WO2022001259A1 - 基于afm的页岩孔隙度计算及组分孔隙贡献评价方法 - Google Patents

基于afm的页岩孔隙度计算及组分孔隙贡献评价方法 Download PDF

Info

Publication number
WO2022001259A1
WO2022001259A1 PCT/CN2021/084376 CN2021084376W WO2022001259A1 WO 2022001259 A1 WO2022001259 A1 WO 2022001259A1 CN 2021084376 W CN2021084376 W CN 2021084376W WO 2022001259 A1 WO2022001259 A1 WO 2022001259A1
Authority
WO
WIPO (PCT)
Prior art keywords
porosity
pore
shale
phase
afm
Prior art date
Application number
PCT/CN2021/084376
Other languages
English (en)
French (fr)
Inventor
陈尚斌
李学元
陈司
龚卓
王阳
王慧军
Original Assignee
中国矿业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国矿业大学 filed Critical 中国矿业大学
Priority to GB2115553.6A priority Critical patent/GB2601238B/en
Publication of WO2022001259A1 publication Critical patent/WO2022001259A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q30/00Auxiliary means serving to assist or improve the scanning probe techniques or apparatus, e.g. display or data processing devices
    • G01Q30/04Display or data processing devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q60/00Particular types of SPM [Scanning Probe Microscopy] or microscopes; Essential components thereof
    • G01Q60/24AFM [Atomic Force Microscopy] or apparatus therefor, e.g. AFM probes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation

Definitions

  • the invention relates to an AFM-based shale porosity calculation and component pore contribution evaluation method, which belongs to the field of shale gas geology.
  • Shale gas plays an increasingly important role in the world energy sector. Shale gas reservoirs usually develop multi-scale micro-nanopores and fractures, with complex pore structure and significant microscopic heterogeneity, which restrict the success rate of exploration and development.
  • the material composition of shale is the basis for the development of the pore system, however, the contribution of different components of the reservoir to the pore remains unclear. Understanding the pore structure of shale gas reservoirs, distinguishing the pore contributions of main material components, finely characterizing shale gas reservoirs, accurately evaluating shale gas resources, revealing the mechanism of shale gas accumulation, and guiding the division of favorable areas Significance.
  • Atomic force microscopy can be used to qualitatively and quantitatively characterize shale pore structure, but AFM cannot directly measure shale porosity, which is an extremely important parameter for unconventional reservoir evaluation. This limits the wide application of AFM in the field of unconventional oil and gas. Previous studies have shown that the change of AFM phase is closely related to material composition, which provides a theoretical basis for using AFM to evaluate the pore contribution of the main material composition, but no relevant research has been attempted yet.
  • the present invention provides an AFM-based shale porosity calculation and component pore contribution evaluation method, which makes up for the deficiency of AFM in measuring shale porosity and promotes the mineral analysis ability and porosity of AFM. Combination of structure determination capabilities.
  • the AFM-based shale porosity calculation and component pore contribution evaluation method adopted in the present invention includes the following steps:
  • phase pore function uses the double-threshold discrete integration method to obtain the phase pore function, use the phase pore function to calculate the porosity in different phase intervals, perform linear fitting on the porosity and shale material composition in different phase intervals, and calculate the difference between them.
  • the correlation coefficient is used to evaluate the porosity contribution of different components.
  • the specific steps for obtaining the pore volume are:
  • g(x,y) is the pore function
  • f(x,y) is the elevation function
  • T is the height threshold, m
  • V is the pore volume, m 3
  • A is the projected area, m 2
  • h is the elevation, m
  • a and b are the projection width and length, respectively, m.
  • the step of calculating the shale porosity in the step S2 is:
  • the double-threshold discrete integration method in the step S3 is specifically:
  • a threshold method is performed on the phase data again, and the phase threshold P is selected to segment the phase porosity function.
  • the calculation formula is:
  • ⁇ (x, y) is the phase pore function
  • P is the phase threshold, °.
  • the phase porosity function is used to calculate the porosity in different phase intervals, specifically:
  • is the phase porosity, %.
  • the AFM-based shale porosity calculation and component pore contribution evaluation method provided by the present invention broadens the application scope of AFM in the field of unconventional oil and gas.
  • the present invention provides an idea for studying the pore contribution of different material components in shale gas reservoirs, and lays a theoretical foundation for fine characterization of shale gas reservoirs.
  • Fig. 1 is the implementation flow chart of the present invention
  • Figure 2 is a schematic diagram of the virtual plane cutting the sample surface from the bottom to the top; the three figures from top to bottom are the relative positions of the cutting bottom surface, the middle position and the top surface in turn;
  • Figure 3 is the correlation between the porosity and the main material components in different phase intervals in the present invention
  • (a) in the figure is the correlation between the chlorite content and the porosity in the phase interval -20 ⁇ -5°
  • (b) is the potassium The correlation between the feldspar content and the porosity in the phase range of -10 to 10°
  • (c) is the correlation between the quartz content and the porosity in the phase range of -5 to 15°
  • (d) is the content of brittle minerals and the phase range of 0 to 10°.
  • (e) is the correlation of organic matter content and total porosity;
  • FIG 4 is a comparison of the present invention, low porosity and the experimentally measured N 2 adsorption.
  • the AFM-based shale porosity calculation and component porosity contribution evaluation method includes the following steps:
  • the pore function is determined by judging whether the surface elevation function meets the requirements of the elevation threshold, so as to select the pores in the AFM image.
  • the threshold segmentation method can be expressed as the following formula:
  • g(x,y) is the pore function
  • f(x,y) is the elevation function
  • T is the height threshold, m;
  • V is the pore volume, m 3 ;
  • A is the projected area, m 2 ;
  • h is the elevation, m;
  • a and b are the projected width and length, respectively, m;
  • the porosity can be obtained by dividing the pore volume by the product of the projected area and the selected elevation.
  • the porosity calculation formula is:
  • porosity, %
  • the double-threshold discrete integration method that is, changing the phase threshold on the basis of the fixed elevation threshold, so as to obtain the phase pore function.
  • the double-threshold discrete integration method can be expressed by the following formula:
  • ⁇ (x, y) is the phase pore function
  • P is the phase threshold, °
  • ⁇ ⁇ is the phase porosity, %
  • the flatten order in step 1) is generally 2 order for shale samples.
  • the correction method in the step 3) is: taking all the elevation values minus the minimum value of the elevation values as the new elevation value.
  • the porosity test and the pore contribution evaluation of main minerals are performed on the Longmaxi Formation shale in Well Wuxi 2 in northeastern Chongqing based on AFM.
  • the steps are as follows:
  • the threshold segmentation method can be expressed as the following formula:
  • g(x,y) is the pore function
  • f(x,y) is the elevation function
  • T is the height threshold, m;
  • V is the pore volume, m 3 ;
  • A is the projected area, m 2 ;
  • h is the elevation, m;
  • a and b are the projected width and length, respectively, m;
  • the porosity can be obtained by dividing the pore volume by the product of the projected area and the selected elevation.
  • the porosity calculation formula can be expressed as:
  • porosity, %
  • the double-threshold discrete integration method that is, change the phase threshold on the basis of the fixed elevation threshold, so as to obtain the phase pore function.
  • the double-threshold discrete integration method can be expressed by the following formula:
  • ⁇ (x, y) is the phase pore function
  • P is the phase threshold, °
  • ⁇ ⁇ is the phase porosity, %
  • the potassium feldspar content has a significant positive correlation with the porosity provided by the phase range -10 ⁇ 10° (R 2 is 94.21%), indicating that the pores in this range are almost entirely composed of potassium Provided by feldspar; in the figure (c), the pores provided in the phase interval -5 to 15° have a good positive correlation with the quartz content, indicating that this interval is mainly quartz-derived pores; in the figure (d) the phase interval of 0 to 10°
  • the provided pores are positively correlated with the brittle mineral content, indicating that there are many brittle mineral pores developed in this phase interval; in the figure (e) TOC content is positively correlated with the total porosity, and the correlation is good (R 2 is 81.02%) , indicating that the Longmaxi Formation shale mainly develops pores of organic origin, and the organic pores contribute to each phase interval.
  • clay minerals, organic matter and brittle minerals all provide certain pores, among which chlorite is dominant in
  • the porosity is calculated, the porosity of the shale sample wells Wuxi 2 calculated by the method of the present invention obtained by the porosity and the low-temperature N 2 adsorption experiments was compared, the results shown in Figure 4, The analysis shows that the porosity calculated by AFM is basically consistent with the porosity converted from the low-temperature N 2 adsorption experiment, indicating that the porosity calculation method based on AFM proposed in the present invention is reliable.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Health & Medical Sciences (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

基于AFM的页岩孔隙度计算及组分孔隙贡献评价方法,包括如下步骤:S1、通过处理后的AFM数据提取出页岩表面三维高程数据和相位数据,对页岩表面三维高程数据进行校正;S2、采用阈值法,选取高度阈值,分割出孔隙函数,求取孔体积,根据孔隙度定义,计算出页岩孔隙度;S3、采用双阈值离散积分法,得到相位孔隙函数,利用相位孔隙函数计算不同相位区间内的孔隙度,将不同相位区间内的孔隙度和页岩物质成分进行线性拟合并计算它们之间的相关系数,以此来评价不同组分的孔隙贡献。该基于AFM的页岩孔隙度计算及组分孔隙贡献评价方法,拓宽了AFM在非常规油气领域的应用范围。

Description

基于AFM的页岩孔隙度计算及组分孔隙贡献评价方法 技术领域
本发明涉及一种基于AFM的页岩孔隙度计算及组分孔隙贡献评价方法,属于页岩气地质领域。
背景技术
页岩气在世界能源领域中扮演着越来越重要的角色。页岩气储层通常发育多尺度的微-纳米孔裂隙,孔隙结构复杂,微观非均质性显著,制约了勘探开发成功率。页岩的物质成分是孔隙系统发育的基础,然而储层不同组分对孔隙的贡献尚不清楚。了解页岩气储层的孔隙结构,区分主要物质组分的孔隙贡献,对页岩气储层的精细表征,准确评估页岩气资源,揭示页岩气成藏机理,指导有利区划分均具有重要意义。
原子力显微镜技术(AFM)可以用于对页岩孔隙结构进行定性和定量表征,但原子力显微镜不能直接测得页岩孔隙度,而孔隙度是非常规储层评价极为重要的参数,这在一定程度上限制了AFM在非常规油气领域的广泛应用。已有研究表明AFM相位的变化与物质成分密切相关,这为利用AFM评价主要物质成分的孔隙贡献提供了理论基础,但尚未有相关研究做出尝试。
发明内容
针对上述现有技术存在的问题,本发明提供一种基于AFM的页岩孔隙度计算及组分孔隙贡献评价方法,弥补AFM在测定页岩孔隙度方面的不足,促进AFM的矿物分析能力和孔隙结构测定能力的结合。
为了实现上述目的,本发明采用的基于AFM的页岩孔隙度计算及组分孔隙贡献评价方法,包括如下步骤:
S1、通过处理后的AFM数据提取出页岩表面三维高程数据和相位数据,对页岩表面三维高程数据进行校正;
S2、采用阈值法,选取高度阈值,分割出孔隙函数,求取孔体积,根据孔隙度定义,计算出页岩孔隙度;
S3、采用双阈值离散积分法,得到相位孔隙函数,利用相位孔隙函数计算不同相位区间内的孔隙度,将不同相位区间内的孔隙度和页岩物质成分进行线性拟合并计算它们之间的相关系数,以此来评价不同组分的孔隙贡献。
作为改进,所述步骤S1中,将页岩表面形貌三维坐标数据以页岩表面最低点高程为零基准高程进行高程校正。
作为改进,所述步骤S2中,求取孔体积的具体步骤为:
选取合适的高度阈值,分割出孔隙函数,将样品表面在xOy坐标系的投影视为一个厚度可以忽略的虚拟平面,利用该虚拟平面自下而上的切割样品表面,则虚拟平面与低于该平面的样品表面所围体积即为孔体积,计算公式为:
Figure PCTCN2021084376-appb-000001
Figure PCTCN2021084376-appb-000002
其中,g(x,y)为孔隙函数;f(x,y)为高程函数;T为高度阈值,m;V为孔体积,m 3;A为投影面积,m 2;h为高程,m;a和b分别为投影宽度和长度,m。
作为改进,所述步骤S2中计算页岩孔隙度的步骤为:
将孔体积除以投影面积与所选高程的乘积,计算公式为:
Figure PCTCN2021084376-appb-000003
其中,φ为孔隙度,%。
作为改进,所述步骤S3中的双阈值离散积分法,具体为:
在对高程数据进行一次阈值法进而计算孔隙度的基础上,再对相位数据进行一次阈值法,选取相位阈值P,分割出相位孔隙函数,计算公式为:
Figure PCTCN2021084376-appb-000004
其中,ξ(x,y)为相位孔隙函数;P为相位阈值,°。
作为改进,所述步骤S3中,利用相位孔隙函数计算不同相位区间内的孔隙度,具体为:
对高程与相位孔隙函数之差进行积分,所得结果再除以平面投影面积和高程阈值的乘积,公式为:
Figure PCTCN2021084376-appb-000005
其中,φ ξ为相位孔隙度,%。
与现有技术相比,本发明的有益效果是:
1.本发明提供的基于AFM的页岩孔隙度计算及组分孔隙贡献评价方法,拓宽了AFM在非常规油气领域的应用范围。
2.本发明为研究页岩气储层不同物质成分的孔隙贡献提供了思路,为页岩气储层精细表征奠定了理论基础。
附图说明
图1为本发明的实施流程图;
图2为虚拟平面从底至顶切割样品表面的示意图;由上至下的三个图依次为切割底面、中间位置和顶面的相对位置示意;
图3为本发明中不同相位区间的孔隙度与主要物质成分的相关性;图中(a)为绿泥石含量与相位区间-20~-5°孔隙度的相关性;(b)为钾长石含量与相位区间-10~10°孔隙度的相关性;(c)为石英含量与相位区间-5~15°孔隙度的相关性;(d)为脆性矿物含量与相位区间0~10°孔隙度的相关性;(e)为有机质含量与总孔隙度的相关性;
图4为通过本发明和低温N 2吸附实验测得的孔隙度对比。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚明了,下面对本发明进行进一步详细说明。 但是应该理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限制本发明的范围。
除非另有定义,本文所使用的所有的技术术语和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同,本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。
结合图1所示,基于AFM的页岩孔隙度计算及组分孔隙贡献评价方法,包括如下步骤:
1)在AFM扫描过程中,会出现人工操作导致的样品基底歪斜和AFM探针摆动导致的扫描面碗状形变以及噪声干扰等实验误差,所以需要将AFM文件导入NanoScope Analysis软件,对扫描图像进行降噪及合适阶级的flatten处理,最大程度地减小AFM文件中包含的实验误差;
2)利用Gwyddion软件将页岩表面三维高程数据和相位数据导出;
3)将导出的高程数据置于三维坐标系中,以图像中心作为坐标原点,以页岩表面最低点高程作为零基准高程对页岩表面三维高程数据进行校正;
4)使用阈值法,通过判断表面高程函数是否满足高程阈值的要求,以此来确定孔隙函数,从而将AFM图像中的孔隙选出,阈值分割法可表示为下列公式:
Figure PCTCN2021084376-appb-000006
其中,g(x,y)为孔隙函数;f(x,y)为高程函数;T为高度阈值,m;
5)将样品表面在xOy坐标系的投影视为一个厚度可以忽略的虚拟平面,利用该虚拟平面自下而上的切割样品表面,则虚拟平面与低于该平面的样品表面所围体积即为孔体积,孔隙体积的计算公式为:
Figure PCTCN2021084376-appb-000007
其中,V为孔体积,m 3;A为投影面积,m 2;h为高程,m;a和b分别为投影宽度和长度,m;
6)根据孔隙度的定义,将孔隙体积除以投影面积与所选高程的乘积,即可得到孔隙度,孔隙度计算公式为:
Figure PCTCN2021084376-appb-000008
其中,φ为孔隙度,%;
7)利用双阈值离散积分法,即在固定高程阈值的基础上改变相位阈值,从而得到相位孔隙函数,双阈值离散积分法可用下列公式表示:
Figure PCTCN2021084376-appb-000009
其中,ξ(x,y)为相位孔隙函数;P为相位阈值,°;
8)计算相位阈值控制下的孔隙度,计算公式为:
Figure PCTCN2021084376-appb-000010
其中,φ ξ为相位孔隙度,%;
9)将不同相位区间内的孔隙度与物质成分进行线性拟合并计算它们之间的相关系数,得到不同相位区间内不同组分与孔隙度的相关性,厘清相位区间和物质成分的对应关系,以此来评价不同组分的孔隙贡献。
其中,所述步骤1)中的flatten阶数,对于页岩样品一般选择2阶。
其中,所述步骤3)中的校正方法为:以所有高程数值减去高程数值中的最小值为新的高程数值。
实施例1
本实施例基于AFM对渝东北巫溪2井龙马溪组页岩进行孔隙度测试和主要矿物孔隙贡献评价,步骤如下:
1、将AFM扫描得到的数据,导入NanoScope Analysis,对扫描图像进行降噪及2级的flatten处理,最大程度地减小AFM文件中包含的实验误差;
2、将经过NanoScope Analysis处理的AFM文件导入Gwyddion,选择ZSensor模式,将文件保存为xyz text data格式,添加.txt后缀,提取出AFM文件中的高程数据;选择Phase模式,将文件保存为xyz text data格式,添加.txt后缀,提取出AFM文件中的相位数据;
3、将AFM扫描得到的数据导入MATLAB进行校正,导入后会生成n×3(n=Xp×Yp;Xp,Yp分别为AFM图像长宽方向上的像素点个数)列数组,将三列数组拆分成X=n1,Y=n2,Z=n3,调用函数reshape将每列数组变换成Xp行×Yp列的形式,以便每个扫描线调用,采用min函数找到Z数组中的最小值Z min,采用MATLAB运算指令Z1=Z-Zmin将储层高程数据的Z数组以页岩表面高程最低点的高程为零基准高度对页岩表面三维数据进行校正;
4、使用阈值法,通过判断表面高程函数是否满足高程阈值的要求,以此来确定孔隙函数,从而将AFM图像中的孔隙选出,阈值分割法可表示为下列公式:
Figure PCTCN2021084376-appb-000011
其中,g(x,y)为孔隙函数;f(x,y)为高程函数;T为高度阈值,m;
5、将样品表面在xOy坐标系的投影视为一个厚度可以忽略的虚拟平面,利用该虚拟平面自下而上的切割样品表面,则虚拟平面与低于该平面的样品表面所围体积即为孔体积(如图2),孔隙体积的计算公式可以表示为:
Figure PCTCN2021084376-appb-000012
其中,V为孔体积,m 3;A为投影面积,m 2;h为高程,m;a和b分别为投影宽度和长度,m;
6、根据孔隙度的定义,将孔隙体积除以投影面积与所选高程的乘积,即可得到孔隙度,孔隙度计算公式可以表示为:
Figure PCTCN2021084376-appb-000013
其中,φ为孔隙度,%;
7、利用双阈值离散积分法,即在固定高程阈值的基础上改变相位阈值,从而得到相位孔隙函数,双阈值离散积分法可用下列公式表示:
Figure PCTCN2021084376-appb-000014
其中,ξ(x,y)为相位孔隙函数;P为相位阈值,°;
8、计算相位阈值控制下的孔隙度,计算过程可表示为公式:
Figure PCTCN2021084376-appb-000015
其中,φ ξ为相位孔隙度,%;
9、将不同相位区间内的孔隙度与物质成分进行线性拟合并计算它们之间的相关系数,得到不同相位区间内不同组分与孔隙度的相关性,厘清相位区间和物质成分的对应关系,以此来评价不同组分的孔隙贡献,如图3所示,图中(a)绿泥石含量与相位区间-20~-5°提供的孔隙度存在正相关关系,表明此区间内孔隙主要由绿泥石提供;图中(b)钾长石含量与相位区间-10~10°提供的孔隙度呈显著的正相关(R 2为94.21%),表明该范围内孔隙几乎全由钾长石提供;图中(c)相位区间-5~15°提供的孔隙与石英含量存在较好的正相关性,说明该区间主要为石英成因孔隙;图中(d)相位区间0~10°提供的孔隙与脆性矿物含量呈正相关,说明该相位区间范围内发育较多的脆性矿物孔隙;图中(e)TOC含量与总孔隙度呈正相关关系,且相关性好(R 2为81.02%),说明龙马溪组页岩主要发育有机质成因孔隙,且有机质孔在各个相位区间均有所贡献。总的来说,黏土矿物、有机质和脆性矿物均提供了一定的孔隙,其中黏土矿物中以绿泥石为主,脆性矿物中以石英和钾长石为主。
为了验证通过本发明计算的孔隙度的准确性,将通过本发明方法计算的巫溪2井页岩样品的孔隙度和通过低温N 2吸附实验得到的孔隙度做了对比,结果如图4,分析可知:AFM计算的孔隙度与低温N 2吸附实验换算的孔隙度基本一致,说明本发明提出的基于AFM的孔隙度计算方法是可靠的。
上述实施例只为说明本发明的技术构思及特点,其目的在于让熟悉此项技术的人士能够了解本发明的内容并据以实施,并不能以此限制本发明的保护范围。凡根据本发明精神实质所作的等效变化或修饰,都应涵盖在本发明的保护范围之内。

Claims (6)

  1. 基于AFM的页岩孔隙度计算及组分孔隙贡献评价方法,其特征在于,包括如下步骤:
    S1、通过处理后的AFM数据提取出页岩表面三维高程数据和相位数据,对页岩表面三维高程数据进行校正;
    S2、采用阈值法,选取高度阈值,分割出孔隙函数,求取孔体积,根据孔隙度定义,计算出页岩孔隙度;
    S3、采用双阈值离散积分法,得到相位孔隙函数,利用相位孔隙函数计算不同相位区间内的孔隙度,将不同相位区间内的孔隙度和页岩物质成分进行线性拟合并计算它们之间的相关系数,以此来评价不同组分的孔隙贡献。
  2. 根据权利要求1所述的基于AFM的页岩孔隙度计算及组分孔隙贡献评价方法,其特征在于,所述步骤S1中,将页岩表面形貌三维坐标数据以页岩表面最低点高程为零基准高程进行高程校正。
  3. 根据权利要求1所述的基于AFM的页岩孔隙度计算及组分孔隙贡献评价方法,其特征在于,所述步骤S2中,求取孔体积的具体步骤为:
    选取合适的高度阈值,分割出孔隙函数,将样品表面在xOy坐标系的投影视为一个厚度可以忽略的虚拟平面,利用该虚拟平面自下而上的切割样品表面,则虚拟平面与低于该平面的样品表面所围体积即为孔体积,计算公式为:
    Figure PCTCN2021084376-appb-100001
    Figure PCTCN2021084376-appb-100002
    其中,g(x,y)为孔隙函数;f(x,y)为高程函数;T为高度阈值,m;V为孔体积,m 3;A为投影面积,m 2;h为高程,m;a和b分别为投影宽度和长度,m。
  4. 根据权利要求1所述的基于AFM的页岩孔隙度计算及组分孔隙贡献评价方法,其特 征在于,所述步骤S2中计算页岩孔隙度的步骤为:
    将孔体积除以投影面积与所选高程的乘积,计算公式为:
    Figure PCTCN2021084376-appb-100003
    其中,φ为孔隙度,%。
  5. 根据权利要求1所述的基于AFM的页岩孔隙度计算及组分孔隙贡献评价方法,其特征在于,所述步骤S3中的双阈值离散积分法,具体为:
    在对高程数据进行一次阈值法进而计算孔隙度的基础上,再对相位数据进行一次阈值法,选取相位阈值P,分割出相位孔隙函数,计算公式为:
    Figure PCTCN2021084376-appb-100004
    其中,ξ(x,y)为相位孔隙函数;P为相位阈值,°。
  6. 根据权利要求1所述的基于AFM的页岩孔隙度计算及组分孔隙贡献评价方法,其特征在于,所述步骤S3中,利用相位孔隙函数计算不同相位区间内的孔隙度,具体为:
    对高程与相位孔隙函数之差进行积分,所得结果再除以平面投影面积和高程阈值的乘积,公式为:
    Figure PCTCN2021084376-appb-100005
    其中,φ ξ为相位孔隙度,%。
PCT/CN2021/084376 2020-06-30 2021-03-31 基于afm的页岩孔隙度计算及组分孔隙贡献评价方法 WO2022001259A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
GB2115553.6A GB2601238B (en) 2020-06-30 2021-03-31 AFM-Based Shale Porosity Calculation And Component Pore Contribution Evaluation Method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010619791.1A CN111766407B (zh) 2020-06-30 2020-06-30 基于afm的页岩孔隙度计算及组分孔隙贡献评价方法
CN202010619791.1 2020-06-30

Publications (1)

Publication Number Publication Date
WO2022001259A1 true WO2022001259A1 (zh) 2022-01-06

Family

ID=72723064

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/084376 WO2022001259A1 (zh) 2020-06-30 2021-03-31 基于afm的页岩孔隙度计算及组分孔隙贡献评价方法

Country Status (2)

Country Link
CN (1) CN111766407B (zh)
WO (1) WO2022001259A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115201247A (zh) * 2022-06-17 2022-10-18 中国地质大学(武汉) 一种确定不同页岩油组分储集空间的方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111766407B (zh) * 2020-06-30 2021-05-25 中国矿业大学 基于afm的页岩孔隙度计算及组分孔隙贡献评价方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6791081B1 (en) * 2002-03-27 2004-09-14 Advanced Micro Devices, Inc. Method for determining pore characteristics in porous materials
CN102183450A (zh) * 2011-04-20 2011-09-14 东北石油大学 储层岩心微观孔隙结构原子力显微镜的表征方法
CN103033456A (zh) * 2012-12-13 2013-04-10 北京农业信息技术研究中心 基于sfs算法的土壤孔隙度检测方法
CN105806765A (zh) * 2016-04-13 2016-07-27 南京大学(苏州)高新技术研究院 一种显微ct扫描土体空间孔隙结构的精细化表征方法
CN111289778A (zh) * 2020-03-12 2020-06-16 中国石油化工股份有限公司 一种页岩样品扫描电镜和原子力显微镜原位观察的方法
CN111766407A (zh) * 2020-06-30 2020-10-13 中国矿业大学 基于afm的页岩孔隙度计算及组分孔隙贡献评价方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101639434A (zh) * 2009-08-27 2010-02-03 太原理工大学 基于显微图像分析固体材料孔隙结构的方法
ES2655667T3 (es) * 2011-10-14 2018-02-21 Ingrain, Inc. Método y sistema de imagen dual para la generación de una imagen multidimensional de una muestra
US9128210B2 (en) * 2012-08-17 2015-09-08 Schlumberger Technology Corporation Method to characterize shales at high spatial resolution
CN105957118B (zh) * 2016-04-27 2017-10-27 中国科学院地质与地球物理研究所 一种页岩孔隙成像方法和装置
CN108459034A (zh) * 2016-11-18 2018-08-28 中国石油化工股份有限公司 一种砂岩酸岩反应效果可视化定量评价方法
CN110910444B (zh) * 2019-11-14 2022-12-09 中国科学院力学研究所 一种res尺度页岩等效三维孔隙参数快速提取方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6791081B1 (en) * 2002-03-27 2004-09-14 Advanced Micro Devices, Inc. Method for determining pore characteristics in porous materials
CN102183450A (zh) * 2011-04-20 2011-09-14 东北石油大学 储层岩心微观孔隙结构原子力显微镜的表征方法
CN103033456A (zh) * 2012-12-13 2013-04-10 北京农业信息技术研究中心 基于sfs算法的土壤孔隙度检测方法
CN105806765A (zh) * 2016-04-13 2016-07-27 南京大学(苏州)高新技术研究院 一种显微ct扫描土体空间孔隙结构的精细化表征方法
CN111289778A (zh) * 2020-03-12 2020-06-16 中国石油化工股份有限公司 一种页岩样品扫描电镜和原子力显微镜原位观察的方法
CN111766407A (zh) * 2020-06-30 2020-10-13 中国矿业大学 基于afm的页岩孔隙度计算及组分孔隙贡献评价方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
BAI, YONGQUANG ET AL.: "AFM (AFM Based Pore Characterization of Shales and Its Relation to the Analytical Gas", JOURNAL OF JILIN UNIVERSITY(EARTH SCIENCE EDITION, vol. 46, no. 5, 30 September 2016 (2016-09-30), pages 1332 - 1341, XP055883872, ISSN: 1671-5888 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115201247A (zh) * 2022-06-17 2022-10-18 中国地质大学(武汉) 一种确定不同页岩油组分储集空间的方法
CN115201247B (zh) * 2022-06-17 2024-06-04 中国地质大学(武汉) 一种确定不同页岩油组分储集空间的方法

Also Published As

Publication number Publication date
CN111766407B (zh) 2021-05-25
CN111766407A (zh) 2020-10-13

Similar Documents

Publication Publication Date Title
WO2022001259A1 (zh) 基于afm的页岩孔隙度计算及组分孔隙贡献评价方法
CN110700820A (zh) 松辽盆地北部致密油储层甜点分类方法
CN109856688B (zh) 基于核磁测井双tw极化增强法的流体性质识别方法
CN116027453A (zh) 一种水合物混合层饱和度定量评价方法及装置
CN110208874B (zh) 一种致密砂岩油藏有效储层识别方法
Zhu et al. Multi-scale characterization of organic matter pore space in deep marine shale combined with mathematical morphology
CN112145165A (zh) 一种微裂缝-孔隙型储层动静态渗透率转换方法
CN116104467A (zh) 一种根据气测录井判断油气层流体性质的方法
CN112185469B (zh) 一种预测海域天然气水合物有利聚集区的方法
CN111221038B (zh) 薄储层厚度定量预测的方法和装置
CN110895704B (zh) 微生物丘滩复合体储集层类型识别方法、装置及存储介质
CN109099880B (zh) 岩体结构面粗糙度系数全域搜索测量方法
CN112505154B (zh) 泥页岩储层矿物成分含量解析与岩相识别表征方法
CN115718056A (zh) 一种测定花斑状碳酸盐岩中储层孔隙度的方法
CN112346147A (zh) 一种基于中子密度孔隙度差的储层评价方法
CN112304843A (zh) 一种泥页岩中页岩气吸附量定量表征方法
CN111487393A (zh) 一种古盐度值的测定方法、单井和多井古盐度平面图以及沉积相展布图的绘制方法
Amanipoor Providing a subsurface reservoir quality maps in oil fields by geostatistical methods
CN111693427A (zh) 油气藏流体可动性的分析方法
CN113805246B (zh) 一种碳酸盐岩储层连通性评价图版及其生成方法和应用
CN116291415B (zh) 一种计算含气地层孔隙度的方法及系统
CN115078599B (zh) 基于原油全组分浓度的储层连通性评价方法
CN115506786A (zh) 一种非均质碳酸盐岩储层孔隙结构特征的判定方法
CN114428049B (zh) 一种计算古老碳酸盐岩储层沥青含量的方法
CN117372737A (zh) 一种基于电成像资料的砂砾岩储层基质产能分类方法、系统、设备及存储介质

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 202115553

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20210313

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21832696

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21832696

Country of ref document: EP

Kind code of ref document: A1