WO2022004175A1 - Roller bearing - Google Patents

Roller bearing Download PDF

Info

Publication number
WO2022004175A1
WO2022004175A1 PCT/JP2021/019104 JP2021019104W WO2022004175A1 WO 2022004175 A1 WO2022004175 A1 WO 2022004175A1 JP 2021019104 W JP2021019104 W JP 2021019104W WO 2022004175 A1 WO2022004175 A1 WO 2022004175A1
Authority
WO
WIPO (PCT)
Prior art keywords
spacer
roller
roller bearing
rollers
view
Prior art date
Application number
PCT/JP2021/019104
Other languages
French (fr)
Japanese (ja)
Inventor
敏和 伴
Original Assignee
Thk株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thk株式会社 filed Critical Thk株式会社
Publication of WO2022004175A1 publication Critical patent/WO2022004175A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • F16C19/34Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load
    • F16C19/36Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with a single row of rollers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • F16C19/34Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load
    • F16C19/38Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with two or more rows of rollers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • F16C19/40Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings with loose spacing bodies between the rollers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/37Loose spacing bodies

Definitions

  • the present invention relates to a roller bearing in which a plurality of rollers are arranged between raceway grooves having a V-shaped cross section formed in each of the inner ring and the outer ring, and spacers are arranged between adjacent rollers.
  • roller bearings are known as bearings that can support complex loads that combine radial load, thrust load, and moment load.
  • the roller bearing includes an inner ring, an outer ring, a plurality of rollers arranged in a raceway groove having a V-shaped cross section formed on the surfaces of the inner ring and the outer ring facing each other, and a spacer arranged between adjacent rollers. Be prepared.
  • the spacer is formed with a pocket for storing a lubricant such as grease applied to the roller.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a roller bearing capable of improving the rated load and rigidity even if a spacer is arranged between adjacent rollers.
  • one aspect of the present invention is a roller bearing in which a plurality of rollers are arranged between raceway grooves having a V-shaped cross section formed in each of the inner ring and the outer ring, and spacers are arranged between adjacent rollers.
  • the thickness (t) of the spacers that determines the distance between adjacent rollers is set thin to 20% or less of the roller diameter (D w ), and in order to prevent the spacers from collapsing, a pair of the spacers in a side view.
  • a roller bearing whose angular dimension (D) is set to be larger than the roller diameter (D w).
  • the rated load and rigidity of the roller bearing can be improved by thinning the spacer and increasing the number of rollers. If the spacer is made thinner, the spacer tends to fall between the rolling surfaces of the raceway grooves of the inner ring and the outer ring, but the diagonal dimension (D) of the spacer in the side view is the roller diameter (D w ) (roller diameter D w is the rolling surface). Since it is set to be larger than the distance between them), it is possible to prevent the spacer from collapsing between the rolling surfaces.
  • FIG. 1A is a perspective view of a roller bearing according to the first embodiment of the present invention
  • FIG. 1B is a perspective view of a roller bearing according to the prior art. It is sectional drawing of the roller bearing of this embodiment. It is a perspective view of the spacer of the roller bearing of this embodiment.
  • a detailed view of the spacer (FIG. 4 (a) is a front view
  • FIG. 4 (b) is a sectional view taken along line bb of FIG. 4 (a)
  • FIG. 4 (c) is a line cc of FIG. 4 (a).
  • 5 (a) is a diagram showing the pitch circle diameter of the roller bearing of the present embodiment
  • FIG. 6A is a front view
  • FIG. 6B is a sectional view taken along line bb of FIG. 6A, showing another example of the spacer of the roller bearing of the present embodiment.
  • FIG. 7 is an enlarged view of part VII of FIG.
  • FIG. 9 (a) is a front view
  • FIG. 9 (b) is a sectional view taken along line bb of FIG. 9 (a)
  • FIG. 9 (c) 9 (a) is a cross-sectional view taken along the line cc of FIG. 9 (a).
  • roller bearing according to the embodiment of the present invention will be described with reference to the accompanying drawings.
  • the roller bearing of the present invention can be embodied in various forms, and is not limited to the embodiments described in the present specification.
  • the present embodiment is provided with the intention of allowing those skilled in the art to fully understand the invention by adequately disclosing the specification. (First Embodiment)
  • FIG. 1A is a perspective view of the roller bearing 5 according to the first embodiment of the present invention.
  • FIG. 1B is a perspective view of the roller bearing 25 of the prior art.
  • 1 is an inner ring
  • 2 is an outer ring
  • 3 is a roller
  • 4 is a spacer.
  • a part of the outer ring 2 is cut out in order to show the roller 3 and the spacer 4 arranged between the inner ring 1 and the outer ring 2.
  • the spacer 4 is made thinner than the spacer 24 of the prior art, the distance between the adjacent rollers 3 is narrowed, and the number of rollers 3 arranged between the inner ring 1 and the outer ring 2 is increased. This improves the rated load and rigidity.
  • the thickness t (see FIG. 4B) of the spacer 4 that determines the distance between the adjacent rollers 3 is set to 20% or less of the roller diameter D w , preferably 15% or less, and more preferably 10% or less. ..
  • a raceway groove 6 having a V-shaped cross section extending in the circumferential direction and having a right-angled apex angle is formed on the outer peripheral surface of the inner ring 1.
  • the track groove 6 includes a first rolling surface 6a and a second rolling surface 6b.
  • a raceway groove 7 having a V-shaped cross section extending in the circumferential direction and having a right-angled apex angle is formed on the inner peripheral surface of the outer ring 2.
  • the track groove 7 includes a first rolling surface 7a and a second rolling surface 7b.
  • the outer ring 2 is divided into upper and lower parts.
  • the raceway groove 6 of the inner ring 1 and the raceway groove 7 of the outer ring 2 face each other.
  • the track groove 6 and the track groove 7 form a circulation path 8 having a substantially square cross section.
  • a plurality of rollers 3 are cross-arranged so that the axes of the adjacent rollers 3 are substantially at right angles.
  • the roller 3 has a cylindrical shape.
  • the roller diameter Dw is set to be slightly larger than the axial length L of the roller 3.
  • the roller bearing 5 of this embodiment is a cross roller bearing.
  • the roller 3 is classified into an upward roller 3a and a downward roller 3b.
  • the upward roller 3a revolves between the second rolling surface 6b of the inner ring 1 and the second rolling surface 7b of the outer ring 2 with the line passing through the virtual center point P1 located above as the axis.
  • the downward roller 3b revolves between the first rolling surface 6a of the inner ring 1 and the first rolling surface 7a of the outer ring 2 with the line passing through the virtual center point P2 located below as the axis.
  • FIG. 3 is a perspective view of the spacer 4
  • FIG. 4 is a detailed view of the spacer 4.
  • the configuration of the spacer 4 will be described using the direction when the spacer 4 is viewed from the traveling direction, that is, the vertical, horizontal, and front-rear directions of FIG.
  • the spacer 4 is formed in a substantially square shape (see FIG. 4A).
  • An arcuate chamfer 9 is formed at the corner of the spacer 4.
  • semi-cylindrical concave surfaces 10 and 11 for receiving the rollers 3 are formed at both ends of the spacer 4 in the front-rear direction.
  • the extending directions of the concave surface 10 and the concave surface 11 are at right angles.
  • the cross sections of the concave surfaces 10 and 11 are arcuate in which the radius is slightly larger than the radius of the roller 3.
  • the concave surfaces 10 and 11 and the roller 3 come into contact with each other at the central portion of the concave surfaces 10 and 11.
  • Chamfers 12 are formed on both edges of the concave surfaces 10 and 11.
  • An arcuate pocket 13 for storing a lubricant such as grease is formed in the central portion of the concave surface 10.
  • a similar pocket (not shown) is also formed in the central portion of the concave surface 11.
  • the pocket 13 of the concave surface 10 and the pocket of the concave surface 11 are communicated with each other by a through hole 14 so that the lubricant can move between them.
  • Constrictions 23 having an arc-shaped cross section are formed on the upper surface, the left and right side surfaces, and the lower surface of the spacer 4. Lubricant is stored in the constriction 23.
  • the width of the spacer 4 is A in front view.
  • the height of the spacer 4 is B.
  • the thickness of the spacer 4 that determines the distance between the adjacent rollers 3 is t.
  • the length of the spacer 4 in the traveling direction in the side view is C.
  • the diagonal dimension D of the spacer 4 in the side view> the roller diameter D w is set to prevent the spacer 4 from collapsing.
  • the roller diameter D w is equal to the distance between the first rolling surface 6a of the inner ring 1 and the first rolling surface 7a of the outer ring 2.
  • B and C are set so as to satisfy the following equation (1).
  • a and C are used in order to prevent the spacer 4 from falling between the second rolling surface 6b of the inner ring 1 and the second rolling surface 7b of the outer ring 2. It is set to satisfy the following equation (2).
  • equations (1) and (2) mean that A and B are enlarged to prevent the spacer 4 from collapsing. However, if A and B are increased, the spacer 4 interferes with the raceway grooves 6 and 7. In order to prevent interference, it is necessary to set the upper limits of A and B as follows.
  • FIG. 5A is a diagram showing the pitch circle diameter of the roller bearing 5.
  • 3 is a roller
  • D pw is a pitch circle diameter.
  • the pitch circle diameter D pw is the diameter of a circle connecting the centers of the rollers 3 arranged in the circulation path 8.
  • FIG. 5B is from a direction at an angle of 45 degrees (the direction of the arrow V in FIG. 5A, which is parallel to the first rolling surface 6a of the inner ring 1 and the first rolling surface 7a of the outer ring 2). It is an enlarged view of the circulation path 8 seen.
  • the spacer 4 contacts the first rolling surface 6a of the inner ring 1 at one point N1 and contacts the first rolling surface 7a of the outer ring 2 at two points N2 and N3. do.
  • the first rolling surface 6a of the inner ring 1 and the first rolling surface 7a of the outer ring 2 are both elliptical, so that the point M1 is used.
  • AB max which is the distance between points M2, can be obtained from the following equation (3).
  • roller bearing 5 of this embodiment has been described above. According to the roller bearing 5 of the present embodiment, the following effects are obtained.
  • the thickness t of the spacer 4 that determines the distance between the adjacent rollers 3 is set thin to 20% or less of the roller diameter D w , the rated load and rigidity of the roller bearing 5 can be improved.
  • the spacer 4 When the spacer 4 is made thin, the spacer 4 tends to fall between the first rolling surfaces 6a and 7a and the second rolling surfaces 6b and 7b of the inner ring 1 and the outer ring 2, but the diagonal dimension D of the spacer 4 in the side view. Can be set to be larger than the roller diameter D w to prevent the spacer 4 from collapsing.
  • concave surfaces 10 and 11 for receiving the rollers 3 are formed at both ends of the spacer 4 in the traveling direction, C can be increased even if the thickness t of the spacer 4 is reduced, and the diagonal dimension D of the spacer 4 is increased. be able to.
  • the thickness t of the spacer 4 is set thin to 15% or less of the roller diameter D w , the number of rollers 3 can be increased in the roller bearings 5 of many model numbers.
  • the spacer 4 of the present embodiment is suitable for improving the rated load and rigidity of the cross roller bearing in which the roller 3 is classified into the upward roller 3a and the downward roller 3b.
  • the spacer 4 is made of a molded body obtained by mixing a resin such as nylon with a reinforcing fiber such as glass fiber. By doing so, sufficient strength can be secured even if the spacer 4 is made thin.
  • the thickness a between the central portion of the lower end edge of the concave surface 10 and the central portion of the lower end edge of the concave surface 11 and the upper end edge of the concave surface 10 are formed.
  • FIG. 6 shows another example of the spacer 4.
  • b is set to a ⁇ b.
  • the concave surface 10 and the concave surface 11 are inclined by an angle ⁇ .
  • the axis of the upward roller 3a tends to face the virtual center point P1
  • the axis of the downward roller 3b tends to point to the virtual center point P2.
  • Other configurations of the spacer 4 are the same as the spacer 4 shown in FIG.
  • the thickness t of the spacer 4 that determines the distance between the adjacent rollers 3 is the thickness between the central portion of the concave surface 10 and the central portion of the concave surface 11. ..
  • the diagonal dimension D is the shorter diagonal dimension of the two diagonal dimensions.
  • roller bearing 15 is a cross roller bearing
  • roller bearing 15 of the second embodiment is a parallel roller bearing
  • the axes of the adjacent rollers 3 are arranged in parallel so as to be substantially parallel to each other.
  • the roller 3 is classified into an upward roller 3a and a downward roller 3b.
  • two upper and lower rolling grooves 18 and 19 are formed on the outer peripheral surface of the inner ring 16.
  • Two upper and lower rolling grooves 20 and 21 facing the rolling grooves 18 and 19 are formed on the inner peripheral surface of the outer ring 17.
  • the downward rollers 3b are arranged in parallel between the upper rolling groove 18 and the upper rolling groove 20.
  • the upward rollers 3a are arranged in parallel between the lower rolling groove 19 and the lower rolling groove 21.
  • the upward roller 3a revolves between the rolling surface 19a of the inner ring 16 and the rolling surface 21a of the outer ring 17 with the line passing through the virtual center point P1 located above as the axis.
  • the downward roller 3b revolves around the rolling surface 18a of the inner ring 16 and the rolling surface 20a of the outer ring 17 with the line passing through the virtual center point P2 located below as the axis.
  • FIG. 9 shows the spacer 22 used in the roller bearing 15 of the second embodiment.
  • the structure of the spacer 22 is the same as that of the spacer 4 of the first embodiment, except that the concave surfaces 10 and 11 are formed in parallel in the extending direction.
  • the thickness t of the spacer 22 that determines the distance between adjacent rollers 3 is 20% or less, preferably 15% or less, and more preferably 10% or less of the diameter of the rollers 3. It is set thinly to.
  • the diagonal dimension D of the spacer 22 in the side view is set to be larger than the roller diameter Dw.
  • the spacer 22 is prevented from falling between the rolling surface 19a of the inner ring 16 and the rolling surface 21a of the outer ring 17 and between the rolling surface 18a of the inner ring 16 and the rolling surface 20a of the outer ring 17. can do.
  • the concave surface 10 and the concave surface 11 may be tilted symmetrically by ⁇ .
  • the present invention is not limited to being embodied in the above embodiment, and can be embodied in other embodiments without changing the gist of the present invention.
  • a tapered roller can be used as the roller instead of the cylindrical roller.
  • the tapered rollers may be cross-arranged so that the axes of adjacent tapered rollers are substantially perpendicular to each other, or may be arranged in parallel so that the axes of adjacent tapered rollers are substantially parallel to each other.
  • the diameter of the central portion in the axial direction of the tapered roller is regarded as the diameter of the tapered roller, and the thickness t of the central portion of the spacer and the diagonal dimension D of the central portion of the spacer may be set in the same manner as in the spacer of the above embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

Provided is a roller bearing capable of improving load rating and rigidity. Disclosed is a roller bearing (5) wherein: a plurality of rollers (3) are arranged between track grooves formed respectively in an inner race (1) and an outer race (2), each track groove having a V-shape in a cross-sectional view; and a spacer (4) is arranged between adjacent rollers (3). The thickness of each spacer (4) defining the interval between the adjacent rollers (3) is made thin so that the thickness is at most 20% of the roller diameter. To prevent the spacer (4) from collapsing, the diagonal dimension of the spacer (4) in a side view is set so as to be greater than the roller diameter.

Description

ローラ軸受Roller bearing
 本発明は、内輪と外輪それぞれに形成した断面V字状の軌道溝間に複数のローラを配置し、隣り合うローラ間にスペーサを配置したローラ軸受に関する。 The present invention relates to a roller bearing in which a plurality of rollers are arranged between raceway grooves having a V-shaped cross section formed in each of the inner ring and the outer ring, and spacers are arranged between adjacent rollers.
 従来からラジアル荷重、スラスト荷重、及びモーメント荷重が組み合わさった複雑な荷重を支持可能な軸受として、ローラ軸受が知られている。ローラ軸受は、内輪と、外輪と、内輪と外輪の互いに対向する面に形成される断面V字状の軌道溝に配置される複数のローラと、隣り合うローラ間に配置されるスペーサと、を備える。スペーサには、ローラに塗布するグリース等の潤滑剤を溜めるポケットが形成される。隣り合うローラ間にスペーサを配置することで、ローラの相互接触を防止できるし、ローラの潤滑性を向上させることができる。 Conventionally, roller bearings are known as bearings that can support complex loads that combine radial load, thrust load, and moment load. The roller bearing includes an inner ring, an outer ring, a plurality of rollers arranged in a raceway groove having a V-shaped cross section formed on the surfaces of the inner ring and the outer ring facing each other, and a spacer arranged between adjacent rollers. Be prepared. The spacer is formed with a pocket for storing a lubricant such as grease applied to the roller. By arranging spacers between adjacent rollers, mutual contact between the rollers can be prevented and the lubricity of the rollers can be improved.
特開2003-206932号公報Japanese Patent Application Laid-Open No. 2003-20932
 近年、ローラ軸受の定格荷重及び剛性をさらに向上させることが要望されている。このような要望があった場合には、スペーサを使用せずに、総ローラにて対応している。しかし、スペーサを使用しないとローラが相互接触することに加え、スペーサで保持していた潤滑剤が無くなることで潤滑性も低下してしまい、ローラ軸受が早期に破損に至るケースがある。これを防止する対策として、潤滑剤の給脂時間を短くする、もしくはオイルでの強制潤滑が採られている。 In recent years, it has been requested to further improve the rated load and rigidity of roller bearings. If there is such a request, it is handled by a total roller without using a spacer. However, if the spacer is not used, the rollers may come into mutual contact with each other, and the lubricant held by the spacer may be lost, resulting in a decrease in lubricity, and the roller bearing may be damaged at an early stage. As a measure to prevent this, the lubrication time of the lubricant is shortened or forced lubrication with oil is adopted.
 本発明は、上記の課題に鑑みてなされたものであり、隣り合うローラ間にスペーサを配置しても定格荷重及び剛性を向上させることができるローラ軸受を提供することを目的とする。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a roller bearing capable of improving the rated load and rigidity even if a spacer is arranged between adjacent rollers.
 上記課題を解決するために、本発明の一態様は、内輪と外輪それぞれに形成した断面V字状の軌道溝間に複数のローラを配置し、隣り合うローラ間にスペーサを配置するローラ軸受において、隣り合うローラの間隔を定める前記スペーサの厚さ(t)をローラ直径(D)の20%以下に薄く設定し、前記スペーサが倒れるのを防止するために、側面視における前記スペーサの対角寸法(D)をローラ直径(D)よりも大きく設定するローラ軸受である。 In order to solve the above problems, one aspect of the present invention is a roller bearing in which a plurality of rollers are arranged between raceway grooves having a V-shaped cross section formed in each of the inner ring and the outer ring, and spacers are arranged between adjacent rollers. , The thickness (t) of the spacers that determines the distance between adjacent rollers is set thin to 20% or less of the roller diameter (D w ), and in order to prevent the spacers from collapsing, a pair of the spacers in a side view. A roller bearing whose angular dimension (D) is set to be larger than the roller diameter (D w).
 本発明によれば、スペーサを薄くし、ローラの本数を増やすことにより、ローラ軸受の定格荷重及び剛性を向上させることができる。スペーサを薄くすると内輪と外輪の軌道溝の転走面間でスペーサが倒れ易くなるが、側面視におけるスペーサの対角寸法(D)をローラ直径(D)(ローラ直径Dは転走面間の距離と同一である)よりも大きく設定するので、スペーサが転走面間で倒れるのを防止できる。 According to the present invention, the rated load and rigidity of the roller bearing can be improved by thinning the spacer and increasing the number of rollers. If the spacer is made thinner, the spacer tends to fall between the rolling surfaces of the raceway grooves of the inner ring and the outer ring, but the diagonal dimension (D) of the spacer in the side view is the roller diameter (D w ) (roller diameter D w is the rolling surface). Since it is set to be larger than the distance between them), it is possible to prevent the spacer from collapsing between the rolling surfaces.
図1(a)は本発明の第1の実施形態のローラ軸受の斜視図であり、図1(b)は従来技術のローラ軸受の斜視図である。FIG. 1A is a perspective view of a roller bearing according to the first embodiment of the present invention, and FIG. 1B is a perspective view of a roller bearing according to the prior art. 本実施形態のローラ軸受の断面図である。It is sectional drawing of the roller bearing of this embodiment. 本実施形態のローラ軸受のスペーサの斜視図である。It is a perspective view of the spacer of the roller bearing of this embodiment. 上記スペーサの詳細図(図4(a)は正面図、図4(b)は図4(a)のb-b線断面図、図4(c)は図4(a)のc-c線断面図)である。A detailed view of the spacer (FIG. 4 (a) is a front view, FIG. 4 (b) is a sectional view taken along line bb of FIG. 4 (a), and FIG. 4 (c) is a line cc of FIG. 4 (a). Sectional view). 図5(a)は本実施形態のローラ軸受のピッチ円直径を示す図であり、図5(b)(c)は斜め45度方向から見た循環路の拡大図である。5 (a) is a diagram showing the pitch circle diameter of the roller bearing of the present embodiment, and FIGS. 5 (b) and 5 (c) are enlarged views of the circulation path seen from an oblique 45 degree direction. 本実施形態のローラ軸受のスペーサの他の例を示す図(図6(a)は正面図、図6(b)は図6(a)のb-b線断面図)である。FIG. 6A is a front view, and FIG. 6B is a sectional view taken along line bb of FIG. 6A, showing another example of the spacer of the roller bearing of the present embodiment. 本発明の第2の実施形態のローラ軸受の斜視図(一部断面図を含む)である。It is a perspective view (including a partial sectional view) of the roller bearing of the 2nd Embodiment of this invention. 図7のVII部拡大図である。FIG. 7 is an enlarged view of part VII of FIG. 本発明の第2の実施形態のローラ軸受のスペーサの詳細図(図9(a)は正面図、図9(b)は図9(a)のb-b線断面図、図9(c)は図9(a)のc-c線断面図)である。Detailed view of the spacer of the roller bearing of the second embodiment of the present invention (FIG. 9 (a) is a front view, FIG. 9 (b) is a sectional view taken along line bb of FIG. 9 (a), FIG. 9 (c). 9 (a) is a cross-sectional view taken along the line cc of FIG. 9 (a).
 以下、添付図面に基づいて、本発明の実施形態のローラ軸受を説明する。ただし、本発明のローラ軸受は種々の形態で具体化することができ、本明細書に記載される実施形態に限定されるものではない。本実施形態は、明細書の開示を十分にすることによって、当業者が発明を十分に理解できるようにする意図をもって提供されるものである。
 (第1の実施形態)
Hereinafter, the roller bearing according to the embodiment of the present invention will be described with reference to the accompanying drawings. However, the roller bearing of the present invention can be embodied in various forms, and is not limited to the embodiments described in the present specification. The present embodiment is provided with the intention of allowing those skilled in the art to fully understand the invention by adequately disclosing the specification.
(First Embodiment)
 図1(a)は、本発明の第1の実施形態のローラ軸受5の斜視図である。図1(b)は、従来技術のローラ軸受25の斜視図である。1は内輪、2は外輪、3はローラ、4はスペーサである。図1(a)において内輪1と外輪2との間に配置されるローラ3とスペーサ4を示すために、外輪2の一部を切り欠いている。 FIG. 1A is a perspective view of the roller bearing 5 according to the first embodiment of the present invention. FIG. 1B is a perspective view of the roller bearing 25 of the prior art. 1 is an inner ring, 2 is an outer ring, 3 is a roller, and 4 is a spacer. In FIG. 1A, a part of the outer ring 2 is cut out in order to show the roller 3 and the spacer 4 arranged between the inner ring 1 and the outer ring 2.
 本実施形態においては、スペーサ4を従来技術のスペーサ24よりも薄くし、隣り合うローラ3の間隔を狭くし、内輪1と外輪2との間に配置するローラ3の本数を多くしている。これにより、定格荷重及び剛性を向上させている。隣り合うローラ3の間隔を定めるスペーサ4の厚さt(図4(b))参照)は、ローラ直径Dの20%以下、望ましくは15%以下、さらに望ましくは10%以下に設定される。 In the present embodiment, the spacer 4 is made thinner than the spacer 24 of the prior art, the distance between the adjacent rollers 3 is narrowed, and the number of rollers 3 arranged between the inner ring 1 and the outer ring 2 is increased. This improves the rated load and rigidity. The thickness t (see FIG. 4B) of the spacer 4 that determines the distance between the adjacent rollers 3 is set to 20% or less of the roller diameter D w , preferably 15% or less, and more preferably 10% or less. ..
 図2に示すように、内輪1の外周面には、円周方向に延び、頂角が直角な断面V字状の軌道溝6が形成される。軌道溝6は、第1転走面6aと第2転走面6bを備える。外輪2の内周面には、円周方向に延び、頂角が直角な断面V字状の軌道溝7が形成される。軌道溝7は、第1転走面7aと第2転走面7bを備える。外輪2は上下に2分割される。 As shown in FIG. 2, a raceway groove 6 having a V-shaped cross section extending in the circumferential direction and having a right-angled apex angle is formed on the outer peripheral surface of the inner ring 1. The track groove 6 includes a first rolling surface 6a and a second rolling surface 6b. On the inner peripheral surface of the outer ring 2, a raceway groove 7 having a V-shaped cross section extending in the circumferential direction and having a right-angled apex angle is formed. The track groove 7 includes a first rolling surface 7a and a second rolling surface 7b. The outer ring 2 is divided into upper and lower parts.
 内輪1の軌道溝6と外輪2の軌道溝7とは、互いに対向する。軌道溝6と軌道溝7によって、断面が実質的に正方形の循環路8が形成される。循環路8には、複数のローラ3が隣り合うローラ3の軸心が略直角になるようにクロス配置される。ローラ3は、円筒状である。ローラ直径Dwはローラ3の軸方向長さLよりも僅かに大きく設定される。 The raceway groove 6 of the inner ring 1 and the raceway groove 7 of the outer ring 2 face each other. The track groove 6 and the track groove 7 form a circulation path 8 having a substantially square cross section. In the circulation path 8, a plurality of rollers 3 are cross-arranged so that the axes of the adjacent rollers 3 are substantially at right angles. The roller 3 has a cylindrical shape. The roller diameter Dw is set to be slightly larger than the axial length L of the roller 3.
 図1(a)に示すように、本実施形態のローラ軸受5は、クロスローラ軸受である。ローラ3は、上向きローラ3aと下向きローラ3bに分類される。上向きローラ3aは、上方に位置する仮想中心点P1を通る線を軸線として、内輪1の第2転走面6bと外輪2の第2転走面7bとの間を自公転する。下向きローラ3bは、下方に位置する仮想中心点P2を通る線を軸線として、内輪1の第1転走面6aと外輪2の第1転走面7aとの間を自公転する。 As shown in FIG. 1A, the roller bearing 5 of this embodiment is a cross roller bearing. The roller 3 is classified into an upward roller 3a and a downward roller 3b. The upward roller 3a revolves between the second rolling surface 6b of the inner ring 1 and the second rolling surface 7b of the outer ring 2 with the line passing through the virtual center point P1 located above as the axis. The downward roller 3b revolves between the first rolling surface 6a of the inner ring 1 and the first rolling surface 7a of the outer ring 2 with the line passing through the virtual center point P2 located below as the axis.
 隣り合うローラ3間には、個別のスペーサ4が配置される。図3はスペーサ4の斜視図、図4はスペーサ4の詳細図を示す。なお、以下において、説明の便宜上、スペーサ4を進行方向から見たときの方向、すなわち図3の上下、左右、前後の方向を使用してスペーサ4の構成を説明する。 Individual spacers 4 are arranged between adjacent rollers 3. FIG. 3 is a perspective view of the spacer 4, and FIG. 4 is a detailed view of the spacer 4. In the following, for convenience of explanation, the configuration of the spacer 4 will be described using the direction when the spacer 4 is viewed from the traveling direction, that is, the vertical, horizontal, and front-rear directions of FIG.
 正面視において、スペーサ4は、略四角状に形成される(図4(a)参照)。スペーサ4の角部には、円弧状の面取り9が形成される。図3に示すように、スペーサ4の前後方向の両端には、ローラ3を受ける半円筒状の凹面10,11が形成される。凹面10と凹面11の延びる方向は直角である。凹面10,11の断面は、ローラ3の半径よりも半径が僅かに大きい円弧状である。凹面10,11とローラ3とは、凹面10,11の中央部にて接触する。凹面10,11の両縁には、面取り12が形成される。凹面10の中央部には、グリース等の潤滑剤を溜める円弧状のポケット13が形成される。凹面11の中央部にも、図示しない同様のポケットが形成される。凹面10のポケット13と凹面11のポケットとは、これらの間を潤滑剤が行き来できるように貫通孔14によって連通される。スペーサ4の上面、左右の側面、下面には、断面円弧状の括れ23が形成される。括れ23には、潤滑剤が溜められる。 In front view, the spacer 4 is formed in a substantially square shape (see FIG. 4A). An arcuate chamfer 9 is formed at the corner of the spacer 4. As shown in FIG. 3, semi-cylindrical concave surfaces 10 and 11 for receiving the rollers 3 are formed at both ends of the spacer 4 in the front-rear direction. The extending directions of the concave surface 10 and the concave surface 11 are at right angles. The cross sections of the concave surfaces 10 and 11 are arcuate in which the radius is slightly larger than the radius of the roller 3. The concave surfaces 10 and 11 and the roller 3 come into contact with each other at the central portion of the concave surfaces 10 and 11. Chamfers 12 are formed on both edges of the concave surfaces 10 and 11. An arcuate pocket 13 for storing a lubricant such as grease is formed in the central portion of the concave surface 10. A similar pocket (not shown) is also formed in the central portion of the concave surface 11. The pocket 13 of the concave surface 10 and the pocket of the concave surface 11 are communicated with each other by a through hole 14 so that the lubricant can move between them. Constrictions 23 having an arc-shaped cross section are formed on the upper surface, the left and right side surfaces, and the lower surface of the spacer 4. Lubricant is stored in the constriction 23.
 図4(a)に示すように、正面視において、スペーサ4の幅はAである。スペーサ4の高さはBである。図4(b)に示すように、隣り合うローラ3の間隔を定めるスペーサ4の厚さはtである。側面視におけるスペーサ4の進行方向の長さはCである。側面視におけるスペーサ4の対角寸法Dは、D=√(B+C)で表される。 As shown in FIG. 4A, the width of the spacer 4 is A in front view. The height of the spacer 4 is B. As shown in FIG. 4B, the thickness of the spacer 4 that determines the distance between the adjacent rollers 3 is t. The length of the spacer 4 in the traveling direction in the side view is C. The diagonal dimension D of the spacer 4 in the side view is represented by D = √ (B 2 + C 2).
 スペーサ4を薄くすると、Cが小さくなり、内輪1の第1転走面6aと外輪2の第1転走面7aの間でスペーサ4が倒れ易くなる。本実施形態においては、側面視におけるスペーサ4の対角寸法D>ローラ直径Dに設定し、スペーサ4の倒れを防止する。ローラ直径Dは、内輪1の第1転走面6aと外輪2の第1転走面7aとの距離に等しい。対角寸法D>ローラ直径Dとすることで、スペーサ4が所定角度以上傾こうとしても、スペーサ4の対角部分が内輪1の第1転走面6aと外輪2の第1転走面7aに引っ掛かり、スペーサ4の倒れが防止される。 When the spacer 4 is made thin, C becomes small, and the spacer 4 easily falls between the first rolling surface 6a of the inner ring 1 and the first rolling surface 7a of the outer ring 2. In the present embodiment, the diagonal dimension D of the spacer 4 in the side view> the roller diameter D w is set to prevent the spacer 4 from collapsing. The roller diameter D w is equal to the distance between the first rolling surface 6a of the inner ring 1 and the first rolling surface 7a of the outer ring 2. By setting diagonal dimension D> roller diameter D w , even if the spacer 4 tries to tilt by a predetermined angle or more, the diagonal portion of the spacer 4 is the first rolling surface 6a of the inner ring 1 and the first rolling surface of the outer ring 2. It is caught in 7a and the spacer 4 is prevented from falling.
 以上のとおり、本実施形態のスペーサ4において、B,Cは以下の(1)式を満たすように設定される。 As described above, in the spacer 4 of the present embodiment, B and C are set so as to satisfy the following equation (1).
 (数1)
 D=√(B+C)>D…(1)
(Number 1)
D = √ (B 2 + C 2 )> D w ... (1)
 また、図4(c)に示すように、内輪1の第2転走面6bと外輪2の第2転走面7bとの間でスペーサ4が倒れるのを防止するために、A,Cは以下の(2)式を満たすように設定される。 Further, as shown in FIG. 4C, in order to prevent the spacer 4 from falling between the second rolling surface 6b of the inner ring 1 and the second rolling surface 7b of the outer ring 2, A and C are used. It is set to satisfy the following equation (2).
 (数2)
 D=√(A+C)>D…(2)
 上記の(1)式及び(2)式を満たせば、スペーサ4を薄くしてもスペーサ4が倒れるのを防止できる。なお、A=Bにしても、A≠Bにしてもよい。
(Number 2)
D = √ (A 2 + C 2 )> D w ... (2)
If the above equations (1) and (2) are satisfied, the spacer 4 can be prevented from falling even if the spacer 4 is thinned. It should be noted that A = B or A ≠ B may be set.
 上述のように、(1)式及び(2)式は、A,Bを大きくし、スペーサ4の倒れを防止することを意味する。ただし、A,Bを大きくすれば、スペーサ4が軌道溝6,7に干渉する。干渉を防止するために、以下のようにA,Bの上限を定める必要がある。 As described above, the equations (1) and (2) mean that A and B are enlarged to prevent the spacer 4 from collapsing. However, if A and B are increased, the spacer 4 interferes with the raceway grooves 6 and 7. In order to prevent interference, it is necessary to set the upper limits of A and B as follows.
 図5(a)は、ローラ軸受5のピッチ円直径を示す図である。3はローラ、Dpwはピッチ円直径である。ピッチ円直径Dpwは、循環路8に配列されたローラ3の中心を結んだ円の直径である。図5(b)は斜め45度の方向(図5(a)の矢印Vの方向であり、内輪1の第1転走面6aと外輪2の第1転走面7aに平行な方向)から見た循環路8の拡大図である。スペーサ4の高さBをABmaxまで大きくすると、スペーサ4が内輪1の第1転走面6aに1点N1で接触し、外輪2の第1転走面7aに2点N2,N3で接触する。図5(c)に示すように、斜め45度の方向から見ると、内輪1の第1転走面6aと外輪2の第1転走面7aはいずれも楕円状であるので、点M1と点M2の間の距離であるABmaxを下記の(3)式から求めることができる。 FIG. 5A is a diagram showing the pitch circle diameter of the roller bearing 5. 3 is a roller, and D pw is a pitch circle diameter. The pitch circle diameter D pw is the diameter of a circle connecting the centers of the rollers 3 arranged in the circulation path 8. FIG. 5B is from a direction at an angle of 45 degrees (the direction of the arrow V in FIG. 5A, which is parallel to the first rolling surface 6a of the inner ring 1 and the first rolling surface 7a of the outer ring 2). It is an enlarged view of the circulation path 8 seen. When the height B of the spacer 4 is increased to AB max , the spacer 4 contacts the first rolling surface 6a of the inner ring 1 at one point N1 and contacts the first rolling surface 7a of the outer ring 2 at two points N2 and N3. do. As shown in FIG. 5 (c), when viewed from an oblique direction of 45 degrees, the first rolling surface 6a of the inner ring 1 and the first rolling surface 7a of the outer ring 2 are both elliptical, so that the point M1 is used. AB max , which is the distance between points M2, can be obtained from the following equation (3).
 (数3)
Figure JPOXMLDOC01-appb-I000003
 ここで、Dpwはピッチ円直径、Dはローラ直径である。
 A,Bを(4)式のようにABmax未満に設定することで、スペーサ4と軌道溝6,7との干渉を防止できる。
 (数4)
Figure JPOXMLDOC01-appb-I000004
(Number 3)
Figure JPOXMLDOC01-appb-I000003
Here, D pw is the pitch circle diameter, and D w is the roller diameter.
By setting A and B to less than AB max as in the equation (4), it is possible to prevent the spacer 4 from interfering with the raceway grooves 6 and 7.
(Number 4)
Figure JPOXMLDOC01-appb-I000004
 以上に本実施形態のローラ軸受5の構成を説明した。本実施形態のローラ軸受5によれば以下の効果を奏する。 The configuration of the roller bearing 5 of this embodiment has been described above. According to the roller bearing 5 of the present embodiment, the following effects are obtained.
 隣り合うローラ3の間隔を定めるスペーサ4の厚さtをローラ直径Dの20%以下に薄く設定するので、ローラ軸受5の定格荷重及び剛性を向上させることができる。スペーサ4を薄くすると、スペーサ4が内輪1と外輪2の第1転走面6a,7a間及び第2転走面6b,7b間で倒れ易くなるが、側面視におけるスペーサ4の対角寸法Dをローラ直径Dよりも大きく設定することで、スペーサ4の倒れを防止できる。 Since the thickness t of the spacer 4 that determines the distance between the adjacent rollers 3 is set thin to 20% or less of the roller diameter D w , the rated load and rigidity of the roller bearing 5 can be improved. When the spacer 4 is made thin, the spacer 4 tends to fall between the first rolling surfaces 6a and 7a and the second rolling surfaces 6b and 7b of the inner ring 1 and the outer ring 2, but the diagonal dimension D of the spacer 4 in the side view. Can be set to be larger than the roller diameter D w to prevent the spacer 4 from collapsing.
 (3)式及び(4)式が成立するようにスペーサ4のA、B及びC寸法を設定することで、スペーサ4と軌道溝6,7との干渉を防止できる。 By setting the A, B, and C dimensions of the spacer 4 so that the equations (3) and (4) are satisfied, it is possible to prevent the spacer 4 from interfering with the raceway grooves 6 and 7.
 スペーサ4の進行方向の両端にローラ3を受ける凹面10,11を形成するので、スペーサ4の厚さtを薄くしてもCを大きくすることができ、スペーサ4の対角寸法Dを大きくすることができる。 Since concave surfaces 10 and 11 for receiving the rollers 3 are formed at both ends of the spacer 4 in the traveling direction, C can be increased even if the thickness t of the spacer 4 is reduced, and the diagonal dimension D of the spacer 4 is increased. be able to.
 スペーサ4の厚さtをローラ直径Dの15%以下に薄く設定すれば、多くの型番のローラ軸受5でローラ3の本数を増やすことができるようになる。 If the thickness t of the spacer 4 is set thin to 15% or less of the roller diameter D w , the number of rollers 3 can be increased in the roller bearings 5 of many model numbers.
 本実施形態のスペーサ4は、ローラ3が上向きローラ3aと下向きローラ3bに分類されるクロスローラ軸受の定格荷重及び剛性を向上させるのに適する。 The spacer 4 of the present embodiment is suitable for improving the rated load and rigidity of the cross roller bearing in which the roller 3 is classified into the upward roller 3a and the downward roller 3b.
 スペーサ4は、ナイロン等の樹脂にガラスファイバー等の強化繊維を混合した成形体からなる。こうすることで、スペーサ4を薄くしても十分な強度を確保できる。 The spacer 4 is made of a molded body obtained by mixing a resin such as nylon with a reinforcing fiber such as glass fiber. By doing so, sufficient strength can be secured even if the spacer 4 is made thin.
 図4(b)に示すように、第1の実施形態のスペーサ4において、凹面10の下端縁の中央部と凹面11の下端縁の中央部との間の厚みaと凹面10の上端縁の中央部と凹面11の上端縁の中央部との間の厚みbは、実質的に同一(a=b)に設定される。スペーサ4の厚さtが薄くなり、ローラ3の本数が増えると、平面視において、隣り合うローラ3の軸線が平行に近くなる。このため、a=bに設定しても、ローラ3が問題なく移動する。a=bに設定することで、ピッチ円直径が異なる毎にスペーサ4を作成する必要が無くなるし、スペーサ4の成形も容易になる。
 (スペーサの他の例)
As shown in FIG. 4B, in the spacer 4 of the first embodiment, the thickness a between the central portion of the lower end edge of the concave surface 10 and the central portion of the lower end edge of the concave surface 11 and the upper end edge of the concave surface 10 are formed. The thickness b between the central portion and the central portion of the upper end edge of the concave surface 11 is set to be substantially the same (a = b). When the thickness t of the spacer 4 becomes thin and the number of rollers 3 increases, the axes of the adjacent rollers 3 become close to parallel in a plan view. Therefore, even if a = b is set, the roller 3 moves without any problem. By setting a = b, it is not necessary to create the spacer 4 each time the pitch circle diameter is different, and the spacer 4 can be easily formed.
(Other examples of spacers)
 図6は、スペーサ4の他の例を示す。この例では、凹面10の下端縁の中央部と凹面11の下端縁の中央部との間の厚みaと凹面10の上端縁の中央部と凹面11の上端縁の中央部との間の厚みbは、a<bに設定される。凹面10と凹面11は、角度θだけ傾斜する。これにより、図1に示すように、上向きローラ3aの軸線が仮想中心点P1を向き易くなり、下向きローラ3bの軸線が仮想中心点P2を向き易くなる。スペーサ4の他の構成は、図4に示すスペーサ4と同一である。 FIG. 6 shows another example of the spacer 4. In this example, the thickness a between the central portion of the lower end edge of the concave surface 10 and the central portion of the lower end edge of the concave surface 11 and the thickness between the central portion of the upper end edge of the concave surface 10 and the central portion of the upper end edge of the concave surface 11. b is set to a <b. The concave surface 10 and the concave surface 11 are inclined by an angle θ. As a result, as shown in FIG. 1, the axis of the upward roller 3a tends to face the virtual center point P1, and the axis of the downward roller 3b tends to point to the virtual center point P2. Other configurations of the spacer 4 are the same as the spacer 4 shown in FIG.
 この例の場合、図6(b)に示すように、隣り合うローラ3の間隔を定めるスペーサ4の厚さtは、凹面10の中央部と凹面11の中央部との間の厚さである。対角寸法Dは2つの対角寸法のうち短い方の対角寸法である。
 (第2の実施形態)
In the case of this example, as shown in FIG. 6B, the thickness t of the spacer 4 that determines the distance between the adjacent rollers 3 is the thickness between the central portion of the concave surface 10 and the central portion of the concave surface 11. .. The diagonal dimension D is the shorter diagonal dimension of the two diagonal dimensions.
(Second embodiment)
 図7及び図8は、本発明の第2の実施形態のローラ軸受15の斜視図(一部断面図を含む)である。第1の実施形態のローラ軸受5は、クロスローラ軸受であるのに対し、第2の実施形態のローラ軸受15は、パラレルローラ軸受である。第2の実施形態のローラ軸受15では、隣り合うローラ3の軸線が略平行になるようにパラレル配列される。ローラ3は、上向きローラ3aと下向きローラ3bに分類される。 7 and 8 are perspective views (including a partial cross-sectional view) of the roller bearing 15 according to the second embodiment of the present invention. The roller bearing 5 of the first embodiment is a cross roller bearing, while the roller bearing 15 of the second embodiment is a parallel roller bearing. In the roller bearing 15 of the second embodiment, the axes of the adjacent rollers 3 are arranged in parallel so as to be substantially parallel to each other. The roller 3 is classified into an upward roller 3a and a downward roller 3b.
 図8に示すように、内輪16の外周面には、上下2つの転動溝18,19が形成される。外輪17の内周面には、転動溝18,19に対向する上下2つの転動溝20,21が形成される。上側の転動溝18と上側の転動溝20との間には、下向きローラ3bがパラレル配列される。下側の転動溝19と下側の転動溝21との間には、上向きローラ3aがパラレル配列される。図7に示すように、上向きローラ3aは、上方に位置する仮想中心点P1を通る線を軸線として、内輪16の転走面19aと外輪17の転走面21aとの間を自公転する。下向きローラ3bは、下方に位置する仮想中心点P2を通る線を軸線として、内輪16の転走面18aと外輪17の転走面20aとの間を自公転する。 As shown in FIG. 8, two upper and lower rolling grooves 18 and 19 are formed on the outer peripheral surface of the inner ring 16. Two upper and lower rolling grooves 20 and 21 facing the rolling grooves 18 and 19 are formed on the inner peripheral surface of the outer ring 17. The downward rollers 3b are arranged in parallel between the upper rolling groove 18 and the upper rolling groove 20. The upward rollers 3a are arranged in parallel between the lower rolling groove 19 and the lower rolling groove 21. As shown in FIG. 7, the upward roller 3a revolves between the rolling surface 19a of the inner ring 16 and the rolling surface 21a of the outer ring 17 with the line passing through the virtual center point P1 located above as the axis. The downward roller 3b revolves around the rolling surface 18a of the inner ring 16 and the rolling surface 20a of the outer ring 17 with the line passing through the virtual center point P2 located below as the axis.
 図9は、第2の実施形態のローラ軸受15で用いられるスペーサ22を示す。スペーサ22の構成は、凹面10,11の延びる方向が平行に形成される点を除いて、第1の実施形態のスペーサ4と同一である。図9(b)(c)に示すように、隣り合うローラ3の間隔を定めるスペーサ22の厚さtは、ローラ3の直径の20%以下、望ましくは15%以下、さらに望ましくは10%以下に薄く設定される。また、スペーサ22が倒れるのを防止するために、図9(c)に示すように、側面視におけるスペーサ22の対角寸法Dをローラ直径Dwよりも大きく設定する。こうすることで、スペーサ22が内輪16の転走面19aと外輪17の転走面21aとの間及び内輪16の転走面18aと外輪17の転走面20aとの間で倒れるのを防止することができる。なお、第2の実施形態のスペーサ22においても、凹面10と凹面11を左右対称にθだけ傾斜させてもよい。 FIG. 9 shows the spacer 22 used in the roller bearing 15 of the second embodiment. The structure of the spacer 22 is the same as that of the spacer 4 of the first embodiment, except that the concave surfaces 10 and 11 are formed in parallel in the extending direction. As shown in FIGS. 9 (b) and 9 (c), the thickness t of the spacer 22 that determines the distance between adjacent rollers 3 is 20% or less, preferably 15% or less, and more preferably 10% or less of the diameter of the rollers 3. It is set thinly to. Further, in order to prevent the spacer 22 from collapsing, as shown in FIG. 9C, the diagonal dimension D of the spacer 22 in the side view is set to be larger than the roller diameter Dw. By doing so, the spacer 22 is prevented from falling between the rolling surface 19a of the inner ring 16 and the rolling surface 21a of the outer ring 17 and between the rolling surface 18a of the inner ring 16 and the rolling surface 20a of the outer ring 17. can do. Also in the spacer 22 of the second embodiment, the concave surface 10 and the concave surface 11 may be tilted symmetrically by θ.
 本発明は、上記実施形態に具現化されるのに限られることはなく、本発明の要旨を変更しない範囲で他の実施形態に具現化できる。 The present invention is not limited to being embodied in the above embodiment, and can be embodied in other embodiments without changing the gist of the present invention.
 例えば、ローラには、円筒状のローラの替わりにテーパローラを用いることもできる。テーパローラは、隣り合うテーパローラの軸線が略直角になるようにクロス配列されてもよいし、隣り合うテーパローラの軸線が略平行になるようにパラレル配列されてもよい。テーパローラの軸方向の中央部の直径をテーパローラの直径とみなし、スペーサの中央部の厚さt、スペーサの中央部の対角寸法Dを上記実施形態のスペーサと同様に設定すればよい。 For example, a tapered roller can be used as the roller instead of the cylindrical roller. The tapered rollers may be cross-arranged so that the axes of adjacent tapered rollers are substantially perpendicular to each other, or may be arranged in parallel so that the axes of adjacent tapered rollers are substantially parallel to each other. The diameter of the central portion in the axial direction of the tapered roller is regarded as the diameter of the tapered roller, and the thickness t of the central portion of the spacer and the diagonal dimension D of the central portion of the spacer may be set in the same manner as in the spacer of the above embodiment.
 本明細書は、2020年7月2日出願の特願2020-114816に基づく。この内容はすべてここに含めておく。 This specification is based on Japanese Patent Application No. 2020-114816 filed on July 2, 2020. All this content is included here.
1…内輪
2…外輪
3…ローラ
4…スペーサ
5…ローラ軸受
6…内輪の軌道溝
7…外輪の軌道溝
10…スペーサの一方の凹面
11…スペーサの他方の凹面
15…ローラ軸受
16…内輪
17…外輪
18,19…内輪の転動溝
20,21…外輪の転動溝
22…スペーサ
D…スペーサの対角寸法
…ローラ直径
1 ... Inner ring 2 ... Outer ring 3 ... Roller 4 ... Spacer 5 ... Roller bearing 6 ... Inner ring raceway groove 7 ... Outer ring raceway groove 10 ... Spacer one concave surface 11 ... Spacer other concave surface 15 ... Roller bearing 16 ... Inner ring 17 ... Outer ring 18, 19 ... Inner ring rolling groove 20, 21 ... Outer ring rolling groove 22 ... Spacer D ... Spacer diagonal dimension D w ... Roller diameter

Claims (6)

  1.  内輪と外輪それぞれに形成した断面V字状の軌道溝間に複数のローラを配置し、隣り合うローラ間にスペーサを配置するローラ軸受において、
     隣り合うローラの間隔を定める前記スペーサの厚さ(t)をローラ直径(D)の20%以下に薄く設定し、
     前記スペーサが倒れるのを防止するために、側面視における前記スペーサの対角寸法(D)をローラ直径(D)よりも大きく設定するローラ軸受。
    In a roller bearing in which a plurality of rollers are arranged between raceway grooves having a V-shaped cross section formed in each of the inner ring and the outer ring, and spacers are arranged between adjacent rollers.
    The thickness (t) of the spacer that determines the distance between adjacent rollers is set thinly to 20% or less of the roller diameter (D w).
    A roller bearing in which the diagonal dimension (D) of the spacer in a side view is set to be larger than the roller diameter (D w) in order to prevent the spacer from tipping over.
  2.  正面視における前記スペーサの幅をA、正面視における前記スペーサの高さをB、側面視における前記スペーサの進行方向の長さをCとするとき、以下の(3)式及び(4)式が成立することを特徴とする請求項1に記載のローラ軸受。
    Figure JPOXMLDOC01-appb-M000001
     ここで、Dpwは前記ローラ軸受のピッチ円直径、Dはローラ直径である。
    Figure JPOXMLDOC01-appb-M000002
    When the width of the spacer in the front view is A, the height of the spacer in the front view is B, and the length of the spacer in the traveling direction in the side view is C, the following equations (3) and (4) are as follows. The roller bearing according to claim 1, wherein the roller bearing is satisfied.
    Figure JPOXMLDOC01-appb-M000001
    Here, D pw is the pitch circle diameter of the roller bearing, and D w is the roller diameter.
    Figure JPOXMLDOC01-appb-M000002
  3.  前記スペーサの進行方向の両端にローラを受ける凹面を形成することを特徴とする請求項1又は2に記載のローラ軸受。 The roller bearing according to claim 1 or 2, wherein concave surfaces for receiving the rollers are formed at both ends of the spacer in the traveling direction.
  4.  前記スペーサの厚さ(t)をローラ直径(D)の15%以下に薄く設定することを特徴とする請求項1ないし3のいずれか一項に記載のローラ軸受。 The roller bearing according to any one of claims 1 to 3, wherein the thickness (t) of the spacer is set as thin as 15% or less of the roller diameter (D w).
  5.  前記軌道溝間に隣り合うローラの軸心が直角になるように前記複数のローラを互い違いに配置することを特徴とする請求項1ないし4のいずれか一項に記載のローラ軸受。 The roller bearing according to any one of claims 1 to 4, wherein the plurality of rollers are alternately arranged so that the axes of adjacent rollers are perpendicular to each other between the raceway grooves.
  6.  前記スペーサは、樹脂に強化繊維を混合した成形体からなることを特徴とする請求項1ないし5のいずれか一項に記載のローラ軸受。 The roller bearing according to any one of claims 1 to 5, wherein the spacer is made of a molded body in which reinforcing fibers are mixed with a resin.
PCT/JP2021/019104 2020-07-02 2021-05-20 Roller bearing WO2022004175A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-114816 2020-07-02
JP2020114816A JP7245808B2 (en) 2020-07-02 2020-07-02 roller bearing

Publications (1)

Publication Number Publication Date
WO2022004175A1 true WO2022004175A1 (en) 2022-01-06

Family

ID=79315958

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/019104 WO2022004175A1 (en) 2020-07-02 2021-05-20 Roller bearing

Country Status (3)

Country Link
JP (1) JP7245808B2 (en)
TW (1) TW202223257A (en)
WO (1) WO2022004175A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10252748A (en) * 1997-03-12 1998-09-22 Antetsukusu:Kk Revolving seat bearing
JP2013160309A (en) * 2012-02-06 2013-08-19 Nippon Thompson Co Ltd Turning bearing with separator
US20140301684A1 (en) * 2011-09-02 2014-10-09 Cyril Bouron Spacer for rolling bearing, notably used in a wind turbine

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0625704Y2 (en) * 1988-04-21 1994-07-06 博 寺町 Slewing bearing

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10252748A (en) * 1997-03-12 1998-09-22 Antetsukusu:Kk Revolving seat bearing
US20140301684A1 (en) * 2011-09-02 2014-10-09 Cyril Bouron Spacer for rolling bearing, notably used in a wind turbine
JP2013160309A (en) * 2012-02-06 2013-08-19 Nippon Thompson Co Ltd Turning bearing with separator

Also Published As

Publication number Publication date
JP7245808B2 (en) 2023-03-24
TW202223257A (en) 2022-06-16
JP2022012756A (en) 2022-01-17

Similar Documents

Publication Publication Date Title
JP5110319B2 (en) Radial rolling bearings, especially single row spherical roller bearings
US20160010688A1 (en) Low friction multi stage thrust bearing
US7828484B2 (en) Radial antifriction bearing, particularly a single-row grooved antifriction bearing or angular contact antifriction bearing
JPH01169118A (en) Spacer for cross roller bearing
US20150071579A1 (en) Rolling bearing having rings with stepped surfaces opposite to the raceways
US9011018B2 (en) Roller bearing
JP2009534608A (en) Radial roller bearings, especially single row spherical roller bearings
WO2022004175A1 (en) Roller bearing
JP2008224026A (en) Rolling bearing and its cage
US20110317952A1 (en) Tandem angular contact roller bearing with concave roller profile for improved roller guidance
JP7485948B2 (en) Cage for spherical roller bearing
US20140326087A1 (en) Compact linear roller guide
US8904645B2 (en) Method for assembling a roller bearing
JP4173234B2 (en) Cross roller bearing and retainer for cross roller bearing
JPWO2007004404A1 (en) Roller screw and manufacturing method thereof
US20170074322A1 (en) Rolling bearing
KR20140024008A (en) Two-stage cross roller bearing
EP0926369A2 (en) Roller bearing
WO2012173046A1 (en) Cylindrical roller bearing
CN109253212B (en) Balance shaft with reduced mass and inertia
JPH09126233A (en) Cross roller bearing
US10436300B2 (en) Offset preload ball screw with expandable loading area
JP2023127335A (en) tapered roller bearing
CN220726871U (en) High-load injection molding bearing retainer
KR20230048671A (en) A Roller For Cross-Roller Bearing And A Cross-Roller Bearing Having Therewith

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21833314

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21833314

Country of ref document: EP

Kind code of ref document: A1