WO2022004094A1 - Micro droplet formation device and analysis device - Google Patents

Micro droplet formation device and analysis device Download PDF

Info

Publication number
WO2022004094A1
WO2022004094A1 PCT/JP2021/015116 JP2021015116W WO2022004094A1 WO 2022004094 A1 WO2022004094 A1 WO 2022004094A1 JP 2021015116 W JP2021015116 W JP 2021015116W WO 2022004094 A1 WO2022004094 A1 WO 2022004094A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
vibration
sample
unit
forming apparatus
Prior art date
Application number
PCT/JP2021/015116
Other languages
French (fr)
Japanese (ja)
Inventor
徹 宮坂
亨 柴田
隆之 神田
智美 疋田
Original Assignee
株式会社日立ハイテク
本多電子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立ハイテク, 本多電子株式会社 filed Critical 株式会社日立ハイテク
Publication of WO2022004094A1 publication Critical patent/WO2022004094A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/10Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing sonic or ultrasonic vibrations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/62Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosols; by investigating electric discharges, e.g. emission of cathode
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/62Detectors specially adapted therefor
    • G01N30/72Mass spectrometers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/04Arrangements for introducing or extracting samples to be analysed, e.g. vacuum locks; Arrangements for external adjustment of electron- or ion-optical components

Definitions

  • the present invention relates to a microdroplet forming apparatus and an analyzer.
  • a liquid chromatography mass spectrometer is a typical analyzer that analyzes a liquid sample as droplets.
  • Liquid chromatography mass spectrometry is a chemical analysis method in which various components separated by liquid chromatography are ionized and separated and detected for each mass-to-charge ratio.
  • a liquid sample supplied from liquid chromatography is atomized into fine droplets, charged, and vaporized by heating to generate ions of analytical components.
  • the average particle size of the initial droplets formed by dividing the liquid sample is required to be tens to several ⁇ m. From the viewpoint of the efficiency of ionization (charging and vaporization), it is desirable that the diameter of the liquid to be formed is small, and it is also required that the particle size does not vary.
  • the atmospheric pressure spray method is currently widely used in mass spectrometers as a method for dividing a liquid sample into minute droplets.
  • the atmospheric pressure spray method is a method in which a liquid is introduced into a high-speed jet to divide the liquid into split droplets, but in order to form droplets with an average particle size of several tens to several ⁇ m, the speed of sound is used. It is necessary to use a high-speed jet close to. Therefore, the device becomes large-scale. Further, the droplets formed by the atmospheric pressure spray method have a problem that the particle size tends to be unstable and the particle size distribution is wide.
  • the particle size of the formed droplets and the distribution of the grain system also affect the charging required for ionization and the subsequent vaporization process, thus destabilizing the state of the analytical component ions to be formed.
  • the state of ions greatly affects the measurement accuracy of chemical analysis, which is detected separately for each mass-to-charge ratio. Therefore, there is a need for a method for making a small amount of liquid sample separated by liquid chromatography into fine droplets having an average particle size of 10 ⁇ m to several ⁇ m in a more stable manner.
  • Patent Document 1 a method using ultrasonic waves is known as another method for dividing a liquid sample into minute droplets, and is disclosed in, for example, Patent Document 1 and Patent Document 2.
  • the droplet diameter formed by ultrasonic waves is affected by the vibration frequency of ultrasonic waves. It is known that the relationship between the vibration frequency and the droplet diameter generally follows Lang's equation (J. Acous. Soc. Amer., 1962, 34, 6). According to Lang's formula, the vibration frequency for vibrating water or alcohol to form a droplet having a diameter of about 10 ⁇ m is about 200 to 300 kHz, and the vibration for forming a droplet having a diameter of 1 to 3 ⁇ m is formed. The frequency is known to be several MHz.
  • the vibration of an ultrasonic vibrator has a small amplitude, and it is difficult to directly separate it into liquid and droplets. Therefore, by utilizing the resonance phenomenon of a metal column or a diaphragm structure, vibration having an acceleration capable of expanding the amplitude and dividing the liquid is obtained.
  • the limit vibration frequency is about 200 MHz because the resonance vibration of metal is used.
  • Patent Document 1 discloses a method in which droplets sprayed by an air spray are attached to the surface of an ultrasonic vibrator to form fine droplets.
  • the vibration of the ultrasonic vibrator generally has a small amplitude, and it is difficult to form droplets.
  • the limit vibration frequency is about 200 kHz, and the diameter of the formed droplet is limited to 10 ⁇ m. It is difficult to form droplets of several ⁇ m or less by the disclosed method.
  • a small amount of liquid is supplied to a high-frequency vibrating surface of several hundred kHz or more, the droplets are likely to be scattered at the same time as the supply, and not only the fine droplets can hardly be formed, but also large liquid balls are scattered at the same time.
  • Patent Document 2 is a method of forming droplets by atomizing a liquid sample by vibrating the liquid sample stored in a container with an ultrasonic vibrator.
  • the vibrating liquid itself is used to amplify the applied vibrating force, and a part of the liquid is atomized into fine droplets, that is, atomized.
  • This method is different from the above method using metal resonance, and since it is possible to vibrate the liquid sample at a vibrating frequency of several MHz, it is possible to form droplets having an average particle size of about several ⁇ m. ..
  • an object of the present invention is to provide a microdroplet forming apparatus and an analyzer capable of dividing even a small amount of liquid sample separated by liquid chromatography into microdroplets having an average particle size of several ⁇ m. To do.
  • An ultrasonic vibration generating part that generates ultrasonic vibration
  • an ultrasonic vibration transmission expanding part that transmits the ultrasonic vibration generated in the ultrasonic vibration generating part while expanding it, and an ultrasonic wave expanded by the ultrasonic vibration transmitting expanding part.
  • the sample is provided with a sample vibration vibration unit that vibrates the liquid sample by vibration to form minute droplets of the liquid sample, and a sample supply unit that continuously supplies the liquid sample to the sample vibration vibration unit.
  • a liquid film forming member capable of holding the liquid sample supplied from the sample supply unit in the form of a liquid film is provided on the vibrating vibration surface of the vibration and vibration unit.
  • the analyzer of the present invention is an analyzer provided with the above-mentioned microdroplet forming apparatus of the present invention.
  • FIG. 1 Schematic diagram showing an embodiment of the microdroplet forming apparatus of the present invention
  • the figure which shows the detail of the part A (vibration vibration surface) of FIG. The figure which shows an example of the structure of a sample vibration vibration part.
  • FIG. 1 is a schematic diagram showing an embodiment of the microdroplet forming apparatus of the present invention.
  • the microdroplet forming apparatus 1 has an ultrasonic vibration generating unit 8 that generates ultrasonic vibration and an ultrasonic vibration that is transmitted while expanding the ultrasonic vibration generated by the ultrasonic vibration generating unit 8.
  • Transmission expansion unit 9 and ultrasonic vibration Sample vibration vibration unit 3 and sample vibration vibration unit 3 that vibrate the liquid sample with the ultrasonic vibration expanded by the transmission expansion unit 9 to form minute droplets of the liquid sample.
  • the microdroplet forming apparatus of the present invention forms microdroplets on the supplied liquid sample by utilizing ultrasonic vibration.
  • the "fine droplet” means a droplet having an average particle size of several tens of ⁇ m to several ⁇ m.
  • a piezoelectric element is used as the ultrasonic vibration generator 8.
  • the formed droplet diameter is affected by the vibration frequency, and the relationship between the vibration frequency and the droplet diameter is generally the Lang formula (J. Acous. It is known to follow Soc. Amer., 1962, 34, 6).
  • the relationship between the vibration frequency and the droplet diameter is also affected by the solvent type.
  • the vibration frequency for forming a droplet having a diameter of 10 ⁇ m is about 200 to 300 kHz, and the vibration frequency for forming a droplet having a diameter of 1 to 3 ⁇ m is several MHz.
  • the vibration frequency for forming the droplets for the analyzer needs to be about several hundred kHz to 10 MHz.
  • the configuration as a microdroplet forming apparatus for a liquid chromatography mass spectrometer will be described.
  • the liquid chromatography mass spectrometer samples continuously supplied from liquid chromatography are continuously analyzed by the mass spectrometer. The amount of the sample liquid, which is each sample, varies to some extent depending on the specifications of liquid chromatography.
  • the droplet diameter of the initial droplets formed in the atmosphere from the liquid sample is small, and it is desirable that the average particle size is about several ⁇ m.
  • the liquid volume of each sample liquid is several hundreds to several tens of ⁇ L or less, and the droplet diameter of the initial droplets formed in the atmosphere is several ⁇ m.
  • the vibration frequency of the ultrasonic vibration generator 8 in this embodiment was set to 2.4 MHz.
  • a liquid was used as the ultrasonic vibration expansion transmission unit 9 of this embodiment.
  • a vibration expanding means as a method generally widely used, there is a method of utilizing a resonance phenomenon in a metal columnar member, a diaphragm structure, or the like.
  • the resonance phenomenon of the metal columnar member it is necessary to shorten the length of the columnar structure to be used to resonate as the frequency increases.
  • the limit is about several hundred kHz in a realistic dimensional range.
  • the length of the metal columnar member for resonating at several 100 kHz is as short as 1 cm or less, and it is difficult to use it as a stable resonance member.
  • the diaphragm structure it is practically difficult to realize a resonance structure exceeding several hundred kHz.
  • a structure using a liquid is used to expand and transmit high-frequency vibration of 2.4 MHz.
  • the sample vibrating vibration unit 3 was arranged facing the ultrasonic vibration generating apparatus 8 and the space between them was filled with a liquid.
  • the sample vibration vibration unit 3 was arranged at a distance where the vibration generated by the ultrasonic vibration generator 8 is transmitted through the ultrasonic vibration transmission expansion unit 9 which is a liquid and is focused, that is, at a position where the vibration expands.
  • the ultrasonic vibration generated by the ultrasonic vibration generator 8 can be expanded and transmitted, and the sample vibration vibration unit 3 can be greatly ultrasonically vibrated.
  • a vibration transmission liquid supply pipe 6 and a vibration transmission liquid discharge pipe 7 are provided in a case portion that holds the ultrasonic vibration transmission expansion portion 9 of the liquid.
  • the liquid is sent from the liquid supply unit 41 to the ultrasonic vibration transmission expansion unit 9 through the vibration transmission liquid supply pipe 6, and is discharged from the vibration transmission liquid discharge pipe 7.
  • the piezoelectric element used in the ultrasonic vibration generator 8 used to generate ultrasonic vibration in the present invention generates heat when vibration is generated. If the temperature of the piezoelectric element rises due to the generated heat, there is a risk that the exciting force will decrease or the piezoelectric element will be destroyed. Therefore, in this embodiment, the vibration transmission liquid supply pipe 6 and the vibration transmission liquid discharge pipe 7 are provided in the case portion that holds the ultrasonic vibration expansion transmission unit 9. Then, the vibration expansion transmission liquid is circulated using the vibration transmission liquid supply pipe 6 and the vibration transmission liquid discharge pipe 7 using a liquid pump (not shown), and is cooled by using a heat exchanger (not shown). did. Since the vibration expansion transmission liquid comes into direct contact with the piezoelectric element which is an ultrasonic vibrator, it is possible to prevent the temperature rise of the piezoelectric element by cooling the vibration expansion transmission liquid.
  • the vibration transmission state in the liquid is affected by the viscosity, surface tension and density of the vibration expansion transmission liquid used. Therefore, it is necessary to appropriately design the distance between the ultrasonic vibration generator 8 and the sample vibration vibration unit 3 as described above according to the physical properties of the selected vibration expansion transmission liquid.
  • pure water is used as the vibration expansion transmission liquid from the viewpoint of being used for cooling the piezoelectric element and safety in case of leakage.
  • various liquids other than pure water can also be used as the vibration expansion transmission liquid of the present invention by performing the liquid in consideration of the above and the dimensional design according to the liquid.
  • FIG. 2 is a diagram showing details of the A portion (vibration vibration surface) of FIG.
  • the sample vibration vibration unit 3 of this embodiment has a diaphragm 11 constituting the sample vibration vibration unit 3 and a liquid film forming member 12a, and a flow path layer 13 to which a liquid sample is supplied is provided between the diaphragms 11 and the liquid film forming member 12a.
  • the diaphragm 11 is a diaphragm 11 that comes into contact with the vibration transmission liquid and vibrates by the ultrasonic vibration 10 transmitted in the vibration transmission liquid.
  • the ultrasonic vibration 10 transmitted through the liquid is configured to be focused by a part of the diaphragm 11.
  • the liquid sample 2 supplied through the flow path layer 13 formed between the thin plates is guided to the focal position of the diaphragm 11 and is vibrated and atomized by the vibration of the diaphragm 11.
  • a large number of holes are formed in the upper thin plate 12a at a position facing the focal position of the diaphragm, and droplets of the atomized liquid sample pass through these holes toward the upper part of the figure and are minute liquids. It becomes droplets and is atomized and ejected.
  • the structure of the sample vibration vibration unit 3 described above is a very important structure in the present invention.
  • a part of the liquid becomes minute droplets and atomizes, but most of the liquid scatters. This is a major factor that makes it difficult to use ultrasonic waves for making fine droplets of a liquid sample in an analyzer. Since the liquid sample in the analyzer is very valuable and often in a small amount, it is a big problem in forming fine droplets by ultrasonic waves.
  • the present invention proposes a method capable of forming a liquid film on a vibrating surface that vibrates ultrasonically even with a small amount of liquid. Then, by stably atomizing and atomizing a small amount of liquid sample using ultrasonic vibration, it is possible to provide a new microdroplet forming device that can be supplied to the analyzer and an analyzer having the new microdroplet forming device. I am aiming.
  • the cause of the scattering phenomenon when a small amount of liquid is supplied on the ultrasonic vibration surface is considered as follows.
  • the amount of liquid supplied on the vibrating surface is small, it tends to become a liquid ball due to the surface tension of the sample liquid itself.
  • the liquid that has become a liquid ball scatters due to vibration. It has been experimentally confirmed that alcohol, which has a lower surface tension than water, scatters less. However, even a small amount of alcohol cannot completely prevent scattering.
  • a method of forming a liquid film on the vibrating surface with a small amount of liquid a method of hydrophilically treating the vibrating surface can be considered. According to the experimental results, a certain effect was confirmed, but it was difficult to obtain a sufficient anti-scattering effect only by the hydrophilic treatment. Therefore, in the present invention, we have devised a configuration in which the liquid film forming member is arranged close to the vibrating surface.
  • the thin plate 12a arranged to face the diaphragm 11 of FIG. 2 corresponds to the liquid film forming member of the present invention.
  • the thin plate 12a is provided with a multi-hole portion at a position facing the focal position of the diaphragm shown in FIG. 3, which will be described later. With such a structure, it is possible to stably form a liquid film on the diaphragm even with a small amount of liquid sample supplied on the vibrating surface.
  • the spraying direction of the atomized fine droplets is also stable.
  • the spraying direction coincides with the vibration direction of the diaphragm. In FIGS. 1 and 2, it is ejected upward (in the direction of the arrow in FIG. 2).
  • FIG. 3 is a diagram showing an example of the structure of the vibrating vibration unit.
  • the sample vibration vibration unit 3 of this embodiment is composed of three thin plate materials shown in the figure.
  • the lowermost thin plate is the diaphragm 11
  • the central thin plate is the flow path plate 16
  • the uppermost thin plate is the multi-hole plate 12a.
  • the vibrating and vibrating portion of the present invention is configured by stacking and adhering these three thin plates.
  • a method of adhering three thin plates a method using an adhesive or the like can also be used, but in consideration of the influence of the adhesive and the adhesive strength, in this embodiment, each thin plate is overlapped and a high pressure is applied.
  • the lowermost diaphragm 11 is in contact with the vibration transmission liquid of the ultrasonic vibration expansion transmission unit 9 on the lower side, and is vibrated by the ultrasonic vibration 10 transmitted through the vibration transmission liquid. Since the diaphragm 11 is required to vibrate by the ultrasonic vibration 10 transmitted in the vibration transmission liquid, flexibility and elasticity are required. In this embodiment, the thickness of the SUS of the diaphragm 11 is reduced to 50 ⁇ m to facilitate vibration.
  • the portion of the diaphragm 11 that is vibrated is the portion where the ultrasonic vibration is focused.
  • the position of the vibrating focal point and its diameter are, of course, dependent on the design conditions. In this embodiment, it is designed so as to be within the range of the alternate long and short dash line (diameter several mm) in the figure even when the assembly accuracy is taken into consideration.
  • the diameter of the vibration focal point in this embodiment is about 1 mm. That is, the diaphragm 11 vibrates in a region having a diameter of about 1 mm at any place in the alternate long and short dash line due to the ultrasonic vibration transmitted through the vibration transmission liquid.
  • the central flow path plate 16 is provided with a hole having the shape shown in the figure.
  • the round portions 19 located at both ends are a supply hole and a discharge hole for the liquid sample, and are connected to the sample supply pipe 2 and the sample discharge pipe 5, respectively.
  • the large round portion 17 in the center coincides with the region where the diaphragm 11 may vibrate.
  • the slit portion 18 formed so as to connect the supply hole and the discharge hole of the liquid sample is sandwiched between the diaphragm 11 and the multi-hole plate 12a at the top and bottom, so that the flow path (flow path layer 13 in FIG. 1) is formed. To form.
  • the liquid sample 2 supplied from the supply hole is sent to the large round portion 17 in the center through this flow path, and is made into minute droplets by the vibration of the diaphragm.
  • the excess liquid sample which is not a minute droplet, is configured to be discharged from the discharge hole through the flow path on the opposite side. Since the cross-sectional area of the flow path is determined by the thickness as well as the opening width of the flow path plate, it is necessary to select an appropriate plate thickness. Considering the ease of handling and the cross-sectional area of the flow path, it is generally appropriate to use several tens to several hundreds of ⁇ m. In this example, a plate thickness of 100 ⁇ m was used.
  • the uppermost multi-hole plate 12a has a pair of round holes 15 at both ends and a region 14 having a large number of holes formed in the center.
  • the round holes 15 at both ends are holes for supplying and discharging the liquid sample to the flow path plate 16, and are adhered so as to coincide with the round portions 19 located at both ends of the flow path plate 16.
  • the region 14 having a large number of holes formed in the central portion coincides with the region that may vibrate, which is indicated by the alternate long and short dash line on the diaphragm 1.
  • the liquid sample supplied to the large round portion 17 in the center of the flow path plate 16 is vibrated by the vibration of the diaphragm 11, and the formed minute droplets are discharged through the central hole of the multi-hole plate 12a.
  • the inner surface be treated with hydrophilicity.
  • the outer surface of the multi-hole plate (liquid film forming means) 12a is treated with water repellent as a countermeasure against contamination.
  • the sample vibration vibrating unit 3 By configuring the sample vibration vibrating unit 3 as described above, it is possible to stably form a liquid film on the diaphragm even with a small amount of liquid sample, and it is possible to realize stable formation of fine droplets.
  • FIG. 4 is a diagram showing another example of the structure of the vibrating vibration part.
  • the opening does not necessarily have to be composed of a large number of circular holes 14 (a) as in FIGS. 3 and 4a), and is a slit-shaped opening hole as in FIGS. 4 (b) and 4 (c). Similar effects can be expected with the opening holes 14d having a deformed shape or a combination shape as shown in 14b and c and FIG. 4D.
  • the diameter of the opening hole is set to 150 ⁇ m. According to the experiment, the opening diameter and opening width for preventing the scattering of water and alcohol were 1 mm or less, but it was necessary to make them several hundred ⁇ m or less in consideration of stability.
  • the position of the vibration focus of the diaphragm can be accurately positioned, the area of the portion 17 that widens the flow path 21 near the focus position can be reduced. Needless to say, the smaller the partial area that widens the flow path 21 near the focal position, the smaller the sample solution can be sprayed. If the design is such that the vibration focus can be completely positioned on the flow path 21, even a single slit opening as shown in FIG. 4 (e) or a single spray hole as shown in FIG. 4 (f) can be used. It is also possible to obtain the same effect.
  • FIG. 5 is a diagram showing another embodiment of the structure of the microdroplet forming member, and is the other of the liquid film forming means 12 of the present invention that can be used when all the sample liquid supplied to the vibrating portion is atomized and sprayed. It is a figure explaining the Example of.
  • a small multi-hole plate (liquid film forming member) 12b is provided at the tip of the sample liquid supply pipe 22. This is configured to be placed close to the vibration focal position of the diaphragm 11.
  • the sample liquid supplied from the supply pipe 22 is configured to be supplied to the lower side of the multi-hole plate (liquid film forming member) 12b.
  • the sample liquid supplied to the lower side of the multi-hole plate (liquid film forming means) 12b spreads in the minute gap region between the multi-hole plate (liquid film forming member) 12b and the diaphragm 11 by a capillary phenomenon to form a liquid film. Form. Then, it can be ejected as minute droplets from the opening hole 14 provided in the multi-hole plate (liquid film forming member) 12b by the vibration of the diaphragm 11.
  • the shape of the opening hole 14 in the multi-hole plate (liquid film forming member) 12b in which the liquid film is provided on the diaphragm 11 is in addition to the circular hole (FIG. 4A) as described with reference to FIG. It is also possible to use a slit shape (FIGS. 4 (b) and (c)) and various shapes obtained by deforming or combining them (FIG. 4 (d)). Further, the higher the accuracy of the focal position of the diaphragm, the smaller the area of the liquid film forming member 12 such as the multi-hole plate arranged at the tip of the sample liquid supply pipe 22, and the smaller the amount of sample liquid. It becomes possible to correspond to.
  • the gap between the vibrating plate 11 and the liquid film forming member 12 such as the multi-hole plate is vibrated. It affects the formation state of minute droplets at the time. In particular, if the gap is wide and the liquid film becomes too thick, the efficiency of forming fine droplets drops sharply. Therefore, it is required that the minute gap formed between the liquid film forming member 12 such as the multi-hole plate and the diaphragm 11 is sufficiently narrow and stable, and the gap is constant.
  • the diaphragm 11 and the multi-hole plate 12a for forming a liquid film described with reference to FIGS. 1 to 4 it is easy to keep the gap between them constant because they are integrally molded.
  • a small multi-hole plate (liquid film forming member) 12b is provided at the tip of the sample liquid supply pipe 22, and the diaphragm 11 and the multi-hole plate (liquid film forming member) 12b are provided. It is difficult to make the gap between the two with high accuracy.
  • the multi-hole plate (liquid film forming means) 12b is the diaphragm 11.
  • the structure to be placed is a state in which the multi-hole plate (liquid film forming means) 12b and the diaphragm 11 are in contact with each other under a weak pressure.
  • Such a structure can be easily realized as compared with the case of designing a structure that guarantees the clearance accuracy.
  • the structure for maintaining the gap between the diaphragm 11 and the multi-hole plate (liquid film forming means) 12b with high accuracy Is no longer necessary. If the structure in which the multi-hole plate (liquid film forming means) 12b is placed on the diaphragm 11 with a weak force is used, the sample liquid can be supplied between the multi-hole plate (liquid film forming means) 12b and the diaphragm 11. This makes it possible to form a minute and uniform gap between the multi-hole plate (liquid film forming means) 12b and the diaphragm 11.
  • FIG. 6 is a diagram showing another embodiment of the liquid film forming means of the microdroplet forming member, and is a diagram illustrating another embodiment of the liquid film forming means 12 on the diaphragm 11.
  • a method of arranging a thin plate (liquid film forming member) 12 having holes and slits formed on the diaphragm 11 is disclosed.
  • a rod-shaped member 23 such as (a) fork-shaped, (b) antenna-shaped, or (c) simple rod-shaped as shown in FIG. 6 is used as a sample liquid. Even in a configuration in which the liquid film is attached to the tip of the supply pipe 22 and arranged on the diaphragm, the same effect as that of the liquid film forming means 12 using the thin plate described in the examples up to FIG. 5 can be obtained.
  • This method is a method of forming a liquid film by utilizing the wettability of the rod-shaped member, and the configuration can be made extremely simple. The wettability to the sample liquid is also important in the liquid film forming means on the thin plate shown in FIG.
  • FIG. 7 is a diagram showing an embodiment of an analyzer using the microdroplet forming apparatus of the present invention
  • FIG. 8 is a diagram showing another embodiment of the analyzer using the microdroplet forming apparatus of the present invention.
  • It is a figure explaining one Example of the analyzer using the microdroplet forming apparatus of this invention.
  • the figure is an example for a liquid chromatography mass apparatus in which the microdroplet forming apparatus of the present invention is arranged.
  • the configuration of the embodiment will be described below.
  • the microdroplet forming apparatus 1 of the present invention a droplet charging unit (droplet charging unit 28) that applies a charge to microdroplets to generate microcharged droplets, and drying for drying and ionizing the microcharged droplets. It is provided with an ion source (ion generation unit 33) having a unit and a detection unit (mass spectrometer 32) that introduces ions formed by the ion source and separates and detects each mass-to-charge ratio.
  • ion source ion generation unit 33
  • detection unit mass spectrometer 32
  • the vibration transmission liquid supply pipe 6 for circulating and cooling the liquid which is the ultrasonic vibration expansion transmission unit 9, the vibration transmission liquid discharge pipe 7, and the liquid
  • the sample liquid supplied from the liquid chromatography is squeezed by connecting the sample liquid supply tube 2 supplied from the chromatography and the sample discharge tube 5 to discharge the surplus sample liquid and vibrating the ultrasonic vibration generator 8.
  • a nitrogen supply unit 26 is arranged directly above the spray surface of the microdroplet forming apparatus 1. Nitrogen is supplied to the nitrogen supply unit 26 from the nitrogen supply pipe 24, and the microdroplets 4 sprayed from the microdroplet forming device 1 are sprayed into a pipe filled with nitrogen at a substantially atmospheric pressure. It is configured.
  • the microdroplets 4 generated by the microdroplet forming apparatus 1 of the present invention are conveyed to the upper 34 in the figure by the spray rate and the flow of nitrogen supplied from the nitrogen supply unit 26.
  • the initial spray rate of the minute droplets generated by the minute droplet forming apparatus 1 of the present invention is about several m / s or less to several tens of m / s, and the amount of nitrogen supplied is also the same as the flow velocity and in the pipe. Controls the amount of nitrogen supplied so that it can maintain almost atmospheric pressure.
  • a droplet initial heating unit 27 is connected above the nitrogen supply unit 26.
  • the droplet initial heating unit 27 heats the minute droplets with the heating heater 30 arranged on the wall surface, and vaporizes and removes the solvent of the minute droplets.
  • the inside of the induction tube of the minute droplets is filled with nitrogen in order to prevent combustion from occurring when the minute droplets are heated by a heater or the like. That is, a gas that can prevent combustion, such as an inert gas other than nitrogen, may be used.
  • a droplet charging unit 28 is connected above the droplet initial heating unit 27, and is configured to impart positive ions or electrons generated by the ion generation unit 33 to the sample droplets.
  • the ion generation unit 33 a general corona discharger or the like can be used.
  • a droplet acceleration unit 29 is configured above the droplet charging unit 28.
  • the droplet acceleration unit 29 accelerates the velocity of the sample liquid by gradually reducing the diameter of the pipe.
  • the tube diameter from the nitrogen supply unit 26 to the droplet charging unit 28 via the initial heating unit 27 is set to a diameter of about 25 mm.
  • the tube diameter of about 25 mm in diameter is gradually narrowed by 500 ⁇ m in diameter. That is, the pipe cross-sectional area ratio between the inlet and the outlet of the droplet acceleration unit 29 is 2500: 1.
  • the sample droplets sent at a speed of several m / s to several tens of m / s accelerate to the speed of sound or higher at once.
  • the analyzer connection unit 31 is an elongated thin tube having a diameter of 500 ⁇ m, and by connecting the droplet acceleration unit 29 and the mass spectrometer 32, the pressure gradient of the mass spectrometer 32 having an atmospheric pressure spray pipe and a vacuum pressure inside. Is configured to absorb and hold.
  • a heating heater 30 is also installed in the piping portion of the droplet acceleration unit 29 and the analyzer connection unit 31, and is configured to heat the sample droplets being transported and remove the solvent.
  • the solvent is removed by the droplet acceleration unit 29 and the analyzer connecting unit 31, and the sample components contained in the sample liquid are ionized to the mass analyzer 32. Will be supplied. In the mass spectrometer 32, the supplied sample ions are separated by mass, and the component features contained in the sample are identified.
  • the method of applying a charge to the sample droplets from which the solvent has been largely removed by heating with the droplet initial heating unit 27 is the atmospheric pressure ionization method (APCI) in the current liquid chromatography mass spectrometry method.
  • APCI atmospheric pressure ionization method
  • Atmospheric Pressure Chemical Ionization corresponds to the method.
  • an electrospray ionization (ESI) method is widely known, and it is selected according to the strength of the polarity of the sample to be analyzed. Is common.
  • the microdroplet forming apparatus of the present invention it is possible to charge the droplets by a method corresponding to the electrospray ionization method.
  • a method equivalent to the electrospray ionization method it is necessary to generate an electric field in the region where the sample liquid is separated into the droplets.
  • the conductive SUS316 is used as the material of the diaphragm 11 and the liquid film forming means 12
  • the droplets formed by applying a high voltage of about several kV to 10 kV to the conductive SUS316 are used. It is possible to add a charge to.
  • the amount of charge applied to the formed droplets is proportional to the applied voltage level, and the polarity matches the polarity of the applied voltage. Since the amount of electric charge generated in the droplet forming portion is affected by the strength of the electric field, the position of the electrode serving as the counter electrode is important as well as the voltage applied to the diaphragm 11 and the liquid film forming means 12.
  • the mesh plate of the nitrogen spray port of the nitrogen supply unit 26 is made of metal, and by setting the installation potential, the diaphragm 11 to which a voltage is applied and the counter electrode of the liquid film forming means 12 are used. Made it work.
  • the piezoelectric element is driven with a high voltage as a base voltage.
  • the diaphragm 11 and the liquid film forming means 12 also have a high voltage through the pure water which is the vibration transmitting liquid 9.
  • the portion to which a high voltage is applied is the diaphragm 11 and the liquid film forming means 12. Since it can be limited, it becomes easier to ensure safety.
  • the drive circuit of the piezoelectric element can be made very simple as compared with the method of superimposing the high voltage base power supply of the drive circuit of the piezoelectric element.
  • the microdroplet forming apparatus of the present invention is used for a liquid chromatography mass spectrometer, etc.
  • prevention of contamination is an important item to be considered.
  • measures for preventing contamination in the present invention and examples will be described.
  • the sample liquid to be analyzed by the mass spectrometer is sequentially sent from the liquid chromatography.
  • the liquid amount of each sample liquid is about several hundred ⁇ L to several tens of ⁇ L, and the speed of being sent is about several 100 ⁇ / min.
  • sample liquids are sent one after another within a few seconds to one minute, and the sample liquids are continuously made into fine droplets and sent to the analyzer. During that time, it is very important to prevent contamination between the sample liquids that are continuously sent one after another in order to carry out accurate analysis.
  • FIG. 1 Even one embodiment of the present invention shown in FIG. 1 has a structure in consideration of prevention of some contamination. These will be described below.
  • the surplus sample liquid that could not be made into fine droplets is sent out to the discharge tube side. It was configured. Further, as disclosed in FIGS. 2 and 3, thin plates are overlapped to form a flow path, so that the sample liquid is supplied through an extremely narrow flow path to prevent contamination. However, in the flow path structure shown in FIG. 3, a region 17 in which the flow path is widened is provided from the viewpoint of alignment with the focal position of ultrasonic vibration, but in order to prevent contamination, ultrasonic vibration is provided. It is important to improve the design system of the focal position and minimize the spread of the flow path. Further, it is also important to reduce the cross-sectional area of the flow path by reducing the thickness of the flow path plate 16 in FIG. 3b) in order to prevent contamination.
  • a method of sandwiching a known gas or liquid as a buffer between the sent samples may be used.
  • sandwiching a known gas or liquid as a buffer it becomes easy to prevent contamination between liquids as known in pipes and atomized parts, and dimensional restrictions on the flow path and the like are relaxed.
  • this method has problems that the efficiency of analysis is lowered by the amount of the gas or liquid used as the buffer region, and the gas or liquid used as the buffer liquid is consumed.
  • a method of providing a cleaning process for piping and spray areas This is a method of incorporating a sequence for cleaning the supply pipe, the vibrating part, etc. for each predetermined number of analyzes and analysis time. If the cleaning sequence is performed when the device is started or stopped, the analysis efficiency can be suppressed. If necessary, a method of operating the washing sequence is also conceivable.
  • a simple method is to add a known cleaning liquid instead of the sample liquid to be analyzed and apply ultrasonic vibration.
  • Ultrasonic vibration can be expected to be effective in cleaning pipes and the like.
  • the tip of the supply pipe 22 shown in FIGS. 5 and 6 is compared by laminating the thin plates shown in FIG. 3 and comparing the composition ratio in which the diaphragm 11, the flow path plate 16 and the multi-hole plate 12 are integrated.
  • the structure in which the multi-hole plate 12b for forming the liquid film and the rod-shaped member 23 are arranged is a simple structure and easy to disassemble and clean. Of course, it is also effective as a pollution control measure to periodically replace each supply pipe 22 having a liquid film formation at the tip.
  • the sample vibration vibration unit 3 of the integrated structure of the diaphragm 11, the flow path plate 16 and the multi-hole plate 12 also has a structure that is easy to replace. Further, a method of defining and operating the replacement cycle of parts that are prone to contamination or clogging is also effective as a contamination prevention measure in the microliquid machine forming means of the present invention.
  • the heater 30 is arranged in each part in the pipe path, and the pipe wall surface is covered. Due to the high temperature, the attached sample components are decomposed by heat.
  • the contamination in the transport / processing path of the sample droplet between the microdroplet forming apparatus and the analyzer is described. Careed so that it would hardly be a problem.
  • FIG. 8 is an example of an arrangement configuration up to the mass spectrometer when the microdroplet forming apparatus 1 of the present invention is arranged upside down and the microdroplets are sprayed downward.
  • the microdroplet formation method using high-speed air spray which is widely used in liquid chromatography mass analyzers, produces microdroplets by applying a very high-speed air flow to the supplied sample droplets.
  • the flying speed of the generated droplets is very fast, and some of them reach the speed of sound.
  • the flying speed of the fine droplets ejected by the fine droplet forming means of the present invention is very slow, ranging from several m / s or less to several tens of m / s. Therefore, it is possible to control the flight direction of the formed droplets by using a gentle air flow.
  • the microdroplets sprayed from the microdroplet forming apparatus of the present invention are configured to give a nitrogen flow from the side surface. Since the sprayed minute droplets are very light, it is possible to sufficiently control the flight direction by using an air flow of about several m / s to several tens of m / s. As in FIG. 7, the minute droplet whose flight direction is changed in the horizontal direction passes through the droplet initial heating unit 27, the droplet charging unit 28, the droplet acceleration unit 29, and the analyzer connection unit 31, and is a mass analyzer. Guided to 32.
  • the microdroplet forming means of the present invention when the microdroplet forming means of the present invention is arranged upside down, even if a large scattered droplet or the like is generated at the time of atomization, it falls on the mist surface of the microdroplet forming apparatus 1. There is no. Further, even if the cleaning liquid is ejected from the multi-hole plate of the microdroplet forming device for cleaning or the like, the nitrogen flow can be stopped so that the cleaning liquid can be discharged in the direction of gravity.
  • the water distribution pipe 35 is directed directly below the ejection direction of the microdroplet forming apparatus, and is configured to be able to collect large droplets and cleaning liquid falling from the microdroplet forming apparatus of the present invention. With such a configuration, the risk of contamination in the fine droplet forming portion of the present invention can be further reduced, and the cleaning process can be facilitated.
  • the microdroplets can be sprayed in any direction, and the sprayed droplets can be freely controlled by a relatively gentle air flow. Therefore, it is possible to correspond to various device configurations connected to the analyzer.
  • the microdroplet forming apparatus of the present invention it is possible to stably convert a small amount of sample liquid into microdroplets of several ⁇ m with a simple structure. rice field. Further, since it is possible to apply a charge to the formed minute droplets, it can also be used as an ion source for a chromatographic mass spectrometer. Further, the microdroplet forming apparatus of the present invention can spray the microdroplets in various directions and can easily control the transport direction by using the air flow, so that the liquid sample is made into microdroplets. It can also be applied to various analyzers that require.
  • the present invention is not limited to the above-described embodiment, and includes various modifications.
  • the above-described embodiment describes the present invention in an easy-to-understand manner, and is not necessarily limited to the one having all the configurations described. Further, it is possible to replace a part of the configuration of one embodiment with the configuration of another embodiment, and it is also possible to add the configuration of another embodiment to the configuration of one embodiment. It is also possible to add / delete / replace a part of the configuration of each embodiment with another configuration.
  • liquid film forming means 22 ... sample liquid supply pipe, 23 ... rod-shaped member (liquid film forming means), 24 ... (nitrogen) airflow inlet, 25 ... to analyzer Sample ion to be introduced, 26 ... Nitrogen supply unit, 27 ... Droplet initial heating unit, 28 ... Droplet charging unit, 29 ... Droplet acceleration unit, 30 ... Heating heater, 31 ... Analyzer connection unit, 32 ... Mass analysis Equipment, 33 ... ion generation unit, 34 ... transport direction of atomized droplets, 35 ... water distribution pipe.

Abstract

Provided are a micro droplet formation device capable of dividing even small liquid samples, that have been separated by liquid chromatography, into micro droplets with a mean particle diameter of several µm, and an analysis device. A micro droplet device according to the present invention is characterized by comprising: an ultrasonic vibration generation unit (8) that generates ultrasonic vibrations; an ultrasonic vibration propagation and expansion unit (9) that expands and propagates the ultrasonic vibrations generated by the ultrasonic vibration generation unit; a sample excitation vibration unit (3) that imparts vibration on a liquid sample by using the ultrasonic vibrations that have been expanded by the ultrasonic vibration propagation and expansion unit, and forms microdroplets of the liquid sample; and a sample supply unit (40) that continuously supplies the liquid sample to the sample excitation vibration unit, wherein a liquid film formation member is provided on an excitation vibration surface (A) of the sample excitation vibration unit so as to be capable of maintaining the liquid sample, supplied by the sample supply unit, in a liquid film form.

Description

微小液滴形成装置および分析装置Microdroplet forming device and analyzer
 本発明は、微小液滴形成装置および分析装置に関する。 The present invention relates to a microdroplet forming apparatus and an analyzer.
 試料成分を有する液体試料を分析するために、液体試料を微小な液滴に分解して分析部に導入する方法が用いられる。液体試料を液滴にして分析する代表的な分析装置として、液体クロマトグラフィ質量分析装置がある。 In order to analyze a liquid sample having a sample component, a method of decomposing the liquid sample into minute droplets and introducing the liquid sample into the analysis unit is used. A liquid chromatography mass spectrometer is a typical analyzer that analyzes a liquid sample as droplets.
 液体クロマトグラフィ質量分析法は、液体クロマトグラフィで分離した種々の成分を、イオン化し、質量電荷比ごとに分離して検出する化学分析法である。この方式では、液体クロマトグラフィから供給される液体試料を、微小液滴化し、帯電し、加熱気化することで分析成分のイオンを生成する。 Liquid chromatography mass spectrometry is a chemical analysis method in which various components separated by liquid chromatography are ionized and separated and detected for each mass-to-charge ratio. In this method, a liquid sample supplied from liquid chromatography is atomized into fine droplets, charged, and vaporized by heating to generate ions of analytical components.
 液体試料を分割して形成する初期液滴の平均粒径は、数十から数μmの微小液滴にすることが求められる。イオン化(帯電や気化)の効率などから、形成する液径は小さいことが望ましいとともに、粒径のばらつきも少ないことが求められる。 The average particle size of the initial droplets formed by dividing the liquid sample is required to be tens to several μm. From the viewpoint of the efficiency of ionization (charging and vaporization), it is desirable that the diameter of the liquid to be formed is small, and it is also required that the particle size does not vary.
 液体試料を微小液滴に分割する方法として、現在質量分析装置に広く用いられているのは、大気圧スプレー法である。大気圧スプレー法とは、高速の噴流中に液体を導入して、液体を分割液滴化する手法であるが、平均粒径が数十から数μmの液滴を形成するためには、音速に近い高速噴流を使用することが必要となる。このため、装置が大掛かりになってしまう。さらに、大気圧スプレー法で形成される液滴は、その粒径が不安定になりやすく、粒径分布も広いという課題を有している。形成される液滴の粒径やその粒系分布は、イオン化のために必要な帯電やその後の気化プロセスにも影響を与えることから、形成する分析成分イオンの状態を不安定にする。イオンの状態は、質量電荷比ごとに分離して検出する化学分析の測定精度などに大きく影響する。このため、液体クロマトグラフィで分離された少量の液体試料を、より安定して、平均粒径が十μm~数μmの微小液滴にする方法が求められる。 The atmospheric pressure spray method is currently widely used in mass spectrometers as a method for dividing a liquid sample into minute droplets. The atmospheric pressure spray method is a method in which a liquid is introduced into a high-speed jet to divide the liquid into split droplets, but in order to form droplets with an average particle size of several tens to several μm, the speed of sound is used. It is necessary to use a high-speed jet close to. Therefore, the device becomes large-scale. Further, the droplets formed by the atmospheric pressure spray method have a problem that the particle size tends to be unstable and the particle size distribution is wide. The particle size of the formed droplets and the distribution of the grain system also affect the charging required for ionization and the subsequent vaporization process, thus destabilizing the state of the analytical component ions to be formed. The state of ions greatly affects the measurement accuracy of chemical analysis, which is detected separately for each mass-to-charge ratio. Therefore, there is a need for a method for making a small amount of liquid sample separated by liquid chromatography into fine droplets having an average particle size of 10 μm to several μm in a more stable manner.
 一方、液体試料を微小液滴に分割する他の手法として、超音波を用いる方法が知られており、例えば特許文献1および特許文献2に開示されている。 On the other hand, a method using ultrasonic waves is known as another method for dividing a liquid sample into minute droplets, and is disclosed in, for example, Patent Document 1 and Patent Document 2.
特開平11-051902号公報Japanese Unexamined Patent Publication No. 11-051902 特開2015-031650号公報Japanese Unexamined Patent Publication No. 2015-301650
 超音波によって形成される液滴径は、超音波の振動周波数の影響を受ける。そして、振動周波数と液滴径の関係は、概ねLangの式(J.Acous. Soc. Amer.,1962,34,6)に従うことが知られている。Langの式によれば、水やアルコールを加振して約10μm径の液滴を形成するための加振周波数は、200~300kHz程度であり、1~3μm径の液滴を形成する加振周波数は数MHzであることが知られている。 The droplet diameter formed by ultrasonic waves is affected by the vibration frequency of ultrasonic waves. It is known that the relationship between the vibration frequency and the droplet diameter generally follows Lang's equation (J. Acous. Soc. Amer., 1962, 34, 6). According to Lang's formula, the vibration frequency for vibrating water or alcohol to form a droplet having a diameter of about 10 μm is about 200 to 300 kHz, and the vibration for forming a droplet having a diameter of 1 to 3 μm is formed. The frequency is known to be several MHz.
 一般的に超音波振動子の振動は振幅が小さく、直接液体と分割液滴化することは難しい。このため、金属柱やダイアフラム構造体などの共振現象を利用して、振幅を拡大し液体を分割可能な加速度を有する振動を得る。一般的な超音波振動による液滴形成装置加振装置では、金属の共振振動を利用することから、200MHz程度が限界振動周波数である。 In general, the vibration of an ultrasonic vibrator has a small amplitude, and it is difficult to directly separate it into liquid and droplets. Therefore, by utilizing the resonance phenomenon of a metal column or a diaphragm structure, vibration having an acceleration capable of expanding the amplitude and dividing the liquid is obtained. In a general ultrasonic vibration-based droplet forming device vibration device, the limit vibration frequency is about 200 MHz because the resonance vibration of metal is used.
 特許文献1では、エアースプレーによる噴霧した液滴を超音波振動子の表面に付着させ、微小液滴化する方式を開示したものである。前述したように一般的に超音波振動子の振動は振幅が小さく、液滴化は困難である。また、金属共振を利用する場合、200kHz程度が限界振動周波数となり、形成される液滴径は10μmが限界である。開示されている方法で、数μm以下の液滴を形成することは難しい。さらに、少量の液体を数100kHz以上の高周波振動面に供給すると、供給と同時に液滴が飛散しやすく、微小液滴化がほとんどできないだけでなく、大きな液玉も同時に飛散しまうという問題がある。 Patent Document 1 discloses a method in which droplets sprayed by an air spray are attached to the surface of an ultrasonic vibrator to form fine droplets. As described above, the vibration of the ultrasonic vibrator generally has a small amplitude, and it is difficult to form droplets. Further, when metal resonance is used, the limit vibration frequency is about 200 kHz, and the diameter of the formed droplet is limited to 10 μm. It is difficult to form droplets of several μm or less by the disclosed method. Further, when a small amount of liquid is supplied to a high-frequency vibrating surface of several hundred kHz or more, the droplets are likely to be scattered at the same time as the supply, and not only the fine droplets can hardly be formed, but also large liquid balls are scattered at the same time.
 特許文献2では、容器にためた液体試料を超音波振動子によって加振することで、液体試料を霧化することで、液滴を形成する方式である。この方式では、加振する液体自体を利用して、加えた加振力を増幅し、液体の一部を微小液滴化つまり霧化する方式である。
この方式は、金属共振を利用する上記方法と異なり、数MHzの加振周波数で液体試料を加振することも可能であることから、平均粒径数μm程度の液滴を形成することができる。しかし、超音波を照射する液体を容器などにためる必要があることから、ある程度の液量を必要とし、液体クロマトグラフィで分離された極めて量の少ない液体試料の微小液滴化に適用することは難しい。また、もし液体試料を容器にためず、少量の液体を数MHzの高周波振動面に直接供給した場合、液体はとても飛散りやすい状況となり、安定した微小液滴形成はさらに難しいものとなる。
Patent Document 2 is a method of forming droplets by atomizing a liquid sample by vibrating the liquid sample stored in a container with an ultrasonic vibrator. In this method, the vibrating liquid itself is used to amplify the applied vibrating force, and a part of the liquid is atomized into fine droplets, that is, atomized.
This method is different from the above method using metal resonance, and since it is possible to vibrate the liquid sample at a vibrating frequency of several MHz, it is possible to form droplets having an average particle size of about several μm. .. However, since it is necessary to store the liquid to be irradiated with ultrasonic waves in a container or the like, a certain amount of liquid is required, and it is difficult to apply it to microdroplets of an extremely small amount of liquid sample separated by liquid chromatography. .. Further, if a small amount of liquid is directly supplied to the high frequency vibration surface of several MHz without storing the liquid sample in a container, the liquid tends to scatter very easily, and stable formation of fine droplets becomes more difficult.
 本発明の目的は、上記事情に鑑み、液体クロマトグラフィで分離された少量の液体試料でも、平均粒径が数μmの微小液滴に分割することが可能な微小液滴形成装置および分析装置を提供することにある。 In view of the above circumstances, an object of the present invention is to provide a microdroplet forming apparatus and an analyzer capable of dividing even a small amount of liquid sample separated by liquid chromatography into microdroplets having an average particle size of several μm. To do.
 上記課題を解決するための本発明の微小液滴形成装置の一態様は、
 超音波振動を発生する超音波振動発生部と、超音波振動発生部で発生した超音波振動を拡大しながら伝達する超音波振動伝達拡大部と、超音波振動伝達拡大部で拡大された超音波振動で液体試料を加振し、液体試料の微小液滴を形成する試料加振振動部と、試料加振振動部に前記液体試料を連続的に供給する試料供給部と、を備え、試料加振振動部の加振振動面に、試料供給部から供給された液体試料を液膜状に保持可能な液膜形成部材が設けられていることを特徴とする。
One aspect of the microdroplet forming apparatus of the present invention for solving the above problems is
An ultrasonic vibration generating part that generates ultrasonic vibration, an ultrasonic vibration transmission expanding part that transmits the ultrasonic vibration generated in the ultrasonic vibration generating part while expanding it, and an ultrasonic wave expanded by the ultrasonic vibration transmitting expanding part. The sample is provided with a sample vibration vibration unit that vibrates the liquid sample by vibration to form minute droplets of the liquid sample, and a sample supply unit that continuously supplies the liquid sample to the sample vibration vibration unit. A liquid film forming member capable of holding the liquid sample supplied from the sample supply unit in the form of a liquid film is provided on the vibrating vibration surface of the vibration and vibration unit.
 また、本発明の分析装置は、上記本発明の微小液滴形成装置を備える分析装置である。 Further, the analyzer of the present invention is an analyzer provided with the above-mentioned microdroplet forming apparatus of the present invention.
 本発明のより具体的な構成は、特許請求の範囲に記載される。 A more specific configuration of the present invention is described in the claims.
 上記構成によれば、液体クロマトグラフィで分離された少量の液体試料でも、平均粒径が数μmの微小液滴に分割することが可能な微小液滴形成装置および分析装置を提供できる。 According to the above configuration, it is possible to provide a microdroplet forming device and an analyzer capable of dividing even a small amount of liquid sample separated by liquid chromatography into fine droplets having an average particle size of several μm.
 上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。 Issues, configurations and effects other than those described above will be clarified by the explanation of the following embodiments.
本発明の微小液滴形成装置の一実施例を示す模式図Schematic diagram showing an embodiment of the microdroplet forming apparatus of the present invention 図1のA部分(加振振動面)の詳細を示す図The figure which shows the detail of the part A (vibration vibration surface) of FIG. 試料加振振動部の構造の一例を示す図The figure which shows an example of the structure of a sample vibration vibration part. 試料加振振動部の構造の他の例を示す図The figure which shows the other example of the structure of the sample vibration vibration part. 微小液滴形成部材の構造の他の実施例を示す図The figure which shows the other embodiment of the structure of the microdroplet forming member. 微小液滴形成部材の液膜形成手段の他の実施例を示す図The figure which shows the other embodiment of the liquid film forming means of the microdroplet forming member. 本発明の微小液滴形成装置を用いた分析装置の一実施例を示す図The figure which shows an Example of the analysis apparatus which used the microdroplet forming apparatus of this invention. 本発明の微小液滴形成装置を用いた分析装置の他の実施例を示す図The figure which shows the other embodiment of the analyzer using the microdroplet forming apparatus of this invention.
 [微小液滴形成装置]
 以下本発明の微小液滴形成装置について詳述する。図1は本発明の微小液滴形成装置の一実施例を示す模式図である。図1に示すように、微小液滴形成装置1は、超音波振動を発生する超音波振動発生部8と、超音波振動発生部8で発生した超音波振動を拡大しながら伝達する超音波振動伝達拡大部9と、超音波振動伝達拡大部9で拡大された超音波振動で液体試料を加振し、液体試料の微小液滴を形成する試料加振振動部3と、試料加振振動部に液体試料を連続的に供給する試料供給部40と、を備える。
[Microdroplet forming device]
Hereinafter, the microdroplet forming apparatus of the present invention will be described in detail. FIG. 1 is a schematic diagram showing an embodiment of the microdroplet forming apparatus of the present invention. As shown in FIG. 1, the microdroplet forming apparatus 1 has an ultrasonic vibration generating unit 8 that generates ultrasonic vibration and an ultrasonic vibration that is transmitted while expanding the ultrasonic vibration generated by the ultrasonic vibration generating unit 8. Transmission expansion unit 9 and ultrasonic vibration Sample vibration vibration unit 3 and sample vibration vibration unit 3 that vibrate the liquid sample with the ultrasonic vibration expanded by the transmission expansion unit 9 to form minute droplets of the liquid sample. Is provided with a sample supply unit 40 for continuously supplying a liquid sample.
 本発明の微小液滴形成装置は、供給される液体試料を、超音波振動を利用することで微小液滴を形成する。なお、本発明において「微小液滴」とは、平均粒径が数十μm~数μmの液滴を示すものとする。図1に示す本発明の実施例では、超音波振動発生装置8として圧電素子を用いている。超音波振動を利用した微小液滴の形成では、形成される液滴径は振動周波数の影響を受け、振動周波数と液滴径の関係は、上述した通り、概ねLangの式(J.Acous.Soc.Amer.,1962,34,6)に従うことが知られている。振動周波数と液滴径の関係は、溶媒種の影響も受ける。本実施例の分析装置で用いる液体試料では、主に用いられる水やアルコールが溶媒として利用される。この場合、10μm径の液滴を形成するための加振周波数は200~300kHz程度であり、1~3μm径の液滴を形成する加振周波数は数MHzとなる。 The microdroplet forming apparatus of the present invention forms microdroplets on the supplied liquid sample by utilizing ultrasonic vibration. In the present invention, the "fine droplet" means a droplet having an average particle size of several tens of μm to several μm. In the embodiment of the present invention shown in FIG. 1, a piezoelectric element is used as the ultrasonic vibration generator 8. In the formation of minute droplets using ultrasonic vibration, the formed droplet diameter is affected by the vibration frequency, and the relationship between the vibration frequency and the droplet diameter is generally the Lang formula (J. Acous. It is known to follow Soc. Amer., 1962, 34, 6). The relationship between the vibration frequency and the droplet diameter is also affected by the solvent type. In the liquid sample used in the analyzer of this example, water or alcohol mainly used is used as a solvent. In this case, the vibration frequency for forming a droplet having a diameter of 10 μm is about 200 to 300 kHz, and the vibration frequency for forming a droplet having a diameter of 1 to 3 μm is several MHz.
 分析装置で分析を行うためには、液滴径として数十μmから数μmの液滴を形成することが必要である。このため、分析装置向けの液滴を形成するための加振周波数としては、数百kHz~10MHz程度が必要なことになる。本実施例では、液体クロマトグラフィ質量分析装置向けの微小液滴形成装置としての構成を説明する。液体クロマトグラフィ質量分析装置では、液体クロマトグラフィから連続供給される試料を、質量分析装置で連続的に分析する。各サンプルである試料液体の液量は液体クロマトグラフィの仕様によってある程度の幅がある。また、液体試料から大気中で形成する初期液滴の液滴径は小さい方が望ましいと言われており、平均粒径で数μmの程度にすることが望まれる。本実施例では、各試料液体の液量として、数100~数10μL以下を想定し、大気中で形成する初期液滴の液滴径としては、数μmとすることを想定した。試料液体から形成する初期液滴の液滴径を、数μmとするために、本実施例における超音波振動発生装置8の加振周波数は2.4MHzとした。 In order to perform analysis with an analyzer, it is necessary to form droplets with a droplet diameter of several tens of μm to several μm. Therefore, the vibration frequency for forming the droplets for the analyzer needs to be about several hundred kHz to 10 MHz. In this embodiment, the configuration as a microdroplet forming apparatus for a liquid chromatography mass spectrometer will be described. In the liquid chromatography mass spectrometer, samples continuously supplied from liquid chromatography are continuously analyzed by the mass spectrometer. The amount of the sample liquid, which is each sample, varies to some extent depending on the specifications of liquid chromatography. Further, it is said that it is desirable that the droplet diameter of the initial droplets formed in the atmosphere from the liquid sample is small, and it is desirable that the average particle size is about several μm. In this example, it is assumed that the liquid volume of each sample liquid is several hundreds to several tens of μL or less, and the droplet diameter of the initial droplets formed in the atmosphere is several μm. In order to make the droplet diameter of the initial droplet formed from the sample liquid several μm, the vibration frequency of the ultrasonic vibration generator 8 in this embodiment was set to 2.4 MHz.
 また、本実施例の超音波振動拡大伝達部9としては液体を利用した。振動拡大手段として、一般的に広く用いられる方法として、金属柱状部材やダイアフラム構造などにおける共振現象を利用する方法がある。しかし、金属柱状部材の共振現象を用いる場合、高周波になるほど使用する共振させる柱状構造体の長さを短くすることが必要となる。金属柱状部材の共振を利用する場合、現実的な寸法範囲では数100kHz程度が限界である。数100kHzで共振させるための金属柱状部材長さは、1cm以下と非常に短いものになり、安定な共振部材として利用することは難しい。ダイアフラム構造についても、数100kHzを超える共振構造を実現することは現実的には難しい。 Further, a liquid was used as the ultrasonic vibration expansion transmission unit 9 of this embodiment. As a vibration expanding means, as a method generally widely used, there is a method of utilizing a resonance phenomenon in a metal columnar member, a diaphragm structure, or the like. However, when the resonance phenomenon of the metal columnar member is used, it is necessary to shorten the length of the columnar structure to be used to resonate as the frequency increases. When the resonance of a metal columnar member is used, the limit is about several hundred kHz in a realistic dimensional range. The length of the metal columnar member for resonating at several 100 kHz is as short as 1 cm or less, and it is difficult to use it as a stable resonance member. As for the diaphragm structure, it is practically difficult to realize a resonance structure exceeding several hundred kHz.
 そこで、本実施例では、2.4MHzの高周波振動を拡大伝達するために、液体を利用する構造とした。本実施例の微小液滴形成装置では、図1に示すように、超音波振動発生装置8に対向して試料加振振動部3を配置しその間を液体で満たした。超音波振発生装置8で発生させた振動が液体である超音波振動伝達拡大部9を伝達して焦点を結ぶ距離、つまり振動が拡大する位置に試料加振振動部3を配置した。このような構造にすることで、超音波振動発生装置8で発生させた超音波振動を、拡大伝達し、試料加振振動部3を大きく超音波振動させることが可能となる。 Therefore, in this embodiment, a structure using a liquid is used to expand and transmit high-frequency vibration of 2.4 MHz. In the microdroplet forming apparatus of this embodiment, as shown in FIG. 1, the sample vibrating vibration unit 3 was arranged facing the ultrasonic vibration generating apparatus 8 and the space between them was filled with a liquid. The sample vibration vibration unit 3 was arranged at a distance where the vibration generated by the ultrasonic vibration generator 8 is transmitted through the ultrasonic vibration transmission expansion unit 9 which is a liquid and is focused, that is, at a position where the vibration expands. With such a structure, the ultrasonic vibration generated by the ultrasonic vibration generator 8 can be expanded and transmitted, and the sample vibration vibration unit 3 can be greatly ultrasonically vibrated.
 また、図1に示す本実施例では、液体の超音波振動伝達拡大部9を保持するケース部に、振動伝達液体供給管6と振動伝達液体排出管7を設けている。液体は、液体供給部41から振動伝達液体供給管6を通して超音波振動伝達拡大部9に送液され、振動伝達液体排出管7から排出される。 Further, in the present embodiment shown in FIG. 1, a vibration transmission liquid supply pipe 6 and a vibration transmission liquid discharge pipe 7 are provided in a case portion that holds the ultrasonic vibration transmission expansion portion 9 of the liquid. The liquid is sent from the liquid supply unit 41 to the ultrasonic vibration transmission expansion unit 9 through the vibration transmission liquid supply pipe 6, and is discharged from the vibration transmission liquid discharge pipe 7.
 本発明で超音波振動を発生させるために使用する超音波振動発生装置8に用いられる圧電素子は、振動発生時に熱を発生する。そして、発生した熱で圧電素子の温度が上がると加振力が低下したり、圧電素子が破壊する危険がある。そこで、本実施例では、超音波振動拡大伝達部9を保持するケース部に、振動伝達液体供給管6と振動伝達液体排出管7を設けた。
そして、振動拡大伝達液体を液体ポンプ(図示せず)を用いて振動伝達液体供給管6と振動伝達液体排出管7を使って循環させるとともに、熱交換機(図示無)を用いて冷却する構造とした。振動拡大伝達液体は、超音波振動子である圧電素子と直接接触することから、振動拡大伝達液体を冷却することで、圧電素子の温度上昇を防止することが可能である。
The piezoelectric element used in the ultrasonic vibration generator 8 used to generate ultrasonic vibration in the present invention generates heat when vibration is generated. If the temperature of the piezoelectric element rises due to the generated heat, there is a risk that the exciting force will decrease or the piezoelectric element will be destroyed. Therefore, in this embodiment, the vibration transmission liquid supply pipe 6 and the vibration transmission liquid discharge pipe 7 are provided in the case portion that holds the ultrasonic vibration expansion transmission unit 9.
Then, the vibration expansion transmission liquid is circulated using the vibration transmission liquid supply pipe 6 and the vibration transmission liquid discharge pipe 7 using a liquid pump (not shown), and is cooled by using a heat exchanger (not shown). did. Since the vibration expansion transmission liquid comes into direct contact with the piezoelectric element which is an ultrasonic vibrator, it is possible to prevent the temperature rise of the piezoelectric element by cooling the vibration expansion transmission liquid.
 液中における振動の伝達状態は、使用する振動拡大伝達液体の粘度、表面張力や密度などの影響を受ける。そのため、前記した超音波振動発生装置8と試料加振振動部3の距離などは、選定した振動拡大伝達液体の物性に合わせた適切な設計を行うことが必要となる。また、本実施例では、圧電素子の冷却に利用することや漏れた場合の安全性などの観点から、純水を振動拡大伝達液体として用いた。しかし、上記を考慮した液体およびそれに合わせた寸法設計を行うことで、純水以外の各種液体も本発明の振動拡大伝達液体として利用することが可能であることは言うまでもない。 The vibration transmission state in the liquid is affected by the viscosity, surface tension and density of the vibration expansion transmission liquid used. Therefore, it is necessary to appropriately design the distance between the ultrasonic vibration generator 8 and the sample vibration vibration unit 3 as described above according to the physical properties of the selected vibration expansion transmission liquid. Further, in this embodiment, pure water is used as the vibration expansion transmission liquid from the viewpoint of being used for cooling the piezoelectric element and safety in case of leakage. However, it goes without saying that various liquids other than pure water can also be used as the vibration expansion transmission liquid of the present invention by performing the liquid in consideration of the above and the dimensional design according to the liquid.
 図2は図1のA部分(加振振動面)の詳細を示す図である。本実施例の試料加振振動部3は、試料加振振動部3を構成する振動板11と、液膜形成部材12aを有し、両者の間に液体試料が供給される流路層13を有する。振動板11は、振動伝達液体と接触し、振動伝達液体内を伝わってきた超音波振動10によって振動する振動板11である。液中を伝わってきた超音波振動10は、振動板11の一部で焦点を結ぶように構成されている。 FIG. 2 is a diagram showing details of the A portion (vibration vibration surface) of FIG. The sample vibration vibration unit 3 of this embodiment has a diaphragm 11 constituting the sample vibration vibration unit 3 and a liquid film forming member 12a, and a flow path layer 13 to which a liquid sample is supplied is provided between the diaphragms 11 and the liquid film forming member 12a. Have. The diaphragm 11 is a diaphragm 11 that comes into contact with the vibration transmission liquid and vibrates by the ultrasonic vibration 10 transmitted in the vibration transmission liquid. The ultrasonic vibration 10 transmitted through the liquid is configured to be focused by a part of the diaphragm 11.
 薄板の間に形成された流路層13を通って供給された液体試料2は、振動板11の焦点位置に導かれ、振動板11の振動によって、加振霧化される。振動板の焦点位置に対向する位置の上側の薄板12aには、多数の穴が形成されており、霧化された液体試料の液滴は、この穴を通して、図中上方に向かって、微小液滴となって霧化噴出される。 The liquid sample 2 supplied through the flow path layer 13 formed between the thin plates is guided to the focal position of the diaphragm 11 and is vibrated and atomized by the vibration of the diaphragm 11. A large number of holes are formed in the upper thin plate 12a at a position facing the focal position of the diaphragm, and droplets of the atomized liquid sample pass through these holes toward the upper part of the figure and are minute liquids. It becomes droplets and is atomized and ejected.
 上記で説明した試料加振振動部3の構造は、本発明において非常に重要な構造である。
一般に、超音波振動する振動面上に、少量の液体を直接供給した場合、一部は微小な液滴となり霧化するものの、大部分の液体は飛散してしまう。このことは、分析装置において液体試料の微細液滴化に、超音波が利用しにくい大きな要因になっている。分析装置における液体試料は、非常に貴重であるとともに少量であることが多いことから、超音波により微小液滴を形成するうえでの大きな課題である。
The structure of the sample vibration vibration unit 3 described above is a very important structure in the present invention.
Generally, when a small amount of liquid is directly supplied onto a vibrating surface that vibrates ultrasonically, a part of the liquid becomes minute droplets and atomizes, but most of the liquid scatters. This is a major factor that makes it difficult to use ultrasonic waves for making fine droplets of a liquid sample in an analyzer. Since the liquid sample in the analyzer is very valuable and often in a small amount, it is a big problem in forming fine droplets by ultrasonic waves.
 本発明は、少量の液体でも超音波振動する振動面上に液膜を形成可能な方法を提案するものである。そして、超音波振動を用いて少量の液体試料を安定に霧化、微小液滴化することで、分析装置に供給できる新たな微小液滴形成装置とそれを有した分析装置を提供することを目的としている。 The present invention proposes a method capable of forming a liquid film on a vibrating surface that vibrates ultrasonically even with a small amount of liquid. Then, by stably atomizing and atomizing a small amount of liquid sample using ultrasonic vibration, it is possible to provide a new microdroplet forming device that can be supplied to the analyzer and an analyzer having the new microdroplet forming device. I am aiming.
 超音波振動面上に少量の液体を供給した場合に、飛散現象が生じる原因は、以下のように考えられる。振動面上に供給する液体が少量の場合、試料液体自身の有する表面張力により液玉となりやすい。液玉となった液体は、振動によって飛散する。水よりも表面張力の小さいアルコールのほうが、飛散が少ないことが、実験的にも確認している。ただし、少量のアルコールでも飛散を完全に防止できるというわけではない。 The cause of the scattering phenomenon when a small amount of liquid is supplied on the ultrasonic vibration surface is considered as follows. When the amount of liquid supplied on the vibrating surface is small, it tends to become a liquid ball due to the surface tension of the sample liquid itself. The liquid that has become a liquid ball scatters due to vibration. It has been experimentally confirmed that alcohol, which has a lower surface tension than water, scatters less. However, even a small amount of alcohol cannot completely prevent scattering.
 超音波振動させた振動面上に液膜を形成させることができれば、少量の液体の場合でも、安定した霧化を実現可能となる。この点に着目し、本発明はなされたものである。 If a liquid film can be formed on the vibrating surface that has been ultrasonically vibrated, stable atomization can be achieved even with a small amount of liquid. Focusing on this point, the present invention has been made.
 少量の液体を振動面上に液膜を形成する方法としては、振動面上を親水処理する方法が考えられる。実験結果によれば、一定の効果は確認されたが、親水処理のみでは十分な飛散防止効果を得るのは難しかった。そこで、本発明では、振動面上に液膜形成部材を近接配置する構成を考案した。上記の図2の振動板11に対向して配置された薄板12aが、本発明の液膜形成部材に相当する。薄板12aは、後述する図3に示す振動板の焦点位置に対向する位置に多穴部が設けられている。このような構造にすることで、振動面上に供給される少量の液体試料でも、安定的に振動板上で液膜を形成することが可能となる。 As a method of forming a liquid film on the vibrating surface with a small amount of liquid, a method of hydrophilically treating the vibrating surface can be considered. According to the experimental results, a certain effect was confirmed, but it was difficult to obtain a sufficient anti-scattering effect only by the hydrophilic treatment. Therefore, in the present invention, we have devised a configuration in which the liquid film forming member is arranged close to the vibrating surface. The thin plate 12a arranged to face the diaphragm 11 of FIG. 2 corresponds to the liquid film forming member of the present invention. The thin plate 12a is provided with a multi-hole portion at a position facing the focal position of the diaphragm shown in FIG. 3, which will be described later. With such a structure, it is possible to stably form a liquid film on the diaphragm even with a small amount of liquid sample supplied on the vibrating surface.
 また、上述した構造を用いることで、液体試料の飛散をほぼ完全に防止できる。さらに、形成された微小液滴の飛出し方向を規制する効果も生じることから、霧化された微小液滴の噴霧方向も安定する。噴霧方向は、振動板の振動方向に一致する。図1および図2では、上方(図2の矢印方向)に噴出する。 Also, by using the above-mentioned structure, it is possible to almost completely prevent the scattering of the liquid sample. Further, since the effect of restricting the ejection direction of the formed fine droplets is also produced, the spraying direction of the atomized fine droplets is also stable. The spraying direction coincides with the vibration direction of the diaphragm. In FIGS. 1 and 2, it is ejected upward (in the direction of the arrow in FIG. 2).
 図3は、加振振動部の構造の一例を示す図である。本実施例の試料加振振動部3は、図に示す3枚の薄板材で構成されている。図において、最も下側の薄板が振動板11、中央の薄板が流路板16、最も上側の薄板が多穴板12aである。この3枚の薄板を重ね接着することで、本発明の加振振動部は構成されている。3枚の薄板の接着方法としては、接着剤などを利用する方法も利用可能であるが、接着材の影響や接着強度などを考慮し、本実施例では、各薄板を重ねて高い圧力をかけながら高温にすることで、原子レベルでの各薄板を接着可能な拡散接合法により、接着一体化を行った。また、本実施例の板材の材質は、耐食性などを考慮しSUS316を用いた。使用する板材の材質や接着方法は、振動に対する物性とともに、使用する液体試料などを考慮して適切なものを選択することが必要である。 FIG. 3 is a diagram showing an example of the structure of the vibrating vibration unit. The sample vibration vibration unit 3 of this embodiment is composed of three thin plate materials shown in the figure. In the figure, the lowermost thin plate is the diaphragm 11, the central thin plate is the flow path plate 16, and the uppermost thin plate is the multi-hole plate 12a. The vibrating and vibrating portion of the present invention is configured by stacking and adhering these three thin plates. As a method of adhering three thin plates, a method using an adhesive or the like can also be used, but in consideration of the influence of the adhesive and the adhesive strength, in this embodiment, each thin plate is overlapped and a high pressure is applied. However, by using a diffusion bonding method that can bond each thin plate at the atomic level by raising the temperature to a high temperature, bonding integration was performed. Further, as the material of the plate material of this example, SUS316 was used in consideration of corrosion resistance and the like. It is necessary to select an appropriate material and bonding method for the plate material to be used in consideration of the physical properties against vibration and the liquid sample to be used.
 最も下側の振動板11は、下側を超音波振動拡大伝達部9の振動伝達液体と接触し、振動伝達液体を伝わってくる超音波振動10により加振される。振動板11は、振動伝達液体内を伝わってくる超音波振動10によって、振動することが要求されるため、柔軟性や弾性が要求される。本実施例では、振動板11のSUSの板厚を50μmと薄くし振動しやすいように配慮した。 The lowermost diaphragm 11 is in contact with the vibration transmission liquid of the ultrasonic vibration expansion transmission unit 9 on the lower side, and is vibrated by the ultrasonic vibration 10 transmitted through the vibration transmission liquid. Since the diaphragm 11 is required to vibrate by the ultrasonic vibration 10 transmitted in the vibration transmission liquid, flexibility and elasticity are required. In this embodiment, the thickness of the SUS of the diaphragm 11 is reduced to 50 μm to facilitate vibration.
 振動板11のうち加振される部分は、超音波振動が焦点を結ぶ部分である。振動焦点の位置及びその直径は、もちろん設計条件によるものである。本実施例では、組立精度などを考慮した場合でも、図中一点鎖線(直径数mm)の範囲内に入るように設計した。本実施例における振動焦点の直径は約1mmである。つまり、振動板11は、振動伝達液体を伝わってきた超音波振動によって、一点鎖線の中のいずれかの場所で、直径1mm程度領域が振動することになる。 The portion of the diaphragm 11 that is vibrated is the portion where the ultrasonic vibration is focused. The position of the vibrating focal point and its diameter are, of course, dependent on the design conditions. In this embodiment, it is designed so as to be within the range of the alternate long and short dash line (diameter several mm) in the figure even when the assembly accuracy is taken into consideration. The diameter of the vibration focal point in this embodiment is about 1 mm. That is, the diaphragm 11 vibrates in a region having a diameter of about 1 mm at any place in the alternate long and short dash line due to the ultrasonic vibration transmitted through the vibration transmission liquid.
 中央の流路板16は、図に示す形状の穴が設けられている。両端に位置する丸い部分19は、液体試料の供給用穴と排出用穴であり、それぞれ、試料供給管2および試料排出管5に接続されている。中央の大きな丸部分17は、振動板11が振動する可能性がある領域と一致している。液体試料の供給用穴と排出用穴を繋ぐ様に形成されているスリット部分18は、上下を振動板11と多穴板12aで挟まれることで、流路(図1の流路層13)を形成する。供給用穴から供給された液体試料2は、この流路を通して中央の大きな丸部分17に送られ、振動板の振動で微小液滴にされる。微小液滴ならず余った液体試料は、反対側の流路を通って排出用穴から排出するように構成されている。流路板の開口幅とともに厚さによって流路の断面積が決まることから、適切な板厚を選定することが必要である。取扱いやすさや流路断面積を考慮すると、一般には、数十から数百μm程度が適正である。本実施例では、100μmの板厚を用いた。 The central flow path plate 16 is provided with a hole having the shape shown in the figure. The round portions 19 located at both ends are a supply hole and a discharge hole for the liquid sample, and are connected to the sample supply pipe 2 and the sample discharge pipe 5, respectively. The large round portion 17 in the center coincides with the region where the diaphragm 11 may vibrate. The slit portion 18 formed so as to connect the supply hole and the discharge hole of the liquid sample is sandwiched between the diaphragm 11 and the multi-hole plate 12a at the top and bottom, so that the flow path (flow path layer 13 in FIG. 1) is formed. To form. The liquid sample 2 supplied from the supply hole is sent to the large round portion 17 in the center through this flow path, and is made into minute droplets by the vibration of the diaphragm. The excess liquid sample, which is not a minute droplet, is configured to be discharged from the discharge hole through the flow path on the opposite side. Since the cross-sectional area of the flow path is determined by the thickness as well as the opening width of the flow path plate, it is necessary to select an appropriate plate thickness. Considering the ease of handling and the cross-sectional area of the flow path, it is generally appropriate to use several tens to several hundreds of μm. In this example, a plate thickness of 100 μm was used.
 最も上側の多穴板12aには、両端に一対の丸穴15と中央部に多数の穴を形成した領域14を配置している。両端の丸穴15は、流路板16への液体試料の供給および排出穴であり、流路板16の両端に位置する丸い部分19と一致するように接着される。中央部に多数の穴を形成した領域14は、振動板1上の一点鎖線で示された振動する可能性がある領域と一致している。流路板16の中央の大きな丸部分17に供給された液体試料は、振動板11の振動で加振され、形成された微小な液滴は、多穴板12aの中央の穴を通して、放出される。 The uppermost multi-hole plate 12a has a pair of round holes 15 at both ends and a region 14 having a large number of holes formed in the center. The round holes 15 at both ends are holes for supplying and discharging the liquid sample to the flow path plate 16, and are adhered so as to coincide with the round portions 19 located at both ends of the flow path plate 16. The region 14 having a large number of holes formed in the central portion coincides with the region that may vibrate, which is indicated by the alternate long and short dash line on the diaphragm 1. The liquid sample supplied to the large round portion 17 in the center of the flow path plate 16 is vibrated by the vibration of the diaphragm 11, and the formed minute droplets are discharged through the central hole of the multi-hole plate 12a. To.
 流路での液流れを良くするとともに、多穴板12a部分で液膜を形成しやすくするために、流路内や多穴板(液膜形成部材)12aの液滴噴出用の穴14の内面は親水処理を施すことが望ましい。但し、多穴板(液膜形成手段)12aの外側表面は、汚染対策として撥水処理を実施することが望ましい。 In order to improve the liquid flow in the flow path and facilitate the formation of a liquid film in the multi-hole plate 12a portion, in the flow path or in the hole 14 for ejecting droplets of the multi-hole plate (liquid film forming member) 12a. It is desirable that the inner surface be treated with hydrophilicity. However, it is desirable that the outer surface of the multi-hole plate (liquid film forming means) 12a is treated with water repellent as a countermeasure against contamination.
 試料加振振動部3を、前記したような構成とすることで、少量の液体試料でも安定的に振動板上で液膜を形成可能となり、安定した微小液滴形成を実現することができる。 By configuring the sample vibration vibrating unit 3 as described above, it is possible to stably form a liquid film on the diaphragm even with a small amount of liquid sample, and it is possible to realize stable formation of fine droplets.
 図4は加振振振動部の構造の他の例を示す図である。開口部は必ずしも、図3や図4a)のように多数の円形の穴14(a)で構成される必要はなく、図4(b)や図4(c)のようなスリット状の開口穴14b,cや図4(d)のような変形形状や組合せ形状の開口穴14dでも同様の効果が期待できる。但し、振動板上に液膜を形成し飛散を防止するためには、適正な開口径や開口幅を選定することが必要である。図1から図3で説明した本発明の実施例における微小液滴形成装置1では、開口穴の直径を150μmとしている。実験によれば、水やアルコールの飛散を防止するための開口径や開口幅としては、1mm以下となったが、安定性を考慮すると数100μm以下にすることが必要であった。 FIG. 4 is a diagram showing another example of the structure of the vibrating vibration part. The opening does not necessarily have to be composed of a large number of circular holes 14 (a) as in FIGS. 3 and 4a), and is a slit-shaped opening hole as in FIGS. 4 (b) and 4 (c). Similar effects can be expected with the opening holes 14d having a deformed shape or a combination shape as shown in 14b and c and FIG. 4D. However, in order to form a liquid film on the diaphragm and prevent scattering, it is necessary to select an appropriate opening diameter and opening width. In the microdroplet forming apparatus 1 in the embodiment of the present invention described with reference to FIGS. 1 to 3, the diameter of the opening hole is set to 150 μm. According to the experiment, the opening diameter and opening width for preventing the scattering of water and alcohol were 1 mm or less, but it was necessary to make them several hundred μm or less in consideration of stability.
 また、振動板の振動焦点の位置を正確に位置決めできる場合は、焦点位置付近で流路21を広げる部分17の面積を少なくできる。焦点位置付近で流路21を広げる部分面積が小さいほど、少ない試料溶液の噴霧が可能になることは言うまでもない。もし、振動焦点を流路21上に完全に位置決めできる設計を行った場合は、図4(e)のような一本のスリット開口部や図4(f)のような一点の噴霧穴でも、同様の効果を得ることも可能となる。 Further, if the position of the vibration focus of the diaphragm can be accurately positioned, the area of the portion 17 that widens the flow path 21 near the focus position can be reduced. Needless to say, the smaller the partial area that widens the flow path 21 near the focal position, the smaller the sample solution can be sprayed. If the design is such that the vibration focus can be completely positioned on the flow path 21, even a single slit opening as shown in FIG. 4 (e) or a single spray hole as shown in FIG. 4 (f) can be used. It is also possible to obtain the same effect.
 図1から図4で説明した実施例では、振動板上に供給された液体試料の少なくとも一部を微小液滴にして霧化噴霧し、霧化していない液体試料については、試料排出管5に排出できる様に構成している。しかし、供給する液体試料の量に対して、振動板による加振力が十分大きくした場合、供給された試料液体のすべてを微小液滴として、霧化することも可能である。この場合、余剰液体試料の試料排出管5は不要となる。実際に、図1で示した本発明の実施例における微小液滴形成装置1でも、供給した試料液体2をすべて霧化し、試料排出管5に排出しないようにすることも可能であった。振動部に供給された試料液体をすべて霧化噴霧する場合は、本発明の微小液滴形成部の構造をより簡単にすることも可能である。 In the embodiment described with reference to FIGS. 1 to 4, at least a part of the liquid sample supplied on the vibrating plate is atomized and sprayed into fine droplets, and the unatomized liquid sample is placed in the sample discharge pipe 5. It is configured so that it can be discharged. However, when the vibrating force of the diaphragm is sufficiently large with respect to the amount of the supplied liquid sample, it is possible to atomize all of the supplied sample liquid as fine droplets. In this case, the sample discharge pipe 5 for the surplus liquid sample becomes unnecessary. In fact, even in the microdroplet forming apparatus 1 in the embodiment of the present invention shown in FIG. 1, it was possible to atomize all the supplied sample liquid 2 so as not to discharge it to the sample discharge pipe 5. When all the sample liquid supplied to the vibrating portion is atomized and sprayed, the structure of the microdroplet forming portion of the present invention can be simplified.
 図5は微小液滴形成部材の構造の他の実施例を示す図であり、振動部に供給された試料液体をすべて霧化噴霧する場合に利用可能な本発明の液膜形成手段12の他の実施例を説明する図である。図の構造は、試料液体の供給管22の先に小さな多穴板(液膜形成部材)12bを設けたものである。これを、振動板11の振動焦点位置上に近接配置するように構成する。供給管22から供給される試料液体は、多穴板(液膜形成部材)12bの下側に供給されるように構成されている。多穴板(液膜形成手段)12bの下側に供給された試料液体は、多穴板(液膜形成部材)12bと振動板11の間の微小なギャップ領域に毛細管現象で広がり液膜を形成する。そして振動板11の振動によって多穴板(液膜形成部材)12bに設けられた開口穴14から、微小液滴として噴出させることができる。 FIG. 5 is a diagram showing another embodiment of the structure of the microdroplet forming member, and is the other of the liquid film forming means 12 of the present invention that can be used when all the sample liquid supplied to the vibrating portion is atomized and sprayed. It is a figure explaining the Example of. In the structure shown in the figure, a small multi-hole plate (liquid film forming member) 12b is provided at the tip of the sample liquid supply pipe 22. This is configured to be placed close to the vibration focal position of the diaphragm 11. The sample liquid supplied from the supply pipe 22 is configured to be supplied to the lower side of the multi-hole plate (liquid film forming member) 12b. The sample liquid supplied to the lower side of the multi-hole plate (liquid film forming means) 12b spreads in the minute gap region between the multi-hole plate (liquid film forming member) 12b and the diaphragm 11 by a capillary phenomenon to form a liquid film. Form. Then, it can be ejected as minute droplets from the opening hole 14 provided in the multi-hole plate (liquid film forming member) 12b by the vibration of the diaphragm 11.
 もちろん、振動板11上に液膜を設ける多穴板(液膜形成部材)12bにおける開口穴14の形状は、図4で説明したように、円形の穴(図4(a))のほかにスリット状(図4(b)(c))やそれらの変形や組合せた各種形状(図4(d))を用いることも可能である。また、振動板の焦点位置の精度が高いほど、試料液体の供給管22の先に配置する多穴板などの液膜形成用部材12の面積は小さくすることが可能であり、少量の試料液体に対応することが可能となる。 Of course, the shape of the opening hole 14 in the multi-hole plate (liquid film forming member) 12b in which the liquid film is provided on the diaphragm 11 is in addition to the circular hole (FIG. 4A) as described with reference to FIG. It is also possible to use a slit shape (FIGS. 4 (b) and (c)) and various shapes obtained by deforming or combining them (FIG. 4 (d)). Further, the higher the accuracy of the focal position of the diaphragm, the smaller the area of the liquid film forming member 12 such as the multi-hole plate arranged at the tip of the sample liquid supply pipe 22, and the smaller the amount of sample liquid. It becomes possible to correspond to.
 振動板11に近接して多穴板などの液膜形成用部材12を配置する本発明の構造では、振動板11と多穴板などの液膜形成用部材12の間のギャップが、加振時の微小液滴の形成状態に影響を与える。特に、隙間が広く液膜が厚くなりすぎると微小液滴の形成効率が急激に低下する。このため、多穴板などの液膜形成用部材12と振動板11の間に形成する微小ギャップは、隙間が十分狭く安定であり、その隙間が一定であることが求められる。 In the structure of the present invention in which the liquid film forming member 12 such as a multi-hole plate is arranged close to the diaphragm 11, the gap between the vibrating plate 11 and the liquid film forming member 12 such as the multi-hole plate is vibrated. It affects the formation state of minute droplets at the time. In particular, if the gap is wide and the liquid film becomes too thick, the efficiency of forming fine droplets drops sharply. Therefore, it is required that the minute gap formed between the liquid film forming member 12 such as the multi-hole plate and the diaphragm 11 is sufficiently narrow and stable, and the gap is constant.
 図1から図4で説明した振動板11と液膜形成用の多穴板12aの場合、一体成型であるために、その間の隙間を一定することは容易である。しかし、図5の実施例のような試料液体の供給管22の先に小さな多穴板(液膜形成部材)12bを設けた構成で、振動板11と多穴板(液膜形成部材)12bの隙間を高精度に保持構造とすることは難しい。 In the case of the diaphragm 11 and the multi-hole plate 12a for forming a liquid film described with reference to FIGS. 1 to 4, it is easy to keep the gap between them constant because they are integrally molded. However, as in the embodiment of FIG. 5, a small multi-hole plate (liquid film forming member) 12b is provided at the tip of the sample liquid supply pipe 22, and the diaphragm 11 and the multi-hole plate (liquid film forming member) 12b are provided. It is difficult to make the gap between the two with high accuracy.
 そこで、図5の実施例のような試料液体の供給管22の先に小さな多穴板12bを設けた構成の場合、本実施例では、多穴板(液膜形成手段)12bが振動板11の上に置く様な構造(図示無)を採用した。置く構造とは、弱い圧力で多穴板(液膜形成手段)12bと振動板11が接触している状態である。このような構造は、前記隙間精度を保証する構造を設計する場合に比較して、簡単に実現可能である。また、多穴板(液膜形成手段)12bを振動板11に倣うように置く構造とすることで、振動板11と多穴板(液膜形成手段)12bの隙間を高精度に保持する構造も不要となる。この多穴板(液膜形成手段)12bが弱い力で振動板11の上に置く構造を用いれば、多穴板(液膜形成手段)12bと振動板11の間に試料液体を供給することによって、多穴板(液膜形成手段)12bと振動板11の間に、微小かつ均一な隙間を形成することを可能とする。 Therefore, in the case of a configuration in which a small multi-hole plate 12b is provided at the tip of the sample liquid supply pipe 22 as in the embodiment of FIG. 5, in this embodiment, the multi-hole plate (liquid film forming means) 12b is the diaphragm 11. We adopted a structure (not shown) that can be placed on top of it. The structure to be placed is a state in which the multi-hole plate (liquid film forming means) 12b and the diaphragm 11 are in contact with each other under a weak pressure. Such a structure can be easily realized as compared with the case of designing a structure that guarantees the clearance accuracy. Further, by arranging the multi-hole plate (liquid film forming means) 12b so as to imitate the diaphragm 11, the structure for maintaining the gap between the diaphragm 11 and the multi-hole plate (liquid film forming means) 12b with high accuracy. Is no longer necessary. If the structure in which the multi-hole plate (liquid film forming means) 12b is placed on the diaphragm 11 with a weak force is used, the sample liquid can be supplied between the multi-hole plate (liquid film forming means) 12b and the diaphragm 11. This makes it possible to form a minute and uniform gap between the multi-hole plate (liquid film forming means) 12b and the diaphragm 11.
 図6は微小液滴形成部材の液膜形成手段の他の実施例を示す図であり、振動板11上への液膜形成手段12の他の実施例を説明する図である。すでに説明したように、振動板上の供給された試料液体を、振動板11上で液膜にすることで、振動時の飛散を防止することが可能である。上記図5までの実施例では、穴やスリットを形成した薄板(液膜形成部材)12を振動板11上に配置する方法を開示した。振動板11上に液膜を形成する液膜形成手段12として、図6に示すような(a)フォーク状や(b)アンテナ状や(c)単純な棒状などの棒状部材23を、試料液体供給管22先端に取付け、振動板上に配置する構成でも、図5までの実施例で説明した薄板による液膜形成手段12と同様の効果が得られる。この方法は、棒状部材の濡れ性を利用して液膜を形成する方法であり、構成は極めて単純にすることができる。図5などで示した薄板上の液膜形成手段においても、試料液体に対する濡れ性は重要であるが、図6の棒状部材を利用した液膜形成体ではさらに重要となる。棒状部材23と振動板11との近接状態の確保の方法としては、図5の実施例で説明した弱い圧力で振動板に接触させる方法も利用することができる。 FIG. 6 is a diagram showing another embodiment of the liquid film forming means of the microdroplet forming member, and is a diagram illustrating another embodiment of the liquid film forming means 12 on the diaphragm 11. As described above, by forming the sample liquid supplied on the diaphragm into a liquid film on the diaphragm 11, it is possible to prevent scattering during vibration. In the examples up to FIG. 5, a method of arranging a thin plate (liquid film forming member) 12 having holes and slits formed on the diaphragm 11 is disclosed. As the liquid film forming means 12 for forming the liquid film on the diaphragm 11, a rod-shaped member 23 such as (a) fork-shaped, (b) antenna-shaped, or (c) simple rod-shaped as shown in FIG. 6 is used as a sample liquid. Even in a configuration in which the liquid film is attached to the tip of the supply pipe 22 and arranged on the diaphragm, the same effect as that of the liquid film forming means 12 using the thin plate described in the examples up to FIG. 5 can be obtained. This method is a method of forming a liquid film by utilizing the wettability of the rod-shaped member, and the configuration can be made extremely simple. The wettability to the sample liquid is also important in the liquid film forming means on the thin plate shown in FIG. 5 and the like, but it is even more important in the liquid film forming body using the rod-shaped member of FIG. As a method of ensuring the close contact state between the rod-shaped member 23 and the diaphragm 11, the method of bringing the rod-shaped member 23 into contact with the diaphragm with a weak pressure described in the embodiment of FIG. 5 can also be used.
 図7は本発明の微小液滴形成装置を用いた分析装置の一実施例を示す図であり、図8は本発明の微小液滴形成装置を用いた分析装置の他の実施例を示す図である。本発明の微小液滴形成装置を用いた分析装置の一実施例を説明する図である。図は、本発明の微小液滴形成装置を配置した液体クロマトグラフィ質量装置向けの一実施例である。以下に、実施例の構成を説明する。 FIG. 7 is a diagram showing an embodiment of an analyzer using the microdroplet forming apparatus of the present invention, and FIG. 8 is a diagram showing another embodiment of the analyzer using the microdroplet forming apparatus of the present invention. Is. It is a figure explaining one Example of the analyzer using the microdroplet forming apparatus of this invention. The figure is an example for a liquid chromatography mass apparatus in which the microdroplet forming apparatus of the present invention is arranged. The configuration of the embodiment will be described below.
 図7および図8は、分析装置として、液体クロマトグラフィ質量分析装置を示している。本発明の微小液滴形成装置1、微小液滴に電荷を付与して微小帯電液滴を生成する液滴帯電部(液滴帯電ユニット28)、微小帯電液滴を乾燥させイオン化するための乾燥部を有するイオン源(イオン生成ユニット33)と、イオン源で形成されたイオンを導入して、質量電荷比ごとに分離して検出する検出部(質量分析装置32)とを、備える。 7 and 8 show a liquid chromatography mass spectrometer as an analyzer. The microdroplet forming apparatus 1 of the present invention, a droplet charging unit (droplet charging unit 28) that applies a charge to microdroplets to generate microcharged droplets, and drying for drying and ionizing the microcharged droplets. It is provided with an ion source (ion generation unit 33) having a unit and a detection unit (mass spectrometer 32) that introduces ions formed by the ion source and separates and detects each mass-to-charge ratio.
 本発明の超音波振動を利用した微小液滴形成装置1には、超音波振動拡大伝達部9である液体を循環・冷却するための振動伝達液体供給管6と振動伝達液体排出管7や液体クロマトグラフィから供給される試料液体の供給管2と余った試料液体を排出する試料排出管5が接続され、超音波振動発生装置8を加振することで、液体クロマトグラフィから供給された試料液体を、微小液滴として噴霧する。微小液滴形成装置1の噴霧面の直上には、窒素供給ユニット26が配置されている。窒素供給ユニット26は窒素供給管24より窒素が供給されており、微小液滴形成装置1から噴霧される微小液滴4は、ほぼ大気圧の窒素で満たされた配管内に噴霧されるように構成されている。本発明の微小液滴形成装置1で生成された微小液滴4は、噴霧速度と窒素供給ユニット26から供給される窒素の流れにより、図中上方34に搬送される。
本発明の微小液滴形成装置1で生成された微小液滴の初期噴霧速度は、数m/s以下~数10m/s程度であり、供給する窒素量も流速が同程度となるとともに、管内がほぼ大気圧を保持できるように供給窒素量をコントロールしている。
In the microdroplet forming apparatus 1 using the ultrasonic vibration of the present invention, the vibration transmission liquid supply pipe 6 for circulating and cooling the liquid, which is the ultrasonic vibration expansion transmission unit 9, the vibration transmission liquid discharge pipe 7, and the liquid The sample liquid supplied from the liquid chromatography is squeezed by connecting the sample liquid supply tube 2 supplied from the chromatography and the sample discharge tube 5 to discharge the surplus sample liquid and vibrating the ultrasonic vibration generator 8. Spray as fine droplets. A nitrogen supply unit 26 is arranged directly above the spray surface of the microdroplet forming apparatus 1. Nitrogen is supplied to the nitrogen supply unit 26 from the nitrogen supply pipe 24, and the microdroplets 4 sprayed from the microdroplet forming device 1 are sprayed into a pipe filled with nitrogen at a substantially atmospheric pressure. It is configured. The microdroplets 4 generated by the microdroplet forming apparatus 1 of the present invention are conveyed to the upper 34 in the figure by the spray rate and the flow of nitrogen supplied from the nitrogen supply unit 26.
The initial spray rate of the minute droplets generated by the minute droplet forming apparatus 1 of the present invention is about several m / s or less to several tens of m / s, and the amount of nitrogen supplied is also the same as the flow velocity and in the pipe. Controls the amount of nitrogen supplied so that it can maintain almost atmospheric pressure.
 窒素供給ユニット26の上方には、液滴初期加熱ユニット27が接続されている。液滴初期加熱ユニット27は、壁面に配置された加熱ヒータ30で微小液滴を加熱し、微小液滴の溶媒を気化除去する。本実施例において、微小液滴の誘導管内を窒素で満たしているのは、加熱ヒータなどによる微小液滴の加熱時に、燃焼が生じるのを防止するためである。つまり、窒素以外の不活性ガスなどの燃焼を防止することが可能な気体を使用しても良い。 A droplet initial heating unit 27 is connected above the nitrogen supply unit 26. The droplet initial heating unit 27 heats the minute droplets with the heating heater 30 arranged on the wall surface, and vaporizes and removes the solvent of the minute droplets. In this embodiment, the inside of the induction tube of the minute droplets is filled with nitrogen in order to prevent combustion from occurring when the minute droplets are heated by a heater or the like. That is, a gas that can prevent combustion, such as an inert gas other than nitrogen, may be used.
 液滴初期加熱ユニット27の上方には、液滴帯電ユニット28が接続されており、イオン生成ユニット33で生成した正イオンもしくは電子を試料液滴に付与するように構成されている。イオン生成ユニット33としては、一般的なコロナ放電器などを使用することができる。 A droplet charging unit 28 is connected above the droplet initial heating unit 27, and is configured to impart positive ions or electrons generated by the ion generation unit 33 to the sample droplets. As the ion generation unit 33, a general corona discharger or the like can be used.
 液滴帯電ユニット28の上方には、液滴加速ユニット29が構成されている。液滴加速ユニット29は、配管の直径を徐々に狭くすることで、試料液体の速度を加速する。本実施例の装置構成では、窒素供給ユニット26から初期加熱ユニット27を経て、液滴帯電ユニット28までの管径は、直径約25mmとした。液滴加速ユニット29では、直径約25mmの管径が、直径500μm緩やかに狭くなる。つまり液滴加速ユニット29部の入口と出口部の配管断面積比は2500:1である。これによって、数m/s~数10m/s程度の速度で送られてきた試料液滴は、一気に音速以上まで加速する。 A droplet acceleration unit 29 is configured above the droplet charging unit 28. The droplet acceleration unit 29 accelerates the velocity of the sample liquid by gradually reducing the diameter of the pipe. In the apparatus configuration of this embodiment, the tube diameter from the nitrogen supply unit 26 to the droplet charging unit 28 via the initial heating unit 27 is set to a diameter of about 25 mm. In the droplet acceleration unit 29, the tube diameter of about 25 mm in diameter is gradually narrowed by 500 μm in diameter. That is, the pipe cross-sectional area ratio between the inlet and the outlet of the droplet acceleration unit 29 is 2500: 1. As a result, the sample droplets sent at a speed of several m / s to several tens of m / s accelerate to the speed of sound or higher at once.
 液滴加速ユニット29の上方には、質量分析装置32への分析装置接続ユニット31が配置されている。分析装置接続ユニット31は、直径500μmの細長い細管で、液滴加速ユニット29と質量分析装置32を接続することで、大気圧の噴霧配管部と内部がほぼ真空圧の質量分析装置32の圧力勾配を吸収保持できるように構成している。 Above the droplet acceleration unit 29, an analyzer connection unit 31 to the mass spectrometer 32 is arranged. The analyzer connection unit 31 is an elongated thin tube having a diameter of 500 μm, and by connecting the droplet acceleration unit 29 and the mass spectrometer 32, the pressure gradient of the mass spectrometer 32 having an atmospheric pressure spray pipe and a vacuum pressure inside. Is configured to absorb and hold.
 液滴加速ユニット29および分析装置接続ユニット31の配管部にも加熱ヒータ30が設置され、搬送中の試料液滴を加熱し溶媒を除去するように構成される。液滴帯電ユニット28で電荷を付与された試料液滴は、液滴加速ユニット29および分析装置接続ユニット31部で溶媒が除去され、試料液体に含まれる試料成分がイオン化し、質量分析装置32へ供給される。質量分析装置32では、供給された試料イオンを質量ごとに分離し、試料に含まれる成分素性の同定が行われる。 A heating heater 30 is also installed in the piping portion of the droplet acceleration unit 29 and the analyzer connection unit 31, and is configured to heat the sample droplets being transported and remove the solvent. For the sample droplets charged by the droplet charging unit 28, the solvent is removed by the droplet acceleration unit 29 and the analyzer connecting unit 31, and the sample components contained in the sample liquid are ionized to the mass analyzer 32. Will be supplied. In the mass spectrometer 32, the supplied sample ions are separated by mass, and the component features contained in the sample are identified.
 前記した液滴初期加熱ユニット27で加熱して、概ね溶媒を除去した試料液滴に、液滴帯電ユニット28で電荷を付与する手法は、現在の液体クロマトグラフィ質量分析法において大気圧イオン化法(APCI:Atmospheric Pressure Chemical Ionization)と呼ばれる方法に相当する。現在の液体クロマトグラフィ質量分析法では、大気圧イオン化法のほかに、エレクトロスプレーイオン化法(ESI:Electrospray Ionization)という方法が広く知られており、分析する試料の極性の強さなどに合わせて選定されるのが一般的である。現在の液体クロマトグラフィ質量分析法におけるは、エレクトロスプレーイオン化法では、超高速エアースプレー法を用いて試料液体からを微小液体にする際、エアースプレーのノズルに電圧を印加することで、ノズル先端に電界を生じさせ、その電界中で試料液体を微小液滴に引きちぎることで、引きちぎられた液体に電荷を付与する方法である。 The method of applying a charge to the sample droplets from which the solvent has been largely removed by heating with the droplet initial heating unit 27 is the atmospheric pressure ionization method (APCI) in the current liquid chromatography mass spectrometry method. : Atmospheric Pressure Chemical Ionization) corresponds to the method. In the current liquid chromatography mass spectrometry method, in addition to the atmospheric pressure ionization method, an electrospray ionization (ESI) method is widely known, and it is selected according to the strength of the polarity of the sample to be analyzed. Is common. In the current liquid chromatography mass analysis method, in the electrospray ionization method, when the sample liquid is made into a minute liquid by using the ultra-high speed air spray method, a voltage is applied to the nozzle of the air spray to apply an electric charge to the nozzle tip. Is a method of applying an electric charge to the torn liquid by causing the sample liquid to be torn into minute droplets in the electric field.
 本発明の微小液滴形成装置を用いた場合も、エレクトロスプレーイオン化法に相当する方法で、液滴に電荷を与えることも可能である。エレクトロスプレーイオン化法に相当する方法で、液滴に電荷を与えるためには、試料液体が液滴に分離される領域に電界を生じさせることが必要である。これを実現するために、振動板11もしくは多穴板などの液膜形成手段12のいずれか一方を、導電性部材で構成することが必要である。先の実施例でも、振動板11や液膜形成手段12の材質として導電性のSUS316を用いているために、これに数kV~10kV程度の高電圧を印加することで、形成される液滴に電荷を付与することが可能である。形成される液滴に付与される電荷量は、付与する電圧レベルに比例するとともに、極性は付与する電圧の極性に一致する。液滴形成部に生じる電荷量は電界の強さの影響を受けることから、振動板11や液膜形成手段12に付与する電圧とともに、対向電極となる電極の位置などが重要である。図7の実施例構成では、窒素供給ユニット26の窒素噴霧口のメッシュ板を金属製とするとともに、設置電位とすることで、電圧を付与した振動板11や液膜形成手段12の対向電極として機能させた。 Even when the microdroplet forming apparatus of the present invention is used, it is possible to charge the droplets by a method corresponding to the electrospray ionization method. In order to charge the droplets by a method equivalent to the electrospray ionization method, it is necessary to generate an electric field in the region where the sample liquid is separated into the droplets. In order to realize this, it is necessary to configure either one of the liquid film forming means 12 such as the diaphragm 11 or the multi-hole plate with a conductive member. Also in the previous embodiment, since the conductive SUS316 is used as the material of the diaphragm 11 and the liquid film forming means 12, the droplets formed by applying a high voltage of about several kV to 10 kV to the conductive SUS316 are used. It is possible to add a charge to. The amount of charge applied to the formed droplets is proportional to the applied voltage level, and the polarity matches the polarity of the applied voltage. Since the amount of electric charge generated in the droplet forming portion is affected by the strength of the electric field, the position of the electrode serving as the counter electrode is important as well as the voltage applied to the diaphragm 11 and the liquid film forming means 12. In the configuration of the embodiment of FIG. 7, the mesh plate of the nitrogen spray port of the nitrogen supply unit 26 is made of metal, and by setting the installation potential, the diaphragm 11 to which a voltage is applied and the counter electrode of the liquid film forming means 12 are used. Made it work.
 次に、本発明の微小液滴形成装置の振動板11や液膜形成手段12に高電圧を印加する方法の一実施例について説明する。図1を用いて、先に説明した本発明の実施例では、振動伝達液体として純水を使用している。純水は導電性を有するために、振動伝達液体と接触する振動板11と振動伝達液体9に超音波振動を与える超音波加振手段である圧電素子は、電気的に接続された状態である。 Next, an embodiment of a method of applying a high voltage to the diaphragm 11 and the liquid film forming means 12 of the microdroplet forming apparatus of the present invention will be described. In the embodiment of the present invention described above with reference to FIG. 1, pure water is used as the vibration transmission liquid. Since pure water has conductivity, the diaphragm 11 that comes into contact with the vibration transmission liquid and the piezoelectric element that is an ultrasonic vibration means for applying ultrasonic vibration to the vibration transmission liquid 9 are in a state of being electrically connected. ..
 そこで、本実施例の微小液滴形成装置の圧電素子の駆動波形を発生させる駆動回路(図示無)のベース電位に、高電圧を重畳させる構成とした。このようにすることで、圧電素子が高電圧をベース電圧として駆動される。これによって、振動伝達液体9である純水を通して、振動板11や液膜形成手段12も高電圧となる。本実施例の圧電素子の駆動回路構造を用いた場合、圧電素子の駆動波形を発生させる駆動回路のベース電位の電圧や極性を可変にすることで、形成される液滴に付与される電荷量や極性を、自由に制御することが可能となる。 Therefore, a high voltage is superimposed on the base potential of the drive circuit (not shown) that generates the drive waveform of the piezoelectric element of the microdroplet forming apparatus of this embodiment. By doing so, the piezoelectric element is driven with a high voltage as a base voltage. As a result, the diaphragm 11 and the liquid film forming means 12 also have a high voltage through the pure water which is the vibration transmitting liquid 9. When the drive circuit structure of the piezoelectric element of this embodiment is used, the amount of electric charge given to the formed droplets by varying the voltage and polarity of the base potential of the drive circuit that generates the drive waveform of the piezoelectric element. And the polarity can be freely controlled.
 上記実施例では、振動伝達液体として導電性を有する純水を用いていることから、圧電素子の駆動波形を発生させる駆動回路のベース電位に、高電圧を重畳させる構成としている。しかし、この方法は駆動回路が複雑になるとともに、高電圧が印加される部分が多く、循環される純水自身も高電圧が付与されることから、絶縁性の確保や安全性点から、必ずしも好ましい高電圧印加方式とは言い難い。形成される液滴に電荷量を付与する方法として、以下の他の実施例も考えられる。 In the above embodiment, since pure water having conductivity is used as the vibration transmission liquid, a high voltage is superimposed on the base potential of the drive circuit that generates the drive waveform of the piezoelectric element. However, in this method, the drive circuit becomes complicated, there are many parts where a high voltage is applied, and the circulated pure water itself is also given a high voltage. Therefore, from the viewpoint of ensuring insulation and safety, it is not always necessary. It is hard to say that it is a preferable high voltage application method. The following other examples are also conceivable as a method of imparting an amount of electric charge to the formed droplets.
 振動伝達液体として絶縁性液体を使用するとともに、振動板11や液膜形成手段12の保持部分を絶縁性にすることで、高電圧を付与する部位は、振動板11や液膜形成手段12に限定できることから、安全性を確保しやすくなる。加えて、前記した圧電素子の駆動回路の高電圧のベース電源を重畳させる方式に比較して、圧電素子の駆動回路が非常に簡単なものにすることができる。 By using an insulating liquid as the vibration transmission liquid and making the holding portion of the diaphragm 11 and the liquid film forming means 12 insulating, the portion to which a high voltage is applied is the diaphragm 11 and the liquid film forming means 12. Since it can be limited, it becomes easier to ensure safety. In addition, the drive circuit of the piezoelectric element can be made very simple as compared with the method of superimposing the high voltage base power supply of the drive circuit of the piezoelectric element.
 絶縁性液体としては、変圧器などで使用される各種絶縁油をはじめとするいくつかのものが知られている。しかし、超音波振動の伝達特性が水とは大きく異なり、特性に合わせた設計を行うことが必要がある。また、圧電素子の冷却媒体としての機能や安全性,取扱いやすさなどを考慮して選定することが必要である。本発明の実施例中で、振動伝達液体として純水を選定したのは、安全性と取扱いやすさによるものである。 Several insulating liquids are known, including various insulating oils used in transformers and the like. However, the transmission characteristics of ultrasonic vibration are significantly different from those of water, and it is necessary to design according to the characteristics. In addition, it is necessary to select the piezoelectric element in consideration of its function as a cooling medium, safety, and ease of handling. Pure water was selected as the vibration transmission liquid in the examples of the present invention because of its safety and ease of handling.
 本発明の微小液滴形成装置を液体クロマトグラフィ質量分析装置向けなどに使用する場合、配慮するべき重要項目としてコンタミネーションの防止がある。以下に、本発明ならびに実施例におけるコンタミネーションの防止策について説明する。液体クロマトグラフィ質量分析装置では、質量分析装置で分析する試料液体が、液体クロマトグラフィから、順々に送られてくる。送られてくる試料液体の量や速度の一例ではあるが、各試料液体の液量として数100μLから数10μL程度であり、送られてくる速度としては数100μ/min程度である。つまり、数秒から1分程度で次々に異なる試料液体が送られてきて、それを連続的に微小液滴化し、分析装置に送ることが求められる。その間、連続して次々と送られてくる試料液体間のコンタミネーションを防止することが、正確な分析を実施するうえで、非常に重要となる。 When the microdroplet forming apparatus of the present invention is used for a liquid chromatography mass spectrometer, etc., prevention of contamination is an important item to be considered. Hereinafter, measures for preventing contamination in the present invention and examples will be described. In the liquid chromatography mass spectrometer, the sample liquid to be analyzed by the mass spectrometer is sequentially sent from the liquid chromatography. Although it is an example of the amount and speed of the sample liquid to be sent, the liquid amount of each sample liquid is about several hundred μL to several tens of μL, and the speed of being sent is about several 100 μ / min. That is, it is required that different sample liquids are sent one after another within a few seconds to one minute, and the sample liquids are continuously made into fine droplets and sent to the analyzer. During that time, it is very important to prevent contamination between the sample liquids that are continuously sent one after another in order to carry out accurate analysis.
 図1で示した本発明の一実施例でも、いくつかのコンタミネーションの防止を配慮した構造有している。以下に、それらについて説明する。 Even one embodiment of the present invention shown in FIG. 1 has a structure in consideration of prevention of some contamination. These will be described below.
 図1で示した本発明の一実施例では、液体クロマトグラフィからの試料液体の供給管2とともに試料排出管5を設けることで、微小液滴にできなかった余った試料液体を排出管側に送り出す構成とした。また、図2や図3で開示したように薄板を重合わせて流路を形成することで、極めて細い流路で試料液体を供給することで、コンタミネーションを防止する構造としている。しかし、図3で示した流路構造では、超音波振動の焦点位置との位置合わせの観点から、流路が広がった領域17を設けているが、コンタミネーションを防止する上では、超音波振動の焦点位置の設計制度を高め、流路の広がりを最小限にすることが重要である。また、図3b)の流路板16の厚さを薄くすることで、流路の断面積を小さくすることも、コンタミネーションを防止する上では重要となる。 In one embodiment of the present invention shown in FIG. 1, by providing the sample discharge tube 5 together with the sample liquid supply tube 2 from liquid chromatography, the surplus sample liquid that could not be made into fine droplets is sent out to the discharge tube side. It was configured. Further, as disclosed in FIGS. 2 and 3, thin plates are overlapped to form a flow path, so that the sample liquid is supplied through an extremely narrow flow path to prevent contamination. However, in the flow path structure shown in FIG. 3, a region 17 in which the flow path is widened is provided from the viewpoint of alignment with the focal position of ultrasonic vibration, but in order to prevent contamination, ultrasonic vibration is provided. It is important to improve the design system of the focal position and minimize the spread of the flow path. Further, it is also important to reduce the cross-sectional area of the flow path by reducing the thickness of the flow path plate 16 in FIG. 3b) in order to prevent contamination.
 さらに、供給される試料液体の量に対して十分に余裕を持った加振を行うことで、供給した液体をすべてを、余裕をもって微小液体として霧化排出可能な条件にすることもコンタミネーション防止の上では重要である。供給した試料液体を完全に霧化可能な条件を実現できる場合は、試料排出管5は不要となる。 Furthermore, it is also possible to prevent contamination by vibrating the supplied sample liquid with sufficient margin so that all the supplied liquid can be atomized and discharged as fine liquid with a margin. It is important on the above. If the conditions under which the supplied sample liquid can be completely atomized can be realized, the sample discharge pipe 5 becomes unnecessary.
 連続して送られてくる試料液体間のコンタミネーションを防止する他の方法としては、送られる試料の間に既知の気体や液体をバッファとして挟む方法を用いても良い。既知の気体や液体をバッファとして挟むことで、配管や霧化する部分での知れよう液体間のコンタミを防止しやすくなり、流路などに対する寸法的な制約が緩和される。但し、この方法は、バッファ領域として用いる気体や液体の分だけ、分析の効率が低下とともに、バッファ液として使用する気体や液体を消費するなどの課題を有する。 As another method for preventing contamination between continuously sent sample liquids, a method of sandwiching a known gas or liquid as a buffer between the sent samples may be used. By sandwiching a known gas or liquid as a buffer, it becomes easy to prevent contamination between liquids as known in pipes and atomized parts, and dimensional restrictions on the flow path and the like are relaxed. However, this method has problems that the efficiency of analysis is lowered by the amount of the gas or liquid used as the buffer region, and the gas or liquid used as the buffer liquid is consumed.
 コンタミネーションを防止する他の方法としては、配管や噴霧領域の洗浄プロセスを設ける方法もある。予め定めた規定の分析回数や分析時間など毎に、供給管や振動部分などを洗浄するシーケンスを組込む方法である。洗浄シーケンスは、装置の起動動作時や停止動作時に行うようにすれば、分析効率を抑制できる。必要に応じて、洗浄シーケンスを動作させる方法も考えられる。 As another method to prevent contamination, there is also a method of providing a cleaning process for piping and spray areas. This is a method of incorporating a sequence for cleaning the supply pipe, the vibrating part, etc. for each predetermined number of analyzes and analysis time. If the cleaning sequence is performed when the device is started or stopped, the analysis efficiency can be suppressed. If necessary, a method of operating the washing sequence is also conceivable.
 前記、供給される試料液体間にバッファ領域として用いる気体や液体を挟み込み対策と含め、コンタミネーションの発生リスクと分析効率への影響を考慮し、洗浄タイミングや対策のレベルを決めることが必要である。 It is necessary to determine the cleaning timing and the level of countermeasures in consideration of the risk of contamination and the effect on analysis efficiency, including the measures against sandwiching the gas or liquid used as a buffer area between the supplied sample liquids. ..
 本実施例の配管や噴霧領域の洗浄方法として、簡便な方法は、分析する試料液体に替えて既知の洗浄液を投入し、超音波振動を付与する方法である。超音波振動は配管などの洗浄するを効果が期待できる。 As a method for cleaning the piping and the spray region of this embodiment, a simple method is to add a known cleaning liquid instead of the sample liquid to be analyzed and apply ultrasonic vibration. Ultrasonic vibration can be expected to be effective in cleaning pipes and the like.
 また、図3で示した薄板を積層して、振動板11と流路板16と多穴板12を一体構造とした構成比比較して、図5や図6で示した供給配管22の先端に液膜形成のための多穴板12bや棒状部材23を配置した構成は構成が簡略であり、分解や洗浄が容易な構造である。もちろん、先端に液膜形成を有す供給配管22ごと、定期的に交換することも汚染対策としては有効である。 Further, the tip of the supply pipe 22 shown in FIGS. 5 and 6 is compared by laminating the thin plates shown in FIG. 3 and comparing the composition ratio in which the diaphragm 11, the flow path plate 16 and the multi-hole plate 12 are integrated. The structure in which the multi-hole plate 12b for forming the liquid film and the rod-shaped member 23 are arranged is a simple structure and easy to disassemble and clean. Of course, it is also effective as a pollution control measure to periodically replace each supply pipe 22 having a liquid film formation at the tip.
 図1から図3を用いて説明した振動板11と流路板16と多穴板12の一体構造体の実施例の場合も、汚染とともに、細い配管内などのつまりなどが生じるリスクがある。これに対処方法として、振動板11と流路板16と多穴板12の一体構造体の試料加振振動部3も、交換しやすい構造にしておくことが望ましい。さらに、これらの汚染やつまりの生じやすい部品の交換周期などを規定して運用する方法も、本発明の微小液機形成手段におけるコンタミネーション防止策としては有効である。 Also in the case of the embodiment of the integrated structure of the diaphragm 11, the flow path plate 16, and the multi-hole plate 12 described with reference to FIGS. 1 to 3, there is a risk that clogging in a thin pipe or the like may occur along with contamination. As a countermeasure against this, it is desirable that the sample vibration vibration unit 3 of the integrated structure of the diaphragm 11, the flow path plate 16 and the multi-hole plate 12 also has a structure that is easy to replace. Further, a method of defining and operating the replacement cycle of parts that are prone to contamination or clogging is also effective as a contamination prevention measure in the microliquid machine forming means of the present invention.
 図7の実施例において、微小液滴形成後の試料液滴が分析装置に搬送されるまでの配管内の汚染については、配管経路内の各部に加熱ヒータ30を配置しており、配管壁面が高温になっていることから、付着した試料成分は熱により分解する。これによって、図7に示した本発明の微小液滴形成装置を適用した分析装置における実施例では、微小液滴形成装置から分析装置間の試料液滴の搬送・処理路内でのコンタミネーションについては、ほとんど問題にはならないように配慮した。 In the embodiment of FIG. 7, regarding the contamination in the pipe until the sample droplet after the formation of the fine droplet is conveyed to the analyzer, the heater 30 is arranged in each part in the pipe path, and the pipe wall surface is covered. Due to the high temperature, the attached sample components are decomposed by heat. As a result, in the embodiment of the analyzer to which the microdroplet forming apparatus of the present invention shown in FIG. 7 is applied, the contamination in the transport / processing path of the sample droplet between the microdroplet forming apparatus and the analyzer is described. Careed so that it would hardly be a problem.
 図7で説明した実施例では、本発明の液滴形成装置1を下側に配置し、上方に向かって形成した液滴を噴霧する構成例を示した。しかし、本発明の微小液滴形成装置1の噴霧方向は、重力方向の影響をほとんど受けない。図8は、本発明の微小液滴形成装置1を上下逆さまに配置し、下側に向かって微小液滴を噴霧する構成としたときの質量分析装置までの配置構成の一実施例である。 In the embodiment described with reference to FIG. 7, a configuration example is shown in which the droplet forming apparatus 1 of the present invention is arranged on the lower side and the droplets formed upward are sprayed. However, the spraying direction of the microdroplet forming apparatus 1 of the present invention is hardly affected by the gravitational direction. FIG. 8 is an example of an arrangement configuration up to the mass spectrometer when the microdroplet forming apparatus 1 of the present invention is arranged upside down and the microdroplets are sprayed downward.
 現在、液体クロマトグラフィ質量分析装置で広く使用されている高速エアースプレーによる微小液滴形成方式では、供給された試料液滴に非常に高速の空気流を与えることで、微小液滴を生成することから、生成された液滴の飛翔速度が非常に速く、音速に達するものもある。しかしながら、本発明の微小液滴形成手段で、噴出される微小液滴の飛翔速度は、数m/s以下~数10m/s程度と非常に遅い。このため、緩やかな気流を用いて、形成された液滴の飛翔方向をコントロールすることが可能である。 Currently, the microdroplet formation method using high-speed air spray, which is widely used in liquid chromatography mass analyzers, produces microdroplets by applying a very high-speed air flow to the supplied sample droplets. , The flying speed of the generated droplets is very fast, and some of them reach the speed of sound. However, the flying speed of the fine droplets ejected by the fine droplet forming means of the present invention is very slow, ranging from several m / s or less to several tens of m / s. Therefore, it is possible to control the flight direction of the formed droplets by using a gentle air flow.
 図8の実施例構成では、本発明の微小液滴形成装置から噴霧された微小液滴に、側面から窒素流を与えるように構成されている。噴霧された微小液滴は非常に軽いために、数m/s~数10m/s程度の気流を使って、飛翔方向を十分にコントロールすることが可能である。水平方向に飛翔方向を変更された微小液滴は、図7と同じく、液滴初期加熱ユニット27、液滴帯電ユニット28、液滴加速ユニット29、分析装置接続ユニット31を通って、質量分析装置32に導かれる。 In the configuration of the embodiment of FIG. 8, the microdroplets sprayed from the microdroplet forming apparatus of the present invention are configured to give a nitrogen flow from the side surface. Since the sprayed minute droplets are very light, it is possible to sufficiently control the flight direction by using an air flow of about several m / s to several tens of m / s. As in FIG. 7, the minute droplet whose flight direction is changed in the horizontal direction passes through the droplet initial heating unit 27, the droplet charging unit 28, the droplet acceleration unit 29, and the analyzer connection unit 31, and is a mass analyzer. Guided to 32.
 図8の様に、本発明の微小液滴形成手段を上下逆さまに配置すると、万一霧化時に大きな飛散液滴などが生じても、微小液滴形成装置1の墳霧表面に落下することはない。また、洗浄などで微小液滴形成装置の多穴板から洗浄液を噴出させても窒素流を停止させることで、重力方向に排出することが可能となる。図の実施例では、微小液滴形成装置の噴出方向直下に配水管35を向けており、本発明の微小液滴形成装置から落下する大きな液滴や洗浄液を回収できるように構成している。このような構成にすることで、前記した本発明の微小液滴形成部でのコンタミネーションのリスクを、さらに低減できるとともに、洗浄処理なども容易にすることが可能となる。 As shown in FIG. 8, when the microdroplet forming means of the present invention is arranged upside down, even if a large scattered droplet or the like is generated at the time of atomization, it falls on the mist surface of the microdroplet forming apparatus 1. There is no. Further, even if the cleaning liquid is ejected from the multi-hole plate of the microdroplet forming device for cleaning or the like, the nitrogen flow can be stopped so that the cleaning liquid can be discharged in the direction of gravity. In the embodiment shown in the figure, the water distribution pipe 35 is directed directly below the ejection direction of the microdroplet forming apparatus, and is configured to be able to collect large droplets and cleaning liquid falling from the microdroplet forming apparatus of the present invention. With such a configuration, the risk of contamination in the fine droplet forming portion of the present invention can be further reduced, and the cleaning process can be facilitated.
 図8の実施例で説明したように、本発明の微小液滴形成装置1では、微小液滴を自由な方向に噴霧できるとともに、噴霧後の液滴を比較的緩やかな気流で自由にコントロールできることから、分析装置への接続する様々な装置構成に対応することが可能である。 As described in the examples of FIG. 8, in the microdroplet forming apparatus 1 of the present invention, the microdroplets can be sprayed in any direction, and the sprayed droplets can be freely controlled by a relatively gentle air flow. Therefore, it is possible to correspond to various device configurations connected to the analyzer.
 以上説明したように、本発明の微小液滴形成装置を用いることで、簡単な構造で、少量の試料液体を、安定的に数μmの微小液滴にすることが可能であることが示された。また、形成した微小液滴への帯電付与も可能であることから、クロマトグラフィ質量分析装置向けのイオン源としても使用することが可能である。さらに、本発明の微小液滴形成装置は、様々な方向に微小液滴を噴霧可能であるとともに、気流を利用して容易に搬送方向をコントロールできるために、液体試料を微小液滴にすることが必要な様々な分析装置にも適用することが可能である。 As described above, it has been shown that by using the microdroplet forming apparatus of the present invention, it is possible to stably convert a small amount of sample liquid into microdroplets of several μm with a simple structure. rice field. Further, since it is possible to apply a charge to the formed minute droplets, it can also be used as an ion source for a chromatographic mass spectrometer. Further, the microdroplet forming apparatus of the present invention can spray the microdroplets in various directions and can easily control the transport direction by using the air flow, so that the liquid sample is made into microdroplets. It can also be applied to various analyzers that require.
 なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。
上記した実施例は本発明を分かりやすく説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることも可能であり、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることも可能である。
The present invention is not limited to the above-described embodiment, and includes various modifications.
The above-described embodiment describes the present invention in an easy-to-understand manner, and is not necessarily limited to the one having all the configurations described. Further, it is possible to replace a part of the configuration of one embodiment with the configuration of another embodiment, and it is also possible to add the configuration of another embodiment to the configuration of one embodiment. It is also possible to add / delete / replace a part of the configuration of each embodiment with another configuration.
 1…微小液滴形成装置、2…試料供給管、3…試料加振振動部、4…微小液滴、5…試料排出管、6…振動伝達液体供給管、7…振動伝達液体排出管、8…超音波振動発生装置(圧電素子)、9…超音波振動拡大伝達部、10…超音波振動、11…振動板、12…液膜形成部材(多穴板)、13…流路層、14…穴部、15…丸穴、16…流路板、17…流路板の中央開口部、18…流路板のスリット流路、19…丸い部分、20…振動焦点が形成される可能性のある領域、21…液膜形成手段の下側の流路、22…試料液体供給管、23…棒状部材(液膜形成手段)、24…(窒素)気流導入口、25…分析装置へ導入される試料イオン、26…窒素供給ユニット、27…液滴初期加熱ユニット、28…液滴帯電ユニット、29…液滴加速ユニット、30…加熱ヒータ、31…分析装置接続ユニット、32…質量分析装置、33…イオン生成ユニット、34…霧化された液滴の搬送方向、35…配水管。 1 ... Microdroplet forming device, 2 ... Sample supply pipe, 3 ... Sample vibration vibration unit, 4 ... Microdroplet, 5 ... Sample discharge pipe, 6 ... Vibration transmission liquid supply pipe, 7 ... Vibration transmission liquid discharge pipe, 8 ... Ultrasonic vibration generator (piezoelectric element), 9 ... Ultrasonic vibration expansion transmission unit, 10 ... Ultrasonic vibration, 11 ... Vibrating plate, 12 ... Liquid film forming member (multi-hole plate), 13 ... Channel layer, 14 ... hole part, 15 ... round hole, 16 ... flow path plate, 17 ... flow path plate central opening, 18 ... flow path plate slit flow path, 19 ... round part, 20 ... vibration focus can be formed. Region, 21 ... lower flow path of liquid film forming means, 22 ... sample liquid supply pipe, 23 ... rod-shaped member (liquid film forming means), 24 ... (nitrogen) airflow inlet, 25 ... to analyzer Sample ion to be introduced, 26 ... Nitrogen supply unit, 27 ... Droplet initial heating unit, 28 ... Droplet charging unit, 29 ... Droplet acceleration unit, 30 ... Heating heater, 31 ... Analyzer connection unit, 32 ... Mass analysis Equipment, 33 ... ion generation unit, 34 ... transport direction of atomized droplets, 35 ... water distribution pipe.

Claims (11)

  1.  超音波振動を発生する超音波振動発生部と、
     前記超音波振動発生部で発生した超音波振動を拡大しながら伝達する超音波振動伝達拡大部と、
     前記超音波振動伝達拡大部で拡大された超音波振動で液体試料を加振し、前記液体試料の微小液滴を形成する試料加振振動部と、
     前記試料加振振動部に前記液体試料を連続的に供給する試料供給部と、を備え、
     前記試料加振振動部の加振振動面に、前記試料供給部から供給された液体試料を液膜状に保持可能な液膜形成部材が設けられていることを特徴とする微小液滴形成装置。
    The ultrasonic vibration generator that generates ultrasonic vibration and the ultrasonic vibration generator
    An ultrasonic vibration transmission expansion unit that transmits the ultrasonic vibration generated in the ultrasonic vibration generation unit while expanding it, and an ultrasonic vibration transmission expansion unit.
    A sample vibration vibration unit that vibrates a liquid sample with ultrasonic vibration enlarged by the ultrasonic vibration transmission expansion unit to form minute droplets of the liquid sample, and a sample vibration vibration unit.
    The sample vibration and vibration unit is provided with a sample supply unit that continuously supplies the liquid sample.
    A microdroplet forming apparatus characterized in that a liquid film forming member capable of holding a liquid sample supplied from the sample supply unit in the form of a liquid film is provided on the vibrating surface of the sample vibrating unit. ..
  2.  前記液膜形成部材は、前記加振振動面に対して所定の距離の間隙を設けて平行配置された複数の棒状または扁平状の部材からなり、前記加振振動面の振動方向であり、前記加振振動面に垂直な方向に少なくとも1つ以上の開口部を有することを特徴とする請求項1に記載の微小液滴形成装置。 The liquid film forming member is composed of a plurality of rod-shaped or flat members arranged in parallel with a gap of a predetermined distance from the vibrating vibration surface, and is the vibration direction of the vibration vibration surface. The microdroplet forming apparatus according to claim 1, further comprising at least one opening in a direction perpendicular to the vibrating vibration surface.
  3.  前記試料供給部は、前記加振振動面と前記液膜形成部材の前記間隙に順次液体を供給するように構成されていることを特徴とする請求項2に記載の微小液滴形成装置。 The microdroplet forming apparatus according to claim 2, wherein the sample supply unit is configured to sequentially supply a liquid to the gap between the vibrating vibration surface and the liquid film forming member.
  4.  前記超音波振動発生部の加振周波数が、数100kHz~10MHzの範囲の一定の周波数または複数の周波数で変更可能に構成されていることを特徴とする請求項1から3のいずれか1項に記載の微小液滴形成装置。 3. The microdroplet forming apparatus according to the above.
  5.  前記超音波振動伝達拡大部は、振動伝達長の長さが10mm以下の柱状部材もしくは厚さが数100μm以上のダイアフラム状構造体であることを特徴とする請求項1から3のいずれか1項に記載の微小液滴形成装置。 Any one of claims 1 to 3, wherein the ultrasonic vibration transmission enlarged portion is a columnar member having a vibration transmission length of 10 mm or less or a diaphragm-shaped structure having a thickness of several hundred μm or more. The microdroplet forming apparatus according to.
  6.  前記超音波振動伝達拡大部は、内部に液体が充填されていることを特徴とする請求項1から3のいずれか1項に記載の微小液滴形成装置。 The microdroplet forming apparatus according to any one of claims 1 to 3, wherein the ultrasonic vibration transmission magnifying unit is filled with a liquid.
  7.  前記加振振動面または前記液膜形成部材の少なくとも一方が導電性部材で構成されており、前記加振振動面または前記液膜形成部材の少なくとも一方に電圧を印加する電圧印加手段を備え、
     前記電圧印加手段は、その極性または印加電圧値の少なくとも一方が変更可能に構成されていることを特徴とする請求項1から3のいずれか1項に記載の微小液滴形成装置。
    At least one of the vibrating vibration surface or the liquid film forming member is composed of a conductive member, and a voltage applying means for applying a voltage to the vibrating vibration surface or at least one of the liquid film forming member is provided.
    The microdroplet forming apparatus according to any one of claims 1 to 3, wherein the voltage applying means is configured so that at least one of its polarity and the applied voltage value can be changed.
  8.  超音波加振の駆動回路は、直流バイアス電圧上に加振手段駆動交流波形を重畳させるように構成されているとともに、前記直流バイアス電圧の極性または電圧値の少なくとも一方を変更可能に構成されていることを特徴とする請求項1から3のいずれか1項に記載の微小液滴形成装置。 The drive circuit for ultrasonic excitation is configured to superimpose the excitation means drive AC waveform on the DC bias voltage, and at least one of the polarity or the voltage value of the DC bias voltage can be changed. The microdroplet forming apparatus according to any one of claims 1 to 3, wherein the device is characterized by the above.
  9.  前記加振振動面および前記液膜形成部材を洗浄するための洗浄部をと、
     前記微小液滴の既定の噴霧回数後、既定の噴霧時間後、噴霧開始前、噴霧停止時および外部からの動作指示の少なくとも1つによって、前記洗浄部に洗浄動作の指示を出す洗浄動作制御手段と、を備えることを特徴とする請求項1から3のいずれか1項に記載の微小液滴形成装置。
    A cleaning unit for cleaning the vibrating vibration surface and the liquid film forming member,
    Cleaning operation control means for issuing a cleaning operation instruction to the cleaning unit by at least one of operation instructions after a predetermined number of sprays of the fine droplets, after a predetermined spraying time, before spraying start, when spraying is stopped, and from the outside. The microdroplet forming apparatus according to any one of claims 1 to 3, further comprising.
  10.  請求項1から3のいずれか1項に記載の微小液滴形成装置を備えることを特徴とする分析装置。 An analyzer comprising the microdroplet forming apparatus according to any one of claims 1 to 3.
  11.  前記分析装置は質量分析装置であり、
     前記微小液滴形成装置によって噴霧された前記微小液滴に電荷を付与して微小帯電液滴を生成する液滴帯電部と、前記微小帯電液滴を乾燥させイオン化するための乾燥部を有するイオン源と、前記イオン源で形成されたイオンを導入して、質量電荷比ごとに分離して検出する検出部とを、備えることを特徴とする請求項10に記載の分析装置。
    The analyzer is a mass spectrometer, and the analyzer is a mass spectrometer.
    An ion having a droplet charging portion that charges the microdroplets sprayed by the microdroplet forming device to generate microcharged droplets and a drying portion for drying and ionizing the microcharged droplets. The analyzer according to claim 10, further comprising a source and a detection unit that introduces ions formed by the ion source and separates and detects each of the mass-to-charge ratios.
PCT/JP2021/015116 2020-06-30 2021-04-12 Micro droplet formation device and analysis device WO2022004094A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-112351 2020-06-30
JP2020112351A JP7457306B2 (en) 2020-06-30 2020-06-30 Microdroplet formation device and analysis device

Publications (1)

Publication Number Publication Date
WO2022004094A1 true WO2022004094A1 (en) 2022-01-06

Family

ID=79315757

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/015116 WO2022004094A1 (en) 2020-06-30 2021-04-12 Micro droplet formation device and analysis device

Country Status (2)

Country Link
JP (1) JP7457306B2 (en)
WO (1) WO2022004094A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024038241A1 (en) * 2022-08-19 2024-02-22 Vibrat-Ion Ltd Aerosolisation system and methods of use thereof
WO2024047723A1 (en) * 2022-08-30 2024-03-07 株式会社日立ハイテク Ion source and analysis device using same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003071343A (en) * 2001-08-31 2003-03-11 Olympus Optical Co Ltd Spray head
JP2004501482A (en) * 2000-04-18 2004-01-15 ウォーターズ・インヴェストメンツ・リミテッド Improved electrospray and other LC / MS interfaces
JP2004179079A (en) * 2002-11-28 2004-06-24 National Institute Of Advanced Industrial & Technology Sample atomization lead-in device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004501482A (en) * 2000-04-18 2004-01-15 ウォーターズ・インヴェストメンツ・リミテッド Improved electrospray and other LC / MS interfaces
JP2003071343A (en) * 2001-08-31 2003-03-11 Olympus Optical Co Ltd Spray head
JP2004179079A (en) * 2002-11-28 2004-06-24 National Institute Of Advanced Industrial & Technology Sample atomization lead-in device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024038241A1 (en) * 2022-08-19 2024-02-22 Vibrat-Ion Ltd Aerosolisation system and methods of use thereof
WO2024047723A1 (en) * 2022-08-30 2024-03-07 株式会社日立ハイテク Ion source and analysis device using same

Also Published As

Publication number Publication date
JP2022011312A (en) 2022-01-17
JP7457306B2 (en) 2024-03-28

Similar Documents

Publication Publication Date Title
WO2022004094A1 (en) Micro droplet formation device and analysis device
CN106898536B (en) Liquid sample for analytic type plasma spectrometer introduces system and method
Deepu et al. Dynamics of ultrasonic atomization of droplets
US9305761B2 (en) Ion source for mass spectrometer and method of producing analyte ion stream
US5707588A (en) Droplet floating apparatus
JP4560634B2 (en) Liquid introduction plasma system
JPH0833339B2 (en) Analytical nebulizer
US9541479B2 (en) Apparatus and method for liquid sample introduction
US9804183B2 (en) Apparatus and method for liquid sample introduction
EP3826775A1 (en) Nebulizer
US5173274A (en) Flash liquid aerosol production method and appartus
US20150082689A1 (en) Small droplet sprayer
WO2021020179A1 (en) Spray ionization device, analysis device, and surface coating device
JP5663725B2 (en) Sample introduction device for mass spectrometer
Ashtiani et al. Tailoring surface acoustic wave atomisation for cryo-electron microscopy sample preparation
WO2022264274A1 (en) Sample liquid atomization device and analysis device
JP3789845B2 (en) Separation device for separating excess liquid on the surface
JP4254546B2 (en) Mass spectrometer
JP2009008689A (en) Aerosol generator
WO2024047723A1 (en) Ion source and analysis device using same
WO2024047722A1 (en) Liquid atomizing device and analysis device using same
JP3115774U (en) Aerosol generator
Grimm Fundamental studies of the mechanisms and applications of field-induced droplet ionization mass spectrometry and electrospray mass spectrometry
WO2022196487A1 (en) Atomization device
US20050199798A1 (en) Method and a system for producing electrospray ions

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21830905

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21830905

Country of ref document: EP

Kind code of ref document: A1