WO2024047723A1 - Ion source and analysis device using same - Google Patents

Ion source and analysis device using same Download PDF

Info

Publication number
WO2024047723A1
WO2024047723A1 PCT/JP2022/032487 JP2022032487W WO2024047723A1 WO 2024047723 A1 WO2024047723 A1 WO 2024047723A1 JP 2022032487 W JP2022032487 W JP 2022032487W WO 2024047723 A1 WO2024047723 A1 WO 2024047723A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
droplets
ion source
sample
liquid
Prior art date
Application number
PCT/JP2022/032487
Other languages
French (fr)
Japanese (ja)
Inventor
徹 宮坂
康 照井
Original Assignee
株式会社日立ハイテク
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立ハイテク filed Critical 株式会社日立ハイテク
Priority to PCT/JP2022/032487 priority Critical patent/WO2024047723A1/en
Publication of WO2024047723A1 publication Critical patent/WO2024047723A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/04Arrangements for introducing or extracting samples to be analysed, e.g. vacuum locks; Arrangements for external adjustment of electron- or ion-optical components

Definitions

  • the present disclosure relates to an ion source and an analysis device using the same.
  • a method is used in which the liquid sample is atomized into minute droplets, the solvent components are vaporized and the solute components of the sample are atomized, and the solute components of the sample are introduced into the analysis section. is used.
  • a typical example of a device that performs analysis using this method is a liquid chromatograph mass spectrometer.
  • a liquid sample containing various components separated by a liquid chromatograph is made into minute droplets, and the droplets are charged and heated in an ion source to generate ions of solute components.
  • the ionized solute components are then introduced into a mass spectrometer and separated by mass-to-charge ratio to identify the components.
  • ion sources include electrospray ionization (ESI), atmospheric pressure chemical ionization (APCI), and atmospheric pressure photoionization (APPI). Atmospheric pressure photoionization).
  • a gas spray method is usually used to turn a liquid sample into minute droplets in a liquid chromatograph mass spectrometer or the like.
  • the gas spray method refers to a method in which a high-speed gas jet is applied to a liquid to tear the liquid, turn it into minute droplets, and spray the liquid.
  • a device is being developed that uses an ultrasonic vibrator to generate microdroplets to be introduced into the ion source.
  • the following are conventional techniques that apply an atomization device using an ultrasonic vibrator to an ion source.
  • Patent Document 1 discloses a configuration in which an eluent for liquid chromatography is sprayed onto the surface of an ultrasonic transducer using a high-pressure gas nebulizer, and an extremely fine mist is created by the action of the ultrasonic transducer, and a solvent is removed from the mist.
  • a configuration is disclosed in which the removed and desolvated sample is guided to the next atmospheric pressure ion source and subjected to mass spectrometry.
  • Patent Document 2 discloses that in a mass spectrometry system, a sample having an ionic group and a liquid containing a protic polar solvent are atomized using an ultrasonic transducer, and the liquid is heated to remove the protic polar solvent.
  • An ion generating device is disclosed that has a configuration.
  • liquid chromatograph mass spectrometer In a liquid chromatograph mass spectrometer, multiple types of liquid samples to be analyzed are continuously supplied from a liquid chromatograph through a thin tube with a diameter of several hundred ⁇ m or less. The amount of each liquid sample supplied is extremely small, several hundred ⁇ L or less. In the droplet generation device used in mass spectrometers, these liquid samples are continuously formed into microdroplets without mixing with each other, and the generated microdroplets are charged and the solvent is removed by heating. However, it is required to generate ions of solute components and continuously supply them to the analysis section.
  • the droplets formed by the ultra-high-speed gas flow of the gas spray used in the ion source are atomized at ultra-high speed, so the energy required for processes such as charging and heating vaporization is large, and the time required to perform these processes is large. Becomes shorter. Therefore, there is also a problem in terms of stabilizing these processes.
  • the sample droplets that can be introduced into the mass spectrometer are only a small portion of the supplied liquid sample, and the majority of the sample droplets can be introduced into the mass spectrometer. will be disposed of without being used.
  • Patent Documents 1 and 2 do not provide a solution to the loss of microdroplets in the path that sends the generated mist-like microdroplets to the analyzer.
  • the purpose of the present disclosure is to generate micro droplets from a liquid sample continuously supplied from a liquid chromatograph, etc., apply a charge to the micro droplets, and perform a series of processes to vaporize the solvent using a small gas flow rate.
  • Another object of the present invention is to provide a new ion source that introduces ions of solute components contained in a liquid sample into an analysis block.
  • the ion source of the present disclosure supplies ions of a solute component to an analysis block that analyzes a liquid sample containing a solute component, and includes a droplet generation section that generates droplets of the liquid sample, and a droplet generation section that generates droplets of the liquid sample.
  • the heating and pressure regulating gas supply block is equipped with a heating and pressure regulating gas supply block that heats the transport gas that flows in with droplets, and a charge applying section that imparts an electric charge to the solute component and ionizing it.
  • a sample transport pipe arranged between the droplet generating part, a heating and pressure regulating gas retention part having a configuration in which the sample transport pipe is in contact with the sample transport pipe so that heat can be transferred thereto, and a gas heating part that heats a predetermined gas to a predetermined temperature. and a pressure adjustment unit that maintains the pressure of a predetermined gas within a predetermined range, the droplets and the transport gas are heated by the heated predetermined gas, and the sample transport pipe includes a droplet generation
  • the liquid droplets and the transport gas are supplied from the heating and pressure regulating gas retention section, and a predetermined heated gas is introduced from the heating and pressure regulating gas retention section.
  • a series of processes in which micro droplets are generated from a liquid sample continuously supplied from a liquid chromatograph or the like, an electric charge is imparted to the micro droplets, and a solvent is vaporized are performed with a small gas flow rate.
  • FIG. 2 is a cross-sectional view of a main part of an analysis device according to an example.
  • 2 is a front view showing the liquid flow path plate 2 of FIG. 1.
  • FIG. 2A is a sectional view showing a state in which the liquid flow path plate 2 of FIG. 2A is installed in an ion source.
  • FIG. 2B is a partially enlarged view showing the micropore forming portion 2d of FIG. 2A.
  • FIG. 3B is a vertical cross-sectional view of the portion shown in FIG. 3A.
  • FIG. 2 is a cross-sectional view showing the heated and pressure-regulated gas supply block 11 of FIG. 1.
  • FIG. FIG. 2 is a cross-sectional view showing the charge imparting block 21 of FIG. 1.
  • FIG. 1 is a cross-sectional view showing the charge imparting block 21 of FIG. 1.
  • FIG. 2 is a partial cross-sectional view of the charge applying block 21 seen from the analysis block 25 side of FIG. 1.
  • FIG. FIG. 7 is a cross-sectional view showing another charge applying section in the example.
  • 6A is a sectional view of the sample transport tube 13 of FIG. 6A viewed from the heating and pressure regulating gas supply block 11 side.
  • the present disclosure relates to an ion source for ionizing components contained in a liquid sample to be analyzed in an analyzer such as a liquid chromatograph mass spectrometer and introducing the ion source into an analysis block, and an analyzer equipped with such an ion source. Regarding.
  • FIG. 1 is a cross-sectional view of the main parts of the analysis device of the example.
  • the analysis device shown in this figure includes a liquid sample atomization block 1 (droplet generation section), a heating and pressure regulating gas supply block 11, a charge application block 21, and an analysis block 25. These are connected in series. Of these, the liquid sample atomization block 1, the heating and pressure regulating gas supply block 11, and the charge imparting block 21 constitute an ion source.
  • the ion source is connected to an analysis block 25 via a connection block 22 with a capillary connection 23 .
  • the inside of the analysis block 25 is kept in a substantially vacuum state (depressurized state).
  • the liquid sample atomization block 1 includes a thin liquid flow path plate 2 and an ultrasonic vibration application unit 3.
  • the holder 9 is composed of a liquid sample supply side member 9a and a connecting member 9b
  • the holder 10 is composed of a holder main part 10a and a flange-like member 10b.
  • the holder main portion 10a has a substantially cylindrical shape.
  • the liquid channel plate 2 is sandwiched between the liquid sample supply side member 9a and the connecting member 9b.
  • the ultrasonic vibration imparting unit 3 is a bolted Langevin type transducer (BLT) that includes a tip vibrating section 3a, a piezoelectric element section 3b, and a screw housing 3c (piezoelectric element fixing body).
  • An ultrasonic vibration applying unit 3 and a rectifying plate 4 are inserted and fixed inside the main part 10a of the holder.
  • the main part 10a of the holder is inserted into a through hole of the liquid sample supply side member 9a.
  • the ultrasonic vibration imparting unit 3 is arranged so as to be in contact with the liquid flow path plate 2, and applies pressure to the liquid flow path plate 2 by pushing a flange-like member 10b attached to the main part 10a of the holder with a spring 7 (pressing member).
  • the tip vibrating section 3a of the ultrasonic vibration imparting unit 3 is configured to be in close contact with each other.
  • a supply pipe 5 and a discharge pipe 8 are connected to the liquid sample supply side member 9a.
  • the sample liquid 26a continuously supplied from the supply pipe 5 is supplied to the liquid flow path plate 2 and atomized.
  • the remaining liquid that has not been atomized is discharged from the discharge pipe 8 as the remaining sample liquid 26c.
  • a conveying gas supply pipe 6 is connected to the flange-like member 10b, so that the conveying gas 27a is supplied to the inside of the main part 10a of the holder.
  • the transport gas 27a has a substantially uniform flow velocity distribution due to the rectifying plate 4, passes around the ultrasonic vibration applying unit 3, and is supplied to the heating and pressure regulating gas supply block 11 together with droplets generated in the liquid channel plate 2. be done.
  • the ultrasonic vibration applying unit 3 can also be cooled.
  • the heating and pressure regulating gas supply block 11 includes an outer pipe 12a, an inner pipe 12b, a sample transport pipe 13 (sample transport pipe), a heat insulating/insulating member 14, a mesh plate 15, and an air heater 16 (gas heating section). and a pressure regulating means 17 (pressure regulating section).
  • the outer tube 12a and the inner tube 12b constitute the heating and pressure regulating gas supply section main body 12, and have a double tube structure.
  • the annular portion formed by the outer tube 12a and the inner tube 12b is an outer shell chamber 18 (heated and pressure-regulated gas retention section).
  • a heat insulating/insulating member 14 is sandwiched between the outer tube 12a and the sample transport tube 13. Since the heat insulating/insulating member 14 is difficult to conduct heat, the liquid sample atomization block 1 is prevented from being heated by the heat of the high temperature heating and pressure regulating gas supply block 11. Furthermore, since the heat insulating/insulating member 14 has electrical insulation properties, it also has the function of blocking the current from the charge imparting block 21 .
  • the micro droplets 26b flow together with the transport gas 27b.
  • the micro droplets 26b and the transport gas 27b are supplied into the inner tube 12b.
  • the air heater 16 heats a predetermined flow rate of gas to a predetermined temperature and supplies it to the outer shell chamber 18 as heated gas 27c.
  • nitrogen gas is used as the gas supplied to the outer shell chamber 18.
  • the gas used in this case is preferably an inert gas such as argon or helium.
  • the pressure within the outer shell chamber 18 is regulated by the pressure regulating means 17, and when the pressure exceeds a predetermined value, an exhaust gas flow 27g is generated.
  • the heated gas 27c passes through the outer shell chamber 18 and the mesh plate 15, becomes a swirling airflow 27d, is supplied into the inner tube 12b, and merges with the solute particles 26d.
  • the solute fine particles 26d are fine particles formed by heating the fine droplets 26b and vaporizing the solvent.
  • the solute particles 26d are supplied to the charge imparting block 21 together with the carrier gas 27e.
  • a discharge wire 20 stretched by a spring 19 is installed on the charge application block 21 .
  • the solute particles 26d supplied together with the carrier gas 27e are ionized by the discharge generated by the high voltage applied to the discharge wire 20.
  • the analysis block 25 includes an analysis unit (not shown) built into the housing 24.
  • a connection block 22 having a capillary connection portion 23 is sandwiched between the charge application block 21 and the casing 24 .
  • the ionized solute particles 26d pass through the capillary connection part 23 together with the carrier gas 27e, and are supplied into the housing 24.
  • the internal area including the heating and pressure regulating gas supply block 11 from the liquid flow path plate 2 to the connection block 22 is designed to prevent the carrier gas flow from leaking from the central pipe line. It has an airtight structure including the terminals.
  • the solute particles 26d sent to the analysis block 25 are subjected to component analysis processing in the analysis block 25 as ionized solute components 27f.
  • FIG. 2A is a front view showing the liquid flow path plate 2 of FIG. 1.
  • the liquid flow path plate 2 has a liquid flow path 2g inside thereof.
  • a liquid sample supply port 2f and a discharge port 2h are provided at the end of the liquid flow path 2g.
  • a micropore forming section 2d having a plurality of micropores is provided in the center of the liquid flow path 2g.
  • Four through holes 2e for carrier gas are provided around the micropore forming portion 2d.
  • FIG. 2B is a cross-sectional view showing the liquid flow path plate 2 of FIG. 2A installed in an ion source. Note that since the liquid flow path plate 2 has a plate shape that is very thin compared to the dimensions of the other components, the thickness direction is shown enlarged in FIG. 2B.
  • the liquid flow path plate 2 has a structure in which three thin plates 2a, 2b, and 2c are laminated and bonded.
  • a supply port 2f and a discharge port 2h for the sample liquid 26a are formed in the thin plate 2c on the side to which the sample liquid 26a is supplied. Both the supply port 2f and the discharge port 2h are through holes.
  • An elongated hole is formed in the central thin plate 2b. This hole constitutes a liquid flow path 2g in a state where three thin plates 2a, 2b, and 2c are laminated.
  • a microhole forming portion 2d in which a plurality of microholes (through holes) are formed is provided in the center of the thin plate 2a. This fine hole communicates the liquid flow path 2g with the outer surface of the thin plate 2a.
  • the three thin plates 2a, 2b, and 2c are made of stainless steel and have a thickness of 50 ⁇ m. These three thin plates 2a, 2b, and 2c were stacked and integrated by diffusion bonding to form a liquid channel plate 2 with a thickness of 150 ⁇ m. Since diffusion bonding is a bonding method that does not use an adhesive or the like, it is also possible to flow a liquid sample containing a solvent or the like through the liquid flow path plate 2.
  • the liquid channel plate 2 is sandwiched between the liquid sample supply side member 9a and the connection member 9b.
  • the liquid sample supply side member 9a and the connection member 9b each have a recessed portion in the center so that they do not come into direct contact with the center of the liquid flow path plate 2.
  • the liquid sample supply side member 9a and the connection member 9b sandwich the peripheral edge of the liquid flow path plate 2 and support the liquid flow path plate 2.
  • the tip vibrating part 3a of the ultrasonic vibration imparting unit 3 is pressed against the center of the liquid flow path plate 2 (thin plate 2c).
  • the liquid sample supply side member 9a is provided with a through hole for supplying the sample liquid 26a and a through hole for discharging the remaining sample liquid 26c.
  • the through hole for supplying the sample liquid 26a is connected to the supply port 2f of the thin plate 2c.
  • a through hole for discharging the remaining sample liquid 26c is connected to the discharge port 2h of the thin plate 2c.
  • the sample liquid 26a passes through the supply port 2f and is sent to the liquid channel 2g in the liquid channel plate 2.
  • a part of the sample liquid 26a is caused by the ultrasonic vibration in the thickness direction of the liquid flow path plate 2 applied from the tip vibrating part 3a of the ultrasonic vibration applying unit 3 to a part of the sample liquid 26a.
  • minute droplets 26b It is released from the fine holes of the hole forming part 2d, becomes minute droplets 26b, and is sent to the left in the figure together with the transport gas 27b that has passed through the transport gas through-hole 2e of the liquid flow path plate 2.
  • the transport gas 27b flows to surround the flow of the micro droplets 26b. In other words, the minute droplets 26b flow in the center of the channel, and the transport gas 27b flows in the outer periphery of the channel.
  • the remainder of the sample liquid 26a passes through the discharge port 2h and is discharged as a remaining sample liquid 26c.
  • FIG. 3A is a partially enlarged view showing the micropore forming part 2d in FIG. 2A.
  • FIG. 3A a large number of micropores provided in the micropore forming portion 2d are shown in a dotted manner. Further, the liquid flow path 2g inside the liquid flow path plate 2 and the tip vibrating portion 3a that is in contact with the back surface of the liquid flow path plate 2 are shown by dotted lines.
  • FIG. 3B is a longitudinal cross-sectional view of the portion shown in FIG. 3A.
  • FIG. 3B a configuration in which three thin plates 2a, 2b, and 2c are stacked, a tip vibrating section 3a in contact with the thin plate 2c, and a large number of micropores in a micropore forming section 2d formed in the thin plate 2a are shown. It is shown.
  • the tip vibrating section 3a of the ultrasonic vibration imparting unit 3 is in contact with the opposite surface of the liquid flow path plate 2 where the micropore forming section 2d is provided.
  • the diameter of the microdroplet 26b shown in FIG. 2B is influenced by the ultrasonic vibration frequency and the diameter of the micropore.
  • the frequency of the ultrasonic vibration was set to about 150 kHz, and the diameter of the narrowest part of the micropores was set to 4 micrometers.
  • droplets with a diameter of 4 to 6 ⁇ m could be formed.
  • micropores can be formed using methods such as laser machining and electroforming, but in this example, the number of micropores is large, stainless steel was selected as the material, and took cost into consideration and used YAG laser processing.
  • micromachining results in a difference in hole diameter in the thickness direction.
  • the diameter of the hole on the irradiation side was about several tens of ⁇ m.
  • the diameter of the micropores on the surface side is approximately 4 ⁇ m. This is because, as a result of study, it was found that the larger the diameter on the channel side and the smaller the diameter on the surface side, the easier the liquid would be released in the form of mist, and the more difficult it would be for liquid beads to form on the surface of the channel plate. If liquid beads occur on the surface side of the channel plate, the liquid discharge becomes unstable.
  • micro droplet 26b shown in FIG. 2B has a slow initial velocity and a small droplet diameter, stable transport of the micro droplet 26b can be achieved even when the flow rate of the transport gas 27b is small.
  • 1 L/min of nitrogen gas is used as the transport gas 27b, and the micro droplets 26b are stably transported within the sample transport tube 13 shown in FIG. 1 at a transport speed of about 1 m/s. .
  • the droplet generation section has a liquid flow path plate 2 that is a plate-like member, but the droplet generation section according to the present disclosure is not limited to this.
  • a structure in which a liquid flow path is formed inside the piping may also be used.
  • the droplet generation unit is configured to generate droplets using the ultrasonic vibration imparting unit 3, but the droplet generation unit according to the present disclosure is not limited to this.
  • the structure may be such that droplets are generated by a gas spray method or the like.
  • FIG. 4 is a sectional view showing the heating and pressure regulating gas supply block 11 of FIG. 1.
  • FIG. 4 shows a cross section passing through the central axes of the air heater 16 and the pressure regulating means 17, and the direction in which the micro droplets 26b shown in FIG. 1 are conveyed is perpendicular to the drawing.
  • the heated gas 27c supplied from the air heater 16 flows through the outer shell chamber 18 inside the outer tube 12a, and becomes an airflow 27h that swirls around the inner tube 12b.
  • the volume of gas changes significantly when it is heated.
  • the pressure inside the outer shell chamber 18 changes.
  • the pressure regulating means 17 is arranged in the outer shell chamber 18, so that even if the volume of the heated gas supplied from the air heater 16 changes, the pressure inside the outer shell chamber 18 does not change. did.
  • the pressure regulating means 17 of this embodiment utilizes a component that opens a valve when the internal pressure reaches a predetermined pressure.
  • the heated and pressure-regulated airflow 27h in the outer shell chamber 18 passes through the mesh plate 15 and is supplied to the inner tube 12b.
  • the swirling airflow 27d is introduced from the outer periphery of the inside of the inner tube 12b, and swirls around the inner tube 12b to envelop the minute droplets 26b and the carrier gas 27b that are transferred from the sample transfer tube 13 shown in FIG. flow inside.
  • the inner diameter of the inner tube 12b is larger than the inner diameter of the sample transport tube 13.
  • the flow path length is adjusted in consideration of the distance required for the swirling airflow 27d and the transport gas 27b containing the microdroplets 26b to mix, and the time required for the solvent of the microdroplets 26b to vaporize. need to be made longer.
  • Burning out solute components is effective in preventing contamination with components contained in other liquid samples sent later, but the problem is that the amount of solute components that can be introduced into the analysis block is reduced. occurs.
  • the inner diameter of the inner tube 12b is made larger than the inner diameter of the sample transport tube 13.
  • the inner diameter of the inner tube 12b is made larger than the inner diameter of the sample transport tube 13, and the pressure of the heated gas is maintained within a predetermined range by the pressure regulating means 17, so that the swirling airflow 27d and the transporting gas 27b are This suppresses changes in airflow caused by the merging of air.
  • the pressure of the inner tube 12b is also maintained within a predetermined range, and in this state, the solvent contained in the micro droplets 26b is heated and vaporized. Can be done.
  • FIG. 5A is a cross-sectional view showing the charge applying block 21 of FIG. 1.
  • FIG. 5A The configuration shown in FIG. 5A is shown in FIG. 1, so its description will be omitted here.
  • FIG. 5B is a partial cross-sectional view of the charge applying block 21 seen from the analysis block 25 side in FIG. 1.
  • FIGS. 5A and 5B show a cross section including a position where the discharge wire 20 is stretched.
  • connection block 22 is shown as viewed from the front.
  • a capillary connection portion 23 (microhole) connected to the analysis block is provided in the center of the connection block 22.
  • the inner diameter (diameter) of the capillary connecting portion 23 is desirably one-fifth or less of the inner diameter of the downstream end of the sample transport channel, and more desirably one-tenth or less. In terms of actual dimensions, the inner diameter of the capillary connecting portion 23 is preferably 1 mm or less, more preferably 100 ⁇ m or less.
  • a discharge wire 20 is stretched across the conduit hole provided in the center of the charge applying block 21.
  • the charge applying block 21 is made of an insulating material.
  • a spring 19 and a power supply terminal for tensioning the discharge wire 20 are arranged.
  • a high voltage power source 28 is connected to the discharge wire 20.
  • a high voltage to the discharge wire 20 by the high voltage power supply 28
  • a potential difference is applied between the discharge wire 20 and the connection block 22, and corona discharge is generated.
  • Positive ions and electrons generated by corona discharge can impart charges to solute components in the carrier gas.
  • the current and polarity of the high voltage power supply 28 are controlled according to the solute components.
  • the carrier gas 27e containing the charged solute component is supplied to the inside of the casing 24 as a solute component 27f through the capillary connection section 23 provided in the connection block 22.
  • the inside of the casing 24 is maintained in a substantially vacuum state, and the amount of the carrier gas 27e passing through the capillary connection portion 23 is affected by the pressure of the carrier gas 27e in the carrier conduit.
  • the flow rate of the carrier gas supplied from the liquid sample atomization block 1 is set to approximately 1 L/min
  • the flow rate of the swirling airflow 27d supplied from the heating and pressure regulating gas supply block 11 is set to approximately 6 L/min.
  • slightly more heated gas than about 6 L/min is supplied from the air heater 16 to the outer shell chamber 18 of the heating and pressure regulating gas supply block 11, and the leak pressure of the pressure regulating means 17 is set to 1 atm ( (atmospheric pressure).
  • the pressure of the carrier gas 27e flowing through the pipe becomes approximately atmospheric pressure, and only the amount that can be balanced with the amount of the carrier gas 27e passing through the thin tube connection part 23 of the connection block 22 is heated.
  • the gas is supplied from the outer shell chamber 18 of the pressurized gas supply block 11 to the inner pipe line as a swirling airflow 27d.
  • the charge imparting section shown in FIGS. 5A and 5B evaporates the solvent component of the droplet sample in the heating and pressure regulating gas supply block 11, and then irradiates the solute component with corona ions in the charge imparting block 21. It ionizes.
  • the ion source of the current mass spectrometer in addition to the charge imparting block 21 shown in FIGS. 5A and 5B that imparts a charge to the solute component after completely vaporizing the solvent component, the ion source of the current mass spectrometer also charges the solute component by completely vaporizing the solvent component.
  • a method of imparting a charge to is also used. These methods are called atmospheric pressure chemical ionization (APCI) and electrospray (ESI), respectively. These two methods have different analytical sensitivities depending on the molecular weight and other characteristics of the solute component to be analyzed, so they are used differently depending on the type of solute component.
  • FIG. 6A is a cross-sectional view showing another charge applying section in this example.
  • a charge applying section is arranged in the sample transport tube 13, which is the inlet of the heating and pressure regulating gas supply block 11 shown in FIG.
  • the liquid sample supply side member 9a which is the holder 9 of the liquid flow path plate 2 of the liquid sample atomization block 1, is made of a conductive material, and the connection member 9b is made of an insulating material.
  • the sample transport tube 13 is made of a conductive material, and is connected to the heating and pressure regulating gas supply block 11 side via a heat insulating/insulating member 14 .
  • a variable power source 29 capable of applying both positive and negative polarities for applying voltage was arranged between the sample transport tube 13 and the liquid sample supply side member 9a.
  • the liquid sample supply side member 9a is in electrical contact with the liquid flow path plate 2. Thereby, an electric field can be generated between the surface of the liquid flow path plate 2 from which sample droplets are discharged and the sample transport tube 13.
  • FIG. 6B is a sectional view of the sample transport tube 13 in FIG. 6A viewed from the heating and pressure regulating gas supply block 11 side.
  • an electric wire 61 is arranged not on the wall surface of the sample transport tube 13 but within the flow path of the sample transport tube 13.
  • Three electric wires 61 are provided in a Y-shape (radially) at intervals of 120 degrees.
  • the direction of the electric field generated on the surface of the liquid flow path plate 2 more closely matches the direction of the transport gas 27b flowing inside the sample transport tube 13. This stabilizes the traveling direction of the charged microdroplet 26b, prevents the microdroplet 26b from colliding with the wall surface of the sample transport tube 13, and reduces the amount of the microdroplet 26b lost. Can be done. As a result, more micro droplets 26b are supplied to the heating and pressure regulating gas supply block 11 side.
  • two types of charge application means can be selected in one ion source and appropriate. can be implemented.
  • the ion source of the present disclosure can suppress and appropriately control the amount of the gas flow for transporting minute droplets and the heated gas flow for vaporizing the solvent. Therefore, the analyzer equipped with the ion source of the present disclosure can introduce many of the solute components contained in the sample liquid into the analysis block, and the sensitivity of the analyzer can be significantly improved.
  • the droplet generation section includes an ultrasonic vibration application unit, and has a configuration in which droplets are generated by the ultrasonic vibration application unit.
  • the droplet generating section has a liquid flow path formed inside a pipe or a plate-like member, and the pipe or plate-like member has micropores communicating the outside and the liquid flow path, and
  • the application unit is configured to apply ultrasonic vibrations to the liquid sample flowing through the liquid channel, and droplets are ejected from the micropores.
  • the droplet generation section has a configuration in which droplets flow into the center of the sample transport channel, and transport gas flows into the sample transport channel so as to surround the flow of the droplets.
  • the predetermined gas introduced from the heating and pressure regulating gas retention section into the sample transport pipe has a configuration in which it flows in so as to surround the droplets and the flow of the transport gas.
  • the sample transport channel has a wider cross-sectional area on the downstream side of the position where the predetermined gas flows in than on the upstream side.
  • the cross section of the sample transport conduit is circular, the inner diameter of the cross section of the flow path is larger on the downstream side than on the upstream side on the downstream side of the position where the predetermined gas flows.
  • the charge applying section is configured to be placed between the analysis block and the heating and pressure regulating gas supply block.
  • the charge applying section is arranged between the heating and pressure regulating gas supply block and the droplet generating section.
  • the analysis device includes an ion source and an analysis block.
  • the ion source and the analysis block are connected by a capillary connection, and the ionized solute component is supplied to the analysis block through the capillary connection.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

Provided is a new ion source that produces microdroplets from a liquid sample continuously supplied from a liquid chromatograph or the like, electrically charges the microdroplets, executes a series of treatments for vaporizing a solvent at a low gas flow rate, and introduces ions of a solute component contained in the liquid sample into an analysis block. This ion source is for supplying, to an analysis block for analyzing a liquid sample containing a solute component, ions of the solute component, the ion source comprising: a droplet production unit that produces droplets of the liquid sample; a heated and pressure-adjusted gas supply block that heats a carrier gas that flows therein from the droplet production unit together with the droplets; and an electrically charging unit that electrically charges the solute component and ionizes the same. The heated and pressure-adjusted gas supply block includes: a sample transport tube path that is arranged between the analysis block and the droplet production unit; a heated and pressure-adjusted gas reservoir unit that is configured to be in contact with the sample transport tube path so that heat can be transferred therebetween; a gas-heating unit that heats a prescribed gas to a prescribed temperature; and a pressure-adjusting unit that maintains the pressure of the prescribed gas in a prescribed range. The droplets and the carrier gas are heated by the heated prescribed gas. The droplets and the carrier gas are supplied from the droplet production unit to the sample transport tube path. The heated prescribed gas is introduced from the heated and pressure-adjusted gas reservoir unit into the sample transport tube path.

Description

イオン源及びそれを用いた分析装置Ion source and analyzer using it
 本開示は、イオン源及びそれを用いた分析装置に関する。 The present disclosure relates to an ion source and an analysis device using the same.
 様々な溶質成分を有する液体試料中の成分を分析する装置などでは、液体試料を噴霧し微小液滴化し、溶媒成分を気化除去して試料の溶質成分を微粒化し、分析部などに導入する方法が用いられる。このような方法で分析をする装置の代表例としては、液体クロマトグラフ質量分析装置がある。 In devices that analyze components in liquid samples containing various solute components, a method is used in which the liquid sample is atomized into minute droplets, the solvent components are vaporized and the solute components of the sample are atomized, and the solute components of the sample are introduced into the analysis section. is used. A typical example of a device that performs analysis using this method is a liquid chromatograph mass spectrometer.
 液体クロマトグラフ質量分析装置では、液体クロマトグラフで分離した種々の成分を有する液体試料を微小液滴化し、イオン源において帯電・加熱気化することで、溶質成分のイオンを生成する。そして、イオン化した溶質成分を質量分析装置に導入し、質量電荷比ごとに分離して成分を同定する。 In a liquid chromatograph mass spectrometer, a liquid sample containing various components separated by a liquid chromatograph is made into minute droplets, and the droplets are charged and heated in an ion source to generate ions of solute components. The ionized solute components are then introduced into a mass spectrometer and separated by mass-to-charge ratio to identify the components.
 イオン源において用いられる方法としては、エレクトロスプレー法(ESI:Electrospray ionization)、大気圧化学イオン化法(APCI:Atmospheric Pressure Chemical Ionization)、大気圧光イオン化法(APPI:Atmospheric pressure photoionization)などがある。 Methods used in ion sources include electrospray ionization (ESI), atmospheric pressure chemical ionization (APCI), and atmospheric pressure photoionization (APPI). Atmospheric pressure photoionization).
 液体クロマトグラフ質量分析装置等における液体試料の微小液滴化には、通常、ガススプレー法が用いられている。ここで、ガススプレー法とは、液体に高速のガス噴流を当てることで液体を引きちぎり、微小液滴化し噴霧する方法をいう。 A gas spray method is usually used to turn a liquid sample into minute droplets in a liquid chromatograph mass spectrometer or the like. Here, the gas spray method refers to a method in which a high-speed gas jet is applied to a liquid to tear the liquid, turn it into minute droplets, and spray the liquid.
 イオン源では、液体試料を直径数μm程度の非常に小さい液滴にする必要があるため、噴出速度数百m/sに及ぶ超高速ガス流によるガススプレーが用いられる。 In the ion source, it is necessary to turn the liquid sample into very small droplets with a diameter of several μm, so a gas spray using an ultrahigh-speed gas flow with an ejection speed of several hundred m/s is used.
 また、イオン源に導入する微小液滴を超音波振動子を用いて発生させる装置も開発が進められている。 Additionally, a device is being developed that uses an ultrasonic vibrator to generate microdroplets to be introduced into the ion source.
 超音波振動子を用いる霧化装置をイオン源に適用する従来技術としては、次のものがある。 The following are conventional techniques that apply an atomization device using an ultrasonic vibrator to an ion source.
 特許文献1には、液体クロマトグラフィの溶離液を高圧ガスネブライザーを用いて超音波振動子表面に噴霧して付着させ、超音波振動子の作用で極めて細かい霧を作らせる構成、該霧から溶媒を除去し、脱溶媒化された試料は、次の大気圧イオン源へと導かれ、質量分析に供される構成が開示されている。 Patent Document 1 discloses a configuration in which an eluent for liquid chromatography is sprayed onto the surface of an ultrasonic transducer using a high-pressure gas nebulizer, and an extremely fine mist is created by the action of the ultrasonic transducer, and a solvent is removed from the mist. A configuration is disclosed in which the removed and desolvated sample is guided to the next atmospheric pressure ion source and subjected to mass spectrometry.
 特許文献2には、質量分析システムにおいて、超音波振動子を用いて、イオン性基を有する試料及びプロトン性極性溶媒を含む液体を霧化させ、その液体を加熱してプロトン性極性溶媒を除去する構成を有する、イオン生成装置が開示されている。 Patent Document 2 discloses that in a mass spectrometry system, a sample having an ionic group and a liquid containing a protic polar solvent are atomized using an ultrasonic transducer, and the liquid is heated to remove the protic polar solvent. An ion generating device is disclosed that has a configuration.
特開平11-051902号公報Japanese Patent Application Publication No. 11-051902 特開2015-031650号公報Japanese Patent Application Publication No. 2015-031650
 液体クロマトグラフ質量分析装置においては、液体クロマトグラフから分析対象の複数種類の液体試料が直径数百μm以下の細管を通して連続的に供給される。供給される各液体試料の量は、数百μL以下と極めて少量である。質量分析装置に用いる液滴生成装置においては、これらの液体試料を、互いに混ざり合うことなく連続的に微小液滴となるようにし、生成した微小液滴に電荷を付与し、加熱により溶媒を除去し、溶質成分のイオンを生成し、分析部に連続的に供給することが求められる。 In a liquid chromatograph mass spectrometer, multiple types of liquid samples to be analyzed are continuously supplied from a liquid chromatograph through a thin tube with a diameter of several hundred μm or less. The amount of each liquid sample supplied is extremely small, several hundred μL or less. In the droplet generation device used in mass spectrometers, these liquid samples are continuously formed into microdroplets without mixing with each other, and the generated microdroplets are charged and the solvent is removed by heating. However, it is required to generate ions of solute components and continuously supply them to the analysis section.
 イオン源において用いられるガススプレーの超高速ガス流によって形成された液滴は、超高速で噴霧されることから、帯電や加熱気化などのプロセスで必要なエネルギーが大きく、これらのプロセスを行う時間が短くなる。このため、これらのプロセスの安定化という点でも課題がある。 The droplets formed by the ultra-high-speed gas flow of the gas spray used in the ion source are atomized at ultra-high speed, so the energy required for processes such as charging and heating vaporization is large, and the time required to perform these processes is large. Becomes shorter. Therefore, there is also a problem in terms of stabilizing these processes.
 また、液体試料が高速かつ大量のガス流の中で微小液滴化しているため、質量分析装置に導入できる試料液滴は、供給される液体試料のうちのごく一部となり、大部分の試料が使用されずに排出されることになる。 In addition, because the liquid sample is turned into minute droplets in a high-speed, large-volume gas flow, the sample droplets that can be introduced into the mass spectrometer are only a small portion of the supplied liquid sample, and the majority of the sample droplets can be introduced into the mass spectrometer. will be disposed of without being used.
 特許文献1及び2に記載の装置は、生成した霧状の微小液滴を分析装置に送る経路における微小液滴の損失について解決策を提供するものではない。 The devices described in Patent Documents 1 and 2 do not provide a solution to the loss of microdroplets in the path that sends the generated mist-like microdroplets to the analyzer.
 本開示の目的は、液体クロマトグラフなどから連続的に供給される液体試料から微小液滴を生成し、この微小液滴に電荷を付与し、溶媒を気化させる一連の処理を少ないガス流量で実施し、液体試料に含まれる溶質成分のイオンを分析ブロックに導入する新たなイオン源を提供することにある。 The purpose of the present disclosure is to generate micro droplets from a liquid sample continuously supplied from a liquid chromatograph, etc., apply a charge to the micro droplets, and perform a series of processes to vaporize the solvent using a small gas flow rate. Another object of the present invention is to provide a new ion source that introduces ions of solute components contained in a liquid sample into an analysis block.
 本開示のイオン源は、溶質成分を含む液体試料を分析する分析ブロックに溶質成分のイオンを供給するものであって、液体試料の液滴を生成する液滴生成部と、液滴生成部から液滴を伴って流入する搬送用気体を加熱する加熱調圧気体供給ブロックと、溶質成分に電荷を付与しイオン化する電荷付与部と、を備え、加熱調圧気体供給ブロックは、分析ブロックと液滴生成部との間に配置される試料搬送管路と、試料搬送管路に伝熱可能に接触した構成を有する加熱調圧気体滞留部と、所定の気体を所定の温度まで加熱する気体加熱部と、所定の気体の圧力を所定の範囲に保つ圧力調整部と、を含み、液滴及び搬送用気体は、加熱された所定の気体により加熱され、試料搬送管路には、液滴生成部から液滴及び搬送用気体が供給され、加熱調圧気体滞留部から加熱された所定の気体が導入されるように構成されている。 The ion source of the present disclosure supplies ions of a solute component to an analysis block that analyzes a liquid sample containing a solute component, and includes a droplet generation section that generates droplets of the liquid sample, and a droplet generation section that generates droplets of the liquid sample. The heating and pressure regulating gas supply block is equipped with a heating and pressure regulating gas supply block that heats the transport gas that flows in with droplets, and a charge applying section that imparts an electric charge to the solute component and ionizing it. A sample transport pipe arranged between the droplet generating part, a heating and pressure regulating gas retention part having a configuration in which the sample transport pipe is in contact with the sample transport pipe so that heat can be transferred thereto, and a gas heating part that heats a predetermined gas to a predetermined temperature. and a pressure adjustment unit that maintains the pressure of a predetermined gas within a predetermined range, the droplets and the transport gas are heated by the heated predetermined gas, and the sample transport pipe includes a droplet generation The liquid droplets and the transport gas are supplied from the heating and pressure regulating gas retention section, and a predetermined heated gas is introduced from the heating and pressure regulating gas retention section.
 本開示によれば、液体クロマトグラフなどから連続的に供給される液体試料から微小液滴を生成し、この微小液滴に電荷を付与し、溶媒を気化させる一連の処理を少ないガス流量で実施し、液体試料に含まれる溶質成分のイオンを分析ブロックに導入する新たなイオン源を提供することができる。 According to the present disclosure, a series of processes in which micro droplets are generated from a liquid sample continuously supplied from a liquid chromatograph or the like, an electric charge is imparted to the micro droplets, and a solvent is vaporized are performed with a small gas flow rate. However, it is possible to provide a new ion source that introduces ions of solute components contained in a liquid sample into the analysis block.
実施例の分析装置を示す要部断面図である。FIG. 2 is a cross-sectional view of a main part of an analysis device according to an example. 図1の液体流路板2を示す正面図である。2 is a front view showing the liquid flow path plate 2 of FIG. 1. FIG. 図2Aの液体流路板2をイオン源に設置した状態を示す断面図である。2A is a sectional view showing a state in which the liquid flow path plate 2 of FIG. 2A is installed in an ion source. FIG. 図2Aの微細孔形成部2dを示す部分拡大図である。FIG. 2B is a partially enlarged view showing the micropore forming portion 2d of FIG. 2A. 図3Aに示す部分の縦断面図である。FIG. 3B is a vertical cross-sectional view of the portion shown in FIG. 3A. 図1の加熱調圧気体供給ブロック11を示す断面図である。FIG. 2 is a cross-sectional view showing the heated and pressure-regulated gas supply block 11 of FIG. 1. FIG. 図1の電荷付与ブロック21を示す断面図である。FIG. 2 is a cross-sectional view showing the charge imparting block 21 of FIG. 1. FIG. 図1の分析ブロック25側から見た電荷付与ブロック21の部分断面図である。2 is a partial cross-sectional view of the charge applying block 21 seen from the analysis block 25 side of FIG. 1. FIG. 実施例における他の電荷付与部を示す断面図である。FIG. 7 is a cross-sectional view showing another charge applying section in the example. 図6Aの試料搬送管13を加熱調圧気体供給ブロック11側から見た断面図である。6A is a sectional view of the sample transport tube 13 of FIG. 6A viewed from the heating and pressure regulating gas supply block 11 side. FIG.
 本開示は、液体クロマトグラフ質量分析装置などの分析装置で分析の対象となる液体試料に含まれる成分をイオン化して分析ブロックに導入するためのイオン源及びこのようなイオン源を備えた分析装置に関する。 The present disclosure relates to an ion source for ionizing components contained in a liquid sample to be analyzed in an analyzer such as a liquid chromatograph mass spectrometer and introducing the ion source into an analysis block, and an analyzer equipped with such an ion source. Regarding.
 以下、本開示に係る実施例について、図面を用いて説明する。 Examples according to the present disclosure will be described below with reference to the drawings.
 図1は、実施例の分析装置を示す要部断面図である。 FIG. 1 is a cross-sectional view of the main parts of the analysis device of the example.
 本図に示す分析装置は、液体試料霧化ブロック1(液滴生成部)と、加熱調圧気体供給ブロック11と、電荷付与ブロック21と、分析ブロック25と、を有している。これらは、直列に接続されている。これらのうち、液体試料霧化ブロック1、加熱調圧気体供給ブロック11及び電荷付与ブロック21がイオン源を構成している。イオン源は、細管接続部23を有する接続ブロック22を介して分析ブロック25に接続されている。分析ブロック25の内部は、ほぼ真空の状態(減圧状態)に保たれるようになっている。 The analysis device shown in this figure includes a liquid sample atomization block 1 (droplet generation section), a heating and pressure regulating gas supply block 11, a charge application block 21, and an analysis block 25. These are connected in series. Of these, the liquid sample atomization block 1, the heating and pressure regulating gas supply block 11, and the charge imparting block 21 constitute an ion source. The ion source is connected to an analysis block 25 via a connection block 22 with a capillary connection 23 . The inside of the analysis block 25 is kept in a substantially vacuum state (depressurized state).
 液体試料霧化ブロック1は、薄板状の液体流路板2と、超音波振動付与ユニット3と、を有している。保持体9は液体試料供給側部材9a及び接続部材9b、保持体10は保持体主要部10a及びフランジ状部材10bで構成されている。保持体主要部10aは、略円筒形状である。液体流路板2は、液体試料供給側部材9aと接続部材9bとの間に挟み込まれている。超音波振動付与ユニット3は、先端振動部3a、圧電素子部3b及びねじ筐体3c(圧電素子固定本体)で構成されたボルト締めランジュバン型振動子(BLT)である。保持体主要部10aの内部には、超音波振動付与ユニット3及び整流板4が挿入され固定されている。保持体主要部10aは、液体試料供給側部材9aの貫通孔に挿入されている。 The liquid sample atomization block 1 includes a thin liquid flow path plate 2 and an ultrasonic vibration application unit 3. The holder 9 is composed of a liquid sample supply side member 9a and a connecting member 9b, and the holder 10 is composed of a holder main part 10a and a flange-like member 10b. The holder main portion 10a has a substantially cylindrical shape. The liquid channel plate 2 is sandwiched between the liquid sample supply side member 9a and the connecting member 9b. The ultrasonic vibration imparting unit 3 is a bolted Langevin type transducer (BLT) that includes a tip vibrating section 3a, a piezoelectric element section 3b, and a screw housing 3c (piezoelectric element fixing body). An ultrasonic vibration applying unit 3 and a rectifying plate 4 are inserted and fixed inside the main part 10a of the holder. The main part 10a of the holder is inserted into a through hole of the liquid sample supply side member 9a.
 超音波振動付与ユニット3は、液体流路板2に接するように配置され、保持体主要部10aに取り付けたフランジ状部材10bをばね7(押圧部材)で押すことで、液体流路板2に超音波振動付与ユニット3の先端振動部3aが密着するように構成されている。 The ultrasonic vibration imparting unit 3 is arranged so as to be in contact with the liquid flow path plate 2, and applies pressure to the liquid flow path plate 2 by pushing a flange-like member 10b attached to the main part 10a of the holder with a spring 7 (pressing member). The tip vibrating section 3a of the ultrasonic vibration imparting unit 3 is configured to be in close contact with each other.
 液体試料供給側部材9aには、供給配管5及び排出配管8が接続されている。供給配管5より連続的に供給される試料液体26aは、液体流路板2に供給され、霧化される。そして、霧化されずに余った液体は、残試料液体26cとして排出配管8より排出される。 A supply pipe 5 and a discharge pipe 8 are connected to the liquid sample supply side member 9a. The sample liquid 26a continuously supplied from the supply pipe 5 is supplied to the liquid flow path plate 2 and atomized. The remaining liquid that has not been atomized is discharged from the discharge pipe 8 as the remaining sample liquid 26c.
 フランジ状部材10bには、搬送用気体供給配管6が接続され、搬送用気体27aが保持体主要部10aの内部に供給されるようになっている。搬送用気体27aは、整流板4により略一様な流速分布となり、超音波振動付与ユニット3の周囲を通過し、液体流路板2で発生する液滴とともに加熱調圧気体供給ブロック11に供給される。搬送用気体27aが超音波振動付与ユニット3の側面を通過することにより、超音波振動付与ユニット3の冷却も行うことができる。 A conveying gas supply pipe 6 is connected to the flange-like member 10b, so that the conveying gas 27a is supplied to the inside of the main part 10a of the holder. The transport gas 27a has a substantially uniform flow velocity distribution due to the rectifying plate 4, passes around the ultrasonic vibration applying unit 3, and is supplied to the heating and pressure regulating gas supply block 11 together with droplets generated in the liquid channel plate 2. be done. By passing the transport gas 27a through the side surface of the ultrasonic vibration applying unit 3, the ultrasonic vibration applying unit 3 can also be cooled.
 加熱調圧気体供給ブロック11は、外側管12aと、内側管12bと、試料搬送管13(試料搬送管路)と、断熱・絶縁部材14と、メッシュ板15と、エアヒータ16(気体加熱部)と、調圧手段17(圧力調整部)と、を有している。外側管12aと内側管12bとは、加熱調圧気体供給部本体12を構成し、二重管構造となっている。外側管12aと内側管12bとで形成される環状部は、外殻チャンバ18(加熱調圧気体滞留部)である。 The heating and pressure regulating gas supply block 11 includes an outer pipe 12a, an inner pipe 12b, a sample transport pipe 13 (sample transport pipe), a heat insulating/insulating member 14, a mesh plate 15, and an air heater 16 (gas heating section). and a pressure regulating means 17 (pressure regulating section). The outer tube 12a and the inner tube 12b constitute the heating and pressure regulating gas supply section main body 12, and have a double tube structure. The annular portion formed by the outer tube 12a and the inner tube 12b is an outer shell chamber 18 (heated and pressure-regulated gas retention section).
 外側管12aと試料搬送管13との間には、断熱・絶縁部材14が挟み込まれている。断熱・絶縁部材14は、熱を伝えにくいため、高温度の加熱調圧気体供給ブロック11の熱によって液体試料霧化ブロック1が加熱されないようになっている。また、断熱・絶縁部材14は、電気的絶縁性を有するため、電荷付与ブロック21からの電流を遮断する機能も有する。 A heat insulating/insulating member 14 is sandwiched between the outer tube 12a and the sample transport tube 13. Since the heat insulating/insulating member 14 is difficult to conduct heat, the liquid sample atomization block 1 is prevented from being heated by the heat of the high temperature heating and pressure regulating gas supply block 11. Furthermore, since the heat insulating/insulating member 14 has electrical insulation properties, it also has the function of blocking the current from the charge imparting block 21 .
 試料搬送管13内には、微小液滴26bが搬送用気体27bとともに流れる。微小液滴26b及び搬送用気体27bは、内側管12b内に供給される。 In the sample transport tube 13, the micro droplets 26b flow together with the transport gas 27b. The micro droplets 26b and the transport gas 27b are supplied into the inner tube 12b.
 エアヒータ16は、所定の流量の気体を所定の温度まで加熱し、外殻チャンバ18に加熱気体27cとして供給する。なお、本実施例においては、外殻チャンバ18に供給する気体として窒素ガスを用いている。この場合に用いる気体としては、窒素のほか、アルゴン、ヘリウム等の不活性ガスが望ましい。 The air heater 16 heats a predetermined flow rate of gas to a predetermined temperature and supplies it to the outer shell chamber 18 as heated gas 27c. Note that in this embodiment, nitrogen gas is used as the gas supplied to the outer shell chamber 18. In addition to nitrogen, the gas used in this case is preferably an inert gas such as argon or helium.
 外殻チャンバ18内の圧力は、調圧手段17によって調整され、その圧力が所定値以上となる場合には排出気体流27gが生じるようになっている。 The pressure within the outer shell chamber 18 is regulated by the pressure regulating means 17, and when the pressure exceeds a predetermined value, an exhaust gas flow 27g is generated.
 加熱気体27cは、外殻チャンバ18内及びメッシュ板15を通過し、旋回気流27dとなって内側管12b内に供給され、溶質微粒子26dと合流する。溶質微粒子26dは、微小液滴26bが加熱され、溶媒が気化することにより形成された微粒子である。溶質微粒子26dは、搬送気体27eとともに電荷付与ブロック21に供給される。 The heated gas 27c passes through the outer shell chamber 18 and the mesh plate 15, becomes a swirling airflow 27d, is supplied into the inner tube 12b, and merges with the solute particles 26d. The solute fine particles 26d are fine particles formed by heating the fine droplets 26b and vaporizing the solvent. The solute particles 26d are supplied to the charge imparting block 21 together with the carrier gas 27e.
 電荷付与ブロック21には、ばね19によって張架された放電ワイヤ20が設置されている。搬送気体27eとともに供給される溶質微粒子26dは、放電ワイヤ20に印加される高電圧により発生する放電によりイオン化される。 A discharge wire 20 stretched by a spring 19 is installed on the charge application block 21 . The solute particles 26d supplied together with the carrier gas 27e are ionized by the discharge generated by the high voltage applied to the discharge wire 20.
 分析ブロック25は、筐体24に内蔵された分析ユニット(図示していない。)を含む。電荷付与ブロック21と筐体24との間には、細管接続部23を有する接続ブロック22が挟み込まれている。イオン化された溶質微粒子26dは、搬送気体27eとともに細管接続部23を通過し、筐体24内に供給される。 The analysis block 25 includes an analysis unit (not shown) built into the housing 24. A connection block 22 having a capillary connection portion 23 is sandwiched between the charge application block 21 and the casing 24 . The ionized solute particles 26d pass through the capillary connection part 23 together with the carrier gas 27e, and are supplied into the housing 24.
 なお、液体流路板2から接続ブロック22までの加熱調圧気体供給ブロック11を含む内部領域は、中央の管路から搬送気体流が漏れ出すことを防ぐために、放電ワイヤ20の支持部や給電端子を含めて気密構造としている。 In addition, the internal area including the heating and pressure regulating gas supply block 11 from the liquid flow path plate 2 to the connection block 22 is designed to prevent the carrier gas flow from leaking from the central pipe line. It has an airtight structure including the terminals.
 分析ブロック25に送られた溶質微粒子26dは、イオン化された溶質成分27fとして、分析ブロック25において成分などの分析処理に供される。 The solute particles 26d sent to the analysis block 25 are subjected to component analysis processing in the analysis block 25 as ionized solute components 27f.
 図2Aは、図1の液体流路板2を示す正面図である。 FIG. 2A is a front view showing the liquid flow path plate 2 of FIG. 1.
 液体流路板2は、その内部に液体流路2gを有する。液体流路2gの端部には、液体試料の供給口2f及び排出口2hが設けられている。液体流路2gの中央部には、複数の微細孔を有する微細孔形成部2dが設けられている。微細孔形成部2dの周囲には、搬送気体用貫通孔2eが4つ設けられている。 The liquid flow path plate 2 has a liquid flow path 2g inside thereof. A liquid sample supply port 2f and a discharge port 2h are provided at the end of the liquid flow path 2g. A micropore forming section 2d having a plurality of micropores is provided in the center of the liquid flow path 2g. Four through holes 2e for carrier gas are provided around the micropore forming portion 2d.
 図2Bは、図2Aの液体流路板2をイオン源に設置した状態を示す断面図である。なお、液体流路板2は、他の構成要素の寸法に比べて非常に薄い板状であるため、図2Bにおいては、厚さ方向を拡大して表している。 FIG. 2B is a cross-sectional view showing the liquid flow path plate 2 of FIG. 2A installed in an ion source. Note that since the liquid flow path plate 2 has a plate shape that is very thin compared to the dimensions of the other components, the thickness direction is shown enlarged in FIG. 2B.
 液体流路板2は、3枚の薄板2a、2b、2cを積層して接合した構造をしている。試料液体26aが供給される側の薄板2cには、試料液体26aの供給口2f及び排出口2hが形成されている。供給口2f及び排出口2hはいずれも貫通孔である。中央の薄板2bには、細長い孔が形成されている。この孔は、3枚の薄板2a、2b、2cを積層した状態で液体流路2gを構成する。薄板2aの中央部には、複数の微細孔(貫通孔)が形成された微細孔形成部2dが設けられている。この微細孔は、液体流路2gと薄板2aの外面とを連通している。 The liquid flow path plate 2 has a structure in which three thin plates 2a, 2b, and 2c are laminated and bonded. A supply port 2f and a discharge port 2h for the sample liquid 26a are formed in the thin plate 2c on the side to which the sample liquid 26a is supplied. Both the supply port 2f and the discharge port 2h are through holes. An elongated hole is formed in the central thin plate 2b. This hole constitutes a liquid flow path 2g in a state where three thin plates 2a, 2b, and 2c are laminated. A microhole forming portion 2d in which a plurality of microholes (through holes) are formed is provided in the center of the thin plate 2a. This fine hole communicates the liquid flow path 2g with the outer surface of the thin plate 2a.
 本実施例では、3枚の薄板2a、2b、2cは、厚さ50μmのステンレス鋼製である。これらの3枚の薄板2a、2b、2cを積層して拡散接合することで一体化し、厚さ150μmの液体流路板2とした。拡散接合は、接着剤などを使わない接合法であることから、液体流路板2に溶剤などを含む液体試料を流すことも可能である。 In this embodiment, the three thin plates 2a, 2b, and 2c are made of stainless steel and have a thickness of 50 μm. These three thin plates 2a, 2b, and 2c were stacked and integrated by diffusion bonding to form a liquid channel plate 2 with a thickness of 150 μm. Since diffusion bonding is a bonding method that does not use an adhesive or the like, it is also possible to flow a liquid sample containing a solvent or the like through the liquid flow path plate 2.
 液体流路板2は、液体試料供給側部材9aと接続部材9bとの間に挟み込まれている。液体試料供給側部材9a及び接続部材9bはそれぞれ、中央部に凹部を有し、液体流路板2の中央部とは直接接触しないようになっている。言い換えると、液体試料供給側部材9a及び接続部材9bは、液体流路板2の周縁部を挟持し、液体流路板2を支持している。 The liquid channel plate 2 is sandwiched between the liquid sample supply side member 9a and the connection member 9b. The liquid sample supply side member 9a and the connection member 9b each have a recessed portion in the center so that they do not come into direct contact with the center of the liquid flow path plate 2. In other words, the liquid sample supply side member 9a and the connection member 9b sandwich the peripheral edge of the liquid flow path plate 2 and support the liquid flow path plate 2.
 液体流路板2(薄板2c)の中央部には、超音波振動付与ユニット3の先端振動部3aが押し付けられている。 The tip vibrating part 3a of the ultrasonic vibration imparting unit 3 is pressed against the center of the liquid flow path plate 2 (thin plate 2c).
 液体試料供給側部材9aには、試料液体26aを供給するための貫通孔及び残試料液体26cを排出するための貫通孔が設けられている。試料液体26aを供給するための貫通孔は、薄板2cの供給口2fに接続されている。残試料液体26cを排出するための貫通孔は、薄板2cの排出口2hに接続されている。試料液体26aは、供給口2fを通り、液体流路板2内の液体流路2gに送られる。そして、試料液体26aの一部は、超音波振動付与ユニット3の先端振動部3aから与えられる液体流路板2の厚さ方向の超音波振動により、液体流路2gの途中に設けられた微細孔形成部2dの微細孔から放出され、微小液滴26bとなり、液体流路板2の搬送気体用貫通孔2eを通過した搬送用気体27bとともに図中左方に送られる。搬送用気体27bは、微小液滴26bの流れを取り囲むようにして流れる。言い換えると、微小液滴26bは流路の中心部を流れ、搬送用気体27bは流路の外周部を流れる。 The liquid sample supply side member 9a is provided with a through hole for supplying the sample liquid 26a and a through hole for discharging the remaining sample liquid 26c. The through hole for supplying the sample liquid 26a is connected to the supply port 2f of the thin plate 2c. A through hole for discharging the remaining sample liquid 26c is connected to the discharge port 2h of the thin plate 2c. The sample liquid 26a passes through the supply port 2f and is sent to the liquid channel 2g in the liquid channel plate 2. A part of the sample liquid 26a is caused by the ultrasonic vibration in the thickness direction of the liquid flow path plate 2 applied from the tip vibrating part 3a of the ultrasonic vibration applying unit 3 to a part of the sample liquid 26a. It is released from the fine holes of the hole forming part 2d, becomes minute droplets 26b, and is sent to the left in the figure together with the transport gas 27b that has passed through the transport gas through-hole 2e of the liquid flow path plate 2. The transport gas 27b flows to surround the flow of the micro droplets 26b. In other words, the minute droplets 26b flow in the center of the channel, and the transport gas 27b flows in the outer periphery of the channel.
 試料液体26aの残りは、排出口2hを通り、残試料液体26cとして排出される。 The remainder of the sample liquid 26a passes through the discharge port 2h and is discharged as a remaining sample liquid 26c.
 このような構造とすることで、連続的に供給される試料液体26aの種類が変更される場合であっても、液体流路2gを流れる試料液体26aが混ざり合うことなく、試料液体26aの種類の切り替わりに応じて連続した微小液滴化を実現している。 With this structure, even if the type of sample liquid 26a that is continuously supplied is changed, the sample liquid 26a flowing through the liquid flow path 2g will not mix, and the type of sample liquid 26a will change. Continuous formation of micro droplets is realized in response to the switching of the droplets.
 微小液滴26bは、搬送用気体27bに取り囲まれるようにして流れるため、図1に示すように加熱調圧気体供給ブロック11に向かって安定して搬送される。 Since the minute droplets 26b flow while being surrounded by the transporting gas 27b, they are stably transported toward the heating and pressure regulating gas supply block 11 as shown in FIG.
 図3Aは、図2Aの微細孔形成部2dを示す部分拡大図である。 FIG. 3A is a partially enlarged view showing the micropore forming part 2d in FIG. 2A.
 図3Aにおいては、微細孔形成部2dに設けられた多数の微細孔が点状に示されている。また、液体流路板2の内部の液体流路2g及び液体流路板2の裏面に接触している先端振動部3aが点線で示されている。 In FIG. 3A, a large number of micropores provided in the micropore forming portion 2d are shown in a dotted manner. Further, the liquid flow path 2g inside the liquid flow path plate 2 and the tip vibrating portion 3a that is in contact with the back surface of the liquid flow path plate 2 are shown by dotted lines.
 図3Bは、図3Aに示す部分の縦断面図である。 FIG. 3B is a longitudinal cross-sectional view of the portion shown in FIG. 3A.
 図3Bにおいては、3枚の薄板2a、2b、2cが積層された構成、薄板2cに接触している先端振動部3a、及び薄板2aに形成された微細孔形成部2dの多数の微細孔が示されている。言い換えると、微細孔形成部2dが設けられている液体流路板2の反対側の面に超音波振動付与ユニット3の先端振動部3aが接触している。 In FIG. 3B, a configuration in which three thin plates 2a, 2b, and 2c are stacked, a tip vibrating section 3a in contact with the thin plate 2c, and a large number of micropores in a micropore forming section 2d formed in the thin plate 2a are shown. It is shown. In other words, the tip vibrating section 3a of the ultrasonic vibration imparting unit 3 is in contact with the opposite surface of the liquid flow path plate 2 where the micropore forming section 2d is provided.
 図2Bに示す微小液滴26bの直径は、超音波振動周波数と微細孔の直径の影響を受ける。本実施例では、数μm程度の微小液滴26bを形成するために、超音波振動の周波数を約150kHz、微細孔の最狭部の直径を4μmとした。その結果、直径4~6μmの液滴を形成することができた。直径10μm以上の液滴はほとんどなく、直径20μm以上の液滴は全く観測されなかった。 The diameter of the microdroplet 26b shown in FIG. 2B is influenced by the ultrasonic vibration frequency and the diameter of the micropore. In this example, in order to form minute droplets 26b of approximately several micrometers, the frequency of the ultrasonic vibration was set to about 150 kHz, and the diameter of the narrowest part of the micropores was set to 4 micrometers. As a result, droplets with a diameter of 4 to 6 μm could be formed. There were almost no droplets with a diameter of 10 μm or more, and no droplets with a diameter of 20 μm or more were observed.
 この実験結果から、数μm程度の微小液滴を形成するためには、数百kHz程度の周波数での加振と最狭部直径が数μm以下の微細孔を形成することが必要であることがわかった。 From this experimental result, in order to form microdroplets of approximately several μm in size, it is necessary to excite at a frequency of approximately several hundred kHz and to form micropores with a narrowest diameter of several μm or less. I understand.
 また、このような微細孔の形成には、レーザ加工や電鋳などの方法が利用可能であるが、本実施例では、微細孔の数が多いこと、素材としてステンレス鋼を選定した点、さらにはコストを考慮して、YAGレーザ加工を利用した。 In addition, methods such as laser machining and electroforming can be used to form such micropores, but in this example, the number of micropores is large, stainless steel was selected as the material, and took cost into consideration and used YAG laser processing.
 多くの加工方法において、このような微細加工では、厚さ方向で穴の直径に差が生じる。本実施例におけるYAGレーザによる微細孔の加工では、直径4μmの微細孔を形成した際の照射側の穴径は数十μm程度であった。本実施例の薄板2aでは、表面側の微細孔の径を約4μmとしている。これは、検討の結果、流路側の直径が大きく、表面側の直径が小さいほうが、液が霧状に放出されやすく、かつ、流路板の表面に液玉が発生しにくかったためである。流路板の表面側に、液玉が発生すると、液の放出が不安定になってしまう。 In many processing methods, such micromachining results in a difference in hole diameter in the thickness direction. In the microhole processing using the YAG laser in this example, when a microhole with a diameter of 4 μm was formed, the diameter of the hole on the irradiation side was about several tens of μm. In the thin plate 2a of this embodiment, the diameter of the micropores on the surface side is approximately 4 μm. This is because, as a result of study, it was found that the larger the diameter on the channel side and the smaller the diameter on the surface side, the easier the liquid would be released in the form of mist, and the more difficult it would be for liquid beads to form on the surface of the channel plate. If liquid beads occur on the surface side of the channel plate, the liquid discharge becomes unstable.
 また、図2Bに示す微小液滴26bは、初速度が遅く液滴径も小さいことから、搬送用気体27bの流量が少ない場合でも安定に微小液滴26bの搬送を実現できる。 Further, since the micro droplet 26b shown in FIG. 2B has a slow initial velocity and a small droplet diameter, stable transport of the micro droplet 26b can be achieved even when the flow rate of the transport gas 27b is small.
 本実施例では、1L/minの窒素ガスを搬送用気体27bとして用い、図1に示す試料搬送管13内を1m/s程度の搬送速度で、微小液滴26bの安定搬送を実現している。 In this embodiment, 1 L/min of nitrogen gas is used as the transport gas 27b, and the micro droplets 26b are stably transported within the sample transport tube 13 shown in FIG. 1 at a transport speed of about 1 m/s. .
 なお、本実施例においては、液滴生成部は、板状部材である液体流路板2を有する構成としているが、本開示に係る液滴生成部は、これに限定されるものではなく、配管の内部に液体流路が形成された構成であってもよい。 Note that in this embodiment, the droplet generation section has a liquid flow path plate 2 that is a plate-like member, but the droplet generation section according to the present disclosure is not limited to this. A structure in which a liquid flow path is formed inside the piping may also be used.
 また、本実施例においては、液滴生成部は、超音波振動付与ユニット3により液滴を生成する構成としているが、本開示に係る液滴生成部は、これに限定されるものではなく、ガススプレー法等により液滴を生成する構成であってもよい。 Further, in this embodiment, the droplet generation unit is configured to generate droplets using the ultrasonic vibration imparting unit 3, but the droplet generation unit according to the present disclosure is not limited to this. The structure may be such that droplets are generated by a gas spray method or the like.
 図4は、図1の加熱調圧気体供給ブロック11を示す断面図である。 FIG. 4 is a sectional view showing the heating and pressure regulating gas supply block 11 of FIG. 1.
 図4においては、エアヒータ16および調圧手段17の中心軸を通る断面を示し、図1に示す微小液滴26bが搬送される方向は、図面に対して垂直となっている。 FIG. 4 shows a cross section passing through the central axes of the air heater 16 and the pressure regulating means 17, and the direction in which the micro droplets 26b shown in FIG. 1 are conveyed is perpendicular to the drawing.
 図4に示すように、エアヒータ16から供給される加熱気体27cは、外側管12aの内側の外殻チャンバ18を流れ、内側管12bの周囲を旋回する気流27hとなる。 As shown in FIG. 4, the heated gas 27c supplied from the air heater 16 flows through the outer shell chamber 18 inside the outer tube 12a, and becomes an airflow 27h that swirls around the inner tube 12b.
 気体は、加熱によって体積が大きく変化する。エアヒータ16から供給される加熱気体27cの体積変化が生じると、外殻チャンバ18内の圧力が変化する。本実施例では、外殻チャンバ18に調圧手段17が配置することで、エアヒータ16から供給される加熱気体の体積に変化が生じても、外殻チャンバ18内の圧力が変化しないように構成した。本実施例の調圧手段17は、内圧が所定の圧力になると、バルブが開放する部品を利用した。調圧手段17を設けることで、エアヒータ16から外側管12a内に供給される気流27hの圧力が所定の値まで上昇した場合に、調圧手段17から外殻チャンバ18内の気体の一部が排出される。これにより、外殻チャンバ18内の加熱気体の圧力を一定に保持することが可能である。 The volume of gas changes significantly when it is heated. When the volume of the heated gas 27c supplied from the air heater 16 changes, the pressure inside the outer shell chamber 18 changes. In this embodiment, the pressure regulating means 17 is arranged in the outer shell chamber 18, so that even if the volume of the heated gas supplied from the air heater 16 changes, the pressure inside the outer shell chamber 18 does not change. did. The pressure regulating means 17 of this embodiment utilizes a component that opens a valve when the internal pressure reaches a predetermined pressure. By providing the pressure regulating means 17, when the pressure of the airflow 27h supplied from the air heater 16 into the outer tube 12a rises to a predetermined value, part of the gas in the outer shell chamber 18 is removed from the pressure regulating means 17. It is discharged. Thereby, it is possible to maintain the pressure of the heated gas in the outer shell chamber 18 constant.
 外殻チャンバ18内の加熱調圧された気流27hは、メッシュ板15を通過し、内側管12bに供給される。旋回気流27dは、内側管12bの内部の外周部から導入され、図1に示す試料搬送管13から搬送される微小液滴26b及び搬送用気体27bを、旋回しながら包み込むように、内側管12b内に流入する。 The heated and pressure-regulated airflow 27h in the outer shell chamber 18 passes through the mesh plate 15 and is supplied to the inner tube 12b. The swirling airflow 27d is introduced from the outer periphery of the inside of the inner tube 12b, and swirls around the inner tube 12b to envelop the minute droplets 26b and the carrier gas 27b that are transferred from the sample transfer tube 13 shown in FIG. flow inside.
 本実施例においては、内側管12bの内径は、試料搬送管13の内径より大きくしている。 In this embodiment, the inner diameter of the inner tube 12b is larger than the inner diameter of the sample transport tube 13.
 これは、次の理由による。 This is due to the following reasons.
 旋回気流27dと微小液滴26bとを含む搬送用気体27bが合流することにより、内側管12bの内部の気体流速が速くなることを防止するためである。気体流速が速くなると、旋回気流27dと微小液滴26bを含む搬送用気体27bとが混合するために必要な距離や、微小液滴26bの溶媒が気化する時間の確保を考慮し、流路長を長くする必要がある。 This is to prevent the gas flow rate inside the inner tube 12b from increasing due to the merging of the swirling airflow 27d and the transporting gas 27b containing the minute droplets 26b. When the gas flow rate increases, the flow path length is adjusted in consideration of the distance required for the swirling airflow 27d and the transport gas 27b containing the microdroplets 26b to mix, and the time required for the solvent of the microdroplets 26b to vaporize. need to be made longer.
 流路を長くすると、装置が大型化するだけでなく、搬送用気体27bに含まれる微小液滴26bやその溶質成分が、内側管12bの内壁面と接触する可能性が増加する。分析対象となる微小液滴26bに含まれる溶質成分は、高温の内側管12bの内壁面に接触すると焼失してしまう。 If the flow path is lengthened, not only will the device become larger, but the possibility that the minute droplets 26b and their solute components contained in the transport gas 27b will come into contact with the inner wall surface of the inner tube 12b increases. The solute components contained in the minute droplets 26b to be analyzed are burned out when they come into contact with the inner wall surface of the high-temperature inner tube 12b.
 溶質成分等の焼失は、後から送られてくる別の液体試料に含まれる成分とのコンタミネーションを防止する意味では有効であるが、分析ブロックに導入できる溶質成分の量が減少してしまう問題が生じる。 Burning out solute components is effective in preventing contamination with components contained in other liquid samples sent later, but the problem is that the amount of solute components that can be introduced into the analysis block is reduced. occurs.
 よって、内側管12bの内径を試料搬送管13の内径より大きくしている。 Therefore, the inner diameter of the inner tube 12b is made larger than the inner diameter of the sample transport tube 13.
 本実施例においては、内側管12bの内径を試料搬送管13の内径より大きくするとともに、調圧手段17により加熱気体の圧力を所定の範囲に保つことにより、旋回気流27dと搬送用気体27bとの合流に伴う気流の変化を抑制している。 In this embodiment, the inner diameter of the inner tube 12b is made larger than the inner diameter of the sample transport tube 13, and the pressure of the heated gas is maintained within a predetermined range by the pressure regulating means 17, so that the swirling airflow 27d and the transporting gas 27b are This suppresses changes in airflow caused by the merging of air.
 また、内側管12bに供給する旋回気流27dを緩やかな流れとし、搬送用気体27bの周囲から旋回しながら包み込むようにすることで、より多くの溶質成分を分析ブロックに導入できるようにしている。 Furthermore, by making the swirling airflow 27d supplied to the inner tube 12b a gentle flow so that it swirls around and wraps around the transport gas 27b, more solute components can be introduced into the analysis block.
 このように、加熱気体を調圧した後に内側管12bに供給することにより、内側管12bの圧力も所定の範囲に保たれ、この状態で微小液滴26bに含まれる溶媒を加熱し気化することができる。 In this way, by supplying the heated gas to the inner tube 12b after adjusting the pressure, the pressure of the inner tube 12b is also maintained within a predetermined range, and in this state, the solvent contained in the micro droplets 26b is heated and vaporized. Can be done.
 つぎに、本実施例の電荷付与部について説明する。 Next, the charge applying section of this embodiment will be explained.
 図5Aは、図1の電荷付与ブロック21を示す断面図である。 FIG. 5A is a cross-sectional view showing the charge applying block 21 of FIG. 1.
 図5Aに示す構成は、図1に示しているため、ここでは説明を省略する。 The configuration shown in FIG. 5A is shown in FIG. 1, so its description will be omitted here.
 図5Bは、図1の分析ブロック25側から見た電荷付与ブロック21の部分断面図である。 FIG. 5B is a partial cross-sectional view of the charge applying block 21 seen from the analysis block 25 side in FIG. 1.
 図5A及び5Bはいずれも、放電ワイヤ20が張架されている位置を含む断面を示している。 Both FIGS. 5A and 5B show a cross section including a position where the discharge wire 20 is stretched.
 図5Bにおいては、接続ブロック22の部分は、正面から見た図となっている。分析ブロックにつながる細管接続部23(微細孔)は、接続ブロック22の中央部に設けられている。細管接続部23の内径(直径)は、試料搬送管路の下流端部の内径の5分の1以下であることが望ましく、10分の1以下であることが更に望ましい。実際の寸法としては、細管接続部23の内径は、1mm以下が望ましく、100μm以下が更に望ましい。 In FIG. 5B, the connection block 22 is shown as viewed from the front. A capillary connection portion 23 (microhole) connected to the analysis block is provided in the center of the connection block 22. The inner diameter (diameter) of the capillary connecting portion 23 is desirably one-fifth or less of the inner diameter of the downstream end of the sample transport channel, and more desirably one-tenth or less. In terms of actual dimensions, the inner diameter of the capillary connecting portion 23 is preferably 1 mm or less, more preferably 100 μm or less.
 電荷付与ブロック21の中央部に設けられた管路穴には、放電ワイヤ20が横断するように張架されている。電荷付与ブロック21は、絶縁性の材料で構成されている。放電ワイヤ20は、これを張架するためのばね19と給電端子とが配置されている。 A discharge wire 20 is stretched across the conduit hole provided in the center of the charge applying block 21. The charge applying block 21 is made of an insulating material. A spring 19 and a power supply terminal for tensioning the discharge wire 20 are arranged.
 放電ワイヤ20には、高圧電源28が接続されている。高圧電源28により放電ワイヤ20に高電圧を印加することで、放電ワイヤ20と接続ブロック22との間に電位差を与え、コロナ放電を発生させる。コロナ放電で発生した正イオンや電子によって、搬送気体中の溶質成分に電荷を付与することができる。高圧電源28の電流や極性は、溶質成分に合わせて制御する。 A high voltage power source 28 is connected to the discharge wire 20. By applying a high voltage to the discharge wire 20 by the high voltage power supply 28, a potential difference is applied between the discharge wire 20 and the connection block 22, and corona discharge is generated. Positive ions and electrons generated by corona discharge can impart charges to solute components in the carrier gas. The current and polarity of the high voltage power supply 28 are controlled according to the solute components.
 電荷が付与された溶質成分を含む搬送気体27eは、接続ブロック22に設けられた細管接続部23を通って、筐体24の内部に溶質成分27fとして供給される。筐体24内はほぼ真空状態に保たれており、細管接続部23を通過する搬送気体27eの量は、搬送管路内の搬送気体27eの圧力の影響を受ける。 The carrier gas 27e containing the charged solute component is supplied to the inside of the casing 24 as a solute component 27f through the capillary connection section 23 provided in the connection block 22. The inside of the casing 24 is maintained in a substantially vacuum state, and the amount of the carrier gas 27e passing through the capillary connection portion 23 is affected by the pressure of the carrier gas 27e in the carrier conduit.
 本実施例では、搬送管路内の搬送気体27eの圧力と流量が安定的に所定条件となる構造とすることで、搬送管路内の溶質成分(イオン)を含む搬送気体27eを、ほぼすべて筐体24の内部に供給できる。これを実現するために、加熱調圧気体供給ブロック11に調圧手段17を設けている。 In this embodiment, by adopting a structure in which the pressure and flow rate of the carrier gas 27e in the carrier pipeline stably meet predetermined conditions, almost all of the carrier gas 27e containing solute components (ions) in the carrier pipeline is removed. It can be supplied inside the casing 24. In order to realize this, a pressure regulating means 17 is provided in the heating and pressure regulating gas supply block 11.
 つぎに、本実施例における設定条件の一例を説明する。 Next, an example of setting conditions in this embodiment will be explained.
 外気圧力がほぼ大気圧の条件下で、接続ブロック22の細管接続部23を通過する搬送気体27eの量は、約7L/minである。そこで、液体試料霧化ブロック1から供給する搬送気体ガスの流量を約1L/minとし、加熱調圧気体供給ブロック11から供給される旋回気流27dの流量を約6L/minとなるように設定する。実際の設定の一例としては、加熱調圧気体供給ブロック11の外殻チャンバ18に、エアヒータ16から約6L/minより若干多めの加熱気体を供給し、調圧手段17のリーク圧力を1気圧(大気圧)に設定する。 Under conditions where the outside air pressure is approximately atmospheric pressure, the amount of carrier gas 27e passing through the thin tube connection portion 23 of the connection block 22 is approximately 7 L/min. Therefore, the flow rate of the carrier gas supplied from the liquid sample atomization block 1 is set to approximately 1 L/min, and the flow rate of the swirling airflow 27d supplied from the heating and pressure regulating gas supply block 11 is set to approximately 6 L/min. . As an example of an actual setting, slightly more heated gas than about 6 L/min is supplied from the air heater 16 to the outer shell chamber 18 of the heating and pressure regulating gas supply block 11, and the leak pressure of the pressure regulating means 17 is set to 1 atm ( (atmospheric pressure).
 このように設定することで、管路を流れる搬送気体27eの圧力は、概ね大気圧となり、接続ブロック22の細管接続部23を通過する搬送気体27eの量とバランスが取れる量だけが、加熱調圧気体供給ブロック11の外殻チャンバ18から内側管路に旋回気流27dとして供給されることになる。 With this setting, the pressure of the carrier gas 27e flowing through the pipe becomes approximately atmospheric pressure, and only the amount that can be balanced with the amount of the carrier gas 27e passing through the thin tube connection part 23 of the connection block 22 is heated. The gas is supplied from the outer shell chamber 18 of the pressurized gas supply block 11 to the inner pipe line as a swirling airflow 27d.
 本実施例の構造では、上記したように、液体試料霧化ブロック1で霧化された試料液体を含む気体流およびそれを加熱気化する気体流を、安定的にすべて分析ブロックに導入することが可能である。これによって、多くの液体試料に含まれる溶質成分を分析ブロックに導入できることから、分析装置の大幅な感度向上が可能となる。 In the structure of this embodiment, as described above, it is possible to stably introduce all of the gas flow containing the sample liquid atomized in the liquid sample atomization block 1 and the gas flow for heating and vaporizing it into the analysis block. It is possible. This allows solute components contained in many liquid samples to be introduced into the analysis block, making it possible to significantly improve the sensitivity of the analyzer.
 つぎに、本実施例における他の電荷付与部について説明する。 Next, other charge applying parts in this embodiment will be explained.
 上述のとおり、図5A及び5Bに示す電荷付与部は、加熱調圧気体供給ブロック11で液滴試料の溶媒成分を蒸発気化させた後に、電荷付与ブロック21で溶質成分にコロナイオンを照射してイオン化するものである。 As described above, the charge imparting section shown in FIGS. 5A and 5B evaporates the solvent component of the droplet sample in the heating and pressure regulating gas supply block 11, and then irradiates the solute component with corona ions in the charge imparting block 21. It ionizes.
 現行の質量分析装置のイオン源では、図5A及び5Bに示す電荷付与ブロック21のように溶媒成分を完全に気化させた溶質成分に電荷を付与するもののほかに、微小液滴形成直後に液滴に電荷を付与する方法も用いられる。これらの方法は、それぞれ、大気圧化学イオン化法(APCI)、エレクトロスプレー法(ESI)と呼ばれている。これらの2つの方法は、分析する溶質成分の分子量などの特性により分析感度などに差があるために、溶質成分の種類などで使い分けられている。 In the ion source of current mass spectrometers, in addition to the charge imparting block 21 shown in FIGS. 5A and 5B that imparts a charge to the solute component after completely vaporizing the solvent component, the ion source of the current mass spectrometer also charges the solute component by completely vaporizing the solvent component. A method of imparting a charge to is also used. These methods are called atmospheric pressure chemical ionization (APCI) and electrospray (ESI), respectively. These two methods have different analytical sensitivities depending on the molecular weight and other characteristics of the solute component to be analyzed, so they are used differently depending on the type of solute component.
 本実施例においても、溶媒気化後の溶質成分に電荷を付与する図5A及び5Bに示す電荷付与部とともに、微小液滴形成直後に液滴に電荷を付与する電荷付与部を設けることが望ましい。 In this example as well, it is desirable to provide a charge applying unit that applies an electric charge to the droplet immediately after the formation of micro droplets, in addition to the charge applying unit shown in FIGS. 5A and 5B that applies an electric charge to the solute component after solvent vaporization.
 図6Aは、本実施例における他の電荷付与部を示す断面図である。 FIG. 6A is a cross-sectional view showing another charge applying section in this example.
 本図においては、図1に示す加熱調圧気体供給ブロック11の入口である試料搬送管13に電荷付与部を配置している。液体試料霧化ブロック1の液体流路板2の保持体9である液体試料供給側部材9aを導電性材料で構成し、接続部材9bを絶縁性材料で構成している。また、試料搬送管13は、導電性材料で構成され、加熱調圧気体供給ブロック11側とは断熱・絶縁部材14を介して接続されている。 In this figure, a charge applying section is arranged in the sample transport tube 13, which is the inlet of the heating and pressure regulating gas supply block 11 shown in FIG. The liquid sample supply side member 9a, which is the holder 9 of the liquid flow path plate 2 of the liquid sample atomization block 1, is made of a conductive material, and the connection member 9b is made of an insulating material. Further, the sample transport tube 13 is made of a conductive material, and is connected to the heating and pressure regulating gas supply block 11 side via a heat insulating/insulating member 14 .
 そして、試料搬送管13と液体試料供給側部材9aとの間には、電圧を印加する正負両極付与可能な可変電源29を配置した。液体試料供給側部材9aは、液体流路板2と電気的に接触している。これにより、試料液滴を放出する液体流路板2の表面と試料搬送管13との間に電界を生じさせることができる。 A variable power source 29 capable of applying both positive and negative polarities for applying voltage was arranged between the sample transport tube 13 and the liquid sample supply side member 9a. The liquid sample supply side member 9a is in electrical contact with the liquid flow path plate 2. Thereby, an electric field can be generated between the surface of the liquid flow path plate 2 from which sample droplets are discharged and the sample transport tube 13.
 電界が生じている液体流路板2から放出される試料液滴にも電界が生じることから、形成される液滴に電荷が付与される。この液滴への電荷付与作用は、現行のエレクトロスプレー法と同じである。つまり、本開示の薄板状の液体流路板2を超音波振動させる液滴霧化の構成においても、エレクトロスプレー法と同等の液滴への電荷付与を実現することが可能である。 Since an electric field is also generated in the sample droplet discharged from the liquid flow path plate 2 where an electric field is generated, an electric charge is imparted to the formed droplet. This action of imparting a charge to the droplets is the same as in the current electrospray method. In other words, even in the configuration of droplet atomization in which the thin liquid flow path plate 2 of the present disclosure is vibrated ultrasonically, it is possible to realize charging of droplets equivalent to that of the electrospray method.
 図6Bは、図6Aの試料搬送管13を加熱調圧気体供給ブロック11側から見た断面図である。 FIG. 6B is a sectional view of the sample transport tube 13 in FIG. 6A viewed from the heating and pressure regulating gas supply block 11 side.
 図6Bにおいては、液体流路板2の表面に電界を生じさせるための電極として、試料搬送管13の壁面ではなく、試料搬送管13の流路内に電線61を配置している。電線61は、120度間隔で3本がY字形状(放射状)に設けられている。 In FIG. 6B, as an electrode for generating an electric field on the surface of the liquid flow path plate 2, an electric wire 61 is arranged not on the wall surface of the sample transport tube 13 but within the flow path of the sample transport tube 13. Three electric wires 61 are provided in a Y-shape (radially) at intervals of 120 degrees.
 これにより、液体流路板2の表面に生じる電界の方向が、試料搬送管13内を流れる搬送用気体27bの方向とより一致する。これによって、電荷を付与された微小液滴26bの進行方向が安定し、微小液滴26bが試料搬送管13の壁面などに衝突することを防止し、微小液滴26bの消失量を低減することができる。その結果、より多くの微小液滴26bが加熱調圧気体供給ブロック11側に供給される。 As a result, the direction of the electric field generated on the surface of the liquid flow path plate 2 more closely matches the direction of the transport gas 27b flowing inside the sample transport tube 13. This stabilizes the traveling direction of the charged microdroplet 26b, prevents the microdroplet 26b from colliding with the wall surface of the sample transport tube 13, and reduces the amount of the microdroplet 26b lost. Can be done. As a result, more micro droplets 26b are supplied to the heating and pressure regulating gas supply block 11 side.
 図6A及び6Bに示す構成により液体流路板2から放出される微小液滴26bに溶媒を含む状態で電荷を付与する場合は、図5A及び5Bに示すコロナイオンによる電荷付与は必要ない。 When applying an electric charge to the micro droplets 26b discharged from the liquid flow path plate 2 in a state containing a solvent using the configuration shown in FIGS. 6A and 6B, it is not necessary to apply an electric charge using the corona ions shown in FIGS. 5A and 5B.
 図5A及び5Bに示すコロナイオンによる電荷付与と図6A及び6Bに示す液滴形成時における電荷付与とを切替える制御をすることにより、一つのイオン源において2種類の電荷付与手段を選択して適切に実施することができる。 By controlling to switch between charge application by corona ions shown in FIGS. 5A and 5B and charge application during droplet formation shown in FIGS. 6A and 6B, two types of charge application means can be selected in one ion source and appropriate. can be implemented.
 以上説明したように、本開示のイオン源は、微小液滴を搬送する気体流や溶媒気化するための加熱気体流の量を少なく抑え、適正に制御できる。このため、本開示のイオン源を備える分析装置は、試料液体に含まれる溶質成分の多くを分析ブロックに導入でき、分析装置の大幅な感度向上が可能となる。 As explained above, the ion source of the present disclosure can suppress and appropriately control the amount of the gas flow for transporting minute droplets and the heated gas flow for vaporizing the solvent. Therefore, the analyzer equipped with the ion source of the present disclosure can introduce many of the solute components contained in the sample liquid into the analysis block, and the sensitivity of the analyzer can be significantly improved.
 本開示により、生成した溶質成分イオンの多くを質量分析装置に導入可能な新たなイオン源を提供するとともに、該イオン源を用いた分析感度の高い質量分析装置を提供することができる。 According to the present disclosure, it is possible to provide a new ion source that can introduce many of the generated solute component ions into a mass spectrometer, and to provide a mass spectrometer with high analysis sensitivity using the ion source.
 以下、本開示に係る望ましい実施形態についてまとめて説明する。 Hereinafter, preferred embodiments according to the present disclosure will be collectively described.
 イオン源においては、液滴生成部は、超音波振動付与ユニットを有し、超音波振動付与ユニットにより液滴が生成される構成を有する。 In the ion source, the droplet generation section includes an ultrasonic vibration application unit, and has a configuration in which droplets are generated by the ultrasonic vibration application unit.
 液滴生成部は、配管又は板状部材の内部に形成された液体流路を有し、配管又は板状部材は、その外部と液体流路とを連通する微細孔を有し、超音波振動付与ユニットは、液体流路に流れる液体試料に超音波振動を付与するように構成され、液滴は、微細孔から放出される。 The droplet generating section has a liquid flow path formed inside a pipe or a plate-like member, and the pipe or plate-like member has micropores communicating the outside and the liquid flow path, and The application unit is configured to apply ultrasonic vibrations to the liquid sample flowing through the liquid channel, and droplets are ejected from the micropores.
 液滴生成部は、液滴が試料搬送管路の中心部に流入し、搬送用気体が液滴の流れを取り囲むように試料搬送管路に流入する構成を有する。 The droplet generation section has a configuration in which droplets flow into the center of the sample transport channel, and transport gas flows into the sample transport channel so as to surround the flow of the droplets.
 加熱調圧気体滞留部から試料搬送管路に導入される所定の気体は、液滴及び搬送用気体の流れを取り囲むように流入する構成を有する。 The predetermined gas introduced from the heating and pressure regulating gas retention section into the sample transport pipe has a configuration in which it flows in so as to surround the droplets and the flow of the transport gas.
 試料搬送管路は、所定の気体が流入する位置より下流側では、その上流側よりも流路断面積が広い。試料搬送管路の流路断面が円形である場合は、所定の気体が流入する位置より下流側では、流路断面の内径が上流側よりも下流側で大きい。 The sample transport channel has a wider cross-sectional area on the downstream side of the position where the predetermined gas flows in than on the upstream side. When the cross section of the sample transport conduit is circular, the inner diameter of the cross section of the flow path is larger on the downstream side than on the upstream side on the downstream side of the position where the predetermined gas flows.
 電荷付与部は、分析ブロックと加熱調圧気体供給ブロックとの間に配置されるように構成されている。 The charge applying section is configured to be placed between the analysis block and the heating and pressure regulating gas supply block.
 電荷付与部は、加熱調圧気体供給ブロックと液滴生成部との間に配置されている。 The charge applying section is arranged between the heating and pressure regulating gas supply block and the droplet generating section.
 分析装置は、イオン源と、分析ブロックと、を備える。 The analysis device includes an ion source and an analysis block.
 イオン源と分析ブロックとは、細管接続部により接続され、イオン化された溶質成分は、細管接続部を通って分析ブロックに供給される。 The ion source and the analysis block are connected by a capillary connection, and the ionized solute component is supplied to the analysis block through the capillary connection.
 1:液体試料霧化ブロック、2:液体流路板、2a、2b、2c:薄板、2d:微細孔形成部、2e:搬送気体用貫通孔、2f:供給口、2g:液体流路、2h:排出口、3:超音波振動付与ユニット、3a:先端振動部、3b:圧電素子部、3c:ねじ筐体、4:整流板、5:供給配管、6:搬送用気体供給配管、7:ばね、8:排出配管、9保持体、9a:液体試料供給側部材、9b:接続部材、10:保持体、10a:保持体主要部、10b:フランジ状部材、11:加熱調圧気体供給ブロック、12:加熱調圧気体供給部本体、12a:外側管、12b:内側管、13:試料搬送管、14:断熱・絶縁部材、15:メッシュ板、16:エアヒータ、17:調圧手段、18:外殻チャンバ、19:ばね、20:放電ワイヤ、21:電荷付与ブロック、22:接続ブロック、23:細管接続部、24:筐体、25:分析ブロック、26a:試料液体、26b:微小液滴、26c:残試料液体、26d:溶質微粒子、27a、27b:搬送用気体、27c:加熱気体、27d:旋回気流、27e:搬送気体、27f:溶質成分、27g:排出気体流、27h:気流、28:高圧電源、29:可変電源、61:電線。 1: Liquid sample atomization block, 2: Liquid channel plate, 2a, 2b, 2c: Thin plate, 2d: Fine hole forming section, 2e: Through hole for carrier gas, 2f: Supply port, 2g: Liquid channel, 2h : Discharge port, 3: Ultrasonic vibration imparting unit, 3a: Tip vibrating section, 3b: Piezoelectric element section, 3c: Screw housing, 4: Current plate, 5: Supply piping, 6: Conveying gas supply piping, 7: Spring, 8: Discharge piping, 9 Holding body, 9a: Liquid sample supply side member, 9b: Connection member, 10: Holding body, 10a: Main part of holding body, 10b: Flange-like member, 11: Heating and pressure regulating gas supply block , 12: Main body of heating and pressure regulating gas supply unit, 12a: Outer tube, 12b: Inner tube, 13: Sample transport tube, 14: Heat insulation/insulating member, 15: Mesh plate, 16: Air heater, 17: Pressure regulating means, 18 : Outer shell chamber, 19: Spring, 20: Discharge wire, 21: Charge imparting block, 22: Connection block, 23: Capillary connection part, 24: Housing, 25: Analysis block, 26a: Sample liquid, 26b: Microfluid drop, 26c: remaining sample liquid, 26d: solute particles, 27a, 27b: transport gas, 27c: heating gas, 27d: swirling air flow, 27e: transport gas, 27f: solute component, 27g: exhaust gas flow, 27h: air flow , 28: High voltage power supply, 29: Variable power supply, 61: Electric wire.

Claims (10)

  1.  溶質成分を含む液体試料を分析する分析ブロックに前記溶質成分のイオンを供給するイオン源であって、
     前記液体試料の液滴を生成する液滴生成部と、
     前記液滴生成部から前記液滴を伴って流入する搬送用気体を加熱する加熱調圧気体供給ブロックと、
     前記溶質成分に電荷を付与しイオン化する電荷付与部と、を備え、
     前記加熱調圧気体供給ブロックは、
      前記分析ブロックと前記液滴生成部との間に配置される試料搬送管路と、
      前記試料搬送管路に伝熱可能に接触した構成を有する加熱調圧気体滞留部と、
      所定の気体を所定の温度まで加熱する気体加熱部と、
      前記所定の気体の圧力を所定の範囲に保つ圧力調整部と、を含み、
     前記液滴及び前記搬送用気体は、加熱された前記所定の気体により加熱され、
     前記試料搬送管路には、前記液滴生成部から前記液滴及び前記搬送用気体が供給され、前記加熱調圧気体滞留部から加熱された前記所定の気体が導入されるように構成されている、イオン源。
    An ion source that supplies ions of solute components to an analysis block that analyzes a liquid sample containing solute components,
    a droplet generation unit that generates droplets of the liquid sample;
    a heating and pressure regulating gas supply block that heats the transport gas that flows in from the droplet generating section with the droplets;
    a charge imparting unit that imparts a charge to the solute component and ionizes the solute component;
    The heating and pressure regulating gas supply block is
    a sample transport conduit arranged between the analysis block and the droplet generation section;
    a heated and pressure-regulated gas retention section configured to be in contact with the sample transport conduit in a heat-transferable manner;
    a gas heating section that heats a predetermined gas to a predetermined temperature;
    a pressure adjustment unit that maintains the pressure of the predetermined gas within a predetermined range;
    The droplets and the transport gas are heated by the heated predetermined gas,
    The sample transport conduit is configured such that the droplets and the transport gas are supplied from the droplet generation section, and the predetermined heated gas is introduced from the heating and pressure regulating gas retention section. There is an ion source.
  2.  前記液滴生成部は、超音波振動付与ユニットを有し、
     前記超音波振動付与ユニットにより前記液滴が生成される構成を有する、請求項1記載のイオン源。
    The droplet generation unit includes an ultrasonic vibration applying unit,
    The ion source according to claim 1, wherein the droplet is generated by the ultrasonic vibration applying unit.
  3.  前記液滴生成部は、配管又は板状部材の内部に形成された液体流路を有し、
     前記配管又は前記板状部材は、その外部と前記液体流路とを連通する微細孔を有し、
     前記超音波振動付与ユニットは、前記液体流路に流れる前記液体試料に超音波振動を付与するように構成され、
     前記液滴は、前記微細孔から放出される、請求項2記載のイオン源。
    The droplet generation section has a liquid flow path formed inside a pipe or a plate-like member,
    The piping or the plate-like member has a fine hole that communicates the outside with the liquid flow path,
    The ultrasonic vibration applying unit is configured to apply ultrasonic vibration to the liquid sample flowing in the liquid flow path,
    3. The ion source of claim 2, wherein the droplets are ejected from the micropores.
  4.  前記液滴生成部は、前記液滴が前記試料搬送管路の中心部に流入し、前記搬送用気体が前記液滴の流れを取り囲むように前記試料搬送管路に流入する構成を有する、請求項1記載のイオン源。 The droplet generating section has a configuration in which the droplets flow into the center of the sample transport pipe, and the transport gas flows into the sample transport pipe so as to surround the flow of the droplets. Item 1. Ion source according to item 1.
  5.  前記加熱調圧気体滞留部から前記試料搬送管路に導入される前記所定の気体は、前記液滴及び前記搬送用気体の流れを取り囲むように流入する構成を有する、請求項1記載のイオン源。 The ion source according to claim 1, wherein the predetermined gas introduced from the heating and pressure-adjusted gas retention section into the sample transport conduit is configured to flow in so as to surround the droplets and the flow of the transport gas. .
  6.  前記試料搬送管路は、前記所定の気体が流入する位置より下流側では、その上流側よりも流路断面積が広い、請求項5記載のイオン源。 The ion source according to claim 5, wherein the sample transport pipe has a wider cross-sectional area on the downstream side of the position where the predetermined gas flows in than on the upstream side.
  7.  前記電荷付与部は、前記分析ブロックと前記加熱調圧気体供給ブロックとの間に配置されるように構成されている、請求項1記載のイオン源。 The ion source according to claim 1, wherein the charge applying section is configured to be arranged between the analysis block and the heating and pressure regulating gas supply block.
  8.  前記電荷付与部は、前記加熱調圧気体供給ブロックと前記液滴生成部との間に配置されている、請求項1記載のイオン源。 The ion source according to claim 1, wherein the charge applying section is arranged between the heating and pressure regulating gas supply block and the droplet generating section.
  9.  請求項1~8のいずれか一項に記載のイオン源と、
     前記分析ブロックと、を備える、分析装置。
    An ion source according to any one of claims 1 to 8,
    An analysis device comprising the analysis block.
  10.  前記イオン源と前記分析ブロックとは、細管接続部により接続され、
     イオン化された前記溶質成分は、前記細管接続部を通って前記分析ブロックに供給される、請求項9記載の分析装置。
    The ion source and the analysis block are connected by a capillary connection,
    The analyzer according to claim 9, wherein the ionized solute component is supplied to the analysis block through the capillary connection.
PCT/JP2022/032487 2022-08-30 2022-08-30 Ion source and analysis device using same WO2024047723A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/032487 WO2024047723A1 (en) 2022-08-30 2022-08-30 Ion source and analysis device using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/032487 WO2024047723A1 (en) 2022-08-30 2022-08-30 Ion source and analysis device using same

Publications (1)

Publication Number Publication Date
WO2024047723A1 true WO2024047723A1 (en) 2024-03-07

Family

ID=90098898

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/032487 WO2024047723A1 (en) 2022-08-30 2022-08-30 Ion source and analysis device using same

Country Status (1)

Country Link
WO (1) WO2024047723A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06102245A (en) * 1992-03-10 1994-04-15 Mds Health Group Ltd Device and method for feeding liquid sample
JP2019140043A (en) * 2018-02-14 2019-08-22 国立大学法人浜松医科大学 Ionizer
WO2022004094A1 (en) * 2020-06-30 2022-01-06 株式会社日立ハイテク Micro droplet formation device and analysis device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06102245A (en) * 1992-03-10 1994-04-15 Mds Health Group Ltd Device and method for feeding liquid sample
JP2019140043A (en) * 2018-02-14 2019-08-22 国立大学法人浜松医科大学 Ionizer
WO2022004094A1 (en) * 2020-06-30 2022-01-06 株式会社日立ハイテク Micro droplet formation device and analysis device

Similar Documents

Publication Publication Date Title
CA2815990C (en) Mass analyser interface
US7259368B2 (en) Apparatus for delivering ions from a grounded electrospray assembly to a vacuum chamber
JP4178110B2 (en) Mass spectrometer
US7960711B1 (en) Field-free electrospray nebulizer
US8242441B2 (en) Apparatus and methods for pneumatically-assisted electrospray emitter array
US7368708B2 (en) Apparatus for producing ions from an electrospray assembly
JP5589750B2 (en) Ionizer for mass spectrometer and mass spectrometer equipped with the ionizer
US7812308B2 (en) Mass spectrometer
US20040011954A1 (en) Method and apparatus for an electrospray needle for use in mass spectrometry
JPH042033A (en) Device for specimen ionization and mass analysis
US6794646B2 (en) Method and apparatus for atmospheric pressure chemical ionization
JP5772969B2 (en) Atmospheric pressure ionization mass spectrometer
JP2021517348A (en) Multiple gas flow ionizer
US5596192A (en) Mass spectrometric apparatus for use with a liquid chromatograph
JP4415490B2 (en) Liquid chromatograph mass spectrometer
WO2022004094A1 (en) Micro droplet formation device and analysis device
WO2024047723A1 (en) Ion source and analysis device using same
CN112889129B (en) Ion source
EP4357771A1 (en) Sample liquid atomization device and analysis device
JP4254546B2 (en) Mass spectrometer
JPH06310088A (en) Ion source for mass spectrograph
GB2472894A (en) Method and apparatus for the transfer of charged droplets along a path
WO2024047722A1 (en) Liquid atomizing device and analysis device using same
JP2005183250A (en) Atmospheric pressure ion source and mass spectrometry method using it
WO2022131061A1 (en) Ion source and mass spectrometer equipped therewith

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22956690

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2024543631

Country of ref document: JP

Kind code of ref document: A