WO2022001194A1 - 一种基于对消技术的微型声波谐振器的滤波器、双工器 - Google Patents

一种基于对消技术的微型声波谐振器的滤波器、双工器 Download PDF

Info

Publication number
WO2022001194A1
WO2022001194A1 PCT/CN2021/081156 CN2021081156W WO2022001194A1 WO 2022001194 A1 WO2022001194 A1 WO 2022001194A1 CN 2021081156 W CN2021081156 W CN 2021081156W WO 2022001194 A1 WO2022001194 A1 WO 2022001194A1
Authority
WO
WIPO (PCT)
Prior art keywords
port
hybrid
network
filter
port network
Prior art date
Application number
PCT/CN2021/081156
Other languages
English (en)
French (fr)
Inventor
胡孝伟
代文亮
赵瑞洁
Original Assignee
上海芯波电子科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海芯波电子科技有限公司 filed Critical 上海芯波电子科技有限公司
Publication of WO2022001194A1 publication Critical patent/WO2022001194A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/64Filters using surface acoustic waves
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/462Microelectro-mechanical filters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/70Multiple-port networks for connecting several sources or loads, working on different frequencies or frequency bands, to a common load or source
    • H03H9/703Networks using bulk acoustic wave devices
    • H03H9/706Duplexers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/70Multiple-port networks for connecting several sources or loads, working on different frequencies or frequency bands, to a common load or source
    • H03H9/72Networks using surface acoustic waves
    • H03H9/725Duplexers

Definitions

  • the invention belongs to the field of electronic technology, in particular to a filter and a duplexer of a miniature acoustic wave resonator based on cancellation technology.
  • Radio frequency (RF) filters and duplexers have always been an important part of communication systems. High selectivity, low insertion loss, compact size, ability to handle large signals (power handling), high linearity, manufacturability, and low cost may be some of the important required characteristics for RF filters and duplexers.
  • Piezoelectric materials can be used to realize compact high-Q resonators.
  • Crystal resonators are widely used to generate spectrally pure oscillators.
  • Surface acoustic wave (SAW) resonators have been widely used to realize compact low-loss selective RF filters and duplexers.
  • bulk acoustic wave (BAW) resonators have been used to construct high-performance RF filters, duplexers, and oscillators.
  • High quality factor ceramic resonators and microelectromechanical systems (MEMS) resonators are also used for frequency generation and filtering applications.
  • the purpose of the present invention is to solve the problems of large size, low performance and high loss of existing filters and duplexers.
  • a duplexer of a miniature acoustic wave resonator based on cancellation technology of the present invention includes two hybrid couplers connected to each other, and the hybrid coupler includes an input port In, a straight-through port T, a coupling port C and an isolation port ISO , the straight-through ports T of the two hybrid couplers are connected to each other and a two-port network F1 is arranged in the middle, the coupling ports C of the two hybrid couplers are connected to each other and a two-port network F2 is arranged in the middle, and the input ports In of the two hybrid couplers are connected to each other.
  • a two-port network F3 and a TX port are respectively connected, the isolation ports ISO of the two hybrid couplers are respectively connected with an ANT and a load, and the two-port network F1, the two-port network F2 and the two-port network F3 are all the same two-port network .
  • the two-port network F3 and ANT are connected to the same hybrid coupler, and the TX port and the load are connected to the same hybrid coupler.
  • the two-port network F3 is also connected with an RX port.
  • the signal input by the input port In is equally divided by the through port T and the coupling port C, and the signals output by the through port T and the coupling port C have a quadrature phase shift relative to the quadrature hybrid circuit.
  • a filter based on cancellation technology of miniature acoustic wave resonator including a hybrid coupler, the straight-through port T of the hybrid coupler and the coupling port C are connected to form a loop and a two-port network F1 is arranged on the loop, and the hybrid coupler is connected.
  • the isolation port ISO of the coupler is connected with an output port, and the input port In of the hybrid coupler is connected with a two-port network F2, and the two-port network F1 and the two-port network F2 are both the same two-port network.
  • a kind of filter based on cancellation technology of miniature acoustic wave resonator comprising a hybrid coupler, the input port In, the straight-through port T, the coupling port C and the isolation port ISO of the hybrid coupler are all connected with different two-port networks, And the two-port network connected with the input port In is also connected with a signal input terminal, the two-port network connected with the straight-through port T and the coupling port C are respectively connected with loads and grounded, and the two-port network connected with the isolation port ISO is also connected. A signal output is connected.
  • An integrated package structure includes at least one hybrid module and at least one filter module, the hybrid module includes at least one hybrid coupler, and the filter module includes at least one filter.
  • an amplifier is also included, and the amplifier is at least one of a power amplifier, a low noise amplifier or a radio frequency amplifier.
  • a filter module is also included, and the filter module includes at least one filter, and the filter is a SAW resonator or a BAW resonator.
  • a filter and duplexer of a miniature acoustic wave resonator based on cancellation technology of the present invention includes two hybrid couplers connected to each other, and the hybrid coupler includes an input port In, a straight-through port T, a coupling port C and an isolation port ISO, the through ports T of the two hybrid couplers are connected to each other with a two-port network F1 in the middle, the coupling ports C of the two hybrid couplers are connected to each other with a two-port network F2 in the middle, the input ports of the two hybrid couplers are connected to each other
  • the In is connected to the two-port network F3 and the TX port respectively, the isolation ports ISO of the two hybrid couplers are respectively connected to the ANT and the load, and the two-port network F1, the two-port network F2 and the two-port network F3 are all the same two-port network.
  • insertion loss in filters and duplexers can be proportional to the number of resonators used. In other words, the larger the order of the filter and the TX and RX filters, the more likely the loss of the filter and duplexer will be. This insertion loss and isolation or stopband rejection trade-off can be broken by incorporating hybrid couplers into the design of filters and duplexers.
  • Fig. 1 is the structural representation of this embodiment 1;
  • Fig. 2 is the structural representation of this embodiment 2;
  • Fig. 3 is the structural representation of this embodiment 3;
  • FIG. 4 is a schematic structural diagram of the fourth embodiment.
  • a duplexer of a miniature acoustic wave resonator based on cancellation technology in this embodiment includes two hybrid couplers connected to each other, and the hybrid coupler includes an input port In, a through port T, and a coupling port.
  • C and isolation port ISO the straight-through ports T of the two hybrid couplers are connected to each other and a two-port network F1 is arranged in the middle, the coupling ports C of the two hybrid couplers are connected to each other and a two-port network F2 is arranged in the middle, and the two hybrid couplers are connected to each other.
  • the input port In of the coupler is respectively connected with a two-port network F3 and a TX port, the isolation ports ISO of the two hybrid couplers are respectively connected with an ANT and a load, and the two-port network F1, the two-port network F2 and the two-port network F3 are The same two-port network.
  • the purpose of the two-port network is to isolate the RX port and the TX port, while allowing signals to propagate between the ANT and TX ports and between the RX and TX ports.
  • a hybrid cancellation network of the remaining isolated ports can be terminated with matching loads.
  • Two essentially identical two-port network works F1 are placed between the two hybrid couplers and another two-port network is added at the RX port.
  • the two-port network F3 is a filter that passes the signal in the RX band.
  • the two-port networks F1 and F2 are filters that pass signals in the TX band.
  • the two-port network F3 and ANT are connected to the same hybrid coupler, and the TX port and the load are connected to the same hybrid coupler.
  • the two-port network F3 is also connected with an RX port.
  • the signal input by the input port In is equally divided by the through port T and the coupling port C, and the signals output by the through port T and the coupling port C have a quadrature phase shift relative to the quadrature hybrid circuit.
  • insertion loss in filters and duplexers can be proportional to the number of resonators used. In other words, the larger the order of the filter and the TX and RX filters, the more likely the loss of the filter and duplexer will be. This insertion loss and isolation or stopband rejection trade-off can be broken by incorporating hybrid couplers into the design of filters and duplexers.
  • a filter based on the cancellation technology of the miniature acoustic wave resonator of this embodiment includes a hybrid coupler, and the straight-through port T and the coupling port C of the hybrid coupler are connected to form a loop, and the loop is provided with A two-port network F1, the isolation port ISO of the hybrid coupler is connected to an output port, the input port In of the hybrid coupler is connected to a two-port network F2, and the two-port network F1 and the two-port network F2 are the same Two-port network.
  • a two-port network can be designed with a bandpass transfer function between the two ports, which corresponds to the bandstop reflection coefficients of the two ports. Then, if this two-port network is used for F1, it is possible to improve the filter's stopband rejection by aligning the passband of filter F1 with the desired stopband. Thus, even using smaller orders for filters F1 and F2 in the method of Figure 2 than conventional filter designs, it is possible to achieve stopband rejection comparable to conventional filter designs using a large number of resonators.
  • a filter of a micro acoustic resonator based on cancellation technology of the present embodiment includes a hybrid coupler whose input port In, straight-through port T, coupling port C and isolation port ISO are all Different two-port networks are connected, and the two-port network connected with the input port In is also connected with a signal input terminal, and the two-port network connected with the straight-through port T and the coupling port C are respectively connected with a load and grounding, and the isolation port.
  • the ISO-connected two-port network is also connected to a signal output.
  • This embodiment achieves passband enhancement and stopband suppression by the filters F1 and F2 by using reflection-type filters.
  • Figure 3 shows the filters in a duplexer-based hybrid coupler and a single-passband hybrid coupler-based filter, only if these filters have multiple passbands.
  • Applications include carrier aggregation, multi-band, multi-mode conditions.
  • an integrated packaging structure of this embodiment includes at least one hybrid module and at least one filter module, the hybrid module includes at least one hybrid coupler, and the filter module includes at least one filter.
  • an amplifier which is at least one of a power amplifier, a low noise amplifier or a radio frequency amplifier.
  • a filter module is also included, the filter module including at least one filter, the filter being a SAW resonator or a BAW resonator.
  • one or more hybrid coupler modules may be integrated with one or more filter modules in one package.
  • Each hybrid module may contain one or more hybrid couplers.
  • Each filter module may contain one or more resonators or filters.
  • Each hybrid module can use an IPD process and each filter can use a SAW or BAW resonator.
  • filter and hybrid coupler modules may be co-packaged with amplifier or switch modules (each module including one or more amplifiers and switches, respectively).
  • the amplifier can consist of a power amplifier (PA), a low noise amplifier (LNA), or other radio frequency (RF) amplifiers.
  • the module may consist of one or more hybrid couplers, one or more filters using acoustic resonators, one or more switches, and one or more amplifiers (which may be LNAs, PAs or other RF amplifiers).
  • the internal structure of the filter and duplexer is optimized by using the bulk acoustic wave resonator arranged in combination, so as to make the duplexer compact and reduce the volume, At the same time, by incorporating hybrid couplers into the design of filters and duplexers, this insertion loss and isolation or stopband rejection trade-off can be broken, thereby improving performance.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

本发明的一种基于对消技术的微型声波谐振器的滤波器、双工器,包括相互连接的两个混合耦合器,混合耦合器包括输入端口In、直通端口T、耦合端口C和隔离端口ISO,两个混合耦合器的直通端口T相互连接且中间设有两端口网络F1,两个混合耦合器的耦合端口C相互连接且中间设有两端口网络F2,两个混合耦合器的输入端口In分别连接有两端口网络F3和TX端口,两个混合耦合器的隔离端口ISO分别连接有ANT和负载,两端口网络F1、两端口网络F2和两端口网络F3均为相同的两端口网络。

Description

一种基于对消技术的微型声波谐振器的滤波器、双工器 技术领域
本发明属于电子技术领域,具体来说是一种基于对消技术的微型声波谐振器的滤波器、双工器。
背景技术
随着消费电子行业对体积及性能的要求越来越严苛,使得在便携式消费电子产品中嵌入具有更多功能的微型射频模块成为可能。由于新的通信标准,信息信道和频带之间的距离越来越近,对射频滤波器和双工器的要求也越来越严格,新的通信设备,如智能手机,所有组件的占用空间和成本必须非常小,因为需要更多组件来支持多种标准和应用程序,以及多个通信发射器和接收器同时工作的共存通信系统。
射频(RF)滤波器和双工器一直是通信系统的重要组成部分。高选择性、低插入损耗、紧凑的尺寸、处理大信号的能力(功率处理)、高线性度、可制造性和低成本可能是射频滤波器和双工器的一些重要需求特性。
压电材料可用于实现紧凑型高Q谐振器。晶体谐振器被广泛应用于产生光谱纯振荡器。声表面波(SAW)谐振器已广泛应用于实现紧凑型低损耗选择性射频滤波器和双工器。近年来,体声波(BAW)谐振器已被用来构造高性能的射频滤波器、双工器和振荡器。高质量因数的陶瓷谐振器和微机电系统(MEMS)谐振器也被用于频率产生和滤波应用。
发明内容
1.发明要解决的技术问题
本发明的目的在于解决现有的滤波器、双工器存在尺寸大、性能低和损耗高的问题。
2.技术方案
为达到上述目的,本发明提供的技术方案为:
本发明的一种基于对消技术的微型声波谐振器的双工器,包括相互连接的两个混合耦合器,所述混合耦合器包括输入端口In、直通端口T、耦合端口C和隔离端口ISO,两个混合耦合器的直通端口T相互连接且中间设有两端口网络F1,两个混合耦合器的耦合端口C相互连接且中间设有两端口网络F2,两个混合耦合器的输入端口In分别连接有两端口网络F3和TX端口,两个混合耦合器的隔离端口ISO分别连接有ANT和负载,所述两端口网络F1、两端口网络F2和两端口网络F3均为相同的两端口网络。
优选的,所述两端口网络F3和ANT与同一个混合耦合器连接,所述TX端口和负载与同一个混合耦合器连接。
优选的,所述两端口网络F3还连接有RX端口。
优选的,输入端口In输入的信号被直通端口T、耦合端口C等分,直通端口T、耦合端口C输出的信号具有相对于正交混合电路的正交相移。
一种基于对消技术的微型声波谐振器的滤波器,包括一个混合耦合器,该混合耦合器的直通端口T和耦合端口C连接形成回路且该回路上设有两端口网络F1,所述混合耦合器的隔离端口ISO连接有输出端口,所述混合耦合器的输入端口In连接有两端口网络F2,所述两端口网络F1和两端口网络F2均为相同的两端口网络。
一种基于对消技术的微型声波谐振器的滤波器,包括一个混合耦合器,该混合耦合器的输入端口In、直通端口T、耦合端口C和隔离端口ISO均连接有不同的两端口网络,且与输入端口In相连接的两端口网络还连接有信号输入端,与直通端口T、耦合端口C相连接的两端口网络分别连接有负载并接地,与隔 离端口ISO相连接的两端口网络还连接有信号输出端。
一种集成封装结构,包括至少一个混合模块和至少一个滤波器模块,所述混合模块包括至少一个混合耦合器,所述滤波器模块包括至少一个滤波器。
优选的,还包括放大器,该放大器为功率放大器、低噪声放大器或射频放大器中的至少一种。
优选的,还包括滤波器模块,所述滤波器模块包括至少一个滤波器,该滤波器为SAW谐振器或BAW谐振器。
3.有益效果
采用本发明提供的技术方案,与现有技术相比,具有如下有益效果:
本发明的一种基于对消技术的微型声波谐振器的滤波器、双工器,包括相互连接的两个混合耦合器,混合耦合器包括输入端口In、直通端口T、耦合端口C和隔离端口ISO,两个混合耦合器的直通端口T相互连接且中间设有两端口网络F1,两个混合耦合器的耦合端口C相互连接且中间设有两端口网络F2,两个混合耦合器的输入端口In分别连接有两端口网络F3和TX端口,两个混合耦合器的隔离端口ISO分别连接有ANT和负载,两端口网络F1、两端口网络F2和两端口网络F3均为相同的两端口网络。由于声学谐振器的品质因素有限,滤波器和双工器中的插入损耗可能与所用谐振器的数量成正比。换句话说,滤波器和TX和RX滤波器的阶数越大,滤波器和双工器的损耗可能就越大。通过在滤波器和双工器的设计中加入混合耦合器,可以打破这种插入损失和隔离或阻带抑制权衡。
附图说明
图1为本实施例1的结构示意图;
图2为本实施例2的结构示意图;
图3为本实施例3的结构示意图;
图4为本实施例4的结构示意图。
具体实施方式
为了便于理解本发明,下面将参照相关附图对本发明进行更全面的描述,附图中给出了本发明的若干实施例,但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施例,相反地,提供这些实施例的目的是使对本发明的公开内容更加透彻全面。
需要说明的是,当元件被称为“固设于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件;当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件;本文所使用的术语“垂直的”、“水平的”、“左”、“右”以及类似的表述只是为了说明的目的。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同;本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明;本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
实施例1
参照图1,本实施例的一种基于对消技术的微型声波谐振器的双工器,包括相互连接的两个混合耦合器,所述混合耦合器包括输入端口In、直通端口T、耦合端口C和隔离端口ISO,两个混合耦合器的直通端口T相互连接且中间设有两端口网络F1,两个混合耦合器的耦合端口C相互连接且中间设有两端口网络F2,两个混合耦合器的输入端口In分别连接有两端口网络F3和TX端口,两个混合耦合器的隔离端口ISO分别连接有ANT和负载,所述两端口网络F1、两端口网络F2和两端口网络F3均为相同的两端口网络。
两端口网络目的是隔离RX端口和TX端口,同时允许信号在ANT和TX端口之间以及RX端口和TX端口之间传播。剩余的隔离端口的混合对消网络可以终止与匹配的负载。两个本质上相同的两端口网络工程F1被放置在两个混合耦合器之间,另一个两端口网络被添加在RX端口。两端口网络F3是一个在RX频段传递信号的滤波器。两端口网络F1和F2是在TX频带传递信号的滤波器。
其中,两端口网络F3和ANT与同一个混合耦合器连接,所述TX端口和负载与同一个混合耦合器连接。所述两端口网络F3还连接有RX端口。
其中,输入端口In输入的信号被直通端口T、耦合端口C等分,直通端口T、耦合端口C输出的信号具有相对于正交混合电路的正交相移。
由于声学谐振器的品质因素有限,滤波器和双工器中的插入损耗可能与所用谐振器的数量成正比。换句话说,滤波器和TX和RX滤波器的阶数越大,滤波器和双工器的损耗可能就越大。通过在滤波器和双工器的设计中加入混合耦合器,可以打破这种插入损失和隔离或阻带抑制权衡。
实施例2
参照图2,本实施例的一种基于对消技术的微型声波谐振器的滤波器,包括一个混合耦合器,该混合耦合器的直通端口T和耦合端口C连接形成回路且该回路上设有两端口网络F1,所述混合耦合器的隔离端口ISO连接有输出端口,所述混合耦合器的输入端口In连接有两端口网络F2,所述两端口网络F1和两端口网络F2均为相同的两端口网络。
两端口网络可以设计成在两个端口之间具有带通传输函数,该函数对应于两个端口的带阻反射系数。然后,如果这个双端口网络用于F1,可能通过将滤波器F1的通带对准所需的阻带来改进滤波器的阻带抑制。因此,即使在图2的方法中对滤波器F1和F2使用比传统滤波器设计更小的阶数,也有可能实现与 使用大量谐振器的传统滤波器设计相当的阻带抑制。
实施例3
参照图3,本实施例的一种基于对消技术的微型声波谐振器的滤波器,包括一个混合耦合器,该混合耦合器的输入端口In、直通端口T、耦合端口C和隔离端口ISO均连接有不同的两端口网络,且与输入端口In相连接的两端口网络还连接有信号输入端,与直通端口T、耦合端口C相连接的两端口网络分别连接有负载并接地,与隔离端口ISO相连接的两端口网络还连接有信号输出端。
本实施例通过使用反射型滤波器来实现由滤波器F1和F2的通带增强、阻带抑制。
图3显示了基于双工器的混合耦合器和基于单通带的混合耦合器的滤波器中的滤波器,只适用于这些滤波器具有多个通带的情况。应用于包括载波聚合、多频带、多模式状况。
实施例4
参照图4,本实施例的一种集成封装结构,包括至少一个混合模块和至少一个滤波器模块,所述混合模块包括至少一个混合耦合器,所述滤波器模块包括至少一个滤波器。
还包括放大器,该放大器为功率放大器、低噪声放大器或射频放大器中的至少一种。
还包括滤波器模块,所述滤波器模块包括至少一个滤波器,该滤波器为SAW谐振器或BAW谐振器。
如图4中,一个或多个混合耦合器模块可以与一个或多个滤波器模块集成在一个封装内。每个混合模块可以包含一个或多个混合耦合器。每个滤波器模块可以包含一个或多个谐振器或滤波器。每个混合模块可以使用IPD工艺,每 个滤波器可以使用SAW或BAW谐振器。此外,滤波器和混合耦合器模块可以与放大器或开关模块(每个模块分别包括一个或多个放大器和开关)共同封装。放大器可以由功率放大器(PA)、低噪声放大器(LNA)或其他射频(RF)放大器组成。该模块可以由一个或多个混合耦合器、一个或多个使用声学谐振器的滤波器、一个或多个开关以及一个或多个放大器(可以是LNA、PA或其他RF放大器)组成。
通过运用对消技术的微型声波谐振器滤波器和双工器,内部通过使用组合排列的体声波谐振器来优化滤波器、双工器内部结构,以使双工器结构紧凑、减小体积,同时通过在滤波器和双工器的设计中加入混合耦合器,可以打破这种插入损失和隔离或阻带抑制权衡,继而提高性能。
以上所述实施例仅表达了本发明的某种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制;应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围;因此,本发明专利的保护范围应以所附权利要求为准。

Claims (9)

  1. 一种基于对消技术的微型声波谐振器的双工器,其特征在于:包括相互连接的两个混合耦合器,所述混合耦合器包括输入端口In、直通端口T、耦合端口C和隔离端口ISO,两个混合耦合器的直通端口T相互连接且中间设有两端口网络F1,两个混合耦合器的耦合端口C相互连接且中间设有两端口网络F2,两个混合耦合器的输入端口In分别连接有两端口网络F3和TX端口,两个混合耦合器的隔离端口ISO分别连接有ANT和负载,所述两端口网络F1、两端口网络F2和两端口网络F3均为相同的两端口网络。
  2. 根据权利要求1所述的一种基于对消技术的微型声波谐振器的双工器,其特征在于:所述两端口网络F3和ANT与同一个混合耦合器连接,所述TX端口和负载与同一个混合耦合器连接。
  3. 根据权利要求1所述的一种基于对消技术的微型声波谐振器的双工器,其特征在于:所述两端口网络F3还连接有RX端口。
  4. 根据权利要求1所述的一种基于对消技术的微型声波谐振器的双工器,其特征在于:输入端口In输入的信号被直通端口T、耦合端口C等分,直通端口T、耦合端口C输出的信号具有相对于正交混合电路的正交相移。
  5. 一种基于对消技术的微型声波谐振器的滤波器,其特征在于:包括一个混合耦合器,该混合耦合器的直通端口T和耦合端口C连接形成回路且该回路上设有两端口网络F1,所述混合耦合器的隔离端口ISO连接有输出端口,所述混合耦合器的输入端口In连接有两端口网络F2,所述两端口网络F1和两端口网络F2均为相同的两端口网络。
  6. 一种基于对消技术的微型声波谐振器的滤波器,其特征在于:包括一个混合耦合器,该混合耦合器的输入端口In、直通端口T、耦合端口C和隔离端口ISO均连接有不同的两端口网络,且与输入端口In相连接的两端口网络还连 接有信号输入端,与直通端口T、耦合端口C相连接的两端口网络分别连接有负载并接地,与隔离端口ISO相连接的两端口网络还连接有信号输出端。
  7. 一种集成封装结构,其特征在于:包括至少一个混合模块和至少一个滤波器模块,所述混合模块包括至少一个混合耦合器,所述滤波器模块包括至少一个滤波器。
  8. 根据权利要求7所述的一种集成封装结构,其特征在于:还包括放大器,该放大器为功率放大器、低噪声放大器或射频放大器中的至少一种。
  9. 根据权利要求7所述的一种集成封装结构,其特征在于:还包括滤波器模块,所述滤波器模块包括至少一个滤波器,该滤波器为SAW谐振器或BAW谐振器。
PCT/CN2021/081156 2020-06-29 2021-03-16 一种基于对消技术的微型声波谐振器的滤波器、双工器 WO2022001194A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010601096.2A CN112003585A (zh) 2020-06-29 2020-06-29 一种基于对消技术的微型声波谐振器的滤波器、双工器
CN202010601096.2 2020-06-29

Publications (1)

Publication Number Publication Date
WO2022001194A1 true WO2022001194A1 (zh) 2022-01-06

Family

ID=73466648

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/081156 WO2022001194A1 (zh) 2020-06-29 2021-03-16 一种基于对消技术的微型声波谐振器的滤波器、双工器

Country Status (2)

Country Link
CN (1) CN112003585A (zh)
WO (1) WO2022001194A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112003585A (zh) * 2020-06-29 2020-11-27 上海芯波电子科技有限公司 一种基于对消技术的微型声波谐振器的滤波器、双工器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150236395A1 (en) * 2014-02-14 2015-08-20 University Of Southern California Reflection and hybrid reflection filters
US20150236842A1 (en) * 2014-02-14 2015-08-20 University Of Southern California Hybrid-based cancellation in presence of antenna mismatch
CN106031076A (zh) * 2014-02-19 2016-10-12 南加利福尼亚大学 基于微型声谐振器的滤波器和双工器
CN107852142A (zh) * 2015-07-24 2018-03-27 华为技术有限公司 射频双工器
CN112003585A (zh) * 2020-06-29 2020-11-27 上海芯波电子科技有限公司 一种基于对消技术的微型声波谐振器的滤波器、双工器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150236395A1 (en) * 2014-02-14 2015-08-20 University Of Southern California Reflection and hybrid reflection filters
US20150236842A1 (en) * 2014-02-14 2015-08-20 University Of Southern California Hybrid-based cancellation in presence of antenna mismatch
CN106031076A (zh) * 2014-02-19 2016-10-12 南加利福尼亚大学 基于微型声谐振器的滤波器和双工器
CN107852142A (zh) * 2015-07-24 2018-03-27 华为技术有限公司 射频双工器
CN112003585A (zh) * 2020-06-29 2020-11-27 上海芯波电子科技有限公司 一种基于对消技术的微型声波谐振器的滤波器、双工器

Also Published As

Publication number Publication date
CN112003585A (zh) 2020-11-27

Similar Documents

Publication Publication Date Title
TWI834692B (zh) 具有諧波抑制的混合式聲音諧振(lc)濾波器
US10541674B2 (en) Multiplexer, transmission device, reception device, high-frequency front end circuit, communication device and impedance matching method for multiplexer
CN106031076B (zh) 基于微型声谐振器的滤波器和双工器
US8531252B2 (en) Antenna duplexer and communication apparatus employing the same
US7277403B2 (en) Duplexer with a differential receiver port implemented using acoustic resonator elements
US10277198B2 (en) High power and low loss acoustic filter
WO2011105315A1 (ja) フィルタ、デュープレクサ、通信モジュール、通信装置
US9866201B2 (en) All-acoustic duplexers using directional couplers
JP6798456B2 (ja) 高周波フロントエンド回路及び通信装置
TW202013888A (zh) 包括與電路元件並聯之聲波諧振器的濾波器
US20170179930A1 (en) Branching filter
US20080101263A1 (en) Single-ended to differential duplexer filter
WO2022001194A1 (zh) 一种基于对消技术的微型声波谐振器的滤波器、双工器
WO2010079614A1 (ja) フィルタ素子、分波器および電子装置
US20170040966A1 (en) Combined impedance matching and rf filter circuit
EP2892151B1 (en) Filter device and duplexer
WO2021013571A1 (en) Saw/baw hybrid rf receiving filter, rf duplexer and rf multiplexer
CN212992300U (zh) 一种基于对消技术的微型声波谐振器的滤波器、双工器
CN107852142A (zh) 射频双工器
JP2006129131A (ja) 平衡型高周波フィルタ、アンテナ共用器、及び平衡型高周波回路
CN115800952A (zh) 滤波装置电路
JP2019054355A (ja) フィルタおよびフロントエンド回路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21831814

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21831814

Country of ref document: EP

Kind code of ref document: A1