WO2022003866A1 - Rotating electrical machine and electric vehicle - Google Patents

Rotating electrical machine and electric vehicle Download PDF

Info

Publication number
WO2022003866A1
WO2022003866A1 PCT/JP2020/025828 JP2020025828W WO2022003866A1 WO 2022003866 A1 WO2022003866 A1 WO 2022003866A1 JP 2020025828 W JP2020025828 W JP 2020025828W WO 2022003866 A1 WO2022003866 A1 WO 2022003866A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
electric machine
coils
phase
rotary electric
Prior art date
Application number
PCT/JP2020/025828
Other languages
French (fr)
Japanese (ja)
Inventor
学 白木
隆 古畑
幸夫 津田
Original Assignee
コアレスモータ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コアレスモータ株式会社 filed Critical コアレスモータ株式会社
Priority to PCT/JP2020/025828 priority Critical patent/WO2022003866A1/en
Priority to PCT/JP2020/041258 priority patent/WO2022003996A1/en
Priority to JP2022533025A priority patent/JPWO2022003996A1/ja
Publication of WO2022003866A1 publication Critical patent/WO2022003866A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/28Layout of windings or of connections between windings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Definitions

  • the present invention relates to a rotary electric machine, and particularly relates to a rotary electric machine suitable for performing efficient operation, and an electric vehicle using the same.
  • Patent Document 1 is a technique relating to a motor for a machine tool, in which a coil composed of three phases is used as a stator, and a coil constituting each layer is composed of a plurality of coils having different winding times. Then, one to a plurality of coils are selectively connected in series so that the number of turns of the entire coil is reduced during high-speed rotation and the number of turns of the entire coil is increased during low-speed rotation.
  • Patent Document 2 mainly discloses a technique relating to a motor for an electric tool or a starter generator for an automobile. Similar to the motor disclosed in Patent Document 1, the motor disclosed in Patent Document 2 also uses a coil composed of three phases as a stator. Each layer is composed of a plurality of coils, and a switch device capable of switching the connection of the plurality of coils constituting each layer in series or in parallel is provided. With such a configuration, in the series connection, the magnetic field excited by the coil becomes stronger and the torque can be improved, and in the parallel connection, the magnetic field becomes weaker, so that high-speed rotation can be realized.
  • Patent Documents 1 and 2 it is considered possible to certainly change the characteristics of the motor and realize the operation of a plurality of motors with one motor.
  • the present invention provides a rotary electric machine capable of solving the above-mentioned problems and improving the responsiveness at the time of characteristic switching while maintaining a predetermined torque even at high rotation speed, and an electric vehicle using the same. With the goal.
  • the rotating electric machine for achieving the above object includes a housing, a rotating shaft rotatably supported by the housing, a non-rotating operating coil arranged around the rotating shaft, and the operation.
  • a coreless rotary electric machine having a rotor with a magnet located on the opposite surface of the working coil separated from the coil, wherein the working coil is composed of three phases U, V, and W, each of which has a plurality of layers. It is characterized by having a circuit unit which is composed of the coils of the above and can switch the connection type of the coils constituting each layer to either a series type or a parallel type.
  • the operating coil has a cylindrical shape. With such a configuration, it is possible to provide a gap in the internal space of the motor. Therefore, it is possible to effectively utilize the internal space of the motor.
  • the circuit unit may be provided between the coils constituting the poles, and the circuit unit may be switched in units of the corresponding poles of each layer. ..
  • the number of switchable systems can be increased according to the number of coils and the number of circuit units.
  • the number of coils connected in series on the low rotation side should be increased, and the number of coils connected in parallel on the high rotation side should be increased with respect to a predetermined threshold of rotation speed. It is preferable to provide a control unit for switching the circuit unit. By having such a feature, it is possible to balance the power consumption and the generated torque, and it is possible to widen the range of usable rotation range.
  • the coil may be configured by using a litz wire.
  • the electric vehicle for achieving the above-mentioned purpose is characterized in that the rotary electric machine having the above-mentioned characteristics is applied to the power for propulsion.
  • the rotary electric machine having the above-mentioned characteristics, it is possible to improve the responsiveness at the time of characteristic switching while maintaining a predetermined torque even at the time of high rotation.
  • the motor 10 according to the present embodiment is a so-called coreless motor that is basically composed of a housing 12, a rotating shaft 14, an operating coil 18, and a rotor 16.
  • the housing 12 is an element constituting the outer shell, and houses the rotating shaft 14, the operating coil 18, and the rotor 16 in the internal space.
  • the rotating shaft 14 is arranged so as to penetrate the housing 12, and is rotatably supported by a bearing 12a provided at an intersection with the housing 12.
  • the operating coil 18 is configured to form a cylindrical shape by a coil group divided into a plurality of phases (three phases of U phase, V phase, and W phase in this embodiment).
  • the U-phase, V-phase, and W-phase constituting the operating coil 18 are composed of a plurality of coils each constituting a pole.
  • each phase is divided into 1/2 (that is, divided into two equal parts), and the first coil U 1 , the second coil U 2 , the first coil V 1 , the second coil V 2 , and the first coil are divided. It is configured to consist of W 1 and a second coil W 2.
  • the phase constituting the inner cylindrical coil body is the U phase
  • the phase located outside the inner cylindrical coil body in the radial direction is the V phase
  • the phase located outside the V phase Is the W phase
  • the first coil (U 1 , V 1 , W 1 ) and the second coil (U 2 , V 2 , W 2 ) are defined for each phase.
  • the U phase, the V phase, and the W phase from the inside are an example, and different orders and overlapping methods may be used.
  • each phase is sequentially arranged so as to be displaced in the circumferential direction by approximately 1/3.
  • the actuating coil 18 having such a configuration is configured such that one end surface is supported by a stator (housing 12 in the example shown in FIG. 3) which is a fixing member.
  • the rotor 16 has a cylindrical outer yoke 16c, an inner yoke 16b, and a permanent magnet 16a, and one end surface thereof is connected to the rotating shaft 14.
  • the outer yoke 16c is an element located on the outer peripheral side of the working coil 18 (the outer peripheral side in the radial direction with respect to the center of the cylinder), and the inner yoke 16b is an element located on the inner peripheral side of the working coil 18.
  • the permanent magnet 16a is configured to be provided inside the outer yoke 16c and on the facing surface of the operating coil 18.
  • the power generation source and the rotating shaft 14 are separated from each other in the coreless motor having such a configuration, it is possible to obtain a large output and torque compared to the size of the motor. Further, since the operating coil 18 does not have an iron core, the self-inductance can be suppressed to a small value.
  • a litz wire as shown in FIG. 5 is used for the winding, and the shape is formed by coating with an insulating layer.
  • the litz wire is a so-called stranded wire formed by bundling a plurality of conductive wires 18a, and the outer circumference of each conductive wire 18a is covered with an enamel layer 18b.
  • an outer skin layer 18c made of a fibrous material such as glass fiber is provided on the outer periphery of the conductive wire 18a (conductive wire 18a as a bundle) constituting the stranded wire.
  • each phase constituting the operating coil 18 is divided into two coils (first coil U 1 , second coil U 2 , first coil V). 1 , 2nd coil V 2 , 1st coil W 1 , 2nd coil W 2 ), and each coil is a pole. That is, the operating coil 18 according to the present embodiment is configured to form a three-phase, six-pole body. A changeover switch between the coils constituting each pole (first coil U 1 and second coil U 2 , first coil V 1 and second coil V 2 , first coil W 1 and second coil W 2).
  • the circuit unit 20 (20U, 20V, 20W) constituting the above is provided.
  • the circuit unit 20 is configured by arranging two changeover switches (first switch A and second switch B) of one input side port and two output side ports in parallel.
  • the first coil U 1 , V 1 , and W 1 are connected to the input side port of the first switch A, respectively, and the first bypass line is connected to the input side port of the second switch B.
  • the second coils U 2 , V 2 , and W 2 are connected to the output side port of the first switch A on the a port side, and the second bypass line is connected to the b port side.
  • the a port side is open (not connected) to the output side port of the second switch B, and the branch lines from the second coils U 2 , V 2 , and W 2 are connected to the b port side. ing.
  • the first coil U 1 , V 1 , W 1 and the second coil U 2 , V 2 , W 2 are connected in series or by switching the switch constituting the circuit unit 20. It is possible to switch to parallel connection. Specifically, when both the first switch A and the second switch B are connected to the a port, the first coil U 1 , V 1 , W 1 and the second coil U 2 , V 2 , W 2 are connected in series. (See Fig. 1). On the other hand, when both the first switch A and the second switch B are connected to the b port, the first coil U 1 , V 1 , W 1 and the second coil U 2 , V 2 , W 2 are connected in parallel ( See Figure 2). That is, the switching timings of the first switch A and the second switch B are configured to match.
  • the torque characteristics are good in a system (referred to as the first system) in which the first coil U 1 , V 1 , W 1 and the second coil U 2 , V 2 , W 2 are connected in series. ..
  • a system referred to as a second system in which the first coil U 1 , V 1 , W 1 and the second coil U 2 , V 2 , W 2 are connected in parallel
  • the rotational characteristics are good in a system (referred to as the first system) in which the first coil U 1 , V 1 , W 1 and the second coil U 2 , V 2 , W 2 are connected in parallel.
  • FIG. 6 shows the relationship characteristic between the torque and the rotation speed of the first system and the second system (TN characteristic) and the relationship characteristic between the torque and the current (TI characteristic), respectively. Comparing the second system and the first system, it can be read that the rising gradient of the used power due to the improvement of the torque is steep because the normal rotation range is high in the second system. On the other hand, in the first system, although it is possible to generate a high torque in the low rotation speed range, it can be read that the maximum rotation speed is only about half that of the second system.
  • FIG. 7 shows the characteristics (TN characteristics and TI characteristics) of the motor obtained when the first system and the second system are switched in a rotation range where the maximum torque is 1/2.
  • the motor 10 according to the present embodiment in which the system is switched it is possible to generate high torque while suppressing power consumption (current) in a low rotation speed region.
  • the part where there is no problem in operating with low torque it is possible to realize a high rotation speed that cannot be obtained by the first system.
  • the motor 10 In order to realize such a configuration, the switches (first switch A and second switch B) constituting the circuit unit 20 need to be switched simultaneously in the three phases of the U phase, the V phase, and the W phase. .. Therefore, the motor 10 according to the embodiment is provided with a control unit 22 that outputs a switching signal to the circuit unit 20.
  • the control unit 22 uses a predetermined threshold value of the rotation speed as a reference, increases the number of coils connected in series in each phase on the rotation speed side lower than the threshold value, and increases the number of coils connected in parallel on the high rotation speed side. It is good to have a configuration that switches like this. This is because the power consumption and the generated torque can be balanced and the usable rotation range can be widened.
  • the motor 10 having such a configuration When the motor 10 having such a configuration is applied to the power of the vehicle to form an electric vehicle, the output characteristics of the first system (series) and the second system (parallel) show the tendency as shown in FIG. Become. Therefore, from the viewpoint of generated torque, required rotation range, and power consumption, the system can be divided into three zones for operation while switching the system.
  • the first zone should be applied when output torque is required (generally 1/2 or more of the maximum torque) such as when starting or climbing a slope (first system: at low rpm).
  • the second zone has a relatively low rotation speed, does not require output torque (generally less than 1/2 of the maximum torque), and should be applied when it is desired to reduce power consumption (for example, during normal driving) (first system). : At high rpm).
  • the third zone should be applied when a high rotation speed is required and output torque is not required (generally less than 1/2 of the maximum torque) such as when traveling at high speed (second system: at high rotation speed).
  • the self-inductance can be kept small, and the response from switching to characteristic switching by connection switching by the circuit unit 20 can be achieved. It can enhance the sex.
  • the motor 10 according to the present embodiment has a different configuration of the operating coil 18 from the motor 10 according to the first embodiment.
  • the parts having the same operation shall be described with reference to FIG.
  • the operating coil 18 is a three-phase 12-pole system in which four coils (12 in total) are used in one phase.
  • the coils constituting each phase (first coil U 1 , second coil U 2 , third coil U 3 , fourth coil U 4 , first coil V 1 , second coil) are used.
  • Circuit unit 20 (20U 1 ) between V 2 , 3rd coil V 3 , 4th coil V 4 , 1st coil W 1 , 2nd coil W 2 , 3rd coil W 3 , 4th coil W 4), respectively.
  • 20U 2 , 20U 3 , 20V 1 , 20V 2 , 20V 3 , 20W 1 , 20W 2 , 20W 3 ) are provided.
  • the circuit units 20U 1 , 20U 3 , 20V 1 , 20V 3 , 20W 1 , 20W 3 are the same as those of the circuit unit 20U, 20V, 20W according to the first embodiment.
  • the circuit units 20U 2 , 20V 2 , and 20W 2 are configured such that the number of input ports and the number of output ports of the second switch B are opposite to those of the first switch A.
  • the first switch A and the second switch B are set to the a port for the circuit units 20U 1 to 20 W 3, respectively.
  • 1 coil U 1 to 4th coil U 4 , 1st coil V 1 to 4th coil V 4 , 1st coil W 1 to 4th coil W 4 are connected in series (this state is referred to as 1 para). Referred to: (see Fig. 9).
  • first switch A and the second switch B of the circuit units 20U 2 , 20V 2 , and 20W 2 are set to the b port from the state of one para, for example, in the U phase, the first coil U 1 and the second coil U 2 is connected in series, the third coil U 3 and the fourth coil U 4 are connected in series, respectively, and the pair of the first coil U 1 and the second coil U 2 and the set of the third coil U 3 and the fourth coil U 4 are connected. Will be connected in parallel. It should be noted that each coil is similarly connected in the V phase and the W phase (this state is referred to as 2 paras: see FIG. 10).
  • the first coil U 1 to the first coil are used.
  • the 4-coil U 4 , the 1st coil V 1 to the 4th coil V 4 , and the 1st coil W 1 to the 4th coil W 4 are connected in parallel (this state is referred to as 4 paras: see FIG. 11). ..
  • the circuit unit is provided in a single coil unit.
  • the number of coils arranged between the circuit units is not limited to one.
  • by varying the number of coils arranged between circuit units and devising the arrangement of circuit units it is possible to equalize the number of coils connected in series when connecting coils in parallel. , It is possible to widen the range of characteristic change by the combination of the coil connected in series and the coil connected in parallel.
  • each phase (U phase, V phase, W phase) 12 coil (first coil through twelfth coil: U 1 -W 12) It was placed, and the configuration of providing five circuit portion (20U 1 -20W 5).
  • circuit portion 20U 1 -20U 5) is in the U-phase, between the coil U 3 and the coil U 4, between the coil U 4 and the coil U 5, between the coils U 6 and the coil U 7, coil U 8 They are respectively between the coil U 9, and between the coil U 9 and the coil U 10 and.
  • the arrangement of the circuit section (20V 1 -20W 5) are the same.
  • the circuit section (20U 1 -20W 5), ports a1, b1, a2, b2, c1, c2 , respectively are provided.
  • the circuit having such a port (20U 1 -20W 5), ports a1, b1 is the switchable between a port c1, port a2, b2 are the switchable between a port c2 , Both are configured to be switched at the same time.
  • circuit portion 20U 1, 20V 1, 20W 1 the circuit part 20X 1, circuit portion 20U 2 , 20V 2 , 20W 2 for circuit section 20X 2 , circuit section 20U 3 , 20V 3 , 20W 3 for circuit section 20X 3 , circuit section 20U 4 , 20V 4 , 20W 4 for circuit section 20X 4 , circuit section 20U 5 , 20V 5 and 20W 5 will be referred to as a circuit unit 20X 5 and will be described.
  • the form as shown in FIG. 14 is obtained.
  • the boundary portion between the coil U 1 and the coil U 12 is used as an input / output end for electric power, and the coils U 1 to U 12 are arranged in a cylindrical (annular) shape around the right side.
  • coil U 1 -U 6, coil U 7 -U 12 are connected in series, respectively The Rukoto.
  • the coils are divided (divided into three equal parts) by the circuit units 20U 2 and 20U 4 , and the coils U 1 to U 4 , the coils U 5 to U 8 , and the coils U 9 to U 12 are respectively. It will be connected in series. Further, when the above four paras are executed, the coil is divided (divided into four equal parts) by the circuit units 20U 1 , 20U 3 , and 20U 5 , and the coils U 1- U 3 , U 4- U 6 , U 7- U 9 , U 10 to U 12 will be connected in series, respectively.
  • the U-phase coil arrangement is shown in FIG. 14, the same applies to the V-phase and W-phase.
  • the number of coils and the number of circuit parts are limited, but the number of coils and circuit parts may be further increased to increase the number of combinations when connecting the coils in series and in parallel. good. Further, not only the combination of the coil connection forms may be increased, but also the appropriate rotation speed and torque may be selected according to the application, and the combination of the coil connection forms may be limitedly determined. For example, when applying to applications such as power tools where you want to earn more rotation speed than the torque of the initial operation, you can select and switch the combination of coils that can perform characteristic operation in the high rotation range, such as 4 para and 3 para. You can do it.
  • circuit unit 20 is mechanically shown in order to make it easier to understand the switching of the coil connection form, but the circuit unit 20 is provided with the same function by the semiconductor chip. May be.
  • the form of the operating coil 18 is cylindrical.
  • the motor according to the present invention can also include a form in which the operating coils are arranged in a disk shape.
  • Control unit U 1 ............ 1st coil, U 2 ............ 2nd coil, U 3 ............ 3rd coil, U 4 ............ 4th coil, V 1 ............ 1st coil, V 2 ?? ... 2nd coil, V 3 ......... 3rd coil, V 4 ......... 4th coil, W 1 ......... 1st coil, W 2 ......... 2nd coil, W 3 ......... 3rd coil, W 4 ......... 4th coil.

Abstract

[Problem] To provide a rotating electrical machine that can achieve heightened responsiveness during switchover of a characteristic property, while maintaining predetermined torque even at high rotational speeds. [Solution] Provided is a coreless rotating electrical machine comprising: a housing 12; a rotational shaft 14 that is rotatably supported on the housing 12; an operating coil 18 which constitutes a cylindrical form and one end face of which is supported on a stator; and a rotor 16 which constitutes a cylindrical form, one end face of which is supported on the rotating shaft 14, and which is provided with a permanent magnet 16a on a surface facing the operating coil 18. The electrical machine is characterized in that the operating coil 18 is provided with circuit units 20 (20U, 20V, 20W) that comprise three phases U, V, and W, with each phase being constituted by a plurality of coils, and that enable the connection scheme of the coils constituting each phase to be switched over to either a series scheme or a parallel scheme.

Description

回転電気機械及び電動車Rotating electric machines and electric vehicles
 本発明は、回転電気機械に係り、特に、効率的な運転を実行する場合に好適な回転電気機械、及びこれを用いた電動車に関する。 The present invention relates to a rotary electric machine, and particularly relates to a rotary electric machine suitable for performing efficient operation, and an electric vehicle using the same.
 回転電気機械としてのモータの特性を変化させる技術としては、特許文献1や特許文献2に開示されているように、内部巻き線の接続形態を切り替えるという事が提案されている。例えば特許文献1は、工作機用のモータに関する技術であり、3つの相により構成されるコイルをステータとし、各層を構成するコイルを巻回数の異なる複数のコイルにより構成している。そして、高速回転時には、コイル全体の巻回数が少なくなるように、低速回転時には、コイル全体の巻回数が多くなるように、1から複数のコイルを選択的に直列接続する構成としている。 As a technique for changing the characteristics of a motor as a rotary electric machine, it has been proposed to switch the connection form of the internal winding as disclosed in Patent Document 1 and Patent Document 2. For example, Patent Document 1 is a technique relating to a motor for a machine tool, in which a coil composed of three phases is used as a stator, and a coil constituting each layer is composed of a plurality of coils having different winding times. Then, one to a plurality of coils are selectively connected in series so that the number of turns of the entire coil is reduced during high-speed rotation and the number of turns of the entire coil is increased during low-speed rotation.
 また、特許文献2には、主に電動工具または自動車用のスタータジェネレータ用のモータに関する技術が開示されている。特許文献2に開示されているモータも、特許文献1に開示されているモータと同様に3つの相により構成されるコイルをステータとしている。そして、各層を複数のコイルにより構成し、各層を構成する複数のコイルを、直列または並列に接続切り替えする事のできるスイッチ装置を備える構成としている。このような構成とする事で、直列接続では、コイルにより励磁される磁界が強くなりトルクの向上を図る事ができ並列接続では、磁界が弱くなることで、高速回転を実現させることができる。 Further, Patent Document 2 mainly discloses a technique relating to a motor for an electric tool or a starter generator for an automobile. Similar to the motor disclosed in Patent Document 1, the motor disclosed in Patent Document 2 also uses a coil composed of three phases as a stator. Each layer is composed of a plurality of coils, and a switch device capable of switching the connection of the plurality of coils constituting each layer in series or in parallel is provided. With such a configuration, in the series connection, the magnetic field excited by the coil becomes stronger and the torque can be improved, and in the parallel connection, the magnetic field becomes weaker, so that high-speed rotation can be realized.
特許第3596711号公報Japanese Patent No. 3596711 特表2010-537621号公報Special Table 2010-537621 Gazette
 特許文献1、2に開示されている技術によれば、確かにモータの特性を変化させ、複数のモータの作用を1つのモータにより実現する事が可能となると考えられる。 According to the techniques disclosed in Patent Documents 1 and 2, it is considered possible to certainly change the characteristics of the motor and realize the operation of a plurality of motors with one motor.
 しかしながら、特許文献1に開示されている技術では、実質的にコイルの巻き数が変化するため、高回転域においては極端にトルクが低下する虞がある。また、特許文献2に開示されている技術は、鉄心の影響により自己インダクタンスが大きく、スイッチングから特性変化までの間にタイムラグが生じることが懸念される。 However, in the technique disclosed in Patent Document 1, since the number of turns of the coil is substantially changed, there is a possibility that the torque will be extremely reduced in the high rotation speed range. Further, the technique disclosed in Patent Document 2 has a large self-inductance due to the influence of the iron core, and there is a concern that a time lag may occur between switching and characteristic change.
 そこで本発明では、上記課題を解決し、高回転時においても所定のトルクを維持しつつ、特性切替時の応答性を高める事のできる回転電気機械、及びこれを用いた電動車を提供することを目的とする。 Therefore, the present invention provides a rotary electric machine capable of solving the above-mentioned problems and improving the responsiveness at the time of characteristic switching while maintaining a predetermined torque even at high rotation speed, and an electric vehicle using the same. With the goal.
 上記目的を達成するための本発明に係る回転電気機械は、ハウジングと、前記ハウジングに回転自在に支持された回転軸と、前記回転軸の周囲に配置された非回転の作動コイルと、前記作動コイルと離間して前記作動コイルの対向面に位置する磁石を備えたロータと、を有するコアレス回転電気機械であって、前記作動コイルは、U、V、Wの3相から成り、各層が複数のコイルから構成され、各層を構成するコイルの接続形式を直列形式と並列形式のいずれかへの切り替えを可能とする回路部を備えたことを特徴とする。 The rotating electric machine according to the present invention for achieving the above object includes a housing, a rotating shaft rotatably supported by the housing, a non-rotating operating coil arranged around the rotating shaft, and the operation. A coreless rotary electric machine having a rotor with a magnet located on the opposite surface of the working coil separated from the coil, wherein the working coil is composed of three phases U, V, and W, each of which has a plurality of layers. It is characterized by having a circuit unit which is composed of the coils of the above and can switch the connection type of the coils constituting each layer to either a series type or a parallel type.
 また、上記のような特徴を有する回転電気機械において、前記作動コイルは、円筒状を成すようにすると良い。このような構成とすることで、モータの内部空間に空隙を設ける事が可能となる。よって、モータの内部空間を有効活用する事も可能となる。 Further, in a rotary electric machine having the above-mentioned characteristics, it is preferable that the operating coil has a cylindrical shape. With such a configuration, it is possible to provide a gap in the internal space of the motor. Therefore, it is possible to effectively utilize the internal space of the motor.
 また、上記のような特徴を有する回転電気機械では、前記回路部は、極を構成するコイル間にそれぞれ設けられ、各層の対応する極単位で前記回路部の切り替えを成す構成とすることができる。このような特徴を有する事によれば、コイルの数、回路部の数に応じて、切り替え可能なシステム(特性)の数を増やす事ができる。 Further, in a rotary electric machine having the above-mentioned characteristics, the circuit unit may be provided between the coils constituting the poles, and the circuit unit may be switched in units of the corresponding poles of each layer. .. With such characteristics, the number of switchable systems (characteristics) can be increased according to the number of coils and the number of circuit units.
 また、上記のような特徴を有する回転電気機械では、予め定めた回転数の閾値に対して低回転側では直列形式で接続するコイルを増やし、高回転側では並列形式で接続するコイルを増やすように前記回路部の切り替えを行う制御部を備えるようにすると良い。このような特徴を有する事によれば、消費電力と発生トルクのバランスをとる事が出来ると共に、使用可能な回転域の幅を広げることができる。 Further, in a rotary electric machine having the above-mentioned characteristics, the number of coils connected in series on the low rotation side should be increased, and the number of coils connected in parallel on the high rotation side should be increased with respect to a predetermined threshold of rotation speed. It is preferable to provide a control unit for switching the circuit unit. By having such a feature, it is possible to balance the power consumption and the generated torque, and it is possible to widen the range of usable rotation range.
 また、上記のような特徴を有する回転電気機械では、前記コイルは、リッツ線を用いて構成すると良い。このような特徴を有する事により、作動コイルの形状維持のための強度を得る事ができると共に、作動コイルに鉄板や銅板を使用する必要が無くなるため、自己インダクタンスの低減を図ることができる。 Further, in a rotary electric machine having the above-mentioned characteristics, the coil may be configured by using a litz wire. By having such a feature, it is possible to obtain strength for maintaining the shape of the working coil, and it is not necessary to use an iron plate or a copper plate for the working coil, so that self-inductance can be reduced.
 さらに、上記目的を達成するための電動車は、上記特徴を有する回転電気機械を推進用の動力に適用したことを特徴とする。 Further, the electric vehicle for achieving the above-mentioned purpose is characterized in that the rotary electric machine having the above-mentioned characteristics is applied to the power for propulsion.
 上記のような特徴を有する回転電気機械によれば、高回転時においても所定のトルクを維持しつつ、特性切替時の応答性を高める事が可能となる。 According to the rotary electric machine having the above-mentioned characteristics, it is possible to improve the responsiveness at the time of characteristic switching while maintaining a predetermined torque even at the time of high rotation.
第1実施形態に係るモータにおける作動コイルの回路構成を示す図であり、各相を構成するコイルを直列接続する場合の例を示す図である。It is a figure which shows the circuit structure of the operating coil in the motor which concerns on 1st Embodiment, and is the figure which shows the example of the case where the coil constituting each phase is connected in series. 第1実施形態に係るモータにおける作動コイルの回路構成を示す図であり、各相を構成するコイルを並列接続する場合の例を示す図である。It is a figure which shows the circuit structure of the actuating coil in the motor which concerns on 1st Embodiment, and is the figure which shows the example of the case where the coil constituting each phase is connected in parallel. 本発明に係るモータの概略構成を示す側断面図である。It is a side sectional view which shows the schematic structure of the motor which concerns on this invention. 作動コイルの断面構成を示す図である。It is a figure which shows the cross-sectional structure of the actuating coil. 実施形態に係る作動コイルを構成するリッツ線の断面構成を示す図である。It is a figure which shows the cross-sectional structure of the litz wire which constitutes the actuating coil which concerns on embodiment. 作動コイルを構成するコイルの接続方式を切り替えた場合におけるトルクと回転数、トルクと電流のそれぞれについての関係特性を示すグラフである。It is a graph which shows the relational characteristic about each of torque and rotation speed, torque and current when the connection method of the coil constituting an actuating coil is switched. 作動コイルを構成するコイルの接続方式を切り替えてモータを運転する場合の特性変化を示すグラフである。It is a graph which shows the characteristic change at the time of operating a motor by switching the connection method of the coil which constitutes an actuating coil. 作動コイルを構成するコイルの接続方式を切り替えてモータを運転する場合の出力特性の変化と、状況に応じた切り替えを行うためのゾーンを示すグラフである。It is a graph which shows the change of the output characteristic at the time of operating a motor by switching the connection method of the coil constituting an actuating coil, and the zone for switching according to a situation. 第2実施形態に係るモータにおける作動コイルの回路構成を示す図であり、各相を構成する4つのコイルを全て直接接続する場合の例を示す図である。It is a figure which shows the circuit structure of the operating coil in the motor which concerns on 2nd Embodiment, and is the figure which shows the example of the case where all four coils constituting each phase are directly connected. 第2実施形態に係るモータにおける作動コイルの回路構成を示す図であり、各相を構成する4つのコイルのうちの2つずつを直列接続し、直列接続した組を成すコイルを並列接続する場合の例を示す図である。It is a figure which shows the circuit structure of the operating coil in the motor which concerns on 2nd Embodiment, and is the case where 2 of 4 coils constituting each phase are connected in series, and the coil which forms the set which connected in series is connected in parallel. It is a figure which shows the example of. 第2実施形態に係るモータにおける作動コイルの回路構成を示す図であり、各相を構成する4つのコイルを全て並列接続する場合の例を示す図である。It is a figure which shows the circuit structure of the operating coil in the motor which concerns on 2nd Embodiment, and is the figure which shows the example of the case where all four coils constituting each phase are connected in parallel. 第2実施形態に係るモータにおいて、作動コイルを構成するコイルの接続方式を切り替えてモータを運転する場合の特性変化を示すグラフである。It is a graph which shows the characteristic change at the time of operating a motor by switching the connection method of the coil constituting the working coil in the motor which concerns on 2nd Embodiment. 1相に12個のコイル、5個の回路部を備えた応用形態を示す図である。It is a figure which shows the application form which provided 12 coils in one phase, and 5 circuit parts. 12コイルを用いた場合におけるコイルの配置形態の例を示す断面図である。It is sectional drawing which shows the example of the arrangement form of the coil in the case of using 12 coils.
 以下、本発明の回転電気機械、及び電動車に係る実施の形態について、図面を参照して詳細に説明する。なお、以下に示す実施の形態としては、回転電気機械としてモータを例に挙げて説明する。 Hereinafter, embodiments of the rotary electric machine and the electric vehicle of the present invention will be described in detail with reference to the drawings. The embodiment shown below will be described by taking a motor as an example as a rotary electric machine.
[基本構成]
 まず、図3から図5を参照して、本実施形態に係るモータ10の基本構成について説明する。本実施形態に係るモータ10は、ハウジング12と、回転軸14、作動コイル18、及びロータ16を基本として構成される、いわゆるコアレスモータである。ハウジング12は、外殻を構成する要素であり内部空間に回転軸14や作動コイル18、及びロータ16を収容している。回転軸14は、ハウジング12を貫通するように配置され、ハウジング12との交点に備えられた軸受12aにより、回転自在に支持されている。
[Basic configuration]
First, the basic configuration of the motor 10 according to the present embodiment will be described with reference to FIGS. 3 to 5. The motor 10 according to the present embodiment is a so-called coreless motor that is basically composed of a housing 12, a rotating shaft 14, an operating coil 18, and a rotor 16. The housing 12 is an element constituting the outer shell, and houses the rotating shaft 14, the operating coil 18, and the rotor 16 in the internal space. The rotating shaft 14 is arranged so as to penetrate the housing 12, and is rotatably supported by a bearing 12a provided at an intersection with the housing 12.
 作動コイル18は、複数の相(本実施形態ではU相、V相、W相の3相)に分けられたコイル群により、円筒状を成すように構成されている(図4参照)。作動コイル18を構成するU相、V相、W相は、それぞれ極を構成する複数のコイルから成っている。図4に示す形態では、各相を1/2(つまり2等分)に分けて、第1コイルU、第2コイルU、第1コイルV、第2コイルV、第1コイルW、第2コイルWから成るように構成している。より具体的な一例として、内側円筒状コイル体を構成する相がU相であり、半径方向において内側円筒状コイル体よりも外側に位置する相がV相、さらにV相の外側に位置する相をW相とし、各相に第1コイル(U、V、W)と第2コイル(U、V、W)を定めている。なお、内側からU相、V相、W相とするのは一例であり、異なる順序、重なり方でも良い。また、図4では各相は順次ほぼ1/3ずつ円周方向にずれて配置されている。このような構成の作動コイル18は、一方の端面が固定部材であるステータ(図3に示す例ではハウジング12)に支持されるように構成されている。 The operating coil 18 is configured to form a cylindrical shape by a coil group divided into a plurality of phases (three phases of U phase, V phase, and W phase in this embodiment). The U-phase, V-phase, and W-phase constituting the operating coil 18 are composed of a plurality of coils each constituting a pole. In the embodiment shown in FIG. 4, each phase is divided into 1/2 (that is, divided into two equal parts), and the first coil U 1 , the second coil U 2 , the first coil V 1 , the second coil V 2 , and the first coil are divided. It is configured to consist of W 1 and a second coil W 2. As a more specific example, the phase constituting the inner cylindrical coil body is the U phase, the phase located outside the inner cylindrical coil body in the radial direction is the V phase, and the phase located outside the V phase. Is the W phase, and the first coil (U 1 , V 1 , W 1 ) and the second coil (U 2 , V 2 , W 2 ) are defined for each phase. It should be noted that the U phase, the V phase, and the W phase from the inside are an example, and different orders and overlapping methods may be used. Further, in FIG. 4, each phase is sequentially arranged so as to be displaced in the circumferential direction by approximately 1/3. The actuating coil 18 having such a configuration is configured such that one end surface is supported by a stator (housing 12 in the example shown in FIG. 3) which is a fixing member.
 また、ロータ16は、円筒状を成すアウターヨーク16cとインナーヨーク16b、及び永久磁石16aを有し、一方の端面が回転軸14と接続されている。アウターヨーク16cは、上述した作動コイル18外周側(円筒中心を基点とした半径方向外周側)に位置する要素であり、インナーヨーク16bは、作動コイル18の内周側に位置する要素である。また、本実施形態に係るモータ10では永久磁石16aを、アウターヨーク16cの内側であって、作動コイル18の対向面に備えるように構成している。 Further, the rotor 16 has a cylindrical outer yoke 16c, an inner yoke 16b, and a permanent magnet 16a, and one end surface thereof is connected to the rotating shaft 14. The outer yoke 16c is an element located on the outer peripheral side of the working coil 18 (the outer peripheral side in the radial direction with respect to the center of the cylinder), and the inner yoke 16b is an element located on the inner peripheral side of the working coil 18. Further, in the motor 10 according to the present embodiment, the permanent magnet 16a is configured to be provided inside the outer yoke 16c and on the facing surface of the operating coil 18.
 このような構成のコアレスモータは、動力発生源と回転軸14とが離れている事より、モータの大きさに比して大きな出力、及びトルクを得る事が可能となる。また、作動コイル18が鉄心を備えないため、自己インダクタンスを小さく抑える事ができる。 Since the power generation source and the rotating shaft 14 are separated from each other in the coreless motor having such a configuration, it is possible to obtain a large output and torque compared to the size of the motor. Further, since the operating coil 18 does not have an iron core, the self-inductance can be suppressed to a small value.
 さらに、このような構成のモータ10では、作動コイル18を構成する際、巻き線に図5に示すようなリッツ線を用いると共に絶縁層によるコーティングで形状形成する構成としている。なおリッツ線は、複数の導電線18aが束ねられて構成された、いわゆる撚線であり、各導電線18aの外周は、エナメル層18bで覆われている。さらに、撚線を構成する導電線18a(束としての導電線18a)の外周には、ガラス繊維のような繊維状物による外皮層18cが設けられている。 Further, in the motor 10 having such a configuration, when the operating coil 18 is configured, a litz wire as shown in FIG. 5 is used for the winding, and the shape is formed by coating with an insulating layer. The litz wire is a so-called stranded wire formed by bundling a plurality of conductive wires 18a, and the outer circumference of each conductive wire 18a is covered with an enamel layer 18b. Further, an outer skin layer 18c made of a fibrous material such as glass fiber is provided on the outer periphery of the conductive wire 18a (conductive wire 18a as a bundle) constituting the stranded wire.
 このような構成によっても、形状維持のために鉄板や銅板を用いる事による渦電流の発生(渦電流損)を抑制し、自己インダクタンスの低減を図る事に寄与することができる。 Even with such a configuration, it is possible to suppress the generation of eddy current (eddy current loss) due to the use of an iron plate or a copper plate for maintaining the shape, and contribute to the reduction of self-inductance.
[第1実施形態]
 このような基本構成を有するモータ10では、図1、図2に示すように、作動コイル18を構成する各相を2つのコイル(第1コイルU、第2コイルU、第1コイルV、第2コイルV、第1コイルW、第2コイルW)により構成し、各コイルを極としている。すなわち、本実施形態に係る作動コイル18は、3相6極の体を成すように構成されている。各極を構成するコイル(第1コイルUと第2コイルU、第1コイルVと第2コイルV、第1コイルWと第2コイルW)の間には、切り替えスイッチを構成する回路部20(20U、20V、20W)が備えられている。
[First Embodiment]
In the motor 10 having such a basic configuration, as shown in FIGS. 1 and 2, each phase constituting the operating coil 18 is divided into two coils (first coil U 1 , second coil U 2 , first coil V). 1 , 2nd coil V 2 , 1st coil W 1 , 2nd coil W 2 ), and each coil is a pole. That is, the operating coil 18 according to the present embodiment is configured to form a three-phase, six-pole body. A changeover switch between the coils constituting each pole (first coil U 1 and second coil U 2 , first coil V 1 and second coil V 2 , first coil W 1 and second coil W 2). The circuit unit 20 (20U, 20V, 20W) constituting the above is provided.
 回路部20は、入力側1ポート、出力側2ポートの切り替えスイッチが2つ(第1スイッチA、第2スイッチB)、並列に配置されて成る。第1スイッチAの入力側ポートには、第1コイルU、V、Wがそれぞれ接続され、第2スイッチBの入力側ポートには、第1バイパス線が接続されている。第1スイッチAの出力側ポートには、aポート側に第2コイルU、V、Wが接続され、bポート側に第2バイパス線が接続されている。また、第2スイッチBの出力側ポートには、aポート側が開放(未接続)となっており、bポート側には、第2コイルU、V、Wからの分岐線が接続されている。 The circuit unit 20 is configured by arranging two changeover switches (first switch A and second switch B) of one input side port and two output side ports in parallel. The first coil U 1 , V 1 , and W 1 are connected to the input side port of the first switch A, respectively, and the first bypass line is connected to the input side port of the second switch B. The second coils U 2 , V 2 , and W 2 are connected to the output side port of the first switch A on the a port side, and the second bypass line is connected to the b port side. Further, the a port side is open (not connected) to the output side port of the second switch B, and the branch lines from the second coils U 2 , V 2 , and W 2 are connected to the b port side. ing.
 このような回路構成とする事で、回路部20を構成するスイッチの切り替えにより、第1コイルU、V、Wと第2コイルU、V、Wとを直列接続、または並列接続に切り替える事が可能となる。具体的には、第1スイッチAと第2スイッチBを共にaポートに接続した場合、第1コイルU、V、Wと第2コイルU、V、Wが直列接続となる(図1参照)。一方、第1スイッチAと第2スイッチBを共にbポートに接続した場合、第1コイルU、V、Wと第2コイルU、V、Wは、並列接続となる(図2参照)。すなわち、第1スイッチAと第2スイッチBの切り替えタイミングは一致するように構成されている。 With such a circuit configuration, the first coil U 1 , V 1 , W 1 and the second coil U 2 , V 2 , W 2 are connected in series or by switching the switch constituting the circuit unit 20. It is possible to switch to parallel connection. Specifically, when both the first switch A and the second switch B are connected to the a port, the first coil U 1 , V 1 , W 1 and the second coil U 2 , V 2 , W 2 are connected in series. (See Fig. 1). On the other hand, when both the first switch A and the second switch B are connected to the b port, the first coil U 1 , V 1 , W 1 and the second coil U 2 , V 2 , W 2 are connected in parallel ( See Figure 2). That is, the switching timings of the first switch A and the second switch B are configured to match.
 このような切り替え制御において、第1コイルU、V、Wと第2コイルU、V、Wを直列接続するシステム(第1システムと称す)では、トルク特性が良好となる。一方、第1コイルU、V、Wと第2コイルU、V、Wとを並列接続するシステム(第2システムと称す)では、回転特性が良好となる。 In such switching control, the torque characteristics are good in a system (referred to as the first system) in which the first coil U 1 , V 1 , W 1 and the second coil U 2 , V 2 , W 2 are connected in series. .. On the other hand, in a system (referred to as a second system) in which the first coil U 1 , V 1 , W 1 and the second coil U 2 , V 2 , W 2 are connected in parallel, the rotational characteristics are good.
 図6に、第1システムと第2システムのトルクと回転数の関係特性(T-N特性)と、トルクと電流の関係特性(T-I特性)をそれぞれ示す。第2システムと第1システムを比較すると、第2システムでは常用回転域が高いため、トルクの向上に伴う使用電力の立ち上がり勾配が急な事を読み取ることができる。一方、第1システムでは、低回転域で高いトルクを発生させる事ができるものの、最高回転数が第2システムの半分程度にとどまってしまっている事を読み取ることができる。 FIG. 6 shows the relationship characteristic between the torque and the rotation speed of the first system and the second system (TN characteristic) and the relationship characteristic between the torque and the current (TI characteristic), respectively. Comparing the second system and the first system, it can be read that the rising gradient of the used power due to the improvement of the torque is steep because the normal rotation range is high in the second system. On the other hand, in the first system, although it is possible to generate a high torque in the low rotation speed range, it can be read that the maximum rotation speed is only about half that of the second system.
 各システムの特性を踏まえ、低回転域では第1システムを用い、高回転域では第2システムを用いる事で、2つのモータの夫々良いところを有効に活用する事ができると考えられる。図7に、第1システムと第2システムとを最大トルクの1/2となる回転域で切り替えた際に得られるモータの特性(T-N特性とT-I特性)を示す。システムの切り替えを行う本実施形態に係るモータ10では、低回転域において消費電力(電流)を抑制しつつ、高いトルクを発生させる事ができる。また、低トルクでの稼働で問題無い部分においては、第1システムでは得る事のできない高い回転数を実現する事が可能となる。 Based on the characteristics of each system, it is considered that the good points of each of the two motors can be effectively utilized by using the first system in the low rotation range and the second system in the high rotation range. FIG. 7 shows the characteristics (TN characteristics and TI characteristics) of the motor obtained when the first system and the second system are switched in a rotation range where the maximum torque is 1/2. In the motor 10 according to the present embodiment in which the system is switched, it is possible to generate high torque while suppressing power consumption (current) in a low rotation speed region. In addition, in the part where there is no problem in operating with low torque, it is possible to realize a high rotation speed that cannot be obtained by the first system.
 このような構成を実現する場合、回路部20を構成するスイッチ(第1スイッチA、第2スイッチB)の切り替えは、U相、V相、W相の3相で同時に成される必要がある。このため、実施形態に係るモータ10には、回路部20に対して切り替え信号を出力する制御部22が備えられている。なお、制御部22は、予め定められた回転数の閾値を基準とし、当該閾値よりも低回転側では、各相において直列接続するコイルを増やすようにし、高回転側では並列接続するコイルを増やすように切り替えを行う構成とすると良い。消費電力と発生トルクのバランスをとる事が出来ると共に、使用可能な回転域の幅を広げることができるからである。 In order to realize such a configuration, the switches (first switch A and second switch B) constituting the circuit unit 20 need to be switched simultaneously in the three phases of the U phase, the V phase, and the W phase. .. Therefore, the motor 10 according to the embodiment is provided with a control unit 22 that outputs a switching signal to the circuit unit 20. The control unit 22 uses a predetermined threshold value of the rotation speed as a reference, increases the number of coils connected in series in each phase on the rotation speed side lower than the threshold value, and increases the number of coils connected in parallel on the high rotation speed side. It is good to have a configuration that switches like this. This is because the power consumption and the generated torque can be balanced and the usable rotation range can be widened.
 このような構成のモータ10を車両の動力に適用して電動車を構成する場合、第1システム(直列)と第2システム(並列)の出力特性は図8に示すような傾向を示すこととなる。このため、発生トルクと必要回転域、及び消費電力の観点から、3つのゾーンに分けてシステムの切り替えを行いながら運転する事ができる。 When the motor 10 having such a configuration is applied to the power of the vehicle to form an electric vehicle, the output characteristics of the first system (series) and the second system (parallel) show the tendency as shown in FIG. Become. Therefore, from the viewpoint of generated torque, required rotation range, and power consumption, the system can be divided into three zones for operation while switching the system.
 すなわち、第1ゾーンは、発進時や登坂領域など、出力トルクが必要な場合(概ね最大トルクの1/2以上)に適用すると良い(第1システム:低回転時)。また、第2ゾーンは、比較的回転数が低く、出力トルクが不要(概ね最大トルクの1/2未満)で、消費電力を抑えたい場合(例えば通常走行時)に適用すると良い(第1システム:高回転時)。さらに、第3ゾーンは、高速走行時など、高い回転数が必要で出力トルクが不要な場合(概ね最大トルクの1/2未満)に適用すると良い(第2システム:高回転時)。 That is, the first zone should be applied when output torque is required (generally 1/2 or more of the maximum torque) such as when starting or climbing a slope (first system: at low rpm). In addition, the second zone has a relatively low rotation speed, does not require output torque (generally less than 1/2 of the maximum torque), and should be applied when it is desired to reduce power consumption (for example, during normal driving) (first system). : At high rpm). Further, the third zone should be applied when a high rotation speed is required and output torque is not required (generally less than 1/2 of the maximum torque) such as when traveling at high speed (second system: at high rotation speed).
[効果]
 上記のような特徴を有するモータ10によれば、消費電力の向上に伴い、高回転域においても所定のトルク(第1コイルU、V、Wと第2コイルU、V、Wを直列接続したシステム(第1システム)の高回転域と比べて高い回転数であっても高いトルクを得る事ができるという意味)を得る事ができる。
[effect]
According to the motor 10 having the above-mentioned characteristics, as the power consumption is improved, a predetermined torque (first coil U 1 , V 1 , W 1 and second coil U 2 , V 2) is applied even in a high rotation speed range. It is possible to obtain a high torque even at a high rotation speed as compared with the high rotation range of the system (first system) in which W 2 is connected in series).
 また、コイルに鉄心を備えず、かつリッツ線による形状維持の強度確保を図っている事により、自己インダクタンスを小さく抑える事ができ、回路部20による接続切り替えによるスイッチングから特性切り替えに至るまでの応答性を高める事ができる。 In addition, by not providing an iron core in the coil and ensuring the strength of shape maintenance by the litz wire, the self-inductance can be kept small, and the response from switching to characteristic switching by connection switching by the circuit unit 20 can be achieved. It can enhance the sex.
[第2実施形態]
 次に、図10から図11を参照して、第2実施形態に係るモータ10の構成について説明する。本実施形態に係るモータ10は、作動コイル18の構成を、第1実施形態に係るモータ10と異ならせている。なお、モータ10の構成について、その作用を同様とする箇所については、図3を援用して説明するものとする。
[Second Embodiment]
Next, the configuration of the motor 10 according to the second embodiment will be described with reference to FIGS. 10 to 11. The motor 10 according to the present embodiment has a different configuration of the operating coil 18 from the motor 10 according to the first embodiment. Regarding the configuration of the motor 10, the parts having the same operation shall be described with reference to FIG.
 本実施形態に係る作動コイル18は、1つの相に4つのコイル(合計12個)を用いた3相12極とされている。
 このような構成の作動コイル18では、各相を構成するコイル(第1コイルU、第2コイルU、第3コイルU、第4コイルU、第1コイルV、第2コイルV、第3コイルV、第4コイルV、第1コイルW、第2コイルW、第3コイルW、第4コイルW)の間にそれぞれ、回路部20(20U、20U、20U、20V、20V、20V、20W、20W、20W)が設けられている。
The operating coil 18 according to the present embodiment is a three-phase 12-pole system in which four coils (12 in total) are used in one phase.
In the operating coil 18 having such a configuration, the coils constituting each phase (first coil U 1 , second coil U 2 , third coil U 3 , fourth coil U 4 , first coil V 1 , second coil) are used. Circuit unit 20 (20U 1 ) between V 2 , 3rd coil V 3 , 4th coil V 4 , 1st coil W 1 , 2nd coil W 2 , 3rd coil W 3 , 4th coil W 4), respectively. , 20U 2 , 20U 3 , 20V 1 , 20V 2 , 20V 3 , 20W 1 , 20W 2 , 20W 3 ) are provided.
 回路部20の構成として、回路部20U、20U、20V、20V、20W、20Wについては、第1実施形態に係る回路部20U、20V、20Wと同様である。一方、回路部20U、20V、20Wについては、第2スイッチBについて、入力ポートの数と出力ポートの数が第1スイッチAと逆となるように構成されている。 As the configuration of the circuit unit 20, the circuit units 20U 1 , 20U 3 , 20V 1 , 20V 3 , 20W 1 , 20W 3 are the same as those of the circuit unit 20U, 20V, 20W according to the first embodiment. On the other hand, the circuit units 20U 2 , 20V 2 , and 20W 2 are configured such that the number of input ports and the number of output ports of the second switch B are opposite to those of the first switch A.
 このような構成のモータ10では、U相、V相、W相のそれぞれにおいて、回路部20U~20Wについて、それぞれ第1スイッチAと第2スイッチBをaポートに設定することで、第1コイルU~第4コイルU、第1コイルV~第4コイルV、第1コイルW~第4コイルWがそれぞれ直列接続されることとなる(この状態を1パラと称す:図9参照)。 In the motor 10 having such a configuration, in each of the U phase, the V phase, and the W phase, the first switch A and the second switch B are set to the a port for the circuit units 20U 1 to 20 W 3, respectively. 1 coil U 1 to 4th coil U 4 , 1st coil V 1 to 4th coil V 4 , 1st coil W 1 to 4th coil W 4 are connected in series (this state is referred to as 1 para). Referred to: (see Fig. 9).
 また、1パラの状態から回路部20U、20V、20Wの第1スイッチAと第2スイッチBをbポートに設定した場合、例えばU相では、第1コイルUと第2コイルUが直列、第3コイルUと第4コイルUが直列にそれぞれ接続され、第1コイルUと第2コイルUの組と、第3コイルUと第4コイルUの組がそれぞれ並列に接続されることとなる。なお、V相、W相においても各コイルが同様に接続される(この状態を2パラと称す:図10参照)。 Further, when the first switch A and the second switch B of the circuit units 20U 2 , 20V 2 , and 20W 2 are set to the b port from the state of one para, for example, in the U phase, the first coil U 1 and the second coil U 2 is connected in series, the third coil U 3 and the fourth coil U 4 are connected in series, respectively, and the pair of the first coil U 1 and the second coil U 2 and the set of the third coil U 3 and the fourth coil U 4 are connected. Will be connected in parallel. It should be noted that each coil is similarly connected in the V phase and the W phase (this state is referred to as 2 paras: see FIG. 10).
 さらに、U相、V相、W相のそれぞれにおいて、回路部20U~20Wについて、それぞれ第1スイッチAと第2スイッチBをbポートに設定した場合には、第1コイルU~第4コイルU、第1コイルV~第4コイルV、第1コイルW~第4コイルWがそれぞれ並列接続されることとなる(この状態を4パラと称す:図11参照)。 Further, in each of the U phase, the V phase, and the W phase, when the first switch A and the second switch B are set to the b port for the circuit units 20U 1 to 20 W 3 , the first coil U 1 to the first coil are used. The 4-coil U 4 , the 1st coil V 1 to the 4th coil V 4 , and the 1st coil W 1 to the 4th coil W 4 are connected in parallel (this state is referred to as 4 paras: see FIG. 11). ..
 上記のような構成のモータ10では、直列接続されるコイルが多いシステムほどトルク特性が高く(上記1パラ)、並列接続されるコイルが多いシステムほど回転特性が高い(上記4パラ)。このような特性を活かし、1パラから4パラまでのシステム切り替えを行ってモータ10を運転する場合のトルクと回転数の関係特性(T-N特性)と、トルクと電流の関係特性(T-I特性)について、図12に示す。 In the motor 10 having the above configuration, the system with more coils connected in series has higher torque characteristics (1 para above), and the system with more coils connected in parallel has higher rotational characteristics (4 paras above). Taking advantage of these characteristics, the relationship characteristics between torque and rotation speed (TN characteristics) and the relationship characteristics between torque and current (T-) when the system is switched from 1 para to 4 paras to operate the motor 10. The I characteristic) is shown in FIG.
 図12によれば、1パラ、2パラ、4パラと、回転数の上昇に伴うシステム切り替えを実施することで、消費電力を所定値以下に押えつつ、高トルクの運転を実現することができる。また、2パラ、4パラと切り替え運転することで、1パラでは得る事のできない高回転域での運転を実現する事ができる。例えばこのような構成のモータ10を電動車の推進用の動力に適用した場合、4パラ、2パラ、1パラは、それぞれトップギア、セカンドギア、ローギアに相当する変速機構としての機能を果たすこととなる。 According to FIG. 12, by switching the system to 1 para, 2 para, and 4 para as the rotation speed increases, it is possible to realize high torque operation while suppressing the power consumption to a predetermined value or less. .. In addition, by switching between 2 para and 4 para, it is possible to realize operation in a high rotation range that cannot be obtained by 1 para. For example, when the motor 10 having such a configuration is applied to the power for propulsion of an electric vehicle, the four paras, the two paras, and the one paras function as transmission mechanisms corresponding to the top gear, the second gear, and the low gear, respectively. Will be.
[効果]
 このような構成のモータ10であっても、第1実施形態に係るモータ10と同様に、高回転域においても所定のトルクを得る事ができる。
 また、コイルに鉄心を備えず、かつリッツ線による形状維持の強度確保を図っている事により、自己インダクタンスを小さく抑える事ができ、回路部20による接続切り替えによるスイッチングから特性切り替えに至るまでの応答性を高める事ができる。
 さらに、コイルと回路部の数を増やす事により、特性の切り替えの自由度を向上させることができる。
[effect]
Even with the motor 10 having such a configuration, a predetermined torque can be obtained even in a high rotation range as in the motor 10 according to the first embodiment.
In addition, by not providing an iron core in the coil and ensuring the strength of shape maintenance by the litz wire, the self-inductance can be kept small, and the response from switching to characteristic switching by connection switching by the circuit unit 20 can be achieved. It can enhance the sex.
Further, by increasing the number of coils and circuit units, the degree of freedom in switching the characteristics can be improved.
[応用形態]
 上記実施形態ではいずれも、単一のコイル単位に回路部を備える構成としていた。しかしながら、回路部間に配置するコイルの数は、1つに限るものでは無い。例えば、回路部間に配置するコイルの数に変化を持たせると共に回路部の配置を工夫することで、コイルを並列接続する際に、直列接続されるコイルの数を等分化することが可能となり、直列接続するコイルと並列接続するコイルの組み合わせによる特性変化の幅を広げることができる。
[Application form]
In each of the above embodiments, the circuit unit is provided in a single coil unit. However, the number of coils arranged between the circuit units is not limited to one. For example, by varying the number of coils arranged between circuit units and devising the arrangement of circuit units, it is possible to equalize the number of coils connected in series when connecting coils in parallel. , It is possible to widen the range of characteristic change by the combination of the coil connected in series and the coil connected in parallel.
 例えば図13に示すような構成の作動コイル18を備えるモータ10では、各相(U相、V相、W相)に12個のコイル(第1コイル~第12コイル:U-W12)を配置し、5つの回路部(20U-20W)を設ける構成としている。1例として、U相における回路部20U-20U)は、コイルUとコイルUの間、コイルUとコイルUの間、コイルUとコイルUの間、コイルUとコイルUの間、及びコイルUとコイルU10の間にそれぞれ設けている。なお、V相とW相においても、回路部(20V-20W)の配置は同様とする。 In the motor 10 having the configuration of the working coil 18, as shown in FIG. 13 for example, each phase (U phase, V phase, W phase) 12 coil (first coil through twelfth coil: U 1 -W 12) It was placed, and the configuration of providing five circuit portion (20U 1 -20W 5). As an example, circuit portion 20U 1 -20U 5) is in the U-phase, between the coil U 3 and the coil U 4, between the coil U 4 and the coil U 5, between the coils U 6 and the coil U 7, coil U 8 They are respectively between the coil U 9, and between the coil U 9 and the coil U 10 and. Also in the V-phase and W-phase, the arrangement of the circuit section (20V 1 -20W 5) are the same.
 回路部(20U-20W)には、それぞれポートa1、b1、a2、b2、c1、c2が備えられている。このようなポートを有する回路部(20U-20W)では、ポートa1、b1がポートc1との間で切り替え可能とされ、ポートa2、b2がポートc2との間で切り替え可能とされており、両者は同時に切り替えが成されるように構成されている。 The circuit section (20U 1 -20W 5), ports a1, b1, a2, b2, c1, c2 , respectively are provided. The circuit having such a port (20U 1 -20W 5), ports a1, b1 is the switchable between a port c1, port a2, b2 are the switchable between a port c2 , Both are configured to be switched at the same time.
 次に、本形態における作動コイル18の接続形態の切り替えと回路部(20U-20W)の切り替えの関係について説明する。なお、各層において対応する回路部(20U-20W)はそれぞれ同時に切り替えが成されるため、以下の説明においては、回路部20U、20V、20Wを回路部20X、回路部20U、20V、20Wを回路部20X、回路部20U、20V、20Wを回路部20X、回路部20U、20V、20Wを回路部20X、回路部20U、20V、20Wを回路部20Xと称して説明する。 It will now be described switching of the relationship of the switching circuit section of the connection of the actuating coil 18 in this embodiment (20U 1 -20W 5). Since the corresponding circuit section (20U 1 -20W 5) is that at the same time switching respectively made in each layer, in the following description, the circuit portion 20U 1, 20V 1, 20W 1 the circuit part 20X 1, circuit portion 20U 2 , 20V 2 , 20W 2 for circuit section 20X 2 , circuit section 20U 3 , 20V 3 , 20W 3 for circuit section 20X 3 , circuit section 20U 4 , 20V 4 , 20W 4 for circuit section 20X 4 , circuit section 20U 5 , 20V 5 and 20W 5 will be referred to as a circuit unit 20X 5 and will be described.
 本実施形態のモータでは、1パラ(直列接続)の場合には、全ての回路部20X-20Xにおいて、aポートとcポートが接続されるようにスイッチングが設定される。また、2パラとする場合には、回路部20Xのみがbポートとcポートが接続されるようにスイッチング設定される。また、3パラとする場合には、回路部20Xと回路部20Xがbポートとcポートが接続されるようにスイッチング設定される。さらに、4パラとする場合には、回路部20Xと回路部20X、及び回路部20Xがbポートとcポートが接続されるようにスイッチング設定される。 In the motor of this embodiment, in the case of 1 para (series connection), in all the circuit portions 20X 1 -20X 5, switching is set as a port and port c is connected. Further, in the case of a two-para is switched set so that only the circuit portion 20X 3 is b-port and port c is connected. Further, in the case of 3 paras, the circuit unit 20X 2 and the circuit unit 20X 4 are switched and set so that the b port and the c port are connected. Further, in the case of 4 paras, the circuit unit 20X 1 and the circuit unit 20X 3 and the circuit unit 20X 5 are switched and set so that the b port and the c port are connected.
 各相を構成するコイルを円筒状に配置すると、図14のような形態となる。図14に示す例では、コイルUとコイルU12の境界部を電力の入出力端として、右周りにコイルU-U12を円筒(円環)状となるように配置している。このような配置形態のコイルにおいて、上記2パラを実行した場合、回路部20Uでコイルが分割(2等分)され、コイルU-U、コイルU-U12がそれぞれ直列接続されることとなる。また、上記3パラを実行した場合、回路部20U、20Uでコイルが分割(3等分)され、コイルU-U、コイルU-U、コイルU-U12がそれぞれ直列接続されることとなる。さらに、上記4パラを実行した場合、回路部20U、20U、20Uでコイルが分割(4等分)され、コイルU-U、U-U、U-U、U10-U12がそれぞれ直列接続されることとなる。
なお、図14においてはU相のコイル配置を示しているが、V相やW相においても同様である。
When the coils constituting each phase are arranged in a cylindrical shape, the form as shown in FIG. 14 is obtained. In the example shown in FIG. 14, the boundary portion between the coil U 1 and the coil U 12 is used as an input / output end for electric power, and the coils U 1 to U 12 are arranged in a cylindrical (annular) shape around the right side. In the coil of this arrangement form, when performing the above 2 para coil in the circuit portion 20 U 3 is divided (into two equal parts), coil U 1 -U 6, coil U 7 -U 12 are connected in series, respectively The Rukoto. When the above three parameters are executed, the coils are divided (divided into three equal parts) by the circuit units 20U 2 and 20U 4 , and the coils U 1 to U 4 , the coils U 5 to U 8 , and the coils U 9 to U 12 are respectively. It will be connected in series. Further, when the above four paras are executed, the coil is divided (divided into four equal parts) by the circuit units 20U 1 , 20U 3 , and 20U 5 , and the coils U 1- U 3 , U 4- U 6 , U 7- U 9 , U 10 to U 12 will be connected in series, respectively.
Although the U-phase coil arrangement is shown in FIG. 14, the same applies to the V-phase and W-phase.
 上記実施形態では、コイルの数や回路部の数を限定的なものとしているが、さらにコイルや回路部の数を向上させ、コイルを直列接続と並列接続させる際の組み合わせを増やすようにしても良い。また、コイルの接続形態の組み合わせを増やすだけでなく、用途に応じた適正回転数やトルクを選定し、コイルの接続形態の組み合わせを限定的に定めるようにしても良い。例えば、電動工具などの初期動作のトルクよりも回転数を稼ぎたい用途へ適用する場合には、4パラと3パラなど、高回転域の特性運転を行う事ができるコイルの組み合わせを選択切り替えできるようにすれば良い。 In the above embodiment, the number of coils and the number of circuit parts are limited, but the number of coils and circuit parts may be further increased to increase the number of combinations when connecting the coils in series and in parallel. good. Further, not only the combination of the coil connection forms may be increased, but also the appropriate rotation speed and torque may be selected according to the application, and the combination of the coil connection forms may be limitedly determined. For example, when applying to applications such as power tools where you want to earn more rotation speed than the torque of the initial operation, you can select and switch the combination of coils that can perform characteristic operation in the high rotation range, such as 4 para and 3 para. You can do it.
 また、上記実施形態では、コイルの接続形態の切り替えを理解しやすくするために、回路部20を機械的に示しているが、回路部20は、半導体チップにより、同様な機能を持たせるようにしても良い。 Further, in the above embodiment, the circuit unit 20 is mechanically shown in order to make it easier to understand the switching of the coil connection form, but the circuit unit 20 is provided with the same function by the semiconductor chip. May be.
 また、上記実施形態では、いずれも作動コイル18の形態については、円筒状とする旨記載した。しかしながら、本発明に係るモータは、作動コイルを円盤状に配置した形態についても含むものとすることができる。 Further, in the above embodiment, it is described that the form of the operating coil 18 is cylindrical. However, the motor according to the present invention can also include a form in which the operating coils are arranged in a disk shape.
10………モータ、12………ハウジング、12a………軸受、14………回転軸、16………ロータ、16a………永久磁石、16b………インナーヨーク、16c………アウターヨーク、18………作動コイル、18a………導電線、18b………エナメル層、18c………外皮層、20(20U、20V、20W)………回路部、22………制御部、U………第1コイル、U………第2コイル、U………第3コイル、U………第4コイル、V………第1コイル、V………第2コイル、V………第3コイル、V………第4コイル、W………第1コイル、W………第2コイル、W………第3コイル、W………第4コイル。 10 ………… Motor, 12 ………… Housing, 12a ………… Bearing, 14 ………… Rotating shaft, 16 ………… Rotor, 16a ………… Permanent magnet, 16b ………… Inner yoke, 16c ………… Outer Yoke, 18 ......... Actuating coil, 18a ......... Conductive wire, 18b ......... Enamel layer, 18c ......... Skin layer, 20 (20U, 20V, 20W) ......... Circuit unit, 22 ......... Control unit , U 1 ………… 1st coil, U 2 ………… 2nd coil, U 3 ………… 3rd coil, U 4 ………… 4th coil, V 1 ………… 1st coil, V 2 …… … 2nd coil, V 3 ……… 3rd coil, V 4 ……… 4th coil, W 1 ……… 1st coil, W 2 ……… 2nd coil, W 3 ……… 3rd coil, W 4 ……… 4th coil.

Claims (6)

  1.  ハウジングと、前記ハウジングに回転自在に支持された回転軸と、前記回転軸の周囲に配置された非回転の作動コイルと、前記作動コイルと離間して前記作動コイルの対向面に位置する磁石を備えたロータと、を有するコアレス回転電気機械であって、
     前記作動コイルは、U、V、Wの3相から成り、各層が複数のコイルから構成され、各層を構成するコイルの接続形式を直列形式と並列形式のいずれかへの切り替えを可能とする回路部を備えたことを特徴とする回転電気機械。
    A housing, a rotating shaft rotatably supported by the housing, a non-rotating working coil arranged around the rotating shaft, and a magnet located on the opposite surface of the working coil away from the working coil. A coreless rotary electric machine with a rotor and
    The working coil is composed of three phases U, V, and W, each layer is composed of a plurality of coils, and a circuit that enables switching of the connection type of the coils constituting each layer to either a series type or a parallel type. A rotating electric machine characterized by having a part.
  2.  請求項1に記載の回転電気機械であって、
     前記作動コイルは、円筒状を成していることを特徴とする回転電気機械。
    The rotary electric machine according to claim 1.
    The actuating coil is a rotary electric machine characterized in that it has a cylindrical shape.
  3.  請求項1または2に記載の回転電気機械であって、
     前記回路部は、極を構成するコイル間にそれぞれ設けられ、
     各層の対応する極単位で前記回路部の切り替えを成す構成としたことを特徴とする回転電気機械。
    The rotary electric machine according to claim 1 or 2.
    The circuit section is provided between the coils constituting the poles, respectively.
    A rotary electric machine characterized in that the circuit unit is switched in units of corresponding poles of each layer.
  4.  請求項1乃至3のいずれか1項に記載の回転電気機械であって、
     予め定めた回転数の閾値に対して低回転側では直列形式で接続するコイルを増やし、高回転側では並列形式で接続するコイルを増やすように前記回路部の切り替えを行う制御部を備えたことを特徴とする回転電気機械。
    The rotary electric machine according to any one of claims 1 to 3.
    It is equipped with a control unit that switches the circuit unit so that the number of coils connected in series on the low rotation side is increased and the number of coils connected in parallel on the high rotation side is increased with respect to the predetermined threshold of rotation speed. A rotating electric machine featuring.
  5.  請求項1乃至4のいずれか1項に記載の回転電気機械であって、
     前記コイルは、リッツ線を用いて構成されていることを特徴とする回転電気機械。
    The rotary electric machine according to any one of claims 1 to 4.
    The coil is a rotary electric machine characterized in that it is configured by using a litz wire.
  6.  請求項1乃至5のいずれか1項に記載の回転電気機械を推進用の動力に適用したことを特徴とする電動車。 An electric vehicle characterized in that the rotary electric machine according to any one of claims 1 to 5 is applied to power for propulsion.
PCT/JP2020/025828 2020-07-01 2020-07-01 Rotating electrical machine and electric vehicle WO2022003866A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2020/025828 WO2022003866A1 (en) 2020-07-01 2020-07-01 Rotating electrical machine and electric vehicle
PCT/JP2020/041258 WO2022003996A1 (en) 2020-07-01 2020-11-04 Rotary electric machine and electric vehicle
JP2022533025A JPWO2022003996A1 (en) 2020-07-01 2020-11-04

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/025828 WO2022003866A1 (en) 2020-07-01 2020-07-01 Rotating electrical machine and electric vehicle

Publications (1)

Publication Number Publication Date
WO2022003866A1 true WO2022003866A1 (en) 2022-01-06

Family

ID=79315174

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2020/025828 WO2022003866A1 (en) 2020-07-01 2020-07-01 Rotating electrical machine and electric vehicle
PCT/JP2020/041258 WO2022003996A1 (en) 2020-07-01 2020-11-04 Rotary electric machine and electric vehicle

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/041258 WO2022003996A1 (en) 2020-07-01 2020-11-04 Rotary electric machine and electric vehicle

Country Status (2)

Country Link
JP (1) JPWO2022003996A1 (en)
WO (2) WO2022003866A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08126275A (en) * 1994-10-25 1996-05-17 Sawafuji Electric Co Ltd Core-less rotating machine
JP2009071939A (en) * 2007-09-11 2009-04-02 Mosutetsuku:Kk Coil, slotless motor and method for manufacturing coil
JP2011229221A (en) * 2010-04-16 2011-11-10 Hitachi Appliances Inc Hermetic type electric compressor and refrigeration cycle device
JP2014121102A (en) * 2012-12-13 2014-06-30 Seiko Epson Corp Coreless electromechanical device, method of manufacturing the same, mobile body, and robot
JP2016131444A (en) * 2015-01-14 2016-07-21 株式会社日立製作所 Permanent magnet synchronous motor, winding-switching motor drive unit, and refrigeration air-conditioning apparatus using the same, electric vehicle
JP2019054628A (en) * 2017-09-14 2019-04-04 キヤノンプレシジョン株式会社 Coreless motor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09215385A (en) * 1996-02-06 1997-08-15 Tootasu:Kk High variable torque machine for motor
JP3837954B2 (en) * 1999-03-26 2006-10-25 日本精工株式会社 Connection pattern switching device
JP5013165B2 (en) * 2006-07-12 2012-08-29 株式会社ジェイテクト Motor control device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08126275A (en) * 1994-10-25 1996-05-17 Sawafuji Electric Co Ltd Core-less rotating machine
JP2009071939A (en) * 2007-09-11 2009-04-02 Mosutetsuku:Kk Coil, slotless motor and method for manufacturing coil
JP2011229221A (en) * 2010-04-16 2011-11-10 Hitachi Appliances Inc Hermetic type electric compressor and refrigeration cycle device
JP2014121102A (en) * 2012-12-13 2014-06-30 Seiko Epson Corp Coreless electromechanical device, method of manufacturing the same, mobile body, and robot
JP2016131444A (en) * 2015-01-14 2016-07-21 株式会社日立製作所 Permanent magnet synchronous motor, winding-switching motor drive unit, and refrigeration air-conditioning apparatus using the same, electric vehicle
JP2019054628A (en) * 2017-09-14 2019-04-04 キヤノンプレシジョン株式会社 Coreless motor

Also Published As

Publication number Publication date
JPWO2022003996A1 (en) 2022-01-06
WO2022003996A1 (en) 2022-01-06

Similar Documents

Publication Publication Date Title
JP4665595B2 (en) Winding structure of rotating electrical machine
US11223311B2 (en) Rotary electric machine and rotary electric machine system
JP6564057B2 (en) Rotating electric machine and rotating electric machine system
WO2011089749A1 (en) Rotary electric device
WO2017195481A1 (en) Dynamo-electric machine
TWI551006B (en) Hybird dual-rotor motor structure
JP2004032984A (en) Induction motor
JP2011188605A (en) Motor
JP2003009486A (en) Variable speed motor
US10312846B2 (en) Pole-number-changing rotary electric machine and driving method for pole-number-changing rotary electric machine
JP2009213208A (en) Rotating electrical machine and manufacturing method therefor
WO2022003866A1 (en) Rotating electrical machine and electric vehicle
WO2018181541A1 (en) Drive device
US8018113B2 (en) AC motor winding pattern
JP7030961B2 (en) Stator and rotary machine
JP2012222974A (en) Multiple-rotor type electric motor
JP6498775B2 (en) Stator and rotating electric machine
JP5172439B2 (en) Rotating electric machine stator and rotating electric machine
JP2013223295A (en) Rotary electric machine
WO2021193462A1 (en) Motor
JP6843036B2 (en) Rotating electric machine unit
JP6763312B2 (en) Rotating electric machine
JP6641520B2 (en) Rotary electric machine control device, rotary electric machine, and control method for rotary electric machine
JP2022119517A (en) rotary electric machine
JP2001204161A (en) Induction motor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20943344

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20943344

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP