WO2022004034A1 - ワイヤレス給電システム - Google Patents
ワイヤレス給電システム Download PDFInfo
- Publication number
- WO2022004034A1 WO2022004034A1 PCT/JP2021/004031 JP2021004031W WO2022004034A1 WO 2022004034 A1 WO2022004034 A1 WO 2022004034A1 JP 2021004031 W JP2021004031 W JP 2021004031W WO 2022004034 A1 WO2022004034 A1 WO 2022004034A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- power
- resonance
- circuit
- transmission
- coil
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J50/00—Circuit arrangements or systems for wireless supply or distribution of electric power
- H02J50/10—Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
- H02J50/12—Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J50/00—Circuit arrangements or systems for wireless supply or distribution of electric power
- H02J50/40—Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J50/00—Circuit arrangements or systems for wireless supply or distribution of electric power
- H02J50/40—Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices
- H02J50/402—Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices the two or more transmitting or the two or more receiving devices being integrated in the same unit, e.g. power mats with several coils or antennas with several sub-antennas
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J50/00—Circuit arrangements or systems for wireless supply or distribution of electric power
- H02J50/90—Circuit arrangements or systems for wireless supply or distribution of electric power involving detection or optimisation of position, e.g. alignment
Definitions
- the present invention relates to a wireless power supply system composed of a power transmission circuit and a power reception circuit.
- Patent Document 1 discloses a wireless power transmission system that realizes highly efficient power transmission in an arbitrary positional relationship between a power transmission device and a power reception device.
- the system of Patent Document 1 includes a power transmission device having a power transmission side resonant circuit composed of a coil and a reactorance circuit and an AC power supply for supplying power to each transmission side resonant circuit, and a power receiving side resonant circuit composed of a coil and a reactorance circuit and power receiving. It is a system that wirelessly transmits power from an AC power supply to a load circuit by providing a power receiving device having a load circuit of a side resonance circuit and resonantly coupling the transmission side resonance circuit and the power reception side resonance circuit.
- Each resonant circuit has a constant self-inductance of each coil and a mutual inductance between the coils obtained when the power transmitting device and the power receiving device are arranged in a predetermined positional relationship, and each reactor is used as a variable for power transmission. It has each value determined based on the power transmission efficiency calculated using the circuit equation representing the device and the power receiving device.
- the charging current has the same electrical specifications as when charging by wire.
- a charging current that meets such electrical specifications to a small power receiving coil that fits in the size of a dry battery, there is a need for technology that is convenient and can receive power with high power efficiency with a simple configuration.
- DC resonance wireless power supply in which the power transmission resonance mechanism and the power reception resonance mechanism resonate using a DC power supply
- DC resonance wireless power supply in general, in order to increase the received power, the resonance frequency of the power transmission resonance mechanism is set to the optimum value. It is necessary to adjust and increase the resonance current flowing through the transmission resonance mechanism.
- an object of the present invention is a wireless power transfer capable of transmitting a large amount of power and receiving a large amount of power without increasing the DC power supply voltage on the power transmission side and without increasing the transmission resonance current in the DC resonance wireless power supply. It is to provide a power supply system.
- the wireless power transfer system as an example of the present disclosure is It is provided with a set of a transmission resonance mechanism including a transmission coil and a transmission resonance capacitor, and a power reception circuit having a power reception resonance mechanism including a power reception coil and a power reception resonance capacitor that are magnetically coupled to the transmission coil, and from the transmission coil to the power reception coil.
- a wireless power supply system that supplies power wirelessly
- a plurality of power transmission resonance mechanisms including the power transmission resonance mechanism are connected in parallel to form a power transmission circuit.
- the power transmission circuit includes a DC power supply and a switching circuit, and the switching circuit is used to intermittently and periodically supply the DC power supply to the plurality of power transmission resonance mechanisms.
- An electromagnetic field resonance coupling is formed by the plurality of transmission resonance mechanisms and the power reception resonance mechanism, and the power reception resonance mechanism superimposes a resonance current induced by the electromagnetic field resonance coupling generated by the plurality of transmission resonance mechanisms. It is characterized by obtaining received power.
- the DC power supply voltage on the power transmission side is not increased, the transmission resonance current is not increased, the simple configuration is used, and the parts of the power circuit are not enlarged.
- a wireless power transmission system that can transmit a large amount of power and receive a large amount of power can be obtained.
- FIG. 1 is a circuit diagram of the wireless power transfer system 101 according to the first embodiment.
- FIG. 2 is a waveform diagram of each part of the wireless power transfer system 101 shown in FIG.
- FIG. 3 is a circuit diagram of the wireless power supply system 102 according to the second embodiment.
- FIG. 4 is a perspective view of the power transmission coils L1, L2, L3 and the power reception coil LA in the wireless power feeding system according to the third embodiment.
- FIG. 5 is a perspective view showing an example of the positional relationship between the different power transmission coils of the third embodiment.
- FIG. 6 is a diagram showing a first circuit configuration example of a portion related to the wireless power transfer system according to the fourth embodiment.
- FIG. 1 is a circuit diagram of the wireless power transfer system 101 according to the first embodiment.
- FIG. 2 is a waveform diagram of each part of the wireless power transfer system 101 shown in FIG.
- FIG. 3 is a circuit diagram of the wireless power supply system 102 according to the second embodiment.
- FIG. 4 is a perspective
- FIG. 7 is a diagram showing a second circuit configuration example of a portion related to the wireless power transfer system according to the fourth embodiment.
- FIG. 8 is a diagram showing a third circuit configuration example of a portion related to the wireless power transfer system according to the fourth embodiment.
- FIG. 9 is a diagram showing a fourth circuit configuration example of the portion related to the wireless power transfer system according to the fourth embodiment.
- FIG. 10 is a diagram showing a fifth circuit configuration example of a portion related to the wireless power transfer system according to the fourth embodiment.
- FIG. 11 is a diagram showing a sixth circuit configuration example of a portion related to the wireless power transfer system according to the fourth embodiment.
- FIG. 1 is a circuit diagram of the wireless power transfer system 101 according to the first embodiment.
- the wireless power supply system 101 includes a power transmission circuit 11 and a power reception circuit 21.
- the power transmission circuit 11 has a power transmission resonance mechanism TRM1, TRM2, TRM3 including a power transmission coil L1, L2, L3 and a power transmission resonance capacitor C1, C2, C3.
- the terminals T1, T2, and T3 of the power transmission coils L1, L2, and L3 will be described later.
- the power receiving circuit 21 has a power receiving resonance mechanism RRM including a power receiving coil LA magnetically coupled to the power transmission coils L1, L2 and L3 and a power receiving resonance capacitor CA.
- the terminals TA1 and TA2 of the power receiving coil LA will be described later.
- the wireless power feeding system 101 is a system that wirelessly supplies electric power from the power transmitting coils L1, L2, and L3 to the power receiving coil LA.
- the power transmission circuit 11 has a square wave power supply circuit Vin that generates a square wave voltage (provides a square wave power).
- This square wave power supply circuit Vin is composed of a DC power supply and a switching circuit for switching the DC power supply. That is, the switching circuit intermittently and periodically applies a DC voltage to the plurality of power transmission resonance mechanisms TRM1, TRM2, and TRM3.
- the switching frequency is determined by a clock signal generated from, for example, a crystal oscillator.
- All of the power transmission resonance mechanisms TRM1, TRM2, and TRM3 resonate at the switching frequency of the switching circuit.
- the resonance voltage Vres1 is generated in the power transmission resonance mechanism TRM1, and the resonance current Ires1 flows.
- the resonance voltage Vres2 is generated in the power transmission resonance mechanism TRM2, the resonance current Is2 flows, the resonance voltage Vres3 is generated in the power transmission resonance mechanism TRM3, and the resonance current Is3 flows.
- An electromagnetic field resonance coupling is formed by a plurality of power transmission resonance mechanisms TRM1, TRM2, TRM3 and a power reception resonance mechanism RRM.
- a resonance current IresA flows through the power receiving resonance mechanism RRM, and a resonance voltage VresA is generated.
- the resonance frequency of the power receiving resonance mechanism RRM resonates at the above switching frequency. As a result, the power receiving resonance mechanism RRM obtains the received power obtained by superimposing the resonance current induced by the electromagnetic field resonance coupling.
- the power receiving circuit 21 includes the power receiving resonance mechanism RRM, a diode bridge DB constituting a rectifier circuit, smoothing capacitors Co1 and Co2, a DC-DC converter 31, and a load.
- the diode bridge DB inputs and rectifies the voltage of the parallel resonance circuit of the power receiving coil LA and the power receiving resonance capacitor CA constituting the power receiving resonance mechanism RRM.
- the smoothing capacitor Co1 smoothes the rectified voltage of the diode bridge DB.
- the DC-DC converter 31 converts the voltage to a predetermined voltage that is constant with respect to the received voltage that fluctuates depending on the arrangement or the like, and the smoothing capacitor Co2 smoothes the output of the DC-DC converter 31. In this way, a predetermined DC voltage is supplied to the load.
- FIG. 2 is a waveform diagram of each part of the wireless power transfer system 101 shown in FIG.
- the resonance voltage Vres1 is applied to the power transmission coil L1 and the resonance current Ires1 flows.
- the transmission resonance mechanism TRM1 is a resonance circuit between the transmission coil L1 and the transmission resonance capacitor C1
- a sinusoidal resonance current Ires1 flows through the transmission coil L1 and the transmission resonance capacitor C1
- a sinusoidal resonance voltage Vres1 is generated.
- a sinusoidal resonance voltage Vres2 is applied to the power transmission coil L2
- a sinusoidal resonance current Ires2 flows
- a sinusoidal resonance voltage Vres3 is applied to the power transmission coil L3
- a sinusoidal resonance current Irres3 flows.
- the power receiving coil LA of the power receiving resonance mechanism RRM is magnetically coupled to the power transmitting coils L1, L2, L3, and the power receiving resonance mechanism RRM resonates.
- a wavy resonance voltage VresA is generated.
- a magnetic field resonance coupling was formed by the power transmission resonance mechanism TRM1, TRM2, TRM3 and the power reception resonance mechanism RRM, and the resonance currents induced from the plurality of power transmission resonance mechanisms TRM1, TRM2, TRM3 were superimposed on the power reception resonance mechanism RRM. Current flows. Therefore, the power supply can be increased as compared with the configuration in which a single power transmission resonance mechanism and a single power reception resonance mechanism are combined.
- At least two power transmission coils are magnetically coupled to each other to form mutual inductance.
- mutual inductance is formed by magnetic coupling between power transmission coil L1 and power transmission coil L2
- mutual inductance is formed by magnetic coupling between power transmission coil L2 and power transmission coil L3.
- the transmission resonance capacitors C1, C2, and C3 are composed of capacitors as electronic components. To form an electromagnetic resonance coupling according to the magnetic coupling determined according to the positional relationship between the power transmission coils L1, L2, L3 and the power reception coil LA, and the shapes of the power transmission coils L1, L2, L3 and the power reception coil LA. In addition, the capacitances of the transmission resonance capacitors C1, C2, and C3 are adjusted.
- the power supply power can be increased without requiring an AC power supply and without increasing the DC voltage of the square wave power supply circuit Vin, the withstand voltage of the switching element for switching the DC voltage is increased. There is no need to do so, and it is possible to avoid an increase in the size of the semiconductor and an increase in voltage stress. Further, since the transmission resonance current does not increase, the heat generation of the transmission coil does not increase, and it is not necessary to increase the conductor width and the conductor thickness of the transmission coil. Further, it is possible to avoid the problem of an increase in power loss and heat generation in a resonance element such as a transmission resonance capacitor due to an increase in the transmission resonance current.
- the square wave power supply circuit Vin can use the clock signal generated from the crystal oscillator or the like and does not need to set the power supply voltage high, it is easy to increase the operating frequency of the power transmission circuit 11.
- a plurality of power transmission resonance mechanisms are provided by the capacitance of the power transmission resonance capacitors C1, C2 and C3 adjusted according to the respective coupling coefficients that affect the predetermined arrangement of the power transmission coils L1, L2 and L3 and the power reception coil LA. Even when the position of the power receiving coil LA is changed due to the configuration, a predetermined power receiving power can be obtained by superposition in a large change range.
- the capacitance of the transmission resonance capacitors C1, C2 and C3 includes the transmission mutual inductance. It can be adjusted by the inductance of the transmission coils L1, L2, L3 (the self-inductance of the transmission coils L1, L2, L3 can be lowered), and the transmission resonance capacitors C1, C2, C3 for electromagnetic resonance coupling can be adjusted. It is possible to expand the adjustment range by the capacitance of.
- the value of the capacitor required for resonance is determined by the combined inductance obtained by adding the mutual inductance to the self-inductance, as a result, the value of the transmission resonance capacitor can be selected to be small. From the viewpoint of withstand voltage, there are many types of capacitors with small capacitance, and the choices increase, so the adjustment range is widened.
- the second embodiment illustrates a wireless power transfer system including a plurality of power receiving circuits.
- FIG. 3 is a circuit diagram of the wireless power supply system 102 according to the second embodiment.
- the wireless power supply system 102 includes a power transmission circuit 12 and a power reception circuit 22.
- the power transmission circuit 12 has power transmission resonance mechanisms TRM1, TRM2 ... TRMn including power transmission coils L1, L2 ... Ln and power transmission resonance capacitors C1, C2 ... Cn.
- the power receiving circuit 22 has a power receiving resonance mechanism RRM1 ... RRMm including a power receiving coil LA1 ... LAm magnetically coupled to the power transmission coils L1, L2 ... Ln and a power receiving resonance capacitor CA1 ... CAm.
- the wireless power feeding system 102 is a system that wirelessly supplies power from the power transmitting coils L1, L2 ... Ln to the power receiving coils LA1 ... LAm.
- the power transmission circuit 12 has three or more power transmission resonance mechanisms TRM1, TRM2 ... TRMn.
- the power receiving circuit 22 has a plurality of power receiving resonance mechanisms RRM1 ... RRMm.
- a diode bridge DB, smoothing capacitors Co1, Co2, a DC-DC converter 31, and a load circuit are connected to each of the power receiving resonance mechanisms RRM1 ... RRMm.
- An electromagnetic field resonance coupling is formed by a plurality of power transmission resonance mechanisms TRM1, TRM2 ... TRMn and a plurality of power reception resonance mechanisms RRM1 ... RRMm.
- Each of the power receiving coils LA1 ... LAm of the plurality of power receiving circuits 22 is exclusively and wirelessly magnetically coupled to the plurality of power transmission coils L1, L2 ... Ln. That is, the power transmission coils L1, L2 ... Ln and the power reception coils LA1 ... LAm are magnetically coupled one-to-one or a plurality of one-to-one, respectively, to form an electromagnetic field resonance coupling.
- electric power can be used in each of the plurality of power receiving circuits 22. Further, since the power receiving resonance mechanism is set so that the plurality of power receiving circuits 22 resonate at the operating frequency of the power transmission circuit 12, stable power receiving power is obtained even if the arrangement or distance of the plurality of power receiving circuits 22 changes. Can be obtained.
- FIG. 4 is a perspective view of the power transmission coils L1, L2, L3 and the power reception coil LA in the wireless power feeding system according to the third embodiment.
- Each of the power transmission coils L1, L2, and L3 is a rectangular coil having about two turns, is arranged in a stacked state in the Z-axis direction, and the respective coil openings CO are overlapped with each other.
- One end of the power transmission coils L1, L2 and L3 is a ground terminal GND and is connected to the ground.
- the other end is the individual terminals T1, T2, T3.
- These terminals T1, T2 and T3 correspond to the terminals T1, T2 and T3 shown in FIG.
- a square wave power supply circuit Vin is connected between these terminals T1, T2, T3 and the ground terminal GND via transmission resonance capacitors C1, C2, and C3, respectively.
- the power receiving coil LA is a rectangular coil with about 2 turns and has two terminals TA1 and TA2. These two terminals TA1 and TA2 correspond to the terminals TA1 and TA2 shown in FIG.
- the power transmission coils L1, L2 and L3 having the same shape are arranged in a stacked manner, the power transmission coils L1, L2 and L2 for forming the magnetic flux passing through the coil opening CO are formed.
- the current flowing through L3 is shared.
- the power transmission coils L1, L2, and L3 are wound in the same direction so that the polarities of the mutual inductances are positive.
- the capacitance of the power transmission resonance capacitors C1, C2, C3 is magnetically determined according to the positional relationship between the power transmission coils L1, L2, L3 and the power reception coil LA, and the shapes of the power transmission coils L1, L2, L3 and the power reception coil LA.
- it is tuned to form an electromagnetic resonance coupling. That is, the power transmission coils L1, L2, and L3 are brought close to each other, and the winding directions of the coils are also the same, so that the coupling with each other is strengthened.
- each mutual inductance approaches self-inductance.
- the self-inductance and the combined inductance of the mutual inductances of the power transmission coils L1, L2, and L3 are substantially the same. Based on this, the values of the transmission resonance capacitors C1, C2, and C3 are determined.
- the power transmission coils L1, L2, L3 are almost the same when viewed from the power reception coil LA.
- the value of the transmission resonance capacitor can be determined by assuming that they are in the same position.
- the resonance frequency to be set shifts. Therefore, it is preferable that the wiring distance between the power transmission coils L1, L2, L3 and the power transmission resonance capacitors C1, C2, C3 is short at the time of mounting. ..
- FIG. 5 is a perspective view showing an example of the positional relationship between the different power transmission coils of the third embodiment.
- Each of the power transmission coils L1, L2, and L3 is a rectangular coil having about two turns.
- the transmission coil L1 is a coil arranged on the YY plane and having the X-axis direction as the coil axis
- the transmission coil L2 is a coil arranged on the XY plane and having the Z-axis direction as the coil axis
- the transmission coil L3 is a coil arranged on the XZ plane and having the Y-axis direction as the coil axis.
- the power transmission coils L1, L2, and L3 By arranging the power transmission coils L1, L2, and L3 on the XYZ plane in this way, a magnetic field having components in the three axial directions is formed in the spatial region shown by the broken line in FIG. Therefore, by arranging the power receiving coil in this space region, the power transmission coils L1, L2, L3 and the power receiving coil are magnetically coupled. At that time, the direction of the coil opening of the power receiving coil is not fixed and is arbitrary. Therefore, the degree of freedom in arranging the power receiving coil is high.
- FIG. 6 is a diagram showing a first circuit configuration example of a part related to a wireless power transfer system. This example is a circuit in which the power transmission side operates in a class D inverter, the power receiving side operates in series resonance, and voltage doubler rectification operates.
- the power transmission circuit 11 includes a square wave power supply circuit Vin, power transmission coils L1, L2, L3, and power transmission resonance capacitors C1, C2, C3.
- the square wave power supply circuit Vin is equipped with a DC power supply Vi. Further, the square wave power supply circuit Vin is equivalently parallel to the first switch circuit S1 composed of a parallel connection circuit of the switching element Q1, the diode Dds1 and the capacitor Cds1, and the switching element Q2, the diode Dds2 and the capacitor Cds2.
- a second switch circuit S2 composed of a connection circuit and a switching control circuit (not shown) for controlling the switching elements Q1 and Q2 are provided.
- This square wave power supply circuit Vin interrupts the DC power supply Vi and intermittently and periodically supplies the DC power supply to the power transmission resonance mechanism.
- the switching elements Q1 and Q2 are switching elements having a parasitic output capacitance and a parasitic diode such as a MOSFET, and constitute the switch circuits S1 and S2.
- the switching element Q1 of the first switch circuit S1 and the switching element Q2 of the second switch circuit S2 are alternately turned on / off.
- the switching control circuit of the square wave power supply circuit Vin intermittently applies a DC voltage to the transmission resonance circuit by switching the first switching element Q1 and the second switching element Q2 at a predetermined operating frequency, and the transmission coils L1 and L2. , L3 generates a resonance current. As a result, a sinusoidal current is passed through the power transmission coils L1, L2, and L3. Specifically, the switching operation is performed at 13.56 MHz used in NFC communication.
- the power receiving circuit 21 includes a power receiving resonance mechanism RRM by a power receiving coil LA, a power receiving resonance capacitor CA, and a rectifying smoothing circuit 20.
- the rectifying and smoothing circuit 20 additionally includes a switch circuit S3 composed of a switching element Q3, a diode Dds3, and a parallel connection circuit of the capacitor Cds3, and a diode D4.
- the diode D4 has a parasitic capacitance capacitor Cds4.
- the switch circuit S3 and the diode D4 rectify the voltage generated in the power receiving resonance circuit by the power receiving coil LA and the power receiving resonance capacitor CA, and the smoothing capacitor Co1 smoothes the voltage.
- the power receiving coil LA and the power receiving resonance capacitor CA form a series resonance circuit.
- FIG. 7 is a diagram showing a second circuit configuration example of the part related to the wireless power supply system.
- This example is a circuit in which the power transmission side operates in a class D inverter, the power receiving side operates in parallel series resonance, and voltage doubler rectification operates.
- the configuration on the power transmission side is the same as the example shown in FIG.
- the power receiving circuit 21 includes a power receiving coil LA, a power receiving resonance mechanism RRM by the power receiving resonance capacitors CAs and CAp, and a rectifying smoothing circuit 20.
- the power receiving coil LA and the power receiving resonance capacitor CAs form a series resonance circuit
- the power receiving coil LA and the power receiving resonance capacitor CAp form a parallel resonance circuit.
- the configuration of the rectifying smoothing circuit 20 is the same as the example shown in FIG.
- FIG. 8 is a diagram showing a third circuit configuration example of the part related to the wireless power supply system.
- This example is a circuit in which the power transmission side operates in a class D inverter, the power receiving side operates in parallel series resonance, and full-wave rectification operates.
- the configuration on the power transmission side is the same as the example shown in FIG.
- the power receiving circuit 21 includes a power receiving coil LA, a power receiving resonance mechanism RRM by the power receiving resonance capacitors CAs and CAp, and a rectifying smoothing circuit 20.
- the power receiving coil LA and the power receiving resonance capacitor CAs form a series resonance circuit
- the power receiving coil LA and the power receiving resonance capacitor CAp form a parallel resonance circuit.
- the rectifying smoothing circuit 20 is composed of a diode bridge DB, a switching element Q3, and a smoothing capacitor Co1.
- the diode bridge DB full-wave rectifies the resonance voltage of the power receiving resonance mechanism by the power receiving coil LA and the power receiving resonance capacitors CAs and CAp.
- the switching element Q3 is in the ON state, the full-wave rectification operation of the diode bridge DB is stopped, and the power receiving is stopped.
- FIG. 9 is a diagram showing a fourth circuit configuration example of the part related to the wireless power supply system.
- This example is a circuit in which the power transmission side operates as a class E inverter, the power receiving side operates as a series resonance, and the class E rectifies.
- the square wave power supply circuit Vin is not shown in the figure that controls the first switch circuit S1 which is equivalently composed of the switching element Q1, the diode Dds1 and the parallel connection circuit of the capacitor Cds1, the inductor Lf, the capacitor Ci and the switching element Q1. It is equipped with a switching control circuit.
- the switching element Q1 is a switching element having a parasitic output capacitance and a parasitic diode such as a MOSFET, and constitutes the first switch circuit S1.
- the switching control circuit of the square wave power supply circuit Vin becomes a resonance circuit by the inductor Lf, the transmission resonance capacitors C1, C2, C3 and the transmission coils L1, L2, L3 by switching the first switching element Q1 at a predetermined operating frequency.
- a DC voltage is intermittently applied to generate a resonant current in the transmission coils L1, L2, and L3.
- the power receiving circuit 21 includes a power receiving resonance mechanism RRM by a power receiving coil LA, a power receiving resonance capacitor CA, and a rectifying smoothing circuit 20.
- the rectifying and smoothing circuit 20 includes a switch circuit S3, which is equivalently composed of a switching element Q3, a diode Dds3, and a parallel connection circuit of the capacitor Cds3, an inductor Lfs, and a smoothing capacitor Co1.
- the switch circuit S3 rectifies the voltage generated in the power receiving resonance circuit by the power receiving coil LA, the power receiving resonance capacitor CA and the inductor Lfs, and the smoothing capacitor Co1 smoothes the voltage.
- FIG. 10 is a diagram showing a fifth circuit configuration example of the part related to the wireless power supply system. This example is a circuit in which the power transmission side operates in a class E inverter, the power receiving side operates in parallel series resonance, and voltage doubler rectification operates.
- the configuration of the power transmission circuit 11 is the same as the example shown in FIG.
- the configuration of the power receiving circuit 21 is the same as the example shown in FIG.
- FIG. 11 is a diagram showing a sixth circuit configuration example of the part related to the wireless power supply system. This example is a circuit in which the power transmission side operates in a class E inverter, the power receiving side operates in parallel series resonance, and full-wave rectification operates.
- the configuration of the power transmission circuit 11 is the same as the example shown in FIG.
- the configuration of the power receiving circuit 21 is the same as the example shown in FIG.
- the square wave power supply circuit Vin of the power transmission circuit 11 can have a class D inverter configuration or a class E inverter configuration.
- the power receiving resonance mechanism of the power receiving circuit 21 in addition to the parallel resonance shown in FIGS. 1, 3 and the like, series resonance and parallel series resonance can be used.
- the rectifying / smoothing circuit a voltage doubler rectifying circuit or a class E rectifying circuit can be configured in addition to the full-wave rectifying circuit.
- FIGS. 6 to 11 a wireless power transfer system including a single power receiving circuit 21 is illustrated, but as shown in FIG. 3, a plurality of power receiving circuits 22 may be provided.
- the configurations of each power receiving resonance mechanism and the rectifying smoothing circuit may be different.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Power Engineering (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
- Near-Field Transmission Systems (AREA)
Abstract
ワイヤレス給電システム(101)は、送電コイル(L1,L2,L3)及び送電共振キャパシタ(C1,C2,C3)を含む送電共振機構(TRM1,TRM2,TRM3)を有する送電回路(11)と、送電コイル(L1,L2,L3)に磁気結合する受電コイル(LA)及び受電共振キャパシタ(CA)を含む受電共振機構(RRM)を有する受電回路と、を備える。送電回路(11)は直流電源及びスイッチング回路による方形波電源回路(Vin)を備え、送電共振機構(TRM1,TRM2,TRM3)と受電共振機構(RRM)とにより電磁界共鳴結合が形成され、受電共振機構(RRM)は、電磁界共鳴結合によって誘導される共振電流を重ね合わせて受電電力を得る。
Description
本発明は、送電回路と受電回路とで構成されるワイヤレス給電システムに関する。
特許文献1には、送電装置と受電装置の任意の位置関係で高効率な電力伝送を実現する無線電力伝送システムが示されている。この特許文献1のシステムは、コイルとリアクタンス回路からなる送電側共振回路と各送電側共振回路に電力を供給する交流電源とを有する送電装置と、コイルとリアクタンス回路からなる受電側共振回路と受電側共振回路の負荷回路とを有する受電装置と、を備え、送電側共振回路と受電側共振回路とを共鳴結合することで、交流電源から負荷回路へ電力を無線伝送するシステムであって、各リアクタンス回路の各リアクタンスが、送電装置と受電装置とを所定の位置関係に配置した場合に得られる各コイルの各自己インダクタンスおよび各コイル間の各相互インダクタンスを定数とし、各リアクタンスを変数とする送電装置および受電装置を表す回路方程式を用いて算出された電力の伝送効率に基づき決定された各値を有する。
ワイヤレス給電の一つのシステムとして、例えば、乾電池型2次電池をワイヤレスで充電する技術がある。その充電電流は有線で充電する場合と同等の電気仕様である。乾電池サイズに収まる小さな受電コイルに、そのような電気仕様を満たす充電電流を供給するため、利便性が良く、シンプルな構成で高い電力効率により電力を受電できる技術が必要である。
直流電源を用いて、送電共振機構と受電共振機構とが共振する共鳴ワイヤレス給電、いわゆる直流共鳴ワイヤレス給電においては、一般に、受電電力を大きくするために、送電共振機構の共振周波数を最適な値に調整し、送電共振機構に流れる共振電流を大きくする必要がある。
一般に、受電電力を大きくするには、送電側の電源電圧を高くするなどして送電共振電流を大きくする技術があるが、電源電圧を高くすると、電力回路を構成するスイッチング素子などの電力半導体において、電圧ストレスは大きくなり、スイッチング素子の耐圧を高くする必要があり、電力半導体が大型化したり、電力損失が増大したり、電圧ストレスにより信頼性が低下したりする問題がある。
また、送電共振電流を大きくすると、送電コイルの発熱が大きくなり、送電コイルの導体幅や導体厚を大きくすることで実効面積を大きくして等価インピーダンスを小さくする必要がある。さらに、送電共振電流が大きくなると、送電コイルだけでなく、送電共振キャパシタなどに加わる電圧も高くなるので、共振回路を構成する部品における電力損失も大きくなり、発熱や部品サイズの大型化が問題となる。
そこで、本発明の目的は、直流共鳴ワイヤレス給電において、送電側の直流電源電圧を高くすることなく、また、送電共振電流を大きくすることなく、大きな電力を送電して、大きな電力を受電できるワイヤレス給電システムを提供することにある。
(1)本開示の一例としてのワイヤレス給電システムは、
送電コイル及び送電共振キャパシタを含む1組の送電共振機構と、前記送電コイルと磁気結合する受電コイル及び受電共振キャパシタを含む受電共振機構を有する受電回路とを備え、前記送電コイルから前記受電コイルへワイヤレスで電力を供給するワイヤレス給電システムにおいて、
前記送電共振機構を含む複数の送電共振機構を並列に接続して送電回路を構成し、
前記送電回路は、直流電源及びスイッチング回路を備え、前記スイッチング回路を用いて前記複数の送電共振機構に対して前記直流電源を断続的かつ周期的に与え、
前記複数の送電共振機構と前記受電共振機構とにより電磁界共鳴結合が形成され、前記受電共振機構は、前記複数の送電共振機構が発生させる電磁界共鳴結合によって誘導される共振電流を重ね合わせて受電電力を得る、ことを特徴とする。
送電コイル及び送電共振キャパシタを含む1組の送電共振機構と、前記送電コイルと磁気結合する受電コイル及び受電共振キャパシタを含む受電共振機構を有する受電回路とを備え、前記送電コイルから前記受電コイルへワイヤレスで電力を供給するワイヤレス給電システムにおいて、
前記送電共振機構を含む複数の送電共振機構を並列に接続して送電回路を構成し、
前記送電回路は、直流電源及びスイッチング回路を備え、前記スイッチング回路を用いて前記複数の送電共振機構に対して前記直流電源を断続的かつ周期的に与え、
前記複数の送電共振機構と前記受電共振機構とにより電磁界共鳴結合が形成され、前記受電共振機構は、前記複数の送電共振機構が発生させる電磁界共鳴結合によって誘導される共振電流を重ね合わせて受電電力を得る、ことを特徴とする。
本発明によれば、共鳴ワイヤレス給電において、送電側の直流電源電圧を高くすることなく、また、送電共振電流を大きくすることなく、シンプルな構成で、電力回路の部品を大型化させることなく、大きな電力を送電し、大きな電力を受電できるワイヤレス給電システムが得られる。
以降、図を参照して幾つかの具体的な例を挙げて、本発明を実施するための複数の形態を示す。各図中には同一箇所に同一符号を付している。要点の説明又は理解の容易性を考慮して、実施形態を説明の便宜上、複数の実施形態に分けて示すが、異なる実施形態で示した構成の部分的な置換又は組み合わせは可能である。第2の実施形態以降では第1の実施形態と共通の事柄についての記述を省略し、異なる点についてのみ説明する。特に、同様の構成による同様の作用効果については実施形態毎には逐次言及しない。
《第1の実施形態》
図1は、第1の実施形態に係るワイヤレス給電システム101の回路図である。このワイヤレス給電システム101は、送電回路11と受電回路21とで構成されている。送電回路11は、送電コイルL1,L2,L3及び送電共振キャパシタC1,C2,C3を含む送電共振機構TRM1,TRM2,TRM3を有する。送電コイルL1,L2,L3の端子T1,T2,T3に関しては後に説明する。受電回路21は、送電コイルL1,L2,L3に磁気結合する受電コイルLA及び受電共振キャパシタCAを含む受電共振機構RRMを有する。受電コイルLAの端子TA1,TA2に関しては後に説明する。ワイヤレス給電システム101は、送電コイルL1,L2,L3から受電コイルLAへワイヤレスで電力を供給するシステムである。
図1は、第1の実施形態に係るワイヤレス給電システム101の回路図である。このワイヤレス給電システム101は、送電回路11と受電回路21とで構成されている。送電回路11は、送電コイルL1,L2,L3及び送電共振キャパシタC1,C2,C3を含む送電共振機構TRM1,TRM2,TRM3を有する。送電コイルL1,L2,L3の端子T1,T2,T3に関しては後に説明する。受電回路21は、送電コイルL1,L2,L3に磁気結合する受電コイルLA及び受電共振キャパシタCAを含む受電共振機構RRMを有する。受電コイルLAの端子TA1,TA2に関しては後に説明する。ワイヤレス給電システム101は、送電コイルL1,L2,L3から受電コイルLAへワイヤレスで電力を供給するシステムである。
この例では3つの送電共振機構TRM1,TRM2,TRM3は並列接続回路を構成する。送電回路11は、方形波電圧を発生する(方形波電力を供給する)方形波電源回路Vinを有する。この方形波電源回路Vinは、直流電源とそれをスイッチングするスイッチング回路とで構成されている。つまり、スイッチング回路は複数の送電共振機構TRM1,TRM2,TRM3に対して直流電圧を断続的かつ周期的に与える。このスイッチング回路は、例えば水晶振動子等から生成されるクロック信号でスイッチング周波数を定める。
送電共振機構TRM1,TRM2,TRM3のいずれも、上記スイッチング回路のスイッチング周波数で共振する。これにより、送電共振機構TRM1に共振電圧Vres1が発生し、共振電流Ires1が流れる。同様に、送電共振機構TRM2に共振電圧Vres2が発生し、共振電流Ires2が流れ、送電共振機構TRM3に共振電圧Vres3が発生し、共振電流Ires3が流れる。
複数の送電共振機構TRM1,TRM2,TRM3と受電共振機構RRMとにより電磁界共鳴結合が形成される。受電共振機構RRMには共振電流IresAが流れ、共振電圧VresAが発生する。受電共振機構RRMの共振周波数は上記スイッチング周波数で共鳴する。これにより、受電共振機構RRMは、電磁界共鳴結合によって誘導される共振電流が重ね合わされた受電電力を得る。
受電回路21は、上記受電共振機構RRM、整流回路を構成するダイオードブリッジDB、平滑キャパシタCo1,Co2、DC-DCコンバータ31及び負荷を備える。
ダイオードブリッジDBは、受電共振機構RRMを構成する受電コイルLA及び受電共振キャパシタCAの並列共振回路の電圧を入力して整流する。
平滑キャパシタCo1はダイオードブリッジDBの整流電圧を平滑する。DC-DCコンバータ31は、配置などにより変動する受電電圧に対して一定となる所定の電圧に変換し、平滑キャパシタCo2はDC-DCコンバータ31の出力を平滑する。このようにして、所定の直流電圧が負荷へ供給される。
図2は、図1に示したワイヤレス給電システム101の各部の波形図である。方形波電源回路Vinの方形波電圧が送電共振機構TRM1に印加されることで、送電コイルL1に共振電圧Vres1が印加され、共振電流Ires1が流れる。送電共振機構TRM1は送電コイルL1と送電共振キャパシタC1との共振回路であるので、送電コイルL1及び送電共振キャパシタC1に正弦波状の共振電流Ires1が流れ、正弦波状の共振電圧Vres1が発生する。この共振電流と共振電圧とは90°の位相差がある。
上述の作用は、送電共振機構TRM2,TMR3についても同様である。すなわち、送電コイルL2に正弦波状の共振電圧Vres2が印加され、正弦波状の共振電流Ires2が流れ、送電コイルL3に正弦波状の共振電圧Vres3が印加され、正弦波状の共振電流Ires3が流れる。
受電共振機構RRMの受電コイルLAは送電コイルL1,L2,L3に磁気結合して、受電共振機構RRMは共振するので、受電コイルLAに正弦波状の共振電流IresAが流れ、受電共振機構RRMに正弦波状の共振電圧VresAが発生する。この共振電流と共振電圧とは90°の位相差がある。
送電共振機構TRM1,TRM2,TRM3と受電共振機構RRMとにより電磁界共鳴結合が形成され、受電共振機構RRMには複数の送電共振機構TRM1,TRM2,TRM3からそれぞれ誘導される共振電流が重ね合わされた電流が流れる。したがって、単一の送電共振機構と単一の受電共振機構とが結合する構成に比べて、給電電力を大きくできる。
複数の送電コイルL1,L2,L3のうち、少なくとも2つの送電コイルは互いに磁気結合して相互インダクタンスを形成する。例えば、送電コイルL1と送電コイルL2との磁気結合により相互インダクタンス(送電相互インダクタンス)が形成され、送電コイルL2と送電コイルL3との磁気結合により相互インダクタンス(送電相互インダクタンス)が形成される。
送電共振キャパシタC1,C2,C3は電子部品としてのキャパシタで構成されている。送電コイルL1,L2,L3と受電コイルLAとの位置関係と、送電コイルL1,L2,L3及び受電コイルLAの形状と、に応じて定まる磁気結合に応じて、電磁界共鳴結合を形成するように、上記送電共振キャパシタC1,C2,C3のキャパシタンスは調整されている。
本実施形態によれば、交流電源を必要とせず、また、方形波電源回路Vinの直流電圧を高めることなく、給電電力を高めることができるので、直流電圧をスイッチングするスイッチング素子の耐圧を大きくする必要がなく、半導体の大型化や電圧ストレスの高まりが回避できる。また、送電共振電流が大きくならないので、送電コイルの発熱が増大せず、送電コイルの導体幅や導体厚を大きくすることも不要となる。さらに、送電共振電流の増大による送電共振キャパシタなどの共振素子における電力損失の増大及び発熱の問題も回避できる。
また、方形波電源回路Vinは水晶振動子等から生成されるクロック信号を利用でき、電源電圧を高く設定する必要がないので、送電回路11の動作周波数の高周波化が容易である。
また、送電コイルL1,L2,L3と受電コイルLAとの所定の配置に影響するそれぞれの結合係数に応じて調整された、送電共振キャパシタC1,C2,C3のキャパシタンスにより、複数の送電共振機構が構成されて、受電コイルLAの位置が変化した場合においても、大きな変化範囲において、重ね合わせの理により所定の受電電力を得ることができる。
また、複数の送電コイルL1,L2,L3の少なくとも1組は、電磁界共鳴結合を形成し、送電相互インダクタンスを形成するので、送電共振キャパシタC1,C2,C3のキャパシタンスは、送電相互インダクタンスを含めた送電コイルL1,L2,L3のインダクタンスとで調整することができ(送電コイルL1,L2,L3の自己インダクタンスを下げることができ)、電磁界共鳴結合させるための送電共振キャパシタC1,C2,C3のキャパシタンスによる調整範囲を広げることができる。つまり、自己インダクタンスに相互インダクタンスが加わった合成インダクタンスにより、共振に要するキャパシタの値を決めるので、結果的に送電共振キャパシタの値は小さいものを選択できる。耐圧的観点から、キャパシタンスの小さなキャパシタは種類が多く、選択肢が増えるので、調整範囲が広がる。
《第2の実施形態》
第2の実施形態では、複数の受電回路を備えるワイヤレス給電システムについて例示する。
第2の実施形態では、複数の受電回路を備えるワイヤレス給電システムについて例示する。
図3は、第2の実施形態に係るワイヤレス給電システム102の回路図である。このワイヤレス給電システム102は、送電回路12と受電回路22とで構成されている。送電回路12は、送電コイルL1,L2・・・Ln及び送電共振キャパシタC1,C2・・・Cnを含む送電共振機構TRM1,TRM2・・・TRMnを有する。受電回路22は、送電コイルL1,L2・・・Lnに磁気結合する受電コイルLA1・・・LAm及び受電共振キャパシタCA1・・・CAmを含む受電共振機構RRM1・・・RRMmを有する。ワイヤレス給電システム102は、送電コイルL1,L2・・・Lnから受電コイルLA1・・・LAmへワイヤレスで電力を供給するシステムである。
図1に示した例とは異なり、送電回路12は3つ以上の送電共振機構TRM1,TRM2・・・TRMnを有する。また、受電回路22は複数の受電共振機構RRM1・・・RRMmを有する。各受電共振機構RRM1・・・RRMmには、ダイオードブリッジDB、平滑キャパシタCo1,Co2、DC-DCコンバータ31及び負荷による回路がそれぞれ接続されている。
複数の送電共振機構TRM1,TRM2・・・TRMnと複数の受電共振機構RRM1・・・RRMmとにより電磁界共鳴結合が形成される。
複数の受電回路22の各受電コイルLA1・・・LAmは複数の送電コイルL1,L2・・・Lnにそれぞれ占有的にワイヤレスで磁気結合する。つまり、送電コイルL1,L2・・・Lnと受電コイルLA1・・・LAmとが、それぞれ一対一、または、複数対一で磁気結合して電磁界共鳴結合が形成される。
本実施形態によれば、複数の受電回路22において、それぞれ電力を利用することができる。また、複数の受電回路22は、送電回路12の動作周波数において共鳴するように受電共振機構が設定されていることにより、複数の受電回路22の配置や距離が変化しても、安定した受電電力を得ることができる。
《第3の実施形態》
第3の実施形態では、複数の送電コイルの構成、及び送電コイルと受電コイルとの位置関係の例について示す。
第3の実施形態では、複数の送電コイルの構成、及び送電コイルと受電コイルとの位置関係の例について示す。
図4は第3の実施形態に係るワイヤレス給電システムにおける送電コイルL1,L2,L3及び受電コイルLAの斜視図である。送電コイルL1,L2,L3それぞれは約2ターンの矩形状コイルであり、Z軸方向に積層状態に配置されていて、それぞれのコイル開口COが重なっている。送電コイルL1,L2,L3の一方端はグランド端子GNDでありグランドに接続される。他方端は個別の端子T1,T2,T3である。これら端子T1,T2,T3は図1中に示した端子T1,T2,T3に対応する。図1等に示したように、これら端子T1,T2,T3とグランド端子GNDとの間に、送電共振キャパシタC1,C2,C3をそれぞれ介して方形波電源回路Vinが接続される。
受電コイルLAは約2ターンの矩形状コイルであり、2つの端子TA1,TA2を有する。この2つの端子TA1,TA2は図1中に示した端子TA1,TA2に対応する。
図4に示した構成によれば、同形状の送電コイルL1,L2,L3が積層状に配置されているので、コイル開口COを通過する磁束を形成するための、各送電コイルL1,L2,L3に流れる電流が分担される。但し、各々、相互インダクタンスの極性が正になるように、各送電コイルL1,L2,L3は同方向に巻かれている。
上記送電共振キャパシタC1,C2,C3のキャパシタンスは、送電コイルL1,L2,L3と受電コイルLAとの位置関係と、送電コイルL1,L2,L3及び受電コイルLAの形状と、に応じて定まる磁気結合に応じて、電磁界共鳴結合を形成するように調整されている。つまり、送電コイルL1,L2,L3は互いに近接させ、またコイルの巻き方向も同じにすることで、互いの結合を強くしている。このことにより、各相互インダクタンスは自己インダクタンスに近づく。また、送電コイルL1,L2,L3は互いに近接しているので、送電コイルL1,L2,L3それぞれの自己インダクタンス及び相互インダクタンスの合成インダクタンスはほぼ同じになる。このことを踏まえ、送電共振キャパシタC1,C2,C3の値を決める。
一方、各送電コイルL1,L2,L3と受電コイルLAとの間は、送電コイルL1,L2,L3間よりも距離があるので、受電コイルLAから見れば、送電コイルL1,L2,L3はほぼ同じ位置にあると見做して、送電共振キャパシタの値を決めることができる。
なお、配線の寄生インピーダンスがあると、設定すべき共振周波数がずれるので、実装の際、送電コイルL1,L2,L3と送電共振キャパシタC1,C2,C3との間の配線距離は短いことが好ましい。
図5は第3の実施形態の別の送電コイル同士の位置関係の例を示す斜視図である。送電コイルL1,L2,L3それぞれは約2ターンの矩形状コイルである。送電コイルL1は、Y-Z面に配置されてX軸方向をコイル軸とするコイルであり、送電コイルL2は、X-Y面に配置されてZ軸方向をコイル軸とするコイルであり、送電コイルL3は、X-Z面に配置されてY軸方向をコイル軸とするコイルである。
このように、送電コイルL1,L2,L3を、XYZ面に配置することにより、図5中破線で示す空間領域に3軸方向の成分を有する磁界が形成される。したがって、この空間領域に受電コイルを配置することにより、送電コイルL1,L2,L3と受電コイルとは磁界結合する。その際、受電コイルのコイル開口の向きは固定されず、任意である。そのため、受電コイルの配置の自由度が高い。
《第4の実施形態》
第4の実施形態では、ワイヤレス給電システムの方形波電源回路Vinの具体例な構成及び受電回路の整流平滑回路の具体例な構成について例示する。
第4の実施形態では、ワイヤレス給電システムの方形波電源回路Vinの具体例な構成及び受電回路の整流平滑回路の具体例な構成について例示する。
図6は、ワイヤレス給電システムに関する部分の第1の回路構成例を示す図である。この例は送電側がD級インバータ動作、受電側が直列共振、倍電圧整流動作する回路である。
送電回路11は、方形波電源回路Vin、送電コイルL1,L2,L3及び送電共振キャパシタC1,C2,C3を含む。
方形波電源回路Vinは直流電源Viを備える。また、方形波電源回路Vinは、等価的にスイッチング素子Q1、ダイオードDds1及びキャパシタCds1の並列接続回路で構成される第1スイッチ回路S1と、等価的にスイッチング素子Q2、ダイオードDds2及びキャパシタCds2の並列接続回路で構成される第2スイッチ回路S2と、スイッチング素子Q1,Q2の制御を行う図外のスイッチング制御回路と、を備える。この方形波電源回路Vinは直流電源Viを断続して、送電共振機構に対して直流電源を断続的かつ周期的に与える。
スイッチング素子Q1,Q2はMOSFETなどの、寄生出力容量や寄生ダイオードを有するスイッチング素子であり、スイッチ回路S1、S2を構成する。
第1スイッチ回路S1のスイッチング素子Q1及び第2スイッチ回路S2のスイッチング素子Q2は交互にオン/オフされる。
方形波電源回路Vinのスイッチング制御回路は第1スイッチング素子Q1及び第2スイッチング素子Q2を所定の動作周波数でスイッチングすることで、直流電圧を送電共振回路に断続的に与えて、送電コイルL1,L2,L3に共振電流を発生させる。これにより、送電コイルL1,L2,L3に正弦波状の電流を流す。具体的には、NFC通信で用いられる13.56MHzでスイッチング動作させる。
受電回路21は、受電コイルLAと受電共振キャパシタCAによる受電共振機構RRMと整流平滑回路20とを備える。整流平滑回路20は、等価的にスイッチング素子Q3、ダイオードDds3及びキャパシタCds3の並列接続回路で構成されるスイッチ回路S3と、ダイオードD4とを備える。ダイオードD4は寄生容量キャパシタCds4を有する。
スイッチ回路S3及びダイオードD4は、受電コイルLAと受電共振キャパシタCAによる受電共振回路に発生する電圧を整流し、平滑キャパシタCo1はその電圧を平滑する。この例では、受電コイルLAと受電共振キャパシタCAとは直列共振回路を構成している。
図7は、ワイヤレス給電システムに関する部分の第2の回路構成例を示す図である。この例は送電側がD級インバータ動作、受電側が並直列共振、倍電圧整流動作する回路である。送電側の構成は図6に示した例と同じである。受電回路21は、受電コイルLAと受電共振キャパシタCAs,CApによる受電共振機構RRMと整流平滑回路20とを備える。受電コイルLAと受電共振キャパシタCAsとは直列共振回路を構成していて、受電コイルLAと受電共振キャパシタCApとは並列共振回路を構成している。整流平滑回路20の構成は図6に示した例と同じである。
図8は、ワイヤレス給電システムに関する部分の第3の回路構成例を示す図である。この例は送電側がD級インバータ動作、受電側が並直列共振、全波整流動作する回路である。送電側の構成は図6に示した例と同じである。受電回路21は、受電コイルLAと受電共振キャパシタCAs,CApによる受電共振機構RRMと整流平滑回路20とを備える。受電コイルLAと受電共振キャパシタCAsとは直列共振回路を構成していて、受電コイルLAと受電共振キャパシタCApとは並列共振回路を構成している。整流平滑回路20は、ダイオードブリッジDB、スイッチング素子Q3及び平滑キャパシタCo1で構成されている。ダイオードブリッジDBは、受電コイルLA及び受電共振キャパシタCAs,CApによる受電共振機構の共振電圧を全波整流する。スイッチング素子Q3はオン状態のとき、ダイオードブリッジDBの全波整流動作を停止させ、電力受電を停止する。
図9は、ワイヤレス給電システムに関する部分の第4の回路構成例を示す図である。この例は送電側がE級インバータ動作、受電側が直列共振、E級整流動作する回路である。
方形波電源回路Vinは、等価的にスイッチング素子Q1、ダイオードDds1及びキャパシタCds1の並列接続回路で構成される第1スイッチ回路S1と、インダクタLfと、キャパシタCiとスイッチング素子Q1の制御を行う図外のスイッチング制御回路と、を備える。
スイッチング素子Q1はMOSFETなどの、寄生出力容量や寄生ダイオードを有するスイッチング素子であり、第1スイッチ回路S1を構成する。
方形波電源回路Vinのスイッチング制御回路は、第1スイッチング素子Q1を所定の動作周波数でスイッチングすることで、インダクタLf、送電共振キャパシタC1,C2,C3及び送電コイルL1,L2,L3による共振回路に直流電圧を断続的に与えて、送電コイルL1,L2,L3に共振電流を発生させる。
受電回路21は、受電コイルLAと受電共振キャパシタCAによる受電共振機構RRMと整流平滑回路20とを備える。整流平滑回路20は、等価的にスイッチング素子Q3、ダイオードDds3及びキャパシタCds3の並列接続回路で構成されるスイッチ回路S3と、インダクタLfsと、平滑キャパシタCo1と、を備える。
スイッチ回路S3は、受電コイルLA、受電共振キャパシタCA及びインダクタLfsによる受電共振回路に発生する電圧を整流し、平滑キャパシタCo1はその電圧を平滑する。
図10は、ワイヤレス給電システムに関する部分の第5の回路構成例を示す図である。この例は送電側がE級インバータ動作、受電側が並直列共振、倍電圧整流動作する回路である。
送電回路11の構成は図9に示した例と同様である。受電回路21の構成は図7に示した例と同様である。
図11は、ワイヤレス給電システムに関する部分の第6の回路構成例を示す図である。この例は送電側がE級インバータ動作、受電側が並直列共振、全波整流動作する回路である。
送電回路11の構成は図9に示した例と同様である。受電回路21の構成は図8に示した例と同様である。
以上に示した例のように、送電回路11の方形波電源回路VinとしてはD級インバータ構成やE級インバータ構成をとることができる。また、受電回路21の受電共振機構としては、図1、図3等に示した並列共振以外に、直列共振や並列直列共振を用いることができる。また、整流平滑回路としては、全波整流回路以外に倍電圧整流回路やE級整流回路の構成をとることができる。
図6から図11に示した例では、送電回路11、受電共振機構PRM、整流平滑回路20の幾つかの組み合わせについて示したが、これらは、例示であって、その他の組合せも可能である。
なお、図6から図11では、単一の受電回路21を備えるワイヤレス給電システムについて例示したが、図3に示したように、複数の受電回路22を備えてもよい。そして、各受電共振機構及び整流平滑回路の構成は異なっていてもよい。
最後に、本発明は上述した実施形態に限られるものではない。当業者によって適宜変形及び変更が可能である。本発明の範囲は、上述の実施形態ではなく、特許請求の範囲によって示される。さらに、本発明の範囲には、特許請求の範囲内と均等の範囲内での実施形態からの変形及び変更が含まれる。
C1,C2,C3…送電共振キャパシタ
CA,CA1…受電共振キャパシタ
CO…コイル開口
Co1,Co2…平滑キャパシタ
DB…ダイオードブリッジ
GND…グランド端子
L1,L2,L3…送電コイル
LA,LA1…受電コイル
RRM,RRM1…受電共振機構
S1,S2,S3…スイッチ回路
T1,T2,T3…端子
TA1,TA2…端子
TRM1,TRM2,TRM3…送電共振機構
Vi…直流電源
Vin…方形波電源回路
11,12…送電回路
20…整流平滑回路
21,22…受電回路
31…DC-DCコンバータ
101,102…ワイヤレス給電システム
CA,CA1…受電共振キャパシタ
CO…コイル開口
Co1,Co2…平滑キャパシタ
DB…ダイオードブリッジ
GND…グランド端子
L1,L2,L3…送電コイル
LA,LA1…受電コイル
RRM,RRM1…受電共振機構
S1,S2,S3…スイッチ回路
T1,T2,T3…端子
TA1,TA2…端子
TRM1,TRM2,TRM3…送電共振機構
Vi…直流電源
Vin…方形波電源回路
11,12…送電回路
20…整流平滑回路
21,22…受電回路
31…DC-DCコンバータ
101,102…ワイヤレス給電システム
Claims (5)
- 送電コイル及び送電共振キャパシタを含む送電共振機構を有する送電回路と、前記送電コイルに磁気結合する受電コイル及び受電共振キャパシタを含む受電共振機構を有する受電回路と、を備えて、前記送電コイルから前記受電コイルへワイヤレスで電力を供給するワイヤレス給電システムにおいて、
前記送電回路は、それぞれが前記送電共振機構を構成する複数の送電共振機構の並列接続回路を有し、
前記送電回路は直流電源及びスイッチング回路を備え、前記スイッチング回路は前記複数の送電共振機構に対して前記直流電源を断続的かつ周期的に与え、
前記複数の送電共振機構と前記受電共振機構とにより電磁界共鳴結合が形成され、前記受電共振機構は、前記電磁界共鳴結合によって誘導される共振電流を重ね合わせて受電電力を得る、
ワイヤレス給電システム。 - 前記受電共振機構は前記スイッチング回路による、前記直流電源のスイッチング周波数において共鳴し、前記受電回路に共振電流が流れるように前記受電共振キャパシタが設定された、
請求項1に記載のワイヤレス給電システム。 - 前記送電共振キャパシタは、前記複数の送電共振機構がそれぞれ備える前記送電コイルと前記受電コイルとの位置関係と、前記送電コイル及び前記受電コイルの形状と、に応じて定まる磁気結合に応じて、前記電磁界共鳴結合を形成するように調整された、電子部品によるキャパシタを備える、
請求項1又は2に記載のワイヤレス給電システム。 - 前記複数の送電共振機構の前記送電コイルのうち、少なくとも2つの送電コイルは互いに磁気結合して相互インダクタンスを形成する、
請求項1から3のいずれかに記載のワイヤレス給電システム。 - 前記受電回路は複数存在し、各受電回路の前記受電コイルは前記複数の送電共振機構の前記送電コイルにそれぞれ占有的にワイヤレスで磁気結合する、
請求項1から4のいずれかに記載のワイヤレス給電システム。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022533668A JP7476964B2 (ja) | 2020-06-30 | 2021-02-04 | ワイヤレス給電システム |
US18/068,459 US20230124799A1 (en) | 2020-06-30 | 2022-12-19 | Wireless power transfer system |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020-112478 | 2020-06-30 | ||
JP2020112478 | 2020-06-30 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US18/068,459 Continuation US20230124799A1 (en) | 2020-06-30 | 2022-12-19 | Wireless power transfer system |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022004034A1 true WO2022004034A1 (ja) | 2022-01-06 |
Family
ID=79315209
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/004031 WO2022004034A1 (ja) | 2020-06-30 | 2021-02-04 | ワイヤレス給電システム |
Country Status (3)
Country | Link |
---|---|
US (1) | US20230124799A1 (ja) |
JP (1) | JP7476964B2 (ja) |
WO (1) | WO2022004034A1 (ja) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011199975A (ja) * | 2010-03-18 | 2011-10-06 | Nec Corp | 非接触送電装置、非接触送電システムおよび非接触送電方法 |
JP2015223031A (ja) * | 2014-05-22 | 2015-12-10 | 株式会社デンソー | 送電装置 |
JP2017028998A (ja) * | 2012-10-11 | 2017-02-02 | 株式会社村田製作所 | ワイヤレス給電装置 |
-
2021
- 2021-02-04 WO PCT/JP2021/004031 patent/WO2022004034A1/ja active Application Filing
- 2021-02-04 JP JP2022533668A patent/JP7476964B2/ja active Active
-
2022
- 2022-12-19 US US18/068,459 patent/US20230124799A1/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011199975A (ja) * | 2010-03-18 | 2011-10-06 | Nec Corp | 非接触送電装置、非接触送電システムおよび非接触送電方法 |
JP2017028998A (ja) * | 2012-10-11 | 2017-02-02 | 株式会社村田製作所 | ワイヤレス給電装置 |
JP2015223031A (ja) * | 2014-05-22 | 2015-12-10 | 株式会社デンソー | 送電装置 |
Also Published As
Publication number | Publication date |
---|---|
JP7476964B2 (ja) | 2024-05-01 |
JPWO2022004034A1 (ja) | 2022-01-06 |
US20230124799A1 (en) | 2023-04-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6601538B2 (ja) | ワイヤレス給電装置 | |
KR101685371B1 (ko) | 전력 전송 시스템 | |
JP6115626B2 (ja) | ワイヤレス給電装置 | |
US9912197B2 (en) | Dual-mode wireless power receiver | |
US9048741B2 (en) | Switching power supply device | |
US7209024B2 (en) | Filter circuit and power supply unit | |
US7542316B2 (en) | Switching power supply unit | |
US9130467B2 (en) | Switching power supply device | |
JP6288519B2 (ja) | 無線電力伝送システム | |
WO2013076936A1 (ja) | 発電システムおよび無線電力伝送システム | |
JP6640774B2 (ja) | 送電装置および電力伝送システム | |
TW507414B (en) | Switching power circuit with secondary side parallel and series resonance | |
JP2013532461A (ja) | 非接触型の誘導電力伝送システムの回路 | |
US20210099018A1 (en) | Non-contact power feeding apparatus | |
WO2022004034A1 (ja) | ワイヤレス給電システム | |
JP6737301B2 (ja) | ワイヤレス電力伝送システム | |
WO2020189351A1 (ja) | 非接触給電装置 | |
JP7287402B2 (ja) | ワイヤレス給電システム | |
US20240234003A9 (en) | Contactless power feed apparatus and power transmission coil | |
WO2020195587A1 (ja) | 電力伝送装置 | |
WO2023008222A1 (ja) | 近距離無線通信装置 | |
JP7567913B2 (ja) | ワイヤレス送電装置及びワイヤレス給電システム | |
WO2023008224A1 (ja) | 近距離無線通信装置 | |
JP2020018060A (ja) | 受電装置及び無線給電システム | |
WO2014119059A1 (ja) | 受電装置および送電装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21831771 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2022533668 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21831771 Country of ref document: EP Kind code of ref document: A1 |