WO2022001459A1 - 一种背光模组以及显示装置 - Google Patents

一种背光模组以及显示装置 Download PDF

Info

Publication number
WO2022001459A1
WO2022001459A1 PCT/CN2021/094810 CN2021094810W WO2022001459A1 WO 2022001459 A1 WO2022001459 A1 WO 2022001459A1 CN 2021094810 W CN2021094810 W CN 2021094810W WO 2022001459 A1 WO2022001459 A1 WO 2022001459A1
Authority
WO
WIPO (PCT)
Prior art keywords
microstructure
backlight
light
film layer
layer
Prior art date
Application number
PCT/CN2021/094810
Other languages
English (en)
French (fr)
Inventor
姚建峰
王秋里
陈雷
汪志强
马鑫
孙川
王新宇
谭丁炀
Original Assignee
京东方科技集团股份有限公司
北京京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US17/765,071 priority Critical patent/US11796155B2/en
Publication of WO2022001459A1 publication Critical patent/WO2022001459A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133614Illuminating devices using photoluminescence, e.g. phosphors illuminated by UV or blue light
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • F21V9/30Elements containing photoluminescent material distinct from or spaced from the light source
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133606Direct backlight including a specially adapted diffusing, scattering or light controlling members
    • G02F1/133607Direct backlight including a specially adapted diffusing, scattering or light controlling members the light controlling member including light directing or refracting elements, e.g. prisms or lenses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2113/00Combination of light sources
    • F21Y2113/10Combination of light sources of different colours

Definitions

  • the present invention relates to the field of display technology, in particular to a backlight module and a display device.
  • the regional dimming technology can divide the backlight module into multiple regions, and adjust the brightness of different regions of the backlight module for display according to different display contents. Compared with the traditional edge-lit backlight design, it has better color contrast and can achieve the purpose of energy saving.
  • a blue light-emitting diode (LED) is often used as a direct-lit backlight source.
  • LED blue light-emitting diode
  • red and green light is generated, and the red and green light is combined with the blue light passing through the quantum dot film to form white light.
  • the longer the optical path of the light in the quantum dot film the more red and green light is excited. It can be understood that if the brightness and color of each position of the outgoing backlight are tested, the brightness/color of a backlight test point is formed by the superposition of the LED near the test point and the surrounding LEDs.
  • the edge part of the backlight due to the lack of chromaticity superposition produced by the adjacent LED excited quantum dot film, the overall effect will be bluish, so the edge of the backlight appears blue, causing uneven chromaticity on the screen, affecting the display effect.
  • Embodiments of the present invention provide a backlight module and a display device, which are used to solve the problem of uneven chromaticity of the bluish edge of the picture in the existing backlight display device.
  • a backlight module comprising:
  • Light source substrate microstructure film layer and backlight film material layer
  • the backlight film layer is located on the light-emitting side of the light source substrate, and includes red quantum dots and green quantum dots;
  • the microstructure film layer is arranged between the light source substrate and the backlight film material layer, and includes a light-transmitting layer and a microstructure area; the microstructure area is arranged at the edge of the microstructure film layer; the microstructure film The layer is used to change the exit angle of all or part of the backlight passing through the microstructure area at the edge position, so that the whole or part of the backlight passing through the microstructure area is biased to the direction perpendicular to the edge of the microstructure area and away from the microstructure film Refraction in the center direction of the layer.
  • the light source substrate is a direct type light source substrate.
  • the light source substrate includes a circuit substrate and a blue light chip arranged at intervals on the circuit substrate; the orthographic projections of the blue light chip on the plane where the circuit substrate is located are all located where the microstructure film layer is located on the circuit substrate. The interior of the orthographic projection of the plane.
  • the cross section of the microstructure region in the direction perpendicular to the edge of the microstructure film layer is at least one right triangle;
  • the second right-angled sides of the right-angled triangle are all disposed at positions away from the center of the microstructured film layer along a direction perpendicular to the edge of the microstructured region.
  • the number of the right triangles is not less than 2, and the right triangles are arranged in contact with each other.
  • the number of the right-angled triangles is not less than 2, and the right-angled triangles are arranged at equal distances. Increase.
  • the cross section of the microstructure region in a direction perpendicular to the edge of the microstructure film layer is at least one right-angled trapezoid; wherein, the long sides of the right-angled trapezoid are all located on the light-transmitting layer, and the right-angled trapezoid is The right-angled sides of the trapezoid are all disposed at positions away from the center of the microstructure film layer along a direction perpendicular to the edge of the microstructure region.
  • the number of the right-angled trapezoids is not less than 2, and the right-angled trapezoids are arranged in contact with each other; wherein, the short sides of the right-angled trapezoids have the same length.
  • the number of the right-angled trapezoids is not less than 2, and the right-angled trapezoids are arranged in contact with each other; wherein, the length of the short side of the right-angled trapezoids gradually increases along the direction from the edge to the center of the microstructure film layer.
  • the backlight film material layer includes an inverse red-green film layer and a quantum dot layer arranged in sequence along the light exit direction; wherein, the quantum dot layer includes red quantum dots and green quantum dots; the inverse red and green film layer. Layers are used to reflect red and green light.
  • the inverse red-green film layer is multiplexed into the light-transmitting layer.
  • the material of the microstructure region is ultraviolet photosensitive resin, and/or the material of the light-transmitting region is polyethylene terephthalate.
  • the present invention also discloses a display device, which includes the above-mentioned backlight module.
  • the present invention includes the following advantages:
  • the backlight module includes a light source substrate, a microstructure film layer and a backlight film material layer; the backlight film material layer is located on the light-emitting side of the light source substrate, and the microstructure film layer is disposed between the light source substrate and the backlight film material layer ;
  • the microstructure film layer includes a light-transmitting layer and a microstructure area; the microstructure area is arranged at the edge of the microstructure film layer.
  • the combination of the microstructure area and the light-transmitting layer can change the exit angle of all or part of the backlight passing through the microstructure area at the edge position, so that the whole or part of the backlight passing through the microstructure area is deflected and perpendicular to the microstructure area.
  • the direction of the edge where the structure area is located is refracted away from the center of the microstructure film layer, so that the backlight changing the exit angle increases the distance when it passes through the backlight film layer, and excites more red light and green light.
  • FIG. 1 is a schematic diagram of the light of an existing display device when the full screen is lit
  • FIG. 2 is a schematic cross-sectional view of the structure of a backlight module provided by an embodiment of the present invention
  • 3a is a schematic top view of a microstructure film layer provided in an embodiment of the present invention.
  • Fig. 3b is a schematic cross-sectional view of the structure shown in Fig. 3a along the A ⁇ A' direction provided by an embodiment of the present invention
  • FIG. 4a is a schematic cross-sectional view of a microstructure film layer provided by an embodiment of the present invention.
  • FIG. 4b is a schematic cross-sectional view of a microstructure film layer provided by an embodiment of the present invention.
  • 4c is a schematic cross-sectional view of a microstructure film layer provided by an embodiment of the present invention.
  • 5a is a schematic cross-sectional view of a microstructure film layer provided by an embodiment of the present invention.
  • 5b is a schematic cross-sectional view of a microstructure film layer provided by an embodiment of the present invention.
  • Figure 6 is a schematic cross-sectional view of the structure shown in Figure 3a along the C ⁇ C' direction;
  • FIG. 7 is a schematic partial cross-sectional view of the microstructure film layer shown in FIG. 5a;
  • FIG. 8a is a schematic cross-sectional view of a microstructured film layer provided by an embodiment of the present invention.
  • FIG. 8b is a schematic cross-sectional view of a microstructure film layer provided by an embodiment of the present invention.
  • 9a is a schematic cross-sectional view of a backlight module provided by an embodiment of the present invention.
  • 9b is a schematic cross-sectional view of a backlight module provided by an embodiment of the present invention.
  • Figure 10 is a schematic cross-sectional view of the structure shown in Figure 3a along the A ⁇ A' direction according to an embodiment of the present invention
  • Fig. 11a is a schematic cross-sectional view of the structure shown in Fig. 3a along the A ⁇ A' direction according to an embodiment of the present invention
  • 11b is a schematic cross-sectional view of a microstructure film layer provided by an embodiment of the present invention.
  • FIG. 12 is a schematic diagram of a method for preparing a microstructure film layer provided in an embodiment of the present invention.
  • FIG. 1 shows a schematic diagram of light when a backlight module of a conventional display device is lit on a full screen.
  • the light in it is the blue light emitted by the opposite blue light chip 101 and the quantum dots in the excitation backlight film layer 20 emit red light.
  • Green light, and a small amount of blue light emitted by the adjacent blue light chips 101 and the red and green light in the excitation backlight film layer 20 are mixed together, see the elliptical dotted line area in FIG. Complemented by green light, most of the display area in the middle will appear white.
  • the light in it is the red and green light excited by the blue light emitted by the most edge blue light chip 101, and a small amount of blue light emitted by the adjacent inner LED blue light chip 101 and its excited red and green light are mixed.
  • the ratio of red and green light is lower. Therefore, when the existing display device displays an all-white screen, the edge of the existing display device will appear bluish, that is, the problem of uneven chromaticity of the screen occurs.
  • the backlight module and the display device in the embodiments of the present invention are proposed to solve the problem of uneven chromaticity of bluish edges of the picture when the full picture is displayed.
  • the present inventor provides a backlight film set, comprising: a light source substrate, a microstructure film layer and a backlight film material layer;
  • the backlight film layer is located on the light-emitting side of the light source substrate, and includes red quantum dots and green quantum dots; the microstructure film layer is disposed between the light source substrate and the backlight film layer, including a light-transmitting layer and a microstructure film layer. Structure area; the microstructure area is arranged at the edge position of the microstructure film layer; the microstructure film layer is used to change the outgoing angle of all or part of the backlight passing through the microstructure area at the edge position, so that the whole or part of the backlight passes through the microstructure area.
  • the backlight of the microstructure area is deflected and refracted away from the center direction of the microstructure film layer in a direction perpendicular to the edge where the microstructure area is located.
  • the light source substrate is a direct type light source substrate.
  • FIG. 2 shows a schematic structural diagram of a backlight module provided by an embodiment of the present invention.
  • the backlight module 1 includes a light source substrate 10 , a backlight film material layer 20 , and a microstructure film layer 30 .
  • the backlight film material layer 20 is located on the light-emitting side of the microstructure film layer 30 ; the backlight film material layer 20 includes red quantum dots and green quantum dots.
  • the microstructure film layer 30 is located on the light-emitting side of the light source substrate 10 , and is disposed between the light source substrate 10 and the backlight film material layer 20 . It can be understood that the geometry and size of the microstructure film layer 30 are determined by the geometry and size of the display area of the display device.
  • the direct type light source substrate 10 includes a circuit substrate 102 and each blue light chip 101 arranged at intervals on the circuit substrate 102 .
  • the orthographic projections of all the blue light chips 101 on the plane where the circuit substrate 102 is located are located inside the orthographic projection of the microstructure film layer 30 on the plane where the circuit substrate 102 is located.
  • the microstructure film layer 30 includes a light-transmitting layer 301 and a microstructure region 302 .
  • the microstructure region 302 may be located on a side of the light-transmitting layer 301 close to the direct-lit light source substrate 10 , and is in contact with the light-transmitting layer 301 .
  • the microstructure region 302 is located near the edge of the microstructure film layer 30 , and is continuously distributed in all edge regions of the microstructure film layer 30 .
  • the blue light chip 101 is a blue light emitting diode.
  • the microstructure areas 302 are continuously distributed in the four edge regions of the microstructure film layer 30; for example, when the display area of the display device is circular, the microstructure areas 302 are located in the microstructure The positions near the edge of the film layer 30 are continuously distributed in a ring shape.
  • the width of the microstructure area 302 is b.
  • the edge of the microstructure region 302 coincides with the edge of the microstructure film layer 30 ; in other embodiments, considering the ease of implementation of the process, the edge of the microstructure region 302 and the edge of the microstructure film layer 30 Has a width a along the x-direction, a ⁇ 0.1 mm.
  • FIG. 3a a schematic cross-sectional view along the B ⁇ B', D ⁇ D', F ⁇ F' directions, and a cross-sectional view along the A ⁇ A' direction
  • the schematic diagram is the same, but the width a may be different depending on the processing technology. Therefore, the embodiments enumerated below all take the cross section in the A ⁇ A' direction as an example.
  • the width of the microstructure region 302 is designed to be b so that b satisfies: a+b is approximately equal to m, where “approximately equal to” can be defined as: 0.5m ⁇ (a+ b) ⁇ 1.5m.
  • 0.8m ⁇ (a+b) ⁇ 1.2m; more preferably, a+b m.
  • the relationship between a+b and m can be set to improve the bluishness of the edge of the backlight to an acceptable range.
  • FIG. 4a shows the specific structure of the microstructure region 302 in the cross section in the direction of A ⁇ A' in FIG. 3a.
  • the section along the A ⁇ A' direction can be any position on the edge where A ⁇ A' in FIG. 3a is located, but does not include the corner positions (the corner positions are the intersections of the microstructure regions 302 in different directions).
  • the first microstructures 3022 present a right-angled triangle in the section in the A ⁇ A' direction, are continuously distributed along the x direction, and the number is k.
  • the included angle between the hypotenuse of the right-angled triangle and the right-angled side of the right-angled triangle along the x-direction is an acute angle ⁇ , wherein the right-angled sides of the right-angled triangle are all located on the light-transmitting layer 301, and for each For a right-angled triangle, its right-angled sides along the z-direction are all disposed at positions away from the center of the microstructured film layer 30 along a direction perpendicular to the edge of the microstructured region 302 . It can be understood that the first microstructures 3022 are continuously distributed in stripes along the y-direction.
  • the first microstructure 3022 and the transparent layer 301 are both transparent materials, the transparent layer 301 has a refractive index n 1 , the first microstructure 3022 has a refractive index n 2 , and both n 1 and n 2 are greater than 1.
  • the refractive index of the medium contacted by the inclined surface of the first microstructure 3022 (that is, the surface of the first microstructure 3022 where the hypotenuse in the cross section is located) is smaller than n 2 , for example, the medium may be air .
  • the microstructure film layer 30 when the backlight is vertically incident along the z direction, passes through the microstructure region 302 and the light-transmitting layer 301 in sequence, and finally exits the microstructure film layer 30, the microstructure film layer 30 will refract the incident backlight at a larger angle , so that all the backlights passing through the microstructure area are refracted in a direction perpendicular to the edge of the microstructure area 302 and away from the center of the microstructure film layer 30 .
  • the deflection of the outgoing light can increase the optical path when it enters the backlight film material layer 20 , thereby exciting more red light and green light. When more red, green and blue light are mixed, the bluish edge of the backlight can be improved.
  • the cross-section of the first microstructures 3022 is triangular, and is distributed along the x-direction in the microstructure region 302 at intervals, and the interval distances are all e.
  • the included angle between the hypotenuse of the right-angled triangle and the right-angled side of the right-angled triangle along the x-direction is an acute angle ⁇ , wherein the right-angled sides of the right-angled triangle are all located on the light-transmitting layer 301, and for each For a right-angled triangle, its right-angled sides along the z-direction are all disposed at positions away from the center of the microstructured film layer 30 along a direction perpendicular to the edge of the microstructured region 302 .
  • the first microstructure 3022 and the light-transmitting layer 301 are both transparent materials, the light-transmitting layer 301 has a refractive index n 1 , the first microstructure 3022 has a refractive index n 2 , and both n 1 and n 2 are greater than 1.
  • the refractive index of the medium contacted by the inclined surface of the first microstructure 3022 is smaller than n 2 , for example, the medium may be air .
  • the backlight enters the light-transmitting layer 301 vertically along the z-direction, and does not deflect when exiting from the side of the light-transmitting layer 301 close to the backlight film layer 20 .
  • the optical path increases and the optical path does not increase.
  • the backlight entering the first microstructure 3022 is deflected when entering the backlight film layer 20 , and the optical path increases, thereby emitting more red light and green light.
  • the ratio of the deflected and non-deflected backlights entering the backlight film layer 20 can be controlled, thereby controlling the ratio of excited red light and green light, and more accurately regulating the edge chromaticity of the backlight. It can be understood that the specific size of the separation distance e can be set as required, as long as the edge chromaticity of the backlight can be controlled within an acceptable range.
  • the cross-section of the first microstructures 3022 is triangular and distributed along the x-direction in the microstructure region 302 at intervals, and the interval distances are not identical.
  • the interval between k (k is not less than 2) identical first microstructures 3022 arranged along the positive direction of the x-axis in the microstructure region 302 can be represented as e 1 , e 2 , . . . e k -1 , where e 1 ⁇ e 2 ⁇ ... ⁇ e k-1 .
  • e 1 , e 2 , . . . e k-1 are distributed in an arithmetic progression and the values increase gradually.
  • the included angle between the hypotenuse of the right-angled triangle and the right-angled side of the right-angled triangle along the x-direction is an acute angle ⁇ , wherein the right-angled sides of the right-angled triangle are all located on the light-transmitting layer 301, and for each For a right-angled triangle, its right-angled sides along the z-direction are all disposed at positions away from the center of the microstructured film layer 30 along a direction perpendicular to the edge of the microstructured region 302 .
  • the first microstructure 3022 and the transparent layer 301 are both transparent materials, the transparent layer 301 has a refractive index n 1 , the first microstructure 3022 has a refractive index n 2 , and both n 1 and n 2 are greater than 1.
  • the refractive index of the medium contacted by the inclined surface of the first microstructure 3022 is smaller than n 2 , for example, the medium may be air . It can be understood that when the position of the backlight gradually approaches the edge, the proportion of blue light gradually increases, and it is a gradual process. Therefore, using the solution shown in Fig.
  • the ratio of red light and green light can be gradually increased when the position of the backlight gradually approaches the edge, so as to improve the problem of shifting the chromaticity caused by the gradual increase of the proportion of blue light, so that the chromaticity position of the edge backlight can be gradually increased. within an acceptable range.
  • the solution shown in FIG. 4 c has more uniform chromaticity compensation, more effectively improves the bluishness of the backlight edge, and increases the display effect of the display device.
  • the cross-section of the first microstructures 3022 is a right-angled trapezoid, and is continuously distributed along the x-direction in the microstructure region 302 , and each first microstructure 3022 has the same cross-section.
  • each right-angled trapezoid its straight sides along the z-direction are set at a position away from the center of the microstructured film layer 30 along a direction perpendicular to the edge of the microstructured region 302 , and its long sides and the light-transmitting layer 301 are away from the backlight film
  • the planes of the material layer 20 are in contact with each other, and the oblique side and the long side have an acute angle ⁇ .
  • the first microstructure 3022 and the transparent layer 301 are both transparent materials, the transparent layer 301 has a refractive index n 1 , the first microstructure 3022 has a refractive index n 2 , and both n 1 and n 2 are greater than 1.
  • the refractive index of the medium contacted by the inclined surface of the first microstructure 3022 (that is, the surface of the first microstructure 3022 where the hypotenuse in the cross section is located) is smaller than n 2 , for example, the medium may be air .
  • the backlight incident along the z direction When the backlight incident along the z direction is incident from the short side of the right-angled trapezoid, it exits after passing through the first microstructure 3022 and the light-transmitting layer 301 , and the exit direction is not deflected.
  • the backlight incident along the z direction When the backlight incident along the z direction is incident from the hypotenuse of the right-angled trapezoid, it exits after passing through the first microstructure 3022 and the light-transmitting layer 301, and the exit direction is deflected. At this time, the backlight enters the light path of the backlight film layer 20. When it becomes longer, more red and green light can be excited.
  • the ratio of the deflected and non-deflected backlights entering the backlight film layer 20 can be controlled, thereby controlling the excitation of red light, The proportion of green light, more accurate control of backlight edge chromaticity.
  • the cross section of the first microstructure 3022 is a right-angled trapezoid, which is continuously distributed along the x-direction in the microstructure region 302 , and each right-angled trapezoid is not exactly the same.
  • the k number of consecutively distributed first microstructures 3022 arranged along the positive direction of the x-axis, the lengths of the short sides of the right-angled trapezoids shown in their cross-sections can be respectively expressed as f 1 , f 2 , ... ...f k-1 , where f 1 ⁇ f 2 ⁇ ... ⁇ f k-1 .
  • . f k-1 are distributed in an arithmetic progression and the numerical values gradually increase.
  • its straight sides along the z-direction are set at a position away from the center of the microstructured film layer 30 along a direction perpendicular to the edge of the microstructured region 302 , and its long sides and the light-transmitting layer 301 are away from the backlight film
  • the planes of the material layer 20 are in contact with each other, and the oblique side and the long side have an acute angle ⁇ .
  • the first microstructure 3022 and the transparent layer 301 are both transparent materials, the transparent layer 301 has a refractive index n 1 , the first microstructure 3022 has a refractive index n 2 , and both n 1 and n 2 are greater than 1.
  • the refractive index of the medium contacted by the inclined surface of the first microstructure 3022 is smaller than n 2 , for example, the medium may be air . It can be understood that when the position of the backlight gradually approaches the edge, the proportion of blue light gradually increases, and it is a gradual process. Therefore, using the solution shown in Fig.
  • the ratio of red light and green light can be gradually increased when the position of the backlight gradually approaches the edge, so as to improve the problem that the chromaticity is shifted due to the gradual increase of the proportion of blue light, and the chromaticity position of the edge backlight can be improved. within an acceptable range.
  • the solution shown in FIG. 5b has more uniform chromaticity compensation, more effectively improves the bluishness of the edge of the backlight, and increases the display effect of the display device.
  • the corner positions for example, as shown in the schematic cross-sectional view taken along the C ⁇ C' direction in FIG. 3a shown in FIG.
  • the cross-sectional shape and size of the microstructured regions 302 in the schematic cross-sectional view of the direction are the same.
  • the second microstructure region 302' is used to represent the microstructure region 302 whose edge position is different from the extension direction of the microstructure region 302.
  • Figure 6 illustrates that the microstructures 302 along the y-direction fill the corners at the C ⁇ C' section.
  • the second microstructure region 302' can also replace the microstructure region 302 to fill the corners at the C ⁇ C' section.
  • the present invention does not specifically limit the filling method of the four corners, as long as the filling of the microstructure regions 302 extending in any direction is achieved.
  • any one of the first microstructures 3022 in FIG. 5a and FIG. 5b as an example, referring to FIG. d means that the hypotenuse and the long side have an acute angle ⁇ .
  • the refractive index n 1 of the first microstructure 3022 is n 2
  • the refractive index of the transparent layer 301 is n 2
  • the adjacent medium on both sides of the microstructure film layer 30 along the light exit direction is air.
  • the thickness h of the light-transmitting layer 301 ranges from 0.03 mm to 0.5 mm.
  • the length of the right-angle side of the cross-sectional triangle along the x-direction is less than or equal to 70um, and the length of the right-angle side along the z-direction is less than or equal to 17um.
  • the length c of the cross-sectional right-angled trapezoidal microstructure is less than or equal to 70um, and the length of the right-angle side is less than or equal to 17um.
  • the material of the light-transmitting layer 301 is any one of transparent macromolecular polymers (such as polyethylene terephthalate (PET)), amorphous inorganic non-metallic materials, and silicon dioxide;
  • the material of 302 and/or the material of the microstructure support area 303 can be any one of transparent high molecular polymers (such as PET), amorphous inorganic non-metallic materials, and silicon dioxide, or can be formed of photosensitive resin through photocuring. product.
  • the material of the microstructure region 302 and/or the material of the microstructure support region 303 is an ultraviolet photosensitive resin.
  • the ultraviolet photosensitive resin is acrylic resin.
  • the light-transmitting layer 301 having a thickness h 1 in the edge region, the other region having a thickness h 2, wherein each side edge region is defined as the width a and the width b occupied. h 1 ⁇ h 2 and the difference therebetween is the thickness of the microstructured region 302 .
  • This solution can make the lower surface of the microstructure film layer 30 more flat, and when it is installed in the backlight module 1, the microstructure region 302 on the lower surface will not be deformed, which will affect the display effect.
  • FIG. 8a the light-transmitting layer 301 having a thickness h 1 in the edge region, the other region having a thickness h 2, wherein each side edge region is defined as the width a and the width b occupied. h 1 ⁇ h 2 and the difference therebetween is the thickness of the microstructured region 302 .
  • a microstructure support region 303 may also be provided in other regions, and its material is the same as that of the microstructure region, and the thickness is the same as that of the microstructure region 302 .
  • the solution shown in FIG. 7 is easier to implement in terms of process.
  • the backlight film layer 20 includes an inverse red and green film layer 204 , a quantum dot layer 203 , a diffusion film layer 202 , and a prism film layer 201 arranged in sequence along the light exit direction.
  • the quantum dot layer 203 contains red quantum dots and green quantum dots, which can be excited by the blue light in the backlight and emit red fluorescence and green fluorescence respectively.
  • the anti-red-green film layer is used to reflect the red and green light emitted by the quantum dots, so that the red and green light is emitted toward the light-emitting direction of the backlight module 1, and has no effect on the transmission of blue light.
  • the diffuser film layer 202 is used to diffuse the outgoing light, so that the outgoing backlight is more uniform, and at the same time, it can also shield some possible bad backlights; the prism film layer 201 is used to gather the outgoing light and improve the brightness of the backlight.
  • the backlight module 1 further includes a transparent adhesive layer 60 located on the side of the circuit substrate 102 where the blue light chip 101 is disposed.
  • the transparent adhesive layer 60 covers all the blue light chips 101 , and plays a role of protecting the blue light chips 101 and planarizing.
  • the surface flatness of the adhesive layer can be set to not exceed ⁇ 0.05mm.
  • the microstructure film layer 30 is disposed on the side of the transparent adhesive layer 60 away from the direct type light source substrate 10 .
  • the backlight module 1 further includes a plastic frame 40 and a back plate 50.
  • the plastic frame 40 and the back plate 50 jointly cover the direct-type light source substrate 10, the backlight film material layer 20, and the microstructure film layer 30, so as to align the direct-type light source substrate 10, the backlight film material layer 20, and the microstructure film layer 30 together.
  • the protection function of the internal structures such as the light source substrate 10 , the backlight film material layer 20 , the microstructure film layer 30 and the like.
  • the backlight film layer 20 includes a quantum dot layer 203 , a diffusion film layer 202 , and a prism film layer 201 arranged in sequence along the light exit direction, and the red and green film layers are disposed in the microstructure film layer 30 .
  • Fig. 10 shows a schematic cross-sectional view of the microstructure film layer 30 in the direction of Fig. 3cA-A' when the structure of Fig. 9b is adopted. The difference from FIG. 3 b is that in FIG. 10 , an inverse red and green film layer 402 is used instead of the light-transmitting layer 301 .
  • the anti-red and green film layer 402 has no effect on the blue light transmission, and can cooperate with the microstructure area 302 to realize the regulation of the exit angle of the backlight passing through the microstructure area for all or part of the edge position change.
  • the anti-red-green film layer 402 reflects the red light and green light emitted by the quantum dots of the backlight film material layer 20 , so that the red light and the green light are emitted toward the light-emitting direction of the backlight module 1 .
  • Replacing the light-transmitting layer 301 with the anti-red and green film layer 402 can reduce the number of film layers provided in the backlight module 1, reduce the thickness of the backlight module, and reduce the difficulty and complexity of the process.
  • the microstructure region 302 may also be disposed on the side of the light-transmitting layer 301 close to the backlight film material layer 20 .
  • the cross section of the specific structure of the microstructure region 302 along the A ⁇ A' direction may be any of the schematic diagrams shown in FIG. 4a, FIG. 4b, FIG. 4c, FIG. 5a, and FIG.
  • the plane is axisymmetric and axisymmetric transformation is performed to obtain the cross section.
  • the refractive index of the medium contacted by the inclined surface of the first microstructure 3022 ie, the surface of the first microstructure 3022 where the hypotenuse in the cross section is located
  • n 2 for example, the medium may be air.
  • Fig. 11b shows a schematic cross-sectional view along the A ⁇ A' direction obtained by the above transformation in Fig. 4a.
  • the propagation direction of the backlight does not occur. deflection.
  • the backlight is emitted from the hypotenuse of the right triangle, since the refractive index of the medium bordering the hypotenuse is smaller than the refractive index of the first microstructure 3022, all the backlights passing through the microstructure area are deflected and perpendicular to the direction of the edge of the microstructure area. Refraction away from the center of the microstructured film layer.
  • the backlight module includes a direct-lit light source substrate, a microstructure film layer and a backlight film layer; the backlight film layer is located on the light-emitting side of the direct-lit light source substrate, and the microstructure film layer is disposed on the direct-lit light source substrate and the direct-lit light source substrate. between the backlight film layers; the microstructure film layer includes a light-transmitting layer and a microstructure region; the microstructure region is arranged at the edge of the microstructure film layer.
  • the combination of the microstructure area and the light-transmitting layer can change the exit angle of all or part of the backlight passing through the microstructure area at the edge position, so that the whole or part of the backlight passing through the microstructure area is inclined to be perpendicular to the microstructure.
  • the direction of the edge of the area and away from the center of the microstructure film layer is refracted, so that the backlight changing the exit angle increases the light distance when passing through the backlight film layer, and excites more red light and green light, which solves the problem in the whole process.
  • the embodiment of the present invention also discloses a display device, which includes the above-mentioned backlight module.
  • the backlight module in the display device includes a direct-type light source substrate, a microstructure film layer, and a backlight film layer; the backlight film layer is located on the light-emitting side of the direct-type light source substrate, and the microstructure film layer is disposed on the direct-type light source substrate. between the light source substrate and the backlight film material layer; the microstructure film layer includes a light-transmitting layer and a microstructure area; the microstructure area is arranged at the edge of the microstructure film layer.
  • the combination of the microstructure area and the light-transmitting layer can change the exit angle of all or part of the backlight passing through the microstructure area at the edge position, so that the whole or part of the backlight passing through the microstructure area is inclined to be perpendicular to the microstructure.
  • the direction of the edge of the area and away from the center of the microstructure film layer is refracted, so that the backlight changing the exit angle increases the light distance when passing through the backlight film layer, and excites more red light and green light, which solves the problem in the whole process.
  • the problem of uneven chromaticity of bluish edges of the backlight when the screen is displayed improves the realistic effect of the display device.
  • the embodiment of the present invention also discloses a preparation method of the microstructure film layer.
  • the light-transmitting layer 301 undergoes a roller transfer process and an ultraviolet light curing process in sequence.
  • a designed trapezoidal structure groove is carved on the transfer cylinder, and the liquid ultraviolet photosensitive resin is dropped into the groove.
  • the resin is transferred to the surface of the substrate as the roller rotates the trapezoidal structure.
  • the ultraviolet photosensitive resin is cured to form the microstructure region 302 and/or the microstructure support region 303 .
  • the light-transmitting layer 301 can be replaced by an inverse red-green film layer 402 .
  • the preparation method of the microstructure film layer further disclosed in the embodiments of the present invention is only an example. According to the material properties of the light-transmitting layer 301 and the microstructure region 302, the preparation method can be selected according to the actual situation. In particular, when the light-transmitting layer 301 and the microstructure region 302 have the same refractive index, they can be made of the same material. At this time, the microstructure region 302 and/or the microstructure support region 303 may be formed on the light-transmitting layer 301 by etching.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Planar Illumination Modules (AREA)
  • Liquid Crystal (AREA)

Abstract

一种背光模组(1)以及显示装置,背光模组(1)包括光源基板(10)、微结构膜层(30)和背光膜材层(20);背光膜材层(20)位于光源基板(10)的出光侧,微结构膜层(30)设置于光源基板(10)与背光膜材层(20)之间;微结构膜层(30)包括透光层(301)以及微结构区(302);微结构区(302)设置于微结构膜层(30)的边缘位置。微结构区(302)与透光层(301)组合可以在边缘位置改变全部或部分经过微结构区(302)背光的出射角度,使全部或部分经过微结构区(302)的背光偏向垂直于微结构区(302)所在边缘的方向且远离微结构膜层(30)中心方向折射,进而使改变出射角度的背光在经过背光膜材层(20)时光程增大,激发出更多的红光、绿光,解决了在全画面显示时背光边缘偏蓝的色度不均的问题。

Description

一种背光模组以及显示装置
本申请要求申请日为2020年6月29日、申请号为202010605273.4的中国专利申请的优先权,通过参考的方式将其并入本文,如同在本文全部阐述一样。
技术领域
本发明涉及显示技术领域,特别涉及一种背光模组以及显示装置。
背景技术
随着显示控制技术的不断发展,很多直下式背光显示装置逐渐开始采用区域调光(Local Dimming)的控制技术,实现背光模组的局部点亮,从而能够有效降低屏幕显示的功耗。区域调光技术可以将背光模组划分为多个区域,并根据显示内容的不同,分别调节背光模组不同区域的亮度进行显示。相较传统的侧入式背光设计,具备更好的色彩对比度,并且可以达到节能的目的。
在实际应用中,常采用蓝光发光二极管(Light Emitting Diode,LED)作为直下式背光光源,通过激发量子点膜,产生红绿光,红绿光与透过量子点膜的蓝光复合,形成白光。并且,光线在量子点膜中的光程越长激发的红绿光越多。可以理解的是,如果对出射背光各个位置的亮度和颜色进行测试,某一背光测试点的亮度/颜色,是由测试点附近的LED与周边多个LED发光叠加而成。然而,对于背光边缘部分,由于缺少相邻LED激发量子点膜产生的色度叠加,整体效果会偏蓝色,故而背光边缘出现蓝边,使得画面出现色度不均的现象,影响显示效果。
发明内容
本发明实施例提供一种背光模组以及显示装置,用以解决现有背 光显示装置中画面边缘偏蓝的色度不均问题。
为解决上述问题,本发明公开了一种背光模组,包括:
光源基板、微结构膜层和背光膜材层;
其中,背光膜材层位于所述光源基板的出光侧,包含红色量子点和绿色量子点;
微结构膜层设置于所述光源基板与所述背光膜材层之间,包括透光层以及微结构区;所述微结构区设置于在微结构膜层的边缘位置;所述微结构膜层用于在边缘位置改变全部或部分经过微结构区背光的出射角度,使所述全部或部分经过微结构区的背光偏向垂直于所述微结构区所在边缘的方向且远离所述微结构膜层中心方向折射。
可选的,所述光源基板为直下式光源基板。
可选的,所述光源基板包括电路基板以及在电路基板上间隔设置的蓝光芯片;所述蓝光芯片在所述电路基板所在平面的正投影均位于所述微结构膜层在所述电路基板所在平面的正投影内部。
可选的,所述微结构区在垂直于所述微结构膜层边缘方向上的截面为至少一个直角三角形;其中所述直角三角形的第一直角边均位于所述透光层上,所述直角三角形的第二直角边均在沿垂直于所述微结构区所在边缘方向远离所述微结构膜层中心的位置设置。
可选的,所述直角三角形的数量不少于2个,所述直角三角形相互接触设置。
可选的,所述直角三角形的数量不少于2个,所述直角三角形之间等距离间隔设置,或者,所述直角三角形之间的间隔沿着从微结构膜层边缘到中心的方向逐渐增加。
可选的,所述微结构区在垂直于所述微结构膜层边缘方向上的截面为至少一个直角梯形;其中,所述直角梯形的长边均位于所述透光层上,所述直角梯形的直角边均均在沿垂直于所述微结构区所在边缘方向远离所述微结构膜层中心的位置设置。可选的,所述直角梯形的数量不少于2个,所述直角梯形相互接触设置;其中,所述直角梯形 的短边具有相同长度。
可选的,所述直角梯形的数量不少于2个,所述直角梯形相互接触设置;其中,所述直角梯形的短边长度沿着从微结构膜层边缘到中心的方向逐渐增加。
可选的,所述背光膜材层包括沿着出光方向依次设置的反红绿膜层和量子点层;其中,所述量子点层包含红色量子点和绿色量子点;所述反红绿膜层用于反射红光和绿光。
可选的,所述反红绿膜层复用为所述透光层。
可选的,微结构区的材料为紫外光敏树脂,和/或所述透光区的材料为聚对苯二甲酸乙二醇。
为了解决上述问题,本发明还公开了一种显示装置,包括上述背光模组。
与现有技术相比,本发明包括以下优点:
在本发明实施例中,背光模组包括光源基板、微结构膜层和背光膜材层;背光膜材层位于光源基板的出光侧,微结构膜层设置于光源基板与背光膜材层之间;微结构膜层包括透光层以及微结构区;微结构区设置于在微结构膜层的边缘位置。本发明实施例中,微结构区与透光层组合可以在边缘位置改变全部或部分经过微结构区背光的出射角度,使所述全部或部分经过微结构区的背光偏向且垂直于所述微结构区所在边缘的方向远离所述微结构膜层中心方向折射,进而使改变出射角度的背光在经过背光膜材层时光程增大,激发出更多的红光、绿光,解决了在全画面显示时背光边缘偏蓝的色度不均的问题。
附图说明
图1为一种现有显示装置在全画面点亮时的光线示意图;
图2为本发明实施例提供的背光模组结构截面示意图;
图3a为本发明实施例提供的微结构膜层的俯视示意图;
图3b为本发明一个实施例提供的图3a所示结构沿A→A’方向的 截面示意图;
图4a为本发明一个实施例提供的微结构膜层截面示意图;
图4b为本发明一个实施例提供的微结构膜层截面示意图;
图4c为本发明一个实施例提供的微结构膜层截面示意图;
图5a为本发明一个实施例提供的微结构膜层截面示意图;
图5b为本发明一个实施例提供的微结构膜层截面示意图;
图6为图3a所示结构沿C→C’方向的截面示意图;
图7为图5a所示微结构膜层局部截面示意图;
图8a为本发明一个实施例提供的微结构膜层截面示意图;
图8b为本发明一个实施例提供的微结构膜层截面示意图;
图9a为本发明一个实施例提供的背光模组截面示意图;
图9b为本发明一个实施例提供的背光模组截面示意图;
图10为本发明一个实施例提供的图3a所示结构沿A→A’方向的截面示意图;
图11a为本发明一个实施例提供的图3a所示结构沿A→A’方向的截面示意图;
图11b为本发明一个实施例提供的微结构膜层截面示意图;
图12为本发明实施例提供的微结构膜层制备方法示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例的附图,对本发明实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于所描述的本发明实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其它实施例,都属于本发明保护的范围。
除非另作定义,此处使用的技术术语或者科学术语应当为本发明 所属领域内具有一般技能的人士所理解的通常意义。本发明说明书以及权利要求书中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“内”、“外”、“上”、“下”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
需要注意的是,附图中各图形的尺寸和形状不反映真实比例,目的只是示意说明本发明内容。并且自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。
图1示出了一种现有显示装置背光模组在全画面点亮时的光线示意图。如图1所示,在进行全白画面显示时,对于中间的大部分显示区域,其中的光线是由正对的蓝光芯片101发出的蓝光及其激发背光膜材层20中的量子点发出红绿光,以及相邻蓝光芯片101发出的少数蓝光及其激发背光膜材层20中的红绿光混合而成,参见图1中的椭圆形虚线区域,由于有相邻蓝光芯片101激发的红绿光进行补充,因此,中间的大部分显示区域将显示为白色。然而,对于显示区域边缘处,其中的光线是由最边缘的蓝光芯片101发出的蓝光激发的红绿光,以及相邻的内部LED蓝光芯片101发出的少数蓝光及其激发的红绿光混合而成,参见图1中的矩形虚线区域,相对于中间的大部分显示区域,显示区域边缘处的相邻蓝光芯片较少,因而红绿光比例较低。因此,在现有显示装置进行全白画面显示时,现有显示装置的边缘处将会呈现偏蓝现象,也即产生画面色度不均的问题。
针对现有技术中的上述问题,提出了本发明实施例中背光模组以及显示装置,以解决在全画面显示时画面边缘偏蓝的色度不均的问题。具体地,本发明人提供了一种背光膜组,包括:光源基板、微结构膜层和背光膜材层;
其中,背光膜材层位于所述光源基板的出光侧,包含红色量子点 和绿色量子点;微结构膜层设置于所述光源基板与所述背光膜材层之间,包括透光层以及微结构区;所述微结构区设置于在微结构膜层的边缘位置;所述微结构膜层用于在边缘位置改变全部或部分经过微结构区背光的出射角度,使所述全部或部分经过微结构区的背光偏向且垂直于所述微结构区所在边缘的方向远离所述微结构膜层中心方向折射。
在一些具体实施例中,所述光源基板为直下式光源基板。
图2示出了本发明一个实施例提供的一种背光模组的结构示意图。该背光模组1包括光源基板10、背光膜材层20、微结构膜层30。其中,背光膜材层20位于微结构膜层30的出光侧;背光膜材层20中包括红色量子点和绿色量子点。微结构膜层30位于光源基板10的出光侧,设置于光源基板10与背光膜材层20之间。可以理解的是,微结构膜层30的几何形状及尺寸由显示装置的显示区的几何形状及尺寸决定。
在一个具体实施例中,直下式光源基板10包括电路基板102以及在电路基板102上间隔设置的各个蓝光芯片101。
例如,以图3a中以A→A’方向的截面示意图图3b所示。其中,全部蓝光芯片101在电路基板102所在平面的正投影位于微结构膜层30在电路基板102所在平面的正投影内部。微结构膜层30包括透光层301以及微结构区302。微结构区302可以位于透光层301靠近直下式光源基板10的一侧,且与透光层301相互接触。参照图3a,微结构区302位于微结构膜层30中靠近边缘的位置,且在微结构膜层30的所有边缘区域连续分布。可选的,蓝光芯片101为蓝光发光二极管。
例如,当显示装置的显示区为矩形时,微结构区302在微结构膜层30的四个边缘区域连续分布;例如,当显示装置的显示区为圆形时,微结构区302在微结构膜层30的靠近边缘位置成环状连续分布。
当显示装置的显示区为矩形时,参考图3b,微结构区302的宽度为b。在一些实施例中,微结构区302的边缘与微结构膜层30的边缘重合;在另一些实施例中,考虑到工艺的便于实施,微结构区302的 边缘与微结构膜层30的边缘在沿x方向上具有宽度a,a≤0.1mm。
可以理解的是,当显示装置的显示区为矩形时,参考图3a,沿着B→B’、D→D’、F→F’方向的截面示意图,与沿着A→A’方向的截面示意图相同,但宽度a依加工工艺可能有所不同。因此下面列举的实施例均以A→A’方向的截面作为示例。
可以理解的是,对于微结构膜层30的4个边角区域,会出现不同方向微结构区302相交汇的情况,可以选择利用任意一个方向的微结构区302填充边角即可。
例如,当背光边缘呈现偏蓝区域的宽度为m时,设计微结构区302的宽度为b使b满足:a+b约等于m,其中“约等于”可以定义为:0.5m≤(a+b)≤1.5m。优选的,0.8m≤(a+b)≤1.2m;进一步优选的,a+b=m。例如,在实际产品设置时,a+b与m的关系可以设定为改善背光边缘偏蓝至可接受范围即可。
可选的,参考图4a,其示出了图3a中以A→A’方向的截面中微结构区302的具体结构。需要说明的是,沿A→A’方向的截面可以为图3a中A→A’所在边缘的任意位置,但不包括边角位置(所述边角位置为不同方向微结构区302相交汇的位置)。其中,第一微结构3022在A→A’方向的截面中呈现直角三角形,沿着x方向连续分布,数量为k。对每一个直角三角形来说,直角三角形的斜边与直角三角形沿着x方向的直角边的夹角为锐角α,其中直角三角形的一直角边均位于所述透光层301上,且对于每一个直角三角形来说,其沿着z方向的直角边均在沿垂直于微结构区302所在边缘方向远离微结构膜层30中心的位置设置。可以理解的是,第一微结构3022沿着y方向呈条状连续分布。第一微结构3022以及透光层301均为透明材料,透光层301具有折射率n 1,第一微结构3022具有折射率n 2,n 1和n 2均大于1。在一些实施例中,第一微结构3022的倾斜表面(即,上述截面中的斜边所在的第一微结构3022的表面)接触的介质的折射率小于n 2,例如所述介质可以为空气。
参考图4a,当背光沿着z方向垂直入射,依次通过微结构区302 以及透光层301,并最终从微结构膜层30出射时,微结构膜层30会对入射背光产生较大角度折射,使所述全部经过微结构区的背光偏向垂直于微结构区302所在边缘的方向且远离所述微结构膜层30中心方向折射。出射光线的偏转,可以使其入射到背光膜材层20时的光程增加,进而激发出更多的红光、绿光。当更多的红光、绿光与蓝光进行混合时,可以改善背光边缘偏蓝的现象。
可选的,如图4b所示,第一微结构3022的截面为三角形,且在微结构区302内沿着x方向间隔分布,间隔距离均为e。对每一个直角三角形来说,直角三角形的斜边与直角三角形沿着x方向的直角边的夹角为锐角α,其中直角三角形的一直角边均位于所述透光层301上,且对于每一个直角三角形来说,其沿着z方向的直角边均在沿垂直于微结构区302所在边缘方向远离微结构膜层30中心的位置设置。第一微结构3022以及透光层301均为透明材料,透光层301具有折射率n 1,第一微结构3022具有折射率n 2,n 1和n 2均大于1。在一些实施例中,第一微结构3022的倾斜表面(即,上述截面中的斜边所在的第一微结构3022的表面)接触的介质的折射率小于n 2,例如所述介质可以为空气。在第一微结构3022的间隔位置,背光沿着z方向垂直入射透光层301,从透光层301靠近背光膜材层20的一侧出射时不发生偏转。这一部分背光进入背光膜材层20时的光程增加的光程不增加。而受第一微结构3022调制,进入第一微结构3022的背光则在进入背光膜材层20时发生偏转,光程增加,进而激发出更多的红光、绿光。通过调控间隔距离e,可以控制进入背光膜材层20发生偏转与不发生偏转的背光比例,进而控制激发出红光、绿光的比例,更加准确地调控背光边缘色度。可以理解的是,间隔距离e的具体尺寸可以根据需要设置,只要实现背光边缘色度控制在可接受范围即可。
可选的,如图4c所示,第一微结构3022的截面为三角形,且在微结构区302内沿着x方向间隔分布,间隔距离不完全相同。示例地,在微结构区302内沿着x轴正方向排布的k(k不小于2)个相同第一微结构3022,之间的间隔可以表示为e 1、e 2、……e k-1,其中e 1<e 2<……<e k-1。优选的,e 1、e 2、……e k-1成等差数列分布且数值逐渐增大。对 每一个直角三角形来说,直角三角形的斜边与直角三角形沿着x方向的直角边的夹角为锐角α,其中直角三角形的一直角边均位于所述透光层301上,且对于每一个直角三角形来说,其沿着z方向的直角边均在沿垂直于微结构区302所在边缘方向远离微结构膜层30中心的位置设置。第一微结构3022以及透光层301均为透明材料,透光层301具有折射率n 1,第一微结构3022具有折射率n 2,n 1和n 2均大于1。在一些实施例中,第一微结构3022的倾斜表面(即,上述截面中的斜边所在的第一微结构3022的表面)接触的介质的折射率小于n 2,例如所述介质可以为空气。可以理解的是,当背光的位置逐渐趋近于边缘时,蓝光的比例逐渐增加,且是一个渐变的过程。因此利用图4c所述方案,可以在背光的位置逐渐趋近于边缘时逐渐增加红光、绿光的比例,改善蓝光比例逐渐增加使色度产生偏移的问题,使边缘背光的色度位置在可接受的范围。图4c所示方案相比于图4b方案,色度的补偿更加均匀,更有效地改善了背光边缘偏蓝现象,增加显示装置的显示效果。
可选的,如图5a所示,第一微结构3022的截面为直角梯形,且在微结构区302内沿着x方向连续分布,且每一个第一微结构3022的截面相同。对于每一个直角梯形来说,其沿着z方向的直边均在沿垂直于微结构区302所在边缘方向远离微结构膜层30中心的位置设置,其长边与透光层301远离背光膜材层20的平面相接触,其斜边与长边具有锐角α。第一微结构3022以及透光层301均为透明材料,透光层301具有折射率n 1,第一微结构3022具有折射率n 2,n 1和n 2均大于1。在一些实施例中,第一微结构3022的倾斜表面(即,上述截面中的斜边所在的第一微结构3022的表面)接触的介质的折射率小于n 2,例如所述介质可以为空气。当沿着z方向入射的背光从直角梯形的短边入射时,其在经过第一微结构3022与透光层301后出射,出射方向不发生偏转。当沿着z方向入射的背光从直角梯形的斜边入射时,其在经过第一微结构3022与透光层301后出射,出射方向发生偏转,此时背光进入背光膜材层20的光程变长,可以激发出更多的红光、绿光。通过控制第一微结构3022的截面直角梯形短边的长度以及斜边与长边夹角α,可以控制进入背光膜材层20发生偏转与不发生偏转的背光比 例,进而控制激发出红光、绿光的比例,更加准确地调控背光边缘色度。
可选的,如图5a所示,第一微结构3022的截面为直角梯形,且在微结构区302内沿着x方向连续分布,且每一个直角梯形不完全相同。示例的,在微结构区302内沿着x轴正方向排布的k个连续分布的第一微结构3022,其截面所示直角梯形的短边长度可以分别表示为f 1、f 2、……f k-1,其中f 1<f 2<……<f k-1。优选的,f 1、f 2、……f k-1成等差数列分布且数值逐渐增大。对于每一个直角梯形来说,其沿着z方向的直边均在沿垂直于微结构区302所在边缘方向远离微结构膜层30中心的位置设置,其长边与透光层301远离背光膜材层20的平面相接触,其斜边与长边具有锐角α。第一微结构3022以及透光层301均为透明材料,透光层301具有折射率n 1,第一微结构3022具有折射率n 2,n 1和n 2均大于1。在一些实施例中,第一微结构3022的倾斜表面(即,上述截面中的斜边所在的第一微结构3022的表面)接触的介质的折射率小于n 2,例如所述介质可以为空气。可以理解的是,当背光的位置逐渐趋近于边缘时,蓝光的比例逐渐增加,且是一个渐变的过程。因此利用图5b所述方案,可以在背光的位置逐渐趋近于边缘时逐渐增加红光、绿光的比例,改善蓝光比例逐渐增加使色度产生偏移的问题,使边缘背光的色度位置在可接受的范围。图5b所示所示方案相比于图4a方案,色度的补偿更加均匀,更有效地改善了背光边缘偏蓝现象,增加显示装置的显示效果。
对于边角位置,例如图6所示的图3a中沿C→C’方向截面示意图所示,边角位置被沿着y方向的微结构302区占据,且微结构302区与A→A’方向的截面示意图中微结构区302的截面形状尺寸相同。在图6中,用第二微结构区302’表示边角位置与微结构区302延伸方向不同的微结构区302。因此,图6示意了沿着y方向的微结构302对C→C’截面处的边角进行了填充。可以理解的是,第二微结构区302’也可以代替微结构区302对C→C’截面处的边角进行填充。本发明对于4个边角的填充方式不做具体限定,只要实现沿任一方向延伸的微结构区302进行填充即可。
更具体的,例如,以图5a、图5b的任一个第一微结构3022的截面示意图为例,参考图7,直角梯形的长边长度、短边长度、直角边长分别用c、e、d表示,斜边与长边具有锐角夹角α。第一微结构3022的折射率n 1,透光层301的折射率为n 2,且微结构膜层30沿着光出射方向的两侧相邻介质为空气。θ 1为入射光线进入第一微结构3022的入射角,θ 1=α,θ 2为光线在第一微结构3022中的折射角,因此,sinθ 1/sinθ 2=n 1;θ 3为入射光进入透光层301的入射角,θ 4为光线在透光层301的折射角,sinθ 3/sinθ 4=n 2/n 1;θ 5为光线偏转夹角,有sinθ 5/sinθ 4=n 2,又由几何关系可得,θ 23=α,因此可以得到光线偏转夹角θ 5与α及n 1、n 2的关系为:
Figure PCTCN2021094810-appb-000001
对于图4a-c、图5a-b所示结构,例如,设置α=45°、n 1=1.49实现光线偏转θ 5约为26°。
对于图4a-c、图5a-b所示结构,例如,透光层301的厚度h取值范围为0.03mm~0.5mm。
例如,对于图4a-c所示结构,为避免肉眼可见,所述截面三角形沿着x方向的直角边长小于等于70um,沿z方向的直角边长小于等于17um。
例如,对于图5a-b所示结构,为避免肉眼可见,所述截面直角梯形微结构的长度c≤70um,直角边长d≤17um。
可选的,透光层301的材料为透明高分子聚合物(如聚对苯二甲酸乙二醇(PET))、非晶无机非金属材料、二氧化硅中的任意一种;微结构区302的材料和/或微结构支撑区303的材料可以为透明高分子聚合物(如PET)、非晶无机非金属材料、二氧化硅中的任意一种,也可以为光敏树脂经过光固化形成的产物。在一些实施例中,透光层301与微结构区302的材料和/或微结构支撑区303的材料的材料相同,此时n 1=n 2。在一些实施例中,微结构区302的材料和/或微结构支撑 区303的材料为紫外光敏树脂。可选的,紫外光敏树脂为丙烯酸树脂。
可选的,参考图8a,透光层301在边缘区域具有厚度h 1,在其他具有厚度h 2,其中边缘区域定义为每一边宽度a与宽度b所占据的区域。h 1<h 2且二者之间的差值为微结构区302的厚度。本方案可使微结构膜层30的下表面更加平坦,在其设置与背光模组1中时,不会因下表面具有微结构区302而产生形变,影响显示效果。可选的,参考图8b,在其他区域也可以设置微结构支撑区303,其材料与微结构区的材料相同,厚度与微结构区302相同。图7所示方案相比于图6方案,由于微结构支撑区303与微结构区302可以同层制备,在工艺上更易实现。
可选的,参考图9a,背光膜材层20包括沿出光方向依次设置的反红绿膜层204、量子点层203、扩散膜层202、棱镜膜层201。其中量子点层203中包含有红色量子点和绿色量子点,可以被背光中的蓝光激发,分别发出红色荧光和绿色荧光。反红绿膜层用于将量子点发出的红光和绿光反射,使红光和绿光朝向背光模组1的出光方向发射,对蓝光的透射没有影响。扩散膜层202用于对出射光在进行扩散,使出射的背光更加均匀,同时也可以遮蔽一些可能出现的背光不良;棱镜膜层201用于对出射光产生收拢作用,提高背光正向出光亮度。可选的,背光模组1还包括位于电路基板102上设置有蓝光芯片101一侧的透明胶层60。透明胶层60覆盖所有蓝光芯片101,起到保护蓝光芯片101以及平坦化作用。可以设置胶层表面平整度为不超过±0.05mm。可选的,微结构膜层30设置于透明胶层60远离直下式光源基板10的一侧。可选的,背光模组1还包括胶框40以及背板50,胶框40以及背板50共同包覆直下式光源基板10、背光膜材层20、微结构膜层30,起到对直下式光源基板10、背光膜材层20、微结构膜层30等内部结构的保护作用。
可选的,参考图9b,背光膜材层20包括沿出光方向依次设置的量子点层203、扩散膜层202、棱镜膜层201,红绿膜层设置于微结构膜层30中。具体的,图10示出了采用图9b结构时微结构膜层30在 图3cA-A’方向上的截面示意图。与图3b不同的是,图10中采用反红绿膜层402代替透光层301。其中反红绿膜层402对于蓝光透射没有影响,可以与微结构区302配合,实现对边缘位置改变全部或部分经过微结构区背光的出射角度的调控。同时,反红绿膜层402将背光膜材层20量子点发出的红光和绿光反射,使红光和绿光朝向背光模组1的出光方向发射。将反红绿膜层402代替透光层301可以减少背光模组1设置的膜层数量,减少背光模组的厚度,减少工艺难度和复杂度。
可选的,参考图11a,微结构区302也可以设置在透光层301靠近背光膜材层20的一侧。微结构区302的具体结构沿着A→A’方向的截面可以为图4a、图4b、图4c、图5a、图5b任意一个示意图中,将微结构区302以透光层301厚度中心所在平面为轴对称进行轴对称变换,所得到的截面。并且,第一微结构3022的倾斜表面(即,上述截面中的斜边所在的第一微结构3022的表面)接触的介质的折射率小于n 2,例如所述介质可以为空气。例如,图11b给出了图4a进行上述变换得到的沿着A→A’方向的截面示意图,当背光沿z方向入射进入透光层301及第一微结构3022时,背光的传播方向不发生偏转。而当背光从直角三角形斜边处射时,由于与斜边交界介质的折射率小于第一微结构3022折射率,全部经过微结构区的背光偏向且垂直于所述微结构区所在边缘的方向远离所述微结构膜层中心方向折射。同样的,对于图4b、图4c、图5a、图5b任意实施例所示结构,部分经过微结构区的背光偏向且垂直于所述微结构区所在边缘的方向远离所述微结构膜层中心方向折射。因此改变出射角度的背光在经过背光膜材层时光程增大,激发出更多的红光、绿光,解决了在全画面显示时背光边缘偏蓝的色度不均的问题。本领域技术人员可以理解的是,对于图8a、图8b、图10表示的实施例,可以利用类似的方法进行轴对称变换,得到微结构区302设置在透光层301(或反红绿膜402)靠近背光膜材层20的一侧的实施方式。
在本发明实施例中,背光模组包括直下式光源基板、微结构膜层和背光膜材层;背光膜材层位于直下式光源基板的出光侧,微结构膜层设置于直下式光源基板与背光膜材层之间;微结构膜层包括透光层 以及微结构区;微结构区设置于在微结构膜层的边缘位置。本发明实施例中,微结构区与透光层组合可以在边缘位置改变全部或部分经过微结构区背光的出射角度,使所述全部或部分经过微结构区的背光偏向垂直于所述微结构区所在边缘的方向且远离所述微结构膜层中心方向折射,进而使改变出射角度的背光在经过背光膜材层时光程增大,激发出更多的红光、绿光,解决了在全画面显示时背光边缘偏蓝的色度不均的问题。
本发明实施例还公开了一种显示装置,包括上述背光模组。
在本发明实施例中,显示装置中的背光模组包括直下式光源基板、微结构膜层和背光膜材层;背光膜材层位于直下式光源基板的出光侧,微结构膜层设置于直下式光源基板与背光膜材层之间;微结构膜层包括透光层以及微结构区;微结构区设置于在微结构膜层的边缘位置。本发明实施例中,微结构区与透光层组合可以在边缘位置改变全部或部分经过微结构区背光的出射角度,使所述全部或部分经过微结构区的背光偏向垂直于所述微结构区所在边缘的方向且远离所述微结构膜层中心方向折射,进而使改变出射角度的背光在经过背光膜材层时光程增大,激发出更多的红光、绿光,解决了在全画面显示时背光边缘偏蓝的色度不均的问题,提高了显示装置的现实效果。
本发明实施例还公开了一种微结构膜层的制备方法。
参考图12,透光层301依次经过滚筒转印工序以及紫外光照固化工序。其中,转印筒上雕刻出设计的梯形结构凹槽,将液态紫外光敏树脂滴在凹槽内,当紫外光敏树脂与透光层粘结力大于与转印筒的粘结力时,紫外光敏树脂随着滚筒转动梯形结构转印至基材表面。随后,在紫外光照固化工序中,紫外光敏树脂固化形成微结构区302和/或微结构支撑区303。可选的,微结构膜层制备时,透光层301可以用反红绿膜层402代替。
可以理解的是,本发明实施例还公开的微结构膜层的制备方法仅作为示例。根据透光层301以及微结构区302材料性质,制备方法可以按实际情况选择。特别的,当透光层301与微结构区302具有相同 折射率时,二者可以为相同材料。此时可以在透光层301通过刻蚀的方法形成微结构区302和/或微结构支撑区303。
本领域技术人员应该知悉,说明书中所描述的实施例均属于优选实施例,所涉及的动作和结构并不一定是本发明所必须的。
本说明书中的各个实施例均采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似的部分互相参见即可。
最后,还需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、商品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、商品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个......”限定的要素,并不排除在包括所述要素的过程、方法、商品或者设备中还存在另外的相同要素。
以上对本发明所提供的一种背光模组以及显示装置,进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。

Claims (13)

  1. 一种背光模组,其中,包括:
    光源基板、微结构膜层和背光膜材层;
    其中,背光膜材层位于所述光源基板的出光侧,包含红色量子点和绿色量子点;
    微结构膜层设置于所述光源基板与所述背光膜材层之间,包括透光层以及微结构区;所述微结构区设置于在微结构膜层的边缘位置;所述微结构膜层用于在边缘位置改变全部或部分经过微结构区背光的出射角度,使所述全部或部分经过微结构区的背光偏向且垂直于所述微结构区所在边缘的方向远离所述微结构膜层中心方向折射。
  2. 根据权利要求1所述的背光模组,其中,所述光源基板为直下式光源基板。
  3. 根据权利要求2所述的背光模组,其中,所述直下式光源基板包括电路基板以及在电路基板上间隔设置的蓝光芯片;所述蓝光芯片在所述电路基板所在平面的正投影均位于所述微结构膜层在所述电路基板所在平面的正投影内部。
  4. 根据权利要求3所述的背光模组,其中,所述微结构区在垂直于所述微结构膜层边缘方向上的截面为至少一个直角三角形;其中所述直角三角形的第一直角边均位于所述透光层上,所述直角三角形的第二直角边均在沿垂直于所述微结构区所在边缘方向远离所述微结构膜层中心的位置设置。
  5. 根据权利要求4所述的背光模组,其中,所述直角三角形的数 量不少于2个,所述直角三角形相互接触设置。
  6. 根据权利要求4所述的背光模组,其中,所述直角三角形的数量不少于2个,所述直角三角形之间等距离间隔设置,
    或者,所述直角三角形之间的间隔沿着从微结构膜层边缘到中心的方向逐渐增加。
  7. 根据权利要求3所述的背光模组,其中,所述微结构区在垂直于所述微结构膜层边缘方向上的截面为至少一个直角梯形;其中,所述直角梯形的长边均位于所述透光层上,所述直角梯形的直角边均在沿垂直于所述微结构区所在边缘方向远离所述微结构膜层中心的位置设置。
  8. 根据权利要求7所述的背光模组,其中,所述直角梯形的数量不少于2个,所述直角梯形相互接触设置;其中,所述直角梯形的短边具有相同长度。
  9. 根据权利要求7所述的背光模组,其中,所述直角梯形的数量不少于2个,所述直角梯形相互接触设置;其中,所述直角梯形的短边长度沿着从微结构膜层边缘到中心的方向逐渐增加。
  10. 根据权利要求1-9任意一项所述的背光模组,其中,所述背光膜材层包括沿着出光方向依次设置的反红绿膜层和量子点层;其中,所述量子点层包含红色量子点和绿色量子点;所述反红绿膜层用于反射红光和绿光。
  11. 根据权利要求1-9任意一项所述的背光模组,其中,所述反红绿膜层复用为所述透光层。
  12. 根据权利要求1-9任意一项所述的背光模组,其中,微结构区的材料为紫外光敏树脂,和/或所述透光区的材料为聚对苯二甲酸乙二醇。
  13. 一种显示装置,其中,包括如权利要求1-12任一项所述的背光模组。
PCT/CN2021/094810 2020-06-29 2021-05-20 一种背光模组以及显示装置 WO2022001459A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/765,071 US11796155B2 (en) 2020-06-29 2021-05-20 Backlight assembly and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010605273.4 2020-06-29
CN202010605273.4A CN113936541B (zh) 2020-06-29 2020-06-29 一种直下式背光模组以及显示装置

Publications (1)

Publication Number Publication Date
WO2022001459A1 true WO2022001459A1 (zh) 2022-01-06

Family

ID=79272951

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/094810 WO2022001459A1 (zh) 2020-06-29 2021-05-20 一种背光模组以及显示装置

Country Status (3)

Country Link
US (1) US11796155B2 (zh)
CN (1) CN113936541B (zh)
WO (1) WO2022001459A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105301836A (zh) * 2015-11-10 2016-02-03 青岛海信电器股份有限公司 直下式背光模组及显示装置
US20160116663A1 (en) * 2014-10-22 2016-04-28 Industrial Technology Research Institute Light down conversion film and display backlight unit using the same
CN106287407A (zh) * 2016-07-29 2017-01-04 京东方科技集团股份有限公司 改变光线指向的膜及背光模组
CN106292055A (zh) * 2015-06-09 2017-01-04 瑞仪光电(苏州)有限公司 量子点增强薄膜和背光模块
CN108072998A (zh) * 2016-11-15 2018-05-25 迎辉科技股份有限公司 光学膜
CN109143687A (zh) * 2018-09-30 2019-01-04 厦门天马微电子有限公司 背光模组、液晶显示模组以及电子设备
CN109407409A (zh) * 2019-01-08 2019-03-01 京东方科技集团股份有限公司 背光模组及其制作方法、显示装置
CN109686240A (zh) * 2019-01-04 2019-04-26 京东方科技集团股份有限公司 一种直下式背光模组以及显示装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007114587A (ja) * 2005-10-21 2007-05-10 Takiron Co Ltd 光拡散シート
CN201672441U (zh) * 2010-06-01 2010-12-15 青岛海信电器股份有限公司 光学板及具有该光学板的背光模组
CN101936489A (zh) * 2010-09-03 2011-01-05 深圳市华星光电技术有限公司 背光模块及其光学组件
CN103017007B (zh) * 2011-09-28 2015-03-11 颖台科技股份有限公司 光学贴膜及具有该光学贴膜的背光模块与液晶显示器
KR20160042226A (ko) * 2014-10-07 2016-04-19 엘지디스플레이 주식회사 백라이트 유닛 및 이를 구비한 액정표시장치
CN105301841A (zh) * 2015-11-23 2016-02-03 青岛海信电器股份有限公司 一种背光模组和液晶显示设备
CN106970490A (zh) * 2017-05-12 2017-07-21 深圳市华星光电技术有限公司 背光模组及液晶显示装置
KR102480602B1 (ko) * 2018-04-16 2022-12-23 삼성디스플레이 주식회사 백라이트 유닛 및 이를 포함하는 표시 장치
CN108919558B (zh) * 2018-06-25 2021-04-27 福州大学 一种楔形基板的量子点彩膜结构
CN208399860U (zh) * 2018-06-27 2019-01-18 联想(北京)有限公司 背光模组和显示装置
CN113260815B (zh) * 2019-01-03 2024-02-13 亮视技术公司 用于背光显示器的颜色转换膜和背光单元
TWI703385B (zh) * 2019-07-29 2020-09-01 瑞儀光電股份有限公司 調光膜片、背光模組及顯示裝置
CN110515241B (zh) * 2019-08-30 2022-03-01 厦门天马微电子有限公司 一种背光模组、显示装置及制作方法
CN210626832U (zh) * 2019-09-20 2020-05-26 惠州视维新技术有限公司 一种背光模组及其显示装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160116663A1 (en) * 2014-10-22 2016-04-28 Industrial Technology Research Institute Light down conversion film and display backlight unit using the same
CN106292055A (zh) * 2015-06-09 2017-01-04 瑞仪光电(苏州)有限公司 量子点增强薄膜和背光模块
CN105301836A (zh) * 2015-11-10 2016-02-03 青岛海信电器股份有限公司 直下式背光模组及显示装置
CN106287407A (zh) * 2016-07-29 2017-01-04 京东方科技集团股份有限公司 改变光线指向的膜及背光模组
CN108072998A (zh) * 2016-11-15 2018-05-25 迎辉科技股份有限公司 光学膜
CN109143687A (zh) * 2018-09-30 2019-01-04 厦门天马微电子有限公司 背光模组、液晶显示模组以及电子设备
CN109686240A (zh) * 2019-01-04 2019-04-26 京东方科技集团股份有限公司 一种直下式背光模组以及显示装置
CN109407409A (zh) * 2019-01-08 2019-03-01 京东方科技集团股份有限公司 背光模组及其制作方法、显示装置

Also Published As

Publication number Publication date
US11796155B2 (en) 2023-10-24
US20220373161A1 (en) 2022-11-24
CN113936541B (zh) 2023-02-21
CN113936541A (zh) 2022-01-14

Similar Documents

Publication Publication Date Title
US7588365B2 (en) Method of manufacturing light guide plate, light guide plate, backlight unit with the light guide plate and display apparatus having the same
KR101385796B1 (ko) 도광판, 도광판의 제조 방법, 면 광원 장치 및 액정 표시 장치
JP5394631B2 (ja) 液晶表示装置
JP2015046328A (ja) 導光板、これを含むバックライトユニットおよび液晶表示装置、ならびに光学シート
JP2005347214A (ja) 面状光源装置およびこれを用いた表示装置
US9022635B2 (en) Light guide plate and backlight unit
JP2008010291A5 (zh)
KR20110023054A (ko) 백라이트장치 및 이를 구비한 액정표시장치
TW202134759A (zh) 包含圖案化反射器的背光
US20080018827A1 (en) Lighting device and liquid crystal display using it
KR102090457B1 (ko) 액정표시장치
JP6447654B2 (ja) 光学構造体および表示装置
US8297772B2 (en) Backlighting assembly for use in slim flat panel display and display device having same
WO2021035636A1 (zh) 液晶显示面板及显示装置
WO2017159556A1 (ja) 照明装置及び表示装置
WO2022001459A1 (zh) 一种背光模组以及显示装置
JP2014135120A (ja) 面光源装置、表示装置および照明装置
US20140320783A1 (en) Condensing sheet, backlight unit and liquid crystal display device using the same
CN115508926A (zh) 一种视角扩大膜及其制备方法、显示装置
WO2012043361A1 (ja) 照明装置、及び表示装置
CN114114752A (zh) 一种背光模组及显示装置
JP5184240B2 (ja) 表示装置
JP6276373B2 (ja) 導光板、これを含むバックライトユニットおよび液晶表示装置
JP6261710B2 (ja) 導光板、これを含むバックライトユニットおよび液晶表示装置
JP2019053323A (ja) 光学構造体および表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21832837

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21832837

Country of ref document: EP

Kind code of ref document: A1