WO2022003802A1 - Non-combustion type suction device - Google Patents

Non-combustion type suction device Download PDF

Info

Publication number
WO2022003802A1
WO2022003802A1 PCT/JP2020/025599 JP2020025599W WO2022003802A1 WO 2022003802 A1 WO2022003802 A1 WO 2022003802A1 JP 2020025599 W JP2020025599 W JP 2020025599W WO 2022003802 A1 WO2022003802 A1 WO 2022003802A1
Authority
WO
WIPO (PCT)
Prior art keywords
ceramic substrate
porous ceramic
glass layer
resistor pattern
pattern
Prior art date
Application number
PCT/JP2020/025599
Other languages
French (fr)
Japanese (ja)
Inventor
学 山田
明弘 杉山
豊 改發
啓介 森田
渓介 春木
悠光 西田
裕和 渡邉
貴征 青山
元雄 中野
Original Assignee
日本たばこ産業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本たばこ産業株式会社 filed Critical 日本たばこ産業株式会社
Priority to PCT/JP2020/025599 priority Critical patent/WO2022003802A1/en
Priority to EP20942769.9A priority patent/EP4173501A1/en
Priority to JP2022533298A priority patent/JP7357792B2/en
Priority to US17/120,824 priority patent/US11206870B1/en
Publication of WO2022003802A1 publication Critical patent/WO2022003802A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/46Shape or structure of electric heating means
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/42Cartridges or containers for inhalable precursors
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/44Wicks
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/10Devices using liquid inhalable precursors

Definitions

  • the present invention relates to a non-combustion type aspirator.
  • a non-combustion type suction device (hereinafter, may be simply referred to as a suction device) that tastes a flavor by sucking an aerosol atomized by heating has been known.
  • This type of aspirator includes, for example, a cartridge containing atomizable contents (eg, an aerosol source) and a power supply unit equipped with a storage battery.
  • Patent Document 1 describes an aerosol generator that generates an aerosol.
  • the heating unit is provided with a resistor pattern and a pair of electrode patterns connected to the resistor pattern on one surface of the porous ceramic substrate.
  • a heating unit for example, it has been proposed to embed a resistance heating element and a lead wire inside an insulating ceramic substrate and improve the durability performance by optimizing the material and film thickness of the resistance heating element and the lead wire. (See Patent Document 2).
  • Patent Document 2 See Patent Document 2.
  • a heater using a dense ceramic substrate it is difficult to continuously supply the aerosol source when the purpose is to atomize the aerosol source, and good atomization efficiency cannot be obtained.
  • a porous body is used as a substrate or a heating element, and an aerosol source is directly and continuously supplied to the heating part by a capillary phenomenon, and the aerosol is impregnated into the porous body.
  • Proposed ones that quickly atomize the source for example, it is the porous heating element described in Patent Document 3.
  • the porous body itself is an electric resistance heating element that generates heat, and is composed of a porous body using aluminum as a main raw material.
  • the porous body itself must be a conductive substance, and particularly when used for the purpose of atomizing a liquid, chemical resistance and mechanical strength against the liquid depending on the application. There was a problem that it was difficult to achieve both.
  • a heating element on one surface of an insulating porous body such as ceramics, but in this case, multiple types of ceramic materials can be used for the porous body, and the material selectivity of the substrate is high.
  • the electric resistance heating element formed on the uneven surface of the porous body is not uniform in thickness and locally differs, there is a problem that the thermal impact resistance is low and the adhesive strength between the substrate and the electric resistance heating element is also low. there were.
  • the present invention has been made in view of the above circumstances, and provides a non-combustion type suction device provided with a heating unit capable of obtaining high atomization efficiency and durability when used for the purpose of atomizing a liquid.
  • the purpose is.
  • the non-combustible aspirator includes a power supply unit, an accommodating unit capable of accommodating an aerosol source, and a heating unit for atomizing the aerosol source.
  • the aerosol source includes a suction port formed with a suction port for sucking atomized aerosol
  • the heating portion includes a porous ceramic substrate and a resistor provided on one surface of the porous ceramic substrate.
  • a body pattern and a pair of electrode patterns connected to the resistor pattern and provided on the one surface of the porous ceramic substrate are provided, and the heating unit has a current flowing between the pair of electrode patterns.
  • the resistor pattern By being supplied, the resistor pattern generates heat, the porosity bending degree coefficient ratio of the porous ceramic substrate is 21 or more, and at least the resistor pattern is formed on one of the surfaces of the porous ceramic substrate.
  • a glass layer is provided on a part of the surface including the glass layer, the resistor pattern is provided on the glass layer, and the aerosol source penetrated into the porous ceramic substrate is heated by the resistor pattern and the aerosol is generated. Is released as.
  • the porosity bending degree coefficient ratio of the porous ceramic substrate may be 26 or more.
  • the average porosity of the porous ceramic substrate may be 40 to 71% by volume.
  • the bending degree coefficient of the pores of the porous ceramic substrate may be 2.0 or less.
  • the porous ceramic substrate may have an average pore diameter of 0.15 to 72 ⁇ m.
  • the glass layer may have a thickness of 3 to 90 ⁇ m.
  • the glass layer is a thick film glass paste provided on one surface of the porous ceramic substrate. It is composed of a sintered body, the resistor pattern is composed of a sintered body of a thick film resistor paste provided on the glass layer, and the electrode pattern is a thickness provided on the glass layer. It may be composed of a sintered body of a film conductive paste.
  • the porous ceramic substrate contains any one of alumina, zirconia, mulite, silica, titania, silicon nitride, silicon carbide, and carbon as a main component.
  • the resistor pattern is a thick film sintered body containing a metal powder of any one of silver, palladium and ruthenium oxide and glass, and the electrode pattern is made of copper, nickel, aluminum, silver, platinum and gold. It is a thick film sintered body containing any one of the metal powders and glass, and the glass layer may be a thick film sintered body containing any one of Ba, B, and Zn.
  • one surface of the porous ceramic substrate is a long surface
  • the pair of electrode patterns is , One end of the pair of U-shaped arcs may be connected to each other and the other end may be connected to each of the pair of electrode patterns. ..
  • the mouthpiece may be provided with a flavor source container.
  • the flavor source container may contain a tobacco component.
  • the porosity bending degree coefficient ratio of the porous ceramic substrate is 21 or more, and one surface of the porous ceramic substrate has at least the said one of the surfaces. Since the resistor pattern is provided via the glass layer formed in a part of the region including the resistor pattern, the thermal impact resistance and the adhesive strength of the electric resistance heating element can be obtained, and high durability performance can be obtained. Further, since the aerosol source penetrated into the porous ceramic substrate is atomized by heating by the resistor pattern, high atomization efficiency can be obtained.
  • the porosity bending degree coefficient ratio of the porous ceramic substrate is 26 or more.
  • the heated portion is provided with pores having a high porosity and small bending, so that high atomization performance can be obtained.
  • the porosity flexion coefficient ratio is less than 26, the porosity may be too low or the pores may be bent too much, resulting in insufficient penetration of the aerosol source, making it difficult to obtain sufficient atomization performance. Become.
  • the porous ceramic substrate has an average porosity of 40 to 71% by volume. This facilitates the penetration of the aerosol source into the porous ceramic substrate, so that the atomization efficiency of the aerosol source, that is, the atomization performance is improved.
  • the porosity exceeds 71% by volume, it becomes difficult to sufficiently obtain the durability of the heated portion due to the peeling of the glass layer, the resistor pattern, or the electrode pattern. If the porosity is less than 40% by volume, it becomes difficult to obtain sufficient atomization performance.
  • the bending degree coefficient of the pores of the porous ceramic substrate is 2.0 or less.
  • the heating portion is provided with pores having small bending, high atomization performance can be obtained. If the bending coefficient exceeds 2.0, the penetration resistance of the aerosol source may increase and the penetration of the aerosol source may be insufficient, making it difficult to obtain sufficient atomization performance.
  • the porous ceramic substrate has an average pore diameter of 0.15 to 72 ⁇ m.
  • the aerosol source can be easily infiltrated into the porous ceramic substrate by the capillary action, so that the atomization efficiency of the aerosol source, that is, the atomization performance is improved.
  • the average pore diameter is less than 0.15 ⁇ m, the penetration resistance of the aerosol source increases and the penetration of the aerosol source becomes insufficient, and when the average pore diameter exceeds 72 ⁇ m, the capillary force due to the capillary phenomenon decreases and the aerosol source Infiltration may be insufficient, making it difficult to obtain sufficient atomization performance.
  • the glass layer has a thickness of 3 to 90 ⁇ m.
  • the thickness of the glass layer is less than 3 ⁇ m, the resistance value of the resistor pattern varies and the manufacturing yield decreases, and when it exceeds 90 ⁇ m, the heat conduction from the resistor pattern to the porous ceramic substrate decreases and atomization occurs. It becomes difficult to obtain sufficient performance.
  • the glass layer is composed of a sintered body of a thick film glass paste provided on one surface of the porous ceramic substrate, and the resistor pattern is provided on the glass layer. It is composed of a sintered body of the thick film resistor paste obtained, and the electrode pattern is composed of a sintered body of the thick film conductive paste provided on the glass layer.
  • the porous ceramic substrate contains any one of alumina, zirconia, mullite, silica, titania, silicon nitride, silicon carbide, and carbon as a main component, and the resistor pattern is silver. It is a thick film sintered body containing metal powder of any one of palladium and ruthenium oxide and glass, and the electrode pattern is made of metal powder of any one of copper, nickel, aluminum, silver, platinum and gold. It is a thick film sintered body containing glass, and the glass layer is a thick film sintered body containing any one of Ba, B, and Zn. As described above, since the glass layer and the resistor pattern and the electrode pattern on the glass layer are formed by the thick film sintered body on one surface of the porous ceramic substrate, the heat impact resistance and adhesion are formed. Strength is obtained and durability is obtained.
  • one surface of the porous ceramic substrate is a surface having a longitudinal shape
  • the pair of electrode patterns are arranged at both ends of the surface having the longitudinal shape
  • the resistor patterns are paired.
  • One end of the U-shaped portion is connected to each other and the other end is connected to each of the pair of electrode patterns.
  • the resistor pattern has a shape in which one end of the pair of U-shaped portions is connected to each other and the tip extending from the other end is connected to each of the pair of electrode patterns. Since the heat is not concentrated on the entire resistor pattern and the entire resistor pattern generates heat uniformly, the atomization efficiency of the aerosol source, that is, the atomization performance is improved.
  • the mouthpiece is provided with a flavor source container.
  • the flavor source By arranging the flavor source in the mouthpiece portion in this way, the flavor can be added to the aerosol.
  • the flavor source container contains a tobacco component.
  • the tobacco flavor can be added to the aerosol by including the tobacco component in the flavor source.
  • the present invention relates to a test product in which any one of the pore ratio, the average pore diameter, the thickness of the glass layer, the area of the resistor pattern, the thickness of the resistor pattern, the resistance value of the resistor pattern, and the area of the electrode pattern is changed.
  • FIG. 1 is a perspective view of the aspirator.
  • the suction device 1 shown in FIG. 1 is a so-called non-combustion type suction device, in which a user tastes the flavor of tobacco by sucking an aerosol atomized by heating through a cigarette (tobacco capsule).
  • the suction device 1 includes a main body unit 10, a cartridge 11 detachably attached to the main body unit 10, and a cigarette capsule 12.
  • FIG. 2 is an exploded perspective view of the suction device 1.
  • the main body unit 10 includes a power supply unit 21, a holding unit 22, and a mouthpiece 23.
  • the power supply unit 21, the holding unit 22, and the mouthpiece 23 are each formed in a cylindrical shape with the axis O as the central axis, and are arranged side by side on the axis O.
  • the power supply unit 21 and the holding unit 22 and the holding unit 22 and the mouthpiece 23 are detachably connected to each other.
  • the direction along the axis O is called the axial direction.
  • the side from the mouthpiece 23 toward the power supply unit 21 is referred to as the anti-suction side
  • the side from the power supply unit 21 toward the mouthpiece 23 is referred to as the mouthpiece side.
  • the direction that intersects the axis O in a plan view from the axial direction is referred to as a radial direction
  • the direction that orbits around the axis O may be referred to as a circumferential direction.
  • "direction" means two directions, and when indicating one direction of "direction", it is described as "side”.
  • FIG. 3 is a perspective view of the power supply unit 21.
  • the power supply unit 21 includes a cylindrical housing 31, a storage battery unit (not shown) housed in the housing 31, and a pin electrode 33.
  • the housing 31 has an outer cylinder portion 35, an interposing member 36, and a connecting mechanism 37.
  • the outer cylinder portion 35 is formed in a cylindrical shape with the axis O as the central axis.
  • the interposing member 36 is formed in a cylindrical shape with the axis O as the central axis.
  • the interposing member 36 is fitted to the outer cylinder portion 35 from the holding unit 22 side in the axial direction.
  • a button exposed hole 38 is formed in the vicinity of the end portion on the holding unit 22 side in the axial direction of the outer cylinder portion 35.
  • the button exposed hole 38 penetrates the outer cylinder portion 35 in the radial direction.
  • the button 39 is housed in the button exposed hole 38.
  • the button 39 is configured to be movable in the radial direction.
  • the button 39 presses and operates a switch element (not shown) of the storage battery unit as it moves inward in the radial direction.
  • the resistance pattern 142 of the heating unit 104 rises in temperature, and as a result, the aerosol source is atomized to generate an aerosol (the configuration of the heating unit 104 will be described later). .).
  • the surface of the button 39 is exposed on the outer peripheral surface of the outer cylinder portion 35 through the button exposure hole 38.
  • the button 39 is not limited to the one that moves in the radial direction, and may be, for example, one that slides in the axial direction. Further, the suction device 1 may be operated by a touch sensor or the like instead of the button 39.
  • FIG. 4 is a plan view of the power supply unit 21 as viewed from the holding unit 22 side in the axial direction.
  • the connection mechanism 37 includes a connection cap 40, a first connecting member 41, and an annular piece 42.
  • the connection cap 40 is made of an elastic resin material such as silicone resin.
  • the connection cap 40 includes a base portion 45, a flange portion (not shown) protruding outward in the radial direction at an end portion of the base portion 45 opposite to the holding unit 22 in the axial direction, and a surrounding convex portion 46. ,have.
  • the base portion 45 is formed in a columnar shape with the axis O as the central axis.
  • the base portion 45 is formed with an electrode insertion hole 47 through which the pin electrode 33 is inserted.
  • the electrode insertion hole 47 penetrates the base portion 45 in the axial direction and communicates with the inside of the housing 31.
  • the pin electrode 33 projects from the base portion 45 toward the holding unit 22 in the axial direction through the electrode insertion hole 47.
  • the surrounding convex portion 46 projects axially from the end surface of the base portion 45 facing the holding unit 22 side in the axial direction.
  • the surrounding convex portion 46 is formed in a substantially annular shape extending along the outer peripheral edge of the base portion 45. That is, the surrounding convex portion 46 surrounds the pin electrode 33 at a position separated radially outward from the pin electrode 33.
  • a notch portion 46a is formed in the middle of the annular shape. Three notches 46a are evenly formed at intervals of 120 ° in the circumferential direction. The notch 46a functions as an air flow path.
  • the surrounding convex portion 46 may be located radially inside the outer peripheral edge of the base portion 45 as long as it surrounds the periphery of the pin electrode 33. Further, the surrounding convex portion 46 is not limited to an annular shape, but may have a polygonal shape or the like. Further, the number and positions of the cutout portions 46a can be appropriately changed. Further, in the present embodiment, the “enclosure” is not limited to those that are intermittently extended, but also include those that are continuously extended. However, when the surrounding convex portion 46 is formed in a continuous annular shape, it is necessary to separately form an air flow path. The surrounding convex portion 46 in the present embodiment can be appropriately changed as long as it has a configuration that surrounds the periphery of the pin electrode 33 as a whole.
  • the surrounding convex portion 46 is formed in a triangular shape that sharpens toward the holding unit 22 side in the axial direction in a vertical cross-sectional view along the axial direction.
  • the protruding height of the surrounding convex portion 46 from the base portion 45 is lower than that of the pin electrode 33.
  • the protruding height of the surrounding convex portion 46 may be higher than that of the pin electrode 33.
  • the vertical cross-sectional view shape of the surrounding convex portion 46 is not limited to the triangular shape.
  • the first connecting member 41 includes a base cylinder portion (not shown) disposed in the housing 31, a vertically engaging convex portion (first vertical engaging convex portion 51a to a third vertical engaging convex portion 51c), and a vertical engaging convex portion 51c.
  • a laterally engaged convex portion 52 is provided.
  • the end of the holding unit 22 side in the axial direction of the base cylinder portion surrounds the circumference of the connection cap 40.
  • An outer flange portion 55 projecting outward in the radial direction is formed at the end portion of the base cylinder portion on the holding unit 22 side in the axial direction.
  • the vertically engaged convex portions 51a to 51c project from the outer flange portion 55 toward the holding unit 22 side (suction port side) in the axial direction.
  • a plurality of the vertically engaged convex portions 51a to 51c are formed at intervals in the circumferential direction.
  • three vertically engaged convex portions 51a to 51c are evenly arranged at intervals of 120 ° in the circumferential direction.
  • the vertically engaged convex portions 51a to 51c may be singular or plural. Further, the pitches of the vertically engaged convex portions 51a to 51c can be appropriately changed. In this case, the plurality of vertically engaged convex portions 51a to 51c may be unevenly arranged.
  • the above-mentioned pin electrodes 33 are not arranged on the virtual straight lines La to Lc connecting the center in the circumferential direction and the axis O.
  • Vertically engaged convex portions 51a to 51c are arranged.
  • the pin electrode 33 is arranged at a position that is line-symmetric with respect to the virtual straight line La connecting the first vertical engaging convex portion 51a and the axis O. That is, the virtual straight line T1 connecting the pin electrodes 33 and the virtual straight line La are orthogonal to each other, and the distances from the virtual straight line La to the pin electrodes 33 are equal to each other.
  • the tip of the vertically engaged convex portions 51a to 51c located on the holding unit 22 side in the axial direction is located closer to the holding unit 22 in the axial direction than the tip of the pin electrode 33.
  • the vertically engaged convex portions 51a to 51c are formed in a rectangular shape when viewed from the side in the radial direction.
  • the surface facing inward in the radial direction is inclined so that the thickness in the radial direction gradually decreases toward the holding unit 22 side in the axial direction. It is said to be a face.
  • This inclined surface functions as a guide for smoothly guiding the vertically engaged convex portions 51a to 51c to the engaging concave portion 180 described later of the cartridge 11.
  • the laterally engaged convex portion 52 protrudes outward in the radial direction from the outer flange portion 55.
  • the laterally engaged convex portion 52 is formed in a rectangular shape in a plan view seen from the axial direction.
  • a plurality of laterally engaged convex portions 52 are formed at intervals in the circumferential direction.
  • four laterally engaged convex portions 52 are evenly arranged at intervals of 90 ° in the circumferential direction.
  • one laterally engaged convex portion 52 is arranged at a position equivalent to that of the first vertically engaged convex portion 51a in the circumferential direction.
  • the laterally engaged convex portions 52 may be singular or plural. Further, the pitch of the laterally engaged convex portion 52 can be appropriately changed. In this case, the plurality of laterally engaged convex portions 52 may be unevenly arranged.
  • the annular piece 42 is formed in a thin ring.
  • the above-mentioned base cylinder portion is inserted into the annular piece 42 from the holding unit 22 side in the axial direction.
  • a bending portion 56 is formed in a part of the annular piece 42 in the circumferential direction.
  • the bent portion 56 is formed in an arch shape that bulges outward in the radial direction.
  • the flexible portion 56 is configured to be elastically deformable in the radial direction.
  • the bending portion 56 is located inside the laterally engaging convex portion 52 with respect to the outer end surface in the radial direction.
  • a plurality of the above-mentioned bending portions 56 are formed at intervals in the circumferential direction.
  • the flexible portion 56 is arranged at the same position in the circumferential direction as the pair of laterally engaging convex portions 52 facing each other in the radial direction (left-right direction) among the laterally engaging convex portions 52.
  • the number of bending portions 56 can be changed as appropriate.
  • the flexible portion 56 may be formed corresponding to each laterally engaging convex portion 52, or may be formed corresponding to only one laterally engaging convex portion 52.
  • FIG. 5 is an exploded perspective view of the holding unit 22.
  • the holding unit 22 is detachably attached to the power supply unit 21 and the mouthpiece 23, respectively.
  • the holding unit 22 includes a container holding cylinder 60, a transmission cylinder 61, a second connecting member 62, and a sleeve 63.
  • the container holding cylinder 60 is formed in a cylindrical shape with the axis O as the central axis.
  • An observation hole 65 is formed in the central portion of the container holding cylinder 60 in the axial direction.
  • the observation hole 65 penetrates the container holding cylinder 60 in the radial direction.
  • the observation hole 65 is formed in an oval shape with the axial direction as the longitudinal direction.
  • the observation holes 65 are formed in pairs in the portions of the container holding cylinder 60 that face each other in the radial direction. The number, position, shape, etc. of the observation holes 65 can be changed as appropriate.
  • a vent 66 is formed in a portion of the container holding cylinder 60 located on the power supply unit 21 side (anti-suction side) in the axial direction from the observation hole 65.
  • the vent 66 penetrates the container holding cylinder 60 in the radial direction.
  • the vent 66 communicates the inside and outside of the holding unit 22.
  • the vents 66 are formed in pairs in the container holding cylinders 60, which face each other in the radial direction (front and back directions). The number, position, shape, etc. of the vents 66 can be changed as appropriate.
  • the transmission cylinder 61 is made of a material having light transmission.
  • the transmission cylinder 61 is inserted in the container holding cylinder 60.
  • the transmission cylinder 61 is on the mouthpiece 23 side (suction port side) in the axial direction with respect to the vent 66 in the container holding cylinder 60, and covers the observation hole 65 from the inside in the radial direction. That is, the user can visually recognize the inside of the holding unit 22 through the observation hole 65 and the transmission cylinder 61.
  • the holding unit 22 may be configured not to have an observation hole 65 or a transmission cylinder 61.
  • the second connecting member 62 is locked to the above-mentioned first connecting member 41 when the holding unit 22 is connected to the power supply unit 21.
  • the second connecting member 62 includes a fitting cylinder 70, a guide cylinder 71, and a locking piece 72.
  • the fitting cylinder 70 is formed in a cylindrical shape with the axis O as the central axis.
  • the fitting cylinder 70 is fitted to a portion of the container holding cylinder 60 located on the power supply unit 21 side in the axial direction with respect to the transmission cylinder 61 by press fitting or the like.
  • the guide cylinder 71 is arranged coaxially with the fitting cylinder 70.
  • the guide cylinder 71 extends from the fitting cylinder 70 to the mouthpiece 23 side in the axial direction.
  • the guide cylinder 71 is formed in a tapered cylinder shape whose inner diameter gradually increases toward the mouthpiece 23 side in the axial direction.
  • the outer diameter of the guide cylinder 71 is smaller than the outer diameter of the fitting cylinder 70.
  • a relief portion 74 is formed at a position of the guide cylinder 71 that overlaps with the above-mentioned ventilation port 66 when viewed from the side in the radial direction.
  • the relief portion 74 is formed in a U shape that opens, for example, on the side of the mouthpiece 23 in the axial direction.
  • the vent 66 opens into the holding unit 22 through the relief portion 74.
  • the shape of the relief portion 74 may be such that at least a part of the vent 66 is exposed in the holding unit 22. Further, when the guide cylinder 71 and the vent 66 are arranged at different positions in the axial direction, the guide cylinder 71 may be configured not to have a relief portion 74.
  • FIG. 6 is a perspective view showing a connection structure of the first connecting member 41 and the second connecting member 62.
  • the locking piece 72 projects from the fitting cylinder 70 toward the power supply unit 21 in the axial direction.
  • the locking piece 72 is formed in an L shape when viewed from the side in the radial direction.
  • the locking piece 72 has a vertically extending portion 80 and a horizontally extending portion 81.
  • the vertically extending portion 80 projects from the fitting cylinder 70 toward the power supply unit 21 in the axial direction.
  • the laterally extending portion 81 extends cantilevered from the end portion of the vertically extending portion 80 on the power supply unit 21 side in the axial direction toward one side in the circumferential direction.
  • FIG. 7 is a plan view of the holding unit 22 and the cartridge 11 as viewed from the power supply unit 21 side in the axial direction.
  • an engaging recess 85 that is recessed toward the outside in the radial direction is formed at one end in the circumferential direction.
  • the engaging recess 85 is formed in a semicircular shape toward the outside in the radial direction.
  • a plurality of the above-mentioned locking pieces 72 are formed at intervals in the circumferential direction.
  • the locking pieces 72 are evenly arranged at intervals of 90 ° in the circumferential direction.
  • An engaging groove 83 into which the above-mentioned lateral engaging convex portion 52 is inserted is defined between the locking pieces 72 adjacent to each other in the circumferential direction.
  • the engaging groove 83 is formed in an L shape in a side view.
  • the power supply unit 21 and the holding unit 22 are detachable by connecting the locking piece 72 and the laterally engaging convex portion 52. That is, in order to connect the power supply unit 21 and the holding unit 22, after inserting the lateral engaging convex portion 52 into the engaging groove 83 in the axial direction, the power supply unit 21 and the holding unit 22 are relative to each other around the axis O. Rotate. Then, the laterally engaging convex portion 52 engages in the axial direction between the laterally extending portion 81 and the fitting cylinder 70. Further, in the process in which the power supply unit 21 and the holding unit 22 rotate relative to each other around the axis O, the bent portion 56 of the annular piece 42 is fitted into the engaging recess 85.
  • the bent portion 56 engages with the engaging recess 85 in the circumferential direction.
  • the power supply unit 21 and the holding unit 22 are assembled to each other in a state of being positioned in the axial direction and the circumferential direction.
  • the fitting cylinder 70 and the laterally extending portion 81 are formed in a tapered shape in which the width in the axial direction gradually narrows from the other side in the circumferential direction toward one side. ing.
  • the end surface of the laterally extending portion 81 facing the mouthpiece 23 side in the axial direction is an inclined surface extending toward the power supply unit 21 side in the axial direction from the other side in the circumferential direction toward one side. ..
  • the laterally engaged convex portion 52 is formed in a tapered shape in which the width in the axial direction gradually narrows from one side in the circumferential direction toward the other side. Specifically, the end face of the laterally engaged convex portion 52 facing away from the holding unit 22 in the axial direction is inclined to extend toward the mouthpiece 23 in the axial direction from one side in the circumferential direction to the other side. It is said to be a face. As a result, when the power supply unit 21 and the holding unit 22 are connected, the interference between the laterally extending portion 81 and the laterally engaging convex portion 52 can be suppressed, and the assembling property can be improved.
  • the sleeve 63 is fitted to the portion of the container holding cylinder 60 located on the side of the mouthpiece 23 in the axial direction with respect to the transmission cylinder 61 by press fitting or the like.
  • the transmission cylinder 61 described above is held in the axial direction between the second connecting member 62 and the sleeve 63.
  • a female threaded portion 63a is formed on the inner peripheral surface of the sleeve 63.
  • FIG. 8 is an exploded perspective view of the mouthpiece 23 corresponding to the line VIII-VIII of FIG. As shown in FIG. 8, the mouthpiece 23 includes a mouthpiece main body 90 and a non-slip member (first non-slip member 91 and second non-slip member 92).
  • the mouthpiece 23 is formed with a suction port 23a capable of accommodating the tobacco capsule 12.
  • the mouthpiece body 90 is formed in a multi-stage cylinder shape with the axis O as the central axis.
  • a male screw portion 90a is formed at the end portion of the mouthpiece body 90 on the holding unit 22 side in the axial direction.
  • the male threaded portion 90a of the mouthpiece body 90 is detachably screwed to the female threaded portion 63a of the sleeve 63 described above.
  • the mouthpiece body 90 may be attached to and detached from the sleeve 63 by a method other than screwing (for example, fitting).
  • the abutting flange 93 is formed in the mouthpiece main body 90 at a portion located on the side opposite to the holding unit 22 in the axial direction with respect to the male screw portion 90a.
  • the abutting flange 93 is formed in an annular shape that projects outward in the radial direction.
  • the abutting flange 93 is axially abutted against the holding unit 22 with the mouthpiece 23 mounted on the holding unit 22.
  • the outer diameter of the abutting flange 93 gradually decreases as it is separated from the holding unit 22 in the axial direction.
  • a partition portion 94 that partitions the inside of the mouthpiece body 90 in the axial direction is formed.
  • a through hole 95 that penetrates the partition portion 94 in the axial direction is formed at a position that overlaps with the axis O.
  • the through hole 95 has, for example, an oval shape having one of the radial directions as the longitudinal direction.
  • the plan view shape of the through hole 95 may be a perfect circle shape, a polygonal shape, or the like.
  • the first non-slip member 91 is integrally formed of a resin material such as a silicone resin.
  • the first non-slip member 91 includes a ring portion 96, a fitting protrusion 97, and a contact protrusion 98.
  • the ring portion 96 is fitted into the mouthpiece body 90 in the axial direction from the holding unit 22 side.
  • the first non-slip member 91 is positioned in the axial direction with respect to the mouthpiece main body 90 by abutting the ring portion 96 against the partition portion 94 described above in the axial direction.
  • a communication hole 96a is formed in the center of the ring portion 96. The communication hole 96a communicates the inside of the holding unit 22 with the inside of the mouthpiece main body 90 through the above-mentioned through hole 95.
  • the fitting protrusions 97 are formed in pairs at positions facing each other in the radial direction with the communication hole 96a sandwiched between the inner peripheral edges of the ring portion 96.
  • the fitting protrusion 97 protrudes from the ring portion 96 in the axial direction on the side opposite to the holding unit 22.
  • Each fitting protrusion 97 is fitted to both ends in the radial direction in the above-mentioned through hole 95.
  • the first non-slip member 91 is positioned in the circumferential direction with respect to the mouthpiece main body 90.
  • the fitting protrusion 97 may be fitted in a hole different from the through hole 95. good.
  • the contact protrusion 98 protrudes from the ring portion 96 toward the holding unit 22 in the axial direction.
  • the abutting protrusion 98 is formed in a circular shape centered on the axis O.
  • the contact protrusions 98 are concentrically formed in two rows.
  • the first non-slip member 91 may have a configuration that does not have the contact protrusion 98.
  • the second non-slip member 92 is integrally formed of a resin material such as a silicone resin.
  • the second non-slip member 92 is fitted into the mouthpiece main body 90 from the side opposite to the holding unit 22 in the axial direction.
  • the second non-slip member 92 is axially positioned with respect to the mouthpiece main body 90 by being abutted against the partition portion 94 described above in the axial direction.
  • the tobacco capsule 12 is detachably attached to the mouthpiece body 90 from the side opposite to the holding unit 22 in the axial direction.
  • the tobacco capsule 12 includes a capsule unit 77 and a filter unit 78.
  • the tobacco capsule 12 is configured as a flavor source container.
  • the capsule portion 77 is formed in a bottomed tubular shape with the axis O as the central axis.
  • a mesh opening that penetrates the bottom wall portion in the axial direction is formed in the bottom wall portion (not shown) that closes the opening on the holding unit 22 side in the axial direction of the capsule portion 77.
  • the filter portion 78 is fitted into the capsule portion 77 from the side opposite to the holding unit 22 in the axial direction.
  • tobacco leaves are enclosed in the space defined by the capsule portion 77 and the filter portion 78.
  • a flavor source other than tobacco leaves may be enclosed.
  • the cartridge 11 stores a liquid aerosol source and atomizes the liquid aerosol source.
  • the cartridge 11 is housed in the transmission cylinder 61 of the holding unit 22.
  • FIG. 9 is a cross-sectional view taken along the axial direction (axis Q) of the cartridge 11.
  • FIG. 10 is an exploded perspective view of the cartridge 11.
  • the cartridge 11 includes a bottomed cylindrical tank 101, a substantially cylindrical gasket 102 housed in the tank 101, a substantially plate-shaped mesh body 103, and a heating unit 104.
  • the atomizing container 105, the heater holder 106 that closes the opening 110 of the tank 101, and the end cap 107 that is attached to the side opposite to the heater holder 106 in the tank 101 in the axial direction are provided.
  • FIG. 11 is a perspective view of the tank 101 as viewed from the opening 110 side.
  • ribs 112 are formed on the inner peripheral wall 111 of the tank 101.
  • Four ribs 112 are formed at substantially equal intervals in the circumferential direction.
  • the rib 112 is formed along the axis Q direction of the inner peripheral wall 111 of the tank 101.
  • the rib 112 is provided between the bottom plate 113 provided near the end of the tank 101 on the mouthpiece 23 side and slightly in front of the end (tip) on the opening 110 side.
  • the rib 112 is formed in a rectangular shape when viewed from the axis Q direction. The shape and number of ribs 112 may be changed as appropriate.
  • the tank 101 is made of a light-transmitting material so that the remaining amount of the aerosol source contained therein can be visually recognized.
  • An aerosol flow path tube 114 is formed on the inner peripheral wall 111 of the tank 101 along the axis Q direction.
  • the aerosol flow path tube 114 is formed from the end of the opening 110 to the bottom plate 113.
  • the bottom plate 113 of the tank 101 is formed with a through hole 115 that penetrates the bottom plate 113.
  • the inside of the aerosol flow path tube 114 and the through hole 115 are communicated with each other.
  • the aerosol flow path tube 114 and the through hole 115 serve as a flow path for the atomized aerosol (arrow in FIG. 9).
  • the axis Q coincides with the axis O of the main body unit 10.
  • the axis Q is an axis common to each part constituting the cartridge 11.
  • the axis Q is not limited to the axis Q of the tank 101, and will be used in the description of each part constituting the cartridge 11.
  • FIG. 12 is a perspective view of the gasket 102.
  • the gasket 102 has a substantially cylindrical shape formed so that the outer diameter is substantially the same as the inner diameter of the tank 101.
  • the gasket 102 is housed in the tank 101.
  • a concave groove 121 through which the aerosol flow path tube 114 can be inserted is formed on the peripheral edge of the main body 120 of the gasket 102.
  • the concave groove 121 is formed over the entire length in the Q direction of the axis, and is formed in a substantially arc shape along the outer shape of the aerosol flow path tube 114.
  • the concave groove 121 may be aligned with the position of the aerosol flow path tube 114 and inserted in the axis Q direction.
  • the gasket 102 is inserted until the flange portion 122 of the gasket 102 abuts on the rib 112 of the tank 101.
  • the gasket 102 is held at a position where it abuts against the rib 112. With the gasket 102 positioned, the outer peripheral surface of the gasket 102 is in contact with the inner peripheral wall 111 of the tank 101. Further, the concave groove 121 of the gasket 102 is in contact with the outer peripheral surface of the aerosol flow path tube 114.
  • the mesh body 103 is held on the other surface 120b on the power supply unit 21 side of the main body 120.
  • a recess 123 capable of accommodating the mesh body 103 is formed substantially in the center of the other surface 120b.
  • the mesh body 103 is positioned and the posture of the mesh body 103 is maintained. That is, the mesh body 103 is configured to be fitted into the recess 123.
  • a through hole 124 through which an aerosol source can flow is formed in the radial center of the gasket 102 on the bottom surface 123a of the recess 123.
  • Two through holes 124 are formed in parallel in a rectangular shape when viewed from the axis Q direction.
  • the mesh body 103 is a porous and liquid-absorbent member.
  • the mesh body 103 is formed of, for example, a cotton-based fiber material.
  • the mesh body 103 is formed in substantially the same shape as the recess 123 of the gasket 102.
  • the inside of the tank 101 is divided into a liquid storage chamber 130 defined on the mouthpiece 23 side of the mesh body 103 and an opening chamber 131 on the power supply unit 21 side of the mesh body 103.
  • a liquid aerosol source is stored in the liquid storage chamber 130.
  • the opening chamber 131 is a room for atomizing the aerosol source sucked up by the mesh body 103.
  • One surface 103a of the mesh body 103 on the mouthpiece 23 side is in contact with the bottom surface 123a of the gasket 102.
  • the other surface 103b of the mesh body 103 on the power supply unit 21 side is exposed to the opening chamber 131.
  • a heating unit 104 is provided so as to be connected to the other surface 103b of the mesh body 103 exposed to the opening chamber 131.
  • FIG. 13 is a plan view of the heating unit 104 as viewed from the power supply unit 21 side.
  • the heating unit 104 is for atomizing a liquid aerosol source.
  • the heating unit 104 is housed in the opening chamber 131.
  • the heating unit 104 includes a porous ceramic substrate 140 having a substantially rectangular parallelepiped shape.
  • the porous ceramic substrate 140 is configured as the main body of the heating unit 104.
  • the shape and thickness of the porous ceramic substrate 140 can be changed as appropriate.
  • One surface 140a on the mouthpiece 23 side of the porous ceramic substrate 140 is in contact with the other surface 103b of the mesh body 103. As a result, the aerosol source absorbed by the mesh body 103 is sucked up into the porous ceramic substrate 140.
  • a pair of electrode patterns 141 are provided on the heat generating surface 140b, which is the other surface of the porous ceramic substrate 140 on the power supply unit 21 side.
  • the pair of electrode patterns 141 and 141 have a strip-shaped shape along substantially both sides of the longitudinal heating surface 140b in the radial direction.
  • the heat generating surface 140b is provided with a resistor pattern 142 connecting between the pair of electrode patterns 141 and 141.
  • the resistor pattern 142 has a meandering curved shape when viewed from the axis Q direction. Both ends of the resistor pattern 142 are connected to the pair of electrode patterns 141 and 141, respectively, and are configured to be electrically conductive.
  • the resistor pattern 142 In the resistor pattern 142, one end of a pair of U-shaped arcs is connected to each other, and the other end is connected to each of the pair of electrode patterns 141 and 141.
  • the resistor pattern 142 is configured to be capable of raising the temperature to a predetermined temperature by flowing electricity through the electrode pattern 141.
  • the resistance pattern 142 is heated to an appropriate temperature at which an aerosol is generated.
  • the shape of the resistor pattern 142 is arbitrary and does not have to be a meandering curved shape.
  • the pair of electrode patterns 141 and 141 and the resistor pattern 142 are arranged on the glass layer 143 formed on the heat generating surface 140b.
  • a liquid supply channel 145 is formed on the porous ceramic substrate 140.
  • the liquid supply channel 145 is a flow path through which a liquid (aerosol source) flows.
  • the liquid is configured to be able to travel in the liquid supply channel 145, for example by capillarity.
  • the liquid supply channel 145 allows the aerosol source to flow from one surface 140a toward the heat generating surface 140b. The method for manufacturing the heating unit 104 and the like will be described in detail below.
  • FIG. 14 is a perspective view of the atomizing container 105.
  • the atomizing container 105 is formed in a multi-stage cylindrical shape with the axis Q as the central axis.
  • the main body 150 of the atomizing container 105 has a first cylinder portion 151 on the mouthpiece 23 side whose outer diameter is formed to be substantially the same as the inner diameter of the tank 101, and its outer diameter is substantially the same as the outer diameter of the tank 101. It has a second cylinder portion 152 on the power supply unit 21 side formed.
  • the atomizing container 105 is arranged so as to close the opening 110 of the tank 101.
  • the first cylinder portion 151 is housed in the tank 101.
  • a concave groove 153 through which the aerosol flow path tube 114 can be inserted is formed on the peripheral edge of the first cylinder portion 151.
  • the concave groove 153 is formed over the entire length in the axis Q direction of the first tubular portion 151, and is formed in a substantially arc shape along the outer shape of the aerosol flow path tube 114.
  • a through hole 154 through which the heating portion 104 can be inserted is formed in the radial center of the first cylinder portion 151.
  • the through hole 154 is formed in substantially the same shape as the outer shape of the heating portion 104.
  • the heat generating surface 140b of the heating unit 104 is configured to be exposed on the power supply unit 21 side (opening chamber 131).
  • the second cylinder portion 152 is continuously provided on the power supply unit 21 side of the tank 101.
  • the stepped surface 152a between the first cylinder portion 151 and the second cylinder portion 152 abuts on the end surface of the tank 101 on the power supply unit 21 side, so that the tank 101 and the atomizing container 105 are positioned.
  • a through hole 157 penetrating in the axis Q direction is formed in the radial center of the second cylinder portion 152.
  • the through hole 157 communicates with the through hole 154 of the first tubular portion 151.
  • the through hole 157 communicates with the concave groove 153.
  • the through hole 157 communicates with the aerosol flow path tube 114.
  • the through hole 157 of the second cylinder portion 152 is formed in a size capable of inserting the power supply bypass portion 161 provided in the heater holder 106.
  • the space S defined by the through hole 154 of the first cylinder portion 151 and the through hole 157 of the second cylinder portion 152 is configured as the aerosol generation portion.
  • the aerosol generated in the space S passes through the aerosol flow path tube 114 and is guided to the mouthpiece 23 side (arrow in FIG. 9).
  • FIG. 15 is a perspective view of the heater holder 106.
  • the heater holder 106 includes a main body portion 160 formed in a disk shape with an axis Q as a central axis, and a power supply bypass portion 161 provided in the main body portion 160.
  • the main body 160 is formed in a disk shape and is configured to be in contact with the end face of the second cylinder 152 of the atomizing container 105 on the power supply unit 21 side.
  • the main body 160 is formed with a through hole 162 penetrating in the Q direction of the axis.
  • the through hole 162 communicates with the through hole 157 of the atomizing container 105. Air is taken into the cartridge 11 through the through hole 162. More specifically, when the user inhales from the mouthpiece 23, the inside of the aspirator 1 becomes a negative pressure. Then, air is taken into the suction device 1 from the ventilation port 66 of the holding unit 22.
  • the air taken in from the vent 66 passes through the notch 46a from the outside of the surrounding convex portion 46 and is guided to the inside of the surrounding convex portion 46. After that, air flows through the through hole 162 of the main body 160 and flows into the cartridge 11, and flows through the aerosol flow path tube 114 together with the aerosol generated in the vicinity of the heating portion 104.
  • the power supply bypass unit 161 has a pair of electrode plates 165 and 165.
  • the electrode plate 165 is formed by bending a metal plate material.
  • the electrode plate 165 is extended with a pin electrode connection portion 166 exposed on the surface 160a on the power supply unit 21 side of the main body portion 160, and an extension portion 167 continuously provided on the pin electrode connection portion 166 and extending in the axis Q direction.
  • a heating portion connecting portion 168 that is folded back at the end portion of the portion 167 on the side of the mouthpiece 23 and extends in the radial direction is provided.
  • a spacer 169 is arranged between the pair of electrode plates 165 and 165.
  • the pin electrode connection portion 166 comes into contact with the pin electrode 33 of the power supply unit 21 and is electrically connected. Further, when the heater holder 106 is attached to the tank 101, the heating unit connecting portion 168 comes into contact with the electrode pattern 141 of the heating unit 104 and is electrically connected.
  • three engaging recesses 180 facing the power supply unit 21 are formed on the peripheral walls of the atomizing container 105 and the heater holder 106.
  • the three engaging recesses 180 are arranged at equal intervals in the circumferential direction (120 ° intervals in the circumferential direction).
  • the engaging recess 180 is formed so that the outer side in the radial direction and the end portion on the side of the power supply unit 21 are opened.
  • a tapered flattening portion is formed in which the width of the engagement recess 180 in the circumferential direction gradually increases toward the end.
  • the vertical engaging convex portions 51a to 51c of the first connecting member 41 are inserted into the three engaging recesses 180 thus formed, respectively.
  • the cartridge 11 and the first connecting member 41 are connected, and the cartridge 11 and the first connecting member 41 are positioned in the circumferential direction.
  • the end cap 107 is a substantially annular plate-shaped member attached to the end portion of the tank 101 on the suction port side.
  • a through hole 171 is formed in the radial center of the end cap 107.
  • the air flow (aerosol flow) in the cartridge 11 will be described with reference to FIG. 9.
  • air is taken in from the through hole 162 of the heater holder 106, it is guided into the opening chamber 131 (space S).
  • the aerosol generated in the vicinity of the heat generating surface 140b is guided to the aerosol flow path pipe 114 of the tank 101 from the through hole 157 of the atomizing container 105 together with the air taken into the opening chamber 131 (space S).
  • the aerosol passes from the aerosol flow path tube 114 through the through hole 115 of the bottom plate 113, and flows from the through hole 171 of the end cap 107 to the mouthpiece 23.
  • the user can suck the aerosol together with the air from the suction port 23a of the mouthpiece 23.
  • the configuration of the heating unit 104 will be described in detail.
  • the drawings are appropriately simplified or modified, and the dimensional ratios and shapes of each part are not always drawn accurately.
  • FIG. 13 is a plan view showing a heating unit (porous ceramic heating element) 104.
  • the heating unit 104 is, for example, one surface of a rectangular parallelepiped porous ceramic substrate 140 having a long side of 6.0 mm, a short side of 3.0 mm, and a thickness of 3.0 mm, and the porous ceramic substrate 140. It is provided with a glass layer 143 fixed to a heat generating surface 140b functioning as a heating surface by sintering, and a resistor pattern 142 and an electrode pattern 141 fixed to the glass layer 143 by sintering, respectively.
  • the heat generating surface 140b of the porous ceramic substrate 140 has a rectangular shape and functions as an atomized surface of a predetermined liquid that has penetrated into the heating unit 104 by a capillary phenomenon.
  • the porous ceramic substrate 140 contains any one of alumina, zirconia, mulite, silica, titania, silicon nitride, silicon carbide, and carbon as a main component, and has an average diameter of, for example, 0.15 to 500 ⁇ m, preferably 1.5 to 72 ⁇ m.
  • the glass layer 143 is made of glass containing Ba, B, Zn, and Si, for example, borosilicate glass, and is softened below the firing temperature of the porous ceramic substrate 140 and above the firing temperature of the resistor pattern 142 and the electrode pattern 141. Has a point.
  • the glass layer 143 is a dense glass film fixed to the heat generating surface 140b of the porous ceramic substrate 140 by sintering, for example, with a thickness of 100 ⁇ m or less, preferably about 3.0 to 90 ⁇ m.
  • the glass layer 143 is formed of the same pattern as or slightly larger than the resistor pattern 142 and the electrode pattern 141 described later, and has substantially the same area as the resistor pattern 142 and the electrode pattern 141.
  • the resistor pattern 142 has a thickness of 8 to 21 ⁇ m and 1 to 3 ⁇ by bonding metal powders such as silver, palladium, and ruthenium oxide with a thick glass having a melting point equal to or lower than the thick film firing temperature described later. It is a heating element preferably having a value of about 1.1 to 2.7 ⁇ , and has a thickness fixed by sintering in an S-shaped pattern on the glass layer 143 on the heat generating surface 140b of the porous ceramic substrate 140. It is a membrane resistor.
  • the resistor pattern 142 has an S-shape in which one ends of a pair of U-shaped portions are connected to each other.
  • the resistor pattern 142 is formed on the heat generating surface 140b of the porous ceramic substrate 140 so as to have a size of 5 to 30%, preferably 13 to 21% with respect to the entire heat generating surface 140b.
  • the pair of electrode patterns 141 have conductivity equivalent to that of a conductor by bonding metal powders such as aluminum, nickel, copper, silver, platinum, and gold with a thick film glass having a melting point equal to or lower than the thick film firing temperature described later. It is a thick-film conductor that is rectangular and fixed on the glass layer 143 by sintering at both ends of the heat generating surface 140b of the porous ceramic substrate 140.
  • the pair of electrode patterns 141 are connected to the resistor pattern 142 by overlapping the tips extending in an arc shape from the other end of the pair of U-shaped portions toward the electrode pattern 141 side.
  • the pair of electrode patterns 141 are formed on the heat generating surface 140b of the porous ceramic substrate 140 so as to have a size of 5 to 20% with respect to the entire heat generating surface 140b.
  • FIG. 16 shows the manufacturing process of the heating unit 104.
  • the material of the porous ceramic substrate 140 for example, alumina powder, inorganic binder, defoaming agent, organic binder, water, wax, etc., has a predetermined porosity of, for example, 30 to 90%.
  • the mixture is kneaded using a kneader to obtain a clay-like embryo soil.
  • the foaming agent is, for example, resin beads.
  • the embryo soil is molded into a plate-shaped green sheet having a predetermined thickness of about 4 mm using a vacuum extrusion molding machine. Further, a groove for division is formed by pressing a linear blade against this green sheet.
  • the green sheet obtained in the extrusion molding step P2 is dried in the drying step P3 and then fired in the firing step P4 at a firing temperature of, for example, 1300 ° C to 1500 ° C.
  • a firing temperature of, for example, 1300 ° C to 1500 ° C.
  • a thick film glass paste containing, for example, borosilicate glass powder, a resin binder, an organic solvent, etc. is obtained in the firing step P4 with the pattern of the glass layer 143 shown in FIG.
  • a temperature lower than the firing temperature of the ceramic plate for example, 800 ° C. to 1000 ° C.
  • the resin binder, the organic solvent, and the like in the thick-film glass paste disappear, and at the same time, the borosilicate glass melts, and the glass layer 143 is fixed to the ceramic plate by sintering.
  • a thick film electrode paste containing, for example, silver (Ag) powder, a small amount of borosilicate glass, a resin binder, an organic solvent, etc. is fired in the pattern of the electrode pattern 141 shown in FIG.
  • the firing temperature is the same as or lower than the firing temperature of the glass layer 143, for example, a thickness of 700 ° C to 900 ° C. It is fired at the film firing temperature.
  • the borosilicate glass is melted, and the silver powder is bonded by the melted borosilicate glass, so that the electrode pattern 141 is formed on the ceramic plate. It is fixed on the glass layer 143 of the above by sintering.
  • a thick film resistance containing, for example, silver-palladium (Ag-Pd) powder, borosilicate glass, a resin binder, an organic solvent, etc., and having a sheet resistance of, for example, 100 to 200 m ⁇ / sq.
  • the paste is screen-printed on the glass layer 143 and the electrode pattern 141 at a plurality of locations on the ceramic plate obtained in the firing step P4 in the pattern of the resistor pattern 142 shown in FIG. 13, and then the glass layer 143. It is fired at a firing temperature lower than the firing temperature of, for example, a thick film firing temperature of 700 ° C. to 900 ° C.
  • the resin binder, the organic solvent, etc. in the thick film resistor paste disappear, and at the same time, the borosilicate glass is melted, and the silver-palladium powder is bonded by the melted borosilicate glass, whereby the resistor pattern 142 is formed. It is fixed by sintering on the glass layer 143 and the electrode pattern 141 on the ceramic plate.
  • the resistor pattern 142 may be formed by simultaneous firing with the electrode pattern 141.
  • the ceramic plate to which the glass layer 143, the resistor pattern 142, and the electrode pattern 141 are fixed at a plurality of locations is broken along the groove for division, so that the plurality of heating portions are heated. 104 is obtained.
  • Comparative Example Products 1, 2, 9 and Example Products 1 to 9 are test samples prepared by the present inventors in the same process as the process shown in FIG. 16, and the experimental results thereof. Will be described with reference to FIGS. 17 to 21.
  • Comparative example product 1 An electrode pattern having an area of 13% with respect to the heat generating surface and 10 ⁇ m via a glass layer having a thickness of 20 ⁇ m on a non-conductive alumina substrate made of an alumina compact having a pore ratio of 0% by volume.
  • a resistor pattern having a thickness of 2 ⁇ and a resistance value of 2 ⁇ and an area of 15% with respect to the heat generating surface is formed in the same manner as that shown in FIG. 13, and as shown in FIG. 17, one kind of comparative example product is formed. I prepared 1.
  • FIG. 13 shows an electrode pattern having an area of 13% with respect to the heat generating surface and a resistor pattern having a thickness of 10 ⁇ m and a resistance value of 2 ⁇ and an area of 15% with respect to the heat generating surface 140b. It was formed in the same manner as shown, and two types of comparative example products 2a and 2b were prepared as shown in FIG.
  • Example product 1 On a non-conductive porous ceramic substrate with a porosity of 65% by volume and an average pore diameter of 3.3 ⁇ m, through a glass layer having a thickness of 20 ⁇ m, 13% with respect to the heat generating surface.
  • An electrode pattern having an area, a resistor pattern having a thickness of 10 ⁇ m and a resistance value of 2 ⁇ and an area of 15% with respect to the heat generating surface were formed in the same manner as shown in FIG. I prepared it.
  • Example products 2a, 2b, 2c Glass with a thickness of 20 ⁇ m on three non-conductive porous ceramic substrates with porosities of 65% by volume, 60% by volume, and 57% by volume and an average pore diameter of 1.5 ⁇ m.
  • FIG. 13 shows an electrode pattern having an area of 13% with respect to the heat generating surface and a resistor pattern having a thickness of 10 ⁇ m and a resistance value of 2 ⁇ and having an area of 15% with respect to the heat generating surface through the layer. They were formed in the same manner as shown, and three types of Example products 2a, 2b, and 2c were prepared as shown in FIG.
  • Example products 3a, 1, 3b, 3c, 3d, 3e Six types of non-conductive porous ceramic substrates with an average pore diameter of 1.5 ⁇ m, 3.3 ⁇ m, 4.2 ⁇ m, 5.1 ⁇ m, 72 ⁇ m and 0.15 ⁇ m and a porosity of 65% by volume. Above, a resistor pattern having a thickness of 10 ⁇ m and a resistance value of 2 ⁇ or 1.3 ⁇ and an area of 15% with respect to the heat generating surface is shown in FIG. 13 via a glass layer 143 having a thickness of 20 ⁇ m. Six types of Example products 3a, 1, 3b, 3c, 3d, and 3e were prepared as shown in FIG.
  • Example products 4a, 1, 4b, 4c, 4d, 4e Six types with thicknesses of 22 ⁇ m, 20 ⁇ m, 19 ⁇ m, 17 ⁇ m, 90 ⁇ m, and 3 ⁇ m on a non-conductive porous ceramic substrate with a porosity of 65% by volume and an average pore diameter of 3.3 ⁇ m.
  • FIG. 13 shows an electrode pattern having an area of 13% with respect to the heat generating surface and a resistor pattern having a thickness of 10 ⁇ m and a resistance value of 2 ⁇ and an area of 15% with respect to the heat generating surface via the glass layer.
  • 6 types of Example products 4a, 1, 4b, 4c, 4d, and 4e were prepared as shown in FIG.
  • Example products 5a, 5b, 5c On a non-conductive porous ceramic substrate with a porosity of 65% by volume and an average pore diameter of 3.3 ⁇ m, through a glass layer having a thickness of 20 ⁇ m, 13% with respect to the heat generating surface.
  • FIG. 13 shows an area electrode pattern and three types of resistor patterns having a thickness of 8 ⁇ m, 17 ⁇ m, and a thickness of 21 ⁇ m and a resistance value of 1.5 ⁇ , and having an area of 15% with respect to the heat generating surface 140b. They were formed in the same manner as those of the same ones, and three kinds of Example products 5a, 5b, and 5c were prepared as shown in FIG.
  • Example products 6a, 6b, 6c On a non-conductive porous ceramic substrate with a porosity of 65% by volume and an average pore diameter of 3.3 ⁇ m, through a glass layer with a thickness of 20 ⁇ m, a thickness of 17 ⁇ m and 1.5 ⁇ , Three types of resistor patterns with resistance values of 2 ⁇ and 2.7 ⁇ are formed in the same manner as shown in FIG. 13, respectively, and as shown in FIG. 17, three types of Examples 6a, 6b, and 6b are formed. 6c was prepared.
  • Example products 7a, 7b, 7c, 7d, 7e, 7f, 7g On a non-conductive porous ceramic substrate with a porosity of 65% by volume and an average pore diameter of 3.3 ⁇ m, the thickness of 20 ⁇ m and the ratio to the width of the resistor pattern are 133%, 167%, 200.
  • a resistor pattern with a thickness of 10 ⁇ m and a resistance value of 1.3 ⁇ is shown in FIG. 7 kinds of Example products 7a, 7b, 7c, 7d, 7e, 7f, and 7g were prepared as shown in FIG.
  • Example product 8 An area of 13% with respect to the heat generating surface via a glass layer having a thickness of 20 ⁇ m on a conductive porous ceramic substrate having a porosity of 65% by volume and an average pore diameter of 3.3 ⁇ m.
  • An electrode pattern and a resistor pattern having a thickness of 10 ⁇ m and a resistance value of 2 ⁇ and an area of 15% with respect to the heat generating surface are formed in the same manner as in FIG. 13, as shown in FIG.
  • One type of Example product 8 was prepared in 1.
  • Example products 9a, 9b, 9c, 9d, 9e, and comparative example product 9 Porosity and average fineness of 66% by volume and 26 ⁇ m, 40% by volume and 9.8 ⁇ m, 65% by volume and 4.0 ⁇ m, 66% by volume and 4.1 ⁇ m, 71% by volume and 13 ⁇ m, 38% by volume and 1.1 ⁇ m.
  • Example product 9a, 9b, 9c, 9d, 9e, and Comparative Example product 9 were prepared.
  • the cross-sectional shape (profile) of the glass layer 143 in the width direction is measured using a laser microscope, and the average height difference between the cross-sectional shape and the surface of the porous ceramic substrate 140 at 50% of the central portion with respect to the total width dimension is determined by glass. Calculated as the thickness of the layer.
  • Aerosol source glycerin 45%, propylene glycol 45% Mixture of 10% distilled water
  • Measuring method A cotton impregnated with an aerosol source is brought into contact with the lower surface of each test product, and in this state, a voltage is applied between a pair of electrode patterns for 3 seconds and a voltage of 27 seconds. When an electric energy of 21 joules is applied to the resistor pattern in one heating cycle with an application rest period to atomize the aerosol source from the upper surface of the heating element, and atomization is performed in five heating cycles. The amount of weight loss of cotton is measured, and the amount of weight loss per heating cycle, that is, the amount of atomization is calculated.
  • the porosity of the porous ceramic substrate is within the range satisfying both the criteria required for the product, for example, the atomization amount of 3 mg or more and the absence of peeling in 100 heating cycles.
  • 40 to 71 volume%, average pore diameter of the porous ceramic substrate is 0.15 to 72 ⁇ m, the ratio of the width of the glass layer to the width dimension of the resistor pattern is 100 to 300%, and the thickness of the glass layer is 3.0 to 90 ⁇ m. Met.
  • the standard of the atomization amount required for the product is 3 mg or more, if the porosity bending degree coefficient ratio is 21 or more, the standard of the atomization amount is satisfied. Further, preferably, the porosity bending degree coefficient ratio is 26 or more.
  • the resistor pattern 142 is provided on the glass layer 143, and the glass layer 143 and the pair of electrode patterns 141 connected to the resistor pattern 142 are porous.
  • a heating portion 104 provided on the heat generating surface 140b of the quality ceramic substrate 140, in which the resistor pattern 142 generates heat when a current is supplied between the pair of electrode patterns 141, and the pore ratio bending of the porous ceramic substrate 140.
  • the degree coefficient ratio is 21 or more
  • the glass layer 143 is provided on at least the surface below the resistor pattern 142 among the heat generating surfaces of the porous ceramic substrate 140, and has penetrated into the porous ceramic substrate 140.
  • the aerosol source is atomized by heating the resistor pattern 142 from the surface of the heat generating surface 140b of the porous ceramic substrate 140 that is not covered by the glass layer 143. Therefore, since the porous ceramic substrate 140 does not require conductivity, there are no restrictions on the material, and the material selectivity of the substrate is high. Further, by selecting a porous ceramic substrate material according to the application, it is possible to achieve both chemical resistance to an aerosol source and mechanical strength. Further, the resistance pattern 142 is formed on the heat generation surface 140b, which is one surface of the porous ceramic substrate 140, via the glass layer 143 formed in a part of the heat generation surface 140b including at least the resistance pattern 142. Since it is provided, the thermal shock resistance and adhesive strength of the resistor pattern 142 that functions as an electric resistance heating element can be obtained, and high atomization efficiency and durability can be obtained.
  • the porosity bending degree coefficient ratio of the porous ceramic substrate 140 is 26 or more.
  • the porous ceramic substrate 140 is provided with pores having a high porosity and small bending, so that high atomization performance can be obtained. If the porosity flexion coefficient ratio is less than 26, the porosity may be too low or the pores may be bent too much and the aerosol source may not be sufficiently infiltrated, resulting in insufficient atomization performance. be.
  • the porous ceramic substrate 140 has an average porosity of 40% by volume or more and 71% by volume or less. This facilitates the penetration of the aerosol source into the porous ceramic substrate 140, thereby increasing the atomization efficiency, that is, the atomization performance of the aerosol source. If the porosity of the porous ceramic substrate 140 exceeds 70% by volume, the durability of the heating portion 104 may not be sufficiently obtained due to the peeling of the glass layer 143, the resistor pattern 142, or the electrode pattern 141. If the porosity is less than 41.5% by volume, sufficient atomization performance may not be obtained.
  • the bending degree coefficient of the pores of the porous ceramic substrate 140 is 2.0 or less. As a result, since the heating portion 104 is provided with pores having a small bending, high atomization performance can be obtained. If the bending coefficient exceeds 2.0, the penetration resistance of the aerosol source increases, the penetration of the aerosol source becomes insufficient, and the atomization performance may not be sufficiently obtained.
  • the porous ceramic substrate 140 has an average pore diameter of 0.15 or more and 72 ⁇ m or less.
  • the aerosol source can be easily infiltrated into the porous ceramic substrate 140 by the capillary action, so that the atomization efficiency of the aerosol source, that is, the atomization performance is improved.
  • the average pore diameter is less than 0.15 nm, the penetration resistance of the aerosol source may increase and the penetration of the aerosol source may be insufficient, and if the average pore diameter exceeds 26 nm, the capillary force due to the capillary phenomenon decreases. Therefore, the penetration of the aerosol source may be insufficient, and the atomization performance may not be sufficiently obtained.
  • the glass layer 143 has a thickness of 3 to 90 ⁇ m.
  • the thickness of the glass layer 143 is less than 3 ⁇ m, the resistance value of the resistor pattern varies and the manufacturing yield decreases, and when it exceeds 90 ⁇ m, the heat conduction from the resistor pattern 142 to the porous ceramic substrate 140 decreases. , Sufficient atomization performance may not be obtained.
  • the glass layer 143 is made of a sintered body of a thick glass paste provided on the heat generating surface 140b, which is one surface of the porous ceramic substrate 140, and the resistor pattern 142 has a resistor pattern 142.
  • the electrode pattern 141 is made of a sintered body of a thick film resistor paste provided on the glass layer 143, and the electrode pattern 141 is made of a sintered body of a thick film conductive paste provided on the glass layer 143.
  • a glass layer 143 having a thickness of 3 or more and 90 ⁇ m or less, and a resistor pattern 142 and an electrode pattern 141 on the glass layer 143 are formed by a thick film on one surface of the porous ceramic substrate 140.
  • Thermal impact resistance and adhesive strength can be obtained, and durability can be obtained.
  • the thickness of the glass layer 143 is less than 3 ⁇ m, the resistance value of the resistor pattern 142 varies and the manufacturing yield decreases, and when it exceeds 90 ⁇ m, the heat conduction from the resistor pattern 142 to the porous ceramic substrate 140 decreases. Therefore, sufficient atomization performance may not be obtained.
  • the porous ceramic substrate 140 contains any one of alumina, zirconia, mulite, silica, titania, silicon nitride, silicon carbide, and carbon as a main component, and has a resistor pattern.
  • Reference numeral 142 is a thick film sintered body containing a metal powder of any one of silver, palladium and ruthenium oxide and glass, and the electrode pattern 141 is any of copper, nickel, aluminum, silver, platinum and gold. It is a thick film sintered body containing the metal powder and glass, and the glass layer 143 is a thick film sintered body containing any one of Ba, B, and Zn.
  • the glass layer 143 and the resistor pattern 142 and the electrode pattern 141 on the glass layer 143 are formed of the thick film sintered body on the heat generating surface 140b which is one surface of the porous ceramic substrate 140. Therefore, thermal shock resistance and adhesive strength can be obtained, and durability can be obtained.
  • the heat generating surface 140b which is one surface of the porous ceramic substrate 140, is a surface having a longitudinal shape, and the pair of electrode patterns 141 are arranged at both ends of the surface having the longitudinal shape.
  • the resistor pattern 142 one end of the pair of U-shaped portions is connected to each other, and the tip extending in an arc shape from the other end to the electrode pattern 141 side is connected to each of the pair of electrode patterns 141.
  • the resistor pattern 142 has a shape in which one end of the pair of U-shaped portions is connected to each other and the other end is connected to each of the pair of electrode patterns 141, heat is locally concentrated. Instead, the entire resistor pattern 142 generates heat uniformly, so that the atomization efficiency of the aerosol source, that is, the atomization performance is improved.
  • the aerosol source is a mixed solution of glycerin, propylene glycol, and distilled water in a ratio of 5: 5: 1, but other liquids such as fragrances may be used. May be further added.
  • the resistor pattern 142 has a resistance value of about 1 ⁇ or more and 3 ⁇ or less, but may be changed to another body in relation to power transmission or the like.
  • the resistor pattern 142 of the above-described embodiment is an S-shaped pattern, it may be a pattern having another shape such as a sinusoidal pattern or a rectangular pattern.
  • the glass layer 143 is formed of the same pattern as the resistor pattern 142 and the electrode pattern 141 or a slightly larger pattern, but is not necessarily the same pattern as the resistor pattern 142 and the electrode pattern 141. It is not necessary to be, and the pattern may be larger and different from the resistor pattern 142 and the electrode pattern 141 as long as the atomizing performance for atomizing the aerosol source is satisfied and the resistor pattern 142 can be supported.
  • the pair of electrode patterns 141 were formed on the glass layer 143 at both ends of the heat generating surface 140b of the porous ceramic substrate 140, they do not necessarily have to be both ends. Further, the electrode pattern 141 does not necessarily have to be formed on the glass layer 143.
  • the glass layer 143, the resistor pattern 142, and the electrode pattern 141 are composed of a thick film, but the resistor pattern 142 and the electrode pattern 141 are formed. At least one of the above may be composed of a thin film using sputtering.
  • a ceramic layer may be provided instead of the glass layer 143. That is, a thin film such as a glass layer or a ceramic layer may be provided.

Landscapes

  • Resistance Heating (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)

Abstract

Provided is a non-combustion type suction device including a power supply part, a housing part capable of accommodating an aerosol source, a heating part (104) for atomizing the aerosol source, and a suction port part in which a suction port for sucking an aerosol atomized from the aerosol source is provided. The heating part includes a porous ceramic substrate (140), a resistor pattern (142) provided on one face (140b) of the porous ceramic substrate, and a pair of electrode patterns (141) connected to the resistor pattern. The porosity bending coefficient ratio of the porous ceramic substrate is 21 or higher. In the one face of the porous ceramic substrate, a glass layer (143) is provided on a part of the face including at least the resistor pattern, and the resistor pattern is provided on the glass layer.

Description

非燃焼式吸引器Non-combustion aspirator
 本発明は、非燃焼式吸引器に関する。 The present invention relates to a non-combustion type aspirator.
 従来から、加熱により霧化させたエアロゾルを吸引することで、香味を味わう非燃焼式吸引器(以下、単に吸引器ということがある。)が知られている。この種の吸引器としては、例えば霧化可能な内容物(例えば、エアロゾル源)が収容されるカートリッジと、蓄電池が搭載された電源ユニットと、を備えたものがある。 Conventionally, a non-combustion type suction device (hereinafter, may be simply referred to as a suction device) that tastes a flavor by sucking an aerosol atomized by heating has been known. This type of aspirator includes, for example, a cartridge containing atomizable contents (eg, an aerosol source) and a power supply unit equipped with a storage battery.
 吸引器では、蓄電池から供給される電力によって加熱部が発熱する。これにより、カートリッジ内の内容物が霧化される。ユーザーは、吸口部を通じて、霧化したエアロゾルを空気とともに吸引できる。例えば、特許文献1には、エアロゾルを発生させるエアロゾル発生器が記載されている。 In the suction device, the heating part generates heat due to the electric power supplied from the storage battery. As a result, the contents in the cartridge are atomized. The user can aspirate the atomized aerosol with the air through the mouthpiece. For example, Patent Document 1 describes an aerosol generator that generates an aerosol.
 ここで、加熱部は、多孔質セラミック基板の一方の面上に抵抗体パターンと、該抵抗体パターンに接続された一対の電極パターンと、が設けられたものが知られている。加熱部としては、例えば、絶縁性セラミック基板内部に抵抗発熱体およびリード線を埋設し、抵抗発熱体およびリード線の材料、および膜厚を適正化することで耐久性能を向上させることが提案されている(特許文献2参照)。しかしながら、緻密なセラミック基板を用いたヒータでは、エアロゾル源を霧化させることを目的とする場合において、エアロゾル源の連続供給が難しく、良好な霧化効率が得られなかった。 Here, it is known that the heating unit is provided with a resistor pattern and a pair of electrode patterns connected to the resistor pattern on one surface of the porous ceramic substrate. As a heating unit, for example, it has been proposed to embed a resistance heating element and a lead wire inside an insulating ceramic substrate and improve the durability performance by optimizing the material and film thickness of the resistance heating element and the lead wire. (See Patent Document 2). However, in a heater using a dense ceramic substrate, it is difficult to continuously supply the aerosol source when the purpose is to atomize the aerosol source, and good atomization efficiency cannot be obtained.
日本国特表2004-524073号公報Japan Special Table 2004-524703 Gazette 日本国特開2000-340349号公報Japanese Patent Application Laid-Open No. 2000-340349 日本国特許第5685152号公報Japanese Patent No. 5685152
 これに対して、良好な霧化効率を得るために、基板若しくは発熱体として多孔体を用い、毛細管現象によりエアロゾル源を加熱部へ直接的且つ連続的に供給し、多孔体に浸入させたエアロゾル源を素早く霧化させるようにしたものが提案されている。例えば、特許文献3に記載された多孔質発熱体がそれである。この多孔質発熱体によれば、多孔体自体が発熱する電気抵抗発熱体であって、アルミニウムを主原料とした多孔体から構成されている。 On the other hand, in order to obtain good atomization efficiency, a porous body is used as a substrate or a heating element, and an aerosol source is directly and continuously supplied to the heating part by a capillary phenomenon, and the aerosol is impregnated into the porous body. Proposed ones that quickly atomize the source. For example, it is the porous heating element described in Patent Document 3. According to this porous heating element, the porous body itself is an electric resistance heating element that generates heat, and is composed of a porous body using aluminum as a main raw material.
 しかしながら、上記多孔質発熱体によれば、多孔体自体が導電物質でなければならず、特に、液体を霧化させる目的で使用する場合において、用途に応じて液体に対する耐化学性と機械的強度との両立を図ることが難しいという問題があった。 However, according to the above-mentioned porous heating element, the porous body itself must be a conductive substance, and particularly when used for the purpose of atomizing a liquid, chemical resistance and mechanical strength against the liquid depending on the application. There was a problem that it was difficult to achieve both.
 また、セラミックスなどの絶縁性多孔体の一面上に発熱体を形成することも考えられるが、この場合には、多孔体に複数種類のセラミックス材料を使用することができて基板の材料選択性は高くなるが、多孔質体の凹凸表面に形成した電気抵抗発熱体は厚みが均一でなく局所的に異なるため、耐熱衝撃性が低く、基板と電気抵抗発熱体との接着強度も低いという問題があった。 It is also conceivable to form a heating element on one surface of an insulating porous body such as ceramics, but in this case, multiple types of ceramic materials can be used for the porous body, and the material selectivity of the substrate is high. However, since the electric resistance heating element formed on the uneven surface of the porous body is not uniform in thickness and locally differs, there is a problem that the thermal impact resistance is low and the adhesive strength between the substrate and the electric resistance heating element is also low. there were.
 本発明は、以上の事情に鑑みてなされたものであり、液体を霧化させる目的に使用するに際して、高い霧化効率および耐久性能が得られる加熱部を備えた非燃焼式吸引器を提供することを目的とする。 The present invention has been made in view of the above circumstances, and provides a non-combustion type suction device provided with a heating unit capable of obtaining high atomization efficiency and durability when used for the purpose of atomizing a liquid. The purpose is.
 (1)上記目的を達成するために、本発明の一態様に係る非燃焼式吸引器は、電源部と、エアロゾル源を収容可能な収容部と、前記エアロゾル源を霧化させる加熱部と、前記エアロゾル源が霧化したエアロゾルを吸引する吸引口が形成された吸口部と、を備え、前記加熱部は、多孔質セラミック基板と、前記多孔質セラミック基板の一方の面上に設けられた抵抗体パターンと、前記抵抗体パターンに接続し、前記多孔質セラミック基板の前記一方の面上に設けられた一対の電極パターンと、を備え、前記加熱部は、前記一対の電極パターン間に電流が供給されることにより前記抵抗体パターンが発熱し、前記多孔質セラミック基板の気孔率屈曲度係数比は21以上であり、前記多孔質セラミック基板の前記一方の面のうち、少なくとも前記抵抗体パターンを含む一部の面にガラス層が設けられ、前記抵抗体パターンは前記ガラス層の上に設けられ、前記多孔質セラミック基板内に浸入した前記エアロゾル源は、前記抵抗体パターンにより加熱され、前記エアロゾルとして放出される。 (1) In order to achieve the above object, the non-combustible aspirator according to one aspect of the present invention includes a power supply unit, an accommodating unit capable of accommodating an aerosol source, and a heating unit for atomizing the aerosol source. The aerosol source includes a suction port formed with a suction port for sucking atomized aerosol, and the heating portion includes a porous ceramic substrate and a resistor provided on one surface of the porous ceramic substrate. A body pattern and a pair of electrode patterns connected to the resistor pattern and provided on the one surface of the porous ceramic substrate are provided, and the heating unit has a current flowing between the pair of electrode patterns. By being supplied, the resistor pattern generates heat, the porosity bending degree coefficient ratio of the porous ceramic substrate is 21 or more, and at least the resistor pattern is formed on one of the surfaces of the porous ceramic substrate. A glass layer is provided on a part of the surface including the glass layer, the resistor pattern is provided on the glass layer, and the aerosol source penetrated into the porous ceramic substrate is heated by the resistor pattern and the aerosol is generated. Is released as.
 (2)上記(1)の態様に係る非燃焼式吸引器において、前記多孔質セラミック基板の気孔率屈曲度係数比は、26以上であってもよい。 (2) In the non-combustion type suction device according to the aspect (1) above, the porosity bending degree coefficient ratio of the porous ceramic substrate may be 26 or more.
 (3)上記(1)または(2)の態様に係る非燃焼式吸引器において、前記多孔質セラミック基板の平均気孔率は、40~71容積%であってもよい。 (3) In the non-combustion type suction device according to the above aspect (1) or (2), the average porosity of the porous ceramic substrate may be 40 to 71% by volume.
 (4)上記(1)から(3)のいずれか一つの態様に係る非燃焼式吸引器において、前記多孔質セラミック基板の気孔の屈曲度係数は、2.0以下であってもよい。 (4) In the non-combustion type suction device according to any one of the above (1) to (3), the bending degree coefficient of the pores of the porous ceramic substrate may be 2.0 or less.
 (5)上記(1)から(4)のいずれか一つの態様に係る非燃焼式吸引器において、前記多孔質セラミック基板は、0.15~72μmの平均細孔径を有していてもよい。 (5) In the non-combustion type suction device according to any one of the above (1) to (4), the porous ceramic substrate may have an average pore diameter of 0.15 to 72 μm.
 (6)上記(1)から(5)のいずれか一つの態様に係る非燃焼式吸引器において、前記ガラス層は、3~90μmの厚みを有していてもよい。 (6) In the non-combustion type suction device according to any one of the above (1) to (5), the glass layer may have a thickness of 3 to 90 μm.
 (7)上記(1)から(6)のいずれか一つの態様に係る非燃焼式吸引器において、前記ガラス層は、前記多孔質セラミック基板の一方の面上に設けられた厚膜ガラスペーストの焼結体から構成され、前記抵抗体パターンは、前記ガラス層の上に設けられた厚膜抵抗体ペーストの焼結体から構成され、前記電極パターンは、前記ガラス層の上に設けられた厚膜導電ペーストの焼結体から構成されていてもよい。 (7) In the non-combustion type suction device according to any one of the above (1) to (6), the glass layer is a thick film glass paste provided on one surface of the porous ceramic substrate. It is composed of a sintered body, the resistor pattern is composed of a sintered body of a thick film resistor paste provided on the glass layer, and the electrode pattern is a thickness provided on the glass layer. It may be composed of a sintered body of a film conductive paste.
 (8)上記(7)の態様に係る非燃焼式吸引器において、前記多孔質セラミック基板は、アルミナ、ジルコニア、ムライト、シリカ、チタニア、窒化珪素、炭化珪素、炭素のいずれかを主成分とし、前記抵抗体パターンは、銀、パラジウム、酸化ルテニウムのうちのいずれかの金属粉とガラスとを含む厚膜焼結体であり、前記電極パターンは、銅、ニッケル、アルミニウム、銀、白金、金のうちのいずれかの金属粉末とガラスとを含む厚膜焼結体であり、前記ガラス層は、Ba、B、Znのいずれかを含む厚膜焼結体であってもよい。 (8) In the non-combustion type suction device according to the aspect (7) above, the porous ceramic substrate contains any one of alumina, zirconia, mulite, silica, titania, silicon nitride, silicon carbide, and carbon as a main component. The resistor pattern is a thick film sintered body containing a metal powder of any one of silver, palladium and ruthenium oxide and glass, and the electrode pattern is made of copper, nickel, aluminum, silver, platinum and gold. It is a thick film sintered body containing any one of the metal powders and glass, and the glass layer may be a thick film sintered body containing any one of Ba, B, and Zn.
 (9)上記(1)から(8)のいずれか一つの態様に係る非燃焼式吸引器において、前記多孔質セラミック基板の一方の面は、長手形状の面であり、前記一対の電極パターンは、前記長手形状の面の両端部に配置され、前記抵抗体パターンは、一対のU字状円弧の一端が相互に連結され且つ他端が前記一対の電極パターンのそれぞれに接続されていてもよい。 (9) In the non-combustion type suction device according to any one of the above (1) to (8), one surface of the porous ceramic substrate is a long surface, and the pair of electrode patterns is , One end of the pair of U-shaped arcs may be connected to each other and the other end may be connected to each of the pair of electrode patterns. ..
 (10)上記(1)から(9)のいずれか一つの態様に係る非燃焼式吸引器において、前記吸口部に香味源容器を備えていてもよい。 (10) In the non-combustion type suction device according to any one of the above (1) to (9), the mouthpiece may be provided with a flavor source container.
 (11)上記(10)の態様に係る非燃焼式吸引器において、前記香味源容器は、たばこ成分を含有していてもよい。 (11) In the non-combustion type aspirator according to the above aspect (10), the flavor source container may contain a tobacco component.
 本発明の非燃焼式吸引器によれば、前記多孔質セラミック基板の気孔率屈曲度係数比は21以上であり、前記多孔質セラミック基板の一方の面に、その一方の面のうちの少なくとも前記抵抗体パターンを含む一部の領域に形成されたガラス層を介して、抵抗体パターンが設けられるので、電気抵抗発熱体の耐熱衝撃性および接着強度が得られ、高い耐久性能が得られる。また、多孔質セラミック基板に浸入したエアロゾル源が抵抗体パターンによる加熱によって霧化されるので、高い霧化効率が得られる。 According to the non-combustion type suction device of the present invention, the porosity bending degree coefficient ratio of the porous ceramic substrate is 21 or more, and one surface of the porous ceramic substrate has at least the said one of the surfaces. Since the resistor pattern is provided via the glass layer formed in a part of the region including the resistor pattern, the thermal impact resistance and the adhesive strength of the electric resistance heating element can be obtained, and high durability performance can be obtained. Further, since the aerosol source penetrated into the porous ceramic substrate is atomized by heating by the resistor pattern, high atomization efficiency can be obtained.
 ここで、好適には、前記多孔質セラミック基板の気孔率屈曲度係数比は、26以上である。これにより、加熱部において、気孔率が高く且つ屈曲の小さい気孔が備えられているので、高い霧化性能が得られる。気孔率屈曲度係数比は、26を下まわると、気孔率が低すぎるか或いは気孔の屈曲が多くて、エアロゾル源の浸入が不十分となる場合があり、霧化性能が十分に得られ難くなる。 Here, preferably, the porosity bending degree coefficient ratio of the porous ceramic substrate is 26 or more. As a result, the heated portion is provided with pores having a high porosity and small bending, so that high atomization performance can be obtained. If the porosity flexion coefficient ratio is less than 26, the porosity may be too low or the pores may be bent too much, resulting in insufficient penetration of the aerosol source, making it difficult to obtain sufficient atomization performance. Become.
 また、好適には、前記多孔質セラミック基板は、40~71容積%の平均気孔率を有する。これにより、多孔質セラミック基板にエアロゾル源の浸入が容易となるので、エアロゾル源の霧化効率すなわち霧化性能が高くなる。気孔率が71容積%を超えると、ガラス層、抵抗体パターン、或いは電極パターンの剥離により加熱部の耐久性が十分に得られ難くなる。気孔率が40容積%を下まわると、霧化性能が十分に得られ難くなる。 Also, preferably, the porous ceramic substrate has an average porosity of 40 to 71% by volume. This facilitates the penetration of the aerosol source into the porous ceramic substrate, so that the atomization efficiency of the aerosol source, that is, the atomization performance is improved. When the porosity exceeds 71% by volume, it becomes difficult to sufficiently obtain the durability of the heated portion due to the peeling of the glass layer, the resistor pattern, or the electrode pattern. If the porosity is less than 40% by volume, it becomes difficult to obtain sufficient atomization performance.
 また、好適には、前記多孔質セラミック基板の気孔の屈曲度係数は、2.0以下である。これにより、加熱部において屈曲の小さい気孔が備えられているので、高い霧化性能が得られる。屈曲度係数が2.0を超えると、エアロゾル源の浸入抵抗が増加してエアロゾル源の浸入が不十分となる場合があり、霧化性能が十分に得られ難くなる。 Further, preferably, the bending degree coefficient of the pores of the porous ceramic substrate is 2.0 or less. As a result, since the heating portion is provided with pores having small bending, high atomization performance can be obtained. If the bending coefficient exceeds 2.0, the penetration resistance of the aerosol source may increase and the penetration of the aerosol source may be insufficient, making it difficult to obtain sufficient atomization performance.
 また、好適には、前記多孔質セラミック基板は、0.15~72μmの平均細孔径を有する。これにより、毛管作用によって多孔質セラミック基板にエアロゾル源の浸入が容易となるので、エアロゾル源の霧化効率すなわち霧化性能が高くなる。平均細孔径が0.15μmを下まわると、エアロゾル源の浸入抵抗が増加してエアロゾル源の浸入が不十分となり、平均細孔径が72μmを超えると、毛細管現象による毛管力が低下してエアロゾル源の浸入が不十分となる場合があり、霧化性能が十分に得られ難くなる。 Also, preferably, the porous ceramic substrate has an average pore diameter of 0.15 to 72 μm. As a result, the aerosol source can be easily infiltrated into the porous ceramic substrate by the capillary action, so that the atomization efficiency of the aerosol source, that is, the atomization performance is improved. When the average pore diameter is less than 0.15 μm, the penetration resistance of the aerosol source increases and the penetration of the aerosol source becomes insufficient, and when the average pore diameter exceeds 72 μm, the capillary force due to the capillary phenomenon decreases and the aerosol source Infiltration may be insufficient, making it difficult to obtain sufficient atomization performance.
 また、好適には、前記ガラス層は、3~90μmの厚みを有するものである。ガラス層の厚みが3μmを下まわると、抵抗体パターンの抵抗値がばらついて製造歩留りが低下し、90μmを超えると、抵抗体パターンから多孔質セラミック基板への熱伝導が低下して、霧化性能が十分に得られ難くなる。 Further, preferably, the glass layer has a thickness of 3 to 90 μm. When the thickness of the glass layer is less than 3 μm, the resistance value of the resistor pattern varies and the manufacturing yield decreases, and when it exceeds 90 μm, the heat conduction from the resistor pattern to the porous ceramic substrate decreases and atomization occurs. It becomes difficult to obtain sufficient performance.
 また、好適には、前記ガラス層は、前記多孔質セラミック基板の一方の面上に設けられた厚膜ガラスペーストの焼結体から構成され、前記抵抗体パターンは、前記ガラス層の上に設けられた厚膜抵抗体ペーストの焼結体から構成され、前記電極パターンは、前記ガラス層の上に設けられた厚膜導電ペーストの焼結体から構成される。これにより、前記多孔質セラミック基板の一方の面上に、ガラス層、およびそのガラス層の上の抵抗体パターンおよび電極パターンが厚膜により形成されているので、耐熱衝撃性および接着強度が得られるとともに、耐久性が得られる。 Further, preferably, the glass layer is composed of a sintered body of a thick film glass paste provided on one surface of the porous ceramic substrate, and the resistor pattern is provided on the glass layer. It is composed of a sintered body of the thick film resistor paste obtained, and the electrode pattern is composed of a sintered body of the thick film conductive paste provided on the glass layer. As a result, since the glass layer and the resistor pattern and the electrode pattern on the glass layer are formed by the thick film on one surface of the porous ceramic substrate, thermal shock resistance and adhesive strength can be obtained. At the same time, durability is obtained.
 また、好適には、前記多孔質セラミック基板は、アルミナ、ジルコニア、ムライト、シリカ、チタニア、窒化珪素、炭化珪素、炭素のいずれかを主成分とするものであり、前記抵抗体パターンは、銀、パラジウム、酸化ルテニウムのうちのいずれかの金属粉とガラスとを含む厚膜焼結体であり、前記電極パターンは、銅、ニッケル、アルミニウム、銀、白金、金のうちのいずれかの金属粉末とガラスとを含む厚膜焼結体であり、前記ガラス層は、Ba、B、Znのいずれかを含む厚膜焼結体である。このように、前記多孔質セラミック基板の一方の面上に、ガラス層、およびそのガラス層の上の抵抗体パターンおよび電極パターンが厚膜焼結体により形成されているので、耐熱衝撃性および接着強度が得られるとともに、耐久性が得られる。 Further, preferably, the porous ceramic substrate contains any one of alumina, zirconia, mullite, silica, titania, silicon nitride, silicon carbide, and carbon as a main component, and the resistor pattern is silver. It is a thick film sintered body containing metal powder of any one of palladium and ruthenium oxide and glass, and the electrode pattern is made of metal powder of any one of copper, nickel, aluminum, silver, platinum and gold. It is a thick film sintered body containing glass, and the glass layer is a thick film sintered body containing any one of Ba, B, and Zn. As described above, since the glass layer and the resistor pattern and the electrode pattern on the glass layer are formed by the thick film sintered body on one surface of the porous ceramic substrate, the heat impact resistance and adhesion are formed. Strength is obtained and durability is obtained.
 また、好適には、前記多孔質セラミック基板の一方の面は、長手形状の面であり、前記一対の電極パターンは、前記長手形状の面の両端部に配置され、前記抵抗体パターンは、一対のU字状部の一端が相互に連結され且つ他端が前記一対の電極パターンのそれぞれに接続されている。このように、抵抗体パターンが一対のU字状部の一端が相互に連結され且つ他端から延長された先端が前記一対の電極パターンのそれぞれに接続されている形状であることから、局所的に熱が集中せず、抵抗体パターンの全体が均一に発熱するので、エアロゾル源の霧化効率すなわち霧化性能が高くなる。 Further, preferably, one surface of the porous ceramic substrate is a surface having a longitudinal shape, the pair of electrode patterns are arranged at both ends of the surface having the longitudinal shape, and the resistor patterns are paired. One end of the U-shaped portion is connected to each other and the other end is connected to each of the pair of electrode patterns. As described above, the resistor pattern has a shape in which one end of the pair of U-shaped portions is connected to each other and the tip extending from the other end is connected to each of the pair of electrode patterns. Since the heat is not concentrated on the entire resistor pattern and the entire resistor pattern generates heat uniformly, the atomization efficiency of the aerosol source, that is, the atomization performance is improved.
 また、好適には、前記吸口部に香味源容器を備える。このように、吸口部に香味源を配することにより、エアロゾルに香味を添加することができる。 Further, preferably, the mouthpiece is provided with a flavor source container. By arranging the flavor source in the mouthpiece portion in this way, the flavor can be added to the aerosol.
 また、好適には、前記香味源容器は、たばこ成分を含有している。このように、香味源にたばこ成分を含有させることによりエアロゾルにたばこの風味を添加することができる。 Further, preferably, the flavor source container contains a tobacco component. In this way, the tobacco flavor can be added to the aerosol by including the tobacco component in the flavor source.
実施形態に係る吸引器の斜視図である。It is a perspective view of the aspirator which concerns on embodiment. 実施形態に係る吸引器の分解斜視図である。It is an exploded perspective view of the aspirator which concerns on embodiment. 実施形態に係る電源ユニットの斜視図である。It is a perspective view of the power supply unit which concerns on embodiment. 実施形態に係る電源ユニットを軸方向の保持ユニット側から見た平面図である。It is a top view which looked at the power supply unit which concerns on embodiment from the holding unit side in the axial direction. 実施形態に係る保持ユニットの分解斜視図である。It is an exploded perspective view of the holding unit which concerns on embodiment. 実施形態に係る第1連結部材及び第2連結部材の接続構造を示す斜視図である。It is a perspective view which shows the connection structure of the 1st connection member and the 2nd connection member which concerns on embodiment. 実施形態に係る保持ユニット及びカートリッジを軸方向の電源ユニット側から見た平面図である。It is a top view which looked at the holding unit and the cartridge which concerns on embodiment from the power supply unit side in the axial direction. 図1のVIII-VIII線に対応するマウスピースの分解斜視図である。It is an exploded perspective view of the mouthpiece corresponding to the line VIII-VIII of FIG. 実施形態に係るカートリッジの軸方向に沿う断面図である。It is sectional drawing which follows the axial direction of the cartridge which concerns on embodiment. 実施形態に係るカートリッジの分解斜視図である。It is an exploded perspective view of the cartridge which concerns on embodiment. 実施形態に係るタンクを開口部側からみた斜視図である。It is a perspective view which looked at the tank which concerns on embodiment from the opening side. 実施形態に係るガスケットの斜視図である。It is a perspective view of the gasket which concerns on embodiment. 実施形態に係る加熱部の平面図である。It is a top view of the heating part which concerns on embodiment. 実施形態に係るヒータホルダの斜視図である。It is a perspective view of the heater holder which concerns on embodiment. 実施形態に係るキャップの斜視図である。It is a perspective view of the cap which concerns on embodiment. 図13の加熱部の製造工程の要部を説明する工程図である。It is a process diagram explaining the main part of the manufacturing process of the heating part of FIG. 気孔率、平均細孔径、ガラス層の厚み、抵抗体パターンの面積、抵抗体パターンの厚み、抵抗体パターンの抵抗値、電極パターンの面積のいずれか1つを変化させた試験品について、本発明者等が行なった霧化実験に用いた試験品の内容と実験結果とを示す図表である。The present invention relates to a test product in which any one of the pore ratio, the average pore diameter, the thickness of the glass layer, the area of the resistor pattern, the thickness of the resistor pattern, the resistance value of the resistor pattern, and the area of the electrode pattern is changed. It is a chart which shows the content and the experimental result of the test product used for the atomization experiment performed by the person, etc. ガラス層の幅と抵抗体パターンに対する幅とを一致させた試験品について、本発明者等が行なった霧化実験に用いた試験品の内容と実験結果とを示す図表である。It is a figure which shows the content and the experimental result of the test product used in the atomization experiment performed by the present inventors, etc. for the test product in which the width of the glass layer and the width with respect to the resistor pattern are matched. 図18に記載のデータから導き出された、気孔率と霧化量との関係を示すグラフである。It is a graph which shows the relationship between the porosity and the atomization amount, which was derived from the data shown in FIG. 図18に記載のデータから導き出された、屈曲度係数と霧化量との関係を示すグラフである。It is a graph which shows the relationship between the bending degree coefficient and the atomization amount, which was derived from the data shown in FIG. 図18に記載のデータから導き出された、気孔率屈曲度係数比と霧化量との関係を示すグラフである。It is a graph which shows the relationship between the porosity bending degree coefficient ratio and the atomization amount, which was derived from the data shown in FIG.
 次に、本発明の実施形態を図面に基づいて説明する。
[吸引器]
 図1は、吸引器の斜視図である。
 図1に示す吸引器1は、いわゆる非燃焼式吸引器であり、加熱により霧化されたエアロゾルを、たばこ(たばこカプセル)を通して吸引することで、ユーザーがたばこの香味を味わうものである。
Next, an embodiment of the present invention will be described with reference to the drawings.
[Aspirator]
FIG. 1 is a perspective view of the aspirator.
The suction device 1 shown in FIG. 1 is a so-called non-combustion type suction device, in which a user tastes the flavor of tobacco by sucking an aerosol atomized by heating through a cigarette (tobacco capsule).
 吸引器1は、本体ユニット10と、本体ユニット10に着脱可能に装着されるカートリッジ11及びたばこカプセル12と、を備えている。 The suction device 1 includes a main body unit 10, a cartridge 11 detachably attached to the main body unit 10, and a cigarette capsule 12.
 <本体ユニット>
 図2は、吸引器1の分解斜視図である。
 図2に示すように、本体ユニット10は、電源ユニット21と、保持ユニット22と、マウスピース23と、を備えている。電源ユニット21、保持ユニット22及びマウスピース23は、それぞれ軸線Oを中心軸とする筒状に形成されるとともに、軸線O上に並んで配置されている。電源ユニット21と保持ユニット22との間、保持ユニット22とマウスピース23との間は、それぞれ着脱可能に接続されている。
<Main unit>
FIG. 2 is an exploded perspective view of the suction device 1.
As shown in FIG. 2, the main body unit 10 includes a power supply unit 21, a holding unit 22, and a mouthpiece 23. The power supply unit 21, the holding unit 22, and the mouthpiece 23 are each formed in a cylindrical shape with the axis O as the central axis, and are arranged side by side on the axis O. The power supply unit 21 and the holding unit 22 and the holding unit 22 and the mouthpiece 23 are detachably connected to each other.
 以下の説明では、軸線Oに沿う方向を軸方向という。この場合、軸方向において、マウスピース23から電源ユニット21に向かう側を反吸口側といい、電源ユニット21からマウスピース23に向かう側を吸口側という。また、軸方向から見た平面視で軸線Oに交差する方向を径方向といい、軸線O回りに周回する方向を周方向という場合がある。本明細書において、「方向」とは2つの向きを意味し、「方向」のうち1つの向きを示す場合には「側」と記載する。 In the following explanation, the direction along the axis O is called the axial direction. In this case, in the axial direction, the side from the mouthpiece 23 toward the power supply unit 21 is referred to as the anti-suction side, and the side from the power supply unit 21 toward the mouthpiece 23 is referred to as the mouthpiece side. Further, the direction that intersects the axis O in a plan view from the axial direction is referred to as a radial direction, and the direction that orbits around the axis O may be referred to as a circumferential direction. In the present specification, "direction" means two directions, and when indicating one direction of "direction", it is described as "side".
 <電源ユニット>
 図3は、電源ユニット21の斜視図である。
 図2、図3に示すように、電源ユニット21は、筒状のハウジング31と、ハウジング31内に収容された蓄電池ユニット(不図示)と、ピン電極33と、を備えている。
<Power supply unit>
FIG. 3 is a perspective view of the power supply unit 21.
As shown in FIGS. 2 and 3, the power supply unit 21 includes a cylindrical housing 31, a storage battery unit (not shown) housed in the housing 31, and a pin electrode 33.
 <ハウジング>
 図2、図3に示すように、ハウジング31は、外装筒部35と、介装部材36と、接続機構37と、を有している。
 外装筒部35は、軸線Oを中心軸とする円筒状に形成されている。介装部材36は、軸線Oを中心軸とする円筒状に形成されている。介装部材36は、外装筒部35に対して軸方向の保持ユニット22側から嵌め込まれている。
<Housing>
As shown in FIGS. 2 and 3, the housing 31 has an outer cylinder portion 35, an interposing member 36, and a connecting mechanism 37.
The outer cylinder portion 35 is formed in a cylindrical shape with the axis O as the central axis. The interposing member 36 is formed in a cylindrical shape with the axis O as the central axis. The interposing member 36 is fitted to the outer cylinder portion 35 from the holding unit 22 side in the axial direction.
 外装筒部35における軸方向で保持ユニット22側の端部近傍において、ボタン露出孔38が形成されている。ボタン露出孔38は、外装筒部35を径方向に貫通している。ボタン露出孔38内には、ボタン39が収容されている。ボタン39は、径方向に移動可能に構成されている。ボタン39は、径方向の内側への移動に伴い、蓄電池ユニットのスイッチ素子(不図示)を押圧操作する。ボタン39を押圧して電源をONすることにより、加熱部104の抵抗体パターン142が昇温し、その結果、エアロゾル源が霧化してエアロゾルが生成される(加熱部104の構成については後述する。)。ボタン39の表面は、ボタン露出孔38を通じて外装筒部35の外周面上に露出している。なお、ボタン39は、径方向に移動するものに限らず、例えば軸方向にスライド移動するものであってもよい。また、ボタン39に替えてタッチセンサ等により吸引器1を操作する構成であってもよい。 A button exposed hole 38 is formed in the vicinity of the end portion on the holding unit 22 side in the axial direction of the outer cylinder portion 35. The button exposed hole 38 penetrates the outer cylinder portion 35 in the radial direction. The button 39 is housed in the button exposed hole 38. The button 39 is configured to be movable in the radial direction. The button 39 presses and operates a switch element (not shown) of the storage battery unit as it moves inward in the radial direction. By pressing the button 39 to turn on the power, the resistance pattern 142 of the heating unit 104 rises in temperature, and as a result, the aerosol source is atomized to generate an aerosol (the configuration of the heating unit 104 will be described later). .). The surface of the button 39 is exposed on the outer peripheral surface of the outer cylinder portion 35 through the button exposure hole 38. The button 39 is not limited to the one that moves in the radial direction, and may be, for example, one that slides in the axial direction. Further, the suction device 1 may be operated by a touch sensor or the like instead of the button 39.
 <接続機構>
 図4は、電源ユニット21を軸方向の保持ユニット22側から見た平面図である。
 図2~図4に示すように、接続機構37は、接続キャップ40と、第1連結部材41と、環状片42と、を備えている。
 接続キャップ40は、シリコーン樹脂等の弾性を有する樹脂材料により形成されている。接続キャップ40は、ベース部45と、ベース部45における軸方向で保持ユニット22とは反対側の端部において、径方向の外側に張り出しているフランジ部(不図示)と、囲繞凸部46と、を有している。
<Connection mechanism>
FIG. 4 is a plan view of the power supply unit 21 as viewed from the holding unit 22 side in the axial direction.
As shown in FIGS. 2 to 4, the connection mechanism 37 includes a connection cap 40, a first connecting member 41, and an annular piece 42.
The connection cap 40 is made of an elastic resin material such as silicone resin. The connection cap 40 includes a base portion 45, a flange portion (not shown) protruding outward in the radial direction at an end portion of the base portion 45 opposite to the holding unit 22 in the axial direction, and a surrounding convex portion 46. ,have.
 図4に示すように、ベース部45は、軸線Oを中心軸とする円柱状に形成されている。ベース部45には、ピン電極33が挿通する電極挿通孔47が形成されている。電極挿通孔47は、ベース部45を軸方向に貫通して、ハウジング31内に連通している。ピン電極33は、電極挿通孔47を通じてベース部45から軸方向の保持ユニット22側に突出している。 As shown in FIG. 4, the base portion 45 is formed in a columnar shape with the axis O as the central axis. The base portion 45 is formed with an electrode insertion hole 47 through which the pin electrode 33 is inserted. The electrode insertion hole 47 penetrates the base portion 45 in the axial direction and communicates with the inside of the housing 31. The pin electrode 33 projects from the base portion 45 toward the holding unit 22 in the axial direction through the electrode insertion hole 47.
 囲繞凸部46は、ベース部45における軸方向で保持ユニット22側を向く端面から軸方向に突出している。具体的に、囲繞凸部46は、ベース部45の外周縁に沿って延びる環状に形成されている。すなわち、囲繞凸部46は、ピン電極33に対して径方向の外側に離れた位置で、ピン電極33を取り囲んでいる。また、囲繞凸部46は、環状の途中に切欠部46aが形成されている。切欠部46aは、周方向に120°の間隔をあけて均等に3つ形成されている。切欠部46aは、空気の流通経路として機能する。なお、囲繞凸部46は、ピン電極33の周囲を取り囲む構成であれば、ベース部45の外周縁に対して径方向の内側に位置していてもよい。また、囲繞凸部46は、環状に限らず、多角形状等であってもよい。また、切欠部46aの個数や位置は適宜変更可能である。また、本実施形態において、「囲繞」とは、間欠的に延在しているものに限らず、連続的に延在しているものも含む。ただし、囲繞凸部46が連続的な環状に形成される場合は、空気の流通経路を別に形成する必要がある。本実施形態における囲繞凸部46は、全体としてピン電極33の周囲を取り囲む構成であれば適宜変更が可能である。 The surrounding convex portion 46 projects axially from the end surface of the base portion 45 facing the holding unit 22 side in the axial direction. Specifically, the surrounding convex portion 46 is formed in a substantially annular shape extending along the outer peripheral edge of the base portion 45. That is, the surrounding convex portion 46 surrounds the pin electrode 33 at a position separated radially outward from the pin electrode 33. Further, in the surrounding convex portion 46, a notch portion 46a is formed in the middle of the annular shape. Three notches 46a are evenly formed at intervals of 120 ° in the circumferential direction. The notch 46a functions as an air flow path. The surrounding convex portion 46 may be located radially inside the outer peripheral edge of the base portion 45 as long as it surrounds the periphery of the pin electrode 33. Further, the surrounding convex portion 46 is not limited to an annular shape, but may have a polygonal shape or the like. Further, the number and positions of the cutout portions 46a can be appropriately changed. Further, in the present embodiment, the “enclosure” is not limited to those that are intermittently extended, but also include those that are continuously extended. However, when the surrounding convex portion 46 is formed in a continuous annular shape, it is necessary to separately form an air flow path. The surrounding convex portion 46 in the present embodiment can be appropriately changed as long as it has a configuration that surrounds the periphery of the pin electrode 33 as a whole.
 囲繞凸部46は、軸方向に沿う縦断面視において、軸方向の保持ユニット22側に向けて先鋭する三角形状に形成されている。囲繞凸部46におけるベース部45からの突出高さは、ピン電極33よりも低くなっている。但し、囲繞凸部46の突出高さは、ピン電極33より高くなっていてもよい。また、囲繞凸部46における縦断面視形状は、三角形状に限られない。 The surrounding convex portion 46 is formed in a triangular shape that sharpens toward the holding unit 22 side in the axial direction in a vertical cross-sectional view along the axial direction. The protruding height of the surrounding convex portion 46 from the base portion 45 is lower than that of the pin electrode 33. However, the protruding height of the surrounding convex portion 46 may be higher than that of the pin electrode 33. Further, the vertical cross-sectional view shape of the surrounding convex portion 46 is not limited to the triangular shape.
 第1連結部材41は、ハウジング31内に配設されるベース筒部(不図示)と、縦係合凸部(第1縦係合凸部51a~第3縦係合凸部51c)と、横係合凸部52と、を備えている。 The first connecting member 41 includes a base cylinder portion (not shown) disposed in the housing 31, a vertically engaging convex portion (first vertical engaging convex portion 51a to a third vertical engaging convex portion 51c), and a vertical engaging convex portion 51c. A laterally engaged convex portion 52 is provided.
 ベース筒部おける軸方向で保持ユニット22側の端部は、接続キャップ40の周囲を取り囲んでいる。ベース筒部における軸方向の保持ユニット22側の端部には、径方向の外側に張り出す外フランジ部55が形成されている。 The end of the holding unit 22 side in the axial direction of the base cylinder portion surrounds the circumference of the connection cap 40. An outer flange portion 55 projecting outward in the radial direction is formed at the end portion of the base cylinder portion on the holding unit 22 side in the axial direction.
 図3、図4に示すように、縦係合凸部51a~51cは、外フランジ部55から軸方向の保持ユニット22側(吸口側)に突出している。各縦係合凸部51a~51cは、周方向に間隔をあけて複数形成されている。本実施形態において、各縦係合凸部51a~51cは、周方向に120°の間隔をあけて均等に3つ配置されている。なお、縦係合凸部51a~51cは、単数であっても複数であってもよい。また、縦係合凸部51a~51cのピッチは適宜変更が可能である。この場合、複数の縦係合凸部51a~51cが不均等に配置されていてもよい。 As shown in FIGS. 3 and 4, the vertically engaged convex portions 51a to 51c project from the outer flange portion 55 toward the holding unit 22 side (suction port side) in the axial direction. A plurality of the vertically engaged convex portions 51a to 51c are formed at intervals in the circumferential direction. In the present embodiment, three vertically engaged convex portions 51a to 51c are evenly arranged at intervals of 120 ° in the circumferential direction. The vertically engaged convex portions 51a to 51c may be singular or plural. Further, the pitches of the vertically engaged convex portions 51a to 51c can be appropriately changed. In this case, the plurality of vertically engaged convex portions 51a to 51c may be unevenly arranged.
 図4に示すように、上述した各縦係合凸部51a~51cそれぞれにおいて、周方向の中心と軸線Oとを結ぶ仮想直線La~Lc上に上述したピン電極33が配置されないように、各縦係合凸部51a~51cが配置されている。具体的に、ピン電極33は、第1縦係合凸部51aと軸線Oとを結ぶ仮想直線Laに対して線対称となる位置に配置されている。すなわち、各ピン電極33同士を結ぶ仮想直線T1と仮想直線Laとが互いに直交するとともに、仮想直線Laから各ピン電極33までの距離が互いに等しくなっている。 As shown in FIG. 4, in each of the above-mentioned vertically engaged convex portions 51a to 51c, the above-mentioned pin electrodes 33 are not arranged on the virtual straight lines La to Lc connecting the center in the circumferential direction and the axis O. Vertically engaged convex portions 51a to 51c are arranged. Specifically, the pin electrode 33 is arranged at a position that is line-symmetric with respect to the virtual straight line La connecting the first vertical engaging convex portion 51a and the axis O. That is, the virtual straight line T1 connecting the pin electrodes 33 and the virtual straight line La are orthogonal to each other, and the distances from the virtual straight line La to the pin electrodes 33 are equal to each other.
 図3に示すように、縦係合凸部51a~51cにおける軸方向の保持ユニット22側に位置する先端は、ピン電極33の先端よりも軸方向の保持ユニット22側に位置している。縦係合凸部51a~51cは、径方向から見た側面視で矩形状に形成されている。縦係合凸部51a~51cにおける軸方向で保持ユニット22側の端部において、径方向の内側を向く面は、軸方向の保持ユニット22側に向かうに従い径方向の厚さが漸次薄くなる傾斜面とされている。この傾斜面は、カートリッジ11の後述の係合凹部180に、縦係合凸部51a~51cをスムーズに導くためのガイドとして機能する。 As shown in FIG. 3, the tip of the vertically engaged convex portions 51a to 51c located on the holding unit 22 side in the axial direction is located closer to the holding unit 22 in the axial direction than the tip of the pin electrode 33. The vertically engaged convex portions 51a to 51c are formed in a rectangular shape when viewed from the side in the radial direction. At the end of the vertically engaging convex portions 51a to 51c on the holding unit 22 side, the surface facing inward in the radial direction is inclined so that the thickness in the radial direction gradually decreases toward the holding unit 22 side in the axial direction. It is said to be a face. This inclined surface functions as a guide for smoothly guiding the vertically engaged convex portions 51a to 51c to the engaging concave portion 180 described later of the cartridge 11.
 図3、図4に示すように、横係合凸部52は、外フランジ部55から径方向の外側に突出している。横係合凸部52は、軸方向から見た平面視で矩形状に形成されている。横係合凸部52は、周方向に間隔をあけて複数形成されている。本実施形態において、各横係合凸部52は、周方向に90°間隔をあけて均等に4つ配置されている。本実施形態では、一の横係合凸部52が第1縦係合凸部51aと周方向で同等の位置に配置されている。なお、横係合凸部52は、単数であっても複数であってもよい。また、横係合凸部52のピッチは適宜変更が可能である。この場合、複数の横係合凸部52が不均等に配置されていてもよい。 As shown in FIGS. 3 and 4, the laterally engaged convex portion 52 protrudes outward in the radial direction from the outer flange portion 55. The laterally engaged convex portion 52 is formed in a rectangular shape in a plan view seen from the axial direction. A plurality of laterally engaged convex portions 52 are formed at intervals in the circumferential direction. In the present embodiment, four laterally engaged convex portions 52 are evenly arranged at intervals of 90 ° in the circumferential direction. In the present embodiment, one laterally engaged convex portion 52 is arranged at a position equivalent to that of the first vertically engaged convex portion 51a in the circumferential direction. The laterally engaged convex portions 52 may be singular or plural. Further, the pitch of the laterally engaged convex portion 52 can be appropriately changed. In this case, the plurality of laterally engaged convex portions 52 may be unevenly arranged.
 環状片42は、薄肉の環状に形成されている。環状片42には、上述したベース筒部が軸方向の保持ユニット22側から挿入されている。図3に示すように、環状片42のうち、周方向の一部には撓み部56が形成されている。撓み部56は、径方向の外側に膨れ出るアーチ状に形成されている。撓み部56は、径方向に弾性変形可能に構成されている。撓み部56は、横係合凸部52における径方向の外側端面よりも径方向の内側に位置している。 The annular piece 42 is formed in a thin ring. The above-mentioned base cylinder portion is inserted into the annular piece 42 from the holding unit 22 side in the axial direction. As shown in FIG. 3, a bending portion 56 is formed in a part of the annular piece 42 in the circumferential direction. The bent portion 56 is formed in an arch shape that bulges outward in the radial direction. The flexible portion 56 is configured to be elastically deformable in the radial direction. The bending portion 56 is located inside the laterally engaging convex portion 52 with respect to the outer end surface in the radial direction.
 上述した撓み部56は、周方向に間隔をあけて複数形成されている。例えば撓み部56は、各横係合凸部52のうち、径方向(左右方向)で対向する一対の横係合凸部52と周方向で同等の位置に配置されている。但し、撓み部56の数は、適宜変更が可能である。例えば、撓み部56は、各横係合凸部52に対応して形成されていてもよく、一の横係合凸部52のみに対応して形成されていてもよい。 A plurality of the above-mentioned bending portions 56 are formed at intervals in the circumferential direction. For example, the flexible portion 56 is arranged at the same position in the circumferential direction as the pair of laterally engaging convex portions 52 facing each other in the radial direction (left-right direction) among the laterally engaging convex portions 52. However, the number of bending portions 56 can be changed as appropriate. For example, the flexible portion 56 may be formed corresponding to each laterally engaging convex portion 52, or may be formed corresponding to only one laterally engaging convex portion 52.
 <保持ユニット>
 図5は、保持ユニット22の分解斜視図である。
 図5に示すように、保持ユニット22は、電源ユニット21およびマウスピース23に対してそれぞれ着脱可能に取り付けられる。具体的に、保持ユニット22は、容器保持筒60と、透過筒61と、第2連結部材62と、スリーブ63と、を備えている。
<Holding unit>
FIG. 5 is an exploded perspective view of the holding unit 22.
As shown in FIG. 5, the holding unit 22 is detachably attached to the power supply unit 21 and the mouthpiece 23, respectively. Specifically, the holding unit 22 includes a container holding cylinder 60, a transmission cylinder 61, a second connecting member 62, and a sleeve 63.
 容器保持筒60は、軸線Oを中心軸とする円筒状に形成されている。容器保持筒60における軸方向の中央部には、観察孔65が形成されている。観察孔65は、容器保持筒60を径方向に貫通している。観察孔65は、軸方向を長手方向とする長円形状に形成されている。観察孔65は、容器保持筒60のうち、径方向で対向する部分に一対で形成されている。なお、観察孔65の数や位置、形状等は、適宜変更が可能である。 The container holding cylinder 60 is formed in a cylindrical shape with the axis O as the central axis. An observation hole 65 is formed in the central portion of the container holding cylinder 60 in the axial direction. The observation hole 65 penetrates the container holding cylinder 60 in the radial direction. The observation hole 65 is formed in an oval shape with the axial direction as the longitudinal direction. The observation holes 65 are formed in pairs in the portions of the container holding cylinder 60 that face each other in the radial direction. The number, position, shape, etc. of the observation holes 65 can be changed as appropriate.
 容器保持筒60のうち、観察孔65よりも軸方向の電源ユニット21側(反吸口側)に位置する部分には、通気口66が形成されている。通気口66は、容器保持筒60を径方向に貫通している。通気口66は、保持ユニット22の内外を連通させている。通気口66は、容器保持筒60のうち、径方向(表裏面方向)で対向する部分に一対で形成されている。なお、通気口66の数や位置、形状等は、適宜変更が可能である。 A vent 66 is formed in a portion of the container holding cylinder 60 located on the power supply unit 21 side (anti-suction side) in the axial direction from the observation hole 65. The vent 66 penetrates the container holding cylinder 60 in the radial direction. The vent 66 communicates the inside and outside of the holding unit 22. The vents 66 are formed in pairs in the container holding cylinders 60, which face each other in the radial direction (front and back directions). The number, position, shape, etc. of the vents 66 can be changed as appropriate.
 透過筒61は、光透過性を有する材料により形成されている。透過筒61は、容器保持筒60内に挿入されている。具体的に、透過筒61は、容器保持筒60内おいて、通気口66よりも軸方向のマウスピース23側(吸口側)であって、観察孔65を径方向の内側から覆っている。すなわち、ユーザーは、観察孔65及び透過筒61を通じて保持ユニット22内を視認可能である。なお、保持ユニット22は、観察孔65や透過筒61を有さない構成であってもよい。 The transmission cylinder 61 is made of a material having light transmission. The transmission cylinder 61 is inserted in the container holding cylinder 60. Specifically, the transmission cylinder 61 is on the mouthpiece 23 side (suction port side) in the axial direction with respect to the vent 66 in the container holding cylinder 60, and covers the observation hole 65 from the inside in the radial direction. That is, the user can visually recognize the inside of the holding unit 22 through the observation hole 65 and the transmission cylinder 61. The holding unit 22 may be configured not to have an observation hole 65 or a transmission cylinder 61.
 第2連結部材62は、保持ユニット22の電源ユニット21との連結時に、上述した第1連結部材41に係止される。具体的に、第2連結部材62は、嵌合筒70と、ガイド筒71と、係止片72と、を備えている。 The second connecting member 62 is locked to the above-mentioned first connecting member 41 when the holding unit 22 is connected to the power supply unit 21. Specifically, the second connecting member 62 includes a fitting cylinder 70, a guide cylinder 71, and a locking piece 72.
 嵌合筒70は、軸線Oを中心軸とする筒状に形成されている。嵌合筒70は、容器保持筒60のうち、透過筒61よりも軸方向の電源ユニット21側に位置する部分に、圧入等により嵌め合わされている。 The fitting cylinder 70 is formed in a cylindrical shape with the axis O as the central axis. The fitting cylinder 70 is fitted to a portion of the container holding cylinder 60 located on the power supply unit 21 side in the axial direction with respect to the transmission cylinder 61 by press fitting or the like.
 ガイド筒71は、嵌合筒70と同軸に配置されている。ガイド筒71は、嵌合筒70から軸方向のマウスピース23側に延設されている。ガイド筒71は、軸方向のマウスピース23側に向かうに従い内径が漸次拡大するテーパ筒状に形成されている。ガイド筒71の外径は、嵌合筒70の外径よりも小さくなっている。ガイド筒71のうち、径方向から見た側面視で上述した通気口66と重なり合う位置には、逃げ部74が形成されている。逃げ部74は、例えば軸方向のマウスピース23側に開口するU字状に形成されている。通気口66は、逃げ部74を通じて保持ユニット22内に開口している。なお、逃げ部74の形状は、通気口66における少なくとも一部を保持ユニット22内に露出させる構成であればよい。また、ガイド筒71と通気口66とが軸方向で異なる位置に配置される場合には、ガイド筒71は逃げ部74を有さない構成であってもよい。 The guide cylinder 71 is arranged coaxially with the fitting cylinder 70. The guide cylinder 71 extends from the fitting cylinder 70 to the mouthpiece 23 side in the axial direction. The guide cylinder 71 is formed in a tapered cylinder shape whose inner diameter gradually increases toward the mouthpiece 23 side in the axial direction. The outer diameter of the guide cylinder 71 is smaller than the outer diameter of the fitting cylinder 70. A relief portion 74 is formed at a position of the guide cylinder 71 that overlaps with the above-mentioned ventilation port 66 when viewed from the side in the radial direction. The relief portion 74 is formed in a U shape that opens, for example, on the side of the mouthpiece 23 in the axial direction. The vent 66 opens into the holding unit 22 through the relief portion 74. The shape of the relief portion 74 may be such that at least a part of the vent 66 is exposed in the holding unit 22. Further, when the guide cylinder 71 and the vent 66 are arranged at different positions in the axial direction, the guide cylinder 71 may be configured not to have a relief portion 74.
 図6は、第1連結部材41及び第2連結部材62の接続構造を示す斜視図である。
 図5、図6に示すように、係止片72は、嵌合筒70から軸方向の電源ユニット21側に突出している。係止片72は、径方向から見た側面視でL字状に形成されている。具体的に、係止片72は、縦延在部80と、横延在部81と、を有している。縦延在部80は、嵌合筒70から軸方向の電源ユニット21側に突出している。横延在部81は、縦延在部80における軸方向の電源ユニット21側の端部から周方向の一方側に向けて片持ちで延在している。
FIG. 6 is a perspective view showing a connection structure of the first connecting member 41 and the second connecting member 62.
As shown in FIGS. 5 and 6, the locking piece 72 projects from the fitting cylinder 70 toward the power supply unit 21 in the axial direction. The locking piece 72 is formed in an L shape when viewed from the side in the radial direction. Specifically, the locking piece 72 has a vertically extending portion 80 and a horizontally extending portion 81. The vertically extending portion 80 projects from the fitting cylinder 70 toward the power supply unit 21 in the axial direction. The laterally extending portion 81 extends cantilevered from the end portion of the vertically extending portion 80 on the power supply unit 21 side in the axial direction toward one side in the circumferential direction.
 図7は、保持ユニット22及びカートリッジ11を軸方向の電源ユニット21側から見た平面図である。
 図6、図7に示すように、横延在部81において、周方向の一方側端部には、径方向の外側に向けて窪む係合凹部85が形成されている。係合凹部85は、径方向の外側に向けて半円状に形成されている。
FIG. 7 is a plan view of the holding unit 22 and the cartridge 11 as viewed from the power supply unit 21 side in the axial direction.
As shown in FIGS. 6 and 7, in the laterally extending portion 81, an engaging recess 85 that is recessed toward the outside in the radial direction is formed at one end in the circumferential direction. The engaging recess 85 is formed in a semicircular shape toward the outside in the radial direction.
 上述した係止片72は、周方向に間隔をあけて複数形成されている。本実施形態において、各係止片72は、周方向に90°間隔をあけて均等に配置されている。周方向で隣り合う係止片72同士の間には、上述した横係合凸部52が挿入される係合溝83を画成している。係合溝83は、側面視でL字状に形成されている。 A plurality of the above-mentioned locking pieces 72 are formed at intervals in the circumferential direction. In the present embodiment, the locking pieces 72 are evenly arranged at intervals of 90 ° in the circumferential direction. An engaging groove 83 into which the above-mentioned lateral engaging convex portion 52 is inserted is defined between the locking pieces 72 adjacent to each other in the circumferential direction. The engaging groove 83 is formed in an L shape in a side view.
 図6に示すように、電源ユニット21と保持ユニット22は、係止片72と横係合凸部52とが接続されることで、着脱可能とされている。すなわち、電源ユニット21と保持ユニット22とを接続するには、横係合凸部52を係合溝83内に軸方向で差し込んだ後、電源ユニット21と保持ユニット22とを軸線O回りに相対回転させる。すると、横係合凸部52が横延在部81と嵌合筒70との間に軸方向で係合する。また、電源ユニット21と保持ユニット22とが軸線O回りに相対回転する過程で、環状片42の撓み部56が係合凹部85内に嵌まり込む。これにより、撓み部56が係合凹部85に周方向で係合する。その結果、電源ユニット21及び保持ユニット22は、軸方向及び周方向での位置決めがなされた状態で、互いに組み付けられる。 As shown in FIG. 6, the power supply unit 21 and the holding unit 22 are detachable by connecting the locking piece 72 and the laterally engaging convex portion 52. That is, in order to connect the power supply unit 21 and the holding unit 22, after inserting the lateral engaging convex portion 52 into the engaging groove 83 in the axial direction, the power supply unit 21 and the holding unit 22 are relative to each other around the axis O. Rotate. Then, the laterally engaging convex portion 52 engages in the axial direction between the laterally extending portion 81 and the fitting cylinder 70. Further, in the process in which the power supply unit 21 and the holding unit 22 rotate relative to each other around the axis O, the bent portion 56 of the annular piece 42 is fitted into the engaging recess 85. As a result, the bent portion 56 engages with the engaging recess 85 in the circumferential direction. As a result, the power supply unit 21 and the holding unit 22 are assembled to each other in a state of being positioned in the axial direction and the circumferential direction.
 本実施形態の係合溝83において、嵌合筒70と横延在部81との間は、周方向の他方側から一方側に向かうに従い、軸方向の幅が漸次狭くなるテーパ状に形成されている。具体的に、横延在部81における軸方向のマウスピース23側を向く端面は、周方向の他方側から一方側に向かうに従い軸方向の電源ユニット21側に向けて延びる傾斜面とされている。 In the engaging groove 83 of the present embodiment, the fitting cylinder 70 and the laterally extending portion 81 are formed in a tapered shape in which the width in the axial direction gradually narrows from the other side in the circumferential direction toward one side. ing. Specifically, the end surface of the laterally extending portion 81 facing the mouthpiece 23 side in the axial direction is an inclined surface extending toward the power supply unit 21 side in the axial direction from the other side in the circumferential direction toward one side. ..
 横係合凸部52は、周方向の一方側から他方側に向かうに従い軸方向の幅が漸次狭くなるテーパ状に形成されている。具体的に、上述した横係合凸部52における軸方向の保持ユニット22とは反対側を向く端面は、周方向の一方側から他方側に向かうに従い、軸方向のマウスピース23側に延びる傾斜面とされている。これにより、電源ユニット21と保持ユニット22の接続時において、横延在部81と横係合凸部52との干渉を抑制し、組付性を向上させることができる。 The laterally engaged convex portion 52 is formed in a tapered shape in which the width in the axial direction gradually narrows from one side in the circumferential direction toward the other side. Specifically, the end face of the laterally engaged convex portion 52 facing away from the holding unit 22 in the axial direction is inclined to extend toward the mouthpiece 23 in the axial direction from one side in the circumferential direction to the other side. It is said to be a face. As a result, when the power supply unit 21 and the holding unit 22 are connected, the interference between the laterally extending portion 81 and the laterally engaging convex portion 52 can be suppressed, and the assembling property can be improved.
 図5に示すように、スリーブ63は、容器保持筒60内のうち、透過筒61よりも軸方向のマウスピース23側に位置する部分に圧入等により嵌め合わされている。上述した透過筒61は、第2連結部材62とスリーブ63との間に軸方向で保持されている。スリーブ63の内周面には、雌ねじ部63aが形成されている。 As shown in FIG. 5, the sleeve 63 is fitted to the portion of the container holding cylinder 60 located on the side of the mouthpiece 23 in the axial direction with respect to the transmission cylinder 61 by press fitting or the like. The transmission cylinder 61 described above is held in the axial direction between the second connecting member 62 and the sleeve 63. A female threaded portion 63a is formed on the inner peripheral surface of the sleeve 63.
 <マウスピース>
 図8は、図1のVIII-VIII線に対応するマウスピース23の分解斜視図である。
 図8に示すように、マウスピース23は、マウスピース本体90と、滑り止め部材(第1滑り止め部材91及び第2滑り止め部材92)と、を備えている。
<Mouthpiece>
FIG. 8 is an exploded perspective view of the mouthpiece 23 corresponding to the line VIII-VIII of FIG.
As shown in FIG. 8, the mouthpiece 23 includes a mouthpiece main body 90 and a non-slip member (first non-slip member 91 and second non-slip member 92).
 マウスピース23には、たばこカプセル12を収容可能な吸引口23aが形成されている。マウスピース本体90は、軸線Oを中心軸とする多段筒状に形成されている。マウスピース本体90における軸方向の保持ユニット22側の端部には、雄ねじ部90aが形成されている。マウスピース本体90の雄ねじ部90aは、上述したスリーブ63の雌ねじ部63aに着脱可能に螺着される。なお、マウスピース本体90は、螺着以外の方法(例えば、嵌合等)によりスリーブ63に着脱される構成であってもよい。 The mouthpiece 23 is formed with a suction port 23a capable of accommodating the tobacco capsule 12. The mouthpiece body 90 is formed in a multi-stage cylinder shape with the axis O as the central axis. A male screw portion 90a is formed at the end portion of the mouthpiece body 90 on the holding unit 22 side in the axial direction. The male threaded portion 90a of the mouthpiece body 90 is detachably screwed to the female threaded portion 63a of the sleeve 63 described above. The mouthpiece body 90 may be attached to and detached from the sleeve 63 by a method other than screwing (for example, fitting).
 マウスピース本体90において、雄ねじ部90aに対して軸方向で保持ユニット22とは反対側に位置する部分には、突当フランジ93が形成されている。突当フランジ93は、径方向の外側に張り出す環状に形成されている。突当フランジ93は、マウスピース23が保持ユニット22に装着された状態において、保持ユニット22に軸方向に突き当てられる。なお、突当フランジ93は、軸方向で保持ユニット22から離間するに従い漸次外径が縮小している。 The abutting flange 93 is formed in the mouthpiece main body 90 at a portion located on the side opposite to the holding unit 22 in the axial direction with respect to the male screw portion 90a. The abutting flange 93 is formed in an annular shape that projects outward in the radial direction. The abutting flange 93 is axially abutted against the holding unit 22 with the mouthpiece 23 mounted on the holding unit 22. The outer diameter of the abutting flange 93 gradually decreases as it is separated from the holding unit 22 in the axial direction.
 マウスピース本体90における軸方向の保持ユニット22側の端部には、マウスピース本体90内を軸方向で仕切る仕切部94が形成されている。仕切部94において、軸線Oと重なる位置には、仕切部94を軸方向に貫通する貫通孔95が形成されている。貫通孔95は、例えば径方向のうち、一方向を長手方向とする長円形状とされている。なお、貫通孔95の平面視形状は、真円形状や多角形状等であってもよい。 At the end of the mouthpiece body 90 on the holding unit 22 side in the axial direction, a partition portion 94 that partitions the inside of the mouthpiece body 90 in the axial direction is formed. In the partition portion 94, a through hole 95 that penetrates the partition portion 94 in the axial direction is formed at a position that overlaps with the axis O. The through hole 95 has, for example, an oval shape having one of the radial directions as the longitudinal direction. The plan view shape of the through hole 95 may be a perfect circle shape, a polygonal shape, or the like.
 第1滑り止め部材91は、例えばシリコーン樹脂等の樹脂材料により一体形成されている。第1滑り止め部材91は、リング部96と、嵌合突起97と、当接突起98と、を備えている。 The first non-slip member 91 is integrally formed of a resin material such as a silicone resin. The first non-slip member 91 includes a ring portion 96, a fitting protrusion 97, and a contact protrusion 98.
 リング部96は、マウスピース本体90内に軸方向で保持ユニット22側から嵌め合わされている。なお、第1滑り止め部材91は、リング部96が上述した仕切部94に軸方向で突き当てられることで、マウスピース本体90に対する軸方向の位置決めがなされている。リング部96の中心には、連通孔96aが形成されている。連通孔96aは、上述した貫通孔95を通じて保持ユニット22内とマウスピース本体90内とを連通させている。 The ring portion 96 is fitted into the mouthpiece body 90 in the axial direction from the holding unit 22 side. The first non-slip member 91 is positioned in the axial direction with respect to the mouthpiece main body 90 by abutting the ring portion 96 against the partition portion 94 described above in the axial direction. A communication hole 96a is formed in the center of the ring portion 96. The communication hole 96a communicates the inside of the holding unit 22 with the inside of the mouthpiece main body 90 through the above-mentioned through hole 95.
 嵌合突起97は、リング部96の内周縁のうち、連通孔96aを間に挟んで径方向で対向する位置に一対で形成されている。嵌合突起97は、リング部96から軸方向で保持ユニット22とは反対側に突出している。各嵌合突起97は、上述した貫通孔95内における径方向の両端部に嵌め合わされている。これにより、第1滑り止め部材91は、マウスピース本体90に対する周方向の位置決めがなされている。なお、本実施形態では、貫通孔95内に嵌合突起97が嵌め合わされる構成について説明しているが、貫通孔95とは別の孔に嵌合突起97が嵌め合わされる構成であってもよい。 The fitting protrusions 97 are formed in pairs at positions facing each other in the radial direction with the communication hole 96a sandwiched between the inner peripheral edges of the ring portion 96. The fitting protrusion 97 protrudes from the ring portion 96 in the axial direction on the side opposite to the holding unit 22. Each fitting protrusion 97 is fitted to both ends in the radial direction in the above-mentioned through hole 95. As a result, the first non-slip member 91 is positioned in the circumferential direction with respect to the mouthpiece main body 90. Although the present embodiment describes the configuration in which the fitting protrusion 97 is fitted in the through hole 95, the fitting protrusion 97 may be fitted in a hole different from the through hole 95. good.
 当接突起98は、リング部96から軸方向の保持ユニット22側に突出している。当接突起98は、軸線Oを中心とする円形状に形成されている。本実施形態において、当接突起98は、同心円状に2条形成されている。なお、第1滑り止め部材91は、当接突起98を有さない構成であってもよい。 The contact protrusion 98 protrudes from the ring portion 96 toward the holding unit 22 in the axial direction. The abutting protrusion 98 is formed in a circular shape centered on the axis O. In the present embodiment, the contact protrusions 98 are concentrically formed in two rows. The first non-slip member 91 may have a configuration that does not have the contact protrusion 98.
 第2滑り止め部材92は、例えばシリコーン樹脂等の樹脂材料により一体形成されている。第2滑り止め部材92は、マウスピース本体90内に軸方向の保持ユニット22とは反対側から嵌め合わされている。なお、第2滑り止め部材92は、上述した仕切部94に軸方向で突き当てられることで、マウスピース本体90に対する軸方向の位置決めがなされている。 The second non-slip member 92 is integrally formed of a resin material such as a silicone resin. The second non-slip member 92 is fitted into the mouthpiece main body 90 from the side opposite to the holding unit 22 in the axial direction. The second non-slip member 92 is axially positioned with respect to the mouthpiece main body 90 by being abutted against the partition portion 94 described above in the axial direction.
 <たばこカプセル>
 図2に示すように、たばこカプセル12は、マウスピース本体90内に軸方向で保持ユニット22とは反対側から着脱可能に装着される。たばこカプセル12は、カプセル部77と、フィルタ部78と、を備えている。たばこカプセル12は、香味源容器として構成されている。
<Tobacco capsule>
As shown in FIG. 2, the tobacco capsule 12 is detachably attached to the mouthpiece body 90 from the side opposite to the holding unit 22 in the axial direction. The tobacco capsule 12 includes a capsule unit 77 and a filter unit 78. The tobacco capsule 12 is configured as a flavor source container.
 カプセル部77は、軸線Oを中心軸とする有底筒状に形成されている。カプセル部77のうち、軸方向で保持ユニット22側の開口部を閉塞する底壁部(不図示)には、底壁部を軸方向に貫通するメッシュ開口が形成されている。 The capsule portion 77 is formed in a bottomed tubular shape with the axis O as the central axis. A mesh opening that penetrates the bottom wall portion in the axial direction is formed in the bottom wall portion (not shown) that closes the opening on the holding unit 22 side in the axial direction of the capsule portion 77.
 フィルタ部78は、カプセル部77内に軸方向の保持ユニット22とは反対側から嵌め合わされている。カプセル部77とフィルタ部78とで画成された空間には、例えば、たばこ葉が封入されている。なお、たばこ葉以外の香味源が封入されていてもよい。 The filter portion 78 is fitted into the capsule portion 77 from the side opposite to the holding unit 22 in the axial direction. For example, tobacco leaves are enclosed in the space defined by the capsule portion 77 and the filter portion 78. A flavor source other than tobacco leaves may be enclosed.
 <カートリッジ>
 図1、図2に示すように、カートリッジ11は、液体のエアロゾル源を貯留するとともに、この液体のエアロゾル源を霧化する。カートリッジ11は、保持ユニット22の透過筒61内に収納されている。
<Cartridge>
As shown in FIGS. 1 and 2, the cartridge 11 stores a liquid aerosol source and atomizes the liquid aerosol source. The cartridge 11 is housed in the transmission cylinder 61 of the holding unit 22.
 図9は、カートリッジ11の軸方向(軸線Q)に沿う断面図である。図10は、カートリッジ11の分解斜視図である。
 図9、図10に示すように、カートリッジ11は、有底円筒状のタンク101と、タンク101内に収納された略円柱形状のガスケット102と、略板状のメッシュ体103と、加熱部104と、霧化容器105と、タンク101の開口部110を閉塞するヒータホルダ106と、タンク101におけるヒータホルダ106とは軸方向反対側に取り付けられたエンドキャップ107と、を備えている。
FIG. 9 is a cross-sectional view taken along the axial direction (axis Q) of the cartridge 11. FIG. 10 is an exploded perspective view of the cartridge 11.
As shown in FIGS. 9 and 10, the cartridge 11 includes a bottomed cylindrical tank 101, a substantially cylindrical gasket 102 housed in the tank 101, a substantially plate-shaped mesh body 103, and a heating unit 104. The atomizing container 105, the heater holder 106 that closes the opening 110 of the tank 101, and the end cap 107 that is attached to the side opposite to the heater holder 106 in the tank 101 in the axial direction are provided.
 図11は、タンク101を開口部110側からみた斜視図である。
 図9~図11に示すように、タンク101の内周壁111には、リブ112が形成されている。リブ112は、周方向に略等間隔に4つ形成されている。リブ112は、タンク101の内周壁111の軸線Q方向に沿って形成されている。リブ112は、タンク101のマウスピース23側の端部近傍に設けられた底板113から開口部110側の端部(先端)よりもやや手前に至る間に設けられている。リブ112は、軸線Q方向から見て矩形状に形成されている。なお、リブ112の形状や本数などは適宜変更してもよい。タンク101は、光透過性を有する材料により形成されており、内部に収容されるエアロゾル源の残量が視認できるようになっている。
FIG. 11 is a perspective view of the tank 101 as viewed from the opening 110 side.
As shown in FIGS. 9 to 11, ribs 112 are formed on the inner peripheral wall 111 of the tank 101. Four ribs 112 are formed at substantially equal intervals in the circumferential direction. The rib 112 is formed along the axis Q direction of the inner peripheral wall 111 of the tank 101. The rib 112 is provided between the bottom plate 113 provided near the end of the tank 101 on the mouthpiece 23 side and slightly in front of the end (tip) on the opening 110 side. The rib 112 is formed in a rectangular shape when viewed from the axis Q direction. The shape and number of ribs 112 may be changed as appropriate. The tank 101 is made of a light-transmitting material so that the remaining amount of the aerosol source contained therein can be visually recognized.
 タンク101の内周壁111には、軸線Q方向に沿ってエアロゾル流路管114が形成されている。エアロゾル流路管114は、開口部110の端部から底板113に亘って形成されている。タンク101の底板113には、該底板113を貫通する貫通孔115が形成されている。エアロゾル流路管114の内部と貫通孔115とは連通されている。エアロゾル流路管114および貫通孔115は、霧化されたエアロゾルの流路(図9の矢印)となる。 An aerosol flow path tube 114 is formed on the inner peripheral wall 111 of the tank 101 along the axis Q direction. The aerosol flow path tube 114 is formed from the end of the opening 110 to the bottom plate 113. The bottom plate 113 of the tank 101 is formed with a through hole 115 that penetrates the bottom plate 113. The inside of the aerosol flow path tube 114 and the through hole 115 are communicated with each other. The aerosol flow path tube 114 and the through hole 115 serve as a flow path for the atomized aerosol (arrow in FIG. 9).
 なお、カートリッジ11が透過筒61内に収納された状態において、軸線Qは本体ユニット10の軸線Oと一致している。軸線Qは、カートリッジ11を構成する各部で共通する軸線である。以下では、軸線Qをタンク101の軸線Qに限らず、カートリッジ11を構成する各部の説明で使用するものとする。 In the state where the cartridge 11 is housed in the transmission cylinder 61, the axis Q coincides with the axis O of the main body unit 10. The axis Q is an axis common to each part constituting the cartridge 11. In the following, the axis Q is not limited to the axis Q of the tank 101, and will be used in the description of each part constituting the cartridge 11.
 図12は、ガスケット102の斜視図である。
 図12に示すように、ガスケット102は、外径がタンク101の内径とほぼ同一になるように形成された略円柱形状で構成されている。ガスケット102はタンク101内に収容される。ガスケット102の本体部120の周縁には、エアロゾル流路管114を挿通可能な凹溝121が形成されている。凹溝121は、軸線Q方向全長に亘って形成されており、エアロゾル流路管114の外形に沿う略円弧状に形成されている。本体部120におけるマウスピース23側の一方の面120aの外周縁には、該一方の面120aからマウスピース23側に立ち上がるフランジ部122が形成されている。ガスケット102をタンク101内に納める際には、凹溝121をエアロゾル流路管114の位置に合わせ、軸線Q方向に挿入すればよい。ガスケット102は、該ガスケット102のフランジ部122がタンク101のリブ112に突き当たる位置まで挿入される。ガスケット102は、リブ112に突き当たった位置で保持される。ガスケット102が位置決めされた状態で、ガスケット102の外周面は、タンク101の内周壁111に接触している。また、ガスケット102の凹溝121は、エアロゾル流路管114の外周面に接触している。
FIG. 12 is a perspective view of the gasket 102.
As shown in FIG. 12, the gasket 102 has a substantially cylindrical shape formed so that the outer diameter is substantially the same as the inner diameter of the tank 101. The gasket 102 is housed in the tank 101. A concave groove 121 through which the aerosol flow path tube 114 can be inserted is formed on the peripheral edge of the main body 120 of the gasket 102. The concave groove 121 is formed over the entire length in the Q direction of the axis, and is formed in a substantially arc shape along the outer shape of the aerosol flow path tube 114. On the outer peripheral edge of one surface 120a on the mouthpiece 23 side of the main body 120, a flange portion 122 rising from the one surface 120a to the mouthpiece 23 side is formed. When the gasket 102 is housed in the tank 101, the concave groove 121 may be aligned with the position of the aerosol flow path tube 114 and inserted in the axis Q direction. The gasket 102 is inserted until the flange portion 122 of the gasket 102 abuts on the rib 112 of the tank 101. The gasket 102 is held at a position where it abuts against the rib 112. With the gasket 102 positioned, the outer peripheral surface of the gasket 102 is in contact with the inner peripheral wall 111 of the tank 101. Further, the concave groove 121 of the gasket 102 is in contact with the outer peripheral surface of the aerosol flow path tube 114.
 本体部120の電源ユニット21側の他方の面120bに、メッシュ体103が保持される。他方の面120bの略中央に、メッシュ体103を収容可能な凹部123が形成されている。凹部123内にメッシュ体103を収容することで、メッシュ体103の位置決めを行うとともに、メッシュ体103の姿勢を保持する。つまり、凹部123にメッシュ体103が嵌め合わされるように構成されている。凹部123の底面123aであって、ガスケット102の径方向中央には、エアロゾル源を流通可能な貫通孔124が形成されている。貫通孔124は軸線Q方向から見て長方形状に2つ並列に形成されている。 The mesh body 103 is held on the other surface 120b on the power supply unit 21 side of the main body 120. A recess 123 capable of accommodating the mesh body 103 is formed substantially in the center of the other surface 120b. By accommodating the mesh body 103 in the recess 123, the mesh body 103 is positioned and the posture of the mesh body 103 is maintained. That is, the mesh body 103 is configured to be fitted into the recess 123. A through hole 124 through which an aerosol source can flow is formed in the radial center of the gasket 102 on the bottom surface 123a of the recess 123. Two through holes 124 are formed in parallel in a rectangular shape when viewed from the axis Q direction.
 図10に示すように、メッシュ体103は、多孔状で吸液性を有する部材である。メッシュ体103は、例えばコットン系繊維材により形成されている。メッシュ体103は、ガスケット102の凹部123とほぼ同一形状に形成されている。 As shown in FIG. 10, the mesh body 103 is a porous and liquid-absorbent member. The mesh body 103 is formed of, for example, a cotton-based fiber material. The mesh body 103 is formed in substantially the same shape as the recess 123 of the gasket 102.
 タンク101の内部は、メッシュ体103よりもマウスピース23側に画成された液体収容室130と、メッシュ体103よりも電源ユニット21側の開口室131とに区画される。液体収容室130には、液体のエアロゾル源が貯留される。開口室131は、メッシュ体103に吸い上げられたエアロゾル源を霧化する部屋となる。 The inside of the tank 101 is divided into a liquid storage chamber 130 defined on the mouthpiece 23 side of the mesh body 103 and an opening chamber 131 on the power supply unit 21 side of the mesh body 103. A liquid aerosol source is stored in the liquid storage chamber 130. The opening chamber 131 is a room for atomizing the aerosol source sucked up by the mesh body 103.
 メッシュ体103のマウスピース23側の一方の面103aは、ガスケット102の底面123aに接触している。メッシュ体103の電源ユニット21側の他方の面103bは、開口室131に露出している。この開口室131に露出されたメッシュ体103の他方の面103bに接続されるように、加熱部104が設けられている。 One surface 103a of the mesh body 103 on the mouthpiece 23 side is in contact with the bottom surface 123a of the gasket 102. The other surface 103b of the mesh body 103 on the power supply unit 21 side is exposed to the opening chamber 131. A heating unit 104 is provided so as to be connected to the other surface 103b of the mesh body 103 exposed to the opening chamber 131.
 図13は、加熱部104の電源ユニット21側からみた平面図である。
 図10、図13に示すように、加熱部104は、液体のエアロゾル源を霧化するためのものである。加熱部104は、開口室131に収納されている。加熱部104は、略直方体形状の多孔質セラミック基板140を備えている。多孔質セラミック基板140が加熱部104の本体部として構成されている。なお、多孔質セラミック基板140の形状や厚さは適宜変更可能である。
FIG. 13 is a plan view of the heating unit 104 as viewed from the power supply unit 21 side.
As shown in FIGS. 10 and 13, the heating unit 104 is for atomizing a liquid aerosol source. The heating unit 104 is housed in the opening chamber 131. The heating unit 104 includes a porous ceramic substrate 140 having a substantially rectangular parallelepiped shape. The porous ceramic substrate 140 is configured as the main body of the heating unit 104. The shape and thickness of the porous ceramic substrate 140 can be changed as appropriate.
 多孔質セラミック基板140のマウスピース23側の一方の面140aは、メッシュ体103の他方の面103bに接触している。これにより、メッシュ体103に吸収されたエアロゾル源が多孔質セラミック基板140内に吸い上げられる。 One surface 140a on the mouthpiece 23 side of the porous ceramic substrate 140 is in contact with the other surface 103b of the mesh body 103. As a result, the aerosol source absorbed by the mesh body 103 is sucked up into the porous ceramic substrate 140.
 多孔質セラミック基板140の電源ユニット21側の他方の面である発熱面140bには、電極パターン141が一対設けられている。一対の電極パターン141,141は、長手形状の発熱面140bの径方向略両側に沿って短冊状の形状を有している。発熱面140bには、一対の電極パターン141,141の間を連結する抵抗体パターン142が設けられている。抵抗体パターン142は、軸線Q方向から見て蛇行した湾曲形状を有している。抵抗体パターン142の両端部が一対の電極パターン141,141にそれぞれ接続され、電気的に導通可能に構成されている。抵抗体パターン142は、一対のU字状円弧の一端が相互に連結され、且つ、他端が一対の電極パターン141,141のそれぞれに接続されている。抵抗体パターン142は、電極パターン141に電気が流れることにより所定温度まで昇温可能に構成されている。抵抗体パターン142は、エアロゾルが発生する適温に昇温される。なお、抵抗体パターン142の形状は任意であり、蛇行した湾曲形状でなくてもよい。一対の電極パターン141,141および抵抗体パターン142は、発熱面140b上に形成されたガラス層143の上に配設されている。 A pair of electrode patterns 141 are provided on the heat generating surface 140b, which is the other surface of the porous ceramic substrate 140 on the power supply unit 21 side. The pair of electrode patterns 141 and 141 have a strip-shaped shape along substantially both sides of the longitudinal heating surface 140b in the radial direction. The heat generating surface 140b is provided with a resistor pattern 142 connecting between the pair of electrode patterns 141 and 141. The resistor pattern 142 has a meandering curved shape when viewed from the axis Q direction. Both ends of the resistor pattern 142 are connected to the pair of electrode patterns 141 and 141, respectively, and are configured to be electrically conductive. In the resistor pattern 142, one end of a pair of U-shaped arcs is connected to each other, and the other end is connected to each of the pair of electrode patterns 141 and 141. The resistor pattern 142 is configured to be capable of raising the temperature to a predetermined temperature by flowing electricity through the electrode pattern 141. The resistance pattern 142 is heated to an appropriate temperature at which an aerosol is generated. The shape of the resistor pattern 142 is arbitrary and does not have to be a meandering curved shape. The pair of electrode patterns 141 and 141 and the resistor pattern 142 are arranged on the glass layer 143 formed on the heat generating surface 140b.
 多孔質セラミック基板140には、液供給チャネル145が形成されている。液供給チャネル145は、液体(エアロゾル源)が流通する流路のことである。液供給チャネル145において、液体は例えば毛管現象により液供給チャネル145内を進むことができるように構成されている。液供給チャネル145により、エアロゾル源は一方の面140aから発熱面140bに向かって流れる。
 加熱部104の製造方法などについては、下記に詳述する。
A liquid supply channel 145 is formed on the porous ceramic substrate 140. The liquid supply channel 145 is a flow path through which a liquid (aerosol source) flows. In the liquid supply channel 145, the liquid is configured to be able to travel in the liquid supply channel 145, for example by capillarity. The liquid supply channel 145 allows the aerosol source to flow from one surface 140a toward the heat generating surface 140b.
The method for manufacturing the heating unit 104 and the like will be described in detail below.
 図14は、霧化容器105の斜視図である。
 図10、図14に示すように、霧化容器105は軸線Qを中心軸とする多段円筒状に形成されている。霧化容器105の本体部150は、その外径がタンク101の内径と略同一に形成されたマウスピース23側の第1筒部151と、その外径がタンク101の外径と略同一に形成された電源ユニット21側の第2筒部152と、を有している。霧化容器105は、タンク101の開口部110を閉塞するように配設される。
FIG. 14 is a perspective view of the atomizing container 105.
As shown in FIGS. 10 and 14, the atomizing container 105 is formed in a multi-stage cylindrical shape with the axis Q as the central axis. The main body 150 of the atomizing container 105 has a first cylinder portion 151 on the mouthpiece 23 side whose outer diameter is formed to be substantially the same as the inner diameter of the tank 101, and its outer diameter is substantially the same as the outer diameter of the tank 101. It has a second cylinder portion 152 on the power supply unit 21 side formed. The atomizing container 105 is arranged so as to close the opening 110 of the tank 101.
 第1筒部151は、タンク101内に収容される。第1筒部151の周縁には、エアロゾル流路管114を挿通可能な凹溝153が形成されている。凹溝153は、第1筒部151の軸線Q方向全長に亘って形成されており、エアロゾル流路管114の外形に沿う略円弧状に形成されている。 The first cylinder portion 151 is housed in the tank 101. A concave groove 153 through which the aerosol flow path tube 114 can be inserted is formed on the peripheral edge of the first cylinder portion 151. The concave groove 153 is formed over the entire length in the axis Q direction of the first tubular portion 151, and is formed in a substantially arc shape along the outer shape of the aerosol flow path tube 114.
 第1筒部151の径方向中央には、加熱部104を挿通可能な貫通孔154が形成されている。貫通孔154は、加熱部104の外形とほぼ同じ形状に形成されている。貫通孔154内に加熱部104を配置すると、加熱部104の発熱面140bが電源ユニット21側(開口室131)に露出するように構成されている。 A through hole 154 through which the heating portion 104 can be inserted is formed in the radial center of the first cylinder portion 151. The through hole 154 is formed in substantially the same shape as the outer shape of the heating portion 104. When the heating unit 104 is arranged in the through hole 154, the heat generating surface 140b of the heating unit 104 is configured to be exposed on the power supply unit 21 side (opening chamber 131).
 第2筒部152は、タンク101の電源ユニット21側に連続して設けられている。第1筒部151と第2筒部152との間の段差面152aが、タンク101の電源ユニット21側の端面と突き当たることで、タンク101と霧化容器105との位置決めがされる。 The second cylinder portion 152 is continuously provided on the power supply unit 21 side of the tank 101. The stepped surface 152a between the first cylinder portion 151 and the second cylinder portion 152 abuts on the end surface of the tank 101 on the power supply unit 21 side, so that the tank 101 and the atomizing container 105 are positioned.
 第2筒部152の径方向中央には軸線Q方向に貫通する貫通孔157が形成されている。貫通孔157は、第1筒部151の貫通孔154と連通している。貫通孔157は、凹溝153と連通している。貫通孔157は、エアロゾル流路管114と連通している。第2筒部152の貫通孔157は、ヒータホルダ106に設けられた電源バイパス部161を挿通可能な大きさで形成されている。 A through hole 157 penetrating in the axis Q direction is formed in the radial center of the second cylinder portion 152. The through hole 157 communicates with the through hole 154 of the first tubular portion 151. The through hole 157 communicates with the concave groove 153. The through hole 157 communicates with the aerosol flow path tube 114. The through hole 157 of the second cylinder portion 152 is formed in a size capable of inserting the power supply bypass portion 161 provided in the heater holder 106.
 第1筒部151の貫通孔154および第2筒部152の貫通孔157で画成される空間Sが、エアロゾル発生部として構成される。空間Sで発生したエアロゾルは、エアロゾル流路管114を通過してマウスピース23側へと導かれる(図9の矢印)。 The space S defined by the through hole 154 of the first cylinder portion 151 and the through hole 157 of the second cylinder portion 152 is configured as the aerosol generation portion. The aerosol generated in the space S passes through the aerosol flow path tube 114 and is guided to the mouthpiece 23 side (arrow in FIG. 9).
 図15は、ヒータホルダ106の斜視図である。
 図10、図15に示すように、ヒータホルダ106は軸線Qを中心軸とする円板状に形成された本体部160と、本体部160に設けられた電源バイパス部161と、を備えている。
FIG. 15 is a perspective view of the heater holder 106.
As shown in FIGS. 10 and 15, the heater holder 106 includes a main body portion 160 formed in a disk shape with an axis Q as a central axis, and a power supply bypass portion 161 provided in the main body portion 160.
 本体部160は、円板状に形成され、霧化容器105の第2筒部152の電源ユニット21側の端面に接触可能に構成されている。本体部160には、軸線Q方向に貫通する貫通孔162が形成されている。貫通孔162は、霧化容器105の貫通孔157と連通している。貫通孔162を介して、カートリッジ11内に空気が取り込まれる。より具体的には、ユーザーは、マウスピース23から息を吸い込むと、吸引器1内が負圧になる。すると、保持ユニット22の通気口66から吸引器1内に空気が取り込まれる。通気口66から取り込まれた空気は、囲繞凸部46の外側から切欠部46aを通過して囲繞凸部46の内側へ導かれる。その後、本体部160の貫通孔162を通過してカートリッジ11内に空気が流れ、加熱部104近傍で生成されたエアロゾルとともにエアロゾル流路管114内を流通する。 The main body 160 is formed in a disk shape and is configured to be in contact with the end face of the second cylinder 152 of the atomizing container 105 on the power supply unit 21 side. The main body 160 is formed with a through hole 162 penetrating in the Q direction of the axis. The through hole 162 communicates with the through hole 157 of the atomizing container 105. Air is taken into the cartridge 11 through the through hole 162. More specifically, when the user inhales from the mouthpiece 23, the inside of the aspirator 1 becomes a negative pressure. Then, air is taken into the suction device 1 from the ventilation port 66 of the holding unit 22. The air taken in from the vent 66 passes through the notch 46a from the outside of the surrounding convex portion 46 and is guided to the inside of the surrounding convex portion 46. After that, air flows through the through hole 162 of the main body 160 and flows into the cartridge 11, and flows through the aerosol flow path tube 114 together with the aerosol generated in the vicinity of the heating portion 104.
 電源バイパス部161は、一対の電極板165,165を有している。電極板165は金属の板材を折り曲げて形成されている。電極板165は、本体部160の電源ユニット21側の面160aに露出したピン電極接続部166と、ピン電極接続部166に連続して設けられ軸線Q方向に延びる延設部167と、延設部167のマウスピース23側端部で折り返して径方向に延びる加熱部接続部168と、を備えている。一対の電極板165,165間にはスペーサ169が配設されている。 The power supply bypass unit 161 has a pair of electrode plates 165 and 165. The electrode plate 165 is formed by bending a metal plate material. The electrode plate 165 is extended with a pin electrode connection portion 166 exposed on the surface 160a on the power supply unit 21 side of the main body portion 160, and an extension portion 167 continuously provided on the pin electrode connection portion 166 and extending in the axis Q direction. A heating portion connecting portion 168 that is folded back at the end portion of the portion 167 on the side of the mouthpiece 23 and extends in the radial direction is provided. A spacer 169 is arranged between the pair of electrode plates 165 and 165.
 カートリッジ11を本体ユニット10に取り付けると、ピン電極接続部166は、電源ユニット21のピン電極33と接触し、電気的に接続される。また、ヒータホルダ106をタンク101に取り付けると、加熱部接続部168は、加熱部104の電極パターン141に接触し、電気的に接続される。 When the cartridge 11 is attached to the main body unit 10, the pin electrode connection portion 166 comes into contact with the pin electrode 33 of the power supply unit 21 and is electrically connected. Further, when the heater holder 106 is attached to the tank 101, the heating unit connecting portion 168 comes into contact with the electrode pattern 141 of the heating unit 104 and is electrically connected.
 図2、図10に示すように、霧化容器105およびヒータホルダ106の周壁には、電源ユニット21を臨む3つの係合凹部180が形成されている。3つの係合凹部180は、周方向に等間隔(周方向に120°間隔)に配置されている。係合凹部180は、径方向外側と電源ユニット21側端部とが開口するように形成されている。係合凹部180の電源ユニット21側端部には、端部に向かうに従って係合凹部180の周方向の幅が漸次広がるテーパ状の平面取り部が形成されている。このように形成された3つの係合凹部180には、それぞれ第1連結部材41の縦係合凸部51a~51cが挿入される。これにより、カートリッジ11と第1連結部材41とが連結されるとともに、カートリッジ11と第1連結部材41との周方向の位置決めが行われる。 As shown in FIGS. 2 and 10, three engaging recesses 180 facing the power supply unit 21 are formed on the peripheral walls of the atomizing container 105 and the heater holder 106. The three engaging recesses 180 are arranged at equal intervals in the circumferential direction (120 ° intervals in the circumferential direction). The engaging recess 180 is formed so that the outer side in the radial direction and the end portion on the side of the power supply unit 21 are opened. At the end of the engagement recess 180 on the power supply unit 21 side, a tapered flattening portion is formed in which the width of the engagement recess 180 in the circumferential direction gradually increases toward the end. The vertical engaging convex portions 51a to 51c of the first connecting member 41 are inserted into the three engaging recesses 180 thus formed, respectively. As a result, the cartridge 11 and the first connecting member 41 are connected, and the cartridge 11 and the first connecting member 41 are positioned in the circumferential direction.
 エンドキャップ107は、タンク101の吸口側の端部に取り付けられる略円環板状の部材である。エンドキャップ107の径方向中央には貫通孔171が形成されている。 The end cap 107 is a substantially annular plate-shaped member attached to the end portion of the tank 101 on the suction port side. A through hole 171 is formed in the radial center of the end cap 107.
 図9を用いて、カートリッジ11内の空気の流れ(エアロゾルの流れ)について説明する。ヒータホルダ106の貫通孔162から空気が取り込まれると、開口室131(空間S)内へ導かれる。加熱部104の発熱面140b近傍に案内されたエアロゾル源(液体)は、抵抗体パターン142が昇温することによりエアロゾル(気体)へ変化する。発熱面140b近傍で発生したエアロゾルは、開口室131(空間S)に取り込まれた空気とともに、霧化容器105の貫通孔157からタンク101のエアロゾル流路管114内へと導かれる。エアロゾルは、エアロゾル流路管114から底板113の貫通孔115を通過し、エンドキャップ107の貫通孔171からマウスピース23へと流れていく。ユーザーは、マウスピース23の吸引口23aからエアロゾルを空気とともに吸引できる。 The air flow (aerosol flow) in the cartridge 11 will be described with reference to FIG. 9. When air is taken in from the through hole 162 of the heater holder 106, it is guided into the opening chamber 131 (space S). The aerosol source (liquid) guided to the vicinity of the heat generating surface 140b of the heating unit 104 changes to an aerosol (gas) as the resistance pattern 142 heats up. The aerosol generated in the vicinity of the heat generating surface 140b is guided to the aerosol flow path pipe 114 of the tank 101 from the through hole 157 of the atomizing container 105 together with the air taken into the opening chamber 131 (space S). The aerosol passes from the aerosol flow path tube 114 through the through hole 115 of the bottom plate 113, and flows from the through hole 171 of the end cap 107 to the mouthpiece 23. The user can suck the aerosol together with the air from the suction port 23a of the mouthpiece 23.
 ここで、加熱部104の構成について、詳細に説明する。なお、以下の実施例において図は適宜簡略化或いは変形されており、各部の寸法比および形状等は必ずしも正確に描かれていない。 Here, the configuration of the heating unit 104 will be described in detail. In the following examples, the drawings are appropriately simplified or modified, and the dimensional ratios and shapes of each part are not always drawn accurately.
(実施例)
 図13は、加熱部(多孔質セラミック発熱体)104を示す平面図である。加熱部104は、例えば長辺が6.0mm、短辺が3.0mm、厚みが3.0mmの直方体状に形成された多孔質セラミック基板140と、その多孔質セラミック基板140の一面であって加熱面として機能する発熱面140bに焼結により固着されたガラス層143と、ガラス層143の上に焼結によりそれぞれ固着された抵抗体パターン142および電極パターン141とを備えている。上記多孔質セラミック基板140の発熱面140bは、長方形状であって、加熱部104に毛細管現象により浸入した所定の液体の霧化面として機能する。
(Example)
FIG. 13 is a plan view showing a heating unit (porous ceramic heating element) 104. The heating unit 104 is, for example, one surface of a rectangular parallelepiped porous ceramic substrate 140 having a long side of 6.0 mm, a short side of 3.0 mm, and a thickness of 3.0 mm, and the porous ceramic substrate 140. It is provided with a glass layer 143 fixed to a heat generating surface 140b functioning as a heating surface by sintering, and a resistor pattern 142 and an electrode pattern 141 fixed to the glass layer 143 by sintering, respectively. The heat generating surface 140b of the porous ceramic substrate 140 has a rectangular shape and functions as an atomized surface of a predetermined liquid that has penetrated into the heating unit 104 by a capillary phenomenon.
 多孔質セラミック基板140は、アルミナ、ジルコニア、ムライト、シリカ、チタニア、窒化珪素、炭化珪素、炭素のいずれかを主成分とし、例えば直径0.15~500μm、好適には1.5~72μmの平均細孔径を有する連通気孔を有する多孔質無機焼結体であって、例えば21以上、好適には26以上の気孔率屈曲度係数比(気孔率/屈曲度係数)と、例えば30~90体積%、好適には40~71容積%の平均気孔率とを有している。 The porous ceramic substrate 140 contains any one of alumina, zirconia, mulite, silica, titania, silicon nitride, silicon carbide, and carbon as a main component, and has an average diameter of, for example, 0.15 to 500 μm, preferably 1.5 to 72 μm. A porous inorganic sintered body having continuous ventilation holes having a pore diameter, for example, a porosity bending degree coefficient ratio (porosity / bending degree coefficient) of 21 or more, preferably 26 or more, and, for example, 30 to 90% by volume. , Preferably it has an average porosity of 40-71% by volume.
 ガラス層143は、Ba、B、Zn、Siを含むガラス、例えば硼珪酸ガラスからなり、多孔質セラミック基板140の焼成温度よりも低く、且つ抵抗体パターン142および電極パターン141の焼成温度以上の軟化点を有する。ガラス層143は、多孔質セラミック基板140の発熱面140bに、例えば100μm以下、好適には3.0~90μm程度の厚みで焼結により固着された緻密なガラス膜である。ガラス層143は、後述の抵抗体パターン142および電極パターン141と同じパターンまたはそれよりもやや大きいパターンで形成されていて、抵抗体パターン142および電極パターン141と略同じ面積である。 The glass layer 143 is made of glass containing Ba, B, Zn, and Si, for example, borosilicate glass, and is softened below the firing temperature of the porous ceramic substrate 140 and above the firing temperature of the resistor pattern 142 and the electrode pattern 141. Has a point. The glass layer 143 is a dense glass film fixed to the heat generating surface 140b of the porous ceramic substrate 140 by sintering, for example, with a thickness of 100 μm or less, preferably about 3.0 to 90 μm. The glass layer 143 is formed of the same pattern as or slightly larger than the resistor pattern 142 and the electrode pattern 141 described later, and has substantially the same area as the resistor pattern 142 and the electrode pattern 141.
 抵抗体パターン142は、例えば銀、パラジウム、酸化ルテニウム等の金属粉が後述の厚膜焼成温度以下の融点を有する厚膜ガラスによって結合されることで、8~21μmの厚みと、1~3Ω、好適には1.1~2.7Ω程度の値を有する発熱体であって、多孔質セラミック基板140の発熱面140bにおいて、ガラス層143の上にS字状パターンで焼結により固着された厚膜抵抗体である。抵抗体パターン142は、一対のU字状部の一端が相互に連結されてS字状を成している。抵抗体パターン142は、多孔質セラミック基板140の発熱面140bにおいて、発熱面140b全体に対して5~30%、好適には13~21%の大きさとなるように形成されている。 The resistor pattern 142 has a thickness of 8 to 21 μm and 1 to 3 Ω by bonding metal powders such as silver, palladium, and ruthenium oxide with a thick glass having a melting point equal to or lower than the thick film firing temperature described later. It is a heating element preferably having a value of about 1.1 to 2.7 Ω, and has a thickness fixed by sintering in an S-shaped pattern on the glass layer 143 on the heat generating surface 140b of the porous ceramic substrate 140. It is a membrane resistor. The resistor pattern 142 has an S-shape in which one ends of a pair of U-shaped portions are connected to each other. The resistor pattern 142 is formed on the heat generating surface 140b of the porous ceramic substrate 140 so as to have a size of 5 to 30%, preferably 13 to 21% with respect to the entire heat generating surface 140b.
 一対の電極パターン141は、アルミニウム、ニッケル、銅、銀、白金、金等の金属粉が後述の厚膜焼成温度以下の融点を有する厚膜ガラスによって結合されることで導体と同等の導電性を有し、多孔質セラミック基板140の発熱面140bの両端部において、ガラス層143の上に矩形で焼結により固着された厚膜導電体である。一対の電極パターン141は、前記一対のU字状部の他端から電極パターン141側へ円弧状に延長された先端が重ねられることで、抵抗体パターン142に接続されている。一対の電極パターン141は、多孔質セラミック基板140の発熱面140bにおいて、発熱面140b全体に対して5~20%の大きさとなるように形成されている。 The pair of electrode patterns 141 have conductivity equivalent to that of a conductor by bonding metal powders such as aluminum, nickel, copper, silver, platinum, and gold with a thick film glass having a melting point equal to or lower than the thick film firing temperature described later. It is a thick-film conductor that is rectangular and fixed on the glass layer 143 by sintering at both ends of the heat generating surface 140b of the porous ceramic substrate 140. The pair of electrode patterns 141 are connected to the resistor pattern 142 by overlapping the tips extending in an arc shape from the other end of the pair of U-shaped portions toward the electrode pattern 141 side. The pair of electrode patterns 141 are formed on the heat generating surface 140b of the porous ceramic substrate 140 so as to have a size of 5 to 20% with respect to the entire heat generating surface 140b.
 図16は、加熱部104の製造工程を示している。図16において、混練工程P1では、多孔質セラミック基板140の材料、例えばアルミナ粉末、無機バインダ、造泡剤、有機バインダ、水、ワックス等が、例えば30~90%のうちの所定の気孔率となるように所定の調合割合で調合され且つ混合された後、混練機を用いて混練され、粘土状の胚土とされる。上記造泡剤は、例えば樹脂ビーズである。次に、押し出し成形工程P2では、真空押出成形機を用いて上記胚土が4mm程度の所定厚みの板状のグリーンシートに成形される。また、このグリーンシートには、直線状の刃が押しつけられることで、分割用の溝が形成される。 FIG. 16 shows the manufacturing process of the heating unit 104. In FIG. 16, in the kneading step P1, the material of the porous ceramic substrate 140, for example, alumina powder, inorganic binder, defoaming agent, organic binder, water, wax, etc., has a predetermined porosity of, for example, 30 to 90%. After being prepared and mixed at a predetermined mixing ratio so as to be, the mixture is kneaded using a kneader to obtain a clay-like embryo soil. The foaming agent is, for example, resin beads. Next, in the extrusion molding step P2, the embryo soil is molded into a plate-shaped green sheet having a predetermined thickness of about 4 mm using a vacuum extrusion molding machine. Further, a groove for division is formed by pressing a linear blade against this green sheet.
 次いで、押し出し成形工程P2で得られた上記グリーンシートは、乾燥工程P3において乾燥された後、焼成工程P4において、例えば1300℃から1500℃の焼成温度で焼成される。これにより、胚土中の造泡剤、有機バインダ、水、ワックス等が消失すると同時に、アルミナ粒子が無機バインダにより結合されることで、複数個の多孔質セラミック基板140が連結されたセラミック板が得られる。 Next, the green sheet obtained in the extrusion molding step P2 is dried in the drying step P3 and then fired in the firing step P4 at a firing temperature of, for example, 1300 ° C to 1500 ° C. As a result, the foaming agent, organic binder, water, wax, etc. in the embryo soil disappear, and at the same time, the alumina particles are bonded by the inorganic binder to form a ceramic plate to which a plurality of porous ceramic substrates 140 are connected. can get.
 次に、ガラスペースト印刷・焼成工程P5では、例えば硼珪酸ガラス粉末、樹脂バインダ、有機溶剤等を含む厚膜ガラスペーストが、図13に示されるガラス層143のパターンで、焼成工程P4で得られた前記セラミック板上の複数箇所にスクリーン印刷された後、前記セラミック板の焼成温度よりも低い温度、例えば800℃~1000℃で焼成される。これにより、厚膜ガラスペースト中の樹脂バインダ、有機溶剤等が消失すると同時に硼珪酸ガラスが溶融し、ガラス層143が前記セラミック板上に焼結により固着される。 Next, in the glass paste printing / firing step P5, a thick film glass paste containing, for example, borosilicate glass powder, a resin binder, an organic solvent, etc. is obtained in the firing step P4 with the pattern of the glass layer 143 shown in FIG. After being screen-printed on a plurality of places on the ceramic plate, it is fired at a temperature lower than the firing temperature of the ceramic plate, for example, 800 ° C. to 1000 ° C. As a result, the resin binder, the organic solvent, and the like in the thick-film glass paste disappear, and at the same time, the borosilicate glass melts, and the glass layer 143 is fixed to the ceramic plate by sintering.
 続く電極ペースト印刷・焼成工程P6では、例えば銀(Ag)粉末、僅かな硼珪酸ガラス、樹脂バインダ、有機溶剤等を含む厚膜電極ペーストが、図13に示される電極パターン141のパターンで、焼成工程P4で得られた前記セラミック板上の複数箇所のガラス層143上にそれぞれスクリーン印刷された後、ガラス層143の焼成温度と同じかそれよりも低い焼成温度、例えば700℃~900℃の厚膜焼成温度で焼成される。これにより、電極ペーストすなわち導体ペースト中の樹脂バインダ、有機溶剤等が消失すると同時に硼珪酸ガラスが溶融し、銀粉末が溶融した硼珪酸ガラスにより結合されることで、電極パターン141が前記セラミック板上のガラス層143の上に焼結により固着される。 In the subsequent electrode paste printing / firing step P6, a thick film electrode paste containing, for example, silver (Ag) powder, a small amount of borosilicate glass, a resin binder, an organic solvent, etc. is fired in the pattern of the electrode pattern 141 shown in FIG. After being screen-printed on the glass layers 143 at a plurality of locations on the ceramic plate obtained in step P4, the firing temperature is the same as or lower than the firing temperature of the glass layer 143, for example, a thickness of 700 ° C to 900 ° C. It is fired at the film firing temperature. As a result, the resin binder, the organic solvent, etc. in the electrode paste, that is, the conductor paste disappear, and at the same time, the borosilicate glass is melted, and the silver powder is bonded by the melted borosilicate glass, so that the electrode pattern 141 is formed on the ceramic plate. It is fixed on the glass layer 143 of the above by sintering.
 続いて、抵抗ペースト印刷・焼成工程P7では、例えば銀-パラジウム(Ag-Pd)粉末、硼珪酸ガラス、樹脂バインダ、有機溶剤等を含み、例えば100~200mΩ/sqのシート抵抗を有する厚膜抵抗ペーストが、図13に示される抵抗体パターン142のパターンで、焼成工程P4で得られた前記セラミック板上の複数箇所のガラス層143および電極パターン141上にそれぞれスクリーン印刷された後、ガラス層143の焼成温度よりも低い焼成温度、例えば700℃~900℃の厚膜焼成温度で焼成される。これにより、厚膜抵抗体ペースト中の樹脂バインダ、有機溶剤等が消失すると同時に硼珪酸ガラスが溶融し、銀-パラジウム粉末が溶融した硼珪酸ガラスにより結合されることで、抵抗体パターン142が前記セラミック板上のガラス層143および電極パターン141の上に焼結により固着される。なお、この抵抗体パターン142は、電極パターン141と同時焼成により形成されてもよい。 Subsequently, in the resistance paste printing / firing step P7, a thick film resistance containing, for example, silver-palladium (Ag-Pd) powder, borosilicate glass, a resin binder, an organic solvent, etc., and having a sheet resistance of, for example, 100 to 200 mΩ / sq. The paste is screen-printed on the glass layer 143 and the electrode pattern 141 at a plurality of locations on the ceramic plate obtained in the firing step P4 in the pattern of the resistor pattern 142 shown in FIG. 13, and then the glass layer 143. It is fired at a firing temperature lower than the firing temperature of, for example, a thick film firing temperature of 700 ° C. to 900 ° C. As a result, the resin binder, the organic solvent, etc. in the thick film resistor paste disappear, and at the same time, the borosilicate glass is melted, and the silver-palladium powder is bonded by the melted borosilicate glass, whereby the resistor pattern 142 is formed. It is fixed by sintering on the glass layer 143 and the electrode pattern 141 on the ceramic plate. The resistor pattern 142 may be formed by simultaneous firing with the electrode pattern 141.
 そして、分割工程P8では、ガラス層143、抵抗体パターン142および電極パターン141が複数箇所に固着された前記セラミック板が、前記分割用の溝に沿って破断されることで、複数個の加熱部104が得られる。 Then, in the division step P8, the ceramic plate to which the glass layer 143, the resistor pattern 142, and the electrode pattern 141 are fixed at a plurality of locations is broken along the groove for division, so that the plurality of heating portions are heated. 104 is obtained.
 以下に、本発明者等が図16に示す工程と同様の工程で作製した試験試料である比較例品1、2、9、および実施例品1から9の内容と、それらについての実験結果とを、図17~図21を用いて説明する。 The following are the contents of Comparative Example Products 1, 2, 9 and Example Products 1 to 9, which are test samples prepared by the present inventors in the same process as the process shown in FIG. 16, and the experimental results thereof. Will be described with reference to FIGS. 17 to 21.
(比較例品1)
 気孔率が0容積%であるアルミナ緻密体から成る導電性を有しないアルミナ基板の上に、20μmの厚みを有するガラス層を介して、発熱面に対して13%の面積の電極パターンと、10μmの厚みと2Ωの抵抗値とを有し発熱面に対して15%の面積の抵抗体パターンとを、図13に示すものと同様に形成し、図17に示すように1種類の比較例品1を用意した。
(Comparative example product 1)
An electrode pattern having an area of 13% with respect to the heat generating surface and 10 μm via a glass layer having a thickness of 20 μm on a non-conductive alumina substrate made of an alumina compact having a pore ratio of 0% by volume. A resistor pattern having a thickness of 2Ω and a resistance value of 2Ω and an area of 15% with respect to the heat generating surface is formed in the same manner as that shown in FIG. 13, and as shown in FIG. 17, one kind of comparative example product is formed. I prepared 1.
(比較例品2a、2b)
 3.3μmの平均細孔径と65容積%の気孔率とを有した、導電性を有する多孔質セラミック基板、および、導電性を有しない多孔質セラミック基板の2種類の基板上に、ガラス層を用いないで、発熱面に対して13%の面積の電極パターンと、10μmの厚みと2Ωの抵抗値とを有し発熱面140bに対して15%の面積の抵抗体パターンとを、図13に示すものと同様に形成し、図17に示すように2種類の比較例品2aおよび2bを用意した。
(Comparative example products 2a and 2b)
A glass layer is placed on two types of substrates, a conductive porous ceramic substrate having an average pore diameter of 3.3 μm and a porosity of 65% by volume, and a non-conductive porous ceramic substrate. FIG. 13 shows an electrode pattern having an area of 13% with respect to the heat generating surface and a resistor pattern having a thickness of 10 μm and a resistance value of 2 Ω and an area of 15% with respect to the heat generating surface 140b. It was formed in the same manner as shown, and two types of comparative example products 2a and 2b were prepared as shown in FIG.
(実施例品1)
 65容積%の気孔率と3.3μmの平均細孔径とを有した導電性を有しない多孔質セラミック基板の上に、20μmの厚みを有するガラス層を介して、発熱面に対して13%の面積の電極パターンと、10μmの厚みと2Ωの抵抗値とを有し発熱面に対して15%の面積の抵抗体パターンとを、図13に示すものと同様に形成し、実施例品1を用意した。
(Example product 1)
On a non-conductive porous ceramic substrate with a porosity of 65% by volume and an average pore diameter of 3.3μm, through a glass layer having a thickness of 20μm, 13% with respect to the heat generating surface. An electrode pattern having an area, a resistor pattern having a thickness of 10 μm and a resistance value of 2 Ω and an area of 15% with respect to the heat generating surface were formed in the same manner as shown in FIG. I prepared it.
(実施例品2a、2b、2c)
 65容積%、60容積%、および、57容積%の気孔率と1.5μmの平均細孔径とを有した導電性を有しない3種類の多孔質セラミック基板の上に、20μmの厚みを有するガラス層を介して、発熱面に対して13%の面積の電極パターンと、10μmの厚みと2Ωの抵抗値とを有し発熱面に対して15%の面積の抵抗体パターンとを、図13に示すものと同様にそれぞれ形成し、図17に示すように3種類の実施例品2a、2b、および2cを用意した。
(Example products 2a, 2b, 2c)
Glass with a thickness of 20 μm on three non-conductive porous ceramic substrates with porosities of 65% by volume, 60% by volume, and 57% by volume and an average pore diameter of 1.5 μm. FIG. 13 shows an electrode pattern having an area of 13% with respect to the heat generating surface and a resistor pattern having a thickness of 10 μm and a resistance value of 2 Ω and having an area of 15% with respect to the heat generating surface through the layer. They were formed in the same manner as shown, and three types of Example products 2a, 2b, and 2c were prepared as shown in FIG.
(実施例品3a、1、3b、3c、3d、3e)
 1.5μm、3.3μm、4.2μm、5.1μm、72μmおよび、0.15μmの平均細孔径と65容積%の気孔率とを有した導電性を有しない6種類の多孔質セラミック基板の上に、20μmの厚みを有するガラス層143を介して、10μmの厚みと2Ω又は1.3Ωの抵抗値とを有し発熱面に対して15%の面積の抵抗体パターンとを、図13に示すものと同様にそれぞれ形成し、図17に示すように6種類の実施例品3a、1、3b、3c、3d、3eを用意した。
(Example products 3a, 1, 3b, 3c, 3d, 3e)
Six types of non-conductive porous ceramic substrates with an average pore diameter of 1.5 μm, 3.3 μm, 4.2 μm, 5.1 μm, 72 μm and 0.15 μm and a porosity of 65% by volume. Above, a resistor pattern having a thickness of 10 μm and a resistance value of 2 Ω or 1.3 Ω and an area of 15% with respect to the heat generating surface is shown in FIG. 13 via a glass layer 143 having a thickness of 20 μm. Six types of Example products 3a, 1, 3b, 3c, 3d, and 3e were prepared as shown in FIG.
(実施例品4a、1、4b、4c、4d、4e)
 65容積%の気孔率と3.3μmの平均細孔径とを有した導電性を有しない多孔質セラミック基板の上に、22μm、20μm、19μm、17μm、90μm、および3μmの厚みを有する6種類のガラス層を介して、発熱面に対して13%の面積の電極パターンと、10μmの厚みと2Ωの抵抗値とを有し発熱面に対して15%の面積の抵抗体パターンとを、図13に示すものと同様にそれぞれ形成し、図17に示すように6種類の実施例品4a、1、4b、4c、4d、および4eを用意した。
(Example products 4a, 1, 4b, 4c, 4d, 4e)
Six types with thicknesses of 22 μm, 20 μm, 19 μm, 17 μm, 90 μm, and 3 μm on a non-conductive porous ceramic substrate with a porosity of 65% by volume and an average pore diameter of 3.3 μm. FIG. 13 shows an electrode pattern having an area of 13% with respect to the heat generating surface and a resistor pattern having a thickness of 10 μm and a resistance value of 2 Ω and an area of 15% with respect to the heat generating surface via the glass layer. 6 types of Example products 4a, 1, 4b, 4c, 4d, and 4e were prepared as shown in FIG.
(実施例品5a、5b、5c)
 65容積%の気孔率と3.3μmの平均細孔径とを有した導電性を有しない多孔質セラミック基板の上に、20μmの厚みを有するガラス層を介して、発熱面に対して13%の面積の電極パターンと、8μm、17μm、および、21μmの厚みと1.5Ωの抵抗値とを有し発熱面140bに対して15%の面積の3種類の抵抗体パターンとを、図13に示すものと同様にそれぞれ形成し、図3に示すように3種類の実施例品5a、5b、および5cを作成した。
(Example products 5a, 5b, 5c)
On a non-conductive porous ceramic substrate with a porosity of 65% by volume and an average pore diameter of 3.3μm, through a glass layer having a thickness of 20μm, 13% with respect to the heat generating surface. FIG. 13 shows an area electrode pattern and three types of resistor patterns having a thickness of 8 μm, 17 μm, and a thickness of 21 μm and a resistance value of 1.5 Ω, and having an area of 15% with respect to the heat generating surface 140b. They were formed in the same manner as those of the same ones, and three kinds of Example products 5a, 5b, and 5c were prepared as shown in FIG.
(実施例品6a、6b、6c)
 65容積%の気孔率と3.3μmの平均細孔径とを有した導電性を有しない多孔質セラミック基板の上に、20μmの厚みを有するガラス層を介して、17μmの厚みと1.5Ω、2Ω、および、2.7Ωの抵抗値とを有する3種類の抵抗体パターンを、図13に示すものと同様にそれぞれ形成し、図17に示すように3種類の実施例品6a、6b、および6cを用意した。
(Example products 6a, 6b, 6c)
On a non-conductive porous ceramic substrate with a porosity of 65% by volume and an average pore diameter of 3.3 μm, through a glass layer with a thickness of 20 μm, a thickness of 17 μm and 1.5 Ω, Three types of resistor patterns with resistance values of 2Ω and 2.7Ω are formed in the same manner as shown in FIG. 13, respectively, and as shown in FIG. 17, three types of Examples 6a, 6b, and 6b are formed. 6c was prepared.
(実施例品7a、7b、7c、7d、7e、7f、7g)
 65容積%の気孔率と3.3μmの平均細孔径とを有した導電性を有しない多孔質セラミック基板の上に、20μmの厚みと抵抗体パターンの幅に対する割合が133%、167%、200%、233%、267%、300%、および100%の幅寸法を有する7種類のガラス層をそれぞれ介して、10μmの厚みと1.3Ωの抵抗値とを有する抵抗体パターンを、図13に示すものと同様にそれぞれ形成し、図17に示すように7種類の実施例品7a、7b、7c、7d、7e、7f、および7gを用意した。
(Example products 7a, 7b, 7c, 7d, 7e, 7f, 7g)
On a non-conductive porous ceramic substrate with a porosity of 65% by volume and an average pore diameter of 3.3 μm, the thickness of 20 μm and the ratio to the width of the resistor pattern are 133%, 167%, 200. A resistor pattern with a thickness of 10 μm and a resistance value of 1.3 Ω is shown in FIG. 7 kinds of Example products 7a, 7b, 7c, 7d, 7e, 7f, and 7g were prepared as shown in FIG.
(実施例品8)
 65容積%の気孔率と3.3μmの平均細孔径とを有した導電性を有する多孔質セラミック基板の上に、20μmの厚みを有するガラス層を介して、発熱面に対して13%の面積の電極パターンと、10μmの厚みと2Ωの抵抗値とを有し発熱面に対して15%の面積の抵抗体パターンとを、図13に示すものと同様にそれぞれ形成し、図17に示すように1種類の実施例品8を用意した。
(Example product 8)
An area of 13% with respect to the heat generating surface via a glass layer having a thickness of 20 μm on a conductive porous ceramic substrate having a porosity of 65% by volume and an average pore diameter of 3.3 μm. An electrode pattern and a resistor pattern having a thickness of 10 μm and a resistance value of 2 Ω and an area of 15% with respect to the heat generating surface are formed in the same manner as in FIG. 13, as shown in FIG. One type of Example product 8 was prepared in 1.
(実施例品9a、9b、9c、9d、9e、および、比較例品9)
 66容積%および26μm、40容積%および9.8μm、65容積%および4.0μm、66容積%および4.1μm、71容積%および13μm、38容積%および1.1μmである気孔率および平均細孔径を有し且つ導電性を有しない多孔質セラミック基板の上に、それぞれ20μmの厚みと電極パターンに対する133%の幅とを有するガラス層を介して、10μmの厚みと1.3Ω、1.1Ω、1.4Ω、1.4Ω、1.3Ω、1.4Ωの抵抗値とをそれぞれ有する6種類の抵抗体パターンとを、図13に示すものと同様に形成し、図18に示すように5種類の実施例品9a、9b、9c、9d、9e、および比較例品9を用意した。
(Example products 9a, 9b, 9c, 9d, 9e, and comparative example product 9)
Porosity and average fineness of 66% by volume and 26 μm, 40% by volume and 9.8 μm, 65% by volume and 4.0 μm, 66% by volume and 4.1 μm, 71% by volume and 13 μm, 38% by volume and 1.1 μm. A thickness of 10 μm and 1.3 Ω, 1.1 Ω via a glass layer having a thickness of 20 μm and a width of 133% with respect to the electrode pattern, respectively, on a porous ceramic substrate having a pore diameter and no conductivity. , 1.4Ω, 1.4Ω, 1.3Ω, and 1.4Ω, respectively, and 6 types of resistor patterns are formed in the same manner as shown in FIG. 13, and 5 as shown in FIG. Kind of Example product 9a, 9b, 9c, 9d, 9e, and Comparative Example product 9 were prepared.
(ガラス層の厚み測定)
 レーザー顕微鏡を用いてガラス層143の幅方向の断面形状(プロファイル)を測定し、その断面形状において全幅寸法に対して中央部50%における多孔質セラミック基板140の表面との平均高低差を、ガラス層の厚みとして算出する。
(Measurement of glass layer thickness)
The cross-sectional shape (profile) of the glass layer 143 in the width direction is measured using a laser microscope, and the average height difference between the cross-sectional shape and the surface of the porous ceramic substrate 140 at 50% of the central portion with respect to the total width dimension is determined by glass. Calculated as the thickness of the layer.
(霧化特性の測定)
エアロゾル源:グリセリン45%、プロピレングリコール45%
蒸溜水 10%の混合液
測定方法:エアロゾル源を含浸させたコットンに各試験品の下面を接触させ、この状態で、一対の電極パターン間に3秒間で電圧を印加する期間と27秒の電圧印加の休止期間との1回の加熱サイクルで抵抗体パターンに21ジュールの電気エネルギを付与して発熱体の上面からエアロゾル源を霧化させ、5回の加熱サイクルの霧化を行なったときのコットンの重量減少量を測定し、1加熱サイクル当たりの重量減少量、すなわち、霧化量を算出する。
(Measurement of atomization characteristics)
Aerosol source: glycerin 45%, propylene glycol 45%
Mixture of 10% distilled water Measuring method: A cotton impregnated with an aerosol source is brought into contact with the lower surface of each test product, and in this state, a voltage is applied between a pair of electrode patterns for 3 seconds and a voltage of 27 seconds. When an electric energy of 21 joules is applied to the resistor pattern in one heating cycle with an application rest period to atomize the aerosol source from the upper surface of the heating element, and atomization is performed in five heating cycles. The amount of weight loss of cotton is measured, and the amount of weight loss per heating cycle, that is, the amount of atomization is calculated.
(耐久性の評価方法)
 上記霧化特性の測定で行なわれた加熱サイクルを100回繰り返した後に、多孔質セラミック基板上のガラス層、抵抗体パターン、電極パターンの剥離の有無を、80倍の実体顕微鏡を用いて検査し、剥離の有無を判定し、剥離の無いものは○印とし、剥離のあるものは×印として評価した。
(Durability evaluation method)
After repeating the heating cycle performed in the measurement of the atomization characteristics 100 times, the presence or absence of peeling of the glass layer, the resistor pattern, and the electrode pattern on the porous ceramic substrate is inspected using an 80x stereomicroscope. The presence or absence of peeling was judged, and those without peeling were evaluated as ◯, and those with peeling were evaluated as ×.
(気孔率の測定)
 セラミック基板の気孔率は、アルキメデス法により測定された。飽水重量をWaw、乾燥重量をWair、水中重量をWaqをそれぞれ測定した後、気孔率Pを表す次式(1)から、それらを代入することで、気孔率Pを算出する。
P=(Waw-Wair)/(Waw-Waq)・・・(1)
(Measurement of porosity)
The porosity of the ceramic substrate was measured by the Archimedes method. Water-saturated weight W aw, dry weight W air, after the water weight was measured W aq respectively, the following equation represents the porosity P (1), by substituting them to calculate the porosity P.
P = (W aw -W air) / (W aw -W aq) ··· (1)
(気孔の屈曲度係数の測定)
 測定方法:各試験品(多孔質セラミック基板)の細孔容積V、全細孔容積VCO、細孔径r、かさ密度ρHgを、水銀ポロシメータを用いて測定し、BET比表面積Sを、吸着占有面積のわかったガス分子の吸着量に基づいて試験品の比表面積を算出するガス吸着法を用いて測定し、次式(2)にそれらに基づいて屈曲度係数τを算出する。
 τ=(2.23-1.13VCOρHg)(0.92y)1+E  ・・・(2)
 但し、y=(4/S)Σ(ΔVi/ri)
(Measurement of stomatal tortuosity coefficient)
Measurement method: The pore volume V, total pore volume V CO , pore diameter r, and bulk density ρ Hg of each test product (porous ceramic substrate) are measured using a mercury porosimeter, and the BET specific surface area S is adsorbed. The specific surface area of the test product is calculated based on the adsorption amount of the gas molecule whose occupied area is known, and the measurement is performed using the gas adsorption method, and the bending degree coefficient τ is calculated based on them according to the following equation (2).
τ = (2.23-1.13V CO ρ Hg ) (0.92y) 1 + E ... (2)
However, y = (4 / S) Σ (ΔVi / ri)
 図17および図18において、製品に求められた基準、例えば霧化量が3mg以上であること、および、100加熱サイクルの剥離の無いことを共に満足する範囲は、多孔質セラミック基板の気孔率が40~71容積%、多孔質セラミック基板の平均細孔径が0.15~72μm、ガラス層の幅の抵抗体パターンの幅寸法に対する割合が100~300%、ガラス層の厚みが3.0~90μmであった。 In FIGS. 17 and 18, the porosity of the porous ceramic substrate is within the range satisfying both the criteria required for the product, for example, the atomization amount of 3 mg or more and the absence of peeling in 100 heating cycles. 40 to 71 volume%, average pore diameter of the porous ceramic substrate is 0.15 to 72 μm, the ratio of the width of the glass layer to the width dimension of the resistor pattern is 100 to 300%, and the thickness of the glass layer is 3.0 to 90 μm. Met.
 また、図18に示されたデータから、図19および図20に示すように、霧化量と気孔率との関係、および霧化量と屈曲度係数との関係は、それぞれ相互に密接した相関が得られた。また、霧化量と、気孔率屈曲度係数比(気孔率/屈曲度係数)との間においても、図21に示すように、相互に密接した相関が得られた。製品に求められた霧化量の基準が2.5mg以上である場合は、気孔率屈曲度係数比が19以上であれば、霧化量の基準を満足する。また、製品に求められた霧化量の基準が3mg以上である場合は、気孔率屈曲度係数比が21以上であれば、霧化量の基準を満足する。さらに、好ましくは、気孔率屈曲度係数比は26以上である。 Further, from the data shown in FIG. 18, as shown in FIGS. 19 and 20, the relationship between the atomization amount and the porosity and the relationship between the atomization amount and the tortuosity coefficient are closely correlated with each other. was gotten. Further, as shown in FIG. 21, a close correlation was obtained between the amount of atomization and the porosity bending degree coefficient ratio (porosity / bending degree coefficient). When the standard of the atomization amount required for the product is 2.5 mg or more, if the porosity bending degree coefficient ratio is 19 or more, the standard of the atomization amount is satisfied. Further, when the standard of the atomization amount required for the product is 3 mg or more, if the porosity bending degree coefficient ratio is 21 or more, the standard of the atomization amount is satisfied. Further, preferably, the porosity bending degree coefficient ratio is 26 or more.
 上述のように、本実施例の加熱部104によれば、抵抗体パターン142がガラス層143の上に設けられ、ガラス層143と抵抗体パターン142に接続する一対の電極パターン141とが、多孔質セラミック基板140の発熱面140b上に設けられ、一対の電極パターン141間に電流が供給されることにより抵抗体パターン142が発熱する加熱部104であって、多孔質セラミック基板140の気孔率屈曲度係数比は21以上であり、ガラス層143は、多孔質セラミック基板140の発熱面のうち、少なくとも抵抗体パターン142の下となる面に設けられており、多孔質セラミック基板140内に浸入したエアロゾル源を抵抗体パターン142の加熱により多孔質セラミック基板140の発熱面140bのうちのガラス層143に覆われていない面から霧化させる。このため、多孔質セラミック基板140に導電性が不要であるために材質の制限がなく、基板の材料選択性が高い。また、用途に応じた多孔質セラミック基板材料の選択により、エアロゾル源に対する耐化学性と機械的強度との両立を図ることができる。また、多孔質セラミック基板140の一面である発熱面140bに、その発熱面140bのうちの少なくとも抵抗体パターン142を含む一部の領域に形成されたガラス層143を介して、抵抗体パターン142が設けられるので、電気抵抗発熱体として機能する抵抗体パターン142の耐熱衝撃性および接着強度が得られ、高い霧化効率および耐久性能が得られる。 As described above, according to the heating unit 104 of this embodiment, the resistor pattern 142 is provided on the glass layer 143, and the glass layer 143 and the pair of electrode patterns 141 connected to the resistor pattern 142 are porous. A heating portion 104 provided on the heat generating surface 140b of the quality ceramic substrate 140, in which the resistor pattern 142 generates heat when a current is supplied between the pair of electrode patterns 141, and the pore ratio bending of the porous ceramic substrate 140. The degree coefficient ratio is 21 or more, and the glass layer 143 is provided on at least the surface below the resistor pattern 142 among the heat generating surfaces of the porous ceramic substrate 140, and has penetrated into the porous ceramic substrate 140. The aerosol source is atomized by heating the resistor pattern 142 from the surface of the heat generating surface 140b of the porous ceramic substrate 140 that is not covered by the glass layer 143. Therefore, since the porous ceramic substrate 140 does not require conductivity, there are no restrictions on the material, and the material selectivity of the substrate is high. Further, by selecting a porous ceramic substrate material according to the application, it is possible to achieve both chemical resistance to an aerosol source and mechanical strength. Further, the resistance pattern 142 is formed on the heat generation surface 140b, which is one surface of the porous ceramic substrate 140, via the glass layer 143 formed in a part of the heat generation surface 140b including at least the resistance pattern 142. Since it is provided, the thermal shock resistance and adhesive strength of the resistor pattern 142 that functions as an electric resistance heating element can be obtained, and high atomization efficiency and durability can be obtained.
 本実施例の加熱部104によれば、多孔質セラミック基板140の気孔率屈曲度係数比は26以上である。これにより、多孔質セラミック基板140において、気孔率が高く且つ屈曲の小さい気孔が備えられているので、高い霧化性能が得られる。気孔率屈曲度係数比が26を下まわると、気孔率が低すぎるか或いは気孔の屈曲が多くてエアロゾル源の浸入が不十分となる場合があり、霧化性能が十分に得られない場合がある。 According to the heating unit 104 of this embodiment, the porosity bending degree coefficient ratio of the porous ceramic substrate 140 is 26 or more. As a result, the porous ceramic substrate 140 is provided with pores having a high porosity and small bending, so that high atomization performance can be obtained. If the porosity flexion coefficient ratio is less than 26, the porosity may be too low or the pores may be bent too much and the aerosol source may not be sufficiently infiltrated, resulting in insufficient atomization performance. be.
 また、本実施例の加熱部104によれば、多孔質セラミック基板140は、40容積%以上71容積%以下の平均気孔率を有する。これにより、多孔質セラミック基板140にエアロゾル源の浸入が容易となるので、エアロゾル源の霧化効率すなわち霧化性能が高くなる。多孔質セラミック基板140の気孔率が70容積%を超えると、ガラス層143、抵抗体パターン142、或いは電極パターン141の剥離により加熱部104の耐久性が十分に得られない場合がある。気孔率が41.5容積%を下まわると、霧化性能が十分に得られない場合がある。 Further, according to the heating unit 104 of this embodiment, the porous ceramic substrate 140 has an average porosity of 40% by volume or more and 71% by volume or less. This facilitates the penetration of the aerosol source into the porous ceramic substrate 140, thereby increasing the atomization efficiency, that is, the atomization performance of the aerosol source. If the porosity of the porous ceramic substrate 140 exceeds 70% by volume, the durability of the heating portion 104 may not be sufficiently obtained due to the peeling of the glass layer 143, the resistor pattern 142, or the electrode pattern 141. If the porosity is less than 41.5% by volume, sufficient atomization performance may not be obtained.
 本実施例の加熱部104によれば、多孔質セラミック基板140の気孔の屈曲度係数は、2.0以下である。これにより、加熱部104において屈曲の小さい気孔が備えられているので、高い霧化性能が得られる。屈曲度係数が2.0を超えると、エアロゾル源の浸入抵抗が増加してエアロゾル源の浸入が不十分となり、霧化性能が十分に得られない場合がある。 According to the heating unit 104 of this embodiment, the bending degree coefficient of the pores of the porous ceramic substrate 140 is 2.0 or less. As a result, since the heating portion 104 is provided with pores having a small bending, high atomization performance can be obtained. If the bending coefficient exceeds 2.0, the penetration resistance of the aerosol source increases, the penetration of the aerosol source becomes insufficient, and the atomization performance may not be sufficiently obtained.
 本実施例の加熱部104によれば、多孔質セラミック基板140は、0.15以上72μm以下の平均細孔径を有する。これにより、毛管作用によって多孔質セラミック基板140にエアロゾル源の浸入が容易となるので、エアロゾル源の霧化効率すなわち霧化性能が高くなる。平均細孔径が0.15nmを下まわると、エアロゾル源の浸入抵抗が増加してエアロゾル源の浸入が不十分となる場合があり、平均細孔径が26nmを超えると、毛細管現象による毛管力が低下してエアロゾル源の浸入が不十分となる場合があり、霧化性能が十分に得られない場合がある。 According to the heating unit 104 of this embodiment, the porous ceramic substrate 140 has an average pore diameter of 0.15 or more and 72 μm or less. As a result, the aerosol source can be easily infiltrated into the porous ceramic substrate 140 by the capillary action, so that the atomization efficiency of the aerosol source, that is, the atomization performance is improved. If the average pore diameter is less than 0.15 nm, the penetration resistance of the aerosol source may increase and the penetration of the aerosol source may be insufficient, and if the average pore diameter exceeds 26 nm, the capillary force due to the capillary phenomenon decreases. Therefore, the penetration of the aerosol source may be insufficient, and the atomization performance may not be sufficiently obtained.
 本実施例の加熱部104によれば、ガラス層143は、3~90μmの厚みを有するものである。ガラス層143の厚みが3μmを下まわると、抵抗体パターンの抵抗値がばらついて製造歩留りが低下し、90μmを超えると、抵抗体パターン142から多孔質セラミック基板140への熱伝導が低下して、霧化性能が十分に得られない場合がある。 According to the heating unit 104 of this embodiment, the glass layer 143 has a thickness of 3 to 90 μm. When the thickness of the glass layer 143 is less than 3 μm, the resistance value of the resistor pattern varies and the manufacturing yield decreases, and when it exceeds 90 μm, the heat conduction from the resistor pattern 142 to the porous ceramic substrate 140 decreases. , Sufficient atomization performance may not be obtained.
 本実施例の加熱部104によれば、ガラス層143は、多孔質セラミック基板140の一面である発熱面140b上に設けられた厚膜ガラスペーストの焼結体から成り、抵抗体パターン142は、ガラス層143の上に設けられた厚膜抵抗体ペーストの焼結体から成り、電極パターン141は、ガラス層143の上に設けられた厚膜導電ペーストの焼結体から成る。これにより、多孔質セラミック基板140の一面上に、3以上90μm以下の厚みのガラス層143、およびそのガラス層143の上の抵抗体パターン142および電極パターン141が厚膜により形成されているので、耐熱衝撃性および接着強度が得られるとともに、耐久性が得られる。ガラス層143の厚みが3μmを下まわると、抵抗体パターン142の抵抗値がばらついて製造歩留りが低下し、90μmを超えると、抵抗体パターン142から多孔質セラミック基板140への熱伝導が低下して、霧化性能が十分に得られない場合がある。 According to the heating unit 104 of this embodiment, the glass layer 143 is made of a sintered body of a thick glass paste provided on the heat generating surface 140b, which is one surface of the porous ceramic substrate 140, and the resistor pattern 142 has a resistor pattern 142. The electrode pattern 141 is made of a sintered body of a thick film resistor paste provided on the glass layer 143, and the electrode pattern 141 is made of a sintered body of a thick film conductive paste provided on the glass layer 143. As a result, a glass layer 143 having a thickness of 3 or more and 90 μm or less, and a resistor pattern 142 and an electrode pattern 141 on the glass layer 143 are formed by a thick film on one surface of the porous ceramic substrate 140. Thermal impact resistance and adhesive strength can be obtained, and durability can be obtained. When the thickness of the glass layer 143 is less than 3 μm, the resistance value of the resistor pattern 142 varies and the manufacturing yield decreases, and when it exceeds 90 μm, the heat conduction from the resistor pattern 142 to the porous ceramic substrate 140 decreases. Therefore, sufficient atomization performance may not be obtained.
 本実施例の加熱部104によれば、多孔質セラミック基板140は、アルミナ、ジルコニア、ムライト、シリカ、チタニア、窒化珪素、炭化珪素、炭素のいずれかを主成分とするものであり、抵抗体パターン142は、銀、パラジウム、酸化ルテニウムのうちのいずれかの金属粉とガラスとを含む厚膜焼結体であり、電極パターン141は、銅、ニッケル、アルミニウム、銀、白金、金のうちのいずれかの金属粉末とガラスとを含む厚膜焼結体であり、ガラス層143は、Ba、B、Znのいずれかを含む厚膜焼結体である。このように、多孔質セラミック基板140の一面である発熱面140b上に、ガラス層143、およびそのガラス層143の上の抵抗体パターン142および電極パターン141が厚膜焼結体により形成されているので、耐熱衝撃性および接着強度が得られるとともに、耐久性が得られる。 According to the heating unit 104 of the present embodiment, the porous ceramic substrate 140 contains any one of alumina, zirconia, mulite, silica, titania, silicon nitride, silicon carbide, and carbon as a main component, and has a resistor pattern. Reference numeral 142 is a thick film sintered body containing a metal powder of any one of silver, palladium and ruthenium oxide and glass, and the electrode pattern 141 is any of copper, nickel, aluminum, silver, platinum and gold. It is a thick film sintered body containing the metal powder and glass, and the glass layer 143 is a thick film sintered body containing any one of Ba, B, and Zn. As described above, the glass layer 143 and the resistor pattern 142 and the electrode pattern 141 on the glass layer 143 are formed of the thick film sintered body on the heat generating surface 140b which is one surface of the porous ceramic substrate 140. Therefore, thermal shock resistance and adhesive strength can be obtained, and durability can be obtained.
 本実施例の加熱部104によれば、多孔質セラミック基板140の一面である発熱面140bは長手形状の面であり、一対の電極パターン141は、その長手形状の面の両端部に配置され、抵抗体パターン142は、一対のU字状部の一端が相互に連結され且つ他端から電極パターン141側へ円弧状に延長された先端が一対の電極パターン141のそれぞれに接続されている。このように、抵抗体パターン142が一対のU字状部の一端が相互に連結され且つ他端が一対の電極パターン141のそれぞれに接続されている形状であることから、局所的に熱が集中せず、抵抗体パターン142の全体が均一に発熱するので、エアロゾル源の霧化効率すなわち霧化性能が高くなる。 According to the heating unit 104 of this embodiment, the heat generating surface 140b, which is one surface of the porous ceramic substrate 140, is a surface having a longitudinal shape, and the pair of electrode patterns 141 are arranged at both ends of the surface having the longitudinal shape. In the resistor pattern 142, one end of the pair of U-shaped portions is connected to each other, and the tip extending in an arc shape from the other end to the electrode pattern 141 side is connected to each of the pair of electrode patterns 141. As described above, since the resistor pattern 142 has a shape in which one end of the pair of U-shaped portions is connected to each other and the other end is connected to each of the pair of electrode patterns 141, heat is locally concentrated. Instead, the entire resistor pattern 142 generates heat uniformly, so that the atomization efficiency of the aerosol source, that is, the atomization performance is improved.
 以上、本発明の好適な実施例を図面に基づいて詳細に説明したが、本発明はこれに限定されるものではなく、更に別の態様においても実施される。 Although the preferred embodiments of the present invention have been described in detail with reference to the drawings, the present invention is not limited to this, and the present invention is also carried out in still another embodiment.
 例えば、前述の実施例において、エアロゾル源は、グリセリン、プロピレングリコール、蒸溜水が5:5:1の割合の混合液であったが、他の割合であってもよく、香料などの他の液体がさらに添加されたものであってもよい。 For example, in the above-mentioned embodiment, the aerosol source is a mixed solution of glycerin, propylene glycol, and distilled water in a ratio of 5: 5: 1, but other liquids such as fragrances may be used. May be further added.
 また、前述の実施例では、抵抗体パターン142は、1Ω以上3Ω以下程度の抵抗値を備えるものであったが、電源伝達などとの関係で他の体に変更されてもよい。 Further, in the above-described embodiment, the resistor pattern 142 has a resistance value of about 1Ω or more and 3Ω or less, but may be changed to another body in relation to power transmission or the like.
 また、前述の実施例の抵抗体パターン142は、S字状パターンであったが、正弦波状パターン、矩形パターンなど、他の形状のパターンであってもよい。 Further, although the resistor pattern 142 of the above-described embodiment is an S-shaped pattern, it may be a pattern having another shape such as a sinusoidal pattern or a rectangular pattern.
 また、前述の実施例において、ガラス層143は、抵抗体パターン142および電極パターン141と同じパターンまたはそれよりもやや大きいパターンで形成されていたが、必ずしも抵抗体パターン142および電極パターン141と同じパターンである必要はなく、エアロゾル源を霧化させる霧化性能を満足し、抵抗体パターン142を支持できる範囲で、抵抗体パターン142および電極パターン141よりも大きく且つ異なるパターンであってもよい。 Further, in the above-described embodiment, the glass layer 143 is formed of the same pattern as the resistor pattern 142 and the electrode pattern 141 or a slightly larger pattern, but is not necessarily the same pattern as the resistor pattern 142 and the electrode pattern 141. It is not necessary to be, and the pattern may be larger and different from the resistor pattern 142 and the electrode pattern 141 as long as the atomizing performance for atomizing the aerosol source is satisfied and the resistor pattern 142 can be supported.
 また、一対の電極パターン141は、多孔質セラミック基板140の発熱面140bの両端部において、ガラス層143の上に形成されていたが、必ずしも両端部でなくともよい。また、電極パターン141は、必ずしもガラス層143の上に形成されていなくてもよい。 Further, although the pair of electrode patterns 141 were formed on the glass layer 143 at both ends of the heat generating surface 140b of the porous ceramic substrate 140, they do not necessarily have to be both ends. Further, the electrode pattern 141 does not necessarily have to be formed on the glass layer 143.
 また、前述の実施例において、多孔質セラミック基板140の発熱面140bにおいて、ガラス層143、抵抗体パターン142、電極パターン141は、厚膜により構成されていたが、抵抗体パターン142および電極パターン141の少なくとも一方が、スパッタリングを用いた薄膜によって構成されてもよい。 Further, in the above-described embodiment, on the heat generating surface 140b of the porous ceramic substrate 140, the glass layer 143, the resistor pattern 142, and the electrode pattern 141 are composed of a thick film, but the resistor pattern 142 and the electrode pattern 141 are formed. At least one of the above may be composed of a thin film using sputtering.
 その他、一々例示はしないが、本発明はその趣旨を逸脱しない範囲内において種々の変更が加えられて実施されるものである。 Other than that, although not illustrated one by one, the present invention is carried out with various modifications within a range not deviating from the gist thereof.
 例えば、本実施形態の加熱部104にはガラス層143が設けられた場合の説明をしたが、ガラス層143の代わりにセラミック層を設けてもよい。つまり、ガラス層やセラミック層のような薄膜を設けることでもよい。 For example, although the case where the glass layer 143 is provided in the heating unit 104 of the present embodiment has been described, a ceramic layer may be provided instead of the glass layer 143. That is, a thin film such as a glass layer or a ceramic layer may be provided.
 高い霧化効率および耐久性能が得られる非燃焼式吸引器を提供することができる。 It is possible to provide a non-combustion type suction device that can obtain high atomization efficiency and durability performance.
1 吸引器(非燃焼式吸引器)
21 電源ユニット(電源部)
22 保持ユニット(収容部)
23 マウスピース(吸口部)
23a 吸引口
104 加熱部
140 多孔質セラミック基板
140b 発熱面(多孔質セラミック基板の一方の面)
141 電極パターン
142 抵抗体パターン
143 ガラス層
1 Aspirator (non-combustion type aspirator)
21 Power supply unit (power supply unit)
22 Holding unit (accommodation unit)
23 Mouthpiece (mouthpiece)
23a Suction port 104 Heating part 140 Porous ceramic substrate 140b Heat generation surface (one surface of the porous ceramic substrate)
141 Electrode pattern 142 Resistance pattern 143 Glass layer

Claims (11)

  1.  電源部と、
     エアロゾル源を収容可能な収容部と、
     前記エアロゾル源を霧化させる加熱部と、
     前記エアロゾル源が霧化したエアロゾルを吸引する吸引口が形成された吸口部と、を備え、
     前記加熱部は、
     多孔質セラミック基板と、
     前記多孔質セラミック基板の一方の面上に設けられた抵抗体パターンと、
     前記抵抗体パターンに接続し、前記多孔質セラミック基板の前記一方の面上に設けられた一対の電極パターンと、を備え、
     前記加熱部は、前記一対の電極パターン間に電流が供給されることにより前記抵抗体パターンが発熱し、
     前記多孔質セラミック基板の気孔率屈曲度係数比は21以上であり、
     前記多孔質セラミック基板の前記一方の面のうち、少なくとも前記抵抗体パターンを含む一部の面にガラス層が設けられ、前記抵抗体パターンは前記ガラス層の上に設けられ、
     前記多孔質セラミック基板内に浸入した前記エアロゾル源は、前記抵抗体パターンにより加熱され、前記エアロゾルとして放出されることを特徴とする非燃焼式吸引器。
    Power supply and
    A containment unit that can accommodate aerosol sources and
    A heating unit that atomizes the aerosol source,
    The aerosol source includes a suction port formed with a suction port for sucking atomized aerosol.
    The heating part is
    Porous ceramic substrate and
    A resistor pattern provided on one surface of the porous ceramic substrate and
    A pair of electrode patterns connected to the resistor pattern and provided on the one surface of the porous ceramic substrate.
    In the heating unit, the resistor pattern generates heat due to the supply of electric current between the pair of electrode patterns.
    The porosity bending degree coefficient ratio of the porous ceramic substrate is 21 or more.
    A glass layer is provided on at least a part of the one surface of the porous ceramic substrate including the resistor pattern, and the resistor pattern is provided on the glass layer.
    A non-combustion type suction device, wherein the aerosol source that has penetrated into the porous ceramic substrate is heated by the resistor pattern and discharged as the aerosol.
  2.  前記多孔質セラミック基板の気孔率屈曲度係数比は、26以上である請求項1の非燃焼式吸引器。 The non-combustion type suction device according to claim 1, wherein the porous ceramic substrate has a porosity bending degree coefficient ratio of 26 or more.
  3.  前記多孔質セラミック基板の平均気孔率は、40~71容積%である請求項1または請求項2に記載の非燃焼式吸引器。 The non-combustion type aspirator according to claim 1 or 2, wherein the porous ceramic substrate has an average porosity of 40 to 71% by volume.
  4.  前記多孔質セラミック基板の気孔の屈曲度係数は、2.0以下である請求項1から請求項3のいずれか一項に記載の非燃焼式吸引器。 The non-combustion type suction device according to any one of claims 1 to 3, wherein the porosity coefficient of the pores of the porous ceramic substrate is 2.0 or less.
  5.  前記多孔質セラミック基板は、0.15~72μmの平均細孔径を有する請求項1から請求項4のいずれか一項に記載の非燃焼式吸引器。 The non-combustion type suction device according to any one of claims 1 to 4, wherein the porous ceramic substrate has an average pore diameter of 0.15 to 72 μm.
  6.  前記ガラス層は、3~90μmの厚みを有する請求項1から請求項5のいずれか一項に記載の非燃焼式吸引器。 The non-combustion type suction device according to any one of claims 1 to 5, wherein the glass layer has a thickness of 3 to 90 μm.
  7.  前記ガラス層は、前記多孔質セラミック基板の一方の面上に設けられた厚膜ガラスペーストの焼結体から構成され、
     前記抵抗体パターンは、前記ガラス層の上に設けられた厚膜抵抗体ペーストの焼結体から構成され、
     前記電極パターンは、前記ガラス層の上に設けられた厚膜導電ペーストの焼結体から構成される請求項1から請求項6のいずれか一項に記載の非燃焼式吸引器。
    The glass layer is composed of a sintered body of a thick-film glass paste provided on one surface of the porous ceramic substrate.
    The resistor pattern is composed of a sintered body of a thick film resistor paste provided on the glass layer.
    The non-combustion type suction device according to any one of claims 1 to 6, wherein the electrode pattern is composed of a sintered body of a thick film conductive paste provided on the glass layer.
  8.  前記多孔質セラミック基板は、アルミナ、ジルコニア、ムライト、シリカ、チタニア、窒化珪素、炭化珪素、炭素のいずれかを主成分とし、
     前記抵抗体パターンは、銀、パラジウム、酸化ルテニウムのうちのいずれかの金属粉とガラスとを含む厚膜焼結体であり、
     前記電極パターンは、銅、ニッケル、アルミニウム、銀、白金、金のうちのいずれかの金属粉末とガラスとを含む厚膜焼結体であり、
     前記ガラス層は、Ba、B、Znのいずれかを含む厚膜焼結体である請求項7に記載の非燃焼式吸引器。
    The porous ceramic substrate contains any one of alumina, zirconia, mullite, silica, titania, silicon nitride, silicon carbide, and carbon as a main component.
    The resistor pattern is a thick film sintered body containing a metal powder of any one of silver, palladium, and ruthenium oxide and glass.
    The electrode pattern is a thick film sintered body containing a metal powder of any one of copper, nickel, aluminum, silver, platinum, and gold and glass.
    The non-combustion type suction device according to claim 7, wherein the glass layer is a thick film sintered body containing any one of Ba, B, and Zn.
  9.  前記多孔質セラミック基板の一方の面は、長手形状の面であり、
     前記一対の電極パターンは、前記長手形状の面の両端部に配置され、
     前記抵抗体パターンは、一対のU字状円弧の一端が相互に連結され且つ他端が前記一対の電極パターンのそれぞれ接続されている請求項1から請求項8のいずれか一項に記載の非燃焼式吸引器。
    One surface of the porous ceramic substrate is a surface having a longitudinal shape.
    The pair of electrode patterns are arranged at both ends of the surface of the longitudinal shape.
    The non-one of claims 1 to 8, wherein the resistor pattern has one end of a pair of U-shaped arcs connected to each other and the other end of the pair of electrode patterns connected to each other. Combustion type aspirator.
  10.  前記吸口部に香味源容器を備える請求項1から請求項9のいずれか一項に記載の非燃焼式吸引器。 The non-combustion type suction device according to any one of claims 1 to 9, wherein the mouthpiece is provided with a flavor source container.
  11.  前記香味源容器は、たばこ成分を含有している請求項10に記載の非燃焼式吸引器。 The non-combustion type aspirator according to claim 10, wherein the flavor source container contains a tobacco component.
PCT/JP2020/025599 2020-06-30 2020-06-30 Non-combustion type suction device WO2022003802A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2020/025599 WO2022003802A1 (en) 2020-06-30 2020-06-30 Non-combustion type suction device
EP20942769.9A EP4173501A1 (en) 2020-06-30 2020-06-30 Non-combustion type suction device
JP2022533298A JP7357792B2 (en) 2020-06-30 2020-06-30 Non-combustion suction device
US17/120,824 US11206870B1 (en) 2020-06-30 2020-12-14 Non-combustion suction device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/025599 WO2022003802A1 (en) 2020-06-30 2020-06-30 Non-combustion type suction device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US202017060097A Continuation 2020-06-30 2020-10-01

Publications (1)

Publication Number Publication Date
WO2022003802A1 true WO2022003802A1 (en) 2022-01-06

Family

ID=79032650

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/025599 WO2022003802A1 (en) 2020-06-30 2020-06-30 Non-combustion type suction device

Country Status (4)

Country Link
US (1) US11206870B1 (en)
EP (1) EP4173501A1 (en)
JP (1) JP7357792B2 (en)
WO (1) WO2022003802A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3528592B1 (en) * 2014-02-10 2022-07-20 Philip Morris Products S.A. Fluid permeable heater assembly for an aerosol-generating system and method for assembling a fluid permeable heater for an aerosol-generating system
US20220399280A1 (en) * 2021-06-11 2022-12-15 Macom Technology Solutions Holdings, Inc. Solderable and wire bondable part marking
CN117223908A (en) * 2022-06-06 2023-12-15 比亚迪精密制造有限公司 Atomizing core and electronic atomizing device

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05283147A (en) * 1992-03-31 1993-10-29 Toshiba Lighting & Technol Corp Thick-film resistance heating element
JP2000340349A (en) 1999-05-28 2000-12-08 Kyocera Corp Ceramic heater
JP5685152B2 (en) 2011-06-17 2015-03-18 株式会社ネイブヒート Porous heating element
WO2015046385A1 (en) * 2013-09-30 2015-04-02 日本たばこ産業株式会社 Non-combustion type flavor aspirator and capsule unit
US20160256807A1 (en) * 2013-08-30 2016-09-08 Intermet Technologies Chengdu Co., Ltd Powder sintered metallic porous body, filter element and method for improving permeability thereof
US20180184717A1 (en) * 2016-12-30 2018-07-05 Shenzhen First Union Technology Co., Ltd. Cartridge and electronic cigarette having same
JP2019506896A (en) * 2016-01-05 2019-03-14 アール・エイ・アイ・ストラテジック・ホールディングス・インコーポレイテッド Aerosol delivery device with improved fluid transfer
CN110074469A (en) * 2019-06-10 2019-08-02 珠海诗朗豪泰科技有限公司 Porous ceramics heater element and its manufacturing method
JP2019523742A (en) * 2016-05-31 2019-08-29 コーニング インコーポレイテッド Porous article and method for producing the same
CN210203364U (en) * 2019-02-27 2020-03-31 深圳市合元科技有限公司 Electronic cigarette atomizer and electronic cigarette

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6701921B2 (en) 2000-12-22 2004-03-09 Chrysalis Technologies Incorporated Aerosol generator having heater in multilayered composite and method of use thereof
US9269914B2 (en) 2013-08-01 2016-02-23 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device, electronic device, and lighting device
US10952467B2 (en) * 2017-03-16 2021-03-23 Ventus Medical Limited Mouthpiece and heater assembly for an inhalation device

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05283147A (en) * 1992-03-31 1993-10-29 Toshiba Lighting & Technol Corp Thick-film resistance heating element
JP2000340349A (en) 1999-05-28 2000-12-08 Kyocera Corp Ceramic heater
JP5685152B2 (en) 2011-06-17 2015-03-18 株式会社ネイブヒート Porous heating element
US20160256807A1 (en) * 2013-08-30 2016-09-08 Intermet Technologies Chengdu Co., Ltd Powder sintered metallic porous body, filter element and method for improving permeability thereof
WO2015046385A1 (en) * 2013-09-30 2015-04-02 日本たばこ産業株式会社 Non-combustion type flavor aspirator and capsule unit
JP2019506896A (en) * 2016-01-05 2019-03-14 アール・エイ・アイ・ストラテジック・ホールディングス・インコーポレイテッド Aerosol delivery device with improved fluid transfer
JP2019523742A (en) * 2016-05-31 2019-08-29 コーニング インコーポレイテッド Porous article and method for producing the same
US20180184717A1 (en) * 2016-12-30 2018-07-05 Shenzhen First Union Technology Co., Ltd. Cartridge and electronic cigarette having same
CN210203364U (en) * 2019-02-27 2020-03-31 深圳市合元科技有限公司 Electronic cigarette atomizer and electronic cigarette
CN110074469A (en) * 2019-06-10 2019-08-02 珠海诗朗豪泰科技有限公司 Porous ceramics heater element and its manufacturing method

Also Published As

Publication number Publication date
EP4173501A1 (en) 2023-05-03
JP7357792B2 (en) 2023-10-06
US11206870B1 (en) 2021-12-28
US20210401046A1 (en) 2021-12-30
JPWO2022003802A1 (en) 2022-01-06

Similar Documents

Publication Publication Date Title
WO2022003802A1 (en) Non-combustion type suction device
CA3086072C (en) Electronic aerosol provision system
JP7323132B2 (en) Electronic aerosol delivery system and vaporizer for electronic aerosol delivery system
JP7016395B2 (en) Cartridges, battery units and e-cigarettes
KR102190810B1 (en) Electronic steam delivery system
EP3606366B1 (en) Vaporizer unit for a personal vaporizer device
EP3146857B1 (en) Heating assembly, atomizer and electronic cigarette having same
CN113141678A (en) Method for manufacturing heating element
JP7384757B2 (en) porous ceramic heating element
CN111264910A (en) Heating module and electronic smoking set
CN113768192A (en) Atomizing core, electronic cigarette and manufacturing method of atomizing core
CN220712935U (en) Electronic atomizing device and atomizing assembly for same
WO2024053106A1 (en) Heater for atomizer, atomizer for aerosol inhaler, and aerosol inhaler
CN212279895U (en) Heating module and electronic smoking set
WO2023119665A1 (en) Non-combustion flavor inhaler body unit and non-combustion flavor inhaler
KR20240016718A (en) Ceramic liquid cartridge for aerosol-generating device with hydrophilic and hydrophobic properties
CN116406824A (en) Atomizing core unit, atomizer and aerosol generating device
CN117243420A (en) Heating plate, atomizing core, atomizer and electronic cigarette
CN117981905A (en) Atomizer and electronic atomization device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20942769

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022533298

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020942769

Country of ref document: EP

Effective date: 20230130