturing method
JP6551109B2 (en) Optical fiber
JP5545236B2 (en) Optical fiber preform manufacturing method
JP5817462B2 (en) Optical fiber preform manufacturing method
JP6613604B2 (en) Optical fiber preform
JP5896056B2 (en) Optical fiber preform and optical fiber
JP6620633B2 (en) Optical fiber
JP2012162410A (en) Method for producing optical fiber preform
JP6579107B2 (en) Optical fiber preform manufacturing method and optical fiber preform
JP7013697B2 (en) Optical fiber base material
WO2014178361A1 (en) Optical fiber preform
JP2013136485A (en) Method for manufacturing optical fiber preform

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14866012

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14866012

Country of ref document: EP

Kind code of ref document: A1