WO2022000874A1 - 一种双螺旋电容气固两相流测量装置及方法 - Google Patents

一种双螺旋电容气固两相流测量装置及方法 Download PDF

Info

Publication number
WO2022000874A1
WO2022000874A1 PCT/CN2020/122752 CN2020122752W WO2022000874A1 WO 2022000874 A1 WO2022000874 A1 WO 2022000874A1 CN 2020122752 W CN2020122752 W CN 2020122752W WO 2022000874 A1 WO2022000874 A1 WO 2022000874A1
Authority
WO
WIPO (PCT)
Prior art keywords
spiral
capacitance
phase flow
solid
electrode
Prior art date
Application number
PCT/CN2020/122752
Other languages
English (en)
French (fr)
Inventor
贾欣鑫
王雷
张�浩
孙小玲
王起维
王鑫
段利亚
陈光源
李向春
刘凤庆
程岩
王小红
Original Assignee
山东省科学院海洋仪器仪表研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东省科学院海洋仪器仪表研究所 filed Critical 山东省科学院海洋仪器仪表研究所
Publication of WO2022000874A1 publication Critical patent/WO2022000874A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/06Investigating concentration of particle suspensions
    • G01N15/0656Investigating concentration of particle suspensions using electric, e.g. electrostatic methods or magnetic methods
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/24Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying capacitance
    • G01D5/2405Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying capacitance by varying dielectric
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/86Indirect mass flowmeters, e.g. measuring volume flow and density, temperature or pressure
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P5/00Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft
    • G01P5/08Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft by measuring variation of an electric variable directly affected by the flow, e.g. by using dynamo-electric effect

Definitions

  • the invention relates to a double-spiral capacitance gas-solid two-phase flow measurement device and method, belonging to the technical field of multiphase flow detection.
  • the application number is 201821874492.7, the Chinese patent titled "A Capacitive Gas-Solid Two-Phase Flow Measuring Device", although it can measure the flow velocity, flow cross-section concentration and mass flow rate of solid particles in the gas-solid two-phase flow
  • the concentration of particles in the pipeline is measured by an array capacitive sensor.
  • This method adopts the method of sequentially exciting multiple groups of electrode pairs, and normalizes the capacitance data according to the measured data of the array electrode pairs, so as to obtain the particle density at the cross-section. distribution, and then obtain a cross-sectional particle concentration distribution image.
  • the disadvantage of this method is that the calculation of particle concentration requires normalized calculation of the capacitance data of multiple groups of array electrodes, which requires a large amount of calculation and low detection efficiency; at the same time, the capacitance structure is complex, which is prone to interference between electrodes, resulting in the introduction of large capacitance during measurement. error.
  • the present invention aims to overcome the problems existing in the prior art, and proposes a double-spiral capacitive gas-solid two-phase flow measurement device and method.
  • the concentration measurement of the present invention is realized by a spiral capacitive sensor. Compared with an array capacitive sensor, There is no need to arrange multiple sets of electrodes on the tube wall, simplifying the electrode structure of the capacitor, which can be applied to pipelines with smaller diameters. Flow velocity and mass flow detection efficiency.
  • the technical scheme adopted in the present invention is as follows:
  • the present invention provides a double-spiral capacitive gas-solid two-phase flow measurement device, comprising an experimental tube on which two sets of helical capacitive sensors are embedded, and the two sets of the helical capacitive sensors are separated by a certain distance L, and Between the two groups of spiral capacitance sensors, between the spiral capacitance sensor and the multiphase flow inlet, and between the spiral capacitance sensor and the multiphase flow outlet, there are experimental tube shielding electrodes to reduce mutual interference between signals.
  • the spiral capacitance sensor is used to detect the capacitance in the test tube at a certain time.
  • the experimental tube is made of insulating material, including a first experimental tube section and a second experimental tube section, and the spiral capacitance sensor includes a first spiral capacitance sensor near the multiphase flow inlet and a multiphase flow outlet.
  • the second spiral capacitive sensor is made of insulating material, including a first experimental tube section and a second experimental tube section, and the spiral capacitance sensor includes a first spiral capacitance sensor near the multiphase flow inlet and a multiphase flow outlet.
  • the second spiral capacitive sensor is made of insulating material, including a first experimental tube section and a second experimental tube section, and the spiral capacitance sensor includes a first spiral capacitance sensor near the multiphase flow inlet and a multiphase flow outlet. The second spiral capacitive sensor.
  • the first helical capacitive sensor is embedded on the first experimental pipe section, and includes a first helical capacitive excitation electrode, a first helical capacitive detection electrode and a first helical between the two for reducing interference between signals Capacitive shielding electrode, the first spiral capacitance detection electrode rotates 180° relative to the first spiral capacitance excitation electrode along the axial direction of the first experimental pipe section.
  • the second spiral capacitance sensor has a second spiral capacitance excitation electrode, a second spiral capacitance detection electrode, and a second spiral capacitance shielding electrode located therebetween for reducing interference between signals, the second spiral capacitance
  • the capacitance detection electrode is rotated 180° relative to the second spiral capacitance excitation electrode along the axial direction of the second experimental pipe section.
  • one end of the test tube is a multiphase inflow port, and the other end is a multiphase outflow port, and the first spiral capacitance shielding electrode and the second spiral capacitance shielding electrode are both spiral-shaped.
  • the present invention provides a double-spiral capacitive gas-solid two-phase flow measurement method, using the above-mentioned double-spiral capacitive gas-solid two-phase flow measurement device, comprising the following steps:
  • Step 1 Take the pneumatic conveying particle material as the test object, when the particles pass through the two sets of spiral capacitive sensors in sequence, the capacitance values C1 and C2 between the two sets of spiral capacitive sensor electrode pairs can be obtained respectively.
  • the capacitance value C of the particle concentration is the average value of the two groups of capacitance values C1 and C2, and the capacitance value C is calculated;
  • Step 2 According to the concentration calculation formula, obtain the particle concentration G at the cross section:
  • S is the concentration coefficient value of the capacitance corresponding to different particles
  • C is the capacitance value calculated in step 1.
  • Step 3 By detecting the capacitance change during the particle flow process, the signals x(t) and y(t) are respectively measured from the two sets of spiral capacitive sensors, and the cross-correlation function R( ⁇ ) of the signals is obtained:
  • Step 4 Through the cross-correlation function R( ⁇ ), the delay time corresponding to the maximum value can be obtained as tm, and the interval L of the two sets of spiral capacitive sensors is known, and the particle flow velocity V is calculated by the following formula;
  • V L/t m (4)
  • Step 5 According to the particle concentration G, the particle flow velocity V, and the known particle density ⁇ , the pipe cross-sectional area A, calculate the particle mass flow Qm:
  • the present invention obtains the particle concentration in the pipeline through the spiral capacitance sensor; according to the signal difference of the two groups of spiral capacitance sensors, the cross-correlation method is used to quickly obtain the solid-phase flow velocity of the particulate matter; Mass flow; and then realize the measurement of two-phase flow velocity and flow.
  • the concentration measurement of the present invention is realized by the spiral capacitive sensor. Compared with the array capacitive sensor, there is no need to arrange multiple groups (8-12 groups) of electrodes on the tube wall, which simplifies the electrode structure of the capacitor and can be applied to the tube wall. smaller diameter pipes.
  • the present invention reduces the interference between electrodes by simplifying the electrode structure of the capacitor, avoids introducing a large capacitance error during measurement, and simultaneously improves the detection efficiency of particle concentration, flow velocity and mass flow in the multiphase flow.
  • Figure 1 Schematic diagram of the structure of the double-spiral capacitive gas-solid two-phase flow measurement device of the present invention.
  • Figure 2 A cross-sectional view of the double-spiral capacitive gas-solid two-phase flow measuring device of the present invention.
  • the invention provides a double-spiral capacitance gas-solid two-phase flow measurement device, comprising an experimental tube made of insulating material, one end of the experimental tube is a multiphase flow inlet 1, and the other end is a multiphase flow outlet 2, wherein the experimental tube includes The first experimental tube section 3 and the second experimental tube section 11 are inlaid with two sets of spiral capacitive sensors, the two sets of spiral capacitive sensors are separated by a certain distance L, and between the two sets of spiral capacitive sensors, the spiral Between the capacitive sensor and the multiphase flow inlet 1, and between the spiral capacitance sensor and the multiphase flow outlet 2, there are experimental tube shielding electrodes 4 to reduce mutual interference between signals, and the spiral capacitance sensor is used to detect a certain moment of experiment Capacitance in the tube.
  • the spiral capacitive sensor close to the multiphase flow inlet 1 is the first spiral capacitance sensor
  • the spiral capacitance sensor near the multiphase flow outlet 2 is the second spiral capacitance sensor
  • the first spiral capacitance sensor is embedded in the first spiral capacitance sensor.
  • An experimental pipe section 3 includes a first spiral capacitance excitation electrode 5, a first spiral capacitance detection electrode 6, and a first spiral capacitance shielding electrode 7 located therebetween for reducing interference between signals.
  • the first spiral capacitance detection electrode 6 rotate 180° in the axial direction of the first experimental pipe section 3 relative to the first spiral capacitive excitation electrode 5; the second spiral capacitance sensor, the second spiral capacitance excitation electrode 8, the second spiral capacitance detection electrode 9, and the second spiral capacitance detection electrode 9 and located therebetween
  • the second spiral capacitance shielding electrode 10 for reducing interference between signals the second spiral capacitance detection electrode 9 is rotated 180° relative to the second spiral capacitance excitation electrode 8 along the axial direction of the second experimental pipe section 11; the first spiral capacitance shielding
  • the electrode 7 and the second spiral capacitance shielding electrode 10 are both spiral-shaped.
  • the effective distance L between the two sets of helical capacitive sensors, the bending angle of the helical electrodes, and the length of the helical electrodes in the present invention all need to be designed according to the actual measurement pipeline, not a fixed size.
  • the present invention provides a double-spiral capacitive gas-solid two-phase flow measurement method, using the above-mentioned double-spiral capacitive gas-solid two-phase flow measurement device, comprising the following steps:
  • Step 1 Take the pneumatic conveying particle material as the test object, when the particles pass through the two sets of spiral capacitive sensors in sequence, the capacitance values C1 and C2 between the two sets of spiral capacitive sensor electrode pairs can be obtained respectively.
  • the capacitance value C of the particle concentration is the average value of the two groups of capacitance values C1 and C2, and the capacitance value C is calculated;
  • Step 2 According to the concentration calculation formula, obtain the particle concentration G at the cross section:
  • S is the concentration coefficient value of the capacitance corresponding to different particles
  • C is the capacitance value calculated in step 1.
  • Step 3 By detecting the capacitance change during the particle flow process, the signals x(t) and y(t) are respectively measured from the two sets of spiral capacitive sensors, and the cross-correlation function R( ⁇ ) of the signals is obtained:
  • Step 4 Through the cross-correlation function R( ⁇ ), the delay time corresponding to the maximum value can be obtained as tm, and the interval L of the two sets of spiral capacitive sensors is known, and the particle flow velocity V is calculated by the following formula;
  • V L/t m (4)
  • Step 5 According to the particle concentration G, the particle flow velocity V, and the known particle density ⁇ , the pipe cross-sectional area A, calculate the particle mass flow Qm:
  • the invention has the following advantages: the invention obtains the particle concentration in the pipeline through the spiral capacitance sensor; according to the signal difference of the two groups of spiral capacitance sensors, the cross-correlation method is used to quickly obtain the solid phase flow velocity of the particulate matter; according to the flow velocity of the particulate matter and The concentration is calculated to obtain the mass flow rate; and then the measurement of the flow rate and flow rate of the two-phase flow is realized.
  • the concentration measurement of the present invention is realized by the spiral capacitive sensor. Compared with the array capacitive sensor, there is no need to arrange multiple groups (8-12 groups) of electrodes on the tube wall, which simplifies the electrode structure of the capacitor and can be applied to smaller diameter tubes. the pipeline. By simplifying the electrode structure of the capacitor, the invention reduces the interference between electrodes, avoids introducing a large capacitance error during measurement, and simultaneously improves the detection efficiency of particle concentration, flow velocity and mass flow in multiphase flow.

Abstract

一种双螺旋电容气固两相流测量装置及方法,属于多相流检测技术领域。通过螺旋式电容传感器获取管道内的颗粒物浓度;根据两组螺旋式电容传感器的信号差,采用互相关法快速获取颗粒物的固相流动速度;根据颗粒物的流动速度与浓度计算得到质量流量;进而实现两相流流速、流量的测量。通过螺旋式电容传感器实现浓度测量,与阵列式电容传感器相比,不需要在管壁布置多组电极,简化电容的电极结构,能够适用于管径较细的管路;通过简化电容的电极结构,因此减少了电极间的干扰,避免测量时引入较大电容误差,同时提高了多相流中颗粒物浓度、流动速度及质量流量的检测效率。

Description

一种双螺旋电容气固两相流测量装置及方法 技术领域
本发明涉及一种双螺旋电容气固两相流测量装置及方法,属于多相流检测技术领域。
背景技术
在制药、电力、冶金、化工、食品加工、油气输运等工业领域的生产过程中,需要对气-固两相流的一些参数进行实时在线监测、计量等。精确的对两相流的流动过程进行流速、流量的监测,能够较大幅度扩展电容监测技术在工业领域的应用并提高工业生产效率。在气-固两相流的监测测量过程中固体颗粒物的流动速度、截面浓度以及质量流量等参数,是气-固两相流工业监测的重要组成部分。
现有技术中,申请号为201821874492.7,名称为《一种电容气固两相流测量装置》的中国专利,虽然能够测量出气-固两相流中固体颗粒物的流动速度、流动截面浓度以及质量流量等参数,但是该专利通过阵列电容传感器测量管道内颗粒物浓度,该方法采用依次激励多组电极对的方式,根据阵列电极对所测数据对电容数据做归一化计算,从而获得截面处颗粒物密度分布,进而获得截面颗粒物浓度分布图像。该方法缺点在于,计算颗粒物浓度需要对多组阵列电极电容数据做归一化计算,计算量较大,检测效率低;同时电容结构复杂,容易产生电极间的干扰,导致测量时引入较大电容误差。
发明内容
本发明旨在克服现有技术所存在的问题,提出一种双螺旋电容气固两相流测量装置及方法,本发明的浓度测量,通过螺旋式电容传感器实现,与阵列式电容传感器相比,不需要在管壁布置多组电极,简化电容的电极结构,能够适用于管径较细的管路;通过简化电容的电极结构,减少了电极间的干扰,提高了多相流中颗粒物浓度、流动速度及质量流量的检测效率。本发明采用的技术方案如下:
本发明提供一种双螺旋电容气固两相流测量装置,包括实验管,所述实验管上镶嵌有两组螺旋式电容传感器,两组所述螺旋式电容传感器之间间隔一定距离L,并且在两组螺旋式电容传感器之间、螺旋式电容传感器与多相流入口之间、螺旋式电容传感器与多相流出口之间均设置有实验管屏蔽电极,用于减少信号间相互干扰,所述螺旋式电容传感器用于检测某时刻实验管内的电容。
优选的,所述实验管由绝缘材料制成,包括第一实验管段与第二实验管段,所述螺旋式电容传感器包括靠近多相流入口的第一螺旋式电容传感器以及靠近多相流出口的第二螺旋式电容传感器。
优选的,所述第一螺旋式电容传感器镶嵌在第一实验管段上,包括第一螺旋电容激励电极、第一螺旋电容检测电极以及位于二者之间的用于减少信号间干扰的第一螺旋电容屏蔽电极,所述第一螺旋电容检测电极相对于第一螺旋电容激励电极沿第一实验管段轴向方向旋转180°。
优选的,所述第二螺旋式电容传感器第二螺旋电容激励电极、第二螺旋电容检测电极以及位于二者之间的用于减少信号间干扰的第二螺旋电容屏蔽电极,所述第二螺旋电容检测电极相对于第二螺旋电容激励电极沿第二实验管段轴向方向旋转180°。
优选的,所述实验管一端为多相流入口,另一端为多相流出口,所述第一螺旋电容屏蔽电极与第二螺旋电容屏蔽电极均呈螺旋状。
此外,本发明提供一种双螺旋电容气固两相流测量方法,采用上述双螺旋电容气固两相流测量装置,包括如下步骤:
步骤1:以气力输送颗粒料为测试对象,当有颗粒依次经过两组螺旋式电容传感器时,可分别获得两组螺旋式电容传感器电极对之间的电容值C1、C2。颗粒物浓度的电容值C取两组电容值C1、C2的平均值,计算得到电容值C;
C=(C 1+C 2)/2  (1)
步骤2:根据浓度计算公式,得到截面处颗粒物浓度G:
G=SC  (2)
式中:S为不同颗粒物对应电容的浓度系数值,C为步骤一中计算所得电容值。
步骤3:通过对颗粒流动过程中的电容变化进行检测,先后分别从两组螺旋式电容传感器处测得信号x(t)和y(t),得到信号的互相关函数R(τ):
Figure PCTCN2020122752-appb-000001
步骤4:通过互相关函数R(τ)即可得到其最大值所对应的延迟时间为tm,已知两组螺旋式电容传感器间隔L,通过下式计算得到颗粒物流动速度V;
V=L/t m  (4)
步骤5:根据颗粒物浓度G、颗粒物流动速度V,以及已知的颗粒物密度ρ,管道截面面积A,计算出颗粒物的质量流量Qm:
Q m=ρVAG  (5)
本发明具有如下优点:
(1)本发明通过螺旋式电容传感器获取管道内的颗粒物浓度;根据两组螺旋式电容传感器的信号差,采用互相关法快速获取颗粒物的固相流动速度;根据颗粒物的流动速度与浓度计算得到质量流量;进而实现两相流流速、流量的测量。
(2)本发明的浓度测量,通过螺旋式电容传感器实现,与阵列式电容传感器相比,不需要在管壁布置多组(8-12组)电极,简化电容的电极结构,能够适用于管径较细的管路。
(3)本发明通过简化电容的电极结构,因此减少了电极间的干扰,避免测量时引入较大电容误差,同时提高了多相流中颗粒物浓度、流动速度及质量流 量的检测效率。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1:本发明双螺旋电容气固两相流测量装置的结构示意图。
图2:本发明双螺旋电容气固两相流测量装置的断面图。
符号说明:
1、多相流入口;2、多相流出口;3、第一实验管段;4、实验管屏蔽电极;5、第一螺旋电容激励电极;6、第一螺旋电容检测电极;7、第一螺旋电容屏蔽电极;8、第二螺旋电容激励电极;9、第二螺旋电容检测电极;10、第二螺旋电容屏蔽电极;11、第二实验管段。
具体实施方式
为了使本发明的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
下面结合附图1-2和实施例对本发明做进一步说明:
本发明提供一种双螺旋电容气固两相流测量装置,包括由绝缘材料制成的实验管,实验管一端为多相流入口1,另一端为多相流出口2,其中,实验管包括第一实验管段3与第二实验管段11,实验管上镶嵌有两组螺旋式电容传感器,两组螺旋式电容传感器之间间隔一定距离L,并且在两组螺旋式电容传感器之间、螺旋式电容传感器与多相流入口1之间、螺旋式电容传感 器与多相流出口2之间均设置有实验管屏蔽电极4,用于减少信号间相互干扰,螺旋式电容传感器用于检测某时刻实验管内的电容。
具体的,靠近多相流入口1的螺旋式电容传感器为第一螺旋式电容传感器,靠近多相流出口2的螺旋式电容传感器为第二螺旋式电容传感器;第一螺旋式电容传感器镶嵌在第一实验管段3上,包括第一螺旋电容激励电极5、第一螺旋电容检测电极6以及位于二者之间的用于减少信号间干扰的第一螺旋电容屏蔽电极7,第一螺旋电容检测电极6相对于第一螺旋电容激励电极5沿第一实验管段3轴向方向旋转180°;第二螺旋式电容传感器第二螺旋电容激励电极8、第二螺旋电容检测电极9以及位于二者之间的用于减少信号间干扰的第二螺旋电容屏蔽电极10,第二螺旋电容检测电极9相对于第二螺旋电容激励电极8沿第二实验管段11轴向方向旋转180°;第一螺旋电容屏蔽电极7与第二螺旋电容屏蔽电极10均呈螺旋状。
需要说明的是,本发明两组螺旋式电容传感器之间的有效距离L、螺旋式电极的弯曲角度以及螺旋式电极的长度等,都需要根据实际测量管道设计,并非固定尺寸。
此外,本发明提供一种双螺旋电容气固两相流测量方法,采用上述双螺旋电容气固两相流测量装置,包括如下步骤:
步骤1:以气力输送颗粒料为测试对象,当有颗粒依次经过两组螺旋式电容传感器时,可分别获得两组螺旋式电容传感器电极对之间的电容值C1、C2。颗粒物浓度的电容值C取两组电容值C1、C2的平均值,计算得到电容值C;
C=(C 1+C 2)/2  (1)
步骤2:根据浓度计算公式,得到截面处颗粒物浓度G:
G=SC  (2)
式中:S为不同颗粒物对应电容的浓度系数值,C为步骤一中计算所得电容 值。
步骤3:通过对颗粒流动过程中的电容变化进行检测,先后分别从两组螺旋式电容传感器处测得信号x(t)和y(t),得到信号的互相关函数R(τ):
Figure PCTCN2020122752-appb-000002
步骤4:通过互相关函数R(τ)即可得到其最大值所对应的延迟时间为tm,已知两组螺旋式电容传感器间隔L,通过下式计算得到颗粒物流动速度V;
V=L/t m  (4)
步骤5:根据颗粒物浓度G、颗粒物流动速度V,以及已知的颗粒物密度ρ,管道截面面积A,计算出颗粒物的质量流量Qm:
Q m=ρVAG  (5)
本发明具有如下优点:本发明通过螺旋式电容传感器获取管道内的颗粒物浓度;根据两组螺旋式电容传感器的信号差,采用互相关法快速获取颗粒物的固相流动速度;根据颗粒物的流动速度与浓度计算得到质量流量;进而实现两相流流速、流量的测量。本发明的浓度测量,通过螺旋式电容传感器实现,与阵列式电容传感器相比,不需要在管壁布置多组(8-12组)电极,简化电容的电极结构,能够适用于管径较细的管路。本发明通过简化电容的电极结构,因此减少了电极间的干扰,避免测量时引入较大电容误差,同时提高了多相流中颗粒物浓度、流动速度及质量流量的检测效率。
以上各实施例仅用以说明本发明的技术方案而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (5)

  1. 一种双螺旋电容气固两相流测量装置,包括实验管。其特征在于,所述实验管上镶嵌有两组螺旋式电容传感器,两组所述螺旋式电容传感器之间间隔一定距离L,并且在两组螺旋式电容传感器之间、螺旋式电容传感器与多相流入口之间、螺旋式电容传感器与多相流出口之间均设置有实验管屏蔽电极,用于减少信号间相互干扰,所述螺旋式电容传感器用于检测某时刻实验管内的电容。所述实验管由绝缘材料制成,包括第一实验管段与第二实验管段,所述螺旋式电容传感器包括靠近多相流入口的第一螺旋式电容传感器以及靠近多相流出口的第二螺旋式电容传感器。
  2. 根据权利要求1所述的双螺旋电容气固两相流测量装置,其特征在于,所述第一螺旋式电容传感器镶嵌在第一实验管段上,包括第一螺旋电容激励电极、第一螺旋电容检测电极以及位于二者之间的用于减少信号间干扰的第一螺旋电容屏蔽电极。所述第一螺旋电容检测电极相对于第一螺旋电容激励电极沿第一实验管段轴向方向旋转180°。
  3. 根据权利要求1-2所述的双螺旋电容气固两相流测量装置,其特征在于,所述第二螺旋式电容传感器第二螺旋电容激励电极、第二螺旋电容检测电极以及位于二者之间的用于减少信号间干扰的第二螺旋电容屏蔽电极。所述第二螺旋电容检测电极相对于第二螺旋电容激励电极沿第二实验管段轴向方向旋转180°。
  4. 根据权利要求1-3所述的双螺旋电容气固两相流测量装置,其特征在于,所述实验管一端为多相流入口,另一端为多相流出口,所述第一螺旋电容屏蔽电极与第二螺旋电容屏蔽电极均呈螺旋状。
  5. 一种双螺旋电容气固两相流测量方法,采用权利要求1-4所述的双螺旋电容气固两相流测量装置,其特征在于,包括如下步骤:
    步骤1:以气力输送颗粒料为测试对象,当有颗粒依次经过两组螺旋式电容传感器时,可分别获得两组螺旋式电容传感器电极对之间的电容值C1、C2。颗 粒物浓度的电容值C取两组电容值C1、C2的平均值,计算得到电容值C;
    C=(C 1+C 2)/2(1)
    步骤2:根据浓度计算公式,得到截面处颗粒物浓度G:
    G=SC  (2)
    式中:S为不同颗粒物对应电容的浓度系数值,C为步骤一中计算所得电容值。
    步骤3:通过对颗粒流动过程中的电容变化进行检测,先后分别从两组螺旋式电容传感器处测得信号x(t)和y(t),得到信号的互相关函数R(τ):
    Figure PCTCN2020122752-appb-100001
    步骤4:通过互相关函数R(τ)即可得到其最大值所对应的延迟时间为tm,已知两组螺旋式电容传感器间隔L,通过下式计算得到颗粒物流动速度V;
    V=L/t m  (4)
    步骤5:根据颗粒物浓度G、颗粒物流动速度V,以及已知的颗粒物密度ρ,管道截面面积A,计算出颗粒物的质量流量Qm:
    Q m=ρVAG  (5)
PCT/CN2020/122752 2020-06-29 2020-10-22 一种双螺旋电容气固两相流测量装置及方法 WO2022000874A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010610091.6A CN111707590A (zh) 2020-06-29 2020-06-29 一种双螺旋电容气固两相流测量装置及方法
CN202010610091.6 2020-06-29

Publications (1)

Publication Number Publication Date
WO2022000874A1 true WO2022000874A1 (zh) 2022-01-06

Family

ID=72543425

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/122752 WO2022000874A1 (zh) 2020-06-29 2020-10-22 一种双螺旋电容气固两相流测量装置及方法

Country Status (2)

Country Link
CN (1) CN111707590A (zh)
WO (1) WO2022000874A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111707590A (zh) * 2020-06-29 2020-09-25 山东省科学院海洋仪器仪表研究所 一种双螺旋电容气固两相流测量装置及方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5151660A (en) * 1990-09-05 1992-09-29 Powers Kelly R Ceramic capacitance high pressure fluid sensor
CN101324186A (zh) * 2008-07-04 2008-12-17 西安交通大学 一种油气水三相流相含率测量装置
CN101477075A (zh) * 2008-11-06 2009-07-08 东北大学 电容式传感器和两相流相浓度检测装置
CN101477074A (zh) * 2008-11-06 2009-07-08 东北大学 两相流流动参数监测方法和系统
CN107218975A (zh) * 2017-07-18 2017-09-29 南京工业大学 基于螺旋式电容‑圆环式静电传感器的气固两相流检测装置及方法
CN108680614A (zh) * 2018-04-26 2018-10-19 天津大学 双螺旋高频电容传感器高含水油水两相流持水率测量方法
CN109374071A (zh) * 2018-11-14 2019-02-22 山东省科学院海洋仪器仪表研究所 一种电容气固两相流测量装置及方法
CN209214689U (zh) * 2018-11-14 2019-08-06 山东省科学院海洋仪器仪表研究所 一种电容气固两相流测量装置
CN111707590A (zh) * 2020-06-29 2020-09-25 山东省科学院海洋仪器仪表研究所 一种双螺旋电容气固两相流测量装置及方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5151660A (en) * 1990-09-05 1992-09-29 Powers Kelly R Ceramic capacitance high pressure fluid sensor
CN101324186A (zh) * 2008-07-04 2008-12-17 西安交通大学 一种油气水三相流相含率测量装置
CN101477075A (zh) * 2008-11-06 2009-07-08 东北大学 电容式传感器和两相流相浓度检测装置
CN101477074A (zh) * 2008-11-06 2009-07-08 东北大学 两相流流动参数监测方法和系统
CN107218975A (zh) * 2017-07-18 2017-09-29 南京工业大学 基于螺旋式电容‑圆环式静电传感器的气固两相流检测装置及方法
CN108680614A (zh) * 2018-04-26 2018-10-19 天津大学 双螺旋高频电容传感器高含水油水两相流持水率测量方法
CN109374071A (zh) * 2018-11-14 2019-02-22 山东省科学院海洋仪器仪表研究所 一种电容气固两相流测量装置及方法
CN209214689U (zh) * 2018-11-14 2019-08-06 山东省科学院海洋仪器仪表研究所 一种电容气固两相流测量装置
CN111707590A (zh) * 2020-06-29 2020-09-25 山东省科学院海洋仪器仪表研究所 一种双螺旋电容气固两相流测量装置及方法

Also Published As

Publication number Publication date
CN111707590A (zh) 2020-09-25

Similar Documents

Publication Publication Date Title
CN102116754B (zh) 基于双截面阻抗式长腰内锥传感器的多相流测量方法
US8763474B2 (en) Multiphase flowmeter for measuring physical properties of individual phases in a multiphase flow
CN102608350B (zh) 多电极静电法气固两相流速度分布检测方法及装置
CN109374071A (zh) 一种电容气固两相流测量装置及方法
WO2022000874A1 (zh) 一种双螺旋电容气固两相流测量装置及方法
WO2009018694A1 (zh) 多相流计量方法以及采用该多相流计量方法的多相流质量流量计
CN107218975A (zh) 基于螺旋式电容‑圆环式静电传感器的气固两相流检测装置及方法
CN101865872A (zh) 一种微小管道气液两相流空隙率测量螺旋电容传感器
CN110579622B (zh) 基于三角电极电容传感器的金属颗粒流速测量装置及方法
CN102147381A (zh) 双截面阻抗式长腰内锥传感器及多相流测量装置
Sun et al. Mass flow measurement of pneumatically conveyed solids using electrical capacitance tomography
Maung et al. Particle volume flow rate measurement by combination of dual electrical capacitance tomography sensor and plug flow shape model
CN112710703B (zh) 一种带有导电特性补偿的电导网格传感器三相流成像方法
CN110793585B (zh) 基于v锥压损比分段特性的湿气流量在线测量方法及装置
CN107218981A (zh) 一种基于超声波旁流原理的气体流量测量装置及方法
CN102147384A (zh) 单截面阻抗式长腰内锥传感器及多相流测量装置
CN209214689U (zh) 一种电容气固两相流测量装置
CN102147382B (zh) 基于多截面阻抗式双差压长腰内锥的多相流测量方法
CN104965010B (zh) 一种低温电容式空泡率测量装置
CN205844242U (zh) 一种电导率检测电极
CN209878046U (zh) 基于动力旋转螺旋流技术的油水两相流实时测量装置
CN110132364B (zh) 基于微型瞬态压力传感器的涡街互相关流量计
CN105891607A (zh) 径向结构的非接触式流体电导测量装置及方法
CN210036845U (zh) 基于动力旋转离心压差法和流量计的油水两相流测量装置
CN216348871U (zh) 一种差压式气液两相流量计

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20943472

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20943472

Country of ref document: EP

Kind code of ref document: A1