WO2022001495A1 - 状态转换方法及链接态mtch的指示方法、装置、存储介质、终端、基站 - Google Patents

状态转换方法及链接态mtch的指示方法、装置、存储介质、终端、基站 Download PDF

Info

Publication number
WO2022001495A1
WO2022001495A1 PCT/CN2021/095697 CN2021095697W WO2022001495A1 WO 2022001495 A1 WO2022001495 A1 WO 2022001495A1 CN 2021095697 W CN2021095697 W CN 2021095697W WO 2022001495 A1 WO2022001495 A1 WO 2022001495A1
Authority
WO
WIPO (PCT)
Prior art keywords
state
mtch
rrc
linked
link
Prior art date
Application number
PCT/CN2021/095697
Other languages
English (en)
French (fr)
Inventor
韩立锋
Original Assignee
展讯通信(上海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 展讯通信(上海)有限公司 filed Critical 展讯通信(上海)有限公司
Priority to JP2022580768A priority Critical patent/JP2023532697A/ja
Priority to US18/011,983 priority patent/US20230254933A1/en
Priority to KR1020237002117A priority patent/KR20230026462A/ko
Priority to EP21833356.5A priority patent/EP4175404A4/en
Publication of WO2022001495A1 publication Critical patent/WO2022001495A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/40Connection management for selective distribution or broadcast
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/30Connection release
    • H04W76/38Connection release triggered by timers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to the field of communication technologies, and in particular, to a state transition method and an indication method, device, storage medium, terminal and base station of a linked state MTCH.
  • MBS Multicast and Broadcast Services
  • RRC Radio Resource Control
  • LTE Long Term Evolution
  • the reception of MBS services is not affected by the RRC state of the UE, and the UE can receive MBS services even in an idle state, so the above problems do not occur.
  • the UE must maintain the RRC linked state during MBS service transmission.
  • the UE will switch to the idle state. If the UE is performing the MBS service that must be in the RRC linked state at this time, the MBS service will fail and the performance of the UE will be affected.
  • the technical problem solved by the present invention is how to perform UE state transition more reasonably to avoid affecting the reception of MBS services.
  • an embodiment of the present invention provides a state transition method, including: starting or restarting a data inactivation timer if data transmitted by a link-state MTCH is received, wherein the link-state MTCH means that the terminal needs to keep MTCH received in the RRC linked state; if the data inactivity timer expires, the state is converted from the RRC linked state to the idle state.
  • the receiving the data transmitted by the linked state MTCH includes: the MAC entity corresponding to the linked state MTCH receives the MAC SDU transmitted by the linked state MTCH.
  • the transitioning the state from the RRC linked state to the idle state includes: releasing the RRC link.
  • the release reason includes RRC connection failure.
  • an embodiment of the present invention also provides a state transition method, which includes: if the data inactivation timer expires and there is no need to receive data transmitted by the linked state MTCH, changing the state from the RRC linked state. Transition to the idle state; wherein, the linked state MTCH refers to the MTCH that the terminal needs to keep in the RRC linked state to receive.
  • the requirement for receiving the data transmitted by the link-state MTCH includes: currently receiving the data transmitted by the link-state MTCH, and preparing to receive the data transmitted by the link-state MTCH.
  • the data transmitted by the link-state MTCH is transmitted periodically, and the preparing to receive the data transmitted by the link-state MTCH refers to preparing to receive the data transmitted by the link-state MTCH in the next most recent transmission period.
  • the MTCH is used to carry MBS services.
  • the linked state MTCH includes at least: an MTCH configured with an indication of supporting HARQ or configured with HARQ configuration information.
  • the state transition method further includes: receiving indication information, where the indication information is used to indicate whether the configured MTCH is a linked MTCH; and/or determine whether the MTCH is a linked MTCH according to the received configuration information of the MTCH state MTCH.
  • an embodiment of the present invention also provides a method for indicating a linked state MTCH, including: for a linked state MTCH, sending the receiving configuration information of the linked state MTCH to indicate that the terminal needs to keep in the RRC linked state to receive the Link state MTCH.
  • the sending the receiving configuration information of the linked-state MTCH to indicate that the terminal needs to keep in the RRC linked state to receive the linked-state MTCH includes: indicating that the terminal needs to use the HARQ support indication configured in the receiving configuration information. Remaining in the RRC linked state to receive the linked state MTCH.
  • the sending the receiving configuration information of the linked state MTCH to indicate that the terminal needs to keep in the RRC linked state to receive the linked state MTCH includes: indicating that the terminal needs to receive the linked state MTCH through the HARQ configuration information of the MTCH configured in the receiving configuration information. Remaining in the RRC linked state to receive the linked state MTCH.
  • the sending the receiving configuration information of the linked state MTCH to indicate that the terminal needs to keep in the RRC linked state to receive the linked state MTCH includes: receiving the RRC state information included in the receiving configuration information, and the The received RRC state information only includes the RRC linked state to indicate that the terminal needs to remain in the RRC linked state to receive the linked state MTCH, wherein the received RRC state information is used to indicate the RRC state required to receive data transmitted by the MTCH.
  • the receiving the RRC state information including only the RRC linking state includes: indicating that the receiving RRC state information of the linking state MTCH only includes the RRC linking state through a bitmap.
  • the sending the receiving configuration information of the linked-state MTCH includes: sending the receiving configuration information through system information or MCCH.
  • an embodiment of the present invention also provides a state transition device, including: a start module, if receiving data transmitted by a link state MTCH, start or restart a data inactivation timer, wherein the link state MTCH is a Refers to the MTCH that the terminal needs to keep in the RRC linked state to receive; the conversion module, if the data inactivation timer expires, converts the state from the RRC linked state to the idle state.
  • an embodiment of the present invention also provides a state transition device, including: a transition module, if the data inactivation timer expires and there is no need to receive data transmitted by the link-state MTCH, change the state from The RRC linked state transitions to the idle state, wherein the linked state MTCH refers to the MTCH that the terminal needs to keep in the RRC linked state to receive.
  • an embodiment of the present invention further provides an indication device for a linked state MTCH, including: a sending module, for a linked state MTCH, sending the receiving configuration information of the linked state MTCH to indicate that the terminal needs to remain in the RRC linked state.
  • the link state MTCH is received.
  • an embodiment of the present invention further provides a storage medium on which a computer program is stored, and the computer program executes the steps of the above method when the computer program is run by a processor.
  • an embodiment of the present invention further provides a terminal, including a memory and a processor, where the memory stores a computer program that can run on the processor, and when the processor runs the computer program, Perform the steps of the state transition method described above.
  • an embodiment of the present invention further provides a base station, including a memory and a processor, the memory stores a computer program that can run on the processor, and when the processor runs the computer program Perform the steps of the above-mentioned link-state MTCH indication method.
  • an embodiment of the present invention provides a state transition method, including: starting or restarting a data inactivation timer if data transmitted by a linked state MTCH is received, where the linked state MTCH means that the terminal needs to keep the The MTCH that is received in the RRC linked state; if the data inactivity timer expires, the state is converted from the RRC linked state to the idle state.
  • the UE can perform state transition more reasonably, so as to avoid affecting the reception of the MBS service.
  • the data inactivity timer is set or reset in time by monitoring the data transmission on the link-state MTCH. Therefore, the data inactivity timer can always be kept in a non-timeout state during MBS service transmission, so as to ensure that the UE does not transition to an idle state when the MBS service is not completed.
  • an embodiment of the present invention also provides a state transition method, including: if the data inactivation timer expires and there is no need to receive data transmitted by the linked state MTCH, transition the state from the RRC linked state to the idle state; wherein, the linked state MTCH refers to the MTCH that the terminal needs to keep in the RRC linked state to receive.
  • the UE can perform state transition more reasonably, so as to avoid affecting the reception of the MBS service. Specifically, when the timer expires and before the state transition operation is performed, it is determined whether there is a need to receive data transmitted by the link-state MTCH. Therefore, by adding pre-judgment logic before performing the state transition operation, it is ensured that the UE can still remain in the RRC linked state when the timer expires but there is a need to receive data transmitted by the linked state MTCH.
  • an embodiment of the present invention further provides a method for indicating a linked state MTCH, including: for a linked state MTCH, sending the receiving configuration information of the linked state MTCH to indicate that the terminal needs to keep in the RRC linked state to receive the linked state MTCH.
  • the network indicates whether the MTCH configured to the UE is a linked MTCH by receiving configuration information, so that the UE determines whether the RRC linked state must be maintained during data reception on the configured MTCH. Further, the UE that has received the receiving configuration information may execute the above state transition method, so as to precisely control the switching of its own state when the configured MTCH is the link state MTCH, so as to avoid affecting the reception of the MBS service by itself.
  • FIG. 1 is a flowchart of a first state transition method according to an embodiment of the present invention.
  • FIG. 2 is a flowchart of a second state transition method according to an embodiment of the present invention.
  • FIG. 3 is a flowchart of a method for indicating a link state MTCH according to an embodiment of the present invention
  • FIG. 4 is a schematic structural diagram of a first state transition device according to an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of a second state transition device according to an embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of an indication device for a linked-state MTCH according to an embodiment of the present invention.
  • the UE must maintain the RRC linked state during MBS service transmission. If the UE unicasts service data during the transmission of the MBS service, the UE will switch to the idle state, resulting in failure to receive the MBS service.
  • an embodiment of the present invention provides a state transition method, including: starting or restarting a data inactivation timer if data transmitted by a link-state MTCH is received, wherein the link-state MTCH means that the terminal needs to keep MTCH received in the RRC linked state; the data inactivity timer expires, and the state is transitioned from the RRC linked state to the idle state.
  • the UE can perform state transition more reasonably, so as to avoid affecting the reception of the MBS service.
  • the data inactivity timer is set or reset in time by monitoring the data transmission on the link-state MTCH. Therefore, the data inactivity timer can always be kept in a non-timeout state during MBS service transmission, so as to ensure that the UE does not transition to an idle state when the MBS service is not completed.
  • FIG. 1 is a flowchart of a first state transition method according to an embodiment of the present invention.
  • This embodiment may be performed by the user equipment side, for example, by the UE on the user equipment side.
  • the UE implementing this embodiment is configured with a data inactivity timer (data Inactivity Timer). If the data inactivity timer times out, the UE transitions to an idle state.
  • This embodiment can be applied to a scenario where there is an MBS service, for example, the UE is receiving data in a logical channel carrying MBS service data.
  • the multicast or broadcast logical channel carrying MBS service data in the cell can be defined as a Multicast Traffic Channel (MTCH for short), and the MTCH from which the UE can only receive data in the RRC link state can be defined as the link state MTCH.
  • MTCH Multicast Traffic Channel
  • the state transition method provided by the following steps S101 to S102 may be executed by a chip with a state transition function in the user equipment, or may be executed by a baseband chip in the user equipment.
  • the state transition method described in this embodiment may include the following steps:
  • Step S101 if the data transmitted by the link state MTCH is received, start or restart the data inactivation timer, wherein the link state MTCH refers to the MTCH that the terminal needs to keep in the RRC link state to receive;
  • Step S102 if the data inactivation timer expires, the state is converted from the RRC linked state to the idle state.
  • the UE may be configured with one or more Medium Access Control (Medium Access Control, MAC for short) entities, wherein each MAC entity is responsible for data processing of one or more logical channels.
  • Medium Access Control Medium Access Control
  • the step S101 may include the step of: the MAC entity corresponding to the link state MTCH receives a MAC service data unit (MAC Service Data Unit, MAC SDU for short) transmitted by the link state MTCH.
  • MAC Service Data Unit MAC Service Data Unit
  • the start or restart of the data inactivity timer may also be triggered.
  • the other logical channels may include: Dedicated Traffic Channel (DTCH for short); Dedicated Control Channel (DCCH for short); Common Control Channel (CCCH for short). These logical channels may correspond to the same MAC entity or may correspond to different MAC entities.
  • DTCH Dedicated Traffic Channel
  • DCCH Dedicated Control Channel
  • CCCH Common Control Channel
  • the step S101 may include the step of restarting or starting the data inactivity timer if any MAC entity of the UE receives a MAC SDU from the DTCH, DCCH, CCCH or linked MTCH.
  • the step S102 may include the step of: releasing the RRC link.
  • the release reason may include RRC connection failure. Therefore, precise release of the RRC link can be achieved without affecting the reception of the MBS service.
  • the UE can perform state transition more reasonably, so as to avoid affecting the reception of the MBS service.
  • the data inactivity timer is set or reset in time by monitoring the data transmission on the link-state MTCH. Therefore, the data inactivity timer can always be kept in a non-timeout state during MBS service transmission, so as to ensure that the UE does not transition to an idle state when the MBS service is not completed.
  • the UE will enter the idle state only when the UE does not receive the MAC SDU in the linked MTCH within a certain period of time (that is, the data inactivity timer expires). Therefore, it will not affect the UE's reception of the MAC SDU in the linked MTCH.
  • FIG. 2 is a flowchart of a second state transition method according to an embodiment of the present invention.
  • This embodiment may be performed by the user equipment side, for example, by the UE on the user equipment side.
  • the UE implementing this embodiment is configured with a data inactivity timer (data Inactivity Timer). If the data inactivity timer times out, the UE transitions to an idle state.
  • This embodiment can be applied to a scenario where there is or may exist an MBS service, for example, a UE is receiving or is interested in receiving data in a logical channel carrying MBS service data.
  • the multicast or broadcast logical channel carrying MBS service data in the cell can be defined as a Multicast Traffic Channel (MTCH for short), and the MTCH from which the UE can receive data in the RRC link state can be defined as the link state MTCH.
  • MTCH Multicast Traffic Channel
  • the state transition method provided in the following step S201 may be executed by a chip with a state transition function in the user equipment, or may be executed by a baseband chip in the user equipment.
  • the state transition method described in this embodiment may include the following steps:
  • Step S201 if the data inactivation timer expires and there is no need to receive data transmitted by the linked state MTCH, the state is converted from the RRC linked state to the idle state.
  • the linked state MTCH refers to the MTCH that the terminal needs to keep in the RRC linked state to receive.
  • the step S201 may include the following steps:
  • the data inactivation timer expires, it is judged whether there is a demand for receiving data transmitted by the link-state MTCH; further, when the judgment result is negative, that is, there is no demand for receiving data transmitted by the link-state MTCH, the The above state transitions from the RRC linked state to the idle state.
  • the state transition method described in this embodiment may further include step S203, when the judgment result of the step S201 is positive, that is, when there is a need for receiving data transmitted by the linked state MTCH, the state is maintained in the RRC link state. Further, after finishing data reception on the linked state MTCH, the UE can switch from the RRC linked state to the idle state.
  • the requirement for receiving data transmitted by the link-state MTCH may include: currently receiving data transmitted by the link-state MTCH
  • the receiving requirement for the data transmitted by the linked state MTCH may further include: preparing to receive the data transmitted by the linked state MTCH.
  • the data transmitted by the link-state MTCH may be transmitted periodically, and the data to be transmitted by the link-state MTCH may be referred to as, although the data transmitted by the link-state MTCH is not currently received, but is to be prepared in the next most recent The data transmitted by the link-state MTCH is received within the transmission period.
  • the data inactivity timer may be restarted or started when any one of the MAC entities of the UE receives a MAC SDU from the DTCH, DCCH or CCCH. That is, this embodiment optimizes the UE state transition timing from the processing logic after the data inactivity timer is started or restarted.
  • the UE firstly judges whether there is a need to receive data transmitted by the linked MTCH, so as to ensure that the UE can accurately maintain the RRC linked state when there is or will be MBS service.
  • the UE adopting the solution of this embodiment can actively keep in the RRC link state, so as to avoid delaying the reception of the MBS service by re-establishing the RRC connection in the future.
  • the step S202 may include the step of: releasing the RRC connection, wherein the release reason includes the failure of the RRC connection. Therefore, precise release of the RRC link can be achieved without affecting the reception of the MBS service.
  • step S201 when it is determined in step S201 that there is no MBS service, or the MBS service of the UE does not need to be performed in the RRC linked state, the RRC release operation is performed.
  • the UE can perform state transition more reasonably, so as to avoid affecting the reception of the MBS service. Specifically, when the timer expires and before the state transition operation is performed, it is determined whether there is a need to receive data transmitted by the link-state MTCH. Therefore, by adding pre-judgment logic before performing the state transition operation, it is ensured that the UE can still remain in the RRC linked state when the timer expires but there is a need to receive data transmitted by the linked state MTCH.
  • the UE in the RRC linked state transitions to the idle state. Therefore, it is ensured that the UE can still successfully receive the data of the linked MTCH in the case that there is no data in other logical channels.
  • the MTCH may be used to carry MBS services.
  • the linked state MTCH can be used to carry the MBS service that requires the UE to receive data in the RRC linked state.
  • the link-state MTCH may at least include: a feedback indication configured to support hybrid automatic repeat request (Hybrid Automatic Repeat reQuest, HARQ for short) or configured with HARQ MTCH for configuration information.
  • a feedback indication configured to support hybrid automatic repeat request (Hybrid Automatic Repeat reQuest, HARQ for short) or configured with HARQ MTCH for configuration information.
  • the downlink data of the linked state MTCH requires the UE to perform HARQ feedback, so the UE must be in the RRC linked state to receive data transmitted through the MTCH.
  • the MTCH may be referred to as a link-state MTCH.
  • the downlink data transmission of the linked state MTCH requires the UE to report other feedback information, which also makes the UE must remain in the RRC linked state.
  • the UE needs to report the channel state information to the base station in the RRC link state.
  • the state transition method may further include the step of: receiving indication information, wherein the indication information is used to indicate whether the configured MTCH is a link state MTCH.
  • the indication information may be dedicated or public signaling.
  • the indication information may be included in receiving configuration information, where the receiving configuration information is used to indicate MTCH-related information configured by the base station to the UE.
  • the indication information may include RRC state information, where the RRC state information is used to indicate the RRC state in which the UE receiving the MTCH is located.
  • the RRC state of the UE includes an RRC idle state (referred to as an idle state), an RRC inactive (RRC-inactive) state, and an RRC linked state.
  • the received RRC state information of the linked state MTCH only includes the RRC linked state.
  • the state transition method may further include the step of: determining whether the MTCH is a link state MTCH according to the receiving configuration information of the MTCH.
  • the base station and the UE may not exchange additional indication information, and the receiving configuration information does not add additional fields.
  • the UE may determine whether the MTCH configured by the base station supports HARQ or whether HARQ configuration information is configured according to the receiving configuration information.
  • the receiving configuration of the MTCH The information includes an indication of whether HARQ is supported, or includes HARQ configuration information of the MTCH.
  • the HARQ configuration information may include HARQ feedback parameters or feedback resource configurations.
  • the received MTCH configuration information indicates that the MTCH configuration configured by the base station to the UE supports HARQ, it may be determined that the MTCH is a linked MTCH.
  • the received MTCH configuration information includes the HARQ configuration information of the MTCH, it can be determined that the MTCH is a linked MTCH.
  • the receiving configuration information and the MTCH may be in one-to-one correspondence.
  • FIG. 3 is a flowchart of a method for indicating a link-state MTCH according to an embodiment of the present invention.
  • This embodiment may be performed by the network side, for example, by the base station on the network side.
  • the cells maintained by the base station may support MBS services. However, in a cell supporting the MBS service, there may be an MTCH that requires the UE to remain in the RRC linked state to receive data. Therefore, the base station may inform the UE in advance whether the MTCH configured to the UE is a linked MTCH.
  • the state transition method provided in the following step S301 may be executed by a chip with a state indication function in the network device, or may be executed by a baseband chip in the network device.
  • the method for indicating a linked-state MTCH may include the following steps:
  • Step S301 for the linked state MTCH, send the receiving configuration information of the linked state MTCH to indicate that the terminal needs to keep in the RRC linked state to receive the linked state MTCH.
  • step S301 it may further include the step of: for each MTCH configured, determining whether the MTCH is a link-state MTCH. If it is determined to be a linked-state MTCH, corresponding reception configuration information may be generated for the MTCH, and the step S301 may be executed to send it to the UE.
  • the step S301 may be performed for all MTCHs, such as traversing all MTCHs in the configured cell to determine whether each MTCH is a linked MTCH.
  • the step S301 may include the step of: indicating that the terminal needs to keep in the RRC linked state to receive the linked state MTCH through the HARQ configuration information configured in the receiving configuration information.
  • the step S301 may include the step of: indicating that the terminal needs to keep in the RRC linked state to receive the linked state MTCH through the HARQ support indication configured in the receiving configuration information.
  • the MTCH may be implicitly indicated as a linked MTCH.
  • the UE when it is found that the MTCH configured this time is configured with an indication of supporting HARQ or HARQ configuration information, it can be determined that the MTCH is a linked MTCH, and after receiving the MTCH It needs to remain in the RRC link state during the transmission of data.
  • the step S301 may include the step of: indicating that the terminal needs to keep the reception in the RRC linked state by receiving the RRC state information included in the receiving configuration information, and the receiving RRC state information only includes the RRC linked state In the linked state MTCH, the receiving RRC state information is used to indicate the RRC state required for receiving data transmitted by the MTCH.
  • a bitmap may be used to indicate that the received RRC state information of the linked state MTCH only includes the RRC linked state. That is, the base station can indicate whether the received RRC state information of the MTCH only includes the RRC link state by means of a bitmap.
  • the base station can send the receiving configuration information of MTCH1, MTCH2, MTCH3, MTCH4, and MTCH5, and a 5-bit string can be used to indicate whether the RRC state information of the five MTCHs respectively only includes the RRC link state.
  • the received RRC state information corresponding to the MTCH only includes the RRC link state.
  • the character string of the received configuration information is 11101, it means that the received RRC state information of MTCH1, MTCH2, MTCH3 and MTCH5 only includes the RRC link state, and the received RRC state information of MTCH4 does not only include the RRC link state.
  • the step S301 may include the step of: sending the receiving configuration information of the linked state MTCH through system information or a multicast control channel (Multicast Control Channel, MCCH for short).
  • MCCH Multicast Control Channel
  • the base station may indicate the reception RRC status information of each MTCH in system information or MCCH, where the MCCH is a control channel that indicates reception configuration information such as the transmission period of the MTCH.
  • the network indicates whether the MTCH configured to the UE is a linked MTCH by receiving configuration information, so that the UE determines whether the RRC linked state must be maintained during data reception on the configured MTCH. Further, the UE that has received the receiving configuration information may execute the above state transition method, so as to precisely control the switching of its own state when the configured MTCH is the link state MTCH, so as to avoid affecting the reception of the MBS service by itself.
  • the network side indicates the MTCH reception RRC state information, so that the UE can receive the MTCH data in an appropriate RRC state, so that the MBS service can be better implemented.
  • FIG. 4 is a schematic structural diagram of a first state transition device according to an embodiment of the present invention. Those skilled in the art understand that the state transition device 4 in this embodiment can be used to implement the method and technical solution described in the embodiment shown in FIG. 1 above.
  • the state transition apparatus 4 in this embodiment may include: a start module 41, which starts or restarts a data inactivation timer if data transmitted by a link-state MTCH is received, wherein the link-state MTCH is a Refers to the MTCH that the terminal needs to keep in the RRC linked state to receive; the converting module 42, if the data inactivation timer expires, converts the state from the RRC linked state to the idle state.
  • the above-mentioned state transition device may correspond to a chip with a state transition function in the user equipment, or to a chip with a data processing function, such as a system-on-a-chip (SOC for short), a baseband chips, etc.; or correspond to a chip module including a chip with a state transition function in the user equipment; or correspond to a chip module with a data processing function chip, or correspond to a user equipment.
  • SOC system-on-a-chip
  • FIG. 5 is a schematic structural diagram of a second state transition device according to an embodiment of the present invention. Those skilled in the art understand that the state transition device 5 in this embodiment can be used to implement the method and technical solution described in the embodiment shown in FIG. 2 above.
  • the state transition device 5 in this embodiment may include: a transition module 51 , if the data inactivation timer expires and there is no need to receive data transmitted by the link-state MTCH, the state transition module 51 will Transition from the RRC linked state to the idle state; wherein, the linked state MTCH refers to the MTCH that the terminal needs to keep in the RRC linked state to receive.
  • the above-mentioned state transition device may correspond to a chip with a state transition function in the user equipment, or to a chip with a data processing function, such as a system-on-a-chip (SOC for short), a baseband chips, etc.; or correspond to a chip module including a chip with a state transition function in the user equipment; or correspond to a chip module with a data processing function chip, or correspond to a user equipment.
  • SOC system-on-a-chip
  • FIG. 6 is a schematic structural diagram of an indication device for a linked-state MTCH according to an embodiment of the present invention.
  • the indicating device 6 of the linked-state MTCH in this embodiment may be used to implement the method and technical solution described in the embodiment shown in FIG. 3 above.
  • the instructing device 6 of the linked-state MTCH in this embodiment may include: a sending module 61, for the linked-state MTCH, sending the receiving configuration information of the linked-state MTCH to indicate that the terminal needs to remain in the RRC linked state The link state MTCH is received.
  • the above-mentioned indication device of the link state MTCH may correspond to a chip with a status indication function in a network device, or a chip with a data processing function, such as a system-on-a-chip (System-On-a-Chip, SOC for short) ), baseband chip, etc.; or correspond to a chip module including a chip with a status indication function in a network device; or correspond to a chip module with a data processing function chip, or correspond to a network device.
  • a chip with a status indication function in a network device or a chip with a data processing function, such as a system-on-a-chip (System-On-a-Chip, SOC for short) ), baseband chip, etc.
  • a chip module including a chip with a status indication function in a network device or correspond to a chip module with a data processing function chip, or correspond to a network device.
  • each module/unit included in each device and product described in the above embodiments it may be a software module/unit, a hardware module/unit, or a part of a software module/unit, a part of which is a software module/unit. is a hardware module/unit.
  • each module/unit included therein may be implemented by hardware such as circuits, or at least some of the modules/units may be implemented by a software program.
  • Running on the processor integrated inside the chip the remaining (if any) part of the modules/units can be implemented by hardware such as circuits; for each device and product applied to or integrated in the chip module, the modules/units contained therein can be They are all implemented by hardware such as circuits, and different modules/units can be located in the same component of the chip module (such as chips, circuit modules, etc.) or in different components, or at least some of the modules/units can be implemented by software programs.
  • the software program runs on the processor integrated inside the chip module, and the remaining (if any) part of the modules/units can be implemented by hardware such as circuits; for each device and product applied to or integrated in the terminal, each module contained in it
  • the units/units may all be implemented in hardware such as circuits, and different modules/units may be located in the same component (eg, chip, circuit module, etc.) or in different components in the terminal, or at least some of the modules/units may be implemented by software programs Realization, the software program runs on the processor integrated inside the terminal, and the remaining (if any) part of the modules/units can be implemented in hardware such as circuits.
  • an embodiment of the present invention also discloses a storage medium on which a computer program is stored, and when the computer program is run by a processor, the method and technical solutions described in the embodiments shown in FIG. 1 to FIG. 3 are executed.
  • the storage medium may include a computer-readable storage medium such as a non-volatile memory or a non-transitory memory.
  • the storage medium may include ROM, RAM, magnetic or optical disks, and the like.
  • an embodiment of the present invention also discloses a terminal, including a memory and a processor, the memory stores a computer program that can run on the processor, and the processor executes the above diagram when running the computer program. 1 and the technical solutions of the methods described in the embodiments shown in FIG. 2 .
  • the terminal may be a UE.
  • an embodiment of the present invention further discloses a base station, including a memory and a processor, the memory stores a computer program that can run on the processor, and the processor executes the above diagram when running the computer program. 3.
  • the base station may be an NR base station.
  • the technical solution of the present invention can be applied to 5G (5Generation) communication systems, 4G and 3G communication systems, and various new communication systems in the future, such as 6G and 7G.
  • the technical solution of the present invention is also applicable to different network architectures, including but not limited to relay network architecture, dual link architecture, Vehicle-to-Everything (vehicle-to-anything communication) architecture and other architectures.
  • the core network described in the embodiments of the present application may be an evolved packet core (EPC for short), a 5G Core Network (5G core network), or a new type of core network in a future communication system.
  • the 5G Core Network consists of a set of devices, and implements access and mobility management functions (Access and Mobility Management Function, AMF) for functions such as mobility management, and provides functions such as packet routing and forwarding and QoS (Quality of Service) management.
  • AMF Access and Mobility Management Function
  • UPF User Plane Function
  • SMF Session Management Function
  • EPC consists of MME that provides functions such as mobility management and gateway selection, Serving Gateway (S-GW) that provides functions such as packet forwarding, and PDN Gateway (P-GW) that provides functions such as terminal address allocation and rate control.
  • S-GW Serving Gateway
  • P-GW PDN Gateway
  • the core network may include several new network elements to implement functions such as packet forwarding, MBS session management, QoS management, and transmission mode switching (switching between unicast and multicast/broadcast transmission modes). Another way is that the functions can be implemented by network elements in the existing core network.
  • a base station (base station, BS for short) in the embodiments of the present application which may also be referred to as base station equipment, is a device deployed in a radio access network (RAN) to provide a wireless communication function.
  • the equipment that provides base station functions in 2G networks includes base transceiver stations (English: base transceiver station, referred to as BTS), the equipment that provides base station functions in 3G networks includes NodeB (NodeB), and the equipment that provides base station functions in 4G networks.
  • the device that provides the base station function is the access point (access point, referred to as AP), 5G new wireless (New Radio) , referred to as NR) in the device gNB that provides base station functions, and the node B (ng-eNB) that continues to evolve, wherein the gNB and the terminal use NR technology for communication, and the ng-eNB and the terminal use E-UTRA (Evolved Universal Terrestrial Radio Access) technology to communicate, both gNB and ng-eNB can be connected to the 5G core network.
  • the base station in the embodiment of the present application also includes a device that provides a base station function in a new communication system in the future, and the like.
  • the base station controller in this embodiment of the present application is a device for managing base stations, such as a base station controller (BSC) in a 2G network and a radio network controller (RNC) in a 3G network. ), and may also refer to a device for controlling and managing base stations in a new communication system in the future.
  • BSC base station controller
  • RNC radio network controller
  • the network side refers to a communication network that provides communication services for terminals, including a base station of a wireless access network, a base station controller of a wireless access network, and a device on the core network side. .
  • the terminal in this embodiment of the present application may refer to various forms of user equipment (user equipment, UE for short), access terminal, subscriber unit, subscriber station, mobile station, mobile station (mobile station, built as MS), remote station, remote station A terminal, mobile device, user terminal, terminal equipment, wireless communication device, user agent or user equipment.
  • user equipment user equipment, UE for short
  • access terminal subscriber unit, subscriber station, mobile station, mobile station (mobile station, built as MS), remote station, remote station
  • subscriber unit subscriber station
  • mobile station mobile station (mobile station, built as MS)
  • remote station remote station
  • remote station remote station
  • remote station remote station
  • mobile device mobile device
  • user terminal terminal equipment
  • terminal equipment wireless communication device
  • user agent or user equipment user agent
  • the terminal device may also be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a Wireless Local Loop (WLL) station, a Personal Digital Assistant (PDA), Handheld devices, computing devices or other processing devices connected to wireless modems, in-vehicle devices, wearable devices with wireless communication capabilities, terminal devices in future 5G networks or future evolved public land mobile communication networks (Public Land Mobile Network, referred to as PLMN), which is not limited in this embodiment of the present application.
  • PLMN Public Land Mobile Network
  • the embodiment of the present application defines the unidirectional communication link from the access network to the terminal as the downlink, the data transmitted on the downlink is the downlink data, and the transmission direction of the downlink data is called the downlink direction;
  • the unidirectional communication link is the uplink, the data transmitted on the uplink is the uplink data, and the transmission direction of the uplink data is called the uplink direction.
  • connection in the embodiments of the present application refers to various connection modes such as direct connection or indirect connection, so as to realize communication between devices, which is not limited in the embodiments of the present application.
  • the processor may be a central processing unit (central processing unit, CPU for short), and the processor may also be other general-purpose processors, digital signal processors (digital signal processor, DSP for short) , application specific integrated circuit (ASIC), off-the-shelf programmable gate array (FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • a general purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the memory in the embodiments of the present application may be volatile memory or non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be read-only memory (ROM for short), programmable read-only memory (PROM for short), erasable programmable read-only memory (EPROM for short) , Electrically Erasable Programmable Read-Only Memory (electrically EPROM, EEPROM for short) or flash memory.
  • Volatile memory may be random access memory (RAM), which acts as an external cache.
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous Dynamic random access memory
  • SDRAM synchronous Dynamic random access memory
  • DDR SDRAM double data rate synchronous dynamic random access memory
  • ESDRAM enhanced synchronous dynamic random access memory
  • SLDRAM Synchronous connection dynamic random access memory
  • DR RAM direct memory bus random access memory
  • the above embodiments may be implemented in whole or in part by software, hardware, firmware or any other combination.
  • the above-described embodiments may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions or computer programs. When the computer instructions or computer programs are loaded or executed on a computer, all or part of the processes or functions described in the embodiments of the present application are generated.
  • the computer may be a general purpose computer, special purpose computer, computer network, or other programmable device.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be downloaded from a website site, computer, server, or data center Transmission by wire or wireless to another website site, computer, server or data center.
  • the computer-readable storage medium may be any available medium that a computer can access, or a data storage device such as a server, a data center, or the like containing one or more sets of available media.
  • the usable media may be magnetic media (eg, floppy disks, hard disks, magnetic tapes), optical media (eg, DVDs), or semiconductor media.
  • the semiconductor medium may be a solid state drive.
  • the size of the sequence numbers of the above-mentioned processes does not mean the sequence of execution, and the execution sequence of each process should be determined by its functions and internal logic, and should not be dealt with in the embodiments of the present application. implementation constitutes any limitation.
  • the disclosed method, apparatus and system may be implemented in other manners.
  • the device embodiments described above are only illustrative; for example, the division of the units is only a logical function division, and there may be other division methods in actual implementation; for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may be physically included individually, or two or more units may be integrated into one unit.
  • the above-mentioned integrated unit may be implemented in the form of hardware, or may be implemented in the form of hardware plus software functional units.
  • the above-mentioned integrated units implemented in the form of software functional units can be stored in a computer-readable storage medium.
  • the above-mentioned software function unit is stored in a storage medium, and includes several instructions to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute part of the steps of the methods described in the various embodiments of the present invention.
  • the aforementioned storage medium includes: U disk, mobile hard disk, Read-Only Memory (ROM for short), Random Access Memory (RAM for short), magnetic disk or CD, etc. that can store program codes medium.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种状态转换方法及链接态MTCH的指示方法、装置、存储介质、终端、基站,所述状态转换方法包括:若接收到链接态MTCH传输的数据,启动或重启数据非激活定时器,其中,所述链接态MTCH是指终端需保持在RRC链接态进行接收的MTCH;若所述数据非激活定时器到期,将所述状态从RRC链接态转换至空闲态。通过本发明方案使得UE能够更合理地进行状态转换,以避免影响MBS业务的接收。

Description

状态转换方法及链接态MTCH的指示方法、装置、存储介质、终端、基站
本申请要求2020年6月30日提交中国专利局、申请号为202010614412.X、发明名称为“状态转换方法及链接态MTCH的指示方法、装置、存储介质、终端、基站”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及通信技术领域,具体地涉及一种状态转换方法及链接态MTCH的指示方法、装置、存储介质、终端、基站。
背景技术
对于组播/广播服务(Multicast and Broadcast Services,简称MBS)业务,最近协议讨论,未来可能存在必须要在无线资源控制(Radio Resource Control,简称RRC)链接态才能接收的MBS业务。如果存在这种MBS业务,将导致即使在没有单播(unicast)业务数据传输的情况下,用户设备(User Equipment,简称UE)也不能从RRC链接态转换到空闲态(idle)。
而在长期演进(Long Term Evolution,简称LTE)系统中,MBS业务的接收不会受到UE所处RRC状态的影响,UE即便处于空闲态也能接收MBS业务,所以不会发生上述问题。这也就导致现有技术没有应对MBS业务传输期间UE必须保持RRC链接态的解决方案。事实上,基于现有技术,只要UE没有接收到单播数据超过一定时长就会转换到空闲态。如果此时UE正在进行必须处于RRC链接态的MBS业务,势必导致MBS业务失败,影响UE性能。
发明内容
本发明解决的技术问题是如何更合理地进行UE状态转换,以避免影响MBS业务的接收。
为解决上述技术问题,本发明实施例提供一种状态转换方法,包括:若接收到链接态MTCH传输的数据,启动或重启数据非激活定时器,其中,所述链接态MTCH是指终端需保持在RRC链接态进行接收的MTCH;若所述数据非激活定时器到期,将所述状态从RRC链接态转换至空闲态。
可选的,所述接收到链接态MTCH传输的数据包括:所述链接态MTCH对应的MAC实体接收到所述链接态MTCH传输的MAC SDU。
可选的,所述将所述状态从RRC链接态转换至空闲态包括:释放RRC链接。
可选的,释放原因包括RRC连接失败。
为解决上述技术问题,本发明实施例还提供一种状态转换方法,包括:若数据非激活定时器到期,且没有对链接态MTCH传输的数据的接收需求,将所述状态从RRC链接态转换至空闲态;其中,所述链接态MTCH是指终端需保持在RRC链接态进行接收的MTCH。
可选的,所述对链接态MTCH传输的数据的接收需求包括:当前正在接收所述链接态MTCH传输的数据,以及预备接收链接态MTCH传输的数据。
可选的,所述链接态MTCH传输的数据是周期性传输的,所述预备接收链接态MTCH传输的数据是指,准备在接下来最近的传输周期内接收所述链接态MTCH传输的数据。
可选的,所述MTCH用于承载MBS业务。
可选的,所述链接态MTCH至少包括:配置有支持HARQ的指示或者配置有HARQ配置信息的MTCH。
可选的,所述状态转换方法还包括:接收指示信息,其中,所述指示信息用于指示配置的MTCH是否为链接态MTCH;和/或根据MTCH的接收配置信息确定所述MTCH是否为链接态MTCH。
为解决上述技术问题,本发明实施例还提供一种链接态MTCH的指示方法,包括:对于链接态MTCH,发送所述链接态MTCH的接收配置信息以指示终端需保持在RRC链接态接收所述链接态MTCH。
可选的,所述发送所述链接态MTCH的接收配置信息以指示终端需保持在RRC链接态接收所述链接态MTCH包括:通过所述接收配置信息中配置的支持HARQ的指示来指示终端需保持在RRC链接态接收所述链接态MTCH。
可选的,所述发送所述链接态MTCH的接收配置信息以指示终端需保持在RRC链接态接收所述链接态MTCH包括:通过所述接收配置信息中配置的MTCH的HARQ配置信息指示终端需保持在RRC链接态接收所述链接态MTCH。
可选的,所述发送所述链接态MTCH的接收配置信息以指示终端需保持在RRC链接态接收所述链接态MTCH包括:通过所述接收配置信息中包含的接收RRC状态信息,且所述接收RRC状态信息仅包括RRC链接态来指示终端需保持在RRC链接态接收所述链接态MTCH,其中,所述接收RRC状态信息用于指示接收MTCH传输的数据所需的RRC状态。
可选的,所述接收RRC状态信息仅包括RRC链接态包括:通过位图指示所述链接态MTCH的接收RRC状态信息仅包含RRC链接态。
可选的,所述发送所述链接态MTCH的接收配置信息包括:通过系统信息或MCCH发送所述接收配置信息。
为解决上述技术问题,本发明实施例还提供一种状态转换装置, 包括:启动模块,若接收到链接态MTCH传输的数据,启动或重启数据非激活定时器,其中,所述链接态MTCH是指终端需保持在RRC链接态进行接收的MTCH;转换模块,若所述数据非激活定时器到期,将所述状态从RRC链接态转换至空闲态。
为解决上述技术问题,本发明实施例还提供一种状态转换装置,包括:转换模块,若数据非激活定时器到期,且没有对链接态MTCH传输的数据的接收需求,将所述状态从RRC链接态转换至空闲态,其中,所述链接态MTCH是指终端需保持在RRC链接态进行接收的MTCH。
为解决上述技术问题,本发明实施例还提供一种链接态MTCH的指示装置,包括:发送模块,对于链接态MTCH,发送所述链接态MTCH的接收配置信息以指示终端需保持在RRC链接态接收所述链接态MTCH。
为解决上述技术问题,本发明实施例还提供一种存储介质,其上存储有计算机程序,所述计算机程序被处理器运行时执行上述方法的步骤。
为解决上述技术问题,本发明实施例还提供一种终端,包括存储器和处理器,所述存储器上存储有能够在所述处理器上运行的计算机程序,所述处理器运行所述计算机程序时执行上述状态转换方法的步骤。
为解决上述技术问题,本发明实施例还提供一种基站,包括存储器和处理器,所述存储器上存储有能够在所述处理器上运行的计算机程序,所述处理器运行所述计算机程序时执行上述链接态MTCH的指示方法的步骤。
与现有技术相比,本发明实施例的技术方案具有以下有益效果:
对于用户设备侧,本发明实施例提供一种状态转换方法,包括:若接收到链接态MTCH传输的数据,启动或重启数据非激活定时器, 其中,所述链接态MTCH是指终端需保持在RRC链接态进行接收的MTCH;若所述数据非激活定时器到期,将所述状态从RRC链接态转换至空闲态。
采用本实施例方案,UE能够更合理地进行状态转换,以避免影响MBS业务的接收。具体而言,通过监控链接态MTCH上的数据传输来及时设置或重置数据非激活定时器。由此,在MBS业务传输期间数据非激活定时器能够始终保持在未超时状态,确保UE不会在MBS业务未完成时就转换到空闲态。
对于用户设备侧,本发明实施例还提供一种状态转换方法,包括:若数据非激活定时器到期,且没有对链接态MTCH传输的数据的接收需求,将所述状态从RRC链接态转换至空闲态;其中,所述链接态MTCH是指终端需保持在RRC链接态进行接收的MTCH。
采用本实施例方案,UE能够更合理地进行状态转换,以避免影响MBS业务的接收。具体而言,在定时器到期时,执行状态转换操作之前,判断是否具有对链接态MTCH传输的数据的接收需求。由此,通过在执行状态转换操作前添加前置判断逻辑,确保定时器到期但具有对链接态MTCH传输的数据的接收需求时UE仍能保持在RRC链接态。
对于网络侧,本发明实施例还提供一种链接态MTCH的指示方法,包括:对于链接态MTCH,发送所述链接态MTCH的接收配置信息以指示终端需保持在RRC链接态接收所述链接态MTCH。
采用本实施例方案,网络通过接收配置信息指示配置给UE的MTCH是否为链接态MTCH,以使UE确定在配置的MTCH上接收数据期间是否必须保持RRC链接态。进一步,接收到所述接收配置信息的UE可以执行上述状态转换方法,以在配置的MTCH为链接态MTCH时精准控制自身状态的切换,避免影响自身对MBS业务的接收。
附图说明
图1是本发明实施例第一种状态转换方法的流程图;
图2是本发明实施例第二种状态转换方法的流程图;
图3是本发明实施例一种链接态MTCH的指示方法的流程图;
图4是本发明实施例第一种状态转换装置的结构示意图;
图5是本发明实施例第二种状态转换装置的结构示意图;
图6是本发明实施例一种链接态MTCH的指示装置的结构示意图。
具体实施方式
如背景技术所言,现有技术没有应对MBS业务传输期间UE必须保持RRC链接态的解决方案。若MBS业务传输期间UE单播业务数据,UE就会转换到空闲态,导致MBS业务接收失败。
为解决上述技术问题,本发明实施例提供一种状态转换方法,包括:若接收到链接态MTCH传输的数据,启动或重启数据非激活定时器,其中,所述链接态MTCH是指终端需保持在RRC链接态进行接收的MTCH;所述数据非激活定时器到期,将所述状态从RRC链接态转换至空闲态。
采用本实施例方案,UE能够更合理地进行状态转换,以避免影响MBS业务的接收。具体而言,通过监控链接态MTCH上的数据传输来及时设置或重置数据非激活定时器。由此,在MBS业务传输期间数据非激活定时器能够始终保持在未超时状态,确保UE不会在MBS业务未完成时就转换到空闲态。
为使本发明的上述目的、特征和有益效果能够更为明显易懂,下面结合附图对本发明的具体实施例做详细的说明。
图1是本发明实施例第一种状态转换方法的流程图。
本实施方案可以由用户设备侧执行,如由用户设备侧的UE执行。其中,执行本实施方案的UE配置有数据非激活定时器(data Inactivity Timer),若所述数据非激活定时器超时,UE转入空闲态。
本实施方案可以应用于存在MBS业务的场景,如UE正在接收承载MBS业务数据的逻辑信道中的数据。其中,小区中组播或广播的承载MBS业务数据的逻辑信道可以定义为多播业务信道(Multicast Traffic Channel,简称MTCH),UE在RRC链接态才能从中接收数据的MTCH可以定义为链接态MTCH。
在具体实施中,下述步骤S101~步骤S102所提供的状态转换方法可以由用户设备中的具有状态转换功能的芯片执行,也可以由用户设备中的基带芯片执行。
具体地,参考图1,本实施例所述状态转换方法可以包括如下步骤:
步骤S101,若接收到链接态MTCH传输的数据,启动或重启数据非激活定时器,其中,所述链接态MTCH是指终端需保持在RRC链接态进行接收的MTCH;
步骤S102,若所述数据非激活定时器到期,将所述状态从RRC链接态转换至空闲态。
在一个具体实施中,UE可以配置有一个或多个媒体访问控制(Medium Access Control,简称MAC)实体,其中每一MAC实体负责一个或多个逻辑信道的数据处理。
相应的,所述步骤S101可以包括步骤:所述链接态MTCH对应的MAC实体接收到所述链接态MTCH传输的MAC服务数据单元(MAC Service Data Unit,简称MAC SDU)。
在一个具体实施中,除了链接态MTCH外,如果其他逻辑信道上有数据传输,同样可能触发数据非激活定时器的启动或重启。
例如,所述其他逻辑信道可以包括:专用业务信道(Dedicated Traffic Channel,简称DTCH);专用控制信道(Dedicated Control Channel,简称DCCH);公共控制信道(Common Control Channel,简称CCCH)。这些逻辑信道可以对应相同的MAC实体,也可以对应不同的MAC实体。
相应的,所述步骤S101可以包括步骤:若UE的任何一个MAC实体从DTCH、DCCH、CCCH或链接态MTCH中接收到MAC SDU,则重启或启动所述数据非激活定时器。
在一个具体实施中,所述步骤S102可以包括步骤:释放RRC链接。其中,释放原因可以包括RRC连接失败。由此,既能实现RRC链接的精准释放,又不影响MBS业务的接收。
采用本实施例方案,UE能够更合理地进行状态转换,以避免影响MBS业务的接收。具体而言,通过监控链接态MTCH上的数据传输来及时设置或重置数据非激活定时器。由此,在MBS业务传输期间数据非激活定时器能够始终保持在未超时状态,确保UE不会在MBS业务未完成时就转换到空闲态。
也就是说,采用图1所示实施例方案,只有UE在一定时间内没有接收到链接态MTCH中的MAC SDU(即数据非激活定时器超时)时,UE才会转入空闲态。从而不会影响UE接收链接态MTCH中的MAC SDU。
图2是本发明实施例第二种状态转换方法的流程图。
本实施方案可以由用户设备侧执行,如由用户设备侧的UE执行。其中,执行本实施方案的UE配置有数据非激活定时器(data Inactivity Timer),若所述数据非激活定时器超时,UE转入空闲态。
本实施方案可以应用于存在或可能存在MBS业务的场景,如UE正在接收或有兴趣接收承载MBS业务数据的逻辑信道中的数据。其中,小区中组播或广播的承载MBS业务数据的逻辑信道可以定义为 多播业务信道(Multicast Traffic Channel,简称MTCH),UE在RRC链接态才能从中接收数据的MTCH可以定义为链接态MTCH。
在具体实施中,下述步骤S201所提供的状态转换方法可以由用户设备中的具有状态转换功能的芯片执行,也可以由用户设备中的基带芯片执行。
具体地,参考图2,本实施例所述状态转换方法可以包括如下步骤:
步骤S201,若数据非激活定时器到期,且没有对链接态MTCH传输的数据的接收需求,则将所述状态从RRC链接态转换至空闲态。
其中,所述链接态MTCH是指终端需保持在RRC链接态进行接收的MTCH。
具体而言,所述步骤S201可以包括如下步骤:
若数据非激活定时器到期,则判断是否具有对链接态MTCH传输的数据的接收需求;进一步,当判断结果为否定的,也即没有对链接态MTCH传输的数据的接收需求时,将所述状态从RRC链接态转换至空闲态。
进一步,本实施例所述状态转换方法还可以包括步骤S203,当所述步骤S201的判断结果为肯定的,也即具有对链接态MTCH传输的数据的接收需求时,将所述状态维持在RRC链接态。进一步,在结束链接态MTCH上的数据接收后,UE可以从RRC链接态切换至空闲态。
在一个具体实施中,所述对链接态MTCH传输的数据的接收需求可以包括:当前正在接收所述链接态MTCH传输的数据
进一步,所述对链接态MTCH传输的数据的接收需求还可以包括:预备接收链接态MTCH传输的数据。
例如,所述链接态MTCH传输的数据可以是周期性传输的,所 述预备接收链接态MTCH传输的数据可以是指,当前虽然没有接收链接态MTCH上传输的数据,但准备在接下来最近的传输周期内接收所述链接态MTCH传输的数据。
在一个具体实施中,所述数据非激活定时器可以是因UE的任何一个MAC实体从DTCH、DCCH或CCCH接收到MAC SDU而重启或启动的。也即,本实施例从数据非激活定时器被启动或重启后的处理逻辑着手优化UE状态转换时机,虽然数据非激活定时器不会因链接态MTCH上有数据传输而重启或启动,但在数据非激活定时器到期时UE优先判断是否存在对链接态MTCH传输的数据的接收需求,以确保存在或即将存在MBS业务时UE能够精确保持在RRC链接态。尤其对于当前尚未进行,但未来会进行的MBS业务,采用本实施例方案的UE能够主动保持在RRC链接态,避免将来重新建立RRC连接而延误MBS业务的接收。
在一个具体实施中,所述步骤S202可以包括步骤:释放RRC链接,其中,释放原因包括RRC连接失败。由此,既能实现RRC链接的精准释放,又不影响MBS业务的接收。
例如,在步骤S201确定没有MBS业务,或者UE的MBS业务不需要在RRC链接态下进行时,进行RRC释放操作。
由上,采用本实施例方案,UE能够更合理地进行状态转换,以避免影响MBS业务的接收。具体而言,在定时器到期时,执行状态转换操作之前,判断是否具有对链接态MTCH传输的数据的接收需求。由此,通过在执行状态转换操作前添加前置判断逻辑,确保定时器到期但具有对链接态MTCH传输的数据的接收需求时UE仍能保持在RRC链接态。
也就是说,采用图2所示方案,如果数据非激活定时器超时,且UE没有兴趣接收或没有正在接收链接态MTCH的数据,则处于RRC链接态的UE转入空闲态。从而保证UE在其他逻辑信道中没有数据的情况下,仍可以成功接收链接态MTCH的数据。
在图1和图2所示实施例的一个共同实施方式中,所述MTCH可以用于承载MBS业务。进一步,所述链接态MTCH可以用于承载需要UE在RRC链接态下进行数据接收的MBS业务。
在图1和图2所示实施例的一个共同实施方式中,所述链接态MTCH至少可以包括:配置有支持混合自动重传请求(Hybrid Automatic Repeat reQuest,简称HARQ)的反馈指示或配置有HARQ配置信息的MTCH。
例如,所述链接态MTCH的下行数据需要UE进行HARQ反馈,从而UE必须在RRC链接态来接收通过该MTCH传输的数据。此时,该MTCH可以称作链接态MTCH。
再例如,所述链接态MTCH的下行数据传输,需要UE上报其它反馈信息,这同样会使得UE必须保持在RRC链接态。例如UE需要在RRC链接态上报信道状态信息到基站。
在图1和图2所示实施例的一个共同实施方式中,所述状态转换方法还可以包括步骤:接收指示信息,其中,所述指示信息用于指示配置的MTCH是否为链接态MTCH。
例如,所述指示信息可以是专门或公共的信令。
又例如,所述指示信息可以包含于接收配置信息,所述接收配置信息用于指示基站配置给UE的MTCH的相关信息。例如,所述指示信息可以包括RRC状态信息,所述RRC状态信息用于指示接收所述MTCH的UE所处的RRC状态。所述UE的RRC状态包括RRC空闲态(简称空闲态)、RRC非激活(RRC-inactive)态以及RRC链接态。链接态MTCH的接收RRC状态信息仅包含RRC链接态。
进一步地,所述状态转换方法还可以包括步骤:根据MTCH的接收配置信息确定所述MTCH是否为链接态MTCH。
基站和UE可以不额外交互指示信息,所述接收配置信息也不额外增加字段,UE可以根据接收配置信息确定基站配置的MTCH是否 支持HARQ或者是否有配置HARQ配置信息,具体的,MTCH的接收配置信息中包含是否支持HARQ的指示,或者包含MTCH的HARQ配置信息,例如HARQ配置信息可包含HARQ的反馈参数或反馈资源的配置。从而确定该MTCH的接收RRC状态信息是否仅包含RRC链接态。由此可以节省信令开销。
例如,若接收的MTCH配置信息表明基站配置给UE的MTCH配置支持HARQ,则可以确定该MTCH为链接态MTCH。
若接收的MTCH配置信息包含MTCH的HARQ配置信息,则可以确定该MTCH为链接态MTCH。
进一步,所述接收配置信息与MTCH可以是一一对应的。
图3是本发明实施例一种链接态MTCH的指示方法的流程图。
本实施方案可以由网络侧执行,如由网络侧的基站执行。所述基站维持的小区可以支持MBS业务。而在支持MBS业务的小区中可能存在需要UE保持在RRC链接态进行数据接收的MTCH。因此,基站可以预先告知UE配置给UE的MTCH是否为链接态MTCH。
在具体实施中,下述步骤S301所提供的状态转换方法可以由网络设备中的具有状态指示功能的芯片执行,也可以由网络设备中的基带芯片执行。
具体地,参考图3,本实施例所述链接态MTCH的指示方法可以包括如下步骤:
步骤S301,对于链接态MTCH,发送所述链接态MTCH的接收配置信息以指示终端需保持在RRC链接态接收所述链接态MTCH。
更为具体地,在所述步骤S301之前,还可以包括步骤:对于配置的每一MTCH,确定所述MTCH是否为链接态MTCH。若确定为链接态MTCH,则可以针对该MTCH生成对应的接收配置信息,并执行所述步骤S301以发送至UE。
在一个具体实施中,所述步骤S301可以是针对所有MTCH执行的,如遍历配置小区中的所有MTCH,以确定其中每一MTCH是否为链接态MTCH。
在一个具体实施中,所述步骤S301可以包括步骤:通过所述接收配置信息中配置的HARQ配置信息指示终端需保持在RRC链接态接收所述链接态MTCH。
在一个具体实施中,所述步骤S301可以包括步骤:通过所述接收配置信息中配置的支持HARQ的指示来指示终端需保持在RRC链接态接收所述链接态MTCH。
例如,当所述接收配置信息配置有支持HARQ的指示或者配置有HARQ配置信息时,既可以隐式指示该MTCH为链接态MTCH。相应的,对于接收到所述接收配置信息的UE而言,当发现本次配置的MTCH配置有支持HARQ的指示或者有HARQ配置信息时,就可以确定该MTCH为链接态MTCH,在接收该MTCH传输的数据期间需要保持在RRC链接态。
在一个具体实施中,所述步骤S301可以包括步骤:通过所述接收配置信息中包含的接收RRC状态信息,且所述接收RRC状态信息仅包括RRC链接态来指示终端需保持在RRC链接态接收所述链接态MTCH,其中,所述接收RRC状态信息用于指示接收MTCH传输的数据所需的RRC状态。
具体地,可以通过位图(bitmap)指示所述链接态MTCH的接收RRC状态信息仅包含RRC链接态。也即,基站可以通过位图的方式来指示MTCH的接收RRC状态信息是否只包含RRC链接态。
例如,基站可以发送MTCH1、MTCH2、MTCH3、MTCH4和MTCH5的接收配置信息,则可以用一个5比特(bit)的字符串来指示5个MTCH的RRC状态信息分别是否只包含RRC链接态。
假设某比特位置为1,表示对应MTCH的接收RRC状态信息只 包含RRC链接态。相应的,若接收配置信息的字符串为11101,则表示MTCH1、MTCH2、MTCH3和MTCH5的接收RRC状态信息只包含RRC链接态,而MTCH4的接收RRC状态信息不是只包含RRC链接态。
在一个具体实施中,所述步骤S301可以包括步骤:通过系统信息或多播控制信道(Multicast Control Channel,简称MCCH)发送所述链接态MTCH的接收配置信息。
例如,基站可以在系统信息或MCCH中指示每一MTCH的接收RRC状态信息,其中MCCH是指示MTCH的发送周期等接收配置信息的控制信道。
由上,采用本实施例方案,网络通过接收配置信息指示配置给UE的MTCH是否为链接态MTCH,以使UE确定在配置的MTCH上接收数据期间是否必须保持RRC链接态。进一步,接收到所述接收配置信息的UE可以执行上述状态转换方法,以在配置的MTCH为链接态MTCH时精准控制自身状态的切换,避免影响自身对MBS业务的接收。
也就是说,通过网络侧指示MTCH的接收RRC状态信息,使得UE可在合适的RRC状态中接收MTCH的数据,从而可以更好的实现MBS的业务。
图4是本发明实施例第一种状态转换装置的结构示意图。本领域技术人员理解,本实施例所述状态转换装置4可以用于实施上述图1所述实施例中所述的方法技术方案。
具体地,参考图4,本实施例所述状态转换装置4可以包括:启动模块41,若接收到链接态MTCH传输的数据,启动或重启数据非激活定时器,其中,所述链接态MTCH是指终端需保持在RRC链接态进行接收的MTCH;转换模块42,若所述数据非激活定时器到期,将所述状态从RRC链接态转换至空闲态。
关于所述状态转换装置4的工作原理、工作方式的更多内容,可以参照上述图1中的相关描述,这里不再赘述。
在具体实施中,上述的状态转换装置可以对应于用户设备中具有状态转换功能的芯片,或者对应于具有数据处理功能的芯片,例如片上系统(System-On-a-Chip,简称SOC)、基带芯片等;或者对应于用户设备中包括具有状态转换功能芯片的芯片模组;或者对应于具有数据处理功能芯片的芯片模组,或者对应于用户设备。
图5是本发明实施例第二种状态转换装置的结构示意图。本领域技术人员理解,本实施例所述状态转换装置5可以用于实施上述图2所述实施例中所述的方法技术方案。
具体地,参考图5,本实施例所述状态转换装置5可以包括:转换模块51,若数据非激活定时器到期时,且没有对链接态MTCH传输的数据的接收需求,将所述状态从RRC链接态转换至空闲态;其中,所述链接态MTCH是指终端需保持在RRC链接态进行接收的MTCH。
关于所述状态转换装置5的工作原理、工作方式的更多内容,可以参照上述图2中的相关描述,这里不再赘述。
在具体实施中,上述的状态转换装置可以对应于用户设备中具有状态转换功能的芯片,或者对应于具有数据处理功能的芯片,例如片上系统(System-On-a-Chip,简称SOC)、基带芯片等;或者对应于用户设备中包括具有状态转换功能芯片的芯片模组;或者对应于具有数据处理功能芯片的芯片模组,或者对应于用户设备。
图6是本发明实施例一种链接态MTCH的指示装置的结构示意图。本领域技术人员理解,本实施例所述链接态MTCH的指示装置6可以用于实施上述图3所述实施例中所述的方法技术方案。
具体地,参考图6,本实施例所述链接态MTCH的指示装置6可以包括:发送模块61,对于链接态MTCH,发送所述链接态MTCH 的接收配置信息以指示终端需保持在RRC链接态接收所述链接态MTCH。
关于所述链接态MTCH的指示装置6的工作原理、工作方式的更多内容,可以参照上述图3中的相关描述,这里不再赘述。
在具体实施中,上述的链接态MTCH的指示装置可以对应于网络设备中具有状态指示功能的芯片,或者对应于具有数据处理功能的芯片,例如片上系统(System-On-a-Chip,简称SOC)、基带芯片等;或者对应于网络设备中包括具有状态指示功能芯片的芯片模组;或者对应于具有数据处理功能芯片的芯片模组,或者对应于网络设备。
在具体实施中,关于上述实施例中描述的各个装置、产品包含的各个模块/单元,其可以是软件模块/单元,也可以是硬件模块/单元,或者也可以部分是软件模块/单元,部分是硬件模块/单元。
例如,对于应用于或集成于芯片的各个装置、产品,其包含的各个模块/单元可以都采用电路等硬件的方式实现,或者,至少部分模块/单元可以采用软件程序的方式实现,该软件程序运行于芯片内部集成的处理器,剩余的(如果有)部分模块/单元可以采用电路等硬件方式实现;对于应用于或集成于芯片模组的各个装置、产品,其包含的各个模块/单元可以都采用电路等硬件的方式实现,不同的模块/单元可以位于芯片模组的同一组件(例如芯片、电路模块等)或者不同组件中,或者,至少部分模块/单元可以采用软件程序的方式实现,该软件程序运行于芯片模组内部集成的处理器,剩余的(如果有)部分模块/单元可以采用电路等硬件方式实现;对于应用于或集成于终端的各个装置、产品,其包含的各个模块/单元可以都采用电路等硬件的方式实现,不同的模块/单元可以位于终端内同一组件(例如,芯片、电路模块等)或者不同组件中,或者,至少部分模块/单元可以采用软件程序的方式实现,该软件程序运行于终端内部集成的处理器,剩余的(如果有)部分模块/单元可以采用电路等硬件方式实现。
进一步地,本发明实施例还公开一种存储介质,其上存储有计算 机程序,所述计算机程序被处理器运行时执行上述图1至图3所示实施例中所述的方法技术方案。优选地,所述存储介质可以包括诸如非挥发性(non-volatile)存储器或者非瞬态(non-transitory)存储器等计算机可读存储介质。所述存储介质可以包括ROM、RAM、磁盘或光盘等。
进一步地,本发明实施例还公开一种终端,包括存储器和处理器,所述存储器上存储有能够在所述处理器上运行的计算机程序,所述处理器运行所述计算机程序时执行上述图1和图2所示实施例中所述的方法技术方案。具体地,所述终端可以为UE。
进一步地,本发明实施例还公开一种基站,包括存储器和处理器,所述存储器上存储有能够在所述处理器上运行的计算机程序,所述处理器运行所述计算机程序时执行上述图3所示实施例中所述的方法技术方案。具体地,所述基站可以为NR基站。
本方明技术方案可适用于5G(5Generation)通信系统,还可适用于4G、3G通信系统,还可适用于未来新的各种通信系统,例如6G、7G等。
本方明技术方案也适用于不同的网络架构,包括但不限于中继网络架构、双链接架构、Vehicle-to-Everything(车辆到任何物体的通信)架构等架构。
本申请实施例中所述核心网可以是演进型分组核心网(evolved packet core,简称EPC)、5G Core Network(5G核心网),还可以是未来通信系统中的新型核心网。5G Core Network由一组设备组成,并实现移动性管理等功能的接入和移动性管理功能(Access and Mobility Management Function,AMF)、提供数据包路由转发和QoS(Quality of Service)管理等功能的用户面功能(User Plane Function,UPF)、提供会话管理、IP地址分配和管理等功能的会话管理功能(Session Management Function,SMF)等。EPC可由提供移动性管理、网关选择等功能的MME、提供数据包转发等功能的Serving  Gateway(S-GW)、提供终端地址分配、速率控制等功能的PDN Gateway(P-GW)组成。
对于MBS业务,核心网中可包含若干新的网元,来实现数据包的转发、MBS session管理、QoS管理、传输模式切换(单播和组播/广播传输模式之间的切换)等功能。另一种方式是所述功能可以由现有核心网中的网元来实现。
本申请实施例中的基站(base station,简称BS),也可称为基站设备,是一种部署在无线接入网(RAN)用以提供无线通信功能的装置。例如在2G网络中提供基站功能的设备包括基地无线收发站(英文:base transceiver station,简称BTS),3G网络中提供基站功能的设备包括节点B(NodeB),在4G网络中提供基站功能的设备包括演进的节点B(evolved NodeB,eNB),在无线局域网络(wireless local area networks,简称WLAN)中,提供基站功能的设备为接入点(access point,简称AP),5G新无线(New Radio,简称NR)中的提供基站功能的设备gNB,以及继续演进的节点B(ng-eNB),其中gNB和终端之间采用NR技术进行通信,ng-eNB和终端之间采用E-UTRA(Evolved Universal Terrestrial Radio Access)技术进行通信,gNB和ng-eNB均可连接到5G核心网。本申请实施例中的基站还包含在未来新的通信系统中提供基站功能的设备等。
本申请实施例中的基站控制器,是一种管理基站的装置,例如2G网络中的基站控制器(base station controller,简称BSC)、3G网络中的无线网络控制器(radio network controller,简称RNC)、还可指未来新的通信系统中控制管理基站的装置。
本发明实施例中的网络侧(network)是指为终端提供通信服务的通信网络,包含无线接入网的基站,还可以包含无线接入网的基站控制器,还可以包含核心网侧的设备。
本申请实施例中的终端可以指各种形式的用户设备(user equipment,简称UE)、接入终端、用户单元、用户站、移动站、移 动台(mobile station,建成MS)、远方站、远程终端、移动设备、用户终端、终端设备(terminal equipment)、无线通信设备、用户代理或用户装置。终端设备还可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,简称SIP)电话、无线本地环路(Wireless Local Loop,简称WLL)站、个人数字处理(Personal Digital Assistant,简称PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,未来5G网络中的终端设备或者未来演进的公用陆地移动通信网络(Public Land Mobile Network,简称PLMN)中的终端设备等,本申请实施例对此并不限定。
本申请实施例定义接入网到终端的单向通信链路为下行链路,在下行链路上传输的数据为下行数据,下行数据的传输方向称为下行方向;而终端到接入网的单向通信链路为上行链路,在上行链路上传输的数据为上行数据,上行数据的传输方向称为上行方向。
应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/“,表示前后关联对象是一种“或”的关系。
本申请实施例中出现的“多个”是指两个或两个以上。
本申请实施例中出现的第一、第二等描述,仅作示意与区分描述对象之用,没有次序之分,也不表示本申请实施例中对设备个数的特别限定,不能构成对本申请实施例的任何限制。
本申请实施例中出现的“连接”是指直接连接或者间接连接等各种连接方式,以实现设备间的通信,本申请实施例对此不做任何限定。
应理解,本申请实施例中,所述处理器可以为中央处理单元(central processing unit,简称CPU),该处理器还可以是其他通用处理器、数字信号处理器(digital signal processor,简称DSP)、专用集 成电路(application specific integrated circuit,简称ASIC)、现成可编程门阵列(field programmable gate array,简称FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,简称ROM)、可编程只读存储器(programmable ROM,简称PROM)、可擦除可编程只读存储器(erasable PROM,简称EPROM)、电可擦除可编程只读存储器(electrically EPROM,简称EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,简称RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的随机存取存储器(random access memory,简称RAM)可用,例如静态随机存取存储器(static RAM,简称SRAM)、动态随机存取存储器(DRAM)、同步动态随机存取存储器(synchronous DRAM,简称SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,简称DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,简称ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,简称SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,简称DR RAM)。
上述实施例,可以全部或部分地通过软件、硬件、固件或其他任意组合来实现。当使用软件实现时,上述实施例可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令或计算机程序。在计算机上加载或执行所述计算机指令或计算机程序时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以为通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或 数据中心通过有线或无线方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集合的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质。半导体介质可以是固态硬盘。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
在本申请所提供的几个实施例中,应该理解到,所揭露的方法、装置和系统,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的;例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式;例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理包括,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。
上述以软件功能单元的形式实现的集成的单元,可以存储在一个计算机可读取存储介质中。上述软件功能单元存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服 务器,或者网络设备等)执行本发明各个实施例所述方法的部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,简称ROM)、随机存取存储器(Random Access Memory,简称RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
虽然本发明披露如上,但本发明并非限定于此。任何本领域技术人员,在不脱离本发明的精神和范围内,均可作各种更动与修改,因此本发明的保护范围应当以权利要求所限定的范围为准。

Claims (21)

  1. 一种状态转换方法,其特征在于,包括:
    若接收到链接态MTCH传输的数据,启动或重启数据非激活定时器,其中,所述链接态MTCH是指终端需保持在RRC链接态进行接收的MTCH;
    若所述数据非激活定时器到期,将所述状态从RRC链接态转换至空闲态。
  2. 根据权利要求1所述的状态转换方法,其特征在于,所述接收到链接态MTCH传输的数据包括:
    所述链接态MTCH对应的MAC实体接收到所述链接态MTCH传输的MAC SDU。
  3. 根据权利要求1所述的状态转换方法,其特征在于,所述将所述状态从RRC链接态转换至空闲态包括:
    释放RRC链接。
  4. 一种状态转换方法,其特征在于,包括:
    若数据非激活定时器到期,且没有对链接态MTCH传输的数据的接收需求,将所述状态从RRC链接态转换至空闲态;
    其中,所述链接态MTCH是指终端需保持在RRC链接态进行接收的MTCH。
  5. 根据权利要求4所述的状态转换方法,其特征在于,所述对链接态MTCH传输的数据的接收需求包括:当前正在接收所述链接态MTCH传输的数据,以及预备接收链接态MTCH传输的数据。
  6. 根据权利要求5所述的状态转换方法,其特征在于,所述链接态MTCH传输的数据是周期性传输的,所述预备接收链接态MTCH传输的数据是指,准备在接下来最近的传输周期内接收所述链接 态MTCH传输的数据。
  7. 根据权利要求1至6中任一项所述的状态转换方法,其特征在于,所述MTCH用于承载MBS业务。
  8. 根据权利要求1至6中任一项所述的状态转换方法,其特征在于,所述链接态MTCH至少包括:配置有支持HARQ的指示或者配置有HARQ配置信息的MTCH。
  9. 根据权利要求1至6中任一项所述的状态转换方法,其特征在于,还包括:
    接收指示信息,其中,所述指示信息用于指示配置的MTCH是否为链接态MTCH;和/或
    根据MTCH的接收配置信息确定所述MTCH是否为链接态MTCH。
  10. 一种链接态MTCH的指示方法,其特征在于,包括:
    对于链接态MTCH,发送所述链接态MTCH的接收配置信息以指示终端需保持在RRC链接态接收所述链接态MTCH。
  11. 根据权利要求10所述的指示方法,其特征在于,所述发送所述链接态MTCH的接收配置信息以指示终端需保持在RRC链接态接收所述链接态MTCH包括:
    通过所述接收配置信息中配置的支持HARQ的指示来指示终端需保持在RRC链接态接收所述链接态MTCH。
  12. 根据权利要求10所述的指示方法,其特征在于,所述发送所述链接态MTCH的接收配置信息以指示终端需保持在RRC链接态接收所述链接态MTCH包括:
    通过所述接收配置信息中配置的MTCH的HARQ配置信息指示终端需保持在RRC链接态接收所述链接态MTCH。
  13. 根据权利要求10所述的指示方法,其特征在于,所述发送所述链接态MTCH的接收配置信息以指示终端需保持在RRC链接态接收所述链接态MTCH包括:
    通过所述接收配置信息中包含的接收RRC状态信息,且所述接收RRC状态信息仅包括RRC链接态来指示终端需保持在RRC链接态接收所述链接态MTCH,其中,所述接收RRC状态信息用于指示接收MTCH传输的数据所需的RRC状态。
  14. 根据权利要求13所述的指示方法,其特征在于,所述接收RRC状态信息仅包括RRC链接态包括:
    通过位图指示所述链接态MTCH的接收RRC状态信息仅包含RRC链接态。
  15. 根据权利要求10所述的指示方法,其特征在于,所述发送所述链接态MTCH的接收配置信息包括:
    通过系统信息或MCCH发送所述接收配置信息。
  16. 一种状态转换装置,其特征在于,包括:
    启动模块,若接收到链接态MTCH传输的数,启动或重启数据非激活定时器,其中,所述链接态MTCH是指终端需保持在RRC链接态进行接收的MTCH;
    转换模块,若所述数据非激活定时器到期,将所述状态从RRC链接态转换至空闲态。
  17. 一种状态转换装置,其特征在于,包括:
    转换模块,若数据非激活定时器到期,且没有对链接态MTCH传输的数据的接收需求,将所述状态从RRC链接态转换至空闲态;
    其中,所述链接态MTCH是指终端需保持在RRC链接态进行接收的MTCH。
  18. 一种链接态MTCH的指示装置,其特征在于,包括:
    发送模块,对于链接态MTCH,发送所述链接态MTCH的接收配置信息以指示终端需保持在RRC链接态接收所述链接态MTCH。
  19. 一种存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器运行时执行权利要求1至15任一项所述方法的步骤。
  20. 一种终端,包括存储器和处理器,所述存储器上存储有能够在所述处理器上运行的计算机程序,其特征在于,所述处理器运行所述计算机程序时执行权利要求1至9任一项所述方法的步骤。
  21. 一种基站,包括存储器和处理器,所述存储器上存储有能够在所述处理器上运行的计算机程序,其特征在于,所述处理器运行所述计算机程序时执行权利要求10至15任一项所述方法的步骤。
PCT/CN2021/095697 2020-06-30 2021-05-25 状态转换方法及链接态mtch的指示方法、装置、存储介质、终端、基站 WO2022001495A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2022580768A JP2023532697A (ja) 2020-06-30 2021-05-25 状態切替方法、接続状態mtchの指示方法および装置、ならびに記憶媒体、端末および基地局
US18/011,983 US20230254933A1 (en) 2020-06-30 2021-05-25 State switching method and apparatus, method and apparatus for indicating connected-state mtch, storage medium, terminal and base station
KR1020237002117A KR20230026462A (ko) 2020-06-30 2021-05-25 상태 전환 방법, 연결-상태 mtch의 표시 방법 및 장치, 그리고 저장 매체, 단말 및 기지국
EP21833356.5A EP4175404A4 (en) 2020-06-30 2021-05-25 STATE SWITCHING METHOD, INDICATION METHOD AND APPARATUS FOR MTCH IN CONNECTED STATE, RECORDING MEDIUM AND BASE STATION

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010614412.X 2020-06-30
CN202010614412.XA CN113873687A (zh) 2020-06-30 2020-06-30 状态转换方法及链接态mtch的指示方法、装置、存储介质、终端、基站

Publications (1)

Publication Number Publication Date
WO2022001495A1 true WO2022001495A1 (zh) 2022-01-06

Family

ID=78981429

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/095697 WO2022001495A1 (zh) 2020-06-30 2021-05-25 状态转换方法及链接态mtch的指示方法、装置、存储介质、终端、基站

Country Status (6)

Country Link
US (1) US20230254933A1 (zh)
EP (1) EP4175404A4 (zh)
JP (1) JP2023532697A (zh)
KR (1) KR20230026462A (zh)
CN (1) CN113873687A (zh)
WO (1) WO2022001495A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4030865A1 (en) * 2021-01-15 2022-07-20 ASUSTek Computer Inc. Method and apparatus for controlling ue state transition in a wireless communication system

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023055194A1 (ko) * 2021-10-01 2023-04-06 엘지전자 주식회사 무선 통신 시스템에서 대역폭 부분 활성화 또는 비활성화 방법 및 장치
JP7502574B2 (ja) 2021-10-13 2024-06-18 京セラ株式会社 通信方法、ユーザ装置、プロセッサ、プログラム、及び移動通信システム
WO2023245346A1 (en) * 2022-06-20 2023-12-28 Mediatek Singapore Pte. Ltd. Methods and apparatus to set mrb configuration for ue to receive mbs multicast in rrc inactive state

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102724770A (zh) * 2012-05-09 2012-10-10 中国联合网络通信集团有限公司 用户设备状态转换方法、设备及系统
CN107277939A (zh) * 2016-04-07 2017-10-20 北京信威通信技术股份有限公司 一种控制ue状态转换的方法
US20180279247A1 (en) * 2015-03-09 2018-09-27 Ofinno Technologies, Llc Control of Downlink Multicast Channel and Data Channel transmissions in a Wireless Network
CN110622616A (zh) * 2019-08-14 2019-12-27 北京小米移动软件有限公司 非活动定时器的控制方法和装置
US20200059991A1 (en) * 2018-08-15 2020-02-20 Google Llc Preventing Inadvertent Idle Mode in Multi-Node Connectivity Environments

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102724770A (zh) * 2012-05-09 2012-10-10 中国联合网络通信集团有限公司 用户设备状态转换方法、设备及系统
US20180279247A1 (en) * 2015-03-09 2018-09-27 Ofinno Technologies, Llc Control of Downlink Multicast Channel and Data Channel transmissions in a Wireless Network
CN107277939A (zh) * 2016-04-07 2017-10-20 北京信威通信技术股份有限公司 一种控制ue状态转换的方法
US20200059991A1 (en) * 2018-08-15 2020-02-20 Google Llc Preventing Inadvertent Idle Mode in Multi-Node Connectivity Environments
CN110622616A (zh) * 2019-08-14 2019-12-27 北京小米移动软件有限公司 非活动定时器的控制方法和装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP4175404A4
XIAOMI: "Issue on ping pong state transition for sidelink UE", 3GPP DRAFT; R2-1916254, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Reno, USA; 20191118 - 20191122, 8 November 2019 (2019-11-08), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051817793 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4030865A1 (en) * 2021-01-15 2022-07-20 ASUSTek Computer Inc. Method and apparatus for controlling ue state transition in a wireless communication system
US11470676B2 (en) 2021-01-15 2022-10-11 Asustek Computer Inc. Method and apparatus for controlling UE state transition in a wireless communication system
EP4124161A3 (en) * 2021-01-15 2023-06-07 ASUSTek Computer Inc. Method and apparatus for controlling ue state transition in a wireless communication system

Also Published As

Publication number Publication date
US20230254933A1 (en) 2023-08-10
EP4175404A1 (en) 2023-05-03
JP2023532697A (ja) 2023-07-31
CN113873687A (zh) 2021-12-31
KR20230026462A (ko) 2023-02-24
EP4175404A4 (en) 2024-03-13

Similar Documents

Publication Publication Date Title
US11064457B2 (en) Paging policy differentiation in 5G system
US20230180274A1 (en) Data scheduling method, base station, and system
WO2022001495A1 (zh) 状态转换方法及链接态mtch的指示方法、装置、存储介质、终端、基站
JP7348309B2 (ja) 無線通信方法及び機器
US11395256B2 (en) Communication method, device, and system
KR101901953B1 (ko) 보고 수신 방법 및 네트워크 장치, 그리고 보고 수행 방법 및 기지국
WO2022067643A1 (zh) 一种小区选择方法、寻呼方法及装置
EP3664570B1 (en) Session establishment methods and apparatus
WO2015058379A1 (zh) 传输信息的方法、装置和系统
WO2022053003A1 (zh) 一种rrc连接释放的方法及装置
WO2022206007A1 (zh) 中继通信方法及装置、存储介质、中继设备
WO2012058797A1 (zh) 数据的传输方法及装置、移动终端
WO2022073491A1 (zh) 切换方法、装置、终端设备、网络设备及存储介质
US20240206010A1 (en) Service data transmission method and communication apparatus
WO2022141255A1 (zh) 一种mbs业务的配置方法及装置、网络设备、终端设备
JPWO2020238018A5 (zh)
WO2022127492A1 (zh) 寻呼方法及装置、存储介质、终端、基站
WO2022037441A1 (zh) Mbms业务的传输模式指示方法、装置及存储介质
WO2022237602A1 (zh) QoE测量报告的上报方法、设备、装置及存储介质
JP7493622B2 (ja) データ転送のサポート
KR20160145985A (ko) 무선 통신 시스템에서 e-utran 서비스 복구 방법 및 장치
WO2023133843A1 (zh) 一种确定配置信息的方法及装置、终端设备
WO2023202459A1 (zh) 传输处理方法、装置、终端、及网络侧设备
WO2024027403A1 (zh) 通信方法和通信装置
WO2023213299A1 (zh) 数据传输处理方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21833356

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022580768

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20237002117

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021833356

Country of ref document: EP

Effective date: 20230130