WO2022002120A1 - 近场通信场景下调整发送速率的方法、装置及系统 - Google Patents

近场通信场景下调整发送速率的方法、装置及系统 Download PDF

Info

Publication number
WO2022002120A1
WO2022002120A1 PCT/CN2021/103498 CN2021103498W WO2022002120A1 WO 2022002120 A1 WO2022002120 A1 WO 2022002120A1 CN 2021103498 W CN2021103498 W CN 2021103498W WO 2022002120 A1 WO2022002120 A1 WO 2022002120A1
Authority
WO
WIPO (PCT)
Prior art keywords
link
sending
receiving
physical layer
channel information
Prior art date
Application number
PCT/CN2021/103498
Other languages
English (en)
French (fr)
Inventor
王伟
邵熠阳
李�杰
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP21832552.0A priority Critical patent/EP4161141A4/en
Publication of WO2022002120A1 publication Critical patent/WO2022002120A1/zh
Priority to US18/147,509 priority patent/US20230188230A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/10Flow control between communication endpoints
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/336Signal-to-interference ratio [SIR] or carrier-to-interference ratio [CIR]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • H04B5/70Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes
    • H04B5/72Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes for local intradevice communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/25Flow control; Congestion control with rate being modified by the source upon detecting a change of network conditions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0231Traffic management, e.g. flow control or congestion control based on communication conditions
    • H04W28/0236Traffic management, e.g. flow control or congestion control based on communication conditions radio quality, e.g. interference, losses or delay
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/08Load balancing or load distribution
    • H04W28/0875Load balancing or load distribution to or through Device to Device [D2D] links, e.g. direct-mode links
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/80Services using short range communication, e.g. near-field communication [NFC], radio-frequency identification [RFID] or low energy communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/08Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
    • H04L43/0823Errors, e.g. transmission errors
    • H04L43/0829Packet loss
    • H04L43/0841Round trip packet loss
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/08Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
    • H04L43/0852Delays
    • H04L43/0864Round trip delays

Definitions

  • the present application relates to the field of communication technologies, and in particular, to a method, an apparatus, and a system for adjusting a transmission rate in a near field communication scenario.
  • congestion control based on packet loss rate
  • round-trip time (RTT) based network-assisted congestion control implemented at the network layer.
  • the above congestion control technologies can all adjust the transmission layer transmission rate of the sender to a certain extent.
  • the wireless channel is time-varying, and it is difficult for the sender to accurately increase the transmission window to adjust to the appropriate transmission layer.
  • the transmission rate specifically, if the transmission rate of the transport layer is slow, the throughput will be affected, and the link bandwidth cannot be fully utilized; if the transmission rate of the transport layer is fast, it will cause a large queuing delay or even packet loss.
  • the current transmission rate adjustment scheme of the transport layer has poor performance of the transmission rate adjustment of the transport layer.
  • the embodiments of the present application provide a method, device, and system for adjusting a transmission rate in a near-field communication scenario, which can improve the performance of transmission rate adjustment in a near-field wireless communication scenario.
  • an embodiment of the present application provides a method for adjusting a sending rate in a near field communication scenario, where the method is performed by a data sending device or a component (such as a chip) in the sending device, or other components that support the function of the sending device.
  • the method includes:
  • the layer channel information and the physical layer channel information of the receiving link are used to adjust the transmission rate of the transmission layer of the transmitting device.
  • the near field communication environment refers to the direct connection between the sender and the receiver through a wireless network, for example, the receiver and the sender communicate through wireless fidelity direct (Wi-Fi-direct), or the sender and the receiver communicate with each other through wireless fidelity direct (Wi-Fi-direct).
  • the terminals are only connected through a 1-hop wireless forwarding device.
  • the wireless forwarding device may be a non-3rd generation partnership project (3GPP) device, such as a Wi-Fi device, and the wireless forwarding device may also be a 3GPP device, such as a fourth generation (4th generation, 4G) mobile communication device technology base station, or fifth generation (5th generation, 5G) mobile communication technology base station.
  • 3GPP non-3rd generation partnership project
  • 4G fourth generation
  • 5G fifth generation
  • the sending link where the sending device is located refers to the link where the sending device communicates directly with a device.
  • the sending device and the device may be referred to as two access devices of the sending link.
  • This device may be a receiving device, or it may be another network device such as a forwarding device.
  • the receiving link where the receiving device is located refers to the link in which the receiving device communicates directly with a device.
  • the receiving device and the device may be referred to as two access devices of the receiving link.
  • the device may be a sending device, or it may be another network device, such as a forwarding device.
  • the physical layer channel information can represent the real state of the physical channel.
  • a link usually refers to a line from a node to an adjacent node without any other switching nodes in between.
  • the transport layer information includes but is not limited to packet loss rate and RTT.
  • Transport layer information can reflect network state changes, such as cross traffic, that is, other user traffic.
  • Connection refers to the connection between the sending device and the receiving device.
  • the connection can be used to transmit data between a sending device (sender for short) and a receiving device (receiver for short).
  • a connection transmits data using one or more paths in the network topology.
  • the path includes the end device where the sender and receiver are located, and the network devices between them.
  • Path 1 includes phone A, phone B, and the access point in between.
  • the transmission rate of the transport layer may refer to the rate at which the transport layer sends information to its lower layer (eg, the network layer in the OSI model shown in FIG. 1A ).
  • the above-mentioned transmission rate adjustment method is used to adjust the rate based on the channel information of the physical layer.
  • the transmission layer information of the upper layer and the physical layer information of the bottom layer can be combined to match the real physical layer rate of the communication link as much as possible, reducing the The probability that the transmission rate does not match the physical layer rate of the communication link resulting in packet loss or queuing.
  • the sending device and the receiving device are usually directly connected, or only connected through a one-hop forwarding device. The sending device can not only obtain the physical layer channel information of the sending link, but also use the sharing mechanism.
  • Obtaining the physical layer channel information of the receiving link means that the sending device can know the global physical layer channel information of the near-field network, and the sending rate calculated based on the global physical layer channel information is more accurate. Data transmission based on the precise transmission rate can improve transmission efficiency and reduce data transmission time.
  • the upper layers of the protocol stack can perceive and extract the underlying information (such as the physical layer channel information), so that the upper layer information (transport layer) and the underlying information (physical layer channel information) can be integrated later to adjust such as the transport layer.
  • the transmission rate can improve the performance of rate adjustment by considering multiple layers of information.
  • the sending device acquires the physical layer channel information of the sending link where the sending device is located, which is specifically implemented as: the sending device collects the physical layer channel information of the sending link through a system interface or a network card driver.
  • the sending device collects the physical layer channel information of the sending link through a system interface or a network card driver.
  • the sending device collects the physical layer channel information of the sending link through a system interface or a network card driver.
  • the sending device periodically calls the getLinkSpeed (may have other names) interface to obtain the data of the connected link (such as Wi- Fi link) physical layer rate.
  • the transmission rate of the transport layer may be adjusted according to the acquired physical layer rate information.
  • acquiring the physical layer channel information of the receiving link where the receiving device is located includes: receiving a first packet from the receiving device, where a part of the first packet corresponding to the transport layer is encapsulated with the The physical layer channel information of the link is received; the part corresponding to the transport layer in the first packet is further encapsulated with the transport layer information.
  • acquiring the physical layer channel information of the receiving link where the receiving device is located includes: receiving a second packet from the receiving device, where a part of the second packet corresponding to the transport layer is encapsulated with the receiving the physical layer channel information of the link; the part corresponding to the transport layer in the second packet is further encapsulated with the transport layer information;
  • the second packet further includes a receiving device identification bit; the receiving device identification bit is set, and the set receiving device identification bit is used to indicate that the physical layer channel information comes from the receiving device.
  • the method further includes: sending a third packet to the forwarding device, where the third packet includes a request identification bit, where the request identification bit is used to indicate whether the sending device requests to receive physical layer channel information of the link.
  • the method further includes: sending a third packet to the receiving device, where the third packet includes a request identification bit, and the request identification bit is used to indicate whether the sending device requests Physical layer channel information of the receiving link.
  • an embodiment of the present application provides a method for adjusting a sending rate in a near field communication scenario, where the method is performed by a forwarding device or a component (such as a chip) in the forwarding device, or other components that support the function of the forwarding device.
  • the method includes: acquiring the physical layer channel information of the receiving link where the data receiving device is located and the connected transport layer information, and sending the physical layer channel information and the transport layer information of the receiving link to the data sending device.
  • connection is a connection between the sending device and the receiving device
  • the forwarding device obtains the physical layer channel information of the receiving link where the receiving device is located, which may be obtained by the forwarding device from the receiving device, or may be obtained by the forwarding device locally stored physical layer channel information of the receiving link.
  • the forwarding device obtains the transport layer information, which may be that the forwarding device obtains the transport layer information from the receiving device, or the forwarding device obtains the stored transport layer information locally.
  • sending the physical layer channel information of the receiving link to the sending device includes: sending a first packet to the sending device, where the part of the first packet corresponding to the transport layer is encapsulated with the physical layer of the receiving link channel information;
  • the first packet further includes a forwarding device identification bit; the forwarding device identification bit is set, and the set forwarding device identification bit is used to indicate that the physical layer channel information comes from the forwarding device.
  • the method further includes: receiving a third packet from the sending device, where the third packet includes a request identification bit, where the request identification bit is used to indicate whether the sending device requests to receive physical layer channel information of the link.
  • an embodiment of the present application provides a method for adjusting a transmission rate in a near field communication scenario, where the method is performed by a receiving device or a component (such as a chip) in the receiving device, or other components that support the function of the receiving device.
  • the method includes: acquiring physical layer channel information of a receiving link where a receiving device is located, and sending the physical layer channel information of the receiving link to a sending device.
  • sending the physical layer channel information of the receiving link to the sending device includes: sending a second packet to the sending device, where the part of the second packet corresponding to the transport layer is encapsulated with the physical layer channel of the receiving link information;
  • the second packet further includes a receiving device identification bit; the receiving device identification bit is set, and the set receiving device identification bit is used to indicate that the physical layer channel information comes from the receiving device.
  • the method further includes: receiving a third packet from the sending device, where the third packet includes a request identification bit, where the request identification bit is used to indicate whether the sending device requests to receive physical layer channel information of the link.
  • the method further includes: the data receiving device obtains the transport layer information of the connection with the data sending device, and sends the transport layer information to the sending device.
  • the receiving device sends a packet to the sending device, and the part of the packet corresponding to the transport layer is encapsulated with transport layer information.
  • an embodiment of the present application provides a sending apparatus, and the apparatus may be the aforementioned sending device or a component (such as a chip) in the sending device, or other components that support the function of the sending device.
  • the device includes:
  • the acquisition module is used to acquire the transmission layer information of the connection, the physical layer channel information of the transmission link where the data transmission device is located, and the physical layer channel information of the reception link where the data reception device is located, and the connection is the connection between the transmission device and the transmission link. the connection between the receiving devices;
  • An adjustment module configured to adjust the transmission rate of the transmission layer of the transmission device according to the transmission layer information, the physical layer channel information of the transmission link, and the physical layer channel information of the reception link.
  • acquiring the physical layer channel information of the receiving link where the receiving device is located includes: receiving a first packet from the receiving device, where a part of the first packet corresponding to the transport layer is encapsulated with the The physical layer channel information of the link is received; the part corresponding to the transport layer in the first packet is further encapsulated with the transport layer information.
  • acquiring the physical layer channel information of the receiving link where the receiving device is located includes: receiving a second packet from the receiving device, where a part of the second packet corresponding to the transport layer is encapsulated with the receiving the physical layer channel information of the link; the part corresponding to the transport layer in the second packet is further encapsulated with the transport layer information;
  • the second packet further includes a receiving device identification bit; the receiving device identification bit is set, and the set receiving device identification bit is used to indicate that the physical layer channel information comes from the receiving device.
  • the device further includes:
  • a sending module configured to send a third message to the receiving device, where the third message includes a request identification bit, and the request identification bit is used to indicate whether the sending device requests a physical layer channel of the receiving link information.
  • an embodiment of the present application provides a forwarding apparatus, where the forwarding apparatus may be the foregoing forwarding device or a component (such as a chip) in the forwarding device, or other components that support the function of the forwarding device.
  • the forwarding device includes:
  • an acquisition module used for acquiring physical layer channel information of the receiving link where the data receiving device is located and acquiring the transport layer information of the connection;
  • the connection is the connection between the data transmitting device and the receiving device;
  • the sending module is used for sending the physical layer channel information and the transport layer information of the receiving link to the sending device.
  • the sending module is specifically configured to: send a first message to the sending device, where the part of the first message corresponding to the transport layer is encapsulated with physical layer channel information of the receiving link;
  • the first packet further includes a forwarding device identification bit; the forwarding device identification bit is set, and the set forwarding device identification bit is used to indicate that the physical layer channel information comes from the forwarding device.
  • the forwarding device also includes:
  • the receiving module is configured to receive a third packet from the sending device, where the third packet includes a request identification bit, and the request identification bit is used to indicate whether the sending device requests to receive physical layer channel information of the link.
  • an embodiment of the present application provides a receiving apparatus, where the receiving apparatus may be the above-mentioned receiving device or a component (such as a chip) in the receiving device, or other components that support the function of the receiving device.
  • the receiving device includes:
  • an acquisition module used to acquire the physical layer channel information of the receiving link where the receiving device is located
  • the sending module is used to send the physical layer channel information of the receiving link to the sending device.
  • the sending module is specifically configured to: send a second message to the sending device, where the part corresponding to the transport layer in the second message is encapsulated with physical layer channel information of the receiving link;
  • the second packet further includes a receiving device identification bit; the receiving device identification bit is set, and the set receiving device identification bit is used to indicate that the physical layer channel information comes from the receiving device.
  • the receiving device also includes:
  • the receiving module is configured to receive a third packet from the sending device, where the third packet includes a request identification bit, and the request identification bit is used to indicate whether the sending device requests to receive physical layer channel information of the link.
  • the obtaining module is further configured to obtain the transport layer information of the connection, wherein the connection is the connection between the sending device and the receiving device;
  • the sending module is also used for sending transport layer information to the sending device.
  • the transport layer information is sent to the sending device through the forwarding device.
  • the present application provides a communication system, comprising:
  • a forwarding device used to send the physical layer channel information of the receiving link where the receiving device of the data is located to the sending device of the data, and the transmission layer information of the connection to the sending device, wherein the connection is the sending device and the receiving device. connection between said receiving devices;
  • the sending device is configured to acquire physical layer channel information of the sending link where the sending device is located, and receive the transport layer information and the physical layer channel information of the receiving link from the forwarding device; according to the transmission Layer information, physical layer channel information of the sending link and physical layer channel information of the receiving link, to adjust the sending rate of the transmission layer of the sending device.
  • the forwarding device configured to send the physical layer channel information of the receiving link where the receiving device is located to the sending device, includes: sending a first packet to the sending device, the first packet The part corresponding to the transport layer in the message is encapsulated with the physical layer channel information of the receiving link;
  • the first packet further includes a forwarding device identification bit; the forwarding device identification bit is set, and the set forwarding device identification bit is used to indicate that the physical layer channel information comes from the forwarding device;
  • the part corresponding to the transport layer in the first packet is further encapsulated with the transport layer information.
  • the forwarding device is further configured to receive a third packet from the sending device, where the third packet includes a request identification bit, and the request identification bit is used to indicate whether the sending device requests Physical layer channel information of the receiving link.
  • the present application provides a communication system, comprising:
  • a receiving device configured to send the physical layer channel information of the receiving link where the receiving device of the data is located to the sending device of the data;
  • a forwarding device configured to send transport layer information of a connection to the sending device, where the connection is a connection between the sending device and the receiving device;
  • the sending device is configured to acquire physical layer channel information of the sending link where the sending device is located, and receive the transport layer information and the physical layer channel information of the receiving link from the receiving device; according to the transmission Layer information, physical layer channel information of the sending link and physical layer channel information of the receiving link, to adjust the sending rate of the transmission layer of the sending device.
  • the forwarding device configured to send the connected transport layer information to the sending device, includes: receiving the transport layer information from the receiving device, and sending the transport layer information to the sending device, wherein the connection is between the sending device and the sending device. connection between the receiving devices.
  • the forwarding device obtains the above-mentioned transport layer information stored locally, and sends the transport layer information to the sending device.
  • the receiving device configured to send the physical layer channel information of the receiving link where the receiving device is located to the sending device, includes: sending a second packet to the sending device, the The part corresponding to the transport layer in the second packet is encapsulated with the physical layer channel information of the receiving link; the part corresponding to the transport layer in the second packet is further encapsulated with the transport layer information;
  • the second packet further includes a receiving device identification bit; the receiving device identification bit is set, and the set receiving device identification bit is used to indicate that the physical layer channel information comes from the receiving device.
  • the receiving device is further configured to receive a third packet from the sending device, where the third packet includes a request identification bit, and the request identification bit is used to indicate whether the sending device requests Physical layer channel information of the receiving link.
  • the physical layer channel information of the transmission link includes a combination of one or more of the following: physical layer rate information of the transmission link, RSSI, the signal-to-noise ratio (SNR) of the transmission link, the actual service rate of the transmission link, the number of access devices in the transmission link, the traffic of the access devices in the transmission link, the transmission chain
  • the physical layer channel information of the receiving link includes a combination of one or more of the following: the physical layer rate information of the receiving link, the RSSI of the receiving link, the SNR of the receiving link, the receiving link The actual service rate of the link, the number of access devices of the receive link, the traffic of the access device of the receive link, the protocol type of the access device of the receive link, the connection of the receive link type of incoming device, frame aggregation information of the receive link, bandwidth of the receive link, CQI of the receive link, and resources of the receive link.
  • the transmission link bandwidth refers to the bandwidth resources of the transmission link, and specifically, refers to the maximum bandwidth of the path in the average transmission direction.
  • the receive link bandwidth refers to the bandwidth resources of the receive link, and the maximum bandwidth of the path in the mean receive direction.
  • the actual service rate can refer to the sending rate of the application.
  • the frame aggregation information may be, but not limited to, the number of MAC frames aggregated into an aggregated media access control layer protocol data unit (aggregate-media access control protocol data unit, AMPDU) at the physical layer.
  • aggregate-media access control protocol data unit AMPDU
  • the protocol type of the access device may refer to a wireless fidelity (wireless fidelity, Wi-Fi) protocol type.
  • a wireless fidelity (wireless fidelity, Wi-Fi) protocol type can be the 802.11a/b/g/n/ac protocol.
  • the type of the access device can be the chip brand and chip model of the access device.
  • the transport layer information includes packet loss rate and/or round trip delay RTT.
  • the transmission rate of the transport layer is less than or equal to a rate upper limit; the rate upper limit is related to the physical layer channel information of the transmission link and the physical layer channel of the reception link. information about.
  • V 1 C 1 *R 1 *I 1 ⁇ D 1
  • V 2 C 2 *R 2 *I 2 ⁇ D 2
  • V 1 represents the maximum rate of the transmission link
  • R 1 represents the transmission
  • C 1 represents the effective data ratio of the transmission link
  • I 1 represents the interference factor of the transmission link
  • D 1 represents the second deviation factor
  • V 2 represents the maximum rate of the receiving link
  • R 2 represents the physical layer rate of the receiving link
  • C 2 represents the effective data ratio of the receiving link
  • I 2 represents the interference factor of the receiving link
  • D 2 represents the third deviation factor
  • I 2 is related to the number of receiving link access devices and the traffic of receiving link access devices.
  • the above interference factors and deviation factors can be regarded as errors caused by the mean value system.
  • the first packet further includes a forwarding device identification bit; the forwarding device identification bit is set, and the set forwarding device identification bit is used to indicate the The physical layer channel information comes from the forwarding device.
  • the request identification bit is set, indicating that the sending device requests physical layer channel information of the receiving link.
  • the request flag is 0, indicating that the sending device does not request to receive the physical layer channel information of the link.
  • the third packet does not include a request identification bit, that is, the request identification bit is default, and in this case, it also means that the sending device does not request to receive the physical layer channel information of the link .
  • the present application provides a communication device for implementing the function of the sending device in any of the above aspects, or for implementing the function of the forwarding device in any of the above aspects, or for implementing any of the above aspects. function of the receiving device.
  • the present application provides a communication device having a function of implementing the transmission rate adjustment method in any one of the foregoing aspects.
  • This function can be implemented by hardware or by executing corresponding software by hardware.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • a communication device comprising: a processor and a memory; the memory is used for storing computer-executed instructions, and when the communication device is running, the processor executes the computer-executed instructions stored in the memory, so that the The communication apparatus performs the transmission rate adjustment method according to any one of the above aspects.
  • a twelfth aspect provides a communication device, comprising: a processor; the processor is coupled to a memory, and after reading an instruction in the memory, executes the sending rate adjustment method according to any one of the preceding aspects according to the instruction.
  • an embodiment of the present application provides a communication apparatus.
  • the apparatus may be a chip system, and the chip system may include a processor and a memory, for implementing the functions of the methods described in any of the foregoing aspects.
  • the chip system can be composed of chips, and can also include chips and other discrete devices.
  • a fourteenth aspect provides a communication apparatus, which may be a circuit system, the circuit system comprising a processing circuit configured to perform the transmission rate adjustment method of any one of the above aspects.
  • the embodiments of the present application further provide a computer-readable storage medium, including instructions, which, when executed on a computer, cause the computer to execute the method of any one of the foregoing aspects.
  • the embodiments of the present application further provide a computer program product, including instructions, which, when executed on a computer, cause the computer to execute the method of any one of the foregoing aspects.
  • an embodiment of the present application provides a system, where the system includes the sending device of any one of the fourth aspect and the forwarding device of any one of the fifth aspect, or includes the sending device of any one of the fourth aspect and the first The receiving device of any one of the six aspects, or the transmitting device of any one of the fourth aspect, the forwarding device of any one of the fifth aspect, and the receiving device of any one of the sixth aspect.
  • FIG. 1A and FIG. 1B are schematic diagrams of an end-to-end rate adjustment method provided by an embodiment of the present application.
  • FIG. 2 is a schematic diagram of an end-to-end rate adjustment method provided by an embodiment of the present application.
  • FIG. 3 is a schematic diagram of a system structure provided by an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of a device provided by an embodiment of the present application.
  • 5-6 are schematic flowcharts of a method for adjusting a transmission rate provided by an embodiment of the present application.
  • FIG. 7 is a schematic flowchart of physical layer channel information negotiation according to an embodiment of the present application.
  • FIGS. 8 to 11 are schematic flowcharts of a method for adjusting a transmission rate provided by an embodiment of the present application.
  • FIG. 12 is a schematic diagram of an encapsulation structure of physical layer channel information provided by an embodiment of the present application.
  • FIG. 13 is a schematic diagram of a test scenario provided by an embodiment of the present application.
  • first and second in the description and drawings of the present application are used to distinguish different objects, or to distinguish different processing of the same object, rather than to describe a specific order of the objects.
  • At least one means one or more
  • “Plural” means two or more.
  • A/B can represent A or B.
  • references to the terms “comprising” and “having” in the description of this application, and any variations thereof, are intended to cover non-exclusive inclusion.
  • a process, method, system, product or device comprising a series of steps or units is not limited to the listed steps or units, but optionally also includes other unlisted steps or units, or optionally also Include other steps or units inherent to these processes, methods, products or devices.
  • the seven-layer architecture can include application layer, presentation layer, session layer, transport layer, network layer, link layer, and physical layer from top to bottom.
  • OSI open systems interconnection
  • the seven-layer architecture can include application layer, presentation layer, session layer, transport layer, network layer, link layer, and physical layer from top to bottom.
  • the data transmission capability can be improved by adjusting the transmission rate of the transmission layer, thereby improving the communication efficiency.
  • congestion control schemes as follows:
  • the essence of the algorithm is the negative feedback control based on the feedback information from the network side.
  • Algorithm principle See Figure 1B.
  • the algorithm makes model assumptions about the network, which usually guarantees that the algorithm can converge to an equilibrium point in a mathematical sense.
  • the sender transmits data to the receiver, and the algorithm continuously adjusts the rate of the observed signal feedback.
  • the algorithm increases the sending window (or Congestion window) to adjust the sending rate; when the sender receives the signal feedback from the receiver, the algorithm reduces the sending rate according to the method specified by the model.
  • the congestion control algorithm at the sender continuously iterates the above process to detect the available capacity of the communication link.
  • Reno based on transmission control protocol is a typical end-to-end congestion control scheme. According to the model assumptions made by Reno for the network, see Figure 2, the Reno algorithm is divided into four stages: slow start, congestion avoidance, fast retransmission and fast recovery.
  • Slow start phase This phase starts without sending a lot of data. Instead, it is necessary to detect the congestion degree of the network first. That is to say, when there is no packet loss, the sender will increase the congestion window (CWND) by one unit every time it receives an acknowledgement message (acknowledge, ACK), and each RTT is congested. The window can be doubled, growing exponentially. If packet loss occurs, the sender halves the congestion window size and enters the congestion avoidance phase. Alternatively, when the congestion window size reaches the slow start threshold, the congestion avoidance phase is entered.
  • CWND congestion window
  • acknowledgement message acknowledgement message
  • the unit of the congestion window size is the maximum single segment size (max segment size, MSS).
  • Congestion avoidance phase In this phase, the congestion window size increases by one unit per RTT, and the congestion window size increases linearly.
  • the sender receives three duplicate ACKs (TD) for a packet, it considers that the next packet of the packet is lost and will enter the fast retransmission stage.
  • Fast retransmission phase In this phase, the sender immediately retransmits lost packets instead of waiting for a timeout to retransmit. After this phase is completed, the fast recovery phase is entered.
  • Fast recovery phase In this phase, the sender modifies the slow start threshold to half of the current congestion window value, while the congestion window value is equal to the slow start threshold, and then enters the congestion avoidance phase and repeats the above process.
  • the sender can enter the slow start phase.
  • the sender increases or decreases the transmission window according to the estimated model to adjust the transmission rate.
  • the time-varying of the communication channel is significant, the jitter of the indicators such as the packet loss rate is relatively large, and the statistics of the packet loss rate may be inaccurate.
  • the sending rate is calculated based on the inaccurate packet loss rate and other indicators, so that the calculated sending rate is not accurate enough. It can be seen that in the near-field wireless communication scenario, the transmission rate adjustment scheme of end-to-end congestion control has poor performance of transmission rate adjustment.
  • a network forwarding device In network-assisted congestion control, a network forwarding device (eg, a wireless access point) provides congestion indication information to the sender, indicating a specific congestion state of the network.
  • the network forwarding device usually sends the congestion indication information to the sender in an out-band (out-band) manner or an in-band (in-band) manner.
  • the network forwarding device In the out-of-band mode, the network forwarding device directly sends the congestion indication information to the sender in the form of a blocking packet.
  • the network forwarding device marks or updates a field in the packet flowing from the sender to the receiver. Once the receiver receives a marked packet, the receiver sends congestion indication information to the sender.
  • Explicit congestion notification is a typical in-band network-assisted congestion control scheme.
  • the router encapsulates and sets the congestion experienced (CE) bit in the packet destined for the receiver. After receiving the data packet in which the CE bit is set, the receiving end sends the data packet to the transmitting end, which carries the set CE bit. After receiving the data packet with the CE bit set, the sender knows that the network is congested, thereby reducing the sending rate.
  • CE congestion experienced
  • the network forwarding device In the transmission rate adjustment scheme of network-assisted congestion control, the network forwarding device is required to support network-assisted related functions, and the network forwarding device has high implementation complexity and high deployment cost.
  • an embodiment of the present application provides a transmission rate adjustment method, which can be applied in a data transmission process in a near-field wireless network environment to adjust the transmission rate of the transmission layer.
  • the transmitted data includes but is not limited to files, videos, etc.
  • Files such as but not limited to cell phone clone data.
  • the near-field wireless network environment means that the sender and the receiver are directly connected through a wireless network, for example, the receiver and the sender communicate through wireless fidelity direct (Wi-Fi-direct), or, the sender and The receiving end is only connected through a 1-hop wireless forwarding device.
  • the wireless forwarding device may be a non-3rd generation partnership project (3GPP) device, such as a Wi-Fi device, and the wireless forwarding device may also be a 3GPP device, such as a fourth generation (4th generation, 4G) mobile communication device technology base station, or fifth generation (5th generation, 5G) mobile communication technology base station.
  • 3GPP non-3rd generation partnership project
  • the data sender sends data to the data receiver through the near-field wireless network.
  • the near field network system includes a sending device (mobile phone A) and a receiving device (mobile phone B). Sending and receiving devices can be directly connected and communicate directly.
  • the near field network system includes a sending device (mobile phone A), a receiving device (mobile phone B), and a forwarding device (access point).
  • the sending device can directly exchange data with the receiving device.
  • the sending device can connect to the receiving device through a data hotspot and send data to the receiving device.
  • the sending device can also send data to the receiving device through the forwarding device.
  • the sending device and the receiving device may be communication devices with wireless communication function, or a chip or chip system that can be provided in the device, or other components with wireless communication function.
  • UE User Equipment
  • the sending device and the receiving device may be communication devices with wireless communication function, or a chip or chip system that can be provided in the device, or other components with wireless communication function.
  • desktop, laptop, handheld, vehicle-mounted User Equipment (UE) devices, etc. such as smart phones, cellular phones, smart watches, desktops, tablet computers, smart TV boxes, ultra-mobile personal computers (Ultra -mobile Personal Computer, UMPC), netbooks, personal digital assistants (Personal Digital Assistant, PDA), portable multimedia players (Portable Multimedia Player, PMP), dedicated media players, consumer communication equipment, wearable devices, AR (augmented Reality)/VR (Virtual Reality) devices and other types of communication devices.
  • UE User Equipment
  • the above-mentioned forwarding device is a device with a wireless transceiver function, or a chip or a chip system that can be provided in the device, or other components with a wireless transceiver function.
  • the forwarding device includes but is not limited to: an access point (AP) in a wireless fidelity (WiFi) system, such as a home gateway, router, server, switch, bridge, etc., an evolved node B (evolved Node B, eNB), Radio Network Controller (RNC), Node B (Node B, NB), Base Station Controller (BSC), Base Transceiver Station (BTS), Home Base station (for example, home evolved NodeB, or home Node B, HNB), baseband unit (BBU), wireless relay node, wireless backhaul node, transmission point (transmission and reception point, TRP or transmission point, TP) etc., it can also be 5G, such as a gNB in a new radio (NR) system, or a transmission point (TRP or TP
  • FIG. 4 is a schematic diagram of a hardware structure of a communication device according to an embodiment of the present application.
  • the communication device 400 includes at least one processor 401 , memory 403 and at least one communication interface 404 .
  • the memory 403 may also be included in the processor 401 .
  • the processor 401 may be composed of one or more processing units, and the processing unit may be a central processing unit (CPU), an application-specific integrated circuit (ASIC), or one or more processing units for controlling An integrated circuit implemented by the program program of this application.
  • CPU central processing unit
  • ASIC application-specific integrated circuit
  • the communication interface may be a module, a circuit, an interface, or any other device capable of implementing a communication function, and is used to communicate with other devices.
  • the communication interface can be an independently set transmitter, and the transmitter can be used to send information to other devices, and the communication interface can also be an independently set receiver, used to receive information from other devices.
  • the communication interface may also be a component that integrates the functions of sending and receiving information, and the embodiment of the present application does not limit the specific implementation of the communication interface.
  • the memory 403 may be read-only memory (ROM) or other types of memory modules that can store static information and instructions, random access memory (RAM) or other types that can store information and instructions dynamically
  • the storage module can also be electrically erasable programmable read-only memory (electrically erasable programmable read-only memory, EEPROM), optical disc, magnetic disk or other magnetic storage devices.
  • the memory may exist independently and be connected to the processor through a communication line. The memory can also be integrated with the processor.
  • the memory 403 is used for storing computer-executed instructions, and the computer-executed instructions can be invoked by one or more processing units in the processor 401 to execute corresponding steps in each method provided in the following embodiments.
  • the computer-executed instructions in the embodiments of the present application may also be referred to as application code, instructions, computer programs, or other names, which are not specifically limited in the embodiments of the present application.
  • the communication device 400 may include multiple processors, such as the processor 401 and the processor 407 in FIG. 4 . Each of these processors can be a single-core processor or a multi-core processor.
  • a processor herein may refer to one or more devices, circuits, and/or processing cores for processing data (eg, computer program instructions).
  • the communication device 400 may further include an output device 405 and an input device 406 .
  • the output device 405 is in communication with the processor 401 and can display information in a variety of ways.
  • the output device 405 may be a liquid crystal display (LCD), a light emitting diode (LED) display device, a cathode ray tube (CRT) display device, or a projector (projector) Wait.
  • Input device 406 is in communication with processor 401 and can receive user input in a variety of ways.
  • the input device 406 may be a mouse, a keyboard, a touch screen device, a sensor device, or the like.
  • FIG. 4 is an exemplary structural diagram of a communication device. It should be understood that the illustrated communication device is only an example, and that in practical applications the communication device may have more or less components than those shown in FIG. 4, two or more components may be combined, Or can have different component configurations.
  • the above-mentioned communication device 400 may be a general-purpose device or a dedicated device, and the embodiment of the present application does not limit the type of the communication device 400 .
  • the sending device or the receiving device or the forwarding device may be a device having a similar structure in FIG. 4 .
  • the sending rate adjustment method provided by the embodiment of the present application includes the following steps:
  • the sending device acquires physical layer channel information of the sending link where the sending device is located, physical layer channel information of the receiving link where the receiving device is located, and transport layer information between connections.
  • the connection is the connection between the sending device and the receiving device.
  • the sending link where the sending device is located refers to the link to which the sending device (mobile phone A) is directly connected.
  • the receiving link where the receiving device is located refers to the link to which the receiving device (mobile phone B) is directly connected.
  • the near-field network in this embodiment of the present application may be a non-3GPP standard network, such as a Wi-Fi network.
  • the sending device, the receiving device, and the forwarding device (if any) need to support the non-3GPP standard.
  • the physical layer channel information includes but is not limited to a combination of one or more of the following: link physical layer rate information, link RSSI, link signal-to-noise ratio (SNR), link The actual service rate, the number of access devices on the link, the traffic of each access device, the frame aggregation information of the link, and the link bandwidth.
  • the near-field network may also be a 3GPP standard network, such as a 4G/5G wireless network.
  • the sending device, the receiving device and the forwarding device need to support the 3GPP standard.
  • the physical layer channel information includes but is not limited to a combination of one or more of the following: the physical layer rate of the link, the frame aggregation information of the link, the channel quality indicator (CQI) of the link, the link bandwidth, the link The number of access devices on the route, the traffic of each access device, the protocol type of each access device, and the type of each access device.
  • the physical layer channel information represents the real state of the physical channel.
  • the transport layer information includes, but is not limited to, any one or more of the following information: lossrate, RTT, throughput.
  • Transport layer information can reflect network state changes, such as cross traffic, that is, other user traffic.
  • Physical layer channel information can be shared among sending devices, receiving devices, and forwarding devices. Specifically, each device collects the physical layer channel information of the connected link, and can send the collected physical layer channel information to other devices.
  • the protocol stacks of the sending device, the receiving device, and the forwarding device need to support the function of reading and writing physical layer channel information.
  • S601 may include the following steps: S6011, the sending device collects physical layer channel information of the sending link; S6012, the sending device obtains from the forwarding device or the receiving device Receive the physical layer channel information of the link; S6013, the sending device obtains the transport layer information.
  • that the sending device obtains the physical layer channel information of the receiving link from the forwarding device may refer to that the sending device obtains the physical layer channel information of the receiving link collected by the forwarding device.
  • the transmitting device acquires the physical layer channel information of the receiving link from the receiving device, which may refer to acquiring the physical layer channel information of the receiving link collected by the receiving device.
  • This embodiment of the present application does not limit the execution sequence between S6011 and S6012.
  • the device collects the physical layer channel information of the directly connected link, specifically, the device collects the physical layer channel information of the connected link through a system interface or a network card driver. That is, the above S6011 may be specifically implemented as: the sending device collects the physical layer channel information of the sending link through the system interface or the network card driver.
  • the sending device collects the physical layer channel information of the sending link through the system interface or the network card driver.
  • the sending device periodically calls the getLinkSpeed (may have other names) interface to obtain the data of the connected link (such as Wi- Fi link) physical layer rate.
  • the physical layer channel information acquired by the device may be used for adjusting the transmission rate of the device.
  • the physical layer channel information may also be encapsulated in a message and provided to the peer device for adjustment of the sending rate of the peer device.
  • the device collects physical layer channel information in real time. Or, optionally, the device periodically collects physical layer channel information. Among them, the collection period can be flexibly set.
  • an information sharing negotiation process may be completed in advance between devices.
  • the information sharing negotiation process includes the following steps:
  • the sending device sends a first negotiation message to the forwarding device.
  • the first negotiation message is used to determine whether the forwarding device supports providing physical layer channel information, that is, whether it supports sharing the physical layer channel information acquired by the forwarding device with other devices. Provides physical layer channel information, also known as support information subscription.
  • a forwarding device collects more physical layer channel information than a receiving device.
  • the forwarding device can collect the number of devices connected to the link, device traffic, and so on.
  • the sending device preferentially initiates negotiation with the forwarding device, so as to obtain more physical layer channel information.
  • the sending device sends a first negotiation message to the forwarding device when accessing the forwarding device.
  • the forwarding device determines whether to support providing physical layer information to the sending device, and if so, execute S702a shown in (a) in FIG. 7; S702b shown in (b).
  • the forwarding device sends a first negotiation response to the sending device.
  • the first negotiation response is used to indicate that the forwarding device supports providing physical layer channel information.
  • the forwarding device sends a second negotiation response to the sending device, or does not respond to the first negotiation message.
  • the second negotiation response is used to indicate that the forwarding device does not support providing physical layer channel information.
  • the information sharing negotiation process between the sending device and the receiving device includes the following steps:
  • the sending device sends a second negotiation message to the receiving device.
  • the second negotiation message is used to determine whether the receiving device supports providing physical layer channel information.
  • the receiving device sends a third negotiation response to the sending device.
  • the third negotiation response is used to indicate that the receiving device supports providing physical layer channel information.
  • the receiving device sends a fourth negotiation response or no response to the second negotiation message to the sending device.
  • the fourth negotiation response is used to indicate that the receiving device does not support providing physical layer channel information.
  • devices can negotiate to obtain the provider of physical layer information.
  • the physical layer channel information provided by the forwarding device is preferentially used, so that the physical layer channel information of the opposite end can be obtained quickly.
  • the physical layer channel information provided by the terminal side here, the receiving device side
  • the transmitting device uses the physical layer channel information of the transmission link to determine the transmission rate. .
  • terminal devices are connected through, for example, AP
  • neither the receiving device nor the forwarding device may support information subscription.
  • the device needs to be modified to support related functions, and the complexity of the device is relatively high, resulting in limited application scope.
  • the devices forwarding device and receiving device
  • the sending device can still determine the sending rate by using the physical layer channel information of the sending link. It can be seen that in the embodiment of the present application, even if the device is not modified, the transmission rate can be determined, and the application scope is not limited.
  • a device can obtain other links (ie, physical layer channel information of links not directly connected to the device) from other devices.
  • the specific process of the device acquiring the physical layer channel information of the other link is described below by taking the sending device acquiring the physical layer channel information of the receiving link from other devices (ie, the forwarding device or the receiving device) as an example.
  • the sending device sends a third packet to the forwarding device.
  • the forwarding device receives the third packet from the sending device.
  • the third packet includes a request identification bit.
  • the transport layer protocol can be improved, including improving the format of the transport layer message.
  • the message is encapsulated into the transport layer information (such as but not limited to packet loss rate, RTT, etc.), and encapsulated into the relevant information of the physical layer.
  • the relevant information of the physical layer includes a custom packet header, and the custom packet header includes a request flag bit (represented by D), a forwarding device flag bit (represented by F), and a receiving device flag bit (represented by R).
  • the related information of the physical layer may further include a type-length-value (type-length-value, TLV) Number, physical layer channel information, and the like.
  • the protocol stacks of the sending device, the receiving device, and the forwarding device need to support the function of reading and writing related flag bits.
  • the request identification bit is used to indicate whether the sending device requests to receive physical layer channel information of the link.
  • the forwarding device identification bit F is used to indicate whether the physical layer channel information comes from the forwarding device.
  • the receiving device identification bit R is used to indicate whether the physical layer channel information comes from the receiving device.
  • the request flag is set, it indicates that the sending device requests to receive the physical layer channel information of the link.
  • the forwarding device identification bit F is set, indicating that the physical layer channel information comes from the forwarding device.
  • the receiving device identification bit R is set, indicating that the physical layer channel information comes from the receiving device.
  • the default state of the request identification bit D, the forwarding device identification bit F, and the receiving device identification bit R is default or set to 0.
  • the sending device can send one or more packets to the receiving device.
  • the sending device may request the receiving device or the forwarding device for physical layer channel information of the receiving link by using one or some of the one or more packets.
  • the request flag in the sent message header is set to 1, indicating that the request receives the physical layer channel information of the link, wherein the type length value (type length value) in the message
  • the -length-value, TLV)Number field is set to 0, indicating that there is currently no physical layer channel information.
  • the sending device When it is necessary to obtain the physical layer channel information of the receiving link, the sending device encapsulates the request flag bit D in the message to be sent, and sets the request flag bit (ie, the request flag bit is 1) to form a third message, which is sent via The forwarding device sends the third packet to the receiving device.
  • the set request identification bit D is used to inform the devices on the communication path, such as the forwarding device (if any), the receiving device, and the sending device to request to receive the physical layer channel information of the link.
  • the sending device sends a packet carrying service data to the receiving device via the forwarding device.
  • the message carrying the service data reference may be made to the prior art, which will not be repeated here.
  • the transport layer can perceive and extract the information of the bottom layer (such as the physical layer), so that the transmission rate of the transport layer can be calculated based on the information such as the physical layer subsequently.
  • the forwarding device creates a fifth packet.
  • the fifth packet carries the forwarding device identification bit F, and the forwarding device identification bit F is set to 1.
  • the forwarding device After the forwarding device receives and decapsulates the third packet, it can learn that the request flag bit D in the third packet is set to 1, which indicates that the sending device requests to receive the physical layer channel information of the link. If the forwarding device identification bit F in the third packet is defaulted by default, the forwarding device adds the forwarding device identification bit F in the third packet, and sets the forwarding device identification bit to 1 to form a fifth packet. If the forwarding device identification bit F in the third packet is set to 0 by default, the forwarding device sets the forwarding device identification to 1 to form a fifth packet. The forwarding data identification bit is used to indicate that the forwarding device supports obtaining the physical layer channel information of the receiving link. Correspondingly, the forwarding device subsequently sends the physical layer channel information of the receiving link to the sending device.
  • the maintenance request record table in the equipment is stored in the memory of the forwarding device.
  • the corresponding relationship among the sending device, the receiving device and the request mark is recorded in the request record table.
  • the request flag corresponding to the sending device can be 0 or 1.
  • the request flag is 1, indicating that the sending device requests to receive the physical layer channel information of the link.
  • the request flag is 0, indicating that the sending device does not request to receive the physical layer channel information of the link.
  • Table 1 below is an exemplary structure of the request record table.
  • the forwarding device After the forwarding device receives and decapsulates the third packet, it can learn that the request flag bit D in the third packet is set to 1, which indicates that the sending device requests to receive the physical layer channel information of the link.
  • the forwarding device sets the request flag corresponding to the sending device (identified as A) in the request record table (ie, sets 1), and the set request flag is used to indicate that the sending device A requests to receive the physical layer channel information of the link.
  • the forwarding device sends a fifth packet to the receiving device.
  • the receiving device receives the fifth packet from the forwarding device.
  • the receiving device determines that the forwarding device identification bit F is valid.
  • the forwarding device identification bit F is valid, which means that the forwarding device identification bit F is set to 1.
  • the receiving device receives and decapsulates the fifth packet, and obtains the specific situation of the flag bit F of the forwarding device.
  • the receiving device determines the operation to be performed according to the specific situation of the forwarding device identification bit F. Specifically, if the forwarding device flag F is valid, that is, the forwarding device flag F is set, indicating that the forwarding device supports information subscription, the forwarding device provides the physical layer channel information of the receiving link to the sending device.
  • the receiving device determines that the request flag corresponding to the sending device in the request record table is not set.
  • the sending device requests the physical layer channel information of the receiving link, and the receiving device needs to provide the physical layer channel information to the sending device, the receiving device sets the request flag corresponding to the sending device to 1.
  • the receiving device sends a fourth packet to the forwarding device.
  • the forwarding device receives the fourth packet from the receiving device.
  • the fourth message is a message that the receiving device replies to the sending device.
  • the receiving device when the receiving device feeds back a message to the sending device, it queries the local request record table, and when the request flag corresponding to the sending device in the request record table is not set to 1, it means that the forwarding device sends
  • the transmitting device provides the physical layer channel information of the receiving link, and it is not necessary for the receiving device to provide the physical layer channel information of the receiving link to the transmitting device. Therefore, the receiving device determines that when replying a message to the sending device, it needs to send a fourth message that does not encapsulate the physical layer channel information.
  • the receiving device encapsulates the data to be replied in the message body of the fourth message, and sends the fourth message to the forwarding device.
  • the forwarding device creates a first packet.
  • the first packet includes physical layer channel information of the receiving link.
  • the forwarding device determines whether to provide the physical layer channel information of the receiving link to the sending device according to the local request record table. Specifically, in the above step S6012c1, as shown in Table 1 above, the forwarding device has set the request flag corresponding to the sending device, then in this step S6012h1, the forwarding device determines that the physical layer channel of the receiving link needs to be provided to the sending device information. Then, the forwarding device encapsulates the physical layer channel information in the fourth packet to form a first packet, and sends the first packet to the sending device.
  • the physical layer channel information is encoded and encapsulated in a type-length-value (TLV) format, and sent to the peer device.
  • TLV type-length-value
  • Each physical layer channel information corresponds to a TLV structure, and multiple physical layer channel information forms an information vector ⁇ TLV1, TLV2, TLV3...>.
  • Type refers to the information type or information name, which can be any type of physical layer channel information.
  • the Type field occupies 4 bits.
  • Value represents the value of the physical layer channel information.
  • the maximum number of bytes in the Value field is 16 bytes.
  • Length refers to the number of Value bytes of the physical layer channel information.
  • the Length field occupies 4 bits.
  • TLV Number indicates the number of TLVs corresponding to the currently encapsulated physical layer channel information.
  • the above-mentioned one or more physical layer channel information may be encapsulated in the header or the body of the message.
  • the Option field of an IP packet the Option field of a TCP packet, the packet body or packet header of a UDP-based custom protocol (as shown in Figure 12), other private protocol packets, and other network fields.
  • the forwarding device encapsulates the acquired physical layer rate of the receiving link in the first packet.
  • the TLV Number in the first packet that is, the number of TLVs at the current encapsulated physical layer rate, is currently set to 1.
  • the Type field value is the physical layer rate (encoded as 001)
  • the Length field value is 4 (indicating that the Value part occupies 4 Bytes)
  • the Value field value is the physical layer rate, and the unit can be Kbps, for example.
  • the forwarding device determines whether to provide the physical layer channel information of the receiving link to the sending device according to the receiving device identification bit R in the fourth packet.
  • the receiving device identifier R is set to 0 or default, indicating that the receiving device does not provide the physical layer channel information of the receiving link to the transmitting device, and the forwarding device needs to provide the physical layer channel information of the receiving link to the transmitting device. Then, the forwarding device encapsulates the physical layer channel information in the fourth packet to form a first packet, and sends the first packet to the sending device.
  • the forwarding device sends a first packet to the sending device.
  • the sending device receives the first packet from the forwarding device.
  • the transport layer of the forwarding device receives the information from the upper layer (such as the session layer) and processes it at the transport layer. Specifically, the forwarding device encapsulates the transport layer information (such as the packet loss rate) based on the session layer information. , RTT), receive the physical layer channel information of the link (such as the physical layer rate), and send the encapsulated information to the next layer protocol stack (such as the network layer) of the transport layer for processing, and so on.
  • the layer-by-layer protocol stack processes and encapsulates to obtain a first packet, and the part of the first packet corresponding to the transport layer is encapsulated with transport layer information and physical layer channel information of the receiving link.
  • the sending device receives and decapsulates the first packet, and can obtain the physical layer channel information of the receiving link carried in the first packet.
  • the sending device decapsulates the first packet at the transport layer to obtain transport layer information and physical layer channel information of the receiving link.
  • the embodiment corresponding to FIG. 8 mainly takes the forwarding device sending physical layer channel information to the sending device in an out-of-band manner as an example to illustrate the specific implementation process of the sending device acquiring the physical layer channel information from the forwarding device. It can be understood that the forwarding device can also send the physical layer channel information to the sending device in an in-band manner.
  • the in-band sending method reference may be made to the prior art for details, and details are not described herein again in this embodiment of the present application.
  • the above S6012 can be implemented as the following steps:
  • S6012a2 The sending device sends a third packet to the forwarding device.
  • the forwarding device receives the third packet from the sending device.
  • the third packet carries the request identification bit D, and the request identification bit D is set to 1.
  • the forwarding device creates a fifth packet.
  • the fifth packet carries the forwarding device identification bit F, and the forwarding device identification bit F is set to 1.
  • the request flag corresponding to the sending device (identified as A) in the request record table of the forwarding device is set (ie, set to 1), and the set request flag is used to indicate that the sending device A requests to receive the physical layer channel information of the link .
  • the forwarding device sends a fifth packet to the receiving device.
  • the receiving device receives the fifth packet from the forwarding device.
  • S6012e2 The receiving device sends a fourth packet to the forwarding device.
  • the fourth message is a message that the receiving device replies to the sending device.
  • the receiving device after receiving and decapsulating the fifth packet, the receiving device sends the sending device a fourth packet that does not encapsulate the physical layer channel information of the receiving link.
  • the forwarding device creates a first packet.
  • the first packet includes physical layer channel information of the receiving link.
  • the forwarding device sends the first packet to the sending device.
  • the sending device receives the first packet from the forwarding device.
  • the sending device receives and decapsulates the first packet, and can obtain the physical layer channel information of the receiving link carried in the first packet.
  • the above S6012 can be implemented as the following steps:
  • the sending device sends a third packet to the forwarding device.
  • the forwarding device receives the third packet from the sending device.
  • the third packet carries the request identification bit D, and the request identification bit D is set to 1.
  • S6012a3 The specific implementation principle of S6012a3 may refer to the above-mentioned S6012a1.
  • the forwarding device sends a third packet to the receiving device.
  • the receiving device receives the third packet from the forwarding device.
  • the forwarding device does not support information subscription
  • the specific implementation can refer to the prior art, for example, it performs transparent transmission or forwarding action, and directly forwards the third packet.
  • the forwarding device identification bit F since the forwarding device does not set the forwarding device identification bit F in the third packet, the forwarding device identification bit F is in the default state, that is, the default or 0.
  • the receiving device determines that the request identification bit D is set, the forwarding device identification bit F is invalid, and sets the request flag corresponding to the sending device in the request record table.
  • the forwarding device identification bit F is invalid, which means that the forwarding device identification bit F is defaulted or set to 0.
  • the receiving device receives and decapsulates the third packet, obtains the forwarding device flag F and the request flag D, and determines the operation to be performed according to the forwarding device flag F and the request flag D.
  • the request flag D is set and the forwarding device flag F is set to 0 or default, it means that the sending device requests to receive the physical layer channel information of the link, but the forwarding device does not support information subscription, the receiving device needs to Provides the physical layer channel information of the receive link to the transmitting device. Then the receiving device sets the request flag corresponding to the sending device in the local request record table.
  • the set request flag is used to indicate that the sending device requests the physical layer channel information of the receiving link, and indicates that the physical layer channel information is sent by the receiving device. provided to the sending device.
  • request record table of the receiving device please refer to the relevant description of the request record table of the forwarding device.
  • the receiving device creates a second packet.
  • the second packet carries physical layer channel information of the receiving link.
  • the identification bit R of the receiving device in the second packet is set.
  • the receiving device When the receiving device feeds back a message to the sending device, it first queries the local request record table. If the request flag corresponding to the sending device in the request record table is set, it means that the sending device requests the physical layer channel information of the receiving link, and it needs to be sent by the receiving device. The device provides the physical layer channel information to the sending device. Then, the receiving device sets the receiving device flag bit R in the reply message (ie, the second message), and encapsulates the physical layer channel information of the receiving link in the second message. The set receiving device flag bit R is used to indicate that the physical layer channel information is provided by the receiving device to the transmitting device.
  • the receiving device in the processing process of the transport layer, the receiving device encapsulates the physical layer channel information and the transport layer information of the receiving link, and sends the encapsulated information to the lower layer (such as the network layer) for processing. Finally, the receiving device passes through the layer.
  • the second packet is obtained by processing the layer protocol stack.
  • the part corresponding to the transport layer in the second packet is encapsulated with the transport layer information and the physical layer channel information of the receiving link.
  • FIG. 12 for part of the content in the second packet.
  • S6012e3 The receiving device sets the request flag corresponding to the sending device in the request record table to 0.
  • the receiving device clears the request flag corresponding to the sending device to 0.
  • S6012f3 The receiving device sends a second packet to the sending device.
  • the receiving device feeds back the second packet to the sending device via the forwarding device.
  • the receiving device sends the second packet to the sending device via the forwarding device in an in-band manner.
  • the sending device acquires the physical layer channel information of the sending link, and determines the sending rate based on the physical layer channel information of the sending link.
  • the sending device may execute the embodiment corresponding to FIG. 8 or FIG. 9 or FIG. 10 according to a preset policy, so as to acquire physical layer channel information of the receiving link.
  • the preset strategy may be: acquiring physical layer channel information of the receiving link at fixed time intervals.
  • the timer is started at the moment when a message is sent (the request flag D carried in the message is set to 1). Before the timer expires, the request flag D in the message sent by the sending device is missing. If it is omitted or set to 0, after the timer expires, the request flag is set to 1 in the message sent by the sending device. That is, every certain period of time, the timer is started, the sending device sets the request identification bit D to 1, and sends a message carrying the request identification bit D set to 1 to the receiving device to trigger the receiving device or the forwarding device to obtain the receiving link.
  • the time at which the timer is started, the timing duration, etc. may be set separately, which is not limited in this embodiment of the present application.
  • the preset strategy may also be to obtain physical layer channel information of the receiving link at intervals of a fixed number of messages.
  • the physical layer channel information of the receive link may also be acquired at intervals of one or more smooth RTTs.
  • the preset strategy may also be other, and the embodiment of the present application does not limit the specific design of the preset strategy.
  • the sending device can obtain the physical layer channel information of all links on the communication path. That is, the sending device grasps the global view of the intermediate network, so that the subsequent calculation of the sending rate based on the global view information is more accurate.
  • the sending device adjusts the sending rate of the transport layer of the sending device according to the physical layer channel information of the sending link, the physical layer channel information of the receiving link, and the transport layer information.
  • S602 may be specifically implemented as: S602a1, the sending device determines the upper limit of the rate according to the physical layer channel information of the sending link and the physical layer channel information of the receiving link; S602a2, the sending device determines the upper limit according to the Transport layer information and rate upper limit, determine the transmission rate of the transport layer, and the transmission rate of the transport layer is less than or equal to the rate upper limit.
  • the physical layer channel information used for determining the upper limit of the rate in S602a1 may be the physical layer channel information of the transmission link (that is, not based on the above-mentioned information sharing mechanism).
  • the physical layer channel information used for determining the upper limit of the rate in S602a1 includes the physical layer channel information of the transmitting link and the physical layer channel information of the receiving link (ie, based on the above-mentioned information sharing mechanism).
  • the sending device grasps the physical layer channel information of the global link, and the rate upper limit calculated according to the global information is more accurate.
  • the sending device can calculate the upper rate limit according to the following formula (1):
  • V max V 1 *V 2 /(V 1 +V 2 ) (1)
  • the sending device can calculate the upper rate limit according to the following formula (2):
  • V max min(V 1 , V 2 ) (2)
  • V 1 C 1 *R 1 *I 1 ⁇ D 1
  • V 2 C 2 *R 2 *I 2 ⁇ D 2 .
  • V 1 represents the maximum rate of the transmission link
  • R 1 represents the physical layer rate of the transmission link
  • C 1 represents the effective data ratio of the transmission link
  • I 1 represents the interference factor of the transmission link.
  • the interference factor I 1 of the transmission link is related to the number of devices connected to the transmission link and the traffic of each device.
  • D 1 represents the second deviation factor. D 1 is related to the type of protocol the device is running, the type of device, or other factors.
  • V 2 represents the maximum rate of the receiving link
  • R 2 represents the physical layer rate of the receiving link
  • C 2 represents the effective data ratio of the receiving link
  • I 2 represents the interference factor of the receiving link.
  • the interference factor I 2 of the receiving link is related to the number of devices connected to the receiving link and the traffic of each device.
  • D 2 represents the third deviation factor.
  • the physical layer channel information used for calculating the upper limit of the rate includes, but is not limited to, the physical layer rate, the link access device, the traffic of each device, and the aggregated number of physical layer frames.
  • the proportion of valid data in the link is determined by the proportional relationship between the valid data in the link and the total data, and the total data includes valid data and control information.
  • the sending device may calculate the effective data ratio of the sending link according to the following formula (3):
  • T data1 represents the transmission duration of valid data
  • N 1 represents the aggregate number of physical layer frames of the transmission link
  • DataSize1 represents the MTU size of the maximum transmission unit
  • R 1 represents the physical layer rate of the transmission link
  • T control1 represents the transmission link
  • the sending duration of the transmitted control information For the transmission duration of the control information, reference may be made to the prior art.
  • T control1 T control1
  • T control1 DIFS+backoff+RTS+SIFS+CTS+DIFS+SIFS+ACK+t1+ ⁇ t;
  • DIFS distributed inter-frame spacing (distributed inter-frame spacing)
  • SIFS short interframe space (short interframe space)
  • backoff is the backoff duration
  • ACK is the duration of the acknowledgment message
  • t1 is the physical layer convergence protocol ( physical layer convergence protocol, PLCP) header and other fields (can be 5 or set otherwise)
  • RTS is the request to send (request to send) frame duration
  • CTS is the clear to send (clear to send) frame duration
  • ⁇ t is compensation Duration (can be set to 30us or other values).
  • the sending device can calculate the effective data ratio of the receiving link according to the following formula (4):
  • T data2 represents the sending duration of valid data
  • N 2 represents the aggregate number of physical layer frames of the sending link
  • DataSize2 represents the MTU size of the maximum transmission unit
  • R 2 represents the physical layer rate of the sending link
  • T control2 represents the sending link The sending duration of the transmitted control information.
  • N 1 and N 2 can be set according to the current sending rate (for example, set to 2, 4, 8, 16, etc.). DataSize such as but not limited to set to 1400Bytes.
  • the AP determines whether there is interference between the sending link and the receiving link according to the version of the protocol it is running, and then uses the above calculation method to calculate the upper limit of the rate.
  • the sending device may obtain the physical layer channel information periodically or according to other preset strategies, and correspondingly, the sending device may calculate the rate periodically or according to other preset strategies. cap to update the rate cap.
  • the above-mentioned rate upper limit may be the end granularity. Specifically, taking the communication source end (ie, the sending device) and the destination end (ie, the receiving device) as the control granularity, the upper limit of the rate between the sending device and the receiving device is set as V max .
  • the rate cap can be granular in terms of data streams, that is, when there are multiple data streams between the sending device and the receiving device, the rate cap V can be set according to the bandwidth requirements and/or priorities of the data streams, and/or other parameters. max to allocate.
  • the allocation algorithm can be flexibly designed. For example, for the data stream with the highest bandwidth requirement among multiple data streams (data stream 1), set the upper limit of its rate to V max , and for other data streams in the multiple data streams except data stream 1, set the upper limit rate to be both is f(bandwidth)*V max .
  • bandwidth refers to the required bandwidth
  • f(bandwidth) is a function of bandwidth
  • the function value is usually less than or equal to 1.
  • the rate cap for all streams is set to f(bandwidth).
  • there are other setting methods which are not limited in this embodiment of the present application.
  • the rate cap Vmax can be used as the input of the congestion control algorithm, that is, the rate cap of the input congestion control, combined with the flow-based end-to-end in the prior art. Congestion control algorithm to adjust the rate of each flow.
  • the upper limit of the rate of the communication path can be accurately estimated according to the real state of the physical channel.
  • the sending device may determine the sending rate according to the upper rate limit and one or more transport layer information.
  • f trans is a function with transport layer information as an independent variable
  • Ra is a first deviation factor. The value of Ra can be positive, negative, or zero.
  • the sending device determines that the sending rate (Sendrate) is V max *f(lossrate) ; or, if the packet loss rate is less than the first threshold, the sending device determines that the sending rate is V max .
  • the first threshold may be flexibly set according to a specific application scenario, for example, determined according to an empirical value or a statistical value.
  • the packet loss rate is set to 10%, of course, other values are also possible. This embodiment of the present application does not limit this.
  • f(lossrate) is a function that takes the packet loss rate as an independent variable, and the function value is usually less than 1.
  • the larger the packet loss rate the smaller the function value.
  • the sending device first sets the upper rate limit V max as the sending rate when starting transmission. After that, in the process of sending packets to the receiving device, the sending device can detect the packet loss rate periodically or in real time, and dynamically adjust the sending rate according to the packet loss rate calculated by the sender of the lost packets. Specifically, when the sending device detects that the packet loss rate is greater than or equal to the first threshold, it indicates that it is likely that the current rate is relatively large, causing serious packet loss, and the sending device reduces the sending rate to avoid serious packet loss. When the sending device detects that the packet loss rate is less than the first threshold, the sending rate can be set to the upper rate limit V max , so that the sending rate is guaranteed without serious packet loss.
  • the specific manner of determining the sending rate may be other, and the embodiments of the present application will not be exhaustive.
  • the rate adjustment of the transport layer needs to consider the end-to-end transport layer information, for example, the sender sends data to the receiver, whether the receiver gives feedback, and what the delay is.
  • the transmission rate of the transport layer is fast, it is likely to cause packet loss.
  • the transport layer information is usually end-to-end information, the end-to-end information needs to be acquired after sending and feedback processes between the transceiver and the transceiver, resulting in the rate adjustment of the transport layer often not being timely enough.
  • the transmission rate adjustment method provided by the embodiment of the present application performs rate adjustment based on physical layer channel information.
  • the transmitting device can know how many hops the intermediate network includes, and can infer the bandwidth of the intermediate network. and so on. On the one hand, it can match the real physical layer rate of the communication link and reduce the probability of packet loss or queuing due to the mismatch between the transmission rate and the physical layer rate of the communication link. On the one hand, the bandwidth can be fully utilized, the transmission efficiency can be improved, and the data sending time can be reduced.
  • the sending device can not only obtain the physical layer channel information of the sending link, but also obtain the physical layer channel information of the receiving link through the sharing mechanism, so that the sending device can obtain the global information of the intermediate network and calculate the sending rate based on the global information. more precise.
  • more accurate physical layer channel information and transport layer network status information (representing real-time network status) can be combined, so that rate adjustment can be performed more accurately and in a timely manner, and network QOS can be improved.
  • QOS includes throughput, delay, etc.
  • the transmission rate adjustment method according to the embodiment of the present application improves the average transmission rate (approximately 16.7MB/S) .
  • the above-mentioned communication devices include corresponding hardware structures and/or software modules for executing each function.
  • the embodiments of the present application can be implemented in hardware or a combination of hardware and computer software. Whether a function is performed by hardware or computer software driving hardware depends on the specific application and design constraints of the technical solution. Experts may use different methods for each specific application to implement the described functions, but such implementation should not be considered beyond the scope of the embodiments of the present application.
  • the above-mentioned communication device may be divided into functional modules according to the above-mentioned method examples.
  • each functional module may be divided into each function, or two or more The functions are integrated in a processing module.
  • the above-mentioned integrated modules can be implemented in the form of hardware, and can also be implemented in the form of software function modules. It should be noted that, the division of modules in the embodiments of the present application is schematic, and is only a logical function division, and there may be other division manners in actual implementation.
  • FIG. 14 shows a possible schematic structural diagram of the communication device involved in the above embodiment.
  • the communication apparatus may be the above-mentioned sending device or a component in the sending device (such as a chip system) or other components that support the function of the sending device.
  • the communication device 1500 includes: an acquisition module 1510 and an adjustment module 1520 .
  • the obtaining module 1510 is configured to support the communication device to perform S601, S6011, and S6012 in the above method embodiments, and/or other processes for the technology described herein.
  • the adjustment module 1520 is configured to support the communication device to perform S602 in the above method embodiments, and/or other processes for the techniques described herein.
  • the obtaining module 1510 is further configured to support the communication device to perform S702a, S702b, S704a, S702b, S6012i1, S6012g2, S6012f3, and S1101 in the above method embodiments.
  • the adjustment module 1520 is further configured to support the communication device to perform S602a, S602a1, and S602a2 in the foregoing method embodiments.
  • the above communication device 1500 may further include: a sending module 1530, configured to support the communication device to perform S701, S703, S6012a1, S6012a2, S6012a3 in the above method embodiments, and/or other processes for the techniques described herein .
  • a sending module 1530 configured to support the communication device to perform S701, S703, S6012a1, S6012a2, S6012a3 in the above method embodiments, and/or other processes for the techniques described herein .
  • the communication device may further include a storage module (not shown in the figure).
  • FIG. 15 shows a possible schematic structural diagram of the communication device involved in the above embodiment.
  • the communication device may refer to the above-mentioned forwarding device or a component in the forwarding device (such as a chip system) or other components that support the function of the forwarding device.
  • the communication device 1600 includes: an obtaining module 1610 and a sending module 1620 .
  • the acquisition module 1610 is used to support the communication device to collect physical layer channel information of the receive link, and/or other processes used in the techniques described herein.
  • the sending module 1620 is configured to support the communication device to perform S702a, S702b, S6012d1, S6012i1, S6012d2, S6012g2, S6012b3, S6012f3 in the above method embodiments, and/or other processes for the techniques described herein.
  • the above communication device 1600 may further include: a receiving module (not shown in the figure), configured to support the communication device to perform S701, S6012a1, S6012g1, S6012a2, S6012e2, S6012a3, S6012f3, and /or other procedures for the techniques described herein.
  • a receiving module (not shown in the figure), configured to support the communication device to perform S701, S6012a1, S6012g1, S6012a2, S6012e2, S6012a3, S6012f3, and /or other procedures for the techniques described herein.
  • the above communication device 1600 may further include: a creation module and an update module (not shown in the figure).
  • a module is created for supporting the communication device to perform S6012b1, S6012h1, S6012b2, S6012f2 in the above method embodiments, and/or other processes for the techniques described herein.
  • An update module for supporting the communication device to perform S6012c1, S6012c2 in the above method embodiments, and/or other processes for the techniques described herein.
  • the communication device may further include a storage module (not shown in the figure).
  • FIG. 16 shows a possible schematic structural diagram of the communication device involved in the above embodiment.
  • the communication device is the above-mentioned receiving device or a component (such as a chip system) in the receiving device or other component supporting the function of the receiving device.
  • the communication device 1700 includes: an obtaining module 1710 and a sending module 1720 .
  • the acquisition module 1710 is used to support the communication device to collect physical layer channel information of the receive link, and/or other processes used in the techniques described herein.
  • the sending module 1720 is configured to support the communication device to perform S704a, S704b, S6012g1, S6012e2, S6012f3 in the above method embodiments, and/or other processes for the techniques described herein.
  • the above communication device 1700 may further include: a receiving module (not shown in the figure), configured to support the communication device to perform S703, S6012d1, S6012d2, S6012b3 in the above method embodiments, and/or for the Other procedures of the described techniques.
  • a receiving module (not shown in the figure), configured to support the communication device to perform S703, S6012d1, S6012d2, S6012b3 in the above method embodiments, and/or for the Other procedures of the described techniques.
  • the above communication device 1700 may further include: a creation module, an update module and a determination module (not shown in the figure).
  • a module is created for supporting the communication device to perform S6012d3 in the above method embodiments, and/or other processes for the techniques described herein.
  • a determination module configured to support the communication device to perform S6012e1, S6012f1, S6012c3 in the above method embodiments, and/or other processes for the techniques described herein.
  • An update module for supporting the communication device to perform S6012e3 in the above method embodiments, and/or other processes for the technology described herein.
  • the communication device may further include a storage module (not shown in the figure).
  • the processing module may be a processor or a controller, such as a CPU, a general-purpose processor, a DSP, an Application-Specific Integrated Circuit (ASIC), a Field Programmable Gate Array (FPGA) or other Programmable logic devices, transistor logic devices, hardware components, or any combination thereof. It may implement or execute the various exemplary logical blocks, modules and circuits described in connection with this disclosure.
  • a processor may also be a combination that implements computing functions, such as a combination of one or more microprocessors, a combination of a DSP and a microprocessor, and the like.
  • the above-mentioned receiving module and sending module may be communication modules of a communication device (such as a mobile phone), such as an RF circuit, a WiFi module or a Bluetooth module, and the communication interface shown in FIG. 4 .
  • the communication device provided by the present application may be the one shown in FIG. 4 .
  • Communication device 400 is shown.
  • the above-mentioned receiving module and transmitting module may not only include a radio frequency circuit, but also include a WiFi module and a Bluetooth module.
  • Communication modules such as radio frequency circuits, WiFi modules, and Bluetooth modules may be collectively referred to as communication interfaces.
  • the above-mentioned processor, communication interface and memory can be coupled together through a bus.
  • An embodiment of the present application further provides a chip system, where the chip system is applied to the above-mentioned communication device.
  • the chip system includes: one or more interface circuits and one or more processors.
  • the interface circuit and the processor are interconnected by wires.
  • the interface circuit is for receiving signals from the memory of the communication device and sending the signals to the processor.
  • the signal includes computer instructions stored in memory.
  • the communication device executes the method executed by the sending device in the foregoing method embodiments, or executes the method executed by the forwarding device in the foregoing method embodiments, or executes the receiving device in the foregoing method embodiments. The method performed by the device.
  • Embodiments of the present application further provide a computer storage medium, where the computer storage medium includes computer instructions, when the computer instructions are executed on a communication device, the communication device is caused to perform the method performed by the sending device in the above method embodiments , or, execute the method executed by the forwarding device in the above method embodiments, or execute the method executed by the receiving device in the above method embodiments.
  • the embodiments of the present application further provide a computer program product, when the computer program product runs on a computer, the computer program product causes the computer to execute the method executed by the sending device in the above method embodiments, or execute the above method embodiments.
  • the communication equipment, chip system, computer storage medium or computer program product provided by this application are all used to execute the corresponding method provided above, therefore, the beneficial effects that can be achieved can refer to the corresponding provided above. The beneficial effects in the method will not be repeated here.
  • the disclosed apparatus and method may be implemented in other manners.
  • the device embodiments described above are only illustrative.
  • the division of the modules or units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be Incorporation may either be integrated into another device, or some features may be omitted, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may be one physical unit or multiple physical units, that is, they may be located in one place, or may be distributed to multiple different places . Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units may be implemented in the form of hardware, or may be implemented in the form of software functional units.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it may be stored in a readable storage medium.
  • the technical solutions of the embodiments of the present application can be embodied in the form of software products in essence, or the parts that contribute to the prior art, or all or part of the technical solutions, which are stored in a storage medium , including several instructions to make a device (may be a single chip microcomputer, a chip, etc.) or a processor (processor) to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read only memory (ROM), random access memory (random access memory, RAM), magnetic disk or optical disk and other media that can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种近场通信场景下调整发送速率的方法、装置及系统,涉及通信技术领域,能够在近场通信场景中提升速率调整方案的性能。该方法用于数据的发送设备,该方法包括:获取连接的传输层信息、所述发送设备所在发送链路的物理层信道信息,以及数据的接收设备所在接收链路的物理层信道信息,并根据传输层信息、发送链路的物理层信道信息以及接收链路的物理层信道信息,调整发送设备的传输层的发送速率。其中,上述连接是发送设备与接收设备之间的连接。该方法应用于在近场通信场景中调整发送速率的流程中。

Description

近场通信场景下调整发送速率的方法、装置及系统
本申请要求于2020年06月30日提交国家知识产权局、申请号为202010624214.1、发明名称为“近场通信场景下调整发送速率的方法、装置及系统”以及于2021年06月25日提交国家知识产权局、申请号为202110714606.1、发明名称为“近场通信场景下调整发送速率的方法、装置及系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及近场通信场景下调整发送速率的方法、装置及系统。
背景技术
目前,用户持有的电子产品数据激增,对电子产品的通信要求也有所提升。在近场网络环境中,电子产品之间可以实现智能联动,比如将手机播放的视频内容智能的切换至电视机播放。通常电子产品之间需交互一些消息,以便于实现电子产品之间的智能联动。在智能联动场景中,电子产品之间的位置关系可能随着用户的移动而发生变化,导致通信信道质量发生变化,并且,电子产品之间很可能竞争无线信道导致整体通信效率低下。
为了提升近场环境中电子产品间的通信效率,提升近场无线通信的数据传输能力,目前提出了多种技术,比如基于丢包率的拥塞控制,基于往返时延(round-trip time,RTT)的拥塞控制,在网络层实施的网络辅助拥塞控制。上述拥塞控制技术均可以在一定程度上调整发送端的传输层发送速率,但是,近场无线通信场景下,无线信道时变性明显,发送端很难准确的增加发送窗口,以调节至合适的传输层发送速率,具体的,如果传输层发送速率慢,吞吐量会受到影响,无法充分利用链路带宽;如果传输层发送速率快,会导致较大的排队延迟甚至丢包。
可见,在近场无线通信场景下,目前的传输层发送速率调整方案,传输层发送速率调整的性能较差。
发明内容
本申请实施例提供近场通信场景下调整发送速率的方法、装置及系统,能够在近场无线通信场景下提升发送速率调整的性能。
为达到上述目的,本申请实施例采用如下技术方案:
第一方面,本申请实施例提供一种近场通信场景下调整发送速率的方法,该方法由数据的发送设备或发送设备中的组件(比如芯片),或者其他支持发送设备功能的组件执行。该方法包括:
获取连接的传输层信息、所述发送设备所在发送链路的物理层信道信息,以及数据的接收设备所在接收链路的物理层信道信息;根据所述传输层信息、所述发送链路的物理层信道信息以及所述接收链路的物理层信道信息,调整所述发送设备的传输层的发送速率。
其中,近场通信环境,是指发送端和接收端通过无线网络直接相连,比如接收端和发送端通过无线保真直连(wireless fidelity direct,Wi-Fi-direct)通信,或者,发送端和接收端仅通过1跳的无线转发设备相连。该无线转发设备可以是非第三代合作伙伴计划(3rd generation partnership project,3GPP)设备,比如Wi-Fi设备,无线转发设备还可以是3GPP设备,比如是第四代(4th generation,4G)移动通信技术基站,或第五代(5th generation,5G)移动通信技术基站。
发送设备所在发送链路,指的是发送设备与一个设备直接通信的链路。该发送设备与该设备可以称作发送链路的两个接入设备。该设备可能是接收设备,也可能是其他网络设备,如转发设备。接收设备所在接收链路,指的是接收设备与一个设备直接通信的链路。该接收设备与该设备可以称作接收链路的两个接入设备。该设备可能是发送设备,也可能是其他网络设备,如转发设备。物理层信道信息能够表征物理信道的真实状态。链路(link),通常指的是从一个结点到相邻结点的一段线路,中间没有任何其他的交换结点。
可选的,传输层信息包括但不限于丢包率、RTT。传输层信息能够反映网络状态变化,比如背景流量(cross traffic),即其他用户流量的情况。
连接(connection),是指所述发送设备与所述接收设备之间的连接。该连接可用于在发送设备(简称发端,sender)与接收设备(简称收端,receiver)之间传输数据。在网络中,一个连接使用网络拓扑中的一条或者多条路径(path)传输数据。路径包括sender与receiver所在的端设备,以及二者之间的网络设备。示例性的,以图3的(b)为例,在近场环境中,发送设备(手机A)与接收设备(手机B)之间的连接可通过诸如路径1传输数据。路径1包括手机A,手机B,以及二者之间的接入点。
在网络的分层模型中,传输层的发送速率,可以指传输层向其下层(比如图1A所示OSI模型中的网络层)发送信息的速率。
采用上述发送速率调整方法,基于物理层信道信息进行速率调整,首先,一方面,能够结合上层的传输层信息以及底层的物理层信息,能够尽可能匹配通信链路的真实物理层速率,降低因发送速率与通信链路的物理层速率不匹配导致丢包或排队的概率。另一方面,在近场网络中,通常发送设备和接收设备之间直接相连,或仅通过一跳转发设备相连,发送设备不仅能够获取发送链路的物理层信道信息,还能通过共享机制获取接收链路的物理层信道信息,即发送设备能够获知近场网络的全局物理层信道信息,基于该全局物理层信道信息计算的发送速率更为精准。基于该精准的发送速率传输数据,能够提升传输效率,降低数据发送时间。
其次,协议栈的高层(比如传输层)能感知提取到底层信息(比如物理层信道信息),如此,后续能够综合高层信息(传输层)以及底层信息(物理层信道信息)调整诸如传输层的发送速率,由于考虑多层信息,因此,能够提升速率调整的性能。
在一种可能的设计中,发送设备获取发送设备所在发送链路的物理层信道信 息,具体实现为:发送设备通过系统接口或网卡驱动采集发送链路的物理层信道信息。示例性的,以应用在安卓(android)系统,且获取的物理层信道信息为物理层速率为例,发送设备定时调用getLinkSpeed(可能有其他名称)接口,获取所连接链路的(比如Wi-Fi链路)物理层速率。后续,可根据获取的物理层速率信息调整传输层的发送速率。
在一种可能的设计中,获取接收设备所在接收链路的物理层信道信息,包括:从所述接收设备接收第一报文,所述第一报文中对应传输层的部分封装有所述接收链路的物理层信道信息;所述第一报文中对应传输层的部分还封装有还封装有所述传输层信息。
在一种可能的设计中,获取接收设备所在接收链路的物理层信道信息,包括:从所述接收设备接收第二报文,所述第二报文中对应传输层的部分封装有所述接收链路的物理层信道信息;所述第二报文中对应传输层的部分还封装有所述传输层信息;
其中,所述第二报文还包括接收设备标识位;所述接收设备标识位被置位,被置位的所述接收设备标识位用于指示所述物理层信道信息来自所述接收设备。
在一种可能的设计中,方法还包括:向转发设备发送第三报文,第三报文包括请求标识位,请求标识位用于表示发送设备是否请求接收链路的物理层信道信息。
在一种可能的设计中,所述方法还包括:向所述接收设备发送第三报文,所述第三报文包括请求标识位,所述请求标识位用于表示所述发送设备是否请求所述接收链路的物理层信道信息。
第二方面,本申请实施例提供一种近场通信场景下调整发送速率的方法,该方法由转发设备或转发设备中的组件(比如芯片),或者其他支持转发设备功能的组件执行。该方法包括:获取数据的接收设备所在接收链路的物理层信道信息以及连接的传输层信息,并向数据的发送设备发送接收链路的物理层信道信息以及传输层信息。
其中,所述连接是所述发送设备与所述接收设备之间的连接;
可选的,转发设备获取接收设备所在接收链路的物理层信道信息,可以是转发设备从接收设备获取,也可以是转发设备获取本地存储的接收链路的物理层信道信息。
转发设备获取传输层信息,可以是转发设备从接收设备获取传输层信息,或者,转发设备从本地获取存储的传输层信息。
在一种可能的设计中,向发送设备发送接收链路的物理层信道信息,包括:向发送设备发送第一报文,第一报文中对应传输层的部分封装有接收链路的物理层信道信息;
其中,第一报文还包括转发设备标识位;转发设备标识位被置位,被置位的转发设备标识位用于指示物理层信道信息来自转发设备。
在一种可能的设计中,方法还包括:从发送设备接收第三报文,第三报文包括请求标识位,请求标识位用于表示发送设备是否请求接收链路的物理层信道信 息。
第三方面,本申请实施例提供一种近场通信场景下调整发送速率的方法,该方法由接收设备或接收设备中的组件(比如芯片),或者其他支持接收设备功能的组件执行。该方法包括:获取接收设备所在接收链路的物理层信道信息,并向发送设备发送接收链路的物理层信道信息。
在一种可能的设计中,向发送设备发送接收链路的物理层信道信息,包括:向发送设备发送第二报文,第二报文对应传输层的部分封装有接收链路的物理层信道信息;
其中,第二报文还包括接收设备标识位;接收设备标识位被置位,被置位的接收设备标识位用于指示物理层信道信息来自接收设备。
在一种可能的设计中,方法还包括:从发送设备接收第三报文,第三报文包括请求标识位,请求标识位用于表示发送设备是否请求接收链路的物理层信道信息。
在一种可能的设计中,方法还包括:数据的接收设备获取与数据的发送设备之间的连接的传输层信息,并向发送设备发送该传输层信息。可选的,接收设备向发送设备发送报文,在报文对应传输层的部分封装有传输层信息。
第四方面,本申请实施例提供一种发送装置,该装置可以是上述发送设备或发送设备中的组件(比如芯片),或者其他支持发送设备功能的组件。该装置包括:
获取模块,用于获取连接的传输层信息、数据的发送设备所在发送链路的物理层信道信息,以及数据的接收设备所在接收链路的物理层信道信息,所述连接是所述发送设备与所述接收设备之间的连接;
调整模块,用于根据所述传输层信息、所述发送链路的物理层信道信息以及所述接收链路的物理层信道信息,调整所述发送设备的传输层的发送速率。
在一种可能的设计中,获取接收设备所在接收链路的物理层信道信息,包括:从所述接收设备接收第一报文,所述第一报文中对应传输层的部分封装有所述接收链路的物理层信道信息;所述第一报文中对应传输层的部分还封装有还封装有所述传输层信息。
在一种可能的设计中,获取接收设备所在接收链路的物理层信道信息,包括:从所述接收设备接收第二报文,所述第二报文中对应传输层的部分封装有所述接收链路的物理层信道信息;所述第二报文中对应传输层的部分还封装有所述传输层信息;
其中,所述第二报文还包括接收设备标识位;所述接收设备标识位被置位,被置位的所述接收设备标识位用于指示所述物理层信道信息来自所述接收设备。
在一种可能的设计中,所述设备还包括:
发送模块,用于向所述接收设备发送第三报文,所述第三报文包括请求标识位,所述请求标识位用于表示所述发送设备是否请求所述接收链路的物理层信道信息。
第五方面,本申请实施例提供一种转发装置,该转发装置可以是上述转发设备或转发设备中的组件(比如芯片),或者其他支持转发设备功能的组件。该转发装置包 括:
获取模块,用于获取数据的接收设备所在接收链路的物理层信道信息以及获取连接的传输层信息;所述连接是所述数据的发送设备与所述接收设备之间的连接;
发送模块,用于向发送设备发送接收链路的物理层信道信息以及传输层信息。
在一种可能的设计中,发送模块,具体用于:向发送设备发送第一报文,第一报文中对应传输层的部分封装有接收链路的物理层信道信息;
其中,第一报文还包括转发设备标识位;转发设备标识位被置位,被置位的转发设备标识位用于指示物理层信道信息来自转发设备。
在一种可能的设计中,转发设备还包括:
接收模块,用于从发送设备接收第三报文,第三报文包括请求标识位,请求标识位用于表示发送设备是否请求接收链路的物理层信道信息。
第六方面,本申请实施例提供一种接收装置,该接收装置可以是上述接收设备或接收设备中的组件(比如芯片),或者其他支持接收设备功能的组件。该接收装置包括:
获取模块,用于获取接收设备所在接收链路的物理层信道信息;
发送模块,用于向发送设备发送接收链路的物理层信道信息。
在一种可能的设计中,发送模块,具体用于:向发送设备发送第二报文,第二报文中对应传输层的部分封装有接收链路的物理层信道信息;
其中,第二报文还包括接收设备标识位;接收设备标识位被置位,被置位的接收设备标识位用于指示物理层信道信息来自接收设备。
在一种可能的设计中,接收设备还包括:
接收模块,用于从发送设备接收第三报文,第三报文包括请求标识位,请求标识位用于表示发送设备是否请求接收链路的物理层信道信息。
在一种可能的设计中,获取模块,还用于获取连接的传输层信息,其中,所述连接是所述发送设备与所述接收设备之间的连接;
发送模块,还用于向发送设备发送传输层信息。可选的,通过转发设备向发送设备发送传输层信息。
第七方面,本申请提供一种通信系统,包括:
转发设备,用于向数据的发送设备发送数据的接收设备所在接收链路的物理层信道信息,以及向所述发送设备发送连接的传输层信息,其中,所述连接是所述发送设备与所述接收设备之间的连接;
所述发送设备,用于获取所述发送设备所在发送链路的物理层信道信息,并从所述转发设备接收所述传输层信息以及所述接收链路的物理层信道信息;根据所述传输层信息,所述发送链路的物理层信道信息以及所述接收链路的物理层信道信息,调整所述发送设备的传输层的发送速率。
在一种可能的设计中,所述转发设备,用于向发送设备发送接收设备所在接收链路的物理层信道信息,包括:用于向所述发送设备发送第一报文,所述第一报文中对应传输层的部分封装有所述接收链路的物理层信道信息;
其中,所述第一报文还包括转发设备标识位;所述转发设备标识位被置位,被置位的所述转发设备标识位用于指示所述物理层信道信息来自所述转发设备;所述第一报文中对应传输层的部分还封装有还封装有所述传输层信息。
在一种可能的设计中,所述转发设备,还用于从发送设备接收第三报文,所述第三报文包括请求标识位,所述请求标识位用于表示所述发送设备是否请求所述接收链路的物理层信道信息。
第八方面,本申请提供一种通信系统,包括:
接收设备,用于向数据的发送设备发送所述数据的接收设备所在接收链路的物理层信道信息;
转发设备,用于向所述发送设备发送连接的传输层信息,其中,所述连接是所述发送设备与所述接收设备之间的连接;
所述发送设备,用于获取所述发送设备所在发送链路的物理层信道信息,并从所述接收设备接收所述传输层信息以及所述接收链路的物理层信道信息;根据所述传输层信息,所述发送链路的物理层信道信息以及所述接收链路的物理层信道信息,调整所述发送设备的传输层的发送速率。
转发设备,用于向所述发送设备发送连接的传输层信,包括:从接收设备接收该传输层信息,并向发送设备发送该传输层信息,其中,所述连接是所述发送设备与所述接收设备之间的连接。
或者,转发设备从本地获取存储的上述传输层信息,并向发送设备发送该传输层信息。
在一种可能的设计中,所述接收设备,用于向发送设备发送所述接收设备所在接收链路的物理层信道信息,包括:用于向所述发送设备发送第二报文,所述第二报文中对应传输层的部分封装有所述接收链路的物理层信道信息;所述第二报文中对应传输层的部分还封装有所述传输层信息;
其中,所述第二报文还包括接收设备标识位;所述接收设备标识位被置位,被置位的所述接收设备标识位用于指示所述物理层信道信息来自所述接收设备。
在一种可能的设计中,所述接收设备,还用于从发送设备接收第三报文,所述第三报文包括请求标识位,所述请求标识位用于表示所述发送设备是否请求所述接收链路的物理层信道信息。
在上述任一方面的一种可能的设计中,所述发送链路的物理层信道信息包括如下一项或多项的组合:所述发送链路的物理层速率信息、所述发送链路的RSSI、所述发送链路的信噪比SNR、所述发送链路的实际业务速率、所述发送链路的接入设备数、所述发送链路的接入设备的流量、所述发送链路的接入设备的协议类型、所述发送链路的接入设备的类型、所述发送链路的帧聚合信息、所述发送链路的带宽、所述发送链路的信道质量指示CQI、所述发送链路的资源;
所述接收链路的物理层信道信息包括如下一项或多项的组合:所述接收链路的物理层速率信息、所述接收链路的RSSI、所述接收链路的SNR、所述接收链路的实际业务速率、所述接收链路的接入设备数、所述接收链路的接入设备的流量、所述接收链路的接入设备的协议类型、所述接收链路的接入设备的类型、所述接 收链路的帧聚合信息、所述接收链路的带宽、所述接收链路的CQI、所述接收链路的资源。
其中,发送链路带宽,指的是发送链路的带宽资源,具体的,指均值发送方向上路径的最大带宽。接收链路带宽,指的是接收链路的带宽资源,均值接收方向上路径的最大带宽。
实际业务速率,可以指应用程序的发送速率。
帧聚合信息,比如可以但不限于是在物理层,聚合为聚合媒体接入控制层协议数据单元(aggregate-media access control protocol data unit,AMPDU)的MAC帧的数量。
示例性的,接入设备的协议类型可以指无线保真(wireless fidelity,Wi-Fi)协议类型。比如,可以是802.11a/b/g/n/ac协议。接入设备的类型,可以使接入设备的芯片品牌、芯片型号等。
在上述任一方面的一种可能的设计中,所述传输层信息包括丢包率和/或往返时延RTT。
在上述任一方面的一种可能的设计中,所述传输层的发送速率小于等于速率上限;所述速率上限与所述发送链路的物理层信道信息和所述接收链路的物理层信道信息有关。
在上述任一方面的一种可能的设计中,所述传输层的发送速率满足如下关系:Sendrate=V max*f trans+Ra;其中,Sendrate为所述传输层的发送速率,V max为所述速率上限,f trans与所述传输层信息有关,Ra为第一偏差因子。
在上述任一方面的一种可能的设计中,在所述发送链路和所述接收链路存在干扰的情况下,速率上限为V max=V 1*V 2/(V 1+V 2);或者,在所述发送链路和所述接收链路不存在干扰的情况下,所述速率上限为V max=min(V 1,V 2);
其中,V 1=C 1*R 1*I 1±D 1;V 2=C 2*R 2*I 2±D 2;V 1表示所述发送链路的最大速率,R 1表示所述发送链路的物理层速率,C 1表示所述发送链路的有效数据占比,I 1表示所述发送链路的干扰因子,D 1表示第二偏差因子;I 1与发送链路接入设备数以及发送链路接入设备的流量有关;
V 2表示接收链路的最大速率,R 2表示所述接收链路的物理层速率,C 2表示所述接收链路的有效数据占比,I 2表示所述接收链路的干扰因子,D 2表示第三偏差因子;I 2与接收链路接入设备数以及接收链路接入设备的流量有关。
上述干扰因子,偏差因子,均可视为均值系统带来的误差。
需要说明的是,发送链路和接收链路之间存在干扰,指的是发送链路(比如发送手机到AP的链路)与接收链路(比如AP到接收手机的链路)之间争抢信道,因此产生的相互干扰。
在上述任一方面的一种可能的设计中,所述第一报文还包括转发设备标识位;所述转发设备标识位被置位,被置位的所述转发设备标识位用于指示所述物理层信道信息来自所述转发设备。
在上述任一方面的一种可能的设计中,所述请求标识位被置位,表示所述发送设备请求所述接收链路的物理层信道信息。请求标识位为0,表示发送设备不请求 接收链路的物理层信道信息。
或者,在上述任一方面的一种可能的设计中,第三报文不包括请求标识位,即请求标识位缺省,该种情况,也表示发送设备不请求接收链路的物理层信道信息。
第九方面,本申请提供一种通信装置,用于实现上述任一方面中发送装置的功能,或者,用于实现上述任一方面中转发装置的功能,或者,用于实现上述任一方面中接收装置的功能。
第十方面,本申请提供一种通信装置,该装置具有实现上述任一方面中任一项的发送速率调整方法的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。
第十一方面,提供一种通信装置,包括:处理器和存储器;该存储器用于存储计算机执行指令,当该通信装置运行时,该处理器执行该存储器存储的该计算机执行指令,以使该通信装置执行如上述任一方面中任一项的发送速率调整方法。
第十二方面,提供一种通信装置,包括:处理器;处理器用于与存储器耦合,并读取存储器中的指令之后,根据指令执行如上述任一方面中任一项的发送速率调整方法。
第十三方面,本申请实施例提供了一种通信装置,该装置可以为芯片系统,该芯片系统包括处理器,还可以包括存储器,用于实现上述任一方面所描述方法的功能。该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
第十四方面,提供一种通信装置,该装置可以为电路系统,电路系统包括处理电路,处理电路被配置为执行如上述任一方面中任一项的发送速率调整方法。
第十五方面,本申请实施例中还提供一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行上述任一方面的方法。
第十六方面,本申请实施例中还提供一种计算机程序产品,包括指令,当其在计算机上运行时,使得计算机执行上述任一方面的方法。
第十七方面,本申请实施例提供了一种系统,系统包括第四方面任一项的发送装置和第五方面任一项的转发装置,或者包括第四方面任一项的发送装置以及第六方面任一项的接收装置,或者包括第四方面任一项的发送装置、第五方面任一项的转发装置以及第六方面任一项的接收装置。
附图说明
图1A、图1B为本申请实施例提供的端到端速率调整方法的示意图;
图2为本申请实施例提供的端到端速率调整方法的示意图;
图3为本申请实施例提供的系统结构的示意图;
图4为本申请实施例提供的设备的结构示意图;
图5-图6为本申请实施例提供的发送速率调整方法的流程示意图;
图7为本申请实施例提供的物理层信道信息协商的流程示意图;
图8-图11为本申请实施例提供的发送速率调整方法的流程示意图;
图12为本申请实施例提供的物理层信道信息的封装结构示意图;
图13为本申请实施例提供的测试场景的示意图;
图14-图16为本申请实施例提供的通信装置的示意图。
具体实施方式
本申请的说明书以及附图中的术语“第一”和“第二”等是用于区别不同的对象,或者用于区别对同一对象的不同处理,而不是用于描述对象的特定顺序。
“至少一个”是指一个或者多个,
“多个”是指两个或两个以上。
“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。
字符“/”一般表示前后关联对象是一种“或”的关系,例如,A/B可以表示A或B。
此外,本申请的描述中所提到的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括其他没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其它步骤或单元。
需要说明的是,本申请实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
本申请的说明书以及附图中“的(英文:of)”,相应的“(英文corresponding,relevant)”和“对应的(英文:corresponding)”有时可以混用,应当指出的是,在不强调其区别时,其所要表达的含义是一致的。
目前的计算机网络模型定义了网络互连的分层架构。以图1A所示的开放式系统互连(open systems interconnection,OSI)模型为例,该模型定义了网络互连的七层架构。七层架构由上到下可包括应用层、表示层、会话层、传输层、网络层、链路层、物理层。其中,可以通过调整传输层发送速率,来提升数据传输能力,进而提升通信效率。目前,为了调整传输层的发送速率,存在如下几种拥塞控制方案:
(1)传输层的端到端(end-to-end)拥塞控制算法
算法本质:是基于网络侧反馈信息的负反馈控制。
算法原理:参见图1B,首先,算法对网络做出模型假设,该模型假设通常保证了算法在某种数学意义上可收敛至平衡点。之后,发送端向接收端传输数据,算法持续对观测到的信号反馈调整速率,具体的,当发送端没有接收到接收端的信号反馈时,算法按照其假设模型规定的方式增加发送窗口(或称拥塞窗口),以调节发送速率;当发送端收到接收端的信号反馈时,算法按照模型规定的方式降低发送速率。发送端的拥塞控制算法不断迭代上述流程,从而探测到通信链路的可用容量。
基于传输控制协议(transmission control protocol,TCP)的Reno是一种 典型的端到端拥塞控制方案。按照Reno对网络做出的模型假设,参见图2,Reno算法分为四个阶段:慢启动、拥塞避免、快重传和快恢复。
慢启动阶段:该阶段开始并未发送大量数据。而是需要先探测一下网络的拥塞程度,也就是说,在没有出现丢包时,发送端每收到一个确认消息(acknowledge,ACK),就将拥塞窗口(CWND)增加一个单位,每RTT拥塞窗口可以增加一倍,呈指数增长。若出现丢包,则发送端将拥塞窗口大小减半,并进入拥塞避免阶段。或者,当拥塞窗口大小达到慢启动阈值,则进入拥塞避免阶段。
其中,拥塞窗口大小的单位是最大单个报文段长度(max segment size,MSS)。
拥塞避免阶段:在该阶段,拥塞窗口大小每RTT增加一个单位,拥塞窗口大小呈线性增长。当发送端收到对一个报文的三个重复的ACK(triple duplicate acknowledgment,TD)时,认为这个报文的下一个报文丢失,将进入快重传阶段。
快重传阶段:在该阶段,发送端立即重传丢失的报文,而不是等待超时重传。该阶段完成后进入快恢复阶段。
快恢复阶段:在该阶段,发送端将慢启动阈值修改为当前拥塞窗口值的一半,同时拥塞窗口值等于慢启动阈值,然后进入拥塞避免阶段,重复上述过程。
可选的,当ACK确认超时(timeout,TO),发送端可以进入慢启动阶段。
基于端到端拥塞控制的近场传输速率调节方案,发送端按照预估模型增减发送窗口,以调节传输速率。但是,近场无线环境下,通信信道时变性显著,丢包率等指标的抖动较大,丢包率的统计情况可能并不准确。如此,基于不准确的丢包率等指标计算发送速率,导致计算的发送速率也不够精准。可见,在近场无线通信场景下,端到端拥塞控制的发送速率调整方案,发送速率调整的性能较差。
(2)网络层的网络辅助拥塞控制
在网络辅助的拥塞控制中,网络转发设备(例如无线接入点)向发送方提供拥塞指示信息,指示网络的具体拥塞状态。网络转发设备通常通过带外(out-band)方式或带内(in-band)方式向发送方发送拥塞指示信息。带外方式,即由网络转发设备采用一种阻塞分组的形式,直接向发送方发送拥塞指示信息。带内方式中,网络转发设备标记或更新从发送方流向接收方的分组中的某个字段,接收方一旦收到一个标记的分组后,接收方会向发送方发送拥塞指示信息。
显式拥塞通知(explicit congestion notification,ECN)是一种典型的采用带内方式的网络辅助拥塞控制方案。路由器在发往接收端的数据包中封装并置位拥塞标识(congestion experienced,CE)位。接收端收到CE位被置位的数据包之后,向发送端发送数据包,其中,携带被置位的CE位。发送端接收到CE位被置位的数据包后,获知网络发生拥塞,从而减小发送速率。
在网络辅助拥塞控制的传输速率调节方案中,要求网络转发设备支持网络辅助相关功能,网络转发设备实现复杂度高,部署成本较高。
可见,目前的发送速率调整方法,性能均较差。
为了解决上述技术问题,本申请实施例提供一种发送速率调整方法,该方法可以应用在近场无线网络环境的数据传输过程中,用于调整传输层发送速率。具体的,应用在发送设备在向接收设备传输数据的过程中,传输的数据括但不限于 文件、视频等。文件比如但不限于手机克隆数据。其中,近场无线网络环境,是指发送端和接收端通过无线网络直接相连,比如接收端和发送端通过无线保真直连(wireless fidelity direct,Wi-Fi-direct)通信,或者,发送端和接收端仅通过1跳的无线转发设备相连。该无线转发设备可以是非第三代合作伙伴计划(3rd generation partnership project,3GPP)设备,比如Wi-Fi设备,无线转发设备还可以是3GPP设备,比如是第四代(4th generation,4G)移动通信技术基站,或第五代(5th generation,5G)移动通信技术基站。数据发送端通过近场无线网络向数据接收端发送数据。
如图3的(a)所示,为本申请实施例技术方案所适用的一种近场网络的系统架构。该近场网络系统包括发送设备(手机A)和接收设备(手机B)。发送设备和接收设备可以直接相连,并直接通信。
如图3的(b)所示,为本申请实施例技术方案所适用的另一种近场网络的系统架构。该近场网络系统包括发送设备(手机A)、接收设备(手机B),以及转发设备(接入点)。在图3的(b)所示场景中,发送设备可以直接与接收设备之间交换数据,比如,发送设备可以通过数据热点连接接收设备,并向接收设备发送数据。发送设备还可以通过转发设备向接收设备发送数据。
其中,发送设备和接收设备可以是具有无线通信功能的通信设备,或是可设置于该设备的芯片或芯片系统,或者是具有无线通信功能的其他组件。包括桌面型、膝上型、手持型、车载型用户终端(User Equipment,UE)设备等,例如智能手机、蜂窝电话、智能手表、台式机、平板电脑、智能电视盒,超级移动个人计算机(Ultra-mobile Personal Computer,UMPC)、上网本、个人数字助理(Personal Digital Assistant,PDA)、便携式多媒体播放器(Portable Multimedia Player,PMP)、专用媒体播放器、消费类通信设备、可穿戴设备、AR(增强现实)/VR(虚拟现实)设备等其他类型的通信设备。
上述转发设备为具有无线收发功能的设备,或是可设置于该设备的芯片或芯片系统,或者是具有无线收发功能的其他组件。该转发设备包括但不限于:无线保真(wireless fidelity,WiFi)系统中的接入点(access point,AP),如家庭网关、路由器、服务器、交换机、网桥等,演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(baseband unit,BBU),无线中继节点、无线回传节点、传输点(transmission and reception point,TRP或者transmission point,TP)等,还可以为5G,如,新空口(new radio,NR)系统中的gNB,或,传输点(TRP或TP),5G系统中的基站的一个或一组(包括多个天线面板)天线面板,或者,还可以为构成gNB或传输点的网络节点,如基带单元(BBU),或,分布式单元(distributed unit,DU)、具有基站功能的路边单元(road side unit,RSU)等。
本申请描述的系统架构及业务场景是为了更加清楚的说明本申请的技术方案, 并不构成对于本申请提供的技术方案的唯一限定,本领域普通技术人员可知,随着系统架构的演变和新业务场景的出现,本申请提供的技术方案对于类似的技术问题,同样适用。
可选的,本申请实施例中的发送设备、接收设备、转发设备可以通过具有图4所描述结构的通信设备来实现。图4所示为本申请实施例提供的通信设备的硬件结构示意图。该通信设备400包括至少一个处理器401,存储器403以及至少一个通信接口404。其中,存储器403还可以包括于处理器401中。
处理器401可以由一个或多个处理单元构成,处理单元可以是中央处理器(central processing unit,CPU),特定应用集成电路(application-specific integrated circuit,ASIC),或一个或多个用于控制本申请方案程序执行的集成电路。
在上述组件之间存在通信线路,用于在各组件之间传送信息。
通信接口404,用于与其他设备通信。在本申请实施例中,通信接口可以是模块、电路、接口或者其它能实现通信功能的装置,用于与其他设备通信。可选的,该通信接口可以为独立设置的发送器,该发送器可用于向其他设备发送信息,该通信接口也可以为独立设置的接收器,用于从其他设备接收信息。该通信接口也可以是将发送、接收信息功能集成在一起的部件,本申请实施例对通信接口的具体实现不做限制。
存储器403可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的存储模块,随机存取存储器(random access memory,RAM)或者可动态存储信息和指令的其他类型的存储模块,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、光盘、磁盘或者其他磁存储设备。存储器可以是独立存在,通过通信线路与处理器相连接。存储器也可以和处理器集成在一起。
其中,存储器403用于存储计算机执行指令,计算机执行指令可以由处理器401中的一个或多个处理单元调用以执行下述实施例提供的各个方法中的相应步骤。
可选的,本申请实施例中的计算机执行指令也可以称之为应用程序代码、指令、计算机程序或者其它名称,本申请实施例对此不作具体限定。
在具体实现中,作为一种实施例,通信设备400可以包括多个处理器,例如图4中的处理器401和处理器407。这些处理器中的每一个可以是一个单核处理器,也可以是一个多核处理器。这里的处理器可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。
在具体实现中,作为一种实施例,通信设备400还可以包括输出设备405和输入设备406。输出设备405和处理器401通信,可以以多种方式来显示信息。例如,输出设备405可以是液晶显示器(liquid crystal display,LCD),发光二级管(light emitting diode,LED)显示设备,阴极射线管(cathode ray tube,CRT)显示设备,或投影仪(projector)等。输入设备406和处理器401通信,可以以多种方式接收用户的输入。例如,输入设备406可以是鼠标、键盘、触摸屏设备 或传感设备等。
如图4所示为通信设备的示例性结构图。应该理解的是,图示通信设备仅是一个范例,并且在实际应用中通信设备可以具有比图4中所示出的更多的或者更少的部件,可以组合两个或更多的部件,或者可以具有不同的部件配置。
上述的通信设备400可以是一个通用设备或者是一个专用设备,本申请实施例不限定通信设备400的类型。发送设备或者接收设备或者转发设备可以为具有图4类似结构的设备。
以下结合附图说明本申请实施例提供的发送速率调整方法。
如下实施例均以应用在图3的(a)或图3的(b)所示系统,即手机A作为发送设备,手机B作为接收设备为例,来说明发送速率调整的具体流程,手机A作为接收设备、手机B作为发送设备时,手机B的发送速率调整流程,可参见手机A作为发送设备时的流程。
参见图5,本申请实施例提供的发送速率调整方法包括如下步骤:
S601、发送设备获取发送设备所在发送链路的物理层信道信息、接收设备所在接收链路的物理层信道信息以及连接之间的传输层信息。
其中,连接是发送设备与接收设备之间的连接。
本申请实施例中,参见图3的(b),发送设备所在发送链路,指的是发送设备(手机A)直接连接的链路。接收设备所在接收链路,指的是接收设备(手机B)直接连接的链路。
可以理解,不同物理信道对应的物理层信道信息可能不同。本申请实施例的近场网络可以为非3GPP标准网络,比如,Wi-Fi网络,此种情况下,发送设备、接收设备和转发设备(若存在)需支持非3GPP标准。物理层信道信息包括但不限于如下一项或多项的组合:链路的物理层速率信息、链路的RSSI、链路的信噪比(signal-to-noise ratio,SNR)、链路的实际业务速率、链路的接入设备数、各接入设备的流量、链路的帧聚合信息、链路带宽。
近场网络还可以为3GPP标准网络,比如4G/5G无线网络。相应的,发送设备、接收设备和转发设备(若存在)需支持3GPP标准。物理层信道信息包括但不限于如下一项或多项的组合:链路的物理层速率、链路的帧聚合信息、链路的信道质量指示(channel quality indicator,CQI)、链路带宽、链路的接入设备数、各接入设备的流量、各接入设备的协议类型、各接入设备的类型。物理层信道信息表征物理信道的真实状态。
传输层信息包括但不限于如下任一种或多种信息:丢包率(lossrate)、RTT、吞吐量。传输层信息能够反映网络状态变化,比如背景流量(cross traffic),即其他用户流量的情况。
在本申请实施例中,提出物理层信道信息共享的概念。发送设备、接收设备、转发设备之间可以共享物理层信道信息。具体的,各设备采集所连接链路的物理层信道信息,并可以将采集的物理层信道信息发送给其他设备。
可以理解,为了实现物理层信道信息共享,发送设备、接收设备、转发设备的协议栈需支持读写物理层信道信息的功能。
基于上述物理层信道信息共享机制,参见图6,对于发送设备来说,S601可以包括如下步骤:S6011、发送设备采集发送链路的物理层信道信息;S6012、发送设备从转发设备或接收设备获取接收链路的物理层信道信息;S6013、发送设备获取传输层信息。其中,发送设备从转发设备获取接收链路的物理层信道信息,可以指发送设备获取转发设备采集的接收链路的物理层信道信息。发送设备从接收设备获取接收链路的物理层信道信息,可以指获取接收设备采集的接收链路懒得物理层信道信息。
本申请实施例不限制S6011和S6012之间的执行先后顺序。
作为一种可能的实现方式,设备采集所直接连接链路的物理层信道信息,具体可以是该设备通过系统接口或者网卡驱动采集所连接链路的物理层信道信息。即上述S6011可以具体实现为:发送设备通过系统接口或网卡驱动采集发送链路的物理层信道信息。示例性的,以应用在安卓(android)系统,且获取的物理层信道信息为物理层速率为例,发送设备定时调用getLinkSpeed(可能有其他名称)接口,获取所连接链路的(比如Wi-Fi链路)物理层速率。
在本申请实施例中,设备获取的物理层信道信息可以用于本设备的发送速率调整。可选的,该物理层信道信息也可以被封装在报文中,并提供给对端设备,用于该对端设备的发送速率调整。
可选的,设备实时采集物理层信道信息。或者,可选的,设备周期性采集物理层信道信息。其中,采集周期可灵活设定。
在本申请实施例中,为了实现物理层信道信息共享,可选的,各设备之间可以提前完成信息共享协商流程。参见图7的(a)和图7的(b)和图7的(c),信息共享协商流程包括如下步骤:
S701、发送设备向转发设备发送第一协商消息。
其中,第一协商消息用于确定转发设备是否支持提供物理层信道信息,即是否支持向其他设备共享转发设备获取的物理层信道信息。提供物理层信道信息,也可称为支持信息订阅。
通常情况下,相比于接收设备,转发设备采集的物理层信道信息较多,比如,转发设备可以采集所连接链路的设备数、设备流量等。本申请实施例中的协商流程中,发送设备优先向转发设备发起协商,以便于获取更多的物理层信道信息。
作为一种可能的实现方式,发送设备在接入转发设备时,向转发设备发送第一协商消息。
可以理解,转发设备在接收到第一协商消息之后,判断是否支持向发送设备提供物理层信息,若支持,则执行图7中(a)所示的S702a;若不支持,则执行图7中(b)所示的S702b。
S702a、转发设备向发送设备发送第一协商响应。
第一协商响应用于指示转发设备支持提供物理层信道信息。
S702b、转发设备向发送设备发送第二协商响应,或者不响应上述第一协商消息。
第二协商响应用于指示转发设备不支持提供物理层信道信息。
可以理解,当转发设备不支持提供物理层信息,发送设备与接收设备之间执行信息共享协商流程,以使得发送设备获知接收设备是否支持提供物理层信道信息。具体的,参见图7的(b)和图7的(c),在S702b之后,发送设备与接收设备之间的信息共享协商流程包括如下步骤:
S703、发送设备向接收设备发送第二协商消息。
第二协商消息用于确定接收设备是否支持提供物理层信道信息。
若接收设备支持提供物理层信道信息,则执行图7中(b)所示的S704a,若接收设备不支持提供物理层信道信息,则执行图7中(c)所示的S704b。
S704a、接收设备向发送设备发送第三协商响应。
第三协商响应用于指示接收设备支持提供物理层信道信息。
S704b、接收设备向发送设备发送第四协商响应或不响应上述第二协商消息。
第四协商响应用于指示接收设备不支持提供物理层信道信息。
可见,通过上述协商流程,设备之间能够协商得到物理层信息的提供者,其中,优先采用转发设备提供的物理层信道信息,以便能够较快的获得对端的物理层信道信息,当转发设备不支持时,采用端侧(这里是接收设备侧)提供的物理层信道信息,当转发设备和端侧均不支持提供物理层信道信息,则发送设备利用发送链路的物理层信道信息确定发送速率。
可见,在多种场景中,例如无线直连、终端设备之间通过比如AP连接,接收设备和转发设备均可能不支持信息订阅。相比于现有技术中需修改设备以支持相关功能,设备复杂度较高,导致应用范围受限,本申请实施例中,可以通过上述协商流程协商物理层信道信息的提供者,当多个设备(转发设备和接收设备)均不支持信息订阅,发送设备仍然可以利用发送链路的物理层信道信息确定发送速率。可见,本申请实施例中,即便不修改设备,也可以确定发送速率,应用范围并不受限。
基于上述协商机制,设备可以从其他设备获取其他链路(即与该设备非直连链路的物理层信道信息)。如下以发送设备从其他设备(即转发设备或接收设备)获取接收链路的物理层信道信息为例,说明设备获取其他链路的物理层信道信息的具体过程。
以转发设备和接收设备均支持信息订阅为例,具体的,参见图8,上述S6012可以实现为如下步骤:
S6012a1、发送设备向转发设备发送第三报文。
相应的,转发设备从发送设备接收第三报文。
其中,第三报文包括请求标识位。
本申请实施例的技术方案可以应用在安卓(android)系统中,也可以应用在其他系统中。
本申请实施例中,为了实现相关功能,需定义新的报文格式。作为一种可能的实现方式,可以对传输层协议进行改进,包括改进传输层报文的格式。具体的,参见图12为本申请实施例提供的报文的格式。在传输层的封装处理过程中,该报 文中封装进传输层信息(比如但不限于丢包率、RTT等),并封装进物理层的相关信息。
物理层的相关信息包括自定义报文头,自定义报文头包括请求标志位(用D表示),转发设备标志位(用F表示),接收设备标志位(用R表示)。物理层的相关信息还可包括类型长度值(type-length-value,TLV)Number、物理层信道信息等。
可以理解,为了适应上述新报文,发送设备、接收设备、转发设备的协议栈需支持读写相关标志位功能。
其中,请求标识位用于表示发送设备是否请求接收链路的物理层信道信息。转发设备标识位F用于指示物理层信道信息是否来自转发设备。接收设备标识位R用于指示物理层信道信息是否来自接收设备。在请求标识位被置位的情况下,表示发送设备请求接收链路的物理层信道信息。转发设备标识位F被置位,表示物理层信道信息来自转发设备。接收设备标识位R被置位,表示物理层信道信息来自接收设备。
请求标识位D、转发设备标识位F、接收设备标识位R的默认状态为缺省或置0。
当有业务需求时,发送设备可以向接收设备发送一个或多个报文。发送设备可以借助该一个或多个报文中的某个或某些报文,向接收设备或转发设备请求接收链路的物理层信道信息。示例性的,手机A在开始向手机B发送大文件时,将发送的报文头中的请求标志位置1,表示请求接收链路的物理层信道信息,其中,报文中类型长度值(type-length-value,TLV)Number字段置0,表示当前没有物理层信道信息。TLV Number字段的具体介绍可参见下述实施例。
当需要获取接收链路的物理层信道信息时,发送设备在待发送报文中封装请求标志位D,并将该请求标识位置位(即请求标识位置1),形成第三报文,并经由转发设备向接收设备发送该第三报文。该置位的请求标识位D,用以告知通信路径上的设备,比如转发设备(如有),接收设备,发送设备请求接收链路的物理层信道信息。
反之,在无需获取接收链路的物理层信道信息时,发送设备经由转发设备向接收设备发送携带业务数据的报文。该携带业务数据的报文的实现可参见现有技术,这里不再赘述。
基于对诸如传输层或者上层协议的改进,传输层能感知提取到底层(比如物理层)信息,如此,后续能够基于诸如物理层信息计算诸如传输层的发送速率。
S6012b1、转发设备创建第五报文。
其中,第五报文携带转发设备标识位F,且该转发设备标识位F置1。
可以理解,转发设备接收并解封第三报文之后,可以获知第三报文中的请求标志位D被置1,这说明发送设备请求接收链路的物理层信道信息。若第三报文中转发设备标识位F默认为缺省,则转发设备在第三报文中添加转发设备标识位F,并将该转发设备标识位置1,形成第五报文。若第三报文中转发设备标识位F默认为置0,则转发设备将该转发设备标识位置1,形成第五报文。该转发数据标识位 用于表明转发设备支持获取接收链路的物理层信道信息。相应的,后续由该转发设备将接收链路的物理层信道信息发送给发送设备。
S6012c1、转发设备更新请求记录表。
其中,设备中维护请求记录表。该请求记录表存储在转发设备的存储器中。请求记录表中记录发送设备、接收设备、请求标记之间的对应关系。发送设备对应的请求标记可以为0或1。请求标记为1,说明发送设备请求接收链路的物理层信道信息。请求标记为0,说明发送设备不请求接收链路的物理层信道信息。如下表1为请求记录表的一种示例性结构。
表1
Figure PCTCN2021103498-appb-000001
可以理解,转发设备接收并解封第三报文之后,可以获知第三报文中的请求标志位D被置1,这说明发送设备请求接收链路的物理层信道信息。转发设备将请求记录表中发送设备(标识为A)对应的请求标记置位(即置1),该置1的请求标记用于表明发送设备A请求接收链路的物理层信道信息。
S6012d1、转发设备向接收设备发送第五报文。
相应的,接收设备从转发设备接收第五报文。
S6012e1、接收设备确定转发设备标识位F有效。
其中,转发设备标识位F有效,指的是转发设备标识位F置1。
可以理解,接收设备接收并解封第五报文,并获取转发设备标志位F的具体情况。接收设备根据转发设备标识位F的具体情况,判断所需执行的操作。具体的,如果该转发设备标志位F有效,即该转发设备标识位F置位,说明转发设备支持信息订阅,则由转发设备向发送设备提供接收链路的物理层信道信息。
S6012f1、接收设备确定请求记录表中发送设备对应的请求标记未置位。
接收设备的请求记录表的具体实现可参见转发设备的请求记录表相关描述。当发送设备请求接收链路的物理层信道信息,且需由接收设备向发送设备提供该物理层信道信息的情况下,接收设备将发送设备对应的请求标记置1。
S6012g1、接收设备向转发设备发送第四报文。
相应的,转发设备从接收设备接收第四报文。
其中,第四报文是接收设备向发送设备回复的报文。
本申请实施例中,作为一种可能的实现方式,接收设备向发送设备反馈报文时,查询本地请求记录表,当请求记录表中发送设备对应的请求标记未置1,说明由转发设备向发送设备提供接收链路的物理层信道信息,不需由接收设备向发送设备提供接收链路的物理层信道信息。因此,接收设备确定在向发送设备回复报文时,需发送未封装物理层信道信息的第四报文。接收设备将待回复数据封装在第四报文的报文体中,并向转发设备发送该第四报文。
S6012h1、转发设备创建第一报文。
其中,第一报文包括接收链路的物理层信道信息。
作为一种可能的实现方式,转发设备根据本地请求记录表判断是否向发送设备提供接收链路的物理层信道信息。具体的,在上述S6012c1步骤,如上述表1所示,转发设备已将发送设备对应的请求标记置位,则在本步骤S6012h1中,转发设备确定需向发送设备提供接收链路的物理层信道信息。则转发设备在第四报文中封装进该物理层信道信息,形成第一报文,并向发送设备发送该第一报文。
作为一种可能的实现方式,物理层信道信息以类型长度值(type-length-value,TLV)格式进行编码封装,并发送给对端设备。每个物理层信道信息对应一个TLV结构,多个物理层信道信息组成信息向量<TLV1,TLV2,TLV3…>。其中,Type指信息类型或信息名称,可以是物理层信道信息的任意类型,示例性的,Type字段占4bits。Value表示该物理层信道信息的值,示例性的,Value字段的字节数最大为16字节。Length指该物理层信道信息的Value字节数,示例性的,Length字段占4bits。TLV Number表示当前封装的物理层信道信息对应的TLV数量。
上述一个或多个物理层信道信息可以封装在报文的报文头或者报文体中。例如IP报文的Option字段、TCP报文的Option字段、基于UDP的自定义协议的报文体或报文头(如图12)、其他私有协议报文、其他网络字段。
以物理层信道信息是物理层速率为例,转发设备将获取的接收链路的物理层速率封装在第一报文。其中,第一报文中的TLV Number,即当前封装的物理层速率的TLV数量,当前设置为1。物理层速率对应的TLV结构中Type字段值是物理层速率(编码为001),Length字段值是4(表明Value部分占4Bytes),Value字段值是物理层速率,单位可以比如是Kbps。
作为另一种可能的实现方式,转发设备根据第四报文中的接收设备标识位R判断是否向发送设备提供接收链路的物理层信道信息。具体的,接收设备标识位R置0或者缺省,说明接收设备未向发送设备提供接收链路的物理层信道信息,则转发设备需向发送设备提供接收链路的物理层信道信息。则转发设备在第四报文中封装进该物理层信道信息,形成第一报文,并向发送设备发送该第一报文。
S6012i1、转发设备向发送设备发送第一报文。
相应的,发送设备从转发设备接收第一报文。
示例性的,转发设备的传输层接收来自上一层(比如会话层)的信息,并在传输层进行处理,具体的,转发设备在会话层信息的基础上封装传输层信息(比如丢包率、RTT)、接收链路的物理层信道信息(比如物理层速率),并将封装得到的信息发往传输层的下一层协议栈(比如网络层)进行处理,以此类推,发送设备通过层层协议栈处理,封装得到第一报文,第一报文中对应传输层的部分封装有传输层信息以及接收链路的物理层信道信息。
如此,发送设备接收并解封该第一报文,可以获取到第一报文中携带的接收链路的物理层信道信息。示例性的,发送设备接收第一报文后,在传输层解封装第一报文,可获取传输层信息以及接收链路的物理层信道信息。
图8对应的实施例主要以转发设备通过带外方式向发送设备发送物理层信道 信息为例,来说明发送设备从转发设备获取物理层信道信息的具体实现流程。可以理解,转发设备还可以通过带内方式向发送设备发送物理层信道信息,通过带内方式发送的方式,具体可参见现有技术,本申请实施例这里不再赘述。
以转发设备支持信息订阅,接收设备不支持信息订阅为例,具体的,参见图9,上述S6012可以实现为如下步骤:
S6012a2、发送设备向转发设备发送第三报文。
相应的,转发设备从发送设备接收第三报文。第三报文携带请求标识位D,且该请求标识位D置1。
S6012b2、转发设备创建第五报文。
其中,第五报文携带转发设备标识位F,且该转发设备标识位F置1。
S6012c2、转发设备更新请求记录表。
其中,转发设备的请求记录表中发送设备(标识为A)对应的请求标记被置位(即置1),该置1的请求标记用于表明发送设备A请求接收链路的物理层信道信息。
S6012d2、转发设备向接收设备发送第五报文。
相应的,接收设备从转发设备接收第五报文。
其中,S6012a2-S6012d2的具体实现原理可参见上述S6012a1-S6012d1,这里不再赘述。
S6012e2、接收设备向转发设备发送第四报文。
其中,第四报文是接收设备向发送设备回复的报文。
可以理解,在接收设备不支持信息订阅的情况下,接收设备接收并解封第五报文之后,向发送设备发送未封装接收链路的物理层信道信息的第四报文。
S6012f2、转发设备创建第一报文。
其中,第一报文包括接收链路的物理层信道信息。
这里,S6012f2的具体实现可参见上述S6012h1,这里不在赘述。
S6012g2、转发设备向发送设备发送第一报文。
相应的,发送设备从转发设备接收第一报文。
如此,发送设备接收并解封该第一报文,可以获取到第一报文中携带的接收链路的物理层信道信息。
以转发设备不支持信息订阅,接收设备支持信息订阅为例,具体的,参见图10,上述S6012可以实现为如下步骤:
S6012a3、发送设备向转发设备发送第三报文。
相应的,转发设备从发送设备接收第三报文。第三报文携带请求标识位D,且该请求标识位D置1。
其中,S6012a3的具体实现原理可参见上述S6012a1。
S6012b3、转发设备向接收设备发送第三报文。
相应的,接收设备从转发设备接收第三报文。
可以理解,在转发设备不支持信息订阅的情况下,其具体实现可参见现有技术,比如其执行透传或称转发动作,直接转发第三报文。此种情况下,由于转发 设备并未将第三报文中的转发设备标识位F置位,该转发设备标识位F是默认状态,即缺省或为0。
S6012c3、接收设备确定请求标识位D置位,转发设备标识位F无效,并将请求记录表中发送设备对应的请求标记置位。
其中,转发设备标识位F无效,指的是该转发设备标识位F缺省或置0。
可以理解,接收设备接收并解封第三报文,获取转发设备标志位F和请求标识位D,并根据转发设备标识位F和请求标识位D,判断所需执行的操作。具体的,当请求标识位D置位,且转发设备标志位F置0或缺省,说明发送设备请求接收链路的物理层信道信息,但转发设备并不支持信息订阅,则需由接收设备向发送设备提供接收链路的物理层信道信息。则接收设备将本地请求记录表中发送设备对应的请求标记置位,该置位的请求标记用于表明发送设备请求接收链路的物理层信道信息,且表明该物理层信道信息是由接收设备向发送设备提供的。
接收设备的请求记录表的具体实现可参见转发设备的请求记录表相关描述。
S6012d3、接收设备创建第二报文。
其中,第二报文携带接收链路的物理层信道信息。可选的,该第二报文中接收设备标识位R被置位。
接收设备在向发送设备反馈报文时,先查询本地请求记录表,若请求记录表中发送设备对应的请求标记被置位,说明发送设备请求接收链路的物理层信道信息,且需由接收设备向发送设备提供该物理层信道信息。则接收设备在回复报文(即第二报文)中置位接收设备标志位R,并在该第二报文中封装接收链路的物理层信道信息。该置位的接收设备标志位R用于表明该物理层信道信息是由接收设备向发送设备提供的。示例性的,在传输层的处理过程中,接收设备封装接收链路的物理层信道信息以及传输层信息,并将封装得到的信息发往下层(比如网络层)处理,最终,接收设备通过层层协议栈处理得到第二报文。第二报文中对应传输层的部分封装有传输层信息以及接收链路的物理层信道信息。示例性的,第二报文中的部分内容可参见图12。
S6012e3、接收设备将请求记录表中发送设备对应的请求标记置0。
可以理解,为了避免接收设备持续向发送设备反馈接收链路的物理层信道信息,接收设备将发送设备对应的请求标记清0。
S6012f3、接收设备向发送设备发送第二报文。
作为一种可能的实现方式,接收设备经由转发设备向发送设备反馈第二报文。可选的,接收设备通过带内方式经由转发设备向发送设备发送第二报文。
当转发设备、接收设备均不支持信息订阅的情况下,发送设备获取发送链路的物理层信道信息,并基于该发送链路的物理层信道信息确定发送速率。
在本申请实施例中,发送设备可以依据预设策略执行图8或图9或图10对应的实施例,以便获取接收链路的物理层信道信息。
作为一种可能的实现方式,该预设策略可能为:间隔固定时间获取接收链路的物理层信道信息。作为一种可能的设计,在某次发送报文(该报文携带的请求标识位D置1)的时刻开启定时器,定时器超时之前,发送设备再发送的报文中请 求标识位D缺省或置0,定时器超时之后,发送设备再发送的报文中请求标识位置1。即每间隔一定时长,开启定时器,发送设备将请求标识位D置1,并向接收设备发送携带有置1的请求标识位D的报文,以触发从接收设备或转发设备获取接收链路的物理层信道信息的流程。开启定时器的时刻、定时时长等,可以另行设定,本申请实施例并不限制。
或者,预设策略还可以是间隔固定个数报文获取接收链路的物理层信道信息。或者,还可以是间隔一个或多个平滑RTT获取接收链路的物理层信道信息。预设策略还可以为其他,本申请实施例并不限制预设策略的具体设计。
可见,在近场无线通信中,通过上述物理层信道信息共享或交换方法,发送设备可以获取通信路径上所有链路的物理层信道信息。即,发送设备掌握中间网络的全局视图,这样一来,后续根据该全局视图信息计算的发送速率更加精准。
S602、发送设备根据发送链路的物理层信道信息、接收链路的物理层信道信息,以及传输层信息,调整该发送设备的传输层的发送速率。
作为一种可能的实现方式,参见图11,S602可以具体实现为:S602a1、发送设备根据发送链路的物理层信道信息以及接收链路的物理层信道信息,确定速率上限;S602a2、发送设备根据传输层信息以及速率上限,确定传输层的发送速率,传输层的发送速率小于或等于速率上限。
S602a1中用于确定速率上限的物理层信道信息可以是发送链路的物理层信道信息(即不基于上述信息共享机制)。
或者,S602a1中用于确定速率上限的物理层信道信息包括发送链路的物理层信道信息和接收链路的物理层信道信息(即基于上述信息共享机制)。如此,发送设备掌握全局链路的物理层信道信息,根据该全局信息计算的速率上限更加精准。
需要说明的是,不同信道状态可能对应不同速率上限。
具体的,在发送链路和接收链路存在干扰竞争的情况下,发送设备可以按照如下公式(1)计算速率上限:
V max=V 1*V 2/(V 1+V 2)         (1)
或者,在发送链路和接收链路不存在干扰竞争的情况下,发送设备可以按照如下公式(2)计算速率上限:
V max=min(V 1,V 2)         (2)
其中,V 1=C 1*R 1*I 1±D 1;V 2=C 2*R 2*I 2±D 2
V 1表示发送链路的最大速率,R 1表示发送链路的物理层速率,C 1表示发送链路的有效数据占比,I 1表示发送链路的干扰因子。发送链路的干扰因子I 1由该发送链路接入设备数以及各设备的流量有关。D 1表示第二偏差因子。D 1与设备运行的协议类型、设备类型,或其他因素有关。
V 2表示接收链路的最大速率,R 2表示接收链路的物理层速率,C 2表示接收链路的有效数据占比,I 2表示接收链路的干扰因子。接收链路的干扰因子I 2与该接收链路接入设备数以及各设备的流量有关。D 2表示第三偏差因子。
上述用于计算速率上限的物理层信道信息包括但不限于物理层速率、链路接入设备、各设备的流量、物理层帧聚合个数。
链路的有效数据占比由链路中有效数据与总数据的比例关系确定,总数据包括有效数据和控制信息。可选的,发送设备可以按照如下公式(3)计算发送链路的有效数据占比:
Figure PCTCN2021103498-appb-000002
其中,T data1表示有效数据的发送时长,N 1表示发送链路的物理层帧聚合个数;DataSize1表示最大传输单元MTU大小,R 1表示发送链路的物理层速率;T control1表示发送链路传输的控制信息的发送时长。控制信息的发送时长可参见现有技术。
以采用帧聚合技术以及CTS/RTS机制为例,可以采用如下公式计算T control1
T control1=DIFS+backoff+RTS+SIFS+CTS+DIFS+SIFS+ACK+t1+Δt;
其中,DIFS是分布协调功能帧间间隔(distributed inter-frame spacing),SIFS是短帧间间隔(short interframe space),backoff是回退时长,ACK是确认消息的时长,t1是物理层汇聚协议(physical layer convergence protocol,PLCP)头部等字段的时长(可以为5或另行设定),RTS为请求发送(request to send)帧时长,CTS是清除发送(clear to send)帧时长,Δt是补偿时长(可以设为30us或其他值)。
可选的,发送设备可以按照如下公式(4)计算接收链路的有效数据占比:
Figure PCTCN2021103498-appb-000003
其中,T data2表示有效数据的发送时长,N 2表示发送链路的物理层帧聚合个数;DataSize2表示最大传输单元MTU大小,R 2表示发送链路的物理层速率;T control2表示发送链路传输的控制信息的发送时长。
N 1、N 2可以根据当前发送速率设置(比如设置为2、4、8、16等)。DataSize比如但不限于设置为1400Bytes。
作为一种可能的实现方式,AP根据其运行的协议版本,判断发送链路和接收链路之间是否存在干扰,进而采用上述计算方式计算速率上限。
上述实施例已指出,在发送设备向接收设备通信的过程中,发送设备可以周期性或按照其他预设策略获取物理层信道信息,相应的,发送设备可以周期性或按照其他预设策略计算速率上限,以便更新速率上限。
作为一种可能的实现方式,上述速率上限可以是端粒度。具体的,以通信源端(即发送设备)与目的端(即接收设备)为控制粒度,发送设备与接收设备之间的速率上限设置为V max
或者,速率上限可以以数据流为粒度,即当发送设备和接收设备之间有多条数据流时,可以按照数据流的带宽需求和/或优先级,和/或其他参数,对速率上限V max进行分配。分配算法可以灵活设计。比如,对于多个数据流中带宽需求最高的数据流(数据流1),设置其速率上限为V max,对于该多个数据流中除数据流1之外的其他数据流,设置上限速率均为f(bandwidth)*V max。bandwidth指需求带宽, f(bandwidth)为bandwidth的函数,函数值通常小于或等于1。或者,全部流的速率上限均设置为f(bandwidth)。或者,有其他设置方法,本申请实施例对此不进行限制。
或者,当数据流的优先级或带宽需求不确定或相等时,可以将速率上限V max作为拥塞控制算法的输入,即输入拥塞控制的速率上限,并结合现有技术中基于流的端到端拥塞控制算法,对各个流进行速率调整。
本申请实施例中,在近场无线通信环境中真实带宽变化较大的情况下,能够根据物理信道的真实状态准确估计通信路径的速率上限。
发送设备在根据公式(1)、(3)或者(2)、(4)计算出速率上限之后,就可以根据速率上限以及一个或多个传输层信息,确定发送速率。
传输层的发送速率满足如下关系:Sendrate=V max*f trans+Ra;其中,Sendrate为传输层的发送速率,V max为上述速率上限,f trams与传输层信息有关。可选的,f trans是以传输层信息为自变量的函数,Ra为第一偏差因子。Ra的数值可以是正值,负值,或者为0。
以根据速率上限V max以及丢包率确定发送速率为例,作为一种可能的实现方式,丢包率大于或等于第一阈值,发送设备确定发送速率(Sendrate)为V max*f(lossrate);或者,丢包率小于第一阈值,发送设备确定发送速率为V max。其中,第一阈值可以根据具体应用场景灵活设定,比如,根据经验值或统计值确定。示例性的,丢包率设定为10%,当然,也可以是其他数值。本申请实施例对此不进行限制。f(lossrate)为以丢包率为自变量的函数,函数值通常小于1。可选的,丢包率越大,函数值越小。
示例性的,发送设备在计算出上述速率上限V max之后,开始传输时,先将速率上限V max设置为发送速率。之后,在向接收设备发送报文的过程中,发送设备可以周期性或实时检测丢包率,并根据丢包发送端计算的丢包率,动态调整发送速率。具体的,当发送设备检测到丢包率大于或等于第一阈值,说明很可能是当前速率较大导致丢包严重,则发送设备将发送速率降低,以避免导致严重丢包。当发送设备检测到丢包率小于第一阈值,发送速率可以设置为速率上限V max,这样一来,即保证发送速率,又不致严重丢包。
当然,根据丢包率和速率上限,确定发送速率的具体方式还可能为其他,本申请实施例不再一一穷举。
现有技术中,传输层的速率调整需考虑端到端的传输层信息,比如,发送端向接收端发送数据,接收端是否反馈,时延是多少。当传输层的发送速率较快,很可能导致丢包。并且,因为传输层信息通常是端到端的信息,该端到端信息需要收发端之间进行发送、反馈等流程之后获取,导致传输层的速率调整往往不够及时。与现有技术相比,本申请实施例提供的发送速率调整方法,基于物理层信道信息进行速率调整,通过物理层信道信息,发送设备可以获知中间网络包括几跳,并能推知中间网络的带宽等情况。一方面,能够匹配通信链路的真实物理层 速率,降低因发送速率与通信链路的物理层速率不匹配导致丢包或排队的概率。一方面,可以充分利用带宽,提升传输效率,降低数据发送时间。
此外,发送设备不仅能够获取发送链路的物理层信道信息,还能通过共享机制获取接收链路的物理层信道信息,使得发送设备能够获知中间网络的全局信息,基于该全局信息计算的发送速率更为精准。
进一步的,本申请实施例中,可以联合更加准确的物理层信道信息和传输层网络状态信息(表征即时网络状态),从而更加准确、及时的进行速率调节,提升网络QOS。QOS包括吞吐、延时等。
示例性的,如图13的(b)所示,为采用本申请实施例技术方案实施近场通信的传输速率。与图13中(a)所示的现有技术相比(传输速率均值11.8MB/S),本申请实施例的发送速率调整方法,传输速率均值有所提升(大致能达到16.7MB/S)。
可以理解的是,上述通信设备(发送设备、转发设备、接收设备)为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请实施例能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请实施例的范围。
本申请实施例可以根据上述方法示例对上述通信设备(即发送设备或转发设备或接收设备)进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
在采用集成的单元的情况下,图14示出了上述实施例中所涉及的通信设备的一种可能的结构示意图。该通信装置可以是上述发送设备或发送设备中的组件(比如芯片系统)或其他支持发送设备功能的组件。该通信设备1500包括:获取模块1510、调整模块1520。
其中,获取模块1510,用于支持通信设备执行上述方法实施例中的S601,S6011,S6012,和/或用于本文所描述的技术的其它过程。调整模块1520,用于支持通信设备执行上述方法实施例中的S602,和/或用于本文所描述的技术的其它过程。
获取模块1510,还用于支持通信设备执行上述方法实施例中的S702a、S702b、S704a,S702b、S6012i1、S6012g2、S6012f3、S1101。
调整模块1520,还用于支持通信设备执行上述方法实施例中的S602a、S602a1、S602a2。
进一步的,上述通信设备1500还可以包括:发送模块1530,用于支持通信设备执行上述方法实施例中的S701,S703,S6012a1,S6012a2,S6012a3,和/或用于本文所描述的技术的其它过程。
可选的,该通信设备还可以包括存储模块(并未在图中示出)。
图15示出了上述实施例中所涉及的通信设备的一种可能的结构示意图。该通信设备可以指上述转发设备或转发设备中的组件(比如芯片系统)或其他支持转发设备功能的组件。该通信设备1600包括:获取模块1610、发送模块1620。
其中,获取模块1610,用于支持通信设备采集接收链路的物理层信道信息,和/或用于本文所描述的技术的其它过程。
发送模块1620,用于支持通信设备执行上述方法实施例中的S702a,S702b,S6012d1,S6012i1,S6012d2,S6012g2,S6012b3,S6012f3,和/或用于本文所描述的技术的其它过程。
进一步的,上述通信设备1600还可以包括:接收模块(并未在图中示出),用于支持通信设备执行上述方法实施例中的S701,S6012a1,S6012g1,S6012a2,S6012e2,S6012a3,S6012f3,和/或用于本文所描述的技术的其它过程。
进一步的,上述通信设备1600还可以包括:创建模块和更新模块(并未在图中示出)。创建模块,用于支持通信设备执行上述方法实施例中的S6012b1,S6012h1,S6012b2,S6012f2,和/或用于本文所描述的技术的其它过程。
更新模块,用于支持通信设备执行上述方法实施例中的S6012c1,S6012c2,和/或用于本文所描述的技术的其它过程。
可选的,该通信设备还可以包括存储模块(并未在图中示出)。
图16示出了上述实施例中所涉及的通信设备的一种可能的结构示意图。该通信设备是上述接收设备或接收设备中的组件(比如芯片系统)或其他支持接收设备功能的组件。该通信设备1700包括:获取模块1710、发送模块1720。
其中,获取模块1710,用于支持通信设备采集接收链路的物理层信道信息,和/或用于本文所描述的技术的其它过程。
发送模块1720,用于支持通信设备执行上述方法实施例中的S704a,S704b,S6012g1,S6012e2,S6012f3,和/或用于本文所描述的技术的其它过程。
进一步的,上述通信设备1700还可以包括:接收模块(并未在图中示出),用于支持通信设备执行上述方法实施例中的S703,S6012d1,S6012d2,S6012b3,和/或用于本文所描述的技术的其它过程。
进一步的,上述通信设备1700还可以包括:创建模块、更新模块和确定模块(并未在图中示出)。
创建模块,用于支持通信设备执行上述方法实施例中的S6012d3,和/或用于本文所描述的技术的其它过程。
确定模块,用于支持通信设备执行上述方法实施例中的S6012e1,S6012f1,S6012c3,和/或用于本文所描述的技术的其它过程。
更新模块,用于支持通信设备执行上述方法实施例中的S6012e3,和/或用于本文所描述的技术的其它过程。
可选的,该通信设备还可以包括存储模块(并未在图中示出)。
在采用集成单元的情况下,上述除发送模块、接收模块之外的模块可以集成在一个处理模块中实现。该处理模块可以是处理器或控制器,例如可以是CPU,通 用处理器,DSP,专用集成电路(Application-Specific Integrated Circuit,ASIC),现场可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。
上述接收模块、发送模块可以是通信设备(如手机)的通信模块,如RF电路、WiFi模块或者蓝牙模块、图4所示通信接口。
例如,当上述处理模块是图4所示的处理器,存储模块是图4所示的存储器403,通信模块为图4所示的通信接口404时,本申请所提供的通信设备可以为图4所示的通信设备400。其中,上述接收模块、发送模块不仅可以包括射频电路,还可以包括WiFi模块和蓝牙模块。射频电路、WiFi模块和蓝牙模块等通信模块可以统称为通信接口。其中,上述处理器、通信接口和存储器可以通过总线耦合在一起。
本申请实施例还提供一种芯片系统,该芯片系统应用于上述通信设备。该芯片系统包括:一个或多个接口电路和一个或多个处理器。所述接口电路和所述处理器通过线路互联。所述接口电路用于从所述通信设备的存储器接收信号,并向所述处理器发送所述信号。该信号包括存储器中存储的计算机指令。当处理器执行该计算机指令时,通信设备执行上述方法实施例中发送设备执行的所述方法,或者,执行上述方法实施例中转发设备执行的所述方法,或者,执行上述方法实施例中接收设备执行的所述方法。
本申请实施例还提供一种计算机存储介质,该计算机存储介质包括计算机指令,当所述计算机指令在通信设备上运行时,使得所述通信设备执行上述方法实施例中发送设备执行的所述方法,或者,执行上述方法实施例中转发设备执行的所述方法,或者,执行上述方法实施例中接收设备执行的所述方法。
本申请实施例还提供一种计算机程序产品,当所述计算机程序产品在计算机上运行时,使得所述计算机执行上述方法实施例中发送设备执行的所述方法,或者,执行上述方法实施例中转发设备执行的所述方法,或者,执行上述方法实施例中接收设备执行的所述方法。
其中,本申请提供的通信设备、芯片系统、计算机存储介质或者计算机程序产品均用于执行上文所提供的对应的方法,因此,其所能达到的有益效果可参考上文所提供的对应的方法中的有益效果,此处不再赘述。
通过以上实施方式的描述,所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划 分方式,例如多个单元或组件可以结合或者可以集成到另一个装置,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是一个物理单元或多个物理单元,即可以位于一个地方,或者也可以分布到多个不同地方。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个可读取存储介质中。基于这样的理解,本申请实施例的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该软件产品存储在一个存储介质中,包括若干指令用以使得一个设备(可以是单片机,芯片等)或处理器(processor)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上内容,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何在本申请揭露的技术范围内的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (35)

  1. 一种近场通信场景下调整发送速率的方法,其特征在于,所述方法用于数据的发送设备,包括:
    获取连接的传输层信息、所述发送设备所在发送链路的物理层信道信息,以及所述数据的接收设备所在接收链路的物理层信道信息,其中,所述连接是所述发送设备与所述接收设备之间的连接;
    根据所述传输层信息、所述发送链路的物理层信道信息以及所述接收链路的物理层信道信息,调整所述发送设备的传输层的发送速率。
  2. 根据权利要求1所述的近场通信场景下调整发送速率的方法,其特征在于,
    所述发送链路的物理层信道信息包括如下一项或多项的组合:所述发送链路的物理层速率信息、所述发送链路的RSSI、所述发送链路的信噪比SNR、所述发送链路的实际业务速率、所述发送链路的接入设备数、所述发送链路的接入设备的流量、所述发送链路的接入设备的协议类型、所述发送链路的接入设备的类型、所述发送链路的帧聚合信息、所述发送链路的带宽、所述发送链路的信道质量指示CQI、所述发送链路的资源;
    所述接收链路的物理层信道信息包括如下一项或多项的组合:所述接收链路的物理层速率信息、所述接收链路的RSSI、所述接收链路的SNR、所述接收链路的实际业务速率、所述接收链路的接入设备数、所述接收链路的接入设备的流量、所述接收链路的接入设备的协议类型、所述接收链路的接入设备的类型、所述接收链路的帧聚合信息、所述接收链路的带宽、所述接收链路的CQI、所述接收链路的资源。
  3. 根据权利要求1或2所述的近场通信场景下调整发送速率的方法,其特征在于,所述传输层信息包括丢包率和/或往返时延RTT。
  4. 根据权利要求1-3中任一项所述的近场通信场景下调整发送速率的方法,其特征在于,所述传输层的发送速率小于等于速率上限;所述速率上限与所述发送链路的物理层信道信息和所述接收链路的物理层信道信息有关。
  5. 根据权利要求4所述的近场通信场景下调整发送速率的方法,其特征在于,所述传输层的发送速率满足如下关系:Sendrate=V max*f trans+Ra;其中,Sendrate为所述传输层的发送速率,V max为所述速率上限,f trans与所述传输层信息有关,Ra为第一偏差因子。
  6. 根据权利要求1-5中任一项所述的近场通信场景下调整发送速率的方法,其特征在于,在所述发送链路和所述接收链路存在干扰的情况下,速率上限为V max=V 1*V 2/(V 1+V 2);或者,在所述发送链路和所述接收链路不存在干扰的情况下,所述速率上限为V max=min(V 1,V 2);
    其中,V 1=C 1*R 1*I 1±D 1;V 2=C 2*R 2*I 2±D 2;V 1表示所述发送链路的最大速率,R 1表示所述发送链路的物理层速率,C 1表示所述发送链路的有效数据占比,I 1表示所述发送链路的干扰因子,D 1表示第二偏差因子;I 1与发送链路接入设备数以及发送链路接入设备的流量有关;
    V 2表示接收链路的最大速率,R 2表示所述接收链路的物理层速率,C 2表示所述接收链路的有效数据占比,I 2表示所述接收链路的干扰因子,D 2表示第三偏差因子;I 2与接收链路接入设备数以及接收链路接入设备的流量有关。
  7. 根据权利要求1-6中任一项所述的近场通信场景下调整发送速率的方法,其特征在于,获取接收设备所在接收链路的物理层信道信息,包括:从所述接收设备接收第一报文,所述第一报文中对应传输层的部分封装有所述接收链路的物理层信道信息;所述第一报文中对应传输层的部分还封装有还封装有所述传输层信息。
  8. 根据权利要求7所述的近场通信场景下调整发送速率的方法,其特征在于,所述第一报文还包括转发设备标识位;所述转发设备标识位被置位,被置位的所述转发设备标识位用于指示所述物理层信道信息来自所述转发设备。
  9. 根据权利要求1-6中任一项所述的近场通信场景下调整发送速率的方法,其特征在于,获取接收设备所在接收链路的物理层信道信息,包括:从所述接收设备接收第二报文,所述第二报文中对应传输层的部分封装有所述接收链路的物理层信道信息;所述第二报文中对应传输层的部分还封装有所述传输层信息;
    其中,所述第二报文还包括接收设备标识位;所述接收设备标识位被置位,被置位的所述接收设备标识位用于指示所述物理层信道信息来自所述接收设备。
  10. 根据权利要求1-9中任一项所述的近场通信场景下调整发送速率的方法,其特征在于,所述方法还包括:向所述接收设备发送第三报文,所述第三报文包括请求标识位,所述请求标识位用于表示所述发送设备是否请求所述接收链路的物理层信道信息。
  11. 根据权利要求10所述的近场通信场景下调整发送速率的方法,其特征在于,所述请求标识位被置位,表示所述发送设备请求所述接收链路的物理层信道信息。
  12. 一种通信系统,其特征在于,包括:
    转发设备,用于向数据的发送设备发所述数据的送接收设备所在接收链路的物理层信道信息,以及向所述发送设备发送连接的传输层信息,其中,所述连接是所述发送设备与所述接收设备之间的连接;
    所述发送设备,用于获取所述发送设备所在发送链路的物理层信道信息,并从所述转发设备接收所述传输层信息以及所述接收链路的物理层信道信息;根据所述传输层信息,所述发送链路的物理层信道信息以及所述接收链路的物理层信道信息,调整所述发送设备的传输层的发送速率。
  13. 根据权利要求12所述的通信系统,其特征在于,
    所述发送链路的物理层信道信息包括如下一项或多项的组合:所述发送链路的物理层速率信息、所述发送链路的RSSI、所述发送链路的信噪比SNR、所述发送链路的实际业务速率、所述发送链路的接入设备数、所述发送链路的接入设备的流量、所述发送链路的接入设备的协议类型、所述发送链路的接入设备的类型、所述发送链路的帧聚合信息、所述发送链路的带宽、所述发送链路的信道质量指示CQI、所述发送链路的资源;
    所述接收链路的物理层信道信息包括如下一项或多项的组合:所述接收链路的物理层速率信息、所述接收链路的RSSI、所述接收链路的SNR、所述接收链路的实际业务速率、所述接收链路的接入设备数、所述接收链路的接入设备的流量、所述接收链路的接入设备的协议类型、所述接收链路的接入设备的类型、所述接收链路的帧聚合信息、所述接收链路的带宽、所述接收链路的CQI。
  14. 根据权利要求12或13所述的通信系统,其特征在于,所述转发设备,用于向发送设备发送接收设备所在接收链路的物理层信道信息,包括:用于向所述发送设备发送第一报文,所述第一报文中对应传输层的部分封装有所述接收链路的物理层信道信息;
    其中,所述第一报文还包括转发设备标识位;所述转发设备标识位被置位,被置位的所述转发设备标识位用于指示所述物理层信道信息来自所述转发设备;所述第一报文中对应传输层的部分还封装有还封装有所述传输层信息。
  15. 根据权利要求12-14中任一项所述的通信系统,其特征在于,所述转发设备,还用于从发送设备接收第三报文,所述第三报文包括请求标识位,所述请求标识位用于表示所述发送设备是否请求所述接收链路的物理层信道信息。
  16. 根据权利要求15所述的通信系统,其特征在于,所述请求标识位被置位,表示所述发送设备请求所述接收链路的物理层信道信息。
  17. 一种通信系统,其特征在于,包括:
    接收设备,用于向数据的发送设备发送所述数据的接收设备所在接收链路的物理层信道信息;
    转发设备,用于向所述发送设备发送连接的传输层信息,其中,所述连接是所述发送设备与所述接收设备之间的连接;
    所述发送设备,用于获取所述发送设备所在发送链路的物理层信道信息,并从所述接收设备接收所述接收链路的物理层信道信息,以及从所述转发设备接收所述传输层信息;根据所述传输层信息,所述发送链路的物理层信道信息以及所述接收链路的物理层信道信息,调整所述发送设备的传输层的发送速率。
  18. 根据权利要求17所述的通信系统,其特征在于,
    所述发送链路的物理层信道信息包括如下一项或多项的组合:所述发送链路的物理层速率信息、所述发送链路的RSSI、所述发送链路的信噪比SNR、所述发送链路的实际业务速率、所述发送链路的接入设备数、所述发送链路的接入设备的流量、所述发送链路的接入设备的协议类型、所述发送链路的接入设备的类型、所述发送链路的帧聚合信息、所述发送链路的带宽、所述发送链路的信道质量指示CQI、所述发送链路的资源;
    所述接收链路的物理层信道信息包括如下一项或多项的组合:所述接收链路的物理层速率信息、所述接收链路的RSSI、所述接收链路的SNR、所述接收链路的实际业务速率、所述接收链路的接入设备数、所述接收链路的接入设备的流量、所述接收链路的接入设备的协议类型、所述接收链路的接入设备类型、所述接收链路的帧聚合信息、所述接收链路的带宽、所述接收链路的CQI。
  19. 根据权利要求17或18所述的通信系统,其特征在于,所述接收设备,用 于向发送设备发送所述接收设备所在接收链路的物理层信道信息,包括:用于向所述发送设备发送第二报文,所述第二报文中对应传输层的部分封装有所述接收链路的物理层信道信息;所述第二报文中对应传输层的部分还封装有所述传输层信息;
    其中,所述第二报文还包括接收设备标识位;所述接收设备标识位被置位,被置位的所述接收设备标识位用于指示所述物理层信道信息来自所述接收设备。
  20. 根据权利要求17-19中任一项所述的通信系统,其特征在于,所述接收设备,还用于从发送设备接收第三报文,所述第三报文包括请求标识位,所述请求标识位用于表示所述发送设备是否请求所述接收链路的物理层信道信息。
  21. 根据权利要求20所述的通信系统,其特征在于,所述请求标识位被置位,表示所述发送设备请求所述接收链路的物理层信道信息。
  22. 一种发送设备,其特征在于,包括:
    获取模块,用于获取连接的传输层信息、数据的发送设备所在发送链路的物理层信道信息,以及所述数据的接收设备所在接收链路的物理层信道信息,其中,所述连接是所述发送设备与所述接收设备之间的连接;
    调整模块,用于根据所述传输层信息、所述发送链路的物理层信道信息以及所述接收链路的物理层信道信息,调整所述发送设备的传输层的发送速率。
  23. 根据权利要求22所述的发送设备,其特征在于,
    所述发送链路的物理层信道信息包括如下一项或多项的组合:所述发送链路的物理层速率信息、所述发送链路的RSSI、所述发送链路的信噪比SNR、所述发送链路的实际业务速率、所述发送链路的接入设备数、所述发送链路的接入设备的流量、所述发送链路的接入设备的协议类型、所述发送链路的接入设备的类型、所述发送链路的帧聚合信息、所述发送链路的带宽、所述发送链路的信道质量指示CQI、所述发送链路的资源;
    所述接收链路的物理层信道信息包括如下一项或多项的组合:所述接收链路的物理层速率信息、所述接收链路的RSSI、所述接收链路的SNR、所述接收链路的实际业务速率、所述接收链路的接入设备数、所述接收链路的接入设备的流量、所述接收链路的接入设备的协议类型、所述接收链路的接入设备的类型、所述接收链路的帧聚合信息、所述接收链路的带宽、所述接收链路的CQI、所述接收链路的资源。
  24. 根据权利要求22或23所述的发送设备,其特征在于,所述传输层信息包括丢包率和/或往返时延RTT。
  25. 根据权利要求22-24中任一项所述的发送设备,其特征在于,所述传输层的发送速率小于等于速率上限;所述速率上限与所述发送链路的物理层信道信息和所述接收链路的物理层信道信息有关。
  26. 根据权利要求25所述的发送设备,其特征在于,所述传输层的发送速率满足如下关系:Sendrate=V max*f trans+Ra;其中,Sendrate为所述传输层的发送速率,V max为所述速率上限,f trans与所述传输层信息有关,Ra为第一偏差因子。
  27. 根据权利要求22-26中任一项所述的发送设备,其特征在于,在所述发送 链路和所述接收链路存在干扰的情况下,速率上限为V max=V 1*V 2/(V 1+V 2);或者,在所述发送链路和所述接收链路不存在干扰的情况下,所述速率上限为V max=min(V 1,V 2);
    其中,V 1=C 1*R 1*I 1±D 1;V 2=C 2*R 2*I 2±D 2;V 1表示所述发送链路的最大速率,R 1表示所述发送链路的物理层速率,C 1表示所述发送链路的有效数据占比,I 1表示所述发送链路的干扰因子,D 1表示第二偏差因子;I 1与发送链路接入设备数以及发送链路接入设备的流量有关;
    V 2表示接收链路的最大速率,R 2表示所述接收链路的物理层速率,C 2表示所述接收链路的有效数据占比,I 2表示所述接收链路的干扰因子,D 2表示第三偏差因子;I 2与接收链路接入设备数以及接收链路接入设备的流量有关。
  28. 根据权利要求22-27中任一项所述的发送设备,其特征在于,获取接收设备所在接收链路的物理层信道信息,包括:从所述接收设备接收第一报文,所述第一报文中对应传输层的部分封装有所述接收链路的物理层信道信息;所述第一报文中对应传输层的部分还封装有还封装有所述传输层信息。
  29. 根据权利要求28所述的发送设备,其特征在于,所述第一报文还包括转发设备标识位;所述转发设备标识位被置位,被置位的所述转发设备标识位用于指示所述物理层信道信息来自所述转发设备。
  30. 根据权利要求22-27中任一项所述的发送设备,其特征在于,获取接收设备所在接收链路的物理层信道信息,包括:从所述接收设备接收第二报文,所述第二报文中对应传输层的部分封装有所述接收链路的物理层信道信息;所述第二报文中对应传输层的部分还封装有所述传输层信息;
    其中,所述第二报文还包括接收设备标识位;所述接收设备标识位被置位,被置位的所述接收设备标识位用于指示所述物理层信道信息来自所述接收设备。
  31. 根据权利要求22-30中任一项所述的发送设备,其特征在于,所述设备还包括:
    发送模块,用于向所述接收设备发送第三报文,所述第三报文包括请求标识位,所述请求标识位用于表示所述发送设备是否请求所述接收链路的物理层信道信息。
  32. 根据权利要求31所述的发送设备,其特征在于,所述请求标识位被置位,表示所述发送设备请求所述接收链路的物理层信道信息。
  33. 一种通信设备,其特征在于,所述通信设备包括:存储器和一个或多个处理器;所述存储器与所述处理器耦合,所述存储器用于存储计算机程序代码,所述计算机程序代码包括计算机指令,当所述计算机指令被所述处理器执行时,使得所述通信设备执行如权利要求1-11中任一项所述的近场通信场景下调整发送速率的方法。
  34. 一种芯片系统,其特征在于,包括:所述芯片系统包括处理电路、存储介质,所述存储介质中存储有指令;所述指令被所述处理电路执行时,实现如权利要求1-11任一项所述的近场通信场景下调整发送速率的方法。
  35. 一种计算机存储介质,其特征在于,包括计算机指令,当所述计算机指令 在计算机上运行时,使得所述计算机执行如权利要求1-11中任一项所述的近场通信场景下调整发送速率的方法。
PCT/CN2021/103498 2020-06-30 2021-06-30 近场通信场景下调整发送速率的方法、装置及系统 WO2022002120A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21832552.0A EP4161141A4 (en) 2020-06-30 2021-06-30 METHOD, DEVICE AND SYSTEM FOR ADJUSTING THE TRANSMITTER RATE IN A NEAR FIELD COMMUNICATION SCENARIO
US18/147,509 US20230188230A1 (en) 2020-06-30 2022-12-28 Method for Adjusting Sending Rate in Near Field Communication Scenario, Apparatus, and System

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202010624214.1 2020-06-30
CN202010624214 2020-06-30
CN202110714606.1 2021-06-25
CN202110714606.1A CN113872726B (zh) 2020-06-30 2021-06-25 近场通信场景下调整发送速率的方法、装置及系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/147,509 Continuation US20230188230A1 (en) 2020-06-30 2022-12-28 Method for Adjusting Sending Rate in Near Field Communication Scenario, Apparatus, and System

Publications (1)

Publication Number Publication Date
WO2022002120A1 true WO2022002120A1 (zh) 2022-01-06

Family

ID=78990023

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/103498 WO2022002120A1 (zh) 2020-06-30 2021-06-30 近场通信场景下调整发送速率的方法、装置及系统

Country Status (4)

Country Link
US (1) US20230188230A1 (zh)
EP (1) EP4161141A4 (zh)
CN (1) CN113872726B (zh)
WO (1) WO2022002120A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115883478A (zh) * 2023-02-21 2023-03-31 北京大学深圳研究生院 一种多标识网络体系中安全高效的传输控制方法及系统

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114095911B (zh) * 2022-01-20 2022-05-03 深圳维特智能科技有限公司 一种基于无线网路由器nfc带宽调整方法及装置
CN114499762A (zh) * 2022-02-11 2022-05-13 深圳震有科技股份有限公司 一种通信系统、5g网络下的多路转发方法及通信设备
CN118139037A (zh) * 2022-12-02 2024-06-04 华为技术有限公司 一种nfc的通信方法及装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103051558A (zh) * 2012-12-06 2013-04-17 惠州Tcl移动通信有限公司 一种近场通信软件栈逻辑链路层的流量控制方法
US20140126388A1 (en) * 2012-11-04 2014-05-08 Kt Corporation Establishing wireless connection based on network status
CN108293229A (zh) * 2015-12-04 2018-07-17 三星电子株式会社 基于数据通信量速率选择外部电子设备的方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9591513B2 (en) * 2012-08-06 2017-03-07 Vid Scale, Inc. Rate adaptation using network signaling
JP6494535B2 (ja) * 2016-01-04 2019-04-03 Kddi株式会社 近距離無線ネットワークの輻輳に応じて広域無線ネットワークへの制御信号を抑制する無線ゲートウェイ、プログラム及び方法
US20170303276A1 (en) * 2016-04-15 2017-10-19 Qualcomm Incorporated Techniques for ofdma rate adaptation
CN109217978A (zh) * 2017-06-30 2019-01-15 华为技术有限公司 数据传输的方法、装置和系统
US20190215729A1 (en) * 2018-03-15 2019-07-11 Intel Corporation Session description protocol mechanisms for signaling radio access network capabilities in multimedia telephony sessions
CN111919423B (zh) * 2018-04-06 2022-07-19 华为技术有限公司 网络通信中的拥塞控制
CN110708721A (zh) * 2019-09-05 2020-01-17 中国联合网络通信集团有限公司 一种数据传输方法及装置
CN111065120B (zh) * 2019-12-24 2022-02-11 展讯通信(上海)有限公司 蜂窝网络上行链路ecn机制的增强方法、设备及介质

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140126388A1 (en) * 2012-11-04 2014-05-08 Kt Corporation Establishing wireless connection based on network status
CN103051558A (zh) * 2012-12-06 2013-04-17 惠州Tcl移动通信有限公司 一种近场通信软件栈逻辑链路层的流量控制方法
CN108293229A (zh) * 2015-12-04 2018-07-17 三星电子株式会社 基于数据通信量速率选择外部电子设备的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4161141A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115883478A (zh) * 2023-02-21 2023-03-31 北京大学深圳研究生院 一种多标识网络体系中安全高效的传输控制方法及系统
CN115883478B (zh) * 2023-02-21 2023-07-25 北京大学深圳研究生院 一种多标识网络体系中安全高效的传输控制方法及系统

Also Published As

Publication number Publication date
CN113872726B (zh) 2023-03-03
EP4161141A1 (en) 2023-04-05
CN113872726A (zh) 2021-12-31
US20230188230A1 (en) 2023-06-15
EP4161141A4 (en) 2023-11-15

Similar Documents

Publication Publication Date Title
WO2022002120A1 (zh) 近场通信场景下调整发送速率的方法、装置及系统
EP3767890B1 (en) Method and apparatus for monitoring service quality
US9647945B2 (en) Mechanisms to improve the transmission control protocol performance in wireless networks
KR100986871B1 (ko) 무선 랜을 통한 전송의 스루풋을 측정하는 방법
US11671377B2 (en) System and method for reducing bandwidth usage of a network
WO2018177014A1 (zh) 一种调整终端发送数据的速率的方法及装置
EP3846529A1 (en) Data transmission method and device
WO2018027674A1 (zh) 传输状态报告装置、方法以及通信系统
EP3890221A1 (en) Data transmission method and related apparatus
CN104320809A (zh) 基于rtt的无线多跳网络拥塞控制方法及系统
WO2016161594A1 (zh) 一种数据传输的方法及装置
Cheng et al. A cross-layer design for TCP end-to-end performance improvement in multi-hop wireless networks
US20070274210A1 (en) Quality of service securing method and apparatus
JP6263102B2 (ja) バックホール側の混雑度に応じたウィンドウサイズを設定可能な無線端末、通信システム、プログラム及び方法
WO2012159580A1 (zh) 一种获取终端通信链路质量的方法、网络接入设备及系统
Netalkar et al. mmCPTP: A cross-layer pull based transport protocol for 5g mmwave networks
WO2023207970A1 (zh) 通信方法及通信装置
US8582456B2 (en) Method and system for digital content protection locality check with adaptive timeline in wireless communication systems
WO2017028681A1 (zh) 一种数据传输状态的报告、确定传输数据量的方法及装置
Abu-Sharkh et al. The impact of multi-rate operation on A-MSDU, A-MPDU and block acknowledgment in greenfield IEEE802. 11n wireless LANs
JP6973511B2 (ja) 通信装置、通信システム、通信方法及びプログラム
US20210127301A1 (en) Application Notifications from Network for Throughput and Flow Control Adaptation
Cheng et al. TCP selective negative acknowledgment over IEEE 802.11 wireless networks
Seyedzadegan et al. The TCP fairness in WLAN: a review
WO2023125310A1 (zh) 一种通信方法及通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21832552

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021832552

Country of ref document: EP

Effective date: 20221228

NENP Non-entry into the national phase

Ref country code: DE