WO2022001852A1 - 控制无线通信网络或传感器的电子设备以及方法 - Google Patents

控制无线通信网络或传感器的电子设备以及方法 Download PDF

Info

Publication number
WO2022001852A1
WO2022001852A1 PCT/CN2021/102275 CN2021102275W WO2022001852A1 WO 2022001852 A1 WO2022001852 A1 WO 2022001852A1 CN 2021102275 W CN2021102275 W CN 2021102275W WO 2022001852 A1 WO2022001852 A1 WO 2022001852A1
Authority
WO
WIPO (PCT)
Prior art keywords
wireless access
access node
sensor
state information
data
Prior art date
Application number
PCT/CN2021/102275
Other languages
English (en)
French (fr)
Inventor
陈巍
韩迪
赵霄宇
孙晨
田中
王晓雪
Original Assignee
索尼集团公司
陈巍
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 索尼集团公司, 陈巍 filed Critical 索尼集团公司
Priority to CN202180044249.0A priority Critical patent/CN115918004A/zh
Publication of WO2022001852A1 publication Critical patent/WO2022001852A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0009Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding
    • H04L1/001Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding applied to control information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C17/00Arrangements for transmitting signals characterised by the use of a wireless electrical link
    • G08C17/02Arrangements for transmitting signals characterised by the use of a wireless electrical link using a radio link

Definitions

  • the present disclosure relates to the field of wireless communication, and in particular, to an electronic device and method for controlling a wireless communication network or a sensor in a wireless communication network.
  • the Ultra-Reliable Low-Latency Communications (URLLC, Ultra-Reliable Low-Latency Communications) scenario is one of the three major application scenarios in the 5G network, which has both high reliability and low latency for data transmission. Extremely demanding. In general, the user-level latency should be less than 1 ms, and the bit error rate should be less than 10 -5 .
  • Channel coding is a necessary part of the communication system. Its basic idea is to add some redundant information to the transmitted data, so that the receiver can have the ability to detect and correct errors, so as to reduce the bit error rate of data transmission. , that is, to improve the reliability of communication. Using different coding schemes in a communication system can achieve different error detection and error correction capabilities. Channel coding schemes can be classified into linear block codes, cyclic codes, convolutional codes, and so on.
  • More redundant bits allow better error correction to reduce bit error rates, but also reduce data transmission efficiency, resulting in increased latency required for transmission. Therefore, for finite-length channel coding, higher throughput can be exchanged by sacrificing certain reliability, so that the delay of data transmission is reduced.
  • using a single fixed finite-length channel coding scheme can only achieve a fixed compromise between reliability and delay, so it is difficult to flexibly respond to changes in the system environment and service requirements.
  • the sensor can upload the generated data to the wireless access node, and then the wireless access node repackages the data and performs channel coding, and sends it to the base station through the wireless channel.
  • the present disclosure proposes to adjust the channel coding scheme of the wireless access node and/or the working state of the sensor according to the communication state of the wireless access node.
  • the solution of the present disclosure can reduce the data transmission delay from the sensor to the base station and/or improve the reliability of data transmission.
  • an electronic device for controlling a wireless communication network comprising a processing circuit configured to: acquire communication status information of a wireless access node; according to the communication status information of the wireless access node , selecting a target channel coding scheme corresponding to the communication state information; and switching the wireless access node to use the target channel coding scheme to send data.
  • an electronic device for controlling a sensor including a processing circuit, the processing circuit being configured to: acquire communication status information of a wireless access node; according to the communication status information of the wireless access node, selecting a target operating state of the sensor corresponding to the communication state information; and switching the sensor to the target operating state.
  • an environment monitoring device comprising: a sensor configured to monitor the environment to generate sampled data; a wireless access module configured to wirelessly transmit the sampled data of the sensor; and a control Wireless access modules and control circuits for sensors.
  • the control circuit is configured to: acquire communication state information of the wireless access module; and perform operations according to the communication state information of the wireless access module.
  • the operation includes selecting a target channel coding scheme corresponding to the communication status information, and switching the wireless access module to use the target channel coding scheme to send data; and/or selecting a target operating status of the sensor corresponding to the communication status information , and switch the sensor to the target working state.
  • a method for controlling a wireless communication network including: acquiring communication state information of a wireless access node; a target channel coding scheme; and switching the wireless access node to transmit data using the target channel coding scheme.
  • a method for controlling a sensor including: acquiring communication state information of a wireless access node; and selecting a sensor corresponding to the communication state information according to the communication state information of the wireless access node. target operating state; and switching the sensor to the target operating state.
  • an environment monitoring method which includes monitoring the environment through a sensor to generate sampling data; wirelessly transmitting the sampling data of the sensor through a wireless access module; communication state information; and performing operations through the control circuit according to the communication state information of the wireless access module.
  • the operation includes: selecting a target channel coding scheme corresponding to the communication status information, and switching the wireless access module to use the target channel coding scheme to send data; and/or selecting a target operation of the sensor corresponding to the communication status information state and switch the sensor to the target working state.
  • a non-transitory computer-readable storage medium having stored thereon instructions that, when executed by a processor, cause the processor to perform the method of the present disclosure.
  • control apparatus comprising means for performing the various steps of the method of the present disclosure.
  • FIG. 1 is a schematic diagram showing an example of the configuration of a communication system of some embodiments of the present disclosure.
  • FIG. 2 is a schematic diagram illustrating the data transmission delay from data generation of a sensor to data reception of a base station in some embodiments of the present disclosure.
  • Figure 3 is a flow diagram illustrating the communication flow of some embodiments of the present disclosure.
  • FIG. 4 is a schematic diagram illustrating adjusting a channel coding scheme in a negative feedback manner in some embodiments of the present disclosure.
  • FIG. 5 is a schematic diagram illustrating that the working state of the sensor is adjusted in a negative feedback manner in some embodiments of the present disclosure.
  • FIG. 6 is a block diagram illustrating a configuration of an electronic device that controls a sensor of some embodiments of the present disclosure.
  • FIG. 7 is a block diagram illustrating a configuration of an electronic device that controls a wireless communication network of some embodiments of the present disclosure.
  • FIG. 8 is a block diagram showing the configuration of an environment monitoring apparatus of some embodiments of the present disclosure.
  • FIG. 9 is a block diagram illustrating an example of a schematic configuration of a computing device to which the techniques of this disclosure may be applied.
  • FIG. 10 is a block diagram showing a first example of a schematic configuration of a gNB to which techniques of the present disclosure may be applied.
  • FIG. 11 is a block diagram showing a second example of a schematic configuration of a gNB to which techniques of the present disclosure may be applied.
  • FIG. 12 is a block diagram showing an example of a schematic configuration of a smartphone to which the technology of the present disclosure can be applied.
  • FIG. 13 is a block diagram showing an example of a schematic configuration of a car navigation apparatus to which the technology of the present disclosure can be applied.
  • FIG. 1 is a schematic diagram showing an example of the configuration of a communication system 100 of some embodiments of the present disclosure.
  • the communication system 100 includes sensors 101 - 1 , 101 - 2 and 101 - 3 deployed at different locations, a radio access node 102 , a base station 103 , and a core network 104 .
  • any one of the sensors 101-1, 101-2, and 103-3 is denoted by reference numeral 101 without distinguishing the sensors 101-1, 101-2, and 101-3.
  • the number of sensors 101 shown in FIG. 1 is an example, and the number of sensors 101 is not limited to three, and may be any number.
  • Sensors 101 may monitor the environment to generate sampled data.
  • the sampled data generated by the sensor 101 needs to be uploaded to the base station 103 with low delay and high reliability.
  • the sensor 101 may be a sensor such as an Internet of Things (IoT) sensor, which can help people implement various intelligent systems.
  • image sensors can be used in smart parking application systems that monitor illegal parking on the road, and urban security monitoring systems that monitor and track abnormal people and events.
  • IoT Internet of Things
  • image sensors can be used in smart parking application systems that monitor illegal parking on the road, and urban security monitoring systems that monitor and track abnormal people and events.
  • professional manhole cover sensors, temperature and humidity sensors, and smoke alarms can be combined with IoT to generate wireless alarm information such as tube well status, temperature and humidity, and smoke.
  • these sensors require low-power IoT modules so that they can operate on batteries with limited power for years without the need to run wires.
  • the battery capacity of the sensor 101 itself is limited. In order to have a longer battery life, it is necessary to control and reduce the power consumption of the sensor itself as much as possible, including the communication power consumption caused by the transmission of data.
  • the distance between the sensor 101 and the base station 103 is long, if the sensor 101 directly transmits data to the base station 103, a large path loss will occur. In this case, if the transmission power of the sensor is given, the throughput of the communication between the sensor 101 and the base station 103 will be very low, so that the data collected by the sensor 101 cannot be sent to the base station 103 in time. In order to ensure the target transmission rate, the transmission power consumption will be too large, thereby affecting the battery life of the sensor 101 .
  • the communication system 100 of some embodiments of the present disclosure deploys a wireless access node 102 that wirelessly communicates with the sensor 101 near the sensor 101 to implement the function of a relay node.
  • the sensor 101 first sends the generated sampled data to the wireless access node 102 , and then the wireless access node 102 repackages the data and channel-codes the data, and then sends it to the base station 103 connected to the core network 104 .
  • the sensor 101 may also transmit control information to or receive control information from the wireless access node 102 .
  • the wireless access node 102 may transmit the sampled data collected from the sensor 101 to the base station 103 .
  • the wireless access node 102 may be implemented by any device capable of communicating with the base station 103 .
  • the radio access node 102 may be implemented by a user equipment (UE).
  • UE user equipment
  • the wireless access node 102 may also have the function of a sensor, that is, it can monitor the environment to generate sampled data.
  • the base station 103 may transmit the sample data received from the radio access node 102 to the core network 104 .
  • FIG. 2 is a schematic diagram illustrating the data transmission delay from data generation of a sensor to data reception of a base station in some embodiments of the present disclosure.
  • sensors and wireless access nodes are in close proximity and the throughput between them is high, eg, in a high reliability low latency communication (URLLC) scenario.
  • the short-range communication between the sensor and the wireless access node can achieve high transmission throughput, so that the sensor can upload data to the wireless access node quickly and reliably with only a small power overhead. Therefore, the data transmission delay is mainly determined by the queuing delay in the wireless access node and the air interface delay from the wireless access node to the base station.
  • the queuing delay is the average queuing time of data in the cache queue.
  • the average queuing time of data in the cache queue depends on the amount of data stored in the average cache in the time dimension, that is,
  • ⁇ arrival is the average arrival rate of the queue
  • q[t] is the queue length at the current moment, that is, the size of the data volume in the cache.
  • the buffer state of the wireless access node can also be used as the basis for switching the channel coding scheme. Specifically, when there is a large amount of data in the buffer of the wireless access node, a higher throughput can be achieved by increasing the transmission power or the channel coding scheme to control the delay.
  • the working state of the wireless sensor can also be controlled, such as reducing the sampling rate (such as reducing the resolution of the image sensor) to reduce the delay.
  • the air interface delay depends on the system environment, including channel state, transmission power, and communication parameters including channel coding scheme.
  • FIG. 3 is a flow diagram illustrating a communication process 300 of some embodiments of the present disclosure.
  • step S306 the wireless access node 102 acquires its own communication state information.
  • step S308 the wireless access node 102 selects a target channel coding scheme corresponding to the communication state information according to its own communication state information.
  • step S310 the radio access node 102 requests the base station 103 to switch to the target channel coding scheme.
  • step S312 the base station 103 confirms the handover to the target channel coding scheme to the radio access node 102.
  • the radio access node 102 switches to the target channel coding scheme.
  • steps S310 and S312 may be omitted.
  • the radio access node 102 may switch to the target channel coding scheme without confirmation from the base station 103 .
  • the radio access node 102 may send signaling to inform the base station 103 that it has switched to the target channel coding scheme.
  • the communication status information of the wireless access node 102 may include the buffer size of the data to be sent by the wireless access node, the transmission delay requirement of the data to be sent by the wireless access node, the wireless access node One or more of the incoming data rates for the incoming node.
  • the wireless access node 102 may select a target channel coding scheme with a throughput corresponding to its communication state information based on its communication state information.
  • the high-throughput channel coding scheme can enable the wireless access node 102 to send the buffered data to the base station 103 as soon as possible, thereby avoiding data backlog in the buffer.
  • the wireless access node 102 may divide the buffer amount of the data to be sent into multiple levels, and select a target channel coding scheme corresponding to the level according to the level of the buffer amount of the data to be sent.
  • the transmission delay requirement of the data is high, indicating that the data needs to be sent to the base station 103 as soon as possible to avoid data invalidation due to the passage of time.
  • the wireless access node 102 may select the target channel coding scheme so that the queuing delay of the data to be sent satisfies the transmission delay requirement of the data to be sent.
  • a high incoming data rate indicates that data is arriving at the wireless access node 102 at a high rate.
  • the high-throughput channel coding scheme can avoid excessive queuing delay caused by the backlog of data in the buffer.
  • the wireless access node 102 may divide its incoming data rate into multiple levels, and according to the level of its incoming data rate, select a target channel coding scheme corresponding to that level.
  • the communication status information of the wireless access node 102 may include the status of the channel used by the wireless access node to transmit data, the transmission reliability requirements of the data to be sent by the wireless access node, the multiple access One or more of access scheme, modulation scheme, and license-free mode.
  • the wireless access node 102 may select a target channel coding scheme with reliability corresponding to its communication state information according to its communication state information.
  • the state of the channel used by the wireless access node 102 to transmit data is poor or the transmission reliability of the data to be transmitted is required to be high.
  • the wireless access node 102 can select a channel coding scheme with higher reliability to ensure the reliability of data transmission.
  • the multiple access scheme used by the wireless access node 102 is a multiple access scheme that guarantees high throughput, such as non-orthogonal multiple access (NOMA) and multi-user MIMO, or uses
  • the modulation scheme is a higher order modulation scheme such as 1024-QAM. Since the throughput can already be guaranteed by a multiple access scheme or a modulation scheme, a highly reliable channel coding scheme can be adopted. Conversely, for some multiple access schemes or modulation schemes with lower throughput, a channel coding scheme with lower reliability and higher throughput can be used.
  • the wireless access node 102 uses a grant-free method, that is, the wireless access node does not need gNB authorization, and directly performs data transmission, thereby shortening the signaling delay of the uplink.
  • the license-free method may increase signal interference.
  • a highly reliable channel coding scheme can be selected. Otherwise, a less reliable channel coding scheme such as BCH code can be selected.
  • the communication status information of the wireless access node 102 may include the size of the data packet to be sent by the wireless access node.
  • the wireless access node 102 may select a channel coding scheme suitable for transmitting the size of the data packet to be sent. In the case that the data packet to be sent is small, a channel coding scheme with a shorter code length such as BCH code and polar code (Polar Code) can be selected. In the case of large data packets to be sent, a channel coding scheme such as LDPC can be selected which can obtain high coding gain when the code length is long.
  • the wireless access node 102 may select one or more of the type of target channel coding scheme, the code length of the target channel coding scheme, and the coding rate of the selected target channel coding scheme, so that all The throughput, reliability or code length of the selected target channel coding scheme corresponds to the communication state information.
  • the communication state of the wireless access node 102 is usually dynamically changed. Accordingly, the wireless access node 102 can dynamically adjust its channel coding scheme according to its real-time communication status. For example, the wireless access node 102 may periodically acquire its communication state information and select a target channel coding scheme corresponding to the newly acquired communication state information.
  • the state of a channel used by the wireless access node 102 to transmit data typically changes over time, and its current channel state may be good or bad.
  • the transmission reliability requirements of the data to be transmitted by the wireless access node 102 may also change dynamically. For example, if sensors detect outliers, there may be more stringent requirements for low latency and high reliability. Conversely, if the data detected by the sensor is stable, the requirements for low latency and high reliability can be reduced.
  • the wireless access node 102 can also obtain statistical information of the communication state, and predict in advance how to adjust the channel coding scheme according to the statistical information.
  • the incoming data rate of the wireless access node 102 may vary over time.
  • the process of generating and uploading data by the sensor 101 is random, that is, the amount of data received by the wireless access node 102 in each time slot is random. Since the number of sensors 101 is limited and the location distribution is fixed, the wireless access node 102 can obtain the statistical distribution of the data generated and uploaded by the sensors 101 .
  • the radio access node 102 can predict in advance how to adjust the channel coding scheme according to the statistical distribution information generated by the data.
  • the buffer size of the data to be sent by the wireless access node 102 also changes over time.
  • the buffer amount of the current time slot mainly depends on the buffer amount of the adjacent time slot, that is, it has a certain Markov property.
  • the change of the buffer amount in the current time slot compared to the previous time slot depends on the arrival and transmission of new data, where the former is a random variable, and the latter depends on the throughput between the wireless access node and the base station.
  • the radio access node 102 can predict in advance how to adjust the channel coding scheme according to the Markov property of the buffer size.
  • the radio access node 102 may also adjust the channel coding scheme in a negative feedback manner.
  • the queuing delay may be reduced due to the reduction of the buffer size of the data to be sent.
  • the wireless access node 102 can switch to a highly reliable channel coding scheme to ensure the reliability of data transmission.
  • FIG. 4 is a schematic diagram illustrating adjusting a channel coding scheme in a negative feedback manner in some embodiments of the present disclosure.
  • the wireless access node 102 estimates that its queuing delay is high.
  • the queuing delay may be estimated according to the data buffer amount and throughput of the wireless access node, or may be estimated according to the time difference between the wireless access node 102 receiving the data and sending the data.
  • the wireless access node 102 selects and switches to a higher throughput channel coding scheme to reduce the queuing delay of data.
  • the wireless access node estimates that its queuing delay is low.
  • step S408 the wireless access node 102 selects and switches to a higher reliability channel coding scheme to ensure the reliability of data transmission.
  • the channel coding scheme of the wireless access node 102 in the manner of negative feedback described above, a balance can be obtained between throughput and reliability, so that the current channel coding scheme of the wireless access node 102 can be adapted to the requirements of data transmission.
  • the above is the process for the wireless access node 102 to adjust its channel coding scheme to suit the requirements of data transmission.
  • the sensor 101 can adjust its working state to suit the requirements of data transmission.
  • sensors collect environmental information
  • one of the criteria for evaluating the usefulness of sensor data is the "freshness" of the information, which can be measured by the concept of information age.
  • the sensor is deployed at a certain location to sense the time-varying temperature of the location, and needs to send the collected temperature information to the base station. If the sensor has a high sampling rate, any temperature changes can be quickly detected by the sensor, but with a concomitantly high amount of data. If this results in too much data and cannot be sent to the base station in time, it will cause the base station to fail to know the temperature change information in time.
  • the sampling rate of the sensor is not as high as possible, but it is necessary to take into account that the delay between data generation and reception by the base station is within an acceptable range.
  • the battery capacity of sensor devices is limited, so the sensor can enter a sleep state in some cases to save energy consumption of the device.
  • sensors that do not require high data update frequency can choose to go to sleep state, temporarily stop sampling of environmental information to save power consumption. After the buffer size of the data to be sent of the wireless access node becomes smaller, the sensor 102 re-enters the sampling state.
  • step S316 the sensor 101 acquires the communication status information of the wireless access node 102 .
  • step S3108 the sensor 101 selects the target operating state of the sensor corresponding to the communication state information according to the communication state information of the wireless access node 102.
  • step S320 the sensor 101 is switched to the target operating state.
  • the target working state includes sleep or one of multiple sampling rates.
  • the communication state information includes the queuing delay of the wireless access node 102 for data to be sent.
  • the communication status information includes the buffering amount and throughput of the data to be sent by the wireless access node 102 , and the sensor 101 can use the buffering amount and throughput of the data to be sent by the wireless access node 102
  • the queuing delay for data to be transmitted by the wireless access node 102 is estimated. In the case of a larger queuing delay, the sensor 101 can select a lower sampling rate, or enter a sleep state. In the case of a smaller queuing delay, the sensor 101 can resume sampling or select a higher sampling rate.
  • the sensor 101 can divide the queuing delay of the data to be sent by the wireless access node 102 into multiple levels, and select the target working state corresponding to the level according to the level of the queuing delay of the wireless access node 102 .
  • the sensor 101 can acquire the real-time communication state of the wireless access node 102 and dynamically adjust the working state of the sensor 101. For example, the sensor 101 may periodically acquire the communication state information of the wireless access node 102, and select an operating state corresponding to the newly acquired communication state information.
  • the sensor 101 can also adjust the channel coding scheme in a negative feedback manner. In some cases, after the sensor 101 sleeps or the sampling rate is reduced, the queuing delay is reduced due to the reduction of the buffer amount of the data to be sent by the wireless access node 102 . At this time, the sensor 101 can be made to resume sampling or increase the sampling rate, so as to improve the data resolution of the sensor.
  • FIG. 5 is a schematic diagram illustrating that the working state of the sensor is adjusted in a negative feedback manner in some embodiments of the present disclosure.
  • the sensor 101 estimates that the queuing delay of the data in the wireless access node 102 is high.
  • the sensor 101 sleeps or reduces the sampling rate to reduce the queuing delay of data in the wireless access node 102.
  • the sensor 101 estimates that the queuing delay of the data in the wireless access node 102 is low.
  • the sensor 101 resumes sampling or increases the sampling rate to increase the resolution of the sampled data.
  • the adjustment of the working state of each sensor can be performed independently, without the need for coordination among the various sensors. In this way, signaling overhead and processing computation can be saved.
  • the communication flow 300 in FIG. 3 may omit one or more steps.
  • the communication process 300 can choose to adjust both the channel coding scheme of the wireless access node 102 and the working state of the sensor 101 , or can choose to adjust only one of the channel coding scheme of the wireless access node 102 and the working state of the sensor 101 .
  • steps S316, S318 and S320 may be omitted to adjust only the channel coding scheme of the wireless access node 102.
  • steps S306 , S308 , S310 , S312 and S314 may be omitted to adjust only the operating state of the sensor 101 .
  • the present disclosure provides an electronic device to control the sensor, which may be connected to the sensor 101 , included in the sensor 101 , or implemented as the sensor 101 .
  • the present disclosure also provides an electronic device for controlling a wireless communication network, which may be included in the wireless access node 102 or implemented as the wireless access node 102 .
  • FIG. 6 is a block diagram illustrating a configuration of an electronic device 600 for controlling sensors of some embodiments of the present disclosure.
  • the electronic device 600 for controlling the sensor includes an information acquiring unit 602 , a working state selecting unit 604 and a working state switching unit 606 .
  • the information acquisition unit 602 is configured to acquire the communication status information of the wireless access node 102 .
  • the working state selection unit 604 is configured to select the target working state of the sensor 101 corresponding to the communication state information according to the communication state information of the wireless access node 102.
  • the operating state switching unit 606 is configured to switch the sensor 101 to the target operating state.
  • the electronics that control the sensors may include processing circuitry.
  • the processing circuit is configured to perform the operations of the information acquiring unit 602 , the working state selecting unit 604 and the working state switching unit 606 .
  • the electronic device 600 for controlling the wireless communication network includes an information acquisition unit 792 , a code selection unit 794 and a code switch unit 796 .
  • the information acquisition unit 792 is configured to acquire the communication status information of the wireless access node 102 .
  • the working state selection unit 794 is configured to select a target channel coding scheme corresponding to the communication state information according to the communication state information of the wireless access node 102 .
  • the coding switching unit 796 is configured to switch the wireless access node 102 to transmit data using the target channel coding scheme.
  • an electronic device that controls a wireless communication network may include processing circuitry.
  • the processing circuit is configured to perform the operations of the information acquisition unit 792 , the code selection unit 794 and the code switch unit 796 .
  • the present disclosure also provides an environment monitoring device having both the function of the sensor 101 and the function of the wireless access node 102 .
  • the environmental monitoring device may perform part or all of the operations of the sensor 101 and the wireless access node 102 .
  • FIG. 8 is a block diagram illustrating the configuration of an environmental monitoring device 890 of some embodiments of the present disclosure.
  • the environmental monitoring device 890 includes a sensor 892 , a wireless access module 894 , a control circuit 896 for controlling the wireless access module and the sensor, and an inter-device communication module 898 .
  • Sensors 892 are configured to monitor the environment to generate sampled data.
  • the wireless access module 894 is configured to wirelessly transmit the sampled data of the sensor 892 to the base station 103 .
  • the control circuit 896 is configured to acquire the communication status information of the wireless access module 894, and perform the following operations according to the communication status information of the wireless access module 894: select a target channel coding scheme corresponding to the communication status information, and set the wireless access
  • the input module 894 switches to use the target channel coding scheme to send data; and/or selects the target working state of the sensor 892 corresponding to the communication state information, and switches the sensor 892 to the target working state.
  • the inter-device communication module 898 is configured to wirelessly receive sampled data of its sensor from another environmental monitoring device, and wirelessly transmit the received sampled data of the sensor of the other environmental monitoring device to the base station 103 via the wireless access module 894 .
  • the control circuit 896 is further configured to select a sensor of another environmental monitoring device or a target operating state of another sensor corresponding to the communication state information of the wireless access module 894 according to the communication state information of the wireless access module 894, and Switch the sensor of another environmental monitoring device or another sensor to the target working state.
  • the environmental monitoring device may include processing circuitry configured to perform the operations of the sensor 892, the wireless access module 894, the control circuitry 896, and the inter-device communication module 898.
  • both base stations and user equipment may be implemented as various types of computing devices.
  • the base station may be implemented as any type of Evolved Node B (eNB), gNB or TRP (Transmit Receive Point), such as macro eNB/gNB and small eNB/gNB.
  • eNB Evolved Node B
  • gNB Evolved Node B
  • TRP Transmit Receive Point
  • macro eNB/gNB small eNB/gNB
  • a small eNB/gNB may be an eNB/gNB that covers cells smaller than a macro cell, such as pico eNB/gNB, micro eNB/gNB and home (femto) eNB/gNB.
  • the base station may be implemented as any other type of base station, such as NodeB and base transceiver station (BTS).
  • BTS base transceiver station
  • a base station may include: a subject (also referred to as a base station device) configured to control wireless communications; and one or more remote radio heads (RRHs) disposed at a different location than the subject.
  • a subject also referred to as a base station device
  • RRHs remote radio heads
  • various types of terminals to be described below can each operate as a base station by temporarily or semi-persistently performing a base station function.
  • the user equipment may be implemented as a mobile terminal such as a smart phone, a tablet personal computer (PC), a notebook PC, a portable game terminal, a portable/dongle-type mobile router, and a digital camera or an in-vehicle terminal such as a car navigation device ).
  • the user equipment may also be implemented as a terminal performing machine-to-machine (M2M) communication (also referred to as a machine type communication (MTC) terminal).
  • M2M machine-to-machine
  • MTC machine type communication
  • the user equipment may be a wireless communication module (such as an integrated circuit module comprising a single die) mounted on each of the aforementioned terminals.
  • Computing device 700 includes processor 701 , memory 702 , storage 703 , network interface 704 , and bus 706 .
  • the processor 701 may be, for example, a central processing unit (CPU) or a digital signal processor (DSP), and controls the functions of the server 700 .
  • the memory 702 includes random access memory (RAM) and read only memory (ROM), and stores data and programs executed by the processor 701 .
  • the storage device 703 may include a storage medium such as a semiconductor memory and a hard disk.
  • the network interface 704 is a wired communication interface for connecting the server 700 to the wired communication network 705 .
  • the wired communication network 705 may be a core network such as an evolved packet core network (EPC) or a packet data network (PDN) such as the Internet.
  • EPC evolved packet core network
  • PDN packet data network
  • Bus 706 connects the processor 701, the memory 702, the storage device 703, and the network interface 704 to each other.
  • Bus 706 may include two or more buses (such as a high-speed bus and a low-speed bus) each having a different speed.
  • gNB 800 includes one or more antennas 810 and base station equipment 820.
  • the base station apparatus 820 and each antenna 810 may be connected to each other via an RF cable.
  • Each of the antennas 810 includes a single or multiple antenna elements (such as multiple antenna elements included in a multiple-input multiple-output (MIMO) antenna), and is used by the base station apparatus 820 to transmit and receive wireless signals.
  • gNB 800 may include multiple antennas 810.
  • multiple antennas 810 may be compatible with multiple frequency bands used by gNB 800.
  • FIG. 10 shows an example in which the gNB 800 includes multiple antennas 810, the gNB 800 may also include a single antenna 810.
  • the base station apparatus 820 includes a controller 821 , a memory 822 , a network interface 823 , and a wireless communication interface 825 .
  • the controller 821 may be, for example, a CPU or a DSP, and operates various functions of a higher layer of the base station apparatus 820 .
  • the controller 821 generates data packets from data in the signal processed by the wireless communication interface 825 and communicates the generated packets via the network interface 823 .
  • the controller 821 may bundle data from a plurality of baseband processors to generate a bundled packet, and deliver the generated bundled packet.
  • the controller 821 may have logical functions to perform controls such as radio resource control, radio bearer control, mobility management, admission control and scheduling. This control can be performed in conjunction with nearby gNB or core network nodes.
  • the memory 822 includes RAM and ROM, and stores programs executed by the controller 821 and various types of control data such as a terminal list, transmission power data, and scheduling data.
  • the network interface 823 is a communication interface for connecting the base station apparatus 820 to the core network 824 .
  • the controller 821 may communicate with a core network node or another gNB via a network interface 823 .
  • gNB 800 and core network nodes or other gNBs may be connected to each other through logical interfaces such as S1 interface and X2 interface.
  • the network interface 823 may also be a wired communication interface or a wireless communication interface for wireless backhaul. If the network interface 823 is a wireless communication interface, the network interface 823 may use a higher frequency band for wireless communication than the frequency band used by the wireless communication interface 825 .
  • Wireless communication interface 825 supports any cellular communication scheme, such as Long Term Evolution (LTE) and LTE-Advanced, and provides wireless connectivity to terminals located in the cell of gNB 800 via antenna 810.
  • the wireless communication interface 825 may generally include, for example, a baseband (BB) processor 826 and RF circuitry 827 .
  • the BB processor 826 may perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and performs layers such as L1, Medium Access Control (MAC), Radio Link Control (RLC), and Packet Data Convergence Protocol (PDCP)) various types of signal processing.
  • the BB processor 826 may have some or all of the above-described logical functions.
  • the BB processor 826 may be a memory storing a communication control program, or a module including a processor and associated circuitry configured to execute the program.
  • the update procedure may cause the functionality of the BB processor 826 to change.
  • the module may be a card or blade that is inserted into a slot in the base station device 820. Alternatively, the module can also be a chip mounted on a card or blade.
  • the RF circuit 827 may include, for example, a mixer, a filter, and an amplifier, and transmit and receive wireless signals via the antenna 810 .
  • the wireless communication interface 825 may include multiple BB processors 826 .
  • multiple BB processors 826 may be compatible with multiple frequency bands used by gNB 800.
  • the wireless communication interface 825 may include a plurality of RF circuits 827 .
  • multiple RF circuits 827 may be compatible with multiple antenna elements.
  • FIG. 10 shows an example in which the wireless communication interface 825 includes multiple BB processors 826 and multiple RF circuits 827 , the wireless communication interface 825 may also include a single BB processor 826 or a single RF circuit 827 .
  • gNB 830 includes one or more antennas 840, base station equipment 850, and RRH 860.
  • the RRH 860 and each antenna 840 may be connected to each other via RF cables.
  • the base station apparatus 850 and the RRH 860 may be connected to each other via high-speed lines such as fiber optic cables.
  • Each of the antennas 840 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna) and is used by the RRH 860 to transmit and receive wireless signals.
  • gNB 830 may include multiple antennas 840.
  • multiple antennas 840 may be compatible with multiple frequency bands used by gNB 830.
  • FIG. 11 shows an example in which the gNB 830 includes multiple antennas 840, the gNB 830 may also include a single antenna 840.
  • the base station apparatus 850 includes a controller 851 , a memory 852 , a network interface 853 , a wireless communication interface 855 , and a connection interface 857 .
  • the controller 851 , the memory 852 and the network interface 853 are the same as the controller 821 , the memory 822 and the network interface 823 described with reference to FIG. 10 .
  • Wireless communication interface 855 supports any cellular communication scheme, such as LTE and LTE-Advanced, and provides wireless communication via RRH 860 and antenna 840 to terminals located in a sector corresponding to RRH 860.
  • Wireless communication interface 855 may generally include, for example, BB processor 856 .
  • the BB processor 856 is the same as the BB processor 826 described with reference to FIG. 10, except that the BB processor 856 is connected to the RF circuit 864 of the RRH 860 via the connection interface 857.
  • the wireless communication interface 855 may include multiple BB processors 856 .
  • multiple BB processors 856 may be compatible with multiple frequency bands used by gNB 830.
  • FIG. 11 shows an example in which the wireless communication interface 855 includes multiple BB processors 856
  • the wireless communication interface 855 may also include a single BB processor 856 .
  • connection interface 857 is an interface for connecting the base station apparatus 850 (the wireless communication interface 855 ) to the RRH 860.
  • the connection interface 857 may also be a communication module for communication in the above-mentioned high-speed line connecting the base station apparatus 850 (the wireless communication interface 855) to the RRH 860.
  • RRH 860 includes connection interface 861 and wireless communication interface 863.
  • connection interface 861 is an interface for connecting the RRH 860 (the wireless communication interface 863 ) to the base station apparatus 850.
  • the connection interface 861 may also be a communication module for communication in the above-mentioned high-speed line.
  • the wireless communication interface 863 transmits and receives wireless signals via the antenna 840 .
  • Wireless communication interface 863 may typically include RF circuitry 864, for example.
  • RF circuitry 864 may include, for example, mixers, filters, and amplifiers, and transmit and receive wireless signals via antenna 840 .
  • the wireless communication interface 863 may include a plurality of RF circuits 864 .
  • multiple RF circuits 864 may support multiple antenna elements.
  • FIG. 11 shows an example in which the wireless communication interface 863 includes a plurality of RF circuits 864 , the wireless communication interface 863 may include a single RF circuit 864 .
  • FIG. 12 is a block diagram showing an example of a schematic configuration of a smartphone 900 to which the techniques of the present disclosure can be applied.
  • Smartphone 900 includes processor 901, memory 902, storage device 903, external connection interface 904, camera device 906, sensor 907, microphone 908, input device 909, display device 910, speaker 911, wireless communication interface 912, one or more Antenna switch 915 , one or more antennas 916 , bus 917 , battery 918 , and auxiliary controller 919 .
  • the processor 901 may be, for example, a CPU or a system on a chip (SoC), and controls the functions of the application layer and further layers of the smartphone 900 .
  • the memory 902 includes RAM and ROM, and stores data and programs executed by the processor 901 .
  • the storage device 903 may include a storage medium such as a semiconductor memory and a hard disk.
  • the external connection interface 904 is an interface for connecting an external device such as a memory card and a Universal Serial Bus (USB) device to the smartphone 900 .
  • USB Universal Serial Bus
  • the camera 906 includes an image sensor such as a charge coupled device (CCD) and a complementary metal oxide semiconductor (CMOS), and generates a captured image.
  • Sensors 907 may include a set of sensors, such as measurement sensors, gyroscope sensors, geomagnetic sensors, and acceleration sensors.
  • the microphone 908 converts the sound input to the smartphone 900 into an audio signal.
  • the input device 909 includes, for example, a touch sensor, a keypad, a keyboard, a button, or a switch configured to detect a touch on the screen of the display device 910, and receives operations or information input from a user.
  • the display device 910 includes a screen such as a liquid crystal display (LCD) and an organic light emitting diode (OLED) display, and displays an output image of the smartphone 900 .
  • the speaker 911 converts the audio signal output from the smartphone 900 into sound.
  • the wireless communication interface 912 supports any cellular communication scheme, such as LTE and LTE-Advanced, and performs wireless communication.
  • Wireless communication interface 912 may typically include, for example, BB processor 913 and RF circuitry 914 .
  • the BB processor 913 may perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and perform various types of signal processing for wireless communication.
  • the RF circuit 914 may include, for example, mixers, filters, and amplifiers, and transmit and receive wireless signals via the antenna 916 .
  • the wireless communication interface 912 may be a chip module on which the BB processor 913 and the RF circuit 914 are integrated. As shown in FIG.
  • the wireless communication interface 912 may include a plurality of BB processors 913 and a plurality of RF circuits 914 .
  • FIG. 12 shows an example in which the wireless communication interface 912 includes multiple BB processors 913 and multiple RF circuits 914, the wireless communication interface 912 may include a single BB processor 913 or a single RF circuit 914.
  • the wireless communication interface 912 may support additional types of wireless communication schemes, such as short-range wireless communication schemes, near field communication schemes, and wireless local area network (LAN) schemes.
  • the wireless communication interface 912 may include the BB processor 913 and the RF circuit 914 for each wireless communication scheme.
  • Each of the antenna switches 915 switches the connection destination of the antenna 916 among a plurality of circuits included in the wireless communication interface 912 (eg, circuits for different wireless communication schemes).
  • Each of the antennas 916 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna), and is used for the wireless communication interface 912 to transmit and receive wireless signals.
  • smartphone 900 may include multiple antennas 916 .
  • FIG. 12 shows an example in which the smartphone 900 includes multiple antennas 916 , the smartphone 900 may also include a single antenna 916 .
  • the smartphone 900 may include an antenna 916 for each wireless communication scheme.
  • the antenna switch 915 can be omitted from the configuration of the smartphone 900 .
  • the bus 917 connects the processor 901, the memory 902, the storage device 903, the external connection interface 904, the camera device 906, the sensor 907, the microphone 908, the input device 909, the display device 910, the speaker 911, the wireless communication interface 912, and the auxiliary controller 919 to each other connect.
  • the battery 918 provides power to the various blocks of the smartphone 900 shown in FIG. 12 via feeders, which are partially shown in phantom in the figure.
  • the auxiliary controller 919 operates the minimum necessary functions of the smartphone 900, eg, in a sleep mode.
  • FIG. 13 is a block diagram showing an example of a schematic configuration of a car navigation apparatus 920 to which the technology of the present disclosure can be applied.
  • the car navigation device 920 includes a processor 921, a memory 922, a global positioning system (GPS) module 924, a sensor 925, a data interface 926, a content player 927, a storage medium interface 928, an input device 929, a display device 930, a speaker 931, a wireless A communication interface 933 , one or more antenna switches 936 , one or more antennas 937 , and a battery 938 .
  • GPS global positioning system
  • the processor 921 may be, for example, a CPU or a SoC, and controls the navigation function and other functions of the car navigation device 920 .
  • the memory 922 includes RAM and ROM, and stores data and programs executed by the processor 921 .
  • the GPS module 924 measures the position (such as latitude, longitude, and altitude) of the car navigation device 920 using GPS signals received from GPS satellites.
  • Sensors 925 may include a set of sensors such as gyroscope sensors, geomagnetic sensors, and air pressure sensors.
  • the data interface 926 is connected to, for example, the in-vehicle network 941 via a terminal not shown, and acquires data generated by the vehicle, such as vehicle speed data.
  • the content player 927 reproduces content stored in storage media such as CDs and DVDs, which are inserted into the storage media interface 928.
  • the input device 929 includes, for example, a touch sensor, a button, or a switch configured to detect a touch on the screen of the display device 930, and receives operations or information input from a user.
  • the display device 930 includes a screen such as an LCD or OLED display, and displays an image of a navigation function or reproduced content.
  • the speaker 931 outputs the sound of the navigation function or the reproduced content.
  • the wireless communication interface 933 supports any cellular communication scheme such as LTE and LTE-Advanced, and performs wireless communication.
  • Wireless communication interface 933 may typically include, for example, BB processor 934 and RF circuitry 935 .
  • the BB processor 934 may perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and perform various types of signal processing for wireless communication.
  • the RF circuit 935 may include, for example, mixers, filters, and amplifiers, and transmit and receive wireless signals via the antenna 937 .
  • the wireless communication interface 933 can also be a chip module on which the BB processor 934 and the RF circuit 935 are integrated. As shown in FIG.
  • the wireless communication interface 933 may include multiple BB processors 934 and multiple RF circuits 935 .
  • FIG. 13 shows an example in which the wireless communication interface 933 includes multiple BB processors 934 and multiple RF circuits 935
  • the wireless communication interface 933 may also include a single BB processor 934 or a single RF circuit 935 .
  • the wireless communication interface 933 may support another type of wireless communication scheme, such as a short-range wireless communication scheme, a near field communication scheme, and a wireless LAN scheme.
  • the wireless communication interface 933 may include the BB processor 934 and the RF circuit 935 for each wireless communication scheme.
  • Each of the antenna switches 936 switches the connection destination of the antenna 937 among a plurality of circuits included in the wireless communication interface 933, such as circuits for different wireless communication schemes.
  • Each of the antennas 937 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna), and is used for the wireless communication interface 933 to transmit and receive wireless signals.
  • the car navigation device 920 may include a plurality of antennas 937 .
  • FIG. 13 shows an example in which the car navigation device 920 includes a plurality of antennas 937
  • the car navigation device 920 may also include a single antenna 937 .
  • the car navigation device 920 may include an antenna 937 for each wireless communication scheme.
  • the antenna switch 936 may be omitted from the configuration of the car navigation apparatus 920 .
  • the battery 938 provides power to the various blocks of the car navigation device 920 shown in FIG. 13 via feeders, which are partially shown as dashed lines in the figure.
  • the battery 938 accumulates power supplied from the vehicle.
  • the techniques of this disclosure may also be implemented as an in-vehicle system (or vehicle) 940 that includes one or more blocks of a car navigation device 920 , an in-vehicle network 941 , and a vehicle module 942 .
  • the vehicle module 942 generates vehicle data such as vehicle speed, engine speed, and fault information, and outputs the generated data to the in-vehicle network 941 .
  • DSPs digital signal processors
  • ASICs application specific integrated circuits
  • FPGAs field-programmable gate arrays
  • a general-purpose processor may be a microprocessor, but in the alternative, the processor may be any conventional processor, controller, microcontroller, and/or state machine.
  • a processor may also be implemented as a combination of computing devices, such as a combination of a DSP and a microprocessor, multiple microprocessors, one or more microprocessors combined with a DSP core, and/or any other such configuration.
  • the functions described herein can be implemented in hardware, software executed by a processor, firmware, or any combination thereof. If implemented in software executed by a processor, the functions may be stored on or transmitted over as one or more instructions or code on a non-transitory computer-readable medium. Other examples and implementations are within the scope and spirit of the present disclosure and appended claims. For example, given the nature of software, the functions described above may be performed using software executed by a processor, hardware, firmware, hardwiring, or any combination of these. Features implementing functions may also be physically located at various locations, including being distributed such that portions of functions are implemented at different physical locations.
  • Non-transitory computer readable media can be any available non-transitory media that can be accessed by a general purpose or special purpose computer.
  • non-transitory computer-readable media may include RAM, ROM, EEPROM, flash memory, CD-ROM, DVD or other optical disk storage, magnetic disk storage or other magnetic storage devices, or can be used for Carry or store desired program code components in the form of instructions or data structures and any other medium capable of being accessed by a general purpose or special purpose computer or general purpose or special purpose processor.
  • An electronic device for controlling a wireless communication network comprising a processing circuit configured to:
  • the wireless access node is handed over to transmit data using the target channel coding scheme.
  • selecting a target channel coding scheme corresponding to the communication state information according to the communication state information of the wireless access node comprises:
  • a target channel coding scheme having a throughput corresponding to the communication state information is selected.
  • selecting a target channel coding scheme corresponding to the communication state information according to the communication state information of the wireless access node comprises:
  • the target channel coding scheme corresponding to the level is selected.
  • selecting a target channel coding scheme corresponding to the communication state information according to the communication state information of the wireless access node comprises:
  • the target channel coding scheme is selected so that the queuing delay of the data to be sent of the wireless access node satisfies the transmission delay requirement.
  • selecting a target channel coding scheme corresponding to the communication state information according to the communication state information of the wireless access node comprises:
  • the target channel coding scheme corresponding to the level is selected.
  • the state of the channel used by the wireless access node to send data the transmission reliability requirements of the data to be sent by the wireless access node, the multiple access scheme, the modulation scheme, and the license-free mode.
  • selecting the target channel coding scheme corresponding to the communication state information according to the communication state information of the wireless access node comprises:
  • a target channel coding scheme with reliability corresponding to the communication state information is selected.
  • the communication status information includes a size of a data packet to be sent by the wireless access node.
  • selecting a target channel coding scheme corresponding to the communication state information comprises one or more of the following:
  • processing circuit is further configured to:
  • the communication state information of the wireless access node is sent to the sensor, wherein the sensor selects the target working state of the sensor corresponding to the communication state information according to the communication state information of the wireless access node.
  • processing circuit is further configured to notify a base station of the target channel coding scheme.
  • An electronic device for controlling a sensor comprising a processing circuit configured to:
  • the communication status information includes a buffer size and throughput of data to be sent by the wireless access node
  • the processing circuit is configured to The buffer size and throughput of the data to be sent estimate the queuing delay of the data to be sent of the wireless access node.
  • selecting the target working state of the sensor corresponding to the communication state information comprises:
  • the target working state corresponding to the level is selected.
  • An environmental monitoring device comprising:
  • sensors configured to monitor the environment to generate sampled data
  • a wireless access module configured to wirelessly transmit the sampled data of the sensor
  • a control circuit that controls the wireless access module and the sensor, the control circuit is configured to:
  • the target working state of the sensor corresponding to the communication state information is selected, and the sensor is switched to the target working state.
  • an inter-device communication module configured to wirelessly receive second sampled data from a second sensor of a second environmental monitoring device
  • the wireless access module is further configured to wirelessly transmit the second sampling data of the second sensor of the second environment monitoring device.
  • control circuit is further configured to:
  • a method of controlling a wireless communication network comprising:
  • the wireless access node is handed over to transmit data using the target channel coding scheme.
  • a method of controlling a sensor comprising:
  • An environmental monitoring method comprising:
  • control circuit According to the communication status information of the wireless access module, the following operations are performed by the control circuit:
  • the target working state of the sensor corresponding to the communication state information is selected, and the sensor is switched to the target working state.
  • a non-transitory computer-readable storage medium having stored thereon instructions that, when executed by a processor, cause the processor to perform the method of items 25-27.
  • a control device comprising means for carrying out the steps of the method of items 25 to 27.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提供了控制无线通信网络或传感器的电子设备以及方法。控制无线通信网络的电子设备,包括处理电路,所述处理电路被配置为:获取无线接入节点的通信状态信息;根据无线接入节点的通信状态信息,选择与所述通信状态信息对应的目标信道编码方案;以及将无线接入节点切换至使用目标信道编码方案发送数据。

Description

控制无线通信网络或传感器的电子设备以及方法
优先权声明
本申请要求于2020年6月28日递交、申请号为202010597631.1、名称为“控制无线通信网络或传感器的电子设备以及方法”的中国专利申请的优先权,其全部内容通过引用并入本文。
技术领域
本公开涉及无线通信领域,具体而言,涉及控制无线通信网络或无线通信网络中的传感器的电子设备以及方法。
背景技术
超高可靠低延时通信(URLLC,Ultra-Reliable Low-Latency Communications)场景作为5G网络中的三大应用场景之一,其对数据传输的高可靠性和低延时都这两方面性能都有着极高的要求。一般来说,用户层面的延时应低于1毫秒,而误码率应低于10 -5
信道编码是通信系统中的一个必要组成部分,其基本思想是通过在传输的数据中增加一定的冗余信息,使得接收端可以具备检错和纠错的能力,以降低数据传输的误码率,即提升通信的可靠性。在通信系统中使用不同的编码方案,可以实现不同的检错能力和纠错能力。信道编码方案可分为线性分组码、循环码、卷积码等等。
更多的冗余位可以更好地实现纠错,以降低误码率,但同时也会降低数据传输效率,导致传输所需的延时增加。因此,对于有限长信道编码,可以通过牺牲一定的可靠性来换取更高的吞吐量,使得数据传输的延时降低。然而,采用单一固定的有限长信道编码方案只能实现可靠性和延时之间固定的折中,因此难以灵活应对系统的环境变化和服务需求变化。
在无线传感器网络中,传感器实时产生新鲜数据需要上传到基站中。为了节约传感器的传输功率消耗,传感器可以将产生的数据上传给无线接入节点,然后由无线接入节点将数据重新打包并进行信道编码后,通过无线信道发送到基站中。
发明内容
为了使传感器的数据低延时和/或可靠地传输到基站中,本公开提出了根据无线接入节点的通信状态调整无线接入节点的信道编码方案和/或传感器的工作状态。本公开的方案可以降低从传感器到基站的数据传输延时和/或提高数据传输的可靠性。
根据本公开的一个方面,提供了一种控制无线通信网络的电子设备,包括处理电路,所述处理电路被配置为:获取无线接入节点的通信状态信息;根据无线接入节点的通信状态信息,选择与所述通信状态信息对应的目标信道编码方案;以及将无线接入节点切换至使用目标信道编码方案发送数据。
根据本公开的又一个方面,提供了一种控制传感器的电子设备,包括处理电路,所述处理电路被配置为:获取无线接入节点的通信状态信息;根据无线接入节点的通信状态信息,选择与所述通信状态信息对应的传感器的目标工作状态;以及将传感器切换至目标工作状态。
根据本公开的又一个方面,提供了一种环境监测设备,包括:传感器,被配置为对环境进行监测以生成采样数据;无线接入模块,被配置为无线地发送传感器的采样数据;以及控制无线接入模块和传感器的控制电路。所述控制电路被配置为:获取无线接入模块的通信状态信息;根据无线接入模块的通信状态信息,执行操作。该操作包括选择与所述通信状态信息对应的目标信道编码方案,并将无线接入模块切换至使用目标信道编码方案发送数据;和/或选择与所述通信状态信息对应的传感器的目标工作状态,并将传感器切换至目标工作状态。
根据本公开的又一个方面,提供了一种控制无线通信网络的方法,包括:获取无线接入节点的通信状态信息;根据无线接入节点的通信状态信息,选择与所述通信状态信息对应的目标信道编码方案;以及将无线接入节点切换至使用目标信道编码方案发送数据。
根据本公开的又一个方面,提供了一种控制传感器的方法,包括:获取无线接入节点的通信状态信息;根据无线接入节点的通信状态信息,选择与所述通信状态信息对应的传感器的目标工作状态;以及将传感器切换至目标工作状态。
根据本公开的又一个方面,提供了一种环境监测方法,包括通过传感器对环境进行监测以生成采样数据;通过无线接入模块无线地发送传感器的采样数据;通过控制电路获取无线接入模块的通信状态信息;以及根据无线接入模块的通信状态信息,通过控制电路执行操作。该操作包括:选择与所述通信状态信息对应的目标信道编码方案,并将无线接入模块切换至使用目标信道编码方案发送数据;和/或选择 与所述通信状态信息对应的传感器的目标工作状态,并将传感器切换至目标工作状态。
根据本公开的又一个方面,提供了一种非暂态计算机可读存储介质,其上存储有指令,所述指令在由处理器执行时使得处理器执行本公开的方法。
根据本公开的又一个方面,提供了一种控制装置,包括用于执行本公开的方法的各个步骤的部件。
附图说明
当结合附图考虑实施例的以下具体描述时,可以获得对本公开内容更好的理解。在各附图中使用了相同或相似的附图标记来表示相同或者相似的部件。各附图连同下面的具体描述一起包含在本说明书中并形成说明书的一部分,用来例示说明本公开的实施例和解释本公开的原理和优点。
图1是示出本公开的一些实施例的通信系统的配置的示例的示意图。
图2是示出在本公开的一些实施例中从传感器的数据产生到基站的数据接收的数据传输延时的示意图。
图3是示出本公开的一些实施例的通信流程的流程图。
图4是示出在本公开的一些实施例中以负反馈方式调整信道编码方案的示意图。
图5是示出在本公开的一些实施例中以负反馈方式调整传感器的工作状态的示意图。
图6是示出本公开的一些实施例的控制传感器的电子设备的配置的框图。
图7是示出本公开的一些实施例的控制无线通信网络的电子设备的配置的框图。
图8是示出本公开的一些实施例的环境监测设备的配置的框图。
图9是示出可以应用本公开内容的技术的计算设备的示意性配置的示例的框图。
图10是示出可以应用本公开内容的技术的gNB的示意性配置的第一示例的框图。
图11是示出可以应用本公开内容的技术的gNB的示意性配置的第二示例的框图。
图12是示出可以应用本公开内容的技术的智能电话的示意性配置的示例的框图。
图13是示出可以应用本公开内容的技术的汽车导航设备的示意性配置的示例的框图。
具体实施方式
在下文中,将参照附图详细地描述本公开内容的优选实施例。注意,在本说明书和 附图中,用相同的附图标记来表示具有基本上相同的功能和结构的结构元件,并且省略对这些结构元件的重复说明。
将按照以下顺序进行描述:
1.系统概述
2.处理流程
3.设备配置
4.应用示例
<1.系统概述>
首先,将描述本公开的一些实施例的通信系统。图1是示出本公开的一些实施例的通信系统100的配置的示例的示意图。如图1所示,通信系统100包括部署在不同位置处的传感器101-1、101-2和101-3,无线接入节点102,基站103,以及核心网104。在本文中,在不需要区分传感器101-1、101-2和101-3的情况下,用标号101来表示传感器101-1、101-2和103-3中的任何一个。需要注意的是,图1中示出的传感器101的数量是示例,并且传感器101的数量不限于三个,可以是任何数量。
传感器101可以对环境进行监测以生成采样数据。传感器101所生成的采样数据需要低延时且高可靠地上传到基站103中。传感器101可以是诸如物联网(IoT)传感器之类的传感器,其可以帮助人们实现各种智能系统。例如,图像传感器能够用于监测道路违停的智慧停车应用系统、监测追踪异常人员、事件的城市安全监控系统。例如,专业的井盖传感器、温湿度传感器、烟雾报警器可以结合IoT来产生管井状态、温湿度、烟雾等的无线告警信息。通常,这些传感器需要低功耗IoT模块,以使其可以仅依赖有限电量的电池工作长达数年的时间,而不需要布置电线。在现实情况中,传感器101的自身电池容量有限。为了有更长的续航时间,需要尽可能地控制和降低传感器自身的功率消耗,其中包括传输数据带来的通信功率消耗。当传感器101和基站103之间的距离较远时,如果传感器101直接传输数据给基站103会产生很大的路径损耗。在这一情况下,若给定传感器的传输功率,则传感器101和基站103间通信的吞吐量会很低,进而造成传感器101收集到的数据无法及时发送到基站103。若为了保证目标传输速率,则会造成传输功率消耗过大,进而影响传感器101的续航时间。
本公开的一些实施例的通信系统100在传感器101附近部署与传感器进行无线通 信的无线接入节点102来实现中继节点的功能。传感器101先将生成的采样数据发送到无线接入节点102,然后由无线接入节点102重新对这些数据进行打包分组和信道编码后,再发送到与核心网104相连接的基站103中。此外,传感器101还可以向无线接入节点102发送控制信息或者从无线接入节点102接收控制信息。
无线接入节点102可以将从传感器101收集的采样数据发送给基站103。无线接入节点102可以由任何能够与基站103通信的设备实现。例如,无线接入节点102可以由用户设备(UE)实现。此外,在本公开的一些实施例中,无线接入节点102也可以具备传感器的功能,即能够对环境进行监测以生成采样数据。
基站103可以将从无线接入节点102接收的采样数据发送给核心网104。
图2是示出在本公开的一些实施例中从传感器的数据产生到基站的数据接收的数据传输延时的示意图。
在本公开的一些实施例中,传感器和无线接入节点的距离很近并且它们之间的吞吐量很高,例如,在高可靠性低延时通信(URLLC)场景中。传感器和无线接入节点间的短距离通信可以实现很高的传输吞吐量,使得传感器只需要花费很小的功率开销就可以将数据快速可靠地上传到无线接入节点中。因此,数据传输延时主要由无线接入节点中的排队延时和从无线接入节点到基站的空口延时决定。
排队延时是数据在缓存队列中的平均排队时间。根据排队论中的Little定理,数据在缓存队列中的平均排队时间取决于时间维度上的平均缓存中存放的数据量大小,即
Figure PCTCN2021102275-appb-000001
其中λ arrival为队列的平均达到率,而q[t]为当前时刻的队列长度,即缓存中数据量的大小。该结论说明无线接入节点的缓存中的数据量越多,则数据的平均排队时间越长,因而减少缓存中的数据量可以降低排队延时。为实现该目的,可以增大队列的输出率,即增大无线接入节点和基站之间的吞吐量;或者降低队列的输入率,即降低无线传感器采集和上传数据的速率。
从上述分析可以看出,无线接入节点的缓存状态也可以作为信道编码方案的切换依据。具体来说,在无线接入节点缓存中数据量较多的时候,可以通过提升传输功率或者信道编码方案来实现更高的吞吐量以控制延时。此外,还可以通过控制无线传感器的工作状态,比如降低采样率(如降低图像传感器的分辨率),以降低延时。
空口延时取决于系统环境,包括信道状态、传输功率以及包括信道编码方案在内的 通信参数等。
<2.处理流程>
下面将描述传感器101、无线接入节点102和基站103之间的通信流程。图3是示出本公开的一些实施例的通信流程300的流程图。
在步骤S306,无线接入节点102获取自身的通信状态信息。在步骤S308,无线接入节点102根据自身的通信状态信息,选择与通信状态信息对应的目标信道编码方案。在步骤S310,无线接入节点102向基站103请求切换至目标信道编码方案。在步骤S312,基站103向无线接入节点102确认切换至目标信道编码方案。在步骤S314,无线接入节点102切换至目标信道编码方案。
在本公开的一些实施例中,可以省略步骤S310和S312。无线接入节点102可以不经基站103的确认就切换至目标信道编码方案。在省略步骤S310和S312的情况下,无线接入节点102可以发送信令通知基站103其已切换至目标信道编码方案。
在本公开的一些实施例中,无线接入节点102的通信状态信息可以包括无线接入节点的待发送的数据的缓存量、无线接入节点的待发送的数据的传输延时要求、无线接入节点的传入数据速率中的一项或多项。无线接入节点102可以根据其通信状态信息,选择具有与其通信状态信息对应的吞吐量的目标信道编码方案。
无线接入节点102中待发送的数据的缓存量越大,则需要越高吞吐量的信道编码方案。高吞吐量的信道编码方案可以使得无线接入节点102能够尽快将缓存的数据发送给基站103,从而避免数据积压在缓存中。无线接入节点102可以将其待发送的数据的缓存量划分为多个级别,并根据其待发送的数据的缓存量的级别,选择与该级别对应的目标信道编码方案。
无线接入节点102中待发送的数据的传输延时要求越高,则需要越高吞吐量的信道编码方案。数据的传输延时要求高,说明该数据需要尽快发送给基站103,以避免数据由于时间的流逝而失效。例如,无线接入节点102可以选择目标信道编码方案使得其待发送的数据的排队延时满足其待发送的数据的传输延时要求。
无线接入节点102的传入数据速率越高,则需要越高吞吐量的信道编码方案。传入数据速率高,说明数据到达无线接入节点102的速率很高。高吞吐量的信道编码方案可以避免数据积压在缓存中而造成排队延时过大。无线接入节点102可以将其传入数据速率划分为多个级别,并根据其传入数据速率的级别,选择与该级别对 应的目标信道编码方案。
在本公开的一些实施例中,无线接入节点102的通信状态信息可以包括无线接入节点用于发送数据的信道的状态、无线接入节点的待发送的数据的传输可靠性要求、多址接入方案、调制方案、免授权方式中的一项或多项。无线接入节点102可以根据其通信状态信息,选择具有与其通信状态信息对应的可靠性的目标信道编码方案。
在一些情况下,无线接入节点102用于发送数据的信道的状态较差或者其待发送的数据的传输可靠性要求较高。无线接入节点102可以选择可靠性较高的信道编码方案,以保证数据传输的可靠性。
在一些情况下,无线接入节点102使用的多址接入方案是诸如非正交多址接入(NOMA)和多用户MIMO之类的能保证高吞吐量的多址接入方案,或者使用的调制方案是诸如1024-QAM之类的高阶调制方案。由于吞吐量已经可以通过多址接入方案或者调制方案来保证,因而可以采用高可靠性的信道编码方案。反之,对于一些吞吐量较低的多址接入方案或调制方案,可以采用可靠性更小而吞吐量更高的信道编码方案。
在一些情况下,无线接入节点102使用免授权方式(Grant-free method),即无线接入节点无需gNB授权,直接进行数据传输,从而缩短上行链路的信令延时。免授权方式可能会增加信号干扰,为了保证数据传输的可靠性,可以选择高可靠性的信道编码方案。否则,可以选择诸如BCH码之类的可靠性较低的信道编码方案。
在本公开的一些实施例中,无线接入节点102的通信状态信息可以包括无线接入节点的待发送的数据包的大小。无线接入节点102可以选择适于传输待发送的数据包的大小的信道编码方案。在待发送的数据包较小的情况下,可以选择诸如BCH码和极化码(Polar Code)之类的具有较短码长的信道编码方案。在待发送的数据包较大的情况下,可以选择诸如LDPC之类的在码长较长时可以获得高编码增益的信道编码方案。
在本公开的一些实施例中,无线接入节点102可以选择目标信道编码方案的类型、目标信道编码方案的码长和选择目标信道编码方案的编码率中的一项或多项,以使所选择的目标信道编码方案的吞吐量、可靠性或者码长与通信状态信息对应。
在实际系统中,无线接入节点102的通信状态通常是动态变化的。相应地,无线接入节点102可以根据其实时通信状态动态调整其信道编码方案。例如,无线接 入节点102可以周期性地获取其通信状态信息,并选择与新获取的通信状态信息对应的目标信道编码方案。
例如,无线接入节点102用于发送数据的信道的状态通常会随时间而变化,其当前信道状态可能时好时坏。无线接入节点102的待发送的数据的传输可靠性要求可能也会动态变化。例如,如果传感器检测到异常值,则可能会对低延时和高可靠性提出更加严格的要求。反之,如果传感器检测到的数据稳定,则可以降低对低延时和高可靠性的要求。
此外,无线接入节点102还可以获得通信状态的统计信息,并根据该统计信息,提前预测如何调整信道编码方案。
例如,无线接入节点102的传入数据速率会随时间而变化。传感器101产生并上传数据的过程存在随机性,即每个时隙中无线接入节点102收到的数据量是随机的。由于传感器101的个数有限且位置分布固定,因此无线接入节点102可以获得传感器101产生并上传数据的统计分布。无线接入节点102可以根据数据产生的统计分布信息提前预测如何调整信道编码方案。
此外,无线接入节点102的待发送的数据的缓存量也会随时间而变化。当前时隙的缓存量主要取决于相邻时隙的缓存量,也就是具备一定的马尔可夫性。当前时隙下的缓存量相比上一时隙的变化,取决于新数据的到达和发送,其中前者为随机变量,后者取决于无线接入节点和基站之间的吞吐量。无线接入节点102可以根据缓存量的马尔可夫性提前预测如何调整信道编码方案。
此外,无线接入节点102还可以以负反馈方式调整信道编码方案。在一些情况下,在无线接入节点102切换到高吞吐量的信道编码方案之后,由于其待发送的数据的缓存量降低,从而会导致排队延时降低。此时,无线接入节点102可以切换到高可靠性的信道编码方案,以保证数据传输的可靠性。
图4是示出在本公开的一些实施例中以负反馈方式调整信道编码方案的示意图。在步骤S402,无线接入节点102估计其排队延时高。该排队延时可以根据无线接入节点的数据的缓存量以及吞吐量来估计,或者可以根据无线接入节点102接收数据和发送数据的时间差来估计。在步骤S404,无线接入节点102选择并切换至更高吞吐量的信道编码方案,以降低数据的排队延时。在步骤S406,无线接入节点估计其排队延时低。在步骤S408,无线接入节点102选择并切换至更高可靠性的信道编码方案,以保证数据传输的可靠性。通过以上述负反馈的方式调整无线接入节点102的信道编码方案,可以在吞吐 量和可靠性之间获得平衡,从而使得无线接入节点102的当前信道编码方案适应数据传输的要求。
以上是无线接入节点102调整其信道编码方案以适应数据传输的要求的流程。此外,传感器101可以调整其工作状态来适应数据传输的要求。
由于传感器收集的是环境信息,所以评价传感器数据是否有用的标准之一是信息的“新鲜程度”,该标准可以用信息年龄的概念来衡量。以温度传感器为例,该传感器被部署在某一位置感知该位置时变的温度,并需要把收集到的温度信息发送给基站。如果该传感器采样率很高,任何温度变化都可以很快被传感器检测到,但也会随之产生较高的数据量。如果因此导致数据过多而无法及时发送给基站,反而会造成基站无法及时得知温度变化的信息。所以从这个角度来看,传感器的采样率并非越高越好,而是需要兼顾数据产生到被基站接收之间的延时在可接受范围内。此外,传感器设备的电池容量有限,所以传感器在一些情况下可以进入休眠状态来节约设备能耗。
在无线接入节点的待发送的数据的缓存量较大时,由于任何新上传的数据都需要很长的排队时间才能被发送到基站,因此对数据更新频率要求不高的传感器可以选择进入休眠状态,暂时停止对环境信息的采样以节省功耗。在无线接入节点的待发送的数据的缓存量变小后,传感器102重新进入采样状态。
回到图3,在步骤S316,传感器101获取无线接入节点102的通信状态信息。在步骤S318,传感器101根据无线接入节点102的通信状态信息,选择与该通信状态信息对应的传感器的目标工作状态。在步骤S320,传感器101切换至目标工作状态。该目标工作状态包括休眠或者多个采样率中的一个采样率。
在本公开的一些实施例中,通信状态信息包括无线接入节点102的待发送的数据的排队延时。在本公开的一些实施例中,通信状态信息包括无线接入节点102的待发送的数据的缓存量和吞吐量,传感器101可以根据无线接入节点102的待发送的数据的缓存量和吞吐量估计无线接入节点102的待发送的数据的排队延时。在排队延时较大的情况下,传感器101可以选择较低的采样率,或者进入休眠状态。在排队延时较小的情况下,传感器101可以恢复采样或者选择较高的采样率。传感器101可以将无线接入节点102的待发送的数据的排队延时划分为多个级别,并根据无线接入节点102的排队延时的级别,选择与该级别对应的目标工作状态。
此外,类似于无线接入节点102,传感器101可以获取无线接入节点102的实时通信状态并动态调整传感器101的工作状态。例如,传感器101可以周期性地获取无 线接入节点102的通信状态信息,并选择与新获取的通信状态信息对应的工作状态。
此外,传感器101还可以以负反馈方式调整信道编码方案。在一些情况下,在传感器101休眠或者降低采样率之后,由于无线接入节点102的待发送的数据的缓存量降低,从而会导致排队延时降低。此时,可以使得传感器101恢复采样或者提高采样率,以提高传感器的数据分辨率。
图5是示出在本公开的一些实施例中以负反馈方式调整传感器的工作状态的示意图。在步骤S502,传感器101估计无线接入节点102中的数据的排队延时高。在步骤S504,传感器101休眠或者降低采样率,以降低无线接入节点102中的数据的排队延时。在步骤S506,传感器101估计无线接入节点102中的数据的排队延时低。在步骤S508,传感器101恢复采样或者提高采样率,以提高采样数据的分辨率。通过以上述负反馈的方式调整传感器101的工作状态,可以在采样数据的分辨率和数据延时之间获得平衡,从而使得传感器101的当前工作状态适应数据传输的要求。
此外各个传感器的工作状态的调整可以独立地进行,无需各个传感器之间的协同。这种方式可以节省信令开销和处理计算量。
需要注意的是,图3中的通信流程300可以省略一个或多个步骤。通信流程300可以选择调整无线接入节点102的信道编码方案和传感器101的工作状态二者,也可以选择仅调整调整无线接入节点102的信道编码方案和传感器101的工作状态之一。例如,可以省略步骤S316、S318和S320以仅调整无线接入节点102的信道编码方案。例如,可以省略步骤S306、S308、S310、S312和S314以仅调整传感器101的工作状态。
<3.设备配置>
上面描述了本公开的一些实施例的通信流程。根据该通信流程,本公开提供控制传感器的电子设备,其可以连接至传感器101、被包括在传感器101中或者被实现为传感器101。根据该通信流程,本公开还提供控制无线通信网络的电子设备,其可以被包括在无线接入节点102中,或者被实现为无线接入节点102。
图6是示出本公开的一些实施例的控制传感器的电子设备600的配置的框图。如图6所述,控制传感器的电子设备600包括信息获取单元602、工作状态选择单元604和工作状态切换单元606。
信息获取单元602被配置为获取无线接入节点102的通信状态信息。工作状态选择单元604被配置为根据无线接入节点102的通信状态信息,选择与该通信状态信息对应 的传感器101的目标工作状态。工作状态切换单元606被配置为将传感器101切换至目标工作状态。
在本公开的一些实施例中,控制传感器的电子设备可以包括处理电路。该处理电路被配置为执行信息获取单元602、工作状态选择单元604和工作状态切换单元606的操作。
图7是示出本公开的一些实施例的控制无线通信网络的电子设备790的配置的框图。如图7所述,控制无线通信网络的电子设备600包括信息获取单元792、编码选择单元794和编码切换单元796。
信息获取单元792被配置为获取无线接入节点102的通信状态信息。工作状态选择单元794被配置为根据无线接入节点102的通信状态信息,选择与该通信状态信息对应的目标信道编码方案。编码切换单元796被配置为将无线接入节点102切换至使用目标信道编码方案发送数据。
在本公开的一些实施例中,控制无线通信网络的电子设备可以包括处理电路。该处理电路被配置为执行信息获取单元792、编码选择单元794和编码切换单元796的操作。
此外,本公开还提供同时具备传感器101的功能和无线接入节点102的功能的环境监测设备。该环境监测设备可以执行传感器101和无线接入节点102的部分或全部操作。
图8是示出本公开的一些实施例的环境监测设备890的配置的框图。如图8所示,环境监测设备890包括传感器892、无线接入模块894、控制无线接入模块和传感器的控制电路896和设备间通信模块898。
传感器892被配置为对环境进行监测以生成采样数据。无线接入模块894被配置为将传感器892的采样数据无线地发送给基站103。控制电路896被配置为获取无线接入模块894的通信状态信息,以及根据无线接入模块894的通信状态信息,执行以下操作:选择与该通信状态信息对应的目标信道编码方案,并将无线接入模块894切换至使用目标信道编码方案发送数据;和/或选择与该通信状态信息对应的传感器892的目标工作状态,并将传感器892切换至目标工作状态。设备间通信模块898被配置为从另一环境监测设备无线地接收其传感器的采样数据,并且经由无线接入模块894将接收到的另一环境监测设备的传感器的采样数据无线地发送给基站103。此外,控制电路896还被配置为根据无线接入模块894的通信状态信息,选择与无线接入模块894的通信状态信息对应的另一环境监测设备的传感器或另一传感器的目标工作状态,并且将另一环境监测设备的传感器或另一传感器切换至目标工作状态。
在本公开的一些实施例中,环境监测设备可以包括处理电路,该处理电路被配置为 执行传感器892、无线接入模块894、控制电路896和设备间通信模块898的操作。
<4.应用示例>
本公开内容的技术能够应用于各种产品。例如,基站和用户设备均可以被实现为各种类型的计算设备。
此外,基站可以被实现为任何类型的演进型节点B(eNB)、gNB或TRP(Transmit Receive Point),诸如宏eNB/gNB和小eNB/gNB。小eNB/gNB可以为覆盖比宏小区小的小区的eNB/gNB,诸如微微eNB/gNB、微eNB/gNB和家庭(毫微微)eNB/gNB。代替地,基站可以被实现为任何其它类型的基站,诸如NodeB和基站收发台(BTS)。基站可以包括:被配置为控制无线通信的主体(也称为基站设备);以及设置在与主体不同的地方的一个或多个远程无线头端(RRH)。另外,下面将描述的各种类型的终端均可以通过暂时地或半持久性地执行基站功能而作为基站工作。
此外,用户设备可以被实现为移动终端(诸如智能电话、平板个人计算机(PC)、笔记本式PC、便携式游戏终端、便携式/加密狗型移动路由器和数字摄像装置)或者车载终端(诸如汽车导航设备)。用户设备还可以被实现为执行机器对机器(M2M)通信的终端(也称为机器类型通信(MTC)终端)。此外,用户设备可以为安装在上述终端中的每个终端上的无线通信模块(诸如包括单个晶片的集成电路模块)。
[3-1.关于计算设备的应用示例]
图9是示出可以应用本公开内容的技术的计算设备700的示意性配置的示例的框图。计算设备700包括处理器701、存储器702、存储装置703、网络接口704以及总线706。
处理器701可以为例如中央处理单元(CPU)或数字信号处理器(DSP),并且控制服务器700的功能。存储器702包括随机存取存储器(RAM)和只读存储器(ROM),并且存储数据和由处理器701执行的程序。存储装置703可以包括存储介质,诸如半导体存储器和硬盘。
网络接口704为用于将服务器700连接到有线通信网络705的有线通信接口。有线通信网络705可以为诸如演进分组核心网(EPC)的核心网或者诸如因特网的分组数据网络(PDN)。
总线706将处理器701、存储器702、存储装置703和网络接口704彼此连接。总线706可以包括各自具有不同速度的两个或更多个总线(诸如高速总线和低速总线)。
[3-2.关于基站的应用示例]
(第一应用示例)
图10是示出可以应用本公开内容的技术的gNB的示意性配置的第一示例的框图。gNB 800包括一个或多个天线810以及基站设备820。基站设备820和每个天线810可以经由RF线缆彼此连接。
天线810中的每一个均包括单个或多个天线元件(诸如包括在多输入多输出(MIMO)天线中的多个天线元件),并且用于基站设备820发送和接收无线信号。如图10所示,gNB 800可以包括多个天线810。例如,多个天线810可以与gNB 800使用的多个频带兼容。虽然图10示出其中gNB 800包括多个天线810的示例,但是gNB 800也可以包括单个天线810。
基站设备820包括控制器821、存储器822、网络接口823以及无线通信接口825。
控制器821可以为例如CPU或DSP,并且操作基站设备820的较高层的各种功能。例如,控制器821根据由无线通信接口825处理的信号中的数据来生成数据分组,并经由网络接口823来传递所生成的分组。控制器821可以对来自多个基带处理器的数据进行捆绑以生成捆绑分组,并传递所生成的捆绑分组。控制器821可以具有执行如下控制的逻辑功能:该控制诸如为无线资源控制、无线承载控制、移动性管理、接纳控制和调度。该控制可以结合附近的gNB或核心网节点来执行。存储器822包括RAM和ROM,并且存储由控制器821执行的程序和各种类型的控制数据(诸如终端列表、传输功率数据以及调度数据)。
网络接口823为用于将基站设备820连接至核心网824的通信接口。控制器821可以经由网络接口823而与核心网节点或另外的gNB进行通信。在此情况下,gNB 800与核心网节点或其它gNB可以通过逻辑接口(诸如S1接口和X2接口)而彼此连接。网络接口823还可以为有线通信接口或用于无线回程线路的无线通信接口。如果网络接口823为无线通信接口,则与由无线通信接口825使用的频带相比,网络接口823可以使用较高频带用于无线通信。
无线通信接口825支持任何蜂窝通信方案(诸如长期演进(LTE)和LTE-先进),并且经由天线810来提供到位于gNB 800的小区中的终端的无线连接。无线通信接口825通常可以包括例如基带(BB)处理器826和RF电路827。BB处理器826可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行层(例如L1、介质访问控制(MAC)、无线链路控制(RLC)和分组数据汇聚协议(PDCP))的各种类型的信号处理。代替控制器821,BB处理器826可以具有上述逻辑功能的一部分或全部。BB处理器826可以为存储通信控制程序的存储器,或者为包括被配置为执行程序的处理器和相关电路的模块。更新程序可以使BB处理器826的功能改变。该模块可以为插入到基站设备820的槽中的卡 或刀片。可替代地,该模块也可以为安装在卡或刀片上的芯片。同时,RF电路827可以包括例如混频器、滤波器和放大器,并且经由天线810来传送和接收无线信号。
如图10所示,无线通信接口825可以包括多个BB处理器826。例如,多个BB处理器826可以与gNB 800使用的多个频带兼容。如图10所示,无线通信接口825可以包括多个RF电路827。例如,多个RF电路827可以与多个天线元件兼容。虽然图10示出其中无线通信接口825包括多个BB处理器826和多个RF电路827的示例,但是无线通信接口825也可以包括单个BB处理器826或单个RF电路827。
(第二应用示例)
图11是示出可以应用本公开内容的技术的gNB的示意性配置的第二示例的框图。gNB 830包括一个或多个天线840、基站设备850和RRH 860。RRH 860和每个天线840可以经由RF线缆而彼此连接。基站设备850和RRH 860可以经由诸如光纤线缆的高速线路而彼此连接。
天线840中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件)并且用于RRH 860发送和接收无线信号。如图11所示,gNB 830可以包括多个天线840。例如,多个天线840可以与gNB 830使用的多个频带兼容。虽然图11示出其中gNB 830包括多个天线840的示例,但是gNB 830也可以包括单个天线840。
基站设备850包括控制器851、存储器852、网络接口853、无线通信接口855以及连接接口857。控制器851、存储器852和网络接口853与参照图10描述的控制器821、存储器822和网络接口823相同。
无线通信接口855支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且经由RRH860和天线840来提供到位于与RRH 860对应的扇区中的终端的无线通信。无线通信接口855通常可以包括例如BB处理器856。除了BB处理器856经由连接接口857连接到RRH860的RF电路864之外,BB处理器856与参照图10描述的BB处理器826相同。如图11所示,无线通信接口855可以包括多个BB处理器856。例如,多个BB处理器856可以与gNB 830使用的多个频带兼容。虽然图11示出其中无线通信接口855包括多个BB处理器856的示例,但是无线通信接口855也可以包括单个BB处理器856。
连接接口857为用于将基站设备850(无线通信接口855)连接至RRH 860的接口。连接接口857还可以为用于将基站设备850(无线通信接口855)连接至RRH 860的上述高速线路中的通信的通信模块。
RRH 860包括连接接口861和无线通信接口863。
连接接口861为用于将RRH 860(无线通信接口863)连接至基站设备850的接口。 连接接口861还可以为用于上述高速线路中的通信的通信模块。
无线通信接口863经由天线840来传送和接收无线信号。无线通信接口863通常可以包括例如RF电路864。RF电路864可以包括例如混频器、滤波器和放大器,并且经由天线840来传送和接收无线信号。如图11所示,无线通信接口863可以包括多个RF电路864。例如,多个RF电路864可以支持多个天线元件。虽然图11示出其中无线通信接口863包括多个RF电路864的示例,但是无线通信接口863也可以包括单个RF电路864。
[3-3.关于终端设备的应用示例]
(第一应用示例)
图12是示出可以应用本公开内容的技术的智能电话900的示意性配置的示例的框图。智能电话900包括处理器901、存储器902、存储装置903、外部连接接口904、摄像装置906、传感器907、麦克风908、输入装置909、显示装置910、扬声器911、无线通信接口912、一个或多个天线开关915、一个或多个天线916、总线917、电池918以及辅助控制器919。
处理器901可以为例如CPU或片上系统(SoC),并且控制智能电话900的应用层和另外层的功能。存储器902包括RAM和ROM,并且存储数据和由处理器901执行的程序。存储装置903可以包括存储介质,诸如半导体存储器和硬盘。外部连接接口904为用于将外部装置(诸如存储卡和通用串行总线(USB)装置)连接至智能电话900的接口。
摄像装置906包括图像传感器(诸如电荷耦合器件(CCD)和互补金属氧化物半导体(CMOS)),并且生成捕获图像。传感器907可以包括一组传感器,诸如测量传感器、陀螺仪传感器、地磁传感器和加速度传感器。麦克风908将输入到智能电话900的声音转换为音频信号。输入装置909包括例如被配置为检测显示装置910的屏幕上的触摸的触摸传感器、小键盘、键盘、按钮或开关,并且接收从用户输入的操作或信息。显示装置910包括屏幕(诸如液晶显示器(LCD)和有机发光二极管(OLED)显示器),并且显示智能电话900的输出图像。扬声器911将从智能电话900输出的音频信号转换为声音。
无线通信接口912支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且执行无线通信。无线通信接口912通常可以包括例如BB处理器913和RF电路914。BB处理器913可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行用于无线通信的各种类型的信号处理。同时,RF电路914可以包括例如混频器、滤波器和放大器,并且经由天线916来传送和接收无线信号。无线通信接口912可以为其上集成有BB处理器913和RF电路914的一个芯片模块。如图12所示,无线通信接口912可以包括多个BB处理器913和多个RF电路914。虽然图12示出其中无线通信接口912包括多个BB处理器913和多 个RF电路914的示例,但是无线通信接口912也可以包括单个BB处理器913或单个RF电路914。
此外,除了蜂窝通信方案之外,无线通信接口912可以支持另外类型的无线通信方案,诸如短距离无线通信方案、近场通信方案和无线局域网(LAN)方案。在此情况下,无线通信接口912可以包括针对每种无线通信方案的BB处理器913和RF电路914。
天线开关915中的每一个在包括在无线通信接口912中的多个电路(例如用于不同的无线通信方案的电路)之间切换天线916的连接目的地。
天线916中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件),并且用于无线通信接口912传送和接收无线信号。如图12所示,智能电话900可以包括多个天线916。虽然图12示出其中智能电话900包括多个天线916的示例,但是智能电话900也可以包括单个天线916。
此外,智能电话900可以包括针对每种无线通信方案的天线916。在此情况下,天线开关915可以从智能电话900的配置中省略。
总线917将处理器901、存储器902、存储装置903、外部连接接口904、摄像装置906、传感器907、麦克风908、输入装置909、显示装置910、扬声器911、无线通信接口912以及辅助控制器919彼此连接。电池918经由馈线向图12所示的智能电话900的各个块提供电力,馈线在图中被部分地示为虚线。辅助控制器919例如在睡眠模式下操作智能电话900的最小必需功能。
(第二应用示例)
图13是示出可以应用本公开内容的技术的汽车导航设备920的示意性配置的示例的框图。汽车导航设备920包括处理器921、存储器922、全球定位系统(GPS)模块924、传感器925、数据接口926、内容播放器927、存储介质接口928、输入装置929、显示装置930、扬声器931、无线通信接口933、一个或多个天线开关936、一个或多个天线937以及电池938。
处理器921可以为例如CPU或SoC,并且控制汽车导航设备920的导航功能和另外的功能。存储器922包括RAM和ROM,并且存储数据和由处理器921执行的程序。
GPS模块924使用从GPS卫星接收的GPS信号来测量汽车导航设备920的位置(诸如纬度、经度和高度)。传感器925可以包括一组传感器,诸如陀螺仪传感器、地磁传感器和空气压力传感器。数据接口926经由未示出的终端而连接到例如车载网络941,并且获取由车辆生成的数据(诸如车速数据)。
内容播放器927再现存储在存储介质(诸如CD和DVD)中的内容,该存储介质被插 入到存储介质接口928中。输入装置929包括例如被配置为检测显示装置930的屏幕上的触摸的触摸传感器、按钮或开关,并且接收从用户输入的操作或信息。显示装置930包括诸如LCD或OLED显示器的屏幕,并且显示导航功能的图像或再现的内容。扬声器931输出导航功能的声音或再现的内容。
无线通信接口933支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且执行无线通信。无线通信接口933通常可以包括例如BB处理器934和RF电路935。BB处理器934可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行用于无线通信的各种类型的信号处理。同时,RF电路935可以包括例如混频器、滤波器和放大器,并且经由天线937来传送和接收无线信号。无线通信接口933还可以为其上集成有BB处理器934和RF电路935的一个芯片模块。如图13所示,无线通信接口933可以包括多个BB处理器934和多个RF电路935。虽然图13示出其中无线通信接口933包括多个BB处理器934和多个RF电路935的示例,但是无线通信接口933也可以包括单个BB处理器934或单个RF电路935。
此外,除了蜂窝通信方案之外,无线通信接口933可以支持另外类型的无线通信方案,诸如短距离无线通信方案、近场通信方案和无线LAN方案。在此情况下,针对每种无线通信方案,无线通信接口933可以包括BB处理器934和RF电路935。
天线开关936中的每一个在包括在无线通信接口933中的多个电路(诸如用于不同的无线通信方案的电路)之间切换天线937的连接目的地。
天线937中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件),并且用于无线通信接口933传送和接收无线信号。如图13所示,汽车导航设备920可以包括多个天线937。虽然图13示出其中汽车导航设备920包括多个天线937的示例,但是汽车导航设备920也可以包括单个天线937。
此外,汽车导航设备920可以包括针对每种无线通信方案的天线937。在此情况下,天线开关936可以从汽车导航设备920的配置中省略。
电池938经由馈线向图13所示的汽车导航设备920的各个块提供电力,馈线在图中被部分地示为虚线。电池938累积从车辆提供的电力。
本公开内容的技术也可以被实现为包括汽车导航设备920、车载网络941以及车辆模块942中的一个或多个块的车载系统(或车辆)940。车辆模块942生成车辆数据(诸如车速、发动机速度和故障信息),并且将所生成的数据输出至车载网络941。
结合本公开所述的各种示意性的块和部件可以用被设计来执行本文所述的功能的通用处理器、数字信号处理器(DSP)、ASIC、FPGA或其它可编程逻辑设备、离散门或晶体 管逻辑、离散硬件部件或它们的任意组合来实现或执行。通用处理器可以是微处理器,但是可替代地,处理器可以是任何传统的处理器、控制器、微控制器和/或状态机。处理器也可以被实现为计算设备的组合,例如DSP与微处理器、多个微处理器、结合DSP核的一个或多个微处理器和/或任何其它这样的配置的组合。
本文所述的功能可以在硬件、由处理器执行的软件、固件或它们的任意组合中实现。如果在由处理器执行的软件中实现,则功能可以被存储在非暂态计算机可读介质上或者被传输作为非暂态计算机可读介质上的一个或多个指令或代码。其它示例和实现在本公开和所附权利要求的范围和精神内。例如,鉴于软件的本质,以上所述的功能可以使用由处理器执行的软件、硬件、固件、硬连线或这些中的任意的组合来执行。实现功能的特征也可以被物理地置于各种位置处,包括被分布使得功能的部分在不同物理位置处实现。
此外,包含于其它部件内的或者与其它部件分离的部件的公开应当被认为是示例性的,因为潜在地可以实现多种其它架构以达成同样的功能,包括并入全部的、大部分的、和/或一些的元件作为一个或多个单一结构或分离结构的一部分。
非暂态计算机可读介质可以是能够被通用计算机或专用计算机存取的任何可用的非暂态介质。举例而言而非限制地,非暂态计算机可读介质可以包括RAM、ROM、EEPROM、闪速存储器、CD-ROM、DVD或其它光盘存储、磁盘存储或其它磁存储设备、或能够被用来承载或存储指令或数据结构形式的期望的程序代码部件和能够被通用或专用计算机或者通用或专用处理器存取的任何其它介质。
本公开的先前描述被提供来使本领域技术人员能够制作或使用本公开。对本公开的各种修改对本领域技术人员而言是明显的,本文定义的通用原理可以在不脱离本公开的范围的情况下应用到其它变形。因此,本公开并不限于本文所述的示例和设计,而是对应于与所公开的原理和新特征一致的最宽范围。
本公开的实施例还包括:
1.一种控制无线通信网络的电子设备,包括处理电路,所述处理电路被配置为:
获取无线接入节点的通信状态信息;
根据无线接入节点的通信状态信息,选择与所述通信状态信息对应的目标信道编码方案;以及
将无线接入节点切换至使用目标信道编码方案发送数据。
2.如项目1所述的电子设备,其中,所述通信状态信息包括无线接入节点的待 发送的数据的缓存量。
3.如项目1所述的电子设备,其中,所述通信状态信息包括无线接入节点的待发送的数据的传输延时要求。
4.如项目1所述的电子设备,其中,所述通信状态信息包括无线接入节点的传入数据速率。
5.如项目2至4中任一项所述的电子设备,其中,根据无线接入节点的通信状态信息选择与所述通信状态信息对应的目标信道编码方案包括:
根据无线接入节点的通信状态信息,选择具有与所述通信状态信息对应的吞吐量的目标信道编码方案。
6.如项目2所述的电子设备,其中,根据无线接入节点的通信状态信息选择与所述通信状态信息对应的目标信道编码方案包括:
根据无线接入节点的待发送的数据的缓存量的级别,选择与所述级别对应的目标信道编码方案。
7.如项目3所述的电子设备,其中,根据无线接入节点的通信状态信息选择与所述通信状态信息对应的目标信道编码方案包括:
选择目标信道编码方案使得无线接入节点的待发送的数据的排队延时满足所述传输延时要求。
8.如项目4所述的电子设备,其中,根据无线接入节点的通信状态信息选择与所述通信状态信息对应的目标信道编码方案包括:
根据无线接入节点的传入数据速率的级别,选择与所述级别对应的目标信道编码方案。
9.如项目1所述的电子设备,其中,所述通信状态信息包括以下一项或多项:
无线接入节点用于发送数据的信道的状态、无线接入节点的待发送的数据的传输可靠性要求、多址接入方案、调制方案、免授权方式。
10.如项目9所述的电子设备,其中,根据无线接入节点的通信状态信息选择与所述通信状态信息对应的目标信道编码方案包括:
根据无线接入节点的通信状态信息,选择具有与所述通信状态信息对应的可靠性的目标信道编码方案。
11.如项目1所述的电子设备,其中,所述通信状态信息包括无线接入节点的待发送的数据包的大小。
12.如项目1所述的电子设备,其中,选择与所述通信状态信息对应的目标信道编码方案包括以下一项或多项:
选择目标信道编码方案的类型;
选择目标信道编码方案的码长;
选择目标信道编码方案的编码率。
13.如项目1所述的电子设备,其中,所述处理电路还被配置为:
将无线接入节点的通信状态信息发送给传感器,其中,所述传感器根据无线接入节点的通信状态信息选择与所述通信状态信息对应的传感器的目标工作状态。
14.如项目1所述的电子设备,其中,所述处理电路还被配置为向基站通知所述目标信道编码方案。
15.如项目1至14所述的电子设备,其中,所述电子设备被包括在所述无线接入节点中,或者被实现为所述无线接入节点。
16.一种控制传感器的电子设备,包括处理电路,所述处理电路被配置为:
获取无线接入节点的通信状态信息;
根据无线接入节点的通信状态信息,选择与所述通信状态信息对应的传感器的目标工作状态;以及
将传感器切换至目标工作状态。
17.如项目16所述的电子设备,其中,所述通信状态信息包括无线接入节点的待发送的数据的排队延时。
18.如项目16所述的电子设备,其中,所述通信状态信息包括无线接入节点的待发送的数据的缓存量和吞吐量,并且其中,所述处理电路被配置为根据无线接入节点的待发送的数据的缓存量和吞吐量估计无线接入节点的待发送的数据的排队延时。
19.如项目17或18所述的电子设备,其中,根据无线接入节点的通信状态信息,选择与所述通信状态信息对应的传感器的目标工作状态包括:
根据无线接入节点的排队延时的级别,选择与所述级别对应的目标工作状态。
20.如项目16所述的电子设备,其中,所述目标工作状态包括休眠或者多个采样率中的一个采样率。
21.如项目16至20中任一项所述的电子设备,其中,所述电子设备连接至所述传感器、被包括在所述传感器中或者被实现为所述传感器。
22.一种环境监测设备,包括:
传感器,被配置为对环境进行监测以生成采样数据;
无线接入模块,被配置为无线地发送传感器的采样数据;以及
控制无线接入模块和传感器的控制电路,所述控制电路被配置为:
获取无线接入模块的通信状态信息;
根据无线接入模块的通信状态信息,执行以下操作:
选择与所述通信状态信息对应的目标信道编码方案,并将无线接入模块切换至使用目标信道编码方案发送数据;和/或
选择与所述通信状态信息对应的传感器的目标工作状态,并将传感器切换至目标工作状态。
23.如项目22所述的环境监测设备,还包括:
设备间通信模块,被配置为无线地接收第二环境监测设备的第二传感器的第二采样数据,
其中,所述无线接入模块还被配置为无线地发送第二环境监测设备的第二传感器的第二采样数据。
24.如项目23所述的环境监测设备,其中,所述控制电路还被配置为:
根据无线接入模块的通信状态信息,选择与无线接入模块的通信状态信息对应的第二传感器的第二目标工作状态;以及
将第二环境监测设备的第二传感器切换至第二目标工作状态。
25.一种控制无线通信网络的方法,包括:
获取无线接入节点的通信状态信息;
根据无线接入节点的通信状态信息,选择与所述通信状态信息对应的目标信道编码方案;以及
将无线接入节点切换至使用目标信道编码方案发送数据。
26.一种控制传感器的方法,包括:
获取无线接入节点的通信状态信息;
根据无线接入节点的通信状态信息,选择与所述通信状态信息对应的传感器的目标工作状态;以及
将传感器切换至目标工作状态。
27.一种环境监测方法,包括:
通过传感器对环境进行监测以生成采样数据;
通过无线接入模块无线地发送传感器的采样数据;
通过控制电路获取无线接入模块的通信状态信息;以及
根据无线接入模块的通信状态信息,通过控制电路执行以下操作:
选择与所述通信状态信息对应的目标信道编码方案,并将无线接入模块切换至使用目标信道编码方案发送数据;和/或
选择与所述通信状态信息对应的传感器的目标工作状态,并将传感器切换至目标工作状态。
28.一种非暂态计算机可读存储介质,其上存储有指令,所述指令在由处理器执行时使得处理器执行项目25至27所述的方法。
29、一种控制装置,包括用于执行项目25至27所述的方法的各个步骤的部件。

Claims (29)

  1. 一种控制无线通信网络的电子设备,包括处理电路,所述处理电路被配置为:
    获取无线接入节点的通信状态信息;
    根据无线接入节点的通信状态信息,选择与所述通信状态信息对应的目标信道编码方案;以及
    将无线接入节点切换至使用目标信道编码方案发送数据。
  2. 如权利要求1所述的电子设备,其中,所述通信状态信息包括无线接入节点的待发送的数据的缓存量。
  3. 如权利要求1所述的电子设备,其中,所述通信状态信息包括无线接入节点的待发送的数据的传输延时要求。
  4. 如权利要求1所述的电子设备,其中,所述通信状态信息包括无线接入节点的传入数据速率。
  5. 如权利要求2至4中任一项所述的电子设备,其中,根据无线接入节点的通信状态信息选择与所述通信状态信息对应的目标信道编码方案包括:
    根据无线接入节点的通信状态信息,选择具有与所述通信状态信息对应的吞吐量的目标信道编码方案。
  6. 如权利要求2所述的电子设备,其中,根据无线接入节点的通信状态信息选择与所述通信状态信息对应的目标信道编码方案包括:
    根据无线接入节点的待发送的数据的缓存量的级别,选择与所述级别对应的目标信道编码方案。
  7. 如权利要求3所述的电子设备,其中,根据无线接入节点的通信状态信息选择与所述通信状态信息对应的目标信道编码方案包括:
    选择目标信道编码方案使得无线接入节点的待发送的数据的排队延时满足所述 传输延时要求。
  8. 如权利要求4所述的电子设备,其中,根据无线接入节点的通信状态信息选择与所述通信状态信息对应的目标信道编码方案包括:
    根据无线接入节点的传入数据速率的级别,选择与所述级别对应的目标信道编码方案。
  9. 如权利要求1所述的电子设备,其中,所述通信状态信息包括以下一项或多项:
    无线接入节点用于发送数据的信道的状态、无线接入节点的待发送的数据的传输可靠性要求、多址接入方案、调制方案、免授权方式。
  10. 如权利要求9所述的电子设备,其中,根据无线接入节点的通信状态信息选择与所述通信状态信息对应的目标信道编码方案包括:
    根据无线接入节点的通信状态信息,选择具有与所述通信状态信息对应的可靠性的目标信道编码方案。
  11. 如权利要求1所述的电子设备,其中,所述通信状态信息包括无线接入节点的待发送的数据包的大小。
  12. 如权利要求1所述的电子设备,其中,选择与所述通信状态信息对应的目标信道编码方案包括以下一项或多项:
    选择目标信道编码方案的类型;
    选择目标信道编码方案的码长;
    选择目标信道编码方案的编码率。
  13. 如权利要求1所述的电子设备,其中,所述处理电路还被配置为:
    将无线接入节点的通信状态信息发送给传感器,其中,所述传感器根据无线接入节点的通信状态信息选择与所述通信状态信息对应的传感器的目标工作状态。
  14. 如权利要求1所述的电子设备,其中,所述处理电路还被配置为向基站通知所述目标信道编码方案。
  15. 如权利要求1至14所述的电子设备,其中,所述电子设备被包括在所述无线接入节点中,或者被实现为所述无线接入节点。
  16. 一种控制传感器的电子设备,包括处理电路,所述处理电路被配置为:
    获取无线接入节点的通信状态信息;
    根据无线接入节点的通信状态信息,选择与所述通信状态信息对应的传感器的目标工作状态;以及
    将传感器切换至目标工作状态。
  17. 如权利要求16所述的电子设备,其中,所述通信状态信息包括无线接入节点的待发送的数据的排队延时。
  18. 如权利要求16所述的电子设备,其中,所述通信状态信息包括无线接入节点的待发送的数据的缓存量和吞吐量,并且其中,所述处理电路被配置为根据无线接入节点的待发送的数据的缓存量和吞吐量估计无线接入节点的待发送的数据的排队延时。
  19. 如权利要求17或18所述的电子设备,其中,根据无线接入节点的通信状态信息,选择与所述通信状态信息对应的传感器的目标工作状态包括:
    根据无线接入节点的排队延时的级别,选择与所述级别对应的目标工作状态。
  20. 如权利要求16所述的电子设备,其中,所述目标工作状态包括休眠或者多个采样率中的一个采样率。
  21. 如权利要求16至20中任一项所述的电子设备,其中,所述电子设备连接至所述传感器、被包括在所述传感器中或者被实现为所述传感器。
  22. 一种环境监测设备,包括:
    传感器,被配置为对环境进行监测以生成采样数据;
    无线接入模块,被配置为无线地发送传感器的采样数据;以及
    控制无线接入模块和传感器的控制电路,所述控制电路被配置为:
    获取无线接入模块的通信状态信息;
    根据无线接入模块的通信状态信息,执行以下操作:
    选择与所述通信状态信息对应的目标信道编码方案,并将无线接入模块切换至使用目标信道编码方案发送数据;和/或
    选择与所述通信状态信息对应的传感器的目标工作状态,并将传感器切换至目标工作状态。
  23. 如权利要求22所述的环境监测设备,还包括:
    设备间通信模块,被配置为无线地接收第二环境监测设备的第二传感器的第二采样数据,
    其中,所述无线接入模块还被配置为无线地发送第二环境监测设备的第二传感器的第二采样数据。
  24. 如权利要求23所述的环境监测设备,其中,所述控制电路还被配置为:
    根据无线接入模块的通信状态信息,选择与无线接入模块的通信状态信息对应的第二传感器的第二目标工作状态;以及
    将第二环境监测设备的第二传感器切换至第二目标工作状态。
  25. 一种控制无线通信网络的方法,包括:
    获取无线接入节点的通信状态信息;
    根据无线接入节点的通信状态信息,选择与所述通信状态信息对应的目标信道编码方案;以及
    将无线接入节点切换至使用目标信道编码方案发送数据。
  26. 一种控制传感器的方法,包括:
    获取无线接入节点的通信状态信息;
    根据无线接入节点的通信状态信息,选择与所述通信状态信息对应的传感器的目标工作状态;以及
    将传感器切换至目标工作状态。
  27. 一种用于环境监测的方法,包括:
    通过传感器对环境进行监测以生成采样数据;
    通过无线接入模块无线地发送传感器的采样数据;
    通过控制电路获取无线接入模块的通信状态信息;以及
    根据无线接入模块的通信状态信息,通过控制电路执行以下操作:
    选择与所述通信状态信息对应的目标信道编码方案,并将无线接入模块切换至使用目标信道编码方案发送数据;和/或
    选择与所述通信状态信息对应的传感器的目标工作状态,并将传感器切换至目标工作状态。
  28. 一种非暂态计算机可读存储介质,其上存储有指令,所述指令在由处理器执行时使得处理器执行权利要求25至27所述的方法。
  29. 一种控制装置,包括用于执行权利要求25至27所述的方法的各个步骤的部件。
PCT/CN2021/102275 2020-06-28 2021-06-25 控制无线通信网络或传感器的电子设备以及方法 WO2022001852A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202180044249.0A CN115918004A (zh) 2020-06-28 2021-06-25 控制无线通信网络或传感器的电子设备以及方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010597631.1 2020-06-28
CN202010597631.1A CN113852442A (zh) 2020-06-28 2020-06-28 控制无线通信网络或传感器的电子设备以及方法

Publications (1)

Publication Number Publication Date
WO2022001852A1 true WO2022001852A1 (zh) 2022-01-06

Family

ID=78972019

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/102275 WO2022001852A1 (zh) 2020-06-28 2021-06-25 控制无线通信网络或传感器的电子设备以及方法

Country Status (2)

Country Link
CN (2) CN113852442A (zh)
WO (1) WO2022001852A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115604783A (zh) * 2022-12-12 2023-01-13 深圳市益心达医学新技术有限公司(Cn) 基于物联网的体温传感器控制方法、装置、设备及介质
CN116938613A (zh) * 2023-09-18 2023-10-24 北京交通大学 基于非线性信息年龄的监测传感器的休眠方法及电子设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101783940A (zh) * 2009-05-11 2010-07-21 北京航空航天大学 一种基于小波框架变换的联合信源信道编码方法
CN103929284A (zh) * 2014-04-09 2014-07-16 东南大学 一种无线传感器网络的高可靠传输方法
CN107026707A (zh) * 2016-02-02 2017-08-08 华为技术有限公司 一种自适应采样率的信道编码、解码方法和装置
US20190158409A1 (en) * 2017-11-20 2019-05-23 International Business Machines Corporation Data congestion control in hierarchical sensor networks

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101783940A (zh) * 2009-05-11 2010-07-21 北京航空航天大学 一种基于小波框架变换的联合信源信道编码方法
CN103929284A (zh) * 2014-04-09 2014-07-16 东南大学 一种无线传感器网络的高可靠传输方法
CN107026707A (zh) * 2016-02-02 2017-08-08 华为技术有限公司 一种自适应采样率的信道编码、解码方法和装置
US20190158409A1 (en) * 2017-11-20 2019-05-23 International Business Machines Corporation Data congestion control in hierarchical sensor networks

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115604783A (zh) * 2022-12-12 2023-01-13 深圳市益心达医学新技术有限公司(Cn) 基于物联网的体温传感器控制方法、装置、设备及介质
CN116938613A (zh) * 2023-09-18 2023-10-24 北京交通大学 基于非线性信息年龄的监测传感器的休眠方法及电子设备
CN116938613B (zh) * 2023-09-18 2023-12-01 北京交通大学 基于非线性信息年龄的监测传感器的休眠方法及电子设备

Also Published As

Publication number Publication date
CN115918004A (zh) 2023-04-04
CN113852442A (zh) 2021-12-28

Similar Documents

Publication Publication Date Title
US10321407B2 (en) Communication control device, communication control method, and information processing device with mode switching control
EP3579614A1 (en) Relay communication device, base station, method, and recording medium
WO2022001852A1 (zh) 控制无线通信网络或传感器的电子设备以及方法
KR101781761B1 (ko) 통신 제어 장치, 통신 제어 방법, 단말 장치 및 정보 처리 장치
EP3370471B1 (en) Electronic device and user equipment in wireless communication system and wireless communication method
JP6872116B2 (ja) 無線通信装置、情報処理方法およびプログラム
JP7180733B2 (ja) 通信装置および通信方法
CN107409356B (zh) 信息处理设备和信息处理方法
AU2016319274B2 (en) Wireless communication device, wireless communication method and wireless communication system
US10462753B2 (en) Communication device, communication method and program
KR20230075416A (ko) 기지국의 슬립 및 웨이크-업을 위한 전자 디바이스, 방법 및 저장 매체
US20210143848A1 (en) Communication apparatus and communication system
US20230362687A1 (en) Electronic device, wireless communication method, and non-transitory computer-readable storage medium
JP6838557B2 (ja) 通信装置および通信方法
US10743349B2 (en) Wireless communication device and wireless communication method
US20220110110A1 (en) Communication device, communication method, and recording medium
CN113330758B (zh) 无线通信系统中的用户设备
CN117413617A (zh) 基站、电子设备、通信方法和存储介质
CN116489770A (zh) 用于波束失败恢复的设备、方法和介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21833290

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21833290

Country of ref document: EP

Kind code of ref document: A1