WO2022001343A1 - Nfc装置输出信号控制方法及终端设备、介质和电子设备 - Google Patents

Nfc装置输出信号控制方法及终端设备、介质和电子设备 Download PDF

Info

Publication number
WO2022001343A1
WO2022001343A1 PCT/CN2021/090984 CN2021090984W WO2022001343A1 WO 2022001343 A1 WO2022001343 A1 WO 2022001343A1 CN 2021090984 W CN2021090984 W CN 2021090984W WO 2022001343 A1 WO2022001343 A1 WO 2022001343A1
Authority
WO
WIPO (PCT)
Prior art keywords
nfc
state
nfc device
output signal
terminal device
Prior art date
Application number
PCT/CN2021/090984
Other languages
English (en)
French (fr)
Inventor
冯斌
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Publication of WO2022001343A1 publication Critical patent/WO2022001343A1/zh

Links

Images

Classifications

    • H04B5/70
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/04Generating or distributing clock signals or signals derived directly therefrom

Definitions

  • the present disclosure relates to the technical field of data processing, and in particular, to a control method for an NFC device output signal, a terminal device, a computer-readable medium, and an electronic device.
  • NFC Near Field Communication
  • NFC technology with a standard frequency of 13.56 MHz has been very mature, and has also been widely used in smart phones, becoming one of the indispensable functions in smart phones.
  • NFC technology at 13.56MHz was promoted globally as a standard protocol.
  • the frequency consistency of NFC devices on the market is poor.
  • a method for controlling an output signal of an NFC device including: when the NFC device is in a monitored state, extracting a first clock signal of a monitoring device corresponding to the NFC device; controlling the NFC device based on the first clock The signal generates the output signal so that the output signal is frequency-aligned with the output signal of the listening device.
  • a terminal device comprising: a first clock module for extracting a first clock signal of an NFC device corresponding to a monitoring device; and an NFC device for generating an output signal based on the first clock signal , so that the frequency of the output signal is consistent with that of the monitoring device; the state processor is configured to control the first clock module to extract the first clock signal when the NFC device is in the monitored state, and controlling the NFC device to generate an output signal based on the first clock signal.
  • a computer-readable medium on which a computer program is stored, and when the computer program is executed by a processor, implements the above-mentioned method.
  • an electronic device characterized by comprising:
  • processors a processor
  • memory for storing one or more programs which, when executed by the one or more processors, cause the one or more processors to implement the above-described method.
  • An embodiment of the present disclosure provides a method for controlling an output signal of an NFC device, by monitoring the working state of the NFC device, and when the NFC device is in the monitored state, controls the NFC device to generate a signal according to the first clock signal of the monitoring device. output signal.
  • the output signal of the NFC device can be synchronized according to the first clock signal of the monitoring device, thereby generating an output signal whose frequency is consistent with that of the monitoring device, improving the compatibility of the NFC device, and avoiding the near-inconsistency caused by the frequency inconsistency. Field communication failure problem.
  • FIG. 1 shows a schematic diagram of an exemplary system architecture to which embodiments of the present disclosure may be applied;
  • FIG. 2 shows a schematic diagram of an electronic device to which an embodiment of the present disclosure can be applied
  • FIG. 3 schematically shows a flowchart of a method for controlling an output signal of an NFC device in an exemplary embodiment of the present disclosure
  • FIG. 4 schematically shows an NFC device in an exemplary embodiment of the present disclosure
  • FIG. 5 schematically shows a connection diagram of an NFC device in an exemplary embodiment of the present disclosure
  • FIG. 6 schematically shows a control method for an NFC device outputting a signal when a terminal device is in an on state in an exemplary embodiment of the present disclosure
  • FIG. 7 schematically shows a control method for an NFC device outputting a signal when a terminal device enters a shutdown process in an exemplary embodiment of the present disclosure
  • FIG. 8 schematically shows a schematic diagram of the composition of a terminal device in an exemplary embodiment of the present disclosure
  • FIG. 9 schematically shows a schematic composition diagram of another terminal device in an exemplary embodiment of the present disclosure.
  • Example embodiments will now be described more fully with reference to the accompanying drawings.
  • Example embodiments can be embodied in various forms and should not be construed as limited to the examples set forth herein; rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the concept of example embodiments to those skilled in the art.
  • the described features, structures, or characteristics may be combined in any suitable manner in one or more embodiments.
  • FIG. 1 shows a schematic diagram of a system architecture of an exemplary application environment of a method for controlling an output signal of an NFC device to which an embodiment of the present disclosure can be applied, and an apparatus for implementing the method.
  • the system architecture 100 may include a terminal 110 , a network 120 and a server 130 .
  • the network 120 is used to provide the medium for the communication link between the terminal device 110 and the server 130.
  • Network 120 may include various connection types, such as wired, wireless communication links, or fiber optic cables, among others.
  • the terminal 110 may be various electronic devices provided with NFC devices, such as mobile phones, tablet computers, digital cameras, personal computers, wearable devices, and the like. It should be understood that the numbers of terminal devices, networks and servers in FIG. 1 are merely illustrative. There can be any number of terminal devices, networks and servers according to implementation needs.
  • the server 130 may be a server cluster composed of multiple servers, or the like.
  • the method for controlling the output signal of the NFC device provided by the embodiment of the present disclosure is generally performed by the terminal 110 , and accordingly, the device for implementing the method is generally set in the terminal 110 .
  • the method for controlling the output signal of the NFC device provided by the embodiment of the present disclosure can also be executed by the server 130.
  • the device for implementing the method can also be set in the server 105. This is not particularly limited in the exemplary embodiment.
  • the server 130 may determine the working state of the NFC device in the terminal 110 through the network 120, and control the NFC device in the terminal 110 to execute the control method of the present disclosure.
  • Exemplary embodiments of the present disclosure provide an electronic device for implementing a control method for an output signal of an NFC device, which may be the terminal 110 or the server 130 in FIG. 1 .
  • the electronic device includes at least a processor and a memory, the memory is used for storing executable instructions of the processor, and the processor is configured to execute a control method of the NFC device outputting a signal by executing the executable instructions.
  • the mobile terminal 200 in FIG. 2 takes the mobile terminal 200 in FIG. 2 as an example to illustrate the structure of the electronic device. It will be understood by those skilled in the art that the configuration in Figure 2 can also be applied to stationary type devices, in addition to components specifically for mobile purposes.
  • the mobile terminal 200 may include more or fewer components than shown, or combine some components, or separate some components, or different component arrangements.
  • the illustrated components may be implemented in hardware, software, or a combination of software and hardware.
  • the interface connection relationship between the components is only schematically shown, and does not constitute a structural limitation of the mobile terminal 200 .
  • the mobile terminal 200 may also adopt an interface connection manner different from that in FIG. 2 , or a combination of multiple interface connection manners.
  • the mobile terminal 200 may specifically include: a processor 210, an internal memory 221, an external memory interface 222, a Universal Serial Bus (USB) interface 230, a charging management module 240, a power management module 241, Battery 242, Antenna 1, Antenna 2, Mobile Communication Module 250, Wireless Communication Module 260, Audio Module 270, Speaker 271, Receiver 272, Microphone 273, Headphone Interface 274, Sensor Module 280, Display Screen 290, Camera Module 291, Indication 292, a motor 293, a button 294, a subscriber identification module (SIM) card interface 295, a near field communication (NFC) module 296, and the like.
  • the sensor module 280 may include a depth sensor 2801, a pressure sensor 2802, a gyroscope sensor 2803, and the like.
  • the processor 210 may include one or more processing units, for example, the processor 210 may include an application processor (Application Processor, AP), a modem processor, a graphics processor (Graphics Processing Unit, GPU), an image signal processor (Image Signal Processor, ISP), controller, video codec, digital signal processor (Digital Signal Processor, DSP), baseband processor and/or Neural-Network Processing Unit (NPU), etc. Wherein, different processing units may be independent devices, or may be integrated in one or more processors.
  • an application processor Application Processor, AP
  • modem processor e.g., GPU
  • ISP image signal processor
  • ISP image Signal Processor
  • controller e.g., video codec
  • DSP Digital Signal Processor
  • NPU Neural-Network Processing Unit
  • NPU is a neural network (Neural-Network, NN) computing processor.
  • NN neural network
  • Applications such as intelligent cognition of the mobile terminal 200 can be implemented through the NPU, such as image recognition, face recognition, speech recognition, text understanding, and the like.
  • a memory is provided in the processor 210 .
  • the memory can store instructions for implementing six modular functions: detection instructions, connection instructions, information management instructions, analysis instructions, data transmission instructions, and notification instructions, and the execution is controlled by the processor 210 .
  • the charging management module 240 is used to receive charging input from the charger.
  • the power management module 241 is used for connecting the battery 242 , the charging management module 240 and the processor 210 .
  • the power management module 241 receives input from the battery 242 and/or the charging management module 240, and supplies power to the processor 210, the internal memory 221, the display screen 290, the camera module 291, the wireless communication module 260, and the like.
  • the wireless communication function of the mobile terminal 200 may be implemented by the antenna 1, the antenna 2, the mobile communication module 250, the wireless communication module 260, the modulation and demodulation processor, the baseband processor, and the like.
  • the antenna 1 and the antenna 2 are used for transmitting and receiving electromagnetic wave signals;
  • the mobile communication module 250 can provide a wireless communication solution including 2G/3G/4G/5G applied on the mobile terminal 200;
  • the modulation and demodulation processor can include Modulator and demodulator;
  • the wireless communication module 260 can provide applications on the mobile terminal 200 including wireless local area networks (Wireless Local Area Networks, WLAN) (such as wireless fidelity (Wireless Fidelity, Wi-Fi) network), Bluetooth (Bluetooth (Bluetooth) , BT) and other wireless communication solutions.
  • the antenna 1 of the mobile terminal 200 is coupled with the mobile communication module 250, and the antenna 2 is coupled with the wireless communication module 260, so that the mobile terminal 200 can communicate with the network and other devices through wireless communication technology.
  • the mobile terminal 200 implements a display function through a GPU, a display screen 290, an application processor, and the like.
  • the GPU is a microprocessor for image processing, and is connected to the display screen 290 and the application processor.
  • the GPU is used to perform mathematical and geometric calculations for graphics rendering.
  • Processor 210 may include one or more GPUs that execute program instructions to generate or alter display information.
  • the mobile terminal 200 may implement a shooting function through an ISP, a camera module 291, a video codec, a GPU, a display screen 290, an application processor, and the like.
  • the ISP is used to process the data fed back by the camera module 291; the camera module 291 is used to capture still images or videos; the digital signal processor is used to process digital signals, in addition to processing digital image signals, it can also process other digital signals; video
  • the codec is used to compress or decompress the digital video, and the mobile terminal 200 may also support one or more video codecs.
  • the external memory interface 222 can be used to connect an external memory card, such as a Micro SD card, to expand the storage capacity of the mobile terminal 200.
  • the external memory card communicates with the processor 210 through the external memory interface 222 to realize the data storage function. For example to save files like music, video etc in external memory card.
  • Internal memory 221 may be used to store computer executable program code, which includes instructions.
  • the internal memory 221 may include a storage program area and a storage data area.
  • the storage program area can store an operating system, an application program required for at least one function (such as a sound playback function, an image playback function, etc.), and the like.
  • the storage data area may store data (such as audio data, phone book, etc.) created during the use of the mobile terminal 200 and the like.
  • the internal memory 221 may include high-speed random access memory, and may also include non-volatile memory, such as at least one disk storage device, flash memory device, universal flash memory (Universal Flash Storage, UFS) and the like.
  • the processor 210 executes various functional applications and data processing of the mobile terminal 200 by executing instructions stored in the internal memory 221 and/or instructions stored in a memory provided in the processor.
  • the mobile terminal 200 may implement audio functions through an audio module 270, a speaker 271, a receiver 272, a microphone 273, an earphone interface 274, an application processor, and the like. Such as music playback, recording, etc.
  • the depth sensor 2801 is used to acquire depth information of the scene.
  • the depth sensor may be disposed in the camera module 291 .
  • the pressure sensor 2802 is used to sense pressure signals, and can convert the pressure signals into electrical signals.
  • the pressure sensor 2802 may be provided on the display screen 290 .
  • the gyro sensor 2803 may be used to determine the motion attitude of the mobile terminal 200 .
  • the angular velocity of the mobile terminal 200 about three axes ie, x, y and z axes
  • the gyro sensor 2803 can be used for image stabilization, navigation, and somatosensory game scenes.
  • sensors with other functions can also be set in the sensor module 280 according to actual needs, such as an air pressure sensor, a magnetic sensor, an acceleration sensor, a distance sensor, a proximity light sensor, a fingerprint sensor, a temperature sensor, a touch sensor, an ambient light sensor, and a bone conduction sensor. sensors, etc.
  • the mobile terminal 200 may also include other devices that provide auxiliary functions.
  • the keys 294 include a power-on key, a volume key, etc., and the user can input key signals related to user settings and function control of the mobile terminal 200 through key input.
  • Another example is the indicator 292, the motor 293, the SIM card interface 295, and the like.
  • an NFC module 296 is provided in the mobile terminal 200 .
  • the NFC module 296 can be used to perform frequency division or frequency multiplication processing on the input clock signal, and then perform matching with the NFC antenna through a matching circuit, and convert the processed clock signal into a radio frequency signal for output.
  • the industry standard frequency is 13.56MHz, but due to the different production and design capabilities of manufacturers, as well as possible production errors, the frequencies of NFC devices on the market are quite different. For example, some NFC devices used in access control systems have frequencies as low as 8MHz and as high as 17MHz.
  • the NFC device when the NFC device acts as an emulated card, it must send out an output signal that is consistent with the frequency of the NFC card reader.
  • the frequency of the output signal of the NFC device as an analog card and the frequency of the output signal of the NFC device as a card reader do not coincide. In this case, it is easy to have the problem that the analog card and the card reader cannot recognize each other, so that the near field communication cannot be realized.
  • the present disclosure provides a control method for an NFC device output signal and a control device for an NFC device output signal, which will be described in detail below.
  • FIG. 3 shows the flow of a method for controlling an output signal of an NFC device in this exemplary embodiment, including the following steps S310 and S320:
  • step S310 when the NFC device is in the monitored state, extract the first clock signal of the monitoring device corresponding to the NFC device.
  • the NFC device 400 may include an NFC chip 410 , a matching circuit 420 and an NFC antenna 430 .
  • the NFC chip 410 may have a built-in clock switch 411 , a phase locked loop circuit (Phase Locked Loop, hereinafter referred to as PLL), a frequency divider or frequency multiplier 412 , and a radio frequency transmitting module 413 .
  • PLL Phase Locked Loop
  • the working state of the NFC device needs to be determined.
  • the working state of the NFC device can be obtained by acquiring the instructions under the NCI (NFC Controller Interface) protocol and parsing the instructions under the NCI protocol. For example, if the acquired NCI instruction is an instruction to switch to the card emulation mode, then the NFC device is in a working state of the card emulation mode at this time.
  • NCI NFC Controller Interface
  • the above-mentioned monitored state may include at least one of a card emulation mode and a peer-to-peer passive mode, and may also include other working states that allow the NFC device to be in a state where information can be read by the monitored device. There is no special restriction on this.
  • near field communication refers to the communication between two NFC devices in a short distance (for example, within 10 centimeters) through a radio frequency field.
  • the two NFC devices are used as an active initiator and a passive receiver respectively to realize communication. process.
  • the card emulation mode there is usually one NFC device as the active device to monitor other NFC devices, namely the card reader; the other NFC device acts as an emulated card and monitors the emulated card through the card reader to read Get the information of the analog card.
  • step S320 the NFC device is controlled to generate an output signal based on the first clock signal, so that the frequency of the output signal is consistent with the frequency of the output signal of the listening device.
  • the PLL and the frequency divider or frequency multiplier in the NFC device may use the clock signal as a reference clock to perform preset frequency division or preset frequency multiplication processing to generate an output signal. For example, after inputting the 27.12MHz clock signal into the NFC device, the PLL and the frequency divider or frequency multiplier use the 27.12MHz clock signal as the reference clock to perform 1/2 frequency division processing to obtain an output signal of 13.56MHz. Therefore, after the PLL in the NFC device and the frequency divider or frequency multiplier's frequency division or frequency multiplication ratio are determined, the clock signal input to the NFC device will directly affect the frequency of the output signal. For example, in the above example, if the input clock signal is changed to 27MHz, the frequency of the corresponding output signal will be changed to 13.5MHz.
  • the frequency division and frequency multiplication ratios of the PLL and the frequency divider or frequency multiplier in the near field communication NFC device are usually the same, so in order to ensure the output of the NFC device in the monitored state
  • the signal frequency is consistent with the frequency of the monitoring device.
  • the NFC device can be realized by obtaining the first clock signal of the monitoring device, and then using the first clock signal as the reference clock of the NFC device to perform preset frequency division or frequency multiplication to generate an output signal.
  • the purpose of the frequency of the output signal being the same as the frequency of the monitoring equipment.
  • the frequency division and frequency multiplication ratios of the PLL and the frequency divider or frequency multiplier in the NFC devices on the market are the same, that is, in each NFC device, the frequency division and frequency multiplication rates are the same.
  • the preset frequency division or preset frequency multiplication process of the reference clock is the same.
  • the NFC device when the NFC device is in an active radiation state, it is equivalent to the listening device in the above embodiment, so at this time, a radio frequency of a certain frequency can be actively initiated according to the clock signal of the terminal device where the NFC device itself is located.
  • the terminal device is a mobile phone
  • the second clock signal of the clock module in the mobile phone can be directly obtained, and then the NFC device is controlled to generate an output signal, that is, a radio frequency, based on the second clock signal.
  • the specific generation process may be the same as the above-mentioned manner of generating the output signal according to the first clock signal, and details are not repeated here.
  • the above active radiation state may include at least one of a card reader mode and a point-to-point active mode, and may also include other working states that enable the NFC device to actively radiate radio frequency, which is not specifically limited in the present disclosure.
  • the NFC device can also be installed in terminal devices such as mobile phones and tablet computers.
  • terminal devices such as mobile phones and tablet computers.
  • the NFC device can be turned off when the display device is turned off. Set to monitored mode.
  • the display state of the display device in the terminal device can be obtained first, and when the display state is off, the passive state command under the NCI protocol is sent to the NFC device, so that the NFC device switches the working state to the monitored state.
  • the NFC device can also be set to a monitored state. That is, in response to the terminal device receiving the shutdown command, it can send a passive state command under the NCI protocol to the NFC device, so that the NFC device switches the working state to the monitored state before the terminal device is turned off.
  • the NFC device 400 can be connected to an auxiliary circuit or module in the terminal device.
  • the following takes the NFC device 400 being set in the terminal device as an example, referring to FIGS. 5 to 7 , to illustrate an exemplary implementation of the present disclosure. Examples are described in detail.
  • the two lines of the clock switch 411 in the NFC chip 410 can be respectively connected to the clock module 501 and the clock extraction circuit 502 of the terminal device 500 .
  • the radio frequency transmitting module 413 is connected to the NFC antenna 430 through the matching circuit 420 .
  • the clock module 501 can be used to provide the terminal device and the NFC with a second clock source, and the clock extraction circuit 502 can be used to extract the first clock signal from the signal of the listening device received by the NFC antenna 430 .
  • the matching circuit 420 is used for matching with the NFC antenna 430, and transmits the output signal generated by the NFC chip 410, and receives the signal of the monitoring device.
  • the processor 503 controls the above-mentioned NFC device 400 and the auxiliary circuit or module, so as to realize the above-mentioned control method for the output signal of the NFC device.
  • the above-mentioned processor 503 may control the above-mentioned NFC device 400 and auxiliary circuits or modules by setting an AP-side software module.
  • it could be an NFC state machine.
  • the NCI command of the NFC chip 410 is received through the NFC state machine, and the working state of the NFC chip 410 is parsed and acquired, for example, the active radiation mode or the monitored mode.
  • the clock switch 411 is controlled to connect to the channel connected to the clock module 501 by issuing the NCI instruction through the NFC state machine; when the NFC chip 410 is in the monitored mode, the clock switch 411 is controlled to connect to the connection The channel of the clock extraction circuit 502 .
  • the NCI command can interact through I2C, SPI or UART bus.
  • it can also control the clock switch to switch in other ways.
  • the clock switch can be switched through the level state of the GPIO. This disclosure does not make any special limitation on this.
  • the above-mentioned control method for the output signal of the NFC device can be implemented by the following steps:
  • Step S610 obtaining the current display state of the terminal device display device
  • Step S620 judging whether the display state is an open state
  • Step S630 when the display device is in an on state, obtain and parse the NCI command of the NFC chip to obtain the working state of the NFC chip;
  • Step S640 judging whether the working state of the NFC chip is the monitored state
  • Step S650 when the NFC chip is in the monitored state, the NFC state machine sends an instruction to make the NFC chip switch the clock switch to the channel connected to the clock extraction circuit, so as to generate an output signal according to the first clock signal;
  • Step S660 when the NFC chip is not in the monitored state, the NFC state machine sends an instruction to make the NFC chip switch the clock switch to the channel connected to the clock module to generate an output signal according to the second clock signal.
  • the above method further includes the following steps:
  • Step S710 the terminal device receives a shutdown instruction and performs a shutdown process
  • step S720 in the shutdown process, an instruction may be issued to the NFC chip to control the NFC chip to switch the clock switch to the channel connected to the clock extraction circuit, so as to generate an output signal according to the first clock signal.
  • Step S730 the terminal device is powered off.
  • the clock source of the NFC chip can be switched through the NFC state machine and the display state and switch state of the terminal device, so that when the NPF chip is in the monitored state, it can A clock signal sends out an output signal with the same frequency as the monitoring device, so as to improve the compatibility of the NFC device and avoid the problem of near field communication identification caused by frequency mismatch.
  • the embodiment of this example further provides a terminal device 800 , which includes a first clock module 810 , an NFC device 820 and a state processor 830 . in:
  • the first clock module 810 may be configured to extract the first clock signal corresponding to the monitoring device corresponding to the NFC device.
  • the first clock module 810 may be the clock extraction circuit 502 shown in FIG. 5 .
  • the NFC device 820 may be configured to generate an output signal based on the first clock signal, so that the frequency of the output signal is consistent with the output signal of the listening device.
  • the NFC device may be NFC device 400 as shown in FIG. 4 .
  • the state processor 830 may be configured to control the first clock module to extract the first clock signal when the NFC device is in the monitored state, and to control the NFC device to generate an output signal based on the first clock signal.
  • the above-mentioned terminal device 800 may further include a second clock module 840, and the second clock module 840 may be configured to provide a second clock signal corresponding to the terminal device.
  • the second clock module 810 may be the clock module 501 shown in FIG. 5 .
  • the NFC device 820 can also be used to generate an output signal based on the second clock signal
  • the state processor 830 can also be used to control the second clock module to provide a signal when the NFC device is in an active radiation state.
  • the terminal device corresponds to a second clock signal, and controls the NFC device to generate an output signal based on the second clock signal.
  • state processor 830 may include a processor and a switching device. 5, in order to realize the switching of the clock signal, a SPDT switch 411 can be set in the NFC chip 410, and then the processor 503 controls the SPDT switch 411 in the NFC chip 410 to perform channel switching, so that the NFC device
  • the clock signal input to the NFC device 400 is the first clock signal corresponding to the monitoring device obtained by the clock extraction circuit 502.
  • the clock signal input to the NFC device 400 is the first clock signal corresponding to the monitoring device obtained by the clock extraction circuit 502.
  • the second clock signal corresponding to the terminal device obtained by the clock module 501 .
  • state processor 830 may include only processors.
  • the NFC chip can establish a communication connection with the first clock module and the second clock module respectively, and then control the NFC chip through the processor, so that the NFC chip can directly read the clock signal from the corresponding source through the communication connection in different states After processing, the switching of the clock signal can be realized.
  • the monitored state includes at least one of a card emulation mode and a peer-to-peer passive mode.
  • the active radiation state includes at least one of a card reader mode and a peer-to-peer active mode.
  • the state processor 830 may also be used to obtain the current display state of the display device; when the display state is off, send a passive state instruction to the NFC device to switch the NFC device to the monitored state.
  • the state processor 830 may be further configured to send a passive state instruction to the NFC device in response to the terminal device receiving the shutdown instruction, so as to switch the NFC device to the monitored state.
  • the state processor 830 may also be configured to control the NFC device to perform a preset frequency division or preset frequency multiplication process using the clock signal as a reference clock to generate an output signal.
  • aspects of the present disclosure may be implemented as a system, method or program product. Therefore, various aspects of the present disclosure can be embodied in the following forms: a complete hardware implementation, a complete software implementation (including firmware, microcode, etc.), or a combination of hardware and software aspects, which may be collectively referred to herein as implementations "circuit", “module” or "system”.
  • Exemplary embodiments of the present disclosure also provide a computer-readable storage medium on which a program product capable of implementing the above-described method of the present specification is stored.
  • various aspects of the present disclosure can also be implemented in the form of a program product, which includes program code, when the program product runs on a terminal device, the program code is used to cause the terminal device to execute the above-mentioned procedures in this specification.
  • the steps described in the "Exemplary Methods" section according to various exemplary embodiments of the present disclosure for example, any one or more of the steps in FIG. 3 , FIG. 6 , or FIG. 7 may be performed.
  • the computer-readable medium shown in the present disclosure may be a computer-readable signal medium or a computer-readable storage medium, or any combination of the above two.
  • the computer readable storage medium can be, for example, but not limited to, an electrical, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus or device, or a combination of any of the above. More specific examples of computer readable storage media may include, but are not limited to, electrical connections having one or more wires, portable computer disks, hard disks, random access memory (RAM), read only memory (ROM), erasable Programmable read only memory (EPROM or flash memory), optical fiber, portable compact disk read only memory (CD-ROM), optical storage devices, magnetic storage devices, or any suitable combination of the above.
  • a computer-readable storage medium may be any tangible medium that contains or stores a program that can be used by or in conjunction with an instruction execution system, apparatus, or device.
  • a computer-readable signal medium may include a data signal propagated in baseband or as part of a carrier wave with computer-readable program code embodied thereon. Such propagated data signals may take a variety of forms, including but not limited to electromagnetic signals, optical signals, or any suitable combination of the foregoing.
  • a computer-readable signal medium can also be any computer-readable medium other than a computer-readable storage medium that can transmit, propagate, or transport the program for use by or in connection with the instruction execution system, apparatus, or device .
  • Program code embodied on a computer readable medium may be transmitted using any suitable medium including, but not limited to, wireless, wireline, optical fiber cable, RF, etc., or any suitable combination of the foregoing.
  • program code for performing the operations of the present disclosure may be written in any combination of one or more programming languages, including object-oriented programming languages such as Java, C++, etc., as well as conventional procedural Programming Language - such as the "C" language or similar programming language.
  • the program code may execute entirely on the user computing device, partly on the user device, as a stand-alone software package, partly on the user computing device and partly on a remote computing device, or entirely on the remote computing device or server execute on.
  • the remote computing device may be connected to the user computing device through any kind of network, including a local area network (LAN) or a wide area network (WAN), or may be connected to an external computing device (eg, using an Internet service provider business via an Internet connection).
  • LAN local area network
  • WAN wide area network

Abstract

一种NFC装置输出信号的控制方法、终端设备、计算机可读介质和电子设备,涉及数据处理技术领域。该方法包括:在NFC装置处于被监听状态时,提取NFC装置对应的监听设备的第一时钟信号;控制NFC装置基于第一时钟信号生成输出信号,以使输出信号与监听设备的输出信号频率一致。本公开可以根据监听设备的第一时钟信号进行同步,进而生成与监听设备频率适配的输出信号,提高了NFC装置的兼容性,同时避免了由于频率不适配造成的近场通信失败的问题。

Description

NFC装置输出信号控制方法及终端设备、介质和电子设备
交叉引用
本公开要求于2020年06月28日提交的申请号为202010601451.6名称为“NFC装置输出信号控制方法及终端设备、介质和电子设备”的中国专利申请的优先权,该中国专利申请的全部内容通过引用全部并入本文。
技术领域
本公开涉及数据处理技术领域,具体涉及一种NFC装置输出信号的控制方法、终端设备、计算机可读介质和电子设备。
背景技术
近场通信(Near Field Communication,以下简称NFC)技术是一种近距离无线通信技术,由非接触式识别技术和互联技术的融合演化而来。目前,该技术已经广泛应用于人们的生活当中,比如常见的地铁、公交、银联闪付、门禁系统等。
在相关技术中,标准频率13.56MHz的NFC技术已经非常成熟,在智能手机上也得到了广泛的应用,成为了智能手机中不可缺少的功能之一。为了使行业标准化,13.56MHz的NFC技术作为一种标准协议在全球进行了推广。然而,由于不同厂商的生产设计能力不同,因此导致市场上NFC装置的频率一致性较差。
公开内容
根据本公开的第一方面,提供一种NFC装置输出信号的控制方法,包括:在NFC装置处于被监听状态时,提取NFC装置对应的监听设备的第一时钟信号;控制NFC装置基于第一时钟信号生成输出信号,以使输出信号与监听设备的输出信号频率一致。
根据本公开的第二方面,提供一种终端设备,包括:第一时钟模块,用于提取NFC装置对应监听设备的第一时钟信号;NFC装置,用于基于所述第一时钟信号生成输出信号,以使所述输出信号与所述监听设备的输出信号频率一致;状态处理器,用于在所述NFC装置处于被监听状态时,控制所述第一时钟模块提取所述第一时钟信号,并控制所述NFC装置基于所述第一时钟信号生成输出信号。
根据本公开的第三方面,提供一种计算机可读介质,其上存储有计算机程序,计算机程序被处理器执行时实现上述的方法。
根据本公开的第四方面,提供一种电子设备,其特征在于,包括:
处理器;以及存储器,用于存储一个或多个程序,当一个或多个程序被一个或多个 处理器执行时,使得一个或多个处理器实现上述的方法。
本公开的一种实施例所提供的NFC装置输出信号的控制方法,通过对NFC装置的工作状态进行监听,并在NFC装置处于被监听状态时,根据监听设备的第一时钟信号控制NFC装置生成输出信号。在上述方法中,NFC装置的输出信号可以根据监听设备的第一时钟信号进行同步,进而生成与监听设备频率一致的输出信号,提高了NFC装置的兼容性,同时避免了由于频率不一致造成的近场通信失败的问题。
附图说明
图1示出了可以应用本公开实施例的一种示例性系统架构的示意图;
图2示出了可以应用本公开实施例的一种电子设备的示意图;
图3示意性示出本公开示例性实施例中一种NFC装置输出信号的控制方法的流程图;
图4示意性示出本公开示例性实施例中一种NFC装置;
图5示意性示出本公开示例性实施例中一种NFC装置的连接示意图;
图6示意性示出本公开示例性实施例中一种在终端设备处于开启状态时,NFC装置输出信号的控制方法;
图7示意性示出本公开示例性实施例中一种在终端设备进入关机流程时,NFC装置输出信号的控制方法;
图8示意性示出本公开示例性实施例中一种终端设备的组成示意图;
图9示意性示出本公开示例性实施例中另一种终端设备的组成示意图。
具体实施方式
现在将参考附图更全面地描述示例实施方式。然而,示例实施方式能够以多种形式实施,且不应被理解为限于在此阐述的范例;相反,提供这些实施方式使得本公开将更加全面和完整,并将示例实施方式的构思全面地传达给本领域的技术人员。所描述的特征、结构或特性可以以任何合适的方式结合在一个或更多实施方式中。
此外,附图仅为本公开的示意性图解,并非一定是按比例绘制。图中相同的附图标记表示相同或类似的部分,因而将省略对它们的重复描述。附图中所示的一些方框图是功能实体,不一定必须与物理或逻辑上独立的实体相对应。可以采用软件形式来实现这些功能实体,或在一个或多个硬件模块或集成电路中实现这些功能实体,或在不同网络和/或处理器装置和/或微控制器装置中实现这些功能实体。
图1示出了可以应用本公开实施例的一种NFC装置输出信号的控制方法及用于实现该方法的装置的示例性应用环境的系统架构的示意图。
如图1所示,系统架构100可以包括终端110、网络120和服务器130。网络120用 以在终端设备110和服务器130之间提供通信链路的介质。网络120可以包括各种连接类型,例如有线、无线通信链路或者光纤电缆等等。终端110可以是各种设置有NFC装置的电子设备,例如,手机、平板电脑、数码相机、个人电脑、穿戴设备等。应该理解,图1中的终端设备、网络和服务器的数目仅仅是示意性的。根据实现需要,可以具有任意数目的终端设备、网络和服务器。比如服务器130可以是多个服务器组成的服务器集群等。
本公开实施例所提供的NFC装置输出信号的控制方法一般由终端110执行,相应地,用于实现该方法的装置一般设置于终端110中。但本领域技术人员容易理解的是,本公开实施例所提供的NFC装置输出信号的控制方法也可以由服务器130执行,相应的,用于实现该方法的装置也可以设置于服务器105中,本示例性实施例中对此不做特殊限定。举例而言,在一种示例性实施例中,可以是服务器130通过网络120确定终端110中NFC装置的工作状态,并控制终端110中的NFC装置执行本公开的控制方法。
本公开的示例性实施方式提供一种用于实现NFC装置输出信号的控制方法的电子设备,其可以是图1中的终端110或服务器130。该电子设备至少包括处理器和存储器,存储器用于存储处理器的可执行指令,处理器配置为经由执行可执行指令来执行NFC装置输出信号的控制方法。
下面以图2中的移动终端200为例,对电子设备的构造进行示例性说明。本领域技术人员应当理解,除了特别用于移动目的的部件之外,图2中的构造也能够应用于固定类型的设备。在另一些实施方式中,移动终端200可以包括比图示更多或更少的部件,或者组合某些部件,或者拆分某些部件,或者不同的部件布置。图示的部件可以以硬件、软件或软件和硬件的组合实现。各部件间的接口连接关系只是示意性示出,并不构成对移动终端200的结构限定。在另一些实施方式中,移动终端200也可以采用与图2不同的接口连接方式,或多种接口连接方式的组合。
如图2所示,移动终端200具体可以包括:处理器210、内部存储器221、外部存储器接口222、通用串行总线(Universal Serial Bus,USB)接口230、充电管理模块240、电源管理模块241、电池242、天线1、天线2、移动通信模块250、无线通信模块260、音频模块270、扬声器271、受话器272、麦克风273、耳机接口274、传感器模块280、显示屏290、摄像模组291、指示器292、马达293、按键294、用户标识模块(subscriber identification module,SIM)卡接口295,以及近场通信(NFC)模块296等。其中传感器模块280可以包括深度传感器2801、压力传感器2802、陀螺仪传感器2803等。
处理器210可以包括一个或多个处理单元,例如:处理器210可以包括应用处理器(Application Processor,AP)、调制解调处理器、图形处理器(Graphics Processing Unit,GPU)、图像信号处理器(Image Signal Processor,ISP)、控制器、视频编解码器、数字信号处理器(Digital Signal Processor,DSP)、基带处理器和/或神经网络处理器(Neural-Network Processing Unit,NPU)等。其中,不同的处理单元可以是独立的器件,也可以集成在一个或多个处理器中。
NPU为神经网络(Neural-Network,NN)计算处理器,通过借鉴生物神经网络结构,例如借鉴人脑神经元之间传递模式,对输入信息快速处理,还可以不断的自学习。通过NPU可以实现移动终端200的智能认知等应用,例如:图像识别,人脸识别,语音识别,文本理解等。
处理器210中设置有存储器。存储器可以存储用于实现六个模块化功能的指令:检测指令、连接指令、信息管理指令、分析指令、数据传输指令和通知指令,并由处理器210来控制执行。
充电管理模块240用于从充电器接收充电输入。电源管理模块241用于连接电池242、充电管理模块240与处理器210。电源管理模块241接收电池242和/或充电管理模块240的输入,为处理器210、内部存储器221、显示屏290、摄像模组291和无线通信模块260等供电。
移动终端200的无线通信功能可以通过天线1、天线2、移动通信模块250、无线通信模块260、调制解调处理器以及基带处理器等实现。其中,天线1和天线2用于发射和接收电磁波信号;移动通信模块250可以提供应用在移动终端200上的包括2G/3G/4G/5G等无线通信的解决方案;调制解调处理器可以包括调制器和解调器;无线通信模块260可以提供应用在移动终端200上的包括无线局域网(Wireless Local Area Networks,WLAN)(如无线保真(Wireless Fidelity,Wi-Fi)网络)、蓝牙(Bluetooth,BT)等无线通信的解决方案。在一些实施例中,移动终端200的天线1和移动通信模块250耦合,天线2和无线通信模块260耦合,使得移动终端200可以通过无线通信技术与网络以及其他设备通信。
移动终端200通过GPU、显示屏290及应用处理器等实现显示功能。GPU为图像处理的微处理器,连接显示屏290和应用处理器。GPU用于执行数学和几何计算,用于图形渲染。处理器210可包括一个或多个GPU,其执行程序指令以生成或改变显示信息。
移动终端200可以通过ISP、摄像模组291、视频编解码器、GPU、显示屏290及应用处理器等实现拍摄功能。其中,ISP用于处理摄像模组291反馈的数据;摄像模组291用于捕获静态图像或视频;数字信号处理器用于处理数字信号,除了可以处理数字图像信号,还可以处理其他数字信号;视频编解码器用于对数字视频压缩或解压缩,移动终端200还可以支持一种或多种视频编解码器。
外部存储器接口222可以用于连接外部存储卡,例如Micro SD卡,实现扩展移动终端200的存储能力。外部存储卡通过外部存储器接口222与处理器210通信,实现数据存储功能。例如将音乐,视频等文件保存在外部存储卡中。
内部存储器221可以用于存储计算机可执行程序代码,可执行程序代码包括指令。内部存储器221可以包括存储程序区和存储数据区。其中,存储程序区可存储操作系统,至少一个功能所需的应用程序(比如声音播放功能,图像播放功能等)等。存储数据区可存储移动终端200使用过程中所创建的数据(比如音频数据,电话本等)等。此外,内部存储器221可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储 器件,闪存器件,通用闪存存储器(Universal Flash Storage,UFS)等。处理器210通过运行存储在内部存储器221的指令和/或存储在设置于处理器中的存储器的指令,执行移动终端200的各种功能应用以及数据处理。
移动终端200可以通过音频模块270、扬声器271、受话器272、麦克风273、耳机接口274及应用处理器等实现音频功能。例如音乐播放、录音等。
深度传感器2801用于获取景物的深度信息。在一些实施例中,深度传感器可以设置于摄像模组291。
压力传感器2802用于感受压力信号,可以将压力信号转换成电信号。在一些实施例中,压力传感器2802可以设置于显示屏290。压力传感器2802的种类很多,如电阻式压力传感器,电感式压力传感器,电容式压力传感器等。
陀螺仪传感器2803可以用于确定移动终端200的运动姿态。在一些实施方式中,可以通过陀螺仪传感器2803确定移动终端200围绕三个轴(即,x,y和z轴)的角速度。陀螺仪传感器2803可以用于拍摄防抖、导航、体感游戏场景等。
此外,还可以根据实际需要在传感器模块280中设置其他功能的传感器,例如气压传感器、磁传感器、加速度传感器、距离传感器、接近光传感器、指纹传感器、温度传感器、触摸传感器、环境光传感器、骨传导传感器等。
移动终端200中还可以包括其它提供辅助功能的设备。例如,按键294包括开机键,音量键等,用户可以通过按键输入,产生与移动终端200的用户设置以及功能控制有关的键信号输入。再如,指示器292、马达293、SIM卡接口295等。
此外,移动终端200中设有NFC模块296。NFC模块296可以用于对输入的时钟信号进行分频或者倍频处理,然后通过匹配电路和NFC天线进行匹配,将处理后的时钟信号转换为射频信号输出。
在相关技术中,行业标准频率为13.56MHz,但是由于厂商的生产能力、设计能力不同,以及可能存在的生产误差,导致市场上出现的NFC装置的频率存在很大差别。例如,一些应用于门禁系统的NFC装置,其频率有低至8MHz,以及高至17MHz的。
以NFC装置的卡模拟模式为例,在NFC装置作为模拟卡时,必须发出与NFC读卡器频率一致的输出信号。然而,由于上述原因,很可能出现作为模拟卡的NFC装置输出信号的频率与作为读卡器的NFC装置输出信号的频率不一致的情况。在这种情况下,很容易出现模拟卡与读卡器无法相互识别,进而无法实现近场通信的问题。
基于上述问题,本公开提供了一种NFC装置输出信号的控制方法和NFC装置输出信号的控制装置,以下进行具体说明。
图3示出了本示例性实施方式中一种NFC装置输出信号的控制方法的流程,包括以下步骤S310和S320:
在步骤S310中,在NFC装置处于被监听状态时,提取NFC装置对应的监听设备的第一时钟信号。
在一示例性实施例中,参照图4所示,NFC装置400可以包括NFC芯片410、匹配电路420和NFC天线430。其中,NFC芯片410中可以内置时钟切换开关411,锁相环电路(Phase Locked Loop,以下简称PLL)和分频器或倍频器412,以及射频发射模块413。
在一示例性实施例中,在进行上述方法之前,需要确定NFC装置的工作状态。具体的,NFC装置的工作状态可以通过获取NCI(NFC Controller Interface)协议下的指令,并对NCI协议下的指令进行解析得到。例如,获取到的NCI指令为切换至卡模拟模式的指令,则此时NFC装置处于卡模拟模式这种工作状态下。
在一示例性实施例中,上述被监听状态可以包括卡模拟模式和点对点被动模式中的至少一种,也可以包括其它使该NFC装置处于可以被监听设备读取信息的工作状态,本公开对此不做特殊限定。
需要说明的是,近场通信是指两个处于近距离(例如10厘米以内)的NFC装置通过射频场进行通信,通常两个NFC装置中会分别作为主动发起装置和被动接收装置,以实现通信过程。例如,在卡模拟模式中,通常会有一个NFC装置作为主动装置对其他NFC装置进行监听,即读卡器;另一NFC装置则作为模拟卡,通过读卡器对模拟卡进行监听,以读取模拟卡的信息。
在步骤S320中,控制NFC装置基于第一时钟信号生成输出信号,以使输出信号与监听设备的输出信号频率一致。
其中,NFC装置中的PLL和分频器或倍频器可以以时钟信号为参考时钟进行预设分频或预设倍频处理,生成输出信号。例如,将27.12MHz的时钟信号输入NFC装置后,PLL和分频器或倍频器以27.12MHz的时钟信号为参考时钟,进行1/2的分频处理,得到13.56MHz的输出信号。因此,当NFC装置中的PLL和分频器或倍频器的分频或倍频的倍率确定后,输入NFC装置的时钟信号将直接影响输出信号的频率。例如,在上例中,若输入的时钟信号变为27MHz时,对应输出信号的频率将会变为13.5MHz。
在一示例性实施例中,近场通信NFC装置中PLL和分频器或倍频器的分频、倍频的倍率通常情况下是相同的,因此为了保证被监听状态下的NFC装置的输出信号频率与监听设备的频率一致,可以通过获取监听设备的第一时钟信号,然后以第一时钟信号为NFC装置的参考时钟进行预设分频率或倍频处理生成输出信号的方式,实现NFC装置输出信号的频率与监听设备的频率一致的目的。
需要说明是,由于存在13.56MHz的技术标准,因此通常情况下,市场上NFC装置中的PLL和分频器或倍频器的分频、倍频的倍率是相同的,即各NFC装置中对参考时钟的预设分频或预设倍频处理过程相同。
在一示例性实施例中,当NFC装置处于主动辐射状态时,相当于上述实施例中的监听设备,因此此时可以根据NFC装置本身所在终端设备的时钟信号主动发起一定频率的射频。例如,在终端设备为手机时,可以直接获取手机中时钟模块的第二时钟信号,然后控制NFC装置基于第二时钟信号生成输出信号,即射频。具体的生成过程可以与上述根 据第一时钟信号生成输出信号的方式相同,在此不再赘述。
其中,上述主动辐射状态可以包括读卡器模式和点对点主动模式中的至少一种,也可以包括其它使该NFC装置处于主动辐射射频的工作状态,本公开对此不做特殊限定。
此外,NFC装置还可以设置于手机、平板电脑等终端设备中,当其处于带有显示装置的终端设备时,为了节约电量、降低辐射等原因,可以在显示装置处于关闭状态时,将NFC装置设置为被监听模式。此时,可以先获取终端设备中显示装置的显示状态,在显示状态为关闭状态时,向NFC装置发送NCI协议下的被动状态指令,使得NFC装置将工作状态切换至被监听状态。
进一步的,在手机、平板电脑等终端设备处于关机状态时,NFC装置也可以被设置为被监听状态。即响应于终端设备接收到关机指令,可以向NFC装置发送NCI协议下的被动状态指令,使得NFC装置在终端设备关机之前将工作状态切换至被监听状态。
为了实现上述方法,可以将NFC装置400与终端设备中的辅助电路或者模块相互连接,以下以NFC装置400设置于终端设备中为例,参照图5至图7,对本公开的一种示例性实施例进行详细阐述。
参照图5所示,可以将NFC芯片410中的时钟切换开关411的两条线路分别与终端设备500的时钟模块501和时钟提取电路502相连。射频发射模块413则通过匹配电路420与NFC天线430相连。其中,时钟模块501可以用于向终端设备及NFC提供第二时钟源,时钟提取电路502可以用于在NFC天线430接收到的监听设备的信号中提取第一时钟信号。匹配电路420则用于与NFC天线430进行匹配,并将NFC芯片410的生成的输出信号发射出去,并且接收监听设备的信号。然后通过处理器503对上述NFC装置400和辅助电路或模块进行控制,实现上述NFC装置输出信号的控制方法。
其中,上述处理器503可以通过设置一个AP侧的软件模块对上述NFC装置400和辅助电路或模块进行控制。例如,可以是NFC状态机。具体的,通过NFC状态机接收NFC芯片410的NCI指令,解析并获取NFC芯片410的工作状态,例如主动辐射模式或者被监听模式。在NFC芯片410处于主动辐射状态时,通过NFC状态机下发NCI指令控制时钟切换开关411接通连接时钟模块501的通道;在NFC芯片410处于被监听模式时,控制时钟切换开关411接通连接时钟提取电路502的通道。
需要说明的是,NCI指令可以通过I2C、SPI或者UART总线进行交互,此外,还可以通过其他方式控制时钟切换开关进行切换,例如,可以通过GPIO的电平状态的高低控制时钟切换开关进行切换,本公开对此不做特殊限定。
假设终端设备处于开机状态,参照图6所示,上述NFC装置输出信号的控制方法可以通过如下步骤实现:
步骤S610,获取终端设备显示装置当前的显示状态;
步骤S620,判断显示状态是否为开启状态;
步骤S630,在显示装置处于开启状态时,获取并解析NFC芯片的NCI指令,得到 NFC芯片的工作状态;
步骤S640,判断NFC芯片的工作状态是否为被监听状态;
步骤S650,在NFC芯片处于被监听状态时,NFC状态机下发指令使得NFC芯片将时钟切换开关切换至连接时钟提取电路的通道,以根据第一时钟信号生成输出信号;
步骤S660,在NFC芯片没有处于被监听状态时,NFC状态机下发指令使得NFC芯片将时钟切换开关切换至连接时钟模块的通道,以根据第二时钟信号生成输出信号。
参照图7所示,上述方法还包括以下步骤:
步骤S710,终端设备接收到关机指令进行关机流程;
步骤S720,关机流程中,可以向NFC芯片下发指令,控制NFC芯片将时钟切换开关切换至连接时钟提取电路的通道,以根据第一时钟信号生成输出信号。
步骤S730,终端设备关机。
综上,本示例性实施方式中,可以通过NFC状态机以及终端设备的显示状态和开关机状态对NFC芯片的时钟源进行切换,使得在NPF芯片处于被监听状态时,可以根据监听设备的第一时钟信号发出与监听设备频率一致的输出信号,以提高NFC装置的兼容性,避免出现频率不适配造成的近场通信识别的问题。
需要注意的是,上述附图仅是根据本公开示例性实施例的方法所包括的处理的示意性说明,而不是限制目的。易于理解,上述附图所示的处理并不表明或限制这些处理的时间顺序。另外,也易于理解,这些处理可以是例如在多个模块中同步或异步执行的。
进一步的,参考图8所示,本示例的实施方式中还提供一种终端设备800,包括第一时钟模块810、NFC装置820和状态处理器830。其中:
第一时钟模块810可以用于提取所述NFC装置对应监听设备对应的第一时钟信号。例如,第一时钟模块810可以为图5中所示时钟提取电路502。
NFC装置820可以用于基于所述第一时钟信号生成输出信号,以使所述输出信号与所述监听设备的输出信号频率一致。例如,NFC装置可以是如图4所示的NFC装置400。
状态处理器830可以用于在所述NFC装置处于被监听状态时,控制所述第一时钟模块提取所述第一时钟信号,并控制所述NFC装置基于所述第一时钟信号生成输出信号。
在一示例性实施例中,参照图9所示,上述终端设备800还可以包括第二时钟模块840,该第二时钟模块840可以用于提供所述终端设备对应的第二时钟信号。例如,第二时钟模块810可以为图5中所示时钟模块501。
此时,上述NFC装置820还可以用于基于所述第二时钟信号生成输出信号,上述状态处理器830还可以用于在所述NFC装置处于主动辐射状态时,控制所述第二时钟模块提供所述终端设备对应的第二时钟信号,并控制所述NFC装置基于所述第二时钟信号生成输出信号。
例如,状态处理器830可以包括处理器和切换装置。参照图5所示,为了实现时钟信号的切换,可以在NFC芯片410中设置单刀双掷开关411,然后通过处理器503控制NFC 芯片410中的单刀双掷开关411进行通路切换,使得在NFC装置400处于被监听状态时,输入NFC装置400的时钟信号为通过时钟提取电路502得到的监听设备对应的第一时钟信号,在NFC装置400处于主动辐射状态时,输入NFC装置400的时钟信号为通过时钟模块501得到的终端设备对应的第二时钟信号。
需要说明的是,在一示例性实施例中,上述单刀双掷开关411的切换功能也可以通过其他方式实现。例如,状态处理器830可以只包括处理器。此时,NFC芯片可以与第一时钟模块和第二时钟模块分别建立通信连接,然后通过处理器控制NFC芯片,使得NFC芯片在不同的状态下通过通信连接的方式直接读取对应来源的时钟信号进行处理,即可实现时钟信号的切换。
在一示例性实施例中,被监听状态包括卡模拟模式和点对点被动模式中的至少一种。
在一示例性实施例中,主动辐射状态包括读卡器模式和点对点主动模式中的至少一种。
在一示例性实施例中,状态处理器830还可以用于获取显示装置当前的显示状态;在显示状态为关闭状态时,向NFC装置发送被动状态指令,以使NFC装置切换至被监听状态。
在一示例性实施例中,状态处理器830还可以用于响应于终端设备接收到关机指令,向NFC装置发送被动状态指令,以使NFC装置切换至被监听状态。
在一示例性实施例中,状态处理器830还可以用于控制NFC装置以时钟信号为参考时钟进行预设分频或预设倍频处理,生成输出信号。
上述终端设备中的具体细节在方法部分实施方式中已经详细说明,未披露的细节内容可以参见方法部分的实施方式内容,因而不再赘述。
所属技术领域的技术人员能够理解,本公开的各个方面可以实现为系统、方法或程序产品。因此,本公开的各个方面可以具体实现为以下形式,即:完全的硬件实施方式、完全的软件实施方式(包括固件、微代码等),或硬件和软件方面结合的实施方式,这里可以统称为“电路”、“模块”或“系统”。
本公开的示例性实施方式还提供了一种计算机可读存储介质,其上存储有能够实现本说明书上述方法的程序产品。在一些可能的实施方式中,本公开的各个方面还可以实现为一种程序产品的形式,其包括程序代码,当程序产品在终端设备上运行时,程序代码用于使终端设备执行本说明书上述“示例性方法”部分中描述的根据本公开各种示例性实施方式的步骤,例如可以执行图3、图6或图7中任意一个或多个步骤。
需要说明的是,本公开所示的计算机可读介质可以是计算机可读信号介质或者计算机可读存储介质或者是上述两者的任意组合。计算机可读存储介质例如可以是——但不限于——电、磁、光、电磁、红外线、或半导体的系统、装置或器件,或者任意以上的组合。计算机可读存储介质的更具体的例子可以包括但不限于:具有一个或多个导线的电连接、便携式计算机磁盘、硬盘、随机访问存储器(RAM)、只读存储器(ROM)、可擦式可编程只读存储器(EPROM或闪存)、光纤、便携式紧凑磁盘只读存储器(CD-ROM)、光 存储器件、磁存储器件、或者上述的任意合适的组合。
在本公开中,计算机可读存储介质可以是任何包含或存储程序的有形介质,该程序可以被指令执行系统、装置或者器件使用或者与其结合使用。而在本公开中,计算机可读信号介质可以包括在基带中或者作为载波一部分传播的数据信号,其中承载了计算机可读的程序代码。这种传播的数据信号可以采用多种形式,包括但不限于电磁信号、光信号或上述的任意合适的组合。计算机可读的信号介质还可以是计算机可读存储介质以外的任何计算机可读介质,该计算机可读介质可以发送、传播或者传输用于由指令执行系统、装置或者器件使用或者与其结合使用的程序。计算机可读介质上包含的程序代码可以用任何适当的介质传输,包括但不限于:无线、电线、光缆、RF等等,或者上述的任意合适的组合。
此外,可以以一种或多种程序设计语言的任意组合来编写用于执行本公开操作的程序代码,程序设计语言包括面向对象的程序设计语言—诸如Java、C++等,还包括常规的过程式程序设计语言—诸如“C”语言或类似的程序设计语言。程序代码可以完全地在用户计算设备上执行、部分地在用户设备上执行、作为一个独立的软件包执行、部分在用户计算设备上部分在远程计算设备上执行、或者完全在远程计算设备或服务器上执行。在涉及远程计算设备的情形中,远程计算设备可以通过任意种类的网络,包括局域网(LAN)或广域网(WAN),连接到用户计算设备,或者,可以连接到外部计算设备(例如利用因特网服务提供商来通过因特网连接)。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本公开的其他实施例。本申请旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限。

Claims (20)

  1. 一种NFC装置输出信号的控制方法,其中,所述方法包括:
    在NFC装置处于被监听状态时,提取所述NFC装置对应的监听设备的第一时钟信号;
    控制所述NFC装置基于所述第一时钟信号生成输出信号,以使所述输出信号与所述监听设备的输出信号频率一致。
  2. 根据权利要求1所述的方法,其中,所述被监听状态包括卡模拟模式和点对点被动模式中的至少一种。
  3. 根据权利要求1所述的方法,其中,所述NFC装置设置于终端设备中,所述方法还包括:
    在所述NFC装置处于主动辐射状态时,获取所述终端设备的第二时钟信号;
    控制所述NFC装置基于所述第二时钟信号生成输出信号。
  4. 根据权利要求3所述的方法,其中,所述控制所述NFC装置基于所述第二时钟信号生成输出信号,包括:
    控制所述NFC装置以所述第二时钟信号为参考时钟进行预设分频或预设倍频处理,生成输出信号。
  5. 根据权利要求3所述的方法,其中,所述主动辐射状态包括读卡器模式和点对点主动模式中的至少一种。
  6. 根据权利要求1所述的方法,其中,所述NFC装置设置于终端设备,且所述终端设备包括显示装置时,所述方法还包括:
    获取所述显示装置当前的显示状态;
    在所述显示状态为关闭状态时,向所述NFC装置发送被动状态指令,以使所述NFC装置切换至被监听状态。
  7. 根据权利要求1所述的方法,其中,所述NFC装置设置于终端设备,在所述终端设备关机之前,所述方法还包括:
    响应于所述终端设备接收到关机指令,向所述NFC装置发送被动状态指令,以使所述NFC装置切换至被监听状态。
  8. 根据权利要求1所述的方法,其中,所述控制所述NFC装置基于所述第一时钟信号生成输出信号,包括:
    控制所述NFC装置以所述第一时钟信号为参考时钟进行预设分频或预设倍频处理,生成输出信号。
  9. 根据权利要求1所述的方法,其中,所述NFC装置包括NFC芯片、匹配电路和NFC天线。
  10. 一种终端设备,其中,所述终端设备包括:
    第一时钟模块,用于提取NFC装置对应监听设备的第一时钟信号;
    NFC装置,用于基于所述第一时钟信号生成输出信号,以使所述输出信号与所述监听设备的输出信号频率一致;
    状态处理器,用于在所述NFC装置处于被监听状态时,控制所述第一时钟模块提取所述第一时钟信号,并控制所述NFC装置基于所述第一时钟信号生成输出信号。
  11. 根据权利要求10所述的终端设备,其中,所述被监听状态包括卡模拟模式和点对点被动模式中的至少一种。
  12. 根据权利要求10所述的终端设备,其中,所述终端设备还包括:
    第二时钟模块,用于提供所述终端设备对应的第二时钟信号;
    其中,所述NFC装置还用于基于所述第二时钟信号生成输出信号;所述状态处理器还用于在所述NFC装置处于主动辐射状态时,控制所述第二时钟模块提供所述终端设备对应的第二时钟信号,并控制所述NFC装置基于所述第二时钟信号生成输出信号。
  13. 根据权利要求12所述的终端设备,其中,所述状态处理器还用于控制所述NFC装置以所述第二时钟信号为参考时钟进行预设分频或预设倍频处理,生成输出信号。
  14. 根据权利要求12所述的终端设备,其中,所述主动辐射状态包括读卡器模式和点对点主动模式中的至少一种。
  15. 根据权利要求10所述的终端设备,其中,所述终端设备包括显示装置时,所述状态处理器还用于获取所述显示装置当前的显示状态;在所述显示状态为关闭状态时,向所述NFC装置发送被动状态指令,以使所述NFC装置切换至被监听状态。
  16. 根据权利要求10所述的终端设备,其中,在所述终端设备关机之前,所述状态处理器还用于响应于终端设备接收到关机指令,向NFC装置发送被动状态指令,以使NFC装置切换至被监听状态。
  17. 根据权利要求10所述的终端设备,其中,所述状态处理器还用于控制所述NFC装置以所述第一时钟信号为参考时钟进行预设分频或预设倍频处理,生成输出信号。
  18. 根据权利要求10所述的终端设备,其中,所述NFC装置包括NFC芯片、匹配电路和NFC天线。
  19. 一种计算机可读介质,其上存储有计算机程序,其中,所述计算机程序被处理器执行时实现如权利要求1至9中任一项所述的方法。
  20. 一种电子设备,其中,包括:
    处理器;以及
    存储器,用于存储所述处理器的可执行指令;
    其中,所述处理器配置为经由执行所述可执行指令来执行权利要求1至9任一项所述的方法。
PCT/CN2021/090984 2020-06-28 2021-04-29 Nfc装置输出信号控制方法及终端设备、介质和电子设备 WO2022001343A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010601451.6 2020-06-28
CN202010601451.6A CN111711472A (zh) 2020-06-28 2020-06-28 Nfc装置输出信号控制方法及终端设备、介质和电子设备

Publications (1)

Publication Number Publication Date
WO2022001343A1 true WO2022001343A1 (zh) 2022-01-06

Family

ID=72544564

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/090984 WO2022001343A1 (zh) 2020-06-28 2021-04-29 Nfc装置输出信号控制方法及终端设备、介质和电子设备

Country Status (2)

Country Link
CN (1) CN111711472A (zh)
WO (1) WO2022001343A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114696875A (zh) * 2022-03-24 2022-07-01 台达电子企业管理(上海)有限公司 无线通讯装置及其控制方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111711472A (zh) * 2020-06-28 2020-09-25 Oppo广东移动通信有限公司 Nfc装置输出信号控制方法及终端设备、介质和电子设备
CN112469141B (zh) * 2020-11-27 2022-08-26 维沃移动通信有限公司 无线连接方法、装置、设备及可读存储介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106656450A (zh) * 2015-10-28 2017-05-10 三星电子株式会社 非接触式通信装置以及具有其的电子系统
WO2017133980A1 (en) * 2016-02-05 2017-08-10 Panthronics Ag Clock synchronizer to synchronize a device clock with a clock of a remote device
CN107547111A (zh) * 2016-06-29 2018-01-05 马克西姆综合产品公司 用于利用有源负载调制进行近场通信的时钟恢复系统和方法
US20180040953A1 (en) * 2016-08-03 2018-02-08 Nxp B.V. Modulation control through adaptive phase adjustment
CN108141251A (zh) * 2015-12-04 2018-06-08 华为国际有限公司 Nfc卡仿真模式的异步传输
CN110197093A (zh) * 2019-05-14 2019-09-03 惠州Tcl移动通信有限公司 移动终端nfc读卡器通信控制方法、存储介质及终端
CN111711472A (zh) * 2020-06-28 2020-09-25 Oppo广东移动通信有限公司 Nfc装置输出信号控制方法及终端设备、介质和电子设备

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001126038A (ja) * 1999-10-29 2001-05-11 Toshiba Corp リーダライタとリーダライタの通信条件設定方法
US9998176B2 (en) * 2014-08-11 2018-06-12 Qualcomm Incorporated Near field communication mode adjustment based on a screen state
US10164766B1 (en) * 2015-10-01 2018-12-25 Maxim Integrated Products, Inc. Advanced synchronization schemes for NFC card emulation mode, peer-to-peer mode and RFID tag design
CN107809263B (zh) * 2016-09-08 2021-04-27 三星电子株式会社 近场通信装置
FR3077942A1 (fr) * 2018-02-15 2019-08-16 Stmicroelectronics (Rousset) Sas Controleur nfc

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106656450A (zh) * 2015-10-28 2017-05-10 三星电子株式会社 非接触式通信装置以及具有其的电子系统
CN108141251A (zh) * 2015-12-04 2018-06-08 华为国际有限公司 Nfc卡仿真模式的异步传输
WO2017133980A1 (en) * 2016-02-05 2017-08-10 Panthronics Ag Clock synchronizer to synchronize a device clock with a clock of a remote device
CN107547111A (zh) * 2016-06-29 2018-01-05 马克西姆综合产品公司 用于利用有源负载调制进行近场通信的时钟恢复系统和方法
US20180040953A1 (en) * 2016-08-03 2018-02-08 Nxp B.V. Modulation control through adaptive phase adjustment
CN110197093A (zh) * 2019-05-14 2019-09-03 惠州Tcl移动通信有限公司 移动终端nfc读卡器通信控制方法、存储介质及终端
CN111711472A (zh) * 2020-06-28 2020-09-25 Oppo广东移动通信有限公司 Nfc装置输出信号控制方法及终端设备、介质和电子设备

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114696875A (zh) * 2022-03-24 2022-07-01 台达电子企业管理(上海)有限公司 无线通讯装置及其控制方法

Also Published As

Publication number Publication date
CN111711472A (zh) 2020-09-25

Similar Documents

Publication Publication Date Title
WO2022001343A1 (zh) Nfc装置输出信号控制方法及终端设备、介质和电子设备
US10866914B2 (en) Method and apparatus for controlling operations of electronic device
CN112469015B (zh) 蓝牙连接的方法和电子设备
US11934352B2 (en) Card rendering method and electronic device
EP3570527A1 (en) Synchronization of configuration setting values between two electronic devices
CN112529564A (zh) 近距离无线通信的方法和电子设备
KR102223308B1 (ko) 영상처리 방법 및 이를 구현한 전자 장치
KR102190436B1 (ko) 데이터를 송수신하는 전자 장치 및 방법
KR102144588B1 (ko) 센서 모듈 및 이를 구비한 장치
CN112188461B (zh) 近场通信装置的控制方法及装置、介质和电子设备
US20200037144A1 (en) Method and apparatus for establishing device connection
CN112639751A (zh) 基于电力信息识别外部电子装置的方法以及用于支持该方法的电子装置和存储介质
KR20200011869A (ko) 디바이스 연결 설정 방법 및 장치
JP7210745B2 (ja) ディスプレイ装置の制御方法、及びそれによるディスプレイ装置
KR20160003450A (ko) 전자장치의 데이터를 공유하기 위한 방법 및 장치
US20150063778A1 (en) Method for processing an image and electronic device thereof
CN113238727A (zh) 屏幕切换方法及装置、计算机可读介质和电子设备
EP4138462A1 (en) Information sharing method, electronic devices and system
CN115086855B (zh) 测试系统、方法和相关装置
CN113407318B (zh) 操作系统切换方法及装置、计算机可读介质和电子设备
KR20150057416A (ko) 이벤트를 처리하기 위한 전자 장치 및 방법
KR102167646B1 (ko) 프레임 정보를 제공하는 전자 장치 및 방법
CN111741040B (zh) 连接建立方法、地址获取方法、装置、设备及存储介质
CN116209971A (zh) 电子装置及其操作方法
KR20170076294A (ko) 무선 통신 시스템에서 사운드 신호를 기반으로 데이터를 송신 및 수신하는 장치 및 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21833724

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21833724

Country of ref document: EP

Kind code of ref document: A1