WO2022001262A1 - 一种基于光伏逆变器的配变台区电能质量优化方法 - Google Patents

一种基于光伏逆变器的配变台区电能质量优化方法 Download PDF

Info

Publication number
WO2022001262A1
WO2022001262A1 PCT/CN2021/084635 CN2021084635W WO2022001262A1 WO 2022001262 A1 WO2022001262 A1 WO 2022001262A1 CN 2021084635 W CN2021084635 W CN 2021084635W WO 2022001262 A1 WO2022001262 A1 WO 2022001262A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
photovoltaic
station
station area
output
Prior art date
Application number
PCT/CN2021/084635
Other languages
English (en)
French (fr)
Inventor
王强
李春海
郭殿聪
陈贺
翟志国
刘朋飞
刘海涛
芦斌
刘晓龙
崔振伟
支智勇
袁琳琳
李世敏
汪淼
梁芳蕾
Original Assignee
石家庄科林电气股份有限公司
石家庄科林物联网科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 石家庄科林电气股份有限公司, 石家庄科林物联网科技有限公司 filed Critical 石家庄科林电气股份有限公司
Publication of WO2022001262A1 publication Critical patent/WO2022001262A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • H02J3/48Controlling the sharing of the in-phase component
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • H02J3/50Controlling the sharing of the out-of-phase component
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/20Climate change mitigation technologies for sector-wide applications using renewable energy

Definitions

  • the invention belongs to the control technology of photovoltaic power stations, and relates to the field of power quality control, in particular to a method for optimizing power quality by fully utilizing the capabilities of photovoltaic power stations.
  • the current anti-reverse current device monitors the current on the distribution transformer side in real time. When a reverse current is detected, it disconnects the photovoltaic power supply from the grid or reduces the output power of the photovoltaic inverter. When the reverse current disappears, delay for a certain period of time, reconnect the photovoltaic power source and the grid, or gradually increase the output power of the photovoltaic inverter.
  • the power quality is improved by adjusting and improving the power quality through a combination scheme of photovoltaic inverters, SVG reactive power compensation, capacitors, etc. There are many devices and complicated control.
  • the purpose of the present invention is to propose a method to prevent the occurrence of reverse current as much as possible, and to make full use of the capacity of the photovoltaic power station, to provide active power and reactive power compensation, and to optimize the power quality.
  • the technical solution adopted in the present invention is: a method for optimizing the power quality of the distribution and transformation station area based on photovoltaic inverters, wherein the intelligent distribution and transformation station area gateway with edge computing capability is configured in the station area, and the gateway obtains the platform The output threshold Pgl and the reactive power compensation power factor Pf set by the district transformer, the method includes:
  • Step A the gateway obtains the output parameters of the current transformer through AC acquisition, and obtains the available capacity Sav and output parameters of the current photovoltaic power station by communicating with the photovoltaic power station;
  • Step C if Sav ⁇ P1, execute step F, otherwise, execute step D;
  • Step H sending ⁇ P and ⁇ Q to the photovoltaic power station to adjust the output of the photovoltaic power station.
  • the intelligent distribution and transformation platform gateway with edge computing capability performs AC sampling on the lower side of the transformer to obtain voltage, current, power factor and other values, calculates the power transmitted by the grid to the platform at the moment, compares the two, and calculates
  • the current state of the station area is divided into six types:
  • the power delivered by the power grid to the station area is too small or countercurrent, and the power factor of the station area is unqualified.
  • the power transmitted by the power grid to the station area is too large, and the power factor of the station area is unqualified.
  • the power delivered by the power grid to the station area is within the set range; at the same time, the power factor of the station area is unqualified.
  • the power delivered by the power grid to the station area is too small or countercurrent, and the power factor of the station area is qualified.
  • the power transmitted by the power grid to the station area is too large, and the power factor of the station area is qualified.
  • the power delivered by the power grid to the station area is within the set range; at the same time, the power factor of the station area is qualified.
  • the current station area is divided into three types and calculated separately.
  • FIG. 1 is a flow chart of the present invention.
  • the application scenario of this embodiment is an industrial and commercial user of a medium size or above that is powered by a station area alone, as well as a school, a hospital, and the like.
  • this scenario there are many high-power electrical appliances, and the user is responsible for the power factor.
  • the gateway of the intelligent distribution and transformation station area with edge computing capability completes the judgment and calculation processing through the following steps.
  • the gateway of the intelligent distribution and transformation station area with edge computing capability can be the intelligent distribution and transformation terminal (TTU), the intelligent integration terminal of the station area, and the intelligent photovoltaic terminal. Take TTU as an example below.
  • the TTU can obtain the output threshold Pgl of the transformer in the station area, that is, the target active power delivered by the grid to the station area; the reactive power compensation power factor Pf is preset.
  • the TTU obtains the output parameters of the current transformer through AC acquisition, and through communication with the photovoltaic power station, can obtain the active power Pac delivered by the grid to the station area, the active power Ppv output by the photovoltaic power generation, and the user active load size Puser in the station area.
  • Puser Pac+Ppv is satisfied.
  • Pac and Qac are obtained by direct exchange sampling of the terminal, and Ppv and Qpv are obtained through the communication between the inverter and the TTU.
  • Step B Calculate the arithmetic difference between Pac and Pgl.
  • Step C Compare the above arithmetic difference with the current PV power generation available capacity Sav, if the Sav is smaller, that is, the active power demand exceeds the total PV capacity, it is judged as Case 2, and Step F is executed; otherwise, continue to judge and execute Step D.
  • Step D Assuming that the active power of the station area is adjusted to Pgl, according to the formula (Q is the reactive power, Pgl is the active power, and Pf is the power factor) Calculate the reactive power size Q required to adjust to the target power factor Pf and compare it with the reactive power Quser actually used by the user. If Quser ⁇ Q, that is, it is necessary to increase the reactive power in the station area, but the inverter cannot output reactive power in reverse, and it is determined as case 3, and step G is performed.
  • step F compare the apparent power obtained by the reactive power adjustment quantity Qpv-Q and the active power adjustment quantity Ppv-Pgl with Sav, if Then it is determined as case 2, and step F is performed; otherwise, it is determined as case 1, and step E is performed.
  • Step E For case 1, the active power allocation ⁇ P is constant as (Pac-Pgl), and the target power factor Pf is substituted to calculate the reactive power allocation.
  • Step F For case 2, use photovoltaic power generation This relationship serves as a limiting condition, and when calculating how much ⁇ P and ⁇ Q are allocated, respectively, the power factor can reach the target value Pf.
  • a step-by-step algorithm is adopted: according to the set precision, set the amount of change of ⁇ P each time; select different ⁇ P according to the calculated ⁇ P and the amount of change; calculate ⁇ Q according to the constraints, and then calculate Pf-t for alignment.
  • Step G For case 3, set the reactive power allocation amount ⁇ Q to 0, and substitute it into the target power factor Pf, and calculate the active power allocation amount.
  • step H After calculating the active power allocation ⁇ P and reactive power allocation ⁇ Q according to the situation of the station area, step H is performed, and ⁇ P and ⁇ Q are sent to the photovoltaic power station to adjust the output of the photovoltaic power station.
  • the three phases are calculated separately, and the corresponding ⁇ P and ⁇ Q in the three-phase circuit can be obtained.
  • phase A, B, and C can be selected for calculation.
  • the corresponding ⁇ P and ⁇ Q are sent to the photovoltaic inverter through communication interaction, and the photovoltaic inverter adjusts the output according to the obtained ⁇ P and ⁇ Q.
  • the method to maintain balance is to set the power factor floating value ⁇ Pf, and adjust the values of ⁇ P and ⁇ Q, so that the power factor of each phase falls within the range of [Pf- ⁇ Pf, Pf+ ⁇ Pf].
  • phase A If the data of phase A is selected for calculation, set the power factor floating value ⁇ Pf, take [Pf- ⁇ Pf, Pf+ ⁇ Pf] as the adjustment range, and use ⁇ P and ⁇ Q as the basic adjustment value, and the three-phase does not exceed the anti-backflow threshold ( Under the premise that there is no possibility of reverse current in all three phases) and the power factor is within the range of [Pf- ⁇ Pf, Pf+ ⁇ Pf], the step-by-step algorithm is used to increase ⁇ P, and the values of ⁇ P and ⁇ Q that maximize the three-phase power factor are calculated.
  • Pac and Qac are the active power and reactive power delivered by the grid to the station area on the corresponding phase.
  • the calculated ⁇ P and ⁇ Q are used as the final distribution amount, and are sent to the photovoltaic inverter through communication interaction, and the photovoltaic inverter adjusts the output according to the obtained ⁇ P and ⁇ Q.

Abstract

一种基于光伏逆变器的配变台区电能质量优化方法,属于光伏发电站的控制技术,涉及电能质量控制领域,特别是充分利用光伏发电站的能力优化电能质量的方法。TTU获取台区变压器设定的输出阈值和无功补偿功率因数,通过交流采集获取当前变压器的输出参数,通过与光伏发电站通信获取当前光伏发电站的可用容量及输出参数,通过参数比对获取台区当前状态,根据状态计算光伏发电站的输出平进行调节。采用本发明,可以尽量预防台区发生逆流情况,且充分利用台区光伏发电设备的能力,提供有功功率和无功补偿,设备简单,尤其是应用到可作为一个台区单独供电的中型规模以上工商业用户以及学校、医院等的应用环境时,可以避免用户被电力公司罚款。

Description

一种基于光伏逆变器的配变台区电能质量优化方法 技术领域
本发明属于光伏发电站的控制技术,涉及电能质量控制领域,特别是充分利用光伏发电站的能力优化电能质量的方法。
背景技术
为了避免光伏发电系统所产生的电能进入公共电网(发生逆流),对公共电网造成冲击,导致公共电网电能质量下降,国家制定了Q/GDW480-2010《光伏电站接入电网技术规定》,明确规定了对于电网较弱的地区,光伏发电系统必须配套防逆流装置。国家电网公司要求,光伏发电系统设计为不可逆并网方式时,当检测到逆向电流超过额定输出的5%时,光伏发电系统应在0.5s~2s内停止向电网线路送电。
现在的防逆流装置实时监测配电变压器侧的电流,当检测到有逆向电流时,断开光伏电源与电网的连接,或者降低光伏逆变器输出功率。当逆向电流消失后,延时一定的时间,重新连接光伏电源与电网,或者逐步地增加光伏逆变器的输出功率。
采用这种方法,是在逆流发生后进行被动的保护,不是在逆流发生前进行主动的预防。
另外,针对中型规模以上的工商业用户以及学校、医院等可作为一个台区单独供电的应用场景,还会产生光伏发电使电网给台区配送的电能功率因数不合格,用户面临被电网公司罚款的问题。
现有技术,是通过光伏逆变器、SVG无功补偿、电容器等设备组合方案调节改善电能质量,设备繁多,控制复杂。
发明内容
本发明的目的是提出一种方法,尽量预防逆流发生,且充分利用光伏发电站的能力,提供有功功率和无功补偿,优化电能质量。
未实现上述目的,本发明采用的技术方案是:一种基于光伏逆变器的配变台区电能质量优化方法,台区配置具有边缘计算能力的智能配变台区网关,所述网关获取台区变压器设定的输出阈值Pgl和无功补偿功率因数Pf,所述方法包括:
步骤A、所述网关通过交流采集获取当前变压器的输出参数,通过与光伏发电站通信获取当前光伏发电站的可用容量Sav及输出参数;
步骤B、计算P1=Pac―Pgl,Pac为电网给台区输送的有功功率,P1为功率差值;
步骤C、如果Sav<P1,执行步骤F,否则,执行步骤D;
步骤D、计算
目标无功功率
Figure PCTCN2021084635-appb-000001
台区中的用户无功功率Quser=Qac+Qpv,Qac为电网给台区输送的无功功率,Qpv为光伏发电站输出的无功功率,
如果Quser<Q,执行步骤G,
否则,
如果
Figure PCTCN2021084635-appb-000002
执行步骤F,否则,执行步骤E;
步骤E、计算
有功功率分配量ΔP=Pac―Pgl,
无功功率分配量
Figure PCTCN2021084635-appb-000003
执行步骤H;
步骤F、
Figure PCTCN2021084635-appb-000004
为限制条件,以Pf为目标,
选取满足限制条件的ΔP和ΔQ,计算所选数值对应的无功补偿功率因数
Figure PCTCN2021084635-appb-000005
选择最接近Pf的Pf-t,该Pf-t对应的ΔP和ΔQ为有功功率分配量ΔP和无功功率分配量ΔQ;
执行步骤H;
步骤G、计算
无功功率分配量ΔQ=0,
有功功率分配量
Figure PCTCN2021084635-appb-000006
执行步骤H;
步骤H、将ΔP和ΔQ下发给光伏发电站,调节光伏发电站的输出。
具有边缘计算能力的智能配变台区网关在变压器下侧进行交流采样得到的电压,电流,功率因数等数值,计算出现在时刻电网给台区输送的功率情况,对两者进行比对,并将台区当前状态分为六种:
1、电网输送给台区的功率过小或逆流,同时台区功率因数不合格。
2、电网输送给台区的功率过大,同时台区功率因数不合格。
3、电网输送给台区的功率在设定区间内;同时台区功率因数不合格。
4、电网输送给台区的功率过小或逆流,台区功率因数合格。
5、电网输送给台区的功率过大,台区功率因数合格。
6、电网输送给台区的功率在设定区间内;同时台区功率因数合格。
循环判断当前逆流情况和无功补偿情况,得到当前台区状态,如果处于状态6,则无需处理,针对其他状态,逻辑计算处理流程如下:
根据台区变压器的容量、已预设好的百分比阈值和无功补偿功率因数,将当前台区情况划分为三种并分别进行计算处理。
情况1:光伏发电量较大,全部投入使用会导致出现逆流风险,需要部分作为有功功率,部分作为无功功率投入使用,剩余闲置。
情况2:光伏发电量较小,需要投入所有功率,并在保证功率因数正常的前提下,尽量使投入使用的功率向有功功率侧靠拢。
情况3:光伏发电量正常,需要部分作为有功功率,剩余闲置。
采用本发明,可以尽量预防台区发生逆流情况,且充分利用台区光伏发电设备的能力,提供有功功率和无功补偿,设备简单,尤其是应用到可作为一个台区单独供电的中型规模以上工商业用户以及学校、医院等的应用环境时,可以避免用户被电力公司罚款。
附图说明
图1为本发明的流程图。
具体实施方式
本实施例的应用场景是一个台区单独供电的中型规模以上的工商业用户,以及学校、医院等。该场景下,大功率电器较多,并且用户要为用功率因数负责。
首先判断当前台区处于哪种情况,然后进行计算处理。
本实施例中,共有三种情况。
情况1:光伏发电量较大,全部投入使用会导致出现逆流风险,需要部分作为有功功率,部分作为无功功率投入使用,剩余闲置。
情况2:光伏发电量较小,需要投入所有功率,并在保证功率因数正常的前提下,尽量使投入使用的功率向有功功率侧靠拢。
情况3:光伏发电量正常,需要部分作为有功功率,剩余闲置。
参看图1,具有边缘计算能力的智能配变台区网关通过以下步骤完成判断和计算处理。
具有边缘计算能力的智能配变台区网关可以是智能配变终端(TTU)、台区智能融合终端、智能光伏终端。下面以TTU为例。
TTU根据台区变压器的容量及已预设好的百分比阈值,可以获取台区变压器输出阈值Pgl,即电网给台区输送的目标有功功率;无功补偿功率因数Pf是预设的。
步骤A、TTU通过交流采集获取当前变压器的输出参数,通过与光伏发电站通信,可以获取电网给台区输送的有功功率Pac,光伏发电输出的有功功率Ppv,台区中的用户有功负载大小Puser满足Puser=Pac+Ppv。电网给台区输送的无功功率Qac,光伏发电输出的无功功率Qpv,台区中的用户无功负载大小Quser满足Quser=Qac+Qpv。其中Pac和Qac由终端直接交流采样获得,Ppv和Qpv通过逆变器与TTU通讯获取。
步骤B、计算Pac与Pgl的算术差。
步骤C、将上述算术差与当前光伏发电可用容量Sav进行对比,若Sav较小,即有功功率需求量超出光伏总产能,判定为情2,执行步骤F;否则,继续判断,执行步骤D。
步骤D、假定台区有功功率调整至Pgl,根据公式
Figure PCTCN2021084635-appb-000007
(Q为无功功率,Pgl为有功功率,Pf为功率因数)计算调整至目标功率因数Pf所需无功功率大小Q并与用户实际使用无功功率Quser进行比对。若Quser<Q,即需要增大台区内的无功,而逆变器无法反向输出无功,判定为情况3,执行步骤G。
否则,否则,将所得无功功率调整量Qpv-Q与有功功率调整量Ppv-Pgl求得的视在功率与Sav进行比对,如果
Figure PCTCN2021084635-appb-000008
则判定为情况2,执行步骤F;否则,则判定为情况1,执行步骤E。
步骤E、针对情况1,将有功功率分配量ΔP恒定为(Pac―Pgl),代入目标功率因 数Pf,计算得到无功功率分配量
Figure PCTCN2021084635-appb-000009
步骤F、针对情况2,利用光伏发电量
Figure PCTCN2021084635-appb-000010
这一关系作为限制条件,计算ΔP和ΔQ分别分配多大时,可使功率因数达到目标值Pf。
本实施例中,选取满足限制条件的ΔP和ΔQ,计算所选数值对应的无功补偿功率
Figure PCTCN2021084635-appb-000011
选择最接近Pf的Pf-t,该Pf-t对应的ΔP和ΔQ为有功功率分配量ΔP和无功功率分配量ΔQ。
本实施例中,采用步进式算法:按照设定好的精度,设定ΔP每一次的变化量;根据计算出的ΔP和变化量,选取不同的ΔP;根据限制条件计算ΔQ,进而计算出Pf-t进行比对。
步骤G、针对情况3,将无功功率分配量ΔQ恒定为0,代入目标功率因数Pf,计算得到有功功率分配量
Figure PCTCN2021084635-appb-000012
根据台区的情况计算出有功功率分配量ΔP、无功功率分配量ΔQ后,执行步骤H,将ΔP和ΔQ下发给光伏发电站,调节光伏发电站的输出。
根据以上算法,三相分别进行计算,可得到三相电路中各自相别对应的ΔP和ΔQ,下发后,针对三相分别进行调整。
在实际应用中,可以只任选A、B、C一相进行计算。
若实际现场采用各相自主调节方式,将对应的ΔP和ΔQ通过通讯交互下发到光伏逆变器,光伏逆变器根据得到ΔP和ΔQ对输出进行调整。
若实际现场采用三相统一调节方式,即三相调整量需保持一致,则进入以下逻辑:
以各相的功率因数为目标,调节ΔP和ΔQ的值,使各相的功率因数保持均衡。保持均衡的方法是设定功率因数浮动值ΔPf,调节ΔP和ΔQ的值,使各相的功率因数落入[Pf―ΔPf, Pf+ΔPf]范围中。
如选取A相的数据进行计算,设定功率因数浮动值ΔPf,以[Pf―ΔPf,Pf+ΔPf]作为调节范围,以ΔP和ΔQ为基础调节值,在三相均不超越防逆流阈值(三相均不存在逆流可能)及功率因数处于[Pf―ΔPf,Pf+ΔPf]范围内的前提下,采用步进式算法增大ΔP,计算使三相功率因数最大的ΔP和ΔQ取值。
计算公式为:
Figure PCTCN2021084635-appb-000013
其中,Pac和Qac为电网给台区在相应相位上输送的有功功率和无功功率。
将计算获得的ΔP和ΔQ作为最终分配量,通过通讯交互下发到光伏逆变器,光伏逆变器根据得到ΔP和ΔQ对输出进行调整。

Claims (8)

  1. 一种基于光伏逆变器的配变台区电能质量优化方法,其特征在于:台区配置具有边缘计算能力的智能配变台区网关,所述网关获取台区变压器设定的输出阈值Pgl和无功补偿功率因数Pf,所述方法包括:
    步骤A、所述网关通过交流采集获取当前变压器的输出参数,通过与光伏发电站通信获取当前光伏发电站的可用容量Sav及输出参数;
    步骤B、计算P1=Pac―Pgl,Pac为电网给台区输送的有功功率,P1为功率差值;
    步骤C、如果Sav<P1,执行步骤F,否则,执行步骤D;
    步骤D、计算
    目标无功功率
    Figure PCTCN2021084635-appb-100001
    台区中的用户无功功率Quser=Qac+Qpv,Qac为电网给台区输送的无功功率,Qpv为光伏发电站输出的无功功率,
    如果Quser<Q,执行步骤G,
    否则,
    如果
    Figure PCTCN2021084635-appb-100002
    执行步骤F,否则,执行步骤E;
    步骤E、计算
    有功功率分配量ΔP=Pac―Pgl,
    无功功率分配量
    Figure PCTCN2021084635-appb-100003
    执行步骤H;
    步骤F、
    Figure PCTCN2021084635-appb-100004
    为限制条件,以Pf为目标,
    选取满足限制条件的ΔP和ΔQ,计算所选数值对应的无功补偿功率因数
    Figure PCTCN2021084635-appb-100005
    选择最接近Pf的Pf-t,该Pf-t对应的ΔP和ΔQ为有功功率分配量ΔP和无功功率分配量ΔQ;
    执行步骤H;
    步骤G、计算
    无功功率分配量ΔQ=0,
    有功功率分配量
    Figure PCTCN2021084635-appb-100006
    执行步骤H;
    步骤H、将ΔP和ΔQ下发给光伏发电站,调节光伏发电站的输出。
  2. 根据权利要求1所述的方法,其特征在于,步骤F中,以步进式算法进行计算。
  3. 根据权利要求1所述的方法,其特征在于,任选一相的数据进行计算。
  4. 根据权利要求3所述的方法,其特征在于,计算的结果为光伏发电站各相调节输出的值。
  5. 根据权利要求3所述的方法,其特征在于,以各相的功率因数为目标,调节ΔP和ΔQ的值,使各相的功率因数保持均衡。
  6. 根据权利要求5所述的方法,其特征在于,设定功率因数浮动值ΔPf,调节ΔP和ΔQ的值,使各相的功率因数落入[Pf―ΔPf,Pf+ΔPf]范围中。
  7. 根据权利要求1所述的方法,其特征在于,三相分别进行计算,计算的结果为光伏发电站各相调节输出的值。
  8. 根据权利要求1所述的方法,其特征在于,所述具有边缘计算能力的智能配变台区网关为智能配变终端,或台区智能融合终端,或智能光伏终端。
PCT/CN2021/084635 2020-07-03 2021-03-31 一种基于光伏逆变器的配变台区电能质量优化方法 WO2022001262A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010631134.9A CN111725841B (zh) 2020-07-03 2020-07-03 一种基于光伏逆变器的配变台区电能质量优化方法
CN202010631134.9 2020-07-03

Publications (1)

Publication Number Publication Date
WO2022001262A1 true WO2022001262A1 (zh) 2022-01-06

Family

ID=72571516

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/084635 WO2022001262A1 (zh) 2020-07-03 2021-03-31 一种基于光伏逆变器的配变台区电能质量优化方法

Country Status (2)

Country Link
CN (1) CN111725841B (zh)
WO (1) WO2022001262A1 (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114336618A (zh) * 2022-01-13 2022-04-12 国网河北省电力有限公司电力科学研究院 配电网的控制方法、装置及电子设备
CN114465358A (zh) * 2022-01-25 2022-05-10 国网福建省电力有限公司 分布式光伏逆变器控制系统及方法
CN115224742A (zh) * 2022-09-21 2022-10-21 赫里欧绿能建筑科技有限公司 一种bipv光伏发电汇流并网系统及方法
CN115528686A (zh) * 2022-11-24 2022-12-27 东方电子股份有限公司 基于边缘计算的分布式配电故障处理系统及方法
CN115800385A (zh) * 2022-08-15 2023-03-14 国网安徽省电力有限公司经济技术研究院 一种基于光伏逆变器和充电桩可调控容量的电能质量调控方法
CN115986702A (zh) * 2023-03-17 2023-04-18 石家庄科林物联网科技有限公司 基于分布式能源并网点多因子影响的保护监控方法及装置
CN116316917A (zh) * 2023-02-21 2023-06-23 佳源科技股份有限公司 低压台区电能质量治理方法及系统
CN117691753A (zh) * 2024-02-02 2024-03-12 中国电力科学研究院有限公司 一种基于云边端一体协同的分布式光伏分层分级调控方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111725841B (zh) * 2020-07-03 2021-11-02 石家庄科林物联网科技有限公司 一种基于光伏逆变器的配变台区电能质量优化方法
CN115347577B (zh) * 2022-10-13 2023-01-03 石家庄科林物联网科技有限公司 基于分布式光伏的多区域限值电压调控方法及装置
CN115347581B (zh) * 2022-10-17 2023-03-24 石家庄科林物联网科技有限公司 一种配电台区的分级步进无功补偿调控方法及系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8013472B2 (en) * 2006-12-06 2011-09-06 Solaredge, Ltd. Method for distributed power harvesting using DC power sources
CN104852391A (zh) * 2015-06-12 2015-08-19 阳光电源股份有限公司 光伏电站无功补偿方法、装置、光伏逆变器和光伏电站
CN107591816A (zh) * 2016-07-07 2018-01-16 中兴通讯股份有限公司 光伏并网逆变器的无功补偿方法、装置及光伏并网逆变器
CN111725841A (zh) * 2020-07-03 2020-09-29 石家庄科林物联网科技有限公司 一种基于光伏逆变器的配变台区电能质量优化方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4211243B2 (ja) * 2001-06-15 2009-01-21 トヨタ自動車株式会社 充電制御装置
CN100508327C (zh) * 2007-06-08 2009-07-01 清华大学 一种快速稳定实现最大功率跟踪的光伏三相并网控制方法
JP5643194B2 (ja) * 2008-06-13 2014-12-17 セラミック・フューエル・セルズ・リミテッド 燃料電池システム及び燃料電池の電力の供給を安定化するための方法
CN202712872U (zh) * 2012-05-17 2013-01-30 阳光电源股份有限公司 并网逆变电源与防逆流、无功补偿控制器及系统
CA2921552C (en) * 2013-08-19 2018-07-17 Siemens Aktiengesellschaft Control method for self-commutated converter for controlling power exchange
CN106505613B (zh) * 2016-11-01 2019-05-17 科诺伟业风能设备(北京)有限公司 一种风电场功率控制器
CN106786585A (zh) * 2017-01-03 2017-05-31 国网安徽省电力公司电力科学研究院 基于协同自治的光伏扶贫农网电能质量优化装置及方法
CN107017659B (zh) * 2017-03-29 2019-07-12 石家庄科林电气股份有限公司 基于分布式光伏电站区域保护系统进行柔性发电的方法
CN108767901B (zh) * 2018-06-28 2021-09-07 湖南科比特电气技术有限公司 一种三相并网逆变器防逆流装置及控制方法
CN110098628B (zh) * 2019-06-19 2021-01-08 合肥阳光新能源科技有限公司 一种储能需量控制系统及其防逆流方法和装置
CN110212560B (zh) * 2019-06-27 2023-05-02 上海电机学院 基于远程控制光伏发电共网防逆流热储能控制装置及方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8013472B2 (en) * 2006-12-06 2011-09-06 Solaredge, Ltd. Method for distributed power harvesting using DC power sources
CN104852391A (zh) * 2015-06-12 2015-08-19 阳光电源股份有限公司 光伏电站无功补偿方法、装置、光伏逆变器和光伏电站
CN107591816A (zh) * 2016-07-07 2018-01-16 中兴通讯股份有限公司 光伏并网逆变器的无功补偿方法、装置及光伏并网逆变器
CN111725841A (zh) * 2020-07-03 2020-09-29 石家庄科林物联网科技有限公司 一种基于光伏逆变器的配变台区电能质量优化方法

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114336618A (zh) * 2022-01-13 2022-04-12 国网河北省电力有限公司电力科学研究院 配电网的控制方法、装置及电子设备
CN114336618B (zh) * 2022-01-13 2023-09-26 国网河北省电力有限公司电力科学研究院 配电网的控制方法、装置及电子设备
CN114465358A (zh) * 2022-01-25 2022-05-10 国网福建省电力有限公司 分布式光伏逆变器控制系统及方法
CN115800385A (zh) * 2022-08-15 2023-03-14 国网安徽省电力有限公司经济技术研究院 一种基于光伏逆变器和充电桩可调控容量的电能质量调控方法
CN115800385B (zh) * 2022-08-15 2024-04-19 国网安徽省电力有限公司经济技术研究院 一种基于光伏逆变器和充电桩可调控容量的电能质量调控方法
CN115224742B (zh) * 2022-09-21 2022-12-20 赫里欧绿能建筑科技有限公司 一种bipv光伏发电汇流并网系统及方法
CN115224742A (zh) * 2022-09-21 2022-10-21 赫里欧绿能建筑科技有限公司 一种bipv光伏发电汇流并网系统及方法
CN115528686A (zh) * 2022-11-24 2022-12-27 东方电子股份有限公司 基于边缘计算的分布式配电故障处理系统及方法
CN116316917A (zh) * 2023-02-21 2023-06-23 佳源科技股份有限公司 低压台区电能质量治理方法及系统
CN115986702A (zh) * 2023-03-17 2023-04-18 石家庄科林物联网科技有限公司 基于分布式能源并网点多因子影响的保护监控方法及装置
CN115986702B (zh) * 2023-03-17 2023-05-30 石家庄科林物联网科技有限公司 基于分布式能源并网点多因子影响的保护监控方法及装置
CN117691753A (zh) * 2024-02-02 2024-03-12 中国电力科学研究院有限公司 一种基于云边端一体协同的分布式光伏分层分级调控方法
CN117691753B (zh) * 2024-02-02 2024-04-19 中国电力科学研究院有限公司 一种基于云边端一体协同的分布式光伏分层分级调控方法

Also Published As

Publication number Publication date
CN111725841A (zh) 2020-09-29
CN111725841B (zh) 2021-11-02

Similar Documents

Publication Publication Date Title
WO2022001262A1 (zh) 一种基于光伏逆变器的配变台区电能质量优化方法
CN203586455U (zh) 光伏空调系统
CN104713176A (zh) 光伏空调系统及其控制方法
CN108418244B (zh) 一种基于多微网柔性互联系统及其储能容量优化方法
Yang et al. MF-APSO-based multiobjective optimization for PV system reactive power regulation
CN110391662B (zh) 电力系统负载侧调控装置、方法和负载调控系统
CN111786393B (zh) 户用光伏发电系统及其并网点电压控制方法
WO2015003443A1 (zh) 一种防逆流光伏并网发电系统
WO2018161590A1 (zh) 调节系统并联投入系统、控制方法、装置及存储介质
Wang et al. Decentralized control of DC electric springs for storage reduction in DC microgrids
CN110460052B (zh) 一种能改善配电网电能质量的光伏逆变控制方法
CN105244900B (zh) 一种基于移频控制的微电网离网能量平衡控制方法
Dam et al. An adaptive power distributed control method to ensure proportional load power sharing in DC microgrid considering equivalent line impedances
EP3360225A1 (en) Solar power conversion system and method
CN109659941A (zh) 一种交直流混合微电网自治控制方法及系统
WO2019130665A1 (ja) 発電システム
Shukl et al. Distributed energy resources based EV charging station with seamless connection to grid
CN107785932A (zh) 一种基于相变储热的能量实时平衡控制系统及其控制方法
CN107681687B (zh) 基于储能的分布式系统母线过电压抑制控制方法和系统
Prompinit et al. Ramp rate consideration of a BESS using active power control for PV generation
Gomes et al. Analysis of a static model for DC microgrids based on droop and MPPT control
CN107681649B (zh) 一种控制直流微电网母线电压稳定的方法
TWI771196B (zh) 三相不平衡區域電網之併聯策略
Zhang et al. Local control method and simulation analysis of hybrid AC/DC low-voltage distribution networks with high-proportion photovoltaics
Du et al. Power management strategy of AC-DC hybrid microgrid in island mode

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21834290

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21834290

Country of ref document: EP

Kind code of ref document: A1