WO2009018694A1 - 多相流计量方法以及采用该多相流计量方法的多相流质量流量计 - Google Patents

多相流计量方法以及采用该多相流计量方法的多相流质量流量计 Download PDF

Info

Publication number
WO2009018694A1
WO2009018694A1 PCT/CN2007/003068 CN2007003068W WO2009018694A1 WO 2009018694 A1 WO2009018694 A1 WO 2009018694A1 CN 2007003068 W CN2007003068 W CN 2007003068W WO 2009018694 A1 WO2009018694 A1 WO 2009018694A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow
phase
gas
oil
meter
Prior art date
Application number
PCT/CN2007/003068
Other languages
English (en)
French (fr)
Other versions
WO2009018694A8 (zh
Inventor
Zhu Liu
Zhaorong Liu
Original Assignee
Shanghai Medeng Electronic Equipment Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Medeng Electronic Equipment Co., Ltd. filed Critical Shanghai Medeng Electronic Equipment Co., Ltd.
Priority to US12/670,669 priority Critical patent/US7963172B2/en
Publication of WO2009018694A1 publication Critical patent/WO2009018694A1/zh
Publication of WO2009018694A8 publication Critical patent/WO2009018694A8/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/74Devices for measuring flow of a fluid or flow of a fluent solid material in suspension in another fluid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
    • G01F1/34Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure
    • G01F1/36Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure the pressure or differential pressure being created by the use of flow constriction
    • G01F1/363Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure the pressure or differential pressure being created by the use of flow constriction with electrical or electro-mechanical indication
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/66Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
    • G01F1/663Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters by measuring Doppler frequency shift

Definitions

  • the invention belongs to a multiphase flow metering method and a multiphase flow mass flow meter used in an oil field, in particular to a measuring method for measuring parameters such as flow rate, water content and gas-liquid ratio of each phase of oil, water and gas multiphase flow and Mass flowmeter.
  • the commercial metering devices that have been developed can be basically divided into the following two categories - one is to perform gas-liquid phase separation for the oil, water and gas multiphase flows, and then to separately separate the gas phase and the liquid phase. Measurement.
  • This metering principle is simple and can achieve a certain degree of precision and has been widely used in oil fields, such as US Patent US 6,338, 276 Bl. Since the gas-liquid phase separation is usually carried out by gravity separation or cyclone separation, the structure of the separator is very large, and the cost is high and the installation is difficult. Moreover, the measurement accuracy is directly restricted by the gas-liquid phase separation efficiency and the effective measurement of the gas-liquid phase measurement, and it is difficult to continue to improve the measurement accuracy.
  • the other is to directly measure the parameters of the multiphase flow without pre-separation of the gas phase. Since the parameters to be measured include liquid mass flow/volume flow rate and water content, as well as gas flow and gas-liquid ratio parameters, it is often necessary to use gamma rays, microwaves or capacitors while using orifice plates (or Venturi) flow meters. (Measurement method for water-in-oil to oil continuous phase) / Conductance (for water-in-oil continuous phase) and other parameters are measured separately. This method can be measured online, with high precision, and has a considerable share in the petroleum industry's metrology and testing, such as Framo Phase Watch VX or US Patent US 6,935,189 B2o.
  • the object of the present invention is to provide a multi-phase flow metering method and a multi-phase flow mass flow meter, which do not need to separate the gas and liquid phase in advance, and do not need to independently detect other parameters compared with other parameters, and can be used for each phase flow.
  • the quantity is compared with the one-time simultaneous measurement, and the flowmeter has a light structure, high precision, and convenient installation and maintenance.
  • a multiphase flow metering method comprising the steps of: arranging two orifice plates having inner diameters dl and d2 respectively in a flow direction of a three-phase fluid in a uniform straight pipe having an inner diameter D; detecting two orifice plates The pressure difference d Pl , dp 2 ; detects the liquid phase flow rate Q u between the two orifice plates ; calculates the water content ⁇ and the gas-liquid ratio n 1 according to the following formula :
  • G represents a function of the pressure difference ratio dp2/dpl and the geometrical dimensions dl, d2 and the diameter of the double-joined tube D of the two orifice plates; the coefficients a, b, and c respectively represent pure oil, pure water, and pure gaseous G values;
  • the invention has the advantages that the metering method does not require pre-separation of gas and liquid phases, and does not need to separately add special techniques to separate the three-phase flow (such as gas-liquid ratio and water content).
  • the method is simple, high precision, good repeatability, convenient operation, and easy to popularize and apply.
  • the multiphase flow mass flowmeter corresponding to the above metering method comprises: two orifice flowmeters installed at two orifice plates in a uniform straight circular tube; an ultrasonic Doppler flowmeter installed on a uniform straight circular tube And located between the two orifice flowmeters; respectively, a differential pressure transmitter corresponding to the two orifice flowmeters, installed in a two-hole plate in a uniform straight circular tube; and a tube in a uniform straight circular tube Install one pressure sensor and one temperature sensor on the wall.
  • the main components of the multiphase flow mass flowmeter provided by the invention are an orifice flowmeter and an ultrasonic Doppler flowmeter, and the principle is mature, the process is standardized, and the cost is low. No need to use price like other multiphase flow detection Expensive gamma ray or other electromagnetic image technology, or pre-separation of the gas-liquid phase using a separator.
  • the device has high precision, good repeatability, easy operation, easy installation and maintenance, and shows its unique superiority in oil production measurement of oil fields (especially for offshore oil fields), because for oil fields, especially offshore oil fields, metering devices Miniaturization and light weight are crucial.
  • the flow meter further comprises an intelligent secondary meter for receiving the differential pressure dpl, dp2 detected by the differential pressure transmitter, the flow rate Qs detected by the ultrasonic Doppler flowmeter, and the pressure P and temperature detected by the sensor. T, calculate the flow rate and comparison of the phases in the oil-water-gas three-phase flow.
  • the flow meter further comprises a metering result display device connected to the intelligent secondary meter, and receives the flow rate and the comparison data of each phase in the oil-water-gas three-phase flow calculated by the intelligent secondary meter and displays .
  • a metering result display device connected to the intelligent secondary meter, and receives the flow rate and the comparison data of each phase in the oil-water-gas three-phase flow calculated by the intelligent secondary meter and displays .
  • FIG. 1 is a schematic structural view of a multiphase flow mass flowmeter of the present invention
  • FIG. 2 is a schematic view showing the principle of the multiphase flow mass flowmeter of the present invention.
  • FIG. 3 is a schematic view showing the operation of the multiphase flow mass flowmeter of the present invention. Description of the figures in the figure
  • FIG. 1 A schematic structural view of the differential pressure multiphase flow mass flowmeter of the present invention is shown in Fig. 1, and a corresponding schematic diagram is shown in Fig. 2.
  • the differential pressure mass flowmeter of the present invention is characterized in that in a circular tube 10 having an inner diameter D, two orifice flowmeters 1 and 2 are installed at a certain interval, wherein the inner diameter of the upstream orifice plate 11 is dl The inner diameter of the downstream orifice plate 21 is d2.
  • An ultrasonic Doppler flowmeter 5 is installed between the orifice plates 11 and 21.
  • Pressure and temperature sensors 6 and 7 can be mounted anywhere on the same line.
  • the mass flow rate of the oil-water-gas three-phase fluid through the orifice plates 11 and 21 is
  • coefficients a b and c in the above formula can be expressed by the G values of pure oil, pure water and pure gas, respectively.
  • the joint relationship (7) and (9) can determine that the gas-liquid ratio ⁇ and the water content WI ⁇ are respectively expressed by the ultrasonic Doppler flowmeter to detect the flow rate Q s and the G value corresponding to the different phase states.
  • Figure 3 shows the working flow of the differential pressure three-phase flow mass flowmeter.
  • the flow of each phase of gas, water and oil can be calculated by the corresponding software of formula (12). It means the sensors 6 and 7 in Figure 3 detect the pressure P.
  • the gas phase flow rate detected above can be converted to the gas phase flow rate in the standard state by the temperature T.
  • the measurement result in Fig. 3 is displayed by the display device 9, including the ratio (water content, gas-liquid ratio), the flow rate of each phase flow, and the like.
  • the present invention has the following advantages:
  • the multiphase flow mass flowmeter provided by the invention does not need to be pre-separated by gas-liquid phase, and does not need to separately add special techniques for comparison in the three-phase flow (such as gas-liquid ratio and water content), and has a simple structure. Lightweight, easy to install and maintain.
  • the main components of the multiphase flow mass flowmeter provided by the present invention are orifice flowmeters (2) and ultrasonic Doppler flowmeters, and the principle is mature, the process specification is low, and the cost is low. There is no need to use expensive gamma ray or other electromagnetic image technology as in other multiphase flow detection, or to separate the gas and liquid phases by a separator.
  • the present invention provides a differential pressure mass flowmeter with high precision, good repeatability, convenient operation, and easy application.
  • the multiphase flow mass meter provided by the present invention shows its unique superiority in oil production measurement of oil fields (especially for offshore oil fields), because of the miniaturization of metering devices for oil fields, especially offshore oil field oil platforms. Lightweight is crucial.

Description

多相流计量方法以及采用该多相流计量方法的多相流质量流量计 技术领域
本发明属于油田中使用的多相流计量方法及多相流质量流量计, 具体地 说, 是测量油、 水、 气多相流的各相流量、 含水率和气液比等参量的计量方 法及质量流量计。
背景技术
目前, 国内外大型石油公司和相关机构都致力于多相流计量方法和装置 的研究和应用。 已开发出的商业化计量装置基本上可分为如下两大类- 一类是对待测油、水、气多相流预先进行气液相分离,然后再对分离后的 气相和液相分别进行计量。这种计量原理简单, 可达一定精度, 已在油田得到 较广泛应用, 例如美国专利 US 6, 338, 276 Bl。 由于气液相分离通常采用重 力分离法或旋流分离法,分离器结构十分庞大,且造价高、安装难度大。况且, 计量精度直接受到气液相分离效率以及气液相分别计量有效控制的制约,要继 续提高计量精度有较大的困难。
另一类是无需对气液相进行预先分离, 而直接对多相流的参数进行计量。 由于待计量参数包括液质量流量 /体积流量和含水率, 以及气流量和气液比等 众多参数, 往往需要在采用孔板 (或 Venturi)流量计的同时, 还必须采用伽 马射线、 微波或电容 (对油包水成油连续相) /电导 (对水包油成水连续相) 等计量方法对相比参数进行单独测量。这种方法可在线计量, 精度较高, 在石 油工业的计量检测中占有相当的份额, 例如 Framo Phase Watch VX或美国专 利 US 6,935,189 B2o但由于这种计量结果直接受三相流的流型和流态的影响, 计量结果不易稳定, 计量装置结构与原理十分复杂, 价格昂贵, 标定、安装与 维修相当麻烦。
发明内容
本发明的目的在于提供一种多相流计量方法及多相流质量流量计,无需对 气、 液相预先分离处理, 也无需对相比参量用其它技术独立检测,可对各相流 量和相比的一次性同时计量, 且流量计结构轻巧, 精度较高, 安装与维修方 便。
为了达到上述目的, 本发明的技术方案如下:
一种多相流计量方法, 包括如下步骤: 在内直径为 D的均匀直管内的三 相流体的流动方向上间隔设置两个内直径分别为 dl和 d2的孔板;检测两个孔 板处的压差 dPl, dp2; 检测两孔板之间的液相流量 Qu ; 根据以下公式计算含 水率 \¥ 和气液比 n1 :
G = ^^ = {b - a)WRx + a . G = k2dp2 = g(l -WR ) + bWRx + cr^
k、dp、 l + «,
其中 G表示两个孔板对应压差比 dp2/dpl和几何尺寸 dl、 d2及均勾管直 径 D的函数; 系数 a、 b、 c分别表示纯油、 纯水、 纯气态 G值; 其中的
k— k
1一 1 )4 i一 r 2 γ
~ ~DJ 一、 Έ 根据下式得到气、 水、 油三相的体积流量
Qwi = WRx - QLX 其中 Qgl为气相体积流量, Qwl为水相体积流量, Q。i为油相体积流量。 本发明与现有相关技术相比,优点在于:该计量方法既无需气液相预先分 离, 也无需对三相流中的相比(如气液比和含水率等)另外添加专门技术单独 检测, 方法简单, 且精度高, 重复性好, 操作方便, 易于推广应用。
相应地,对应上述计量方法的多相流质量流量计,包括:两个孔板流量计, 安装在均匀直圆管内的两孔板处; 超声多普勒流量计, 安装在均匀直圆管上, 且位于所述两个孔板流量计之间; 分别与两个孔板流量计对应的差压变送器, 安装在均匀直圆管内的两孔板处;以及在均匀直圆管的管壁上安装压力传感器 和温度传感器各一个。
本发明提供的多相流质量流量计主要部件是孔板流量计和超声多普勒流 量计, 原理成熟, 工艺规范, 造价低廉。 无需像其他多相流检测中需要采用价 格昂贵的伽马射线或其他电磁影象技术,或者采用分离器对气液相预先分离处 理。 该装置精度高, 重复性好, 操作方便, 易于安装与维修, 在油田(特别是 对海上油田)的采油计量中更显示其独特的优越性, 因为对于油田特别是海上 油田采油平台, 计量装置的小型化和轻巧化是至关重要的。
优选地,该流量计还包括一个智能化二次仪表,接收来自差压变送器检测 的差压 dpl、 dp2, 超声多普勒流量计检测的流量 Qs, 以及传感器所检测的压 力 P和温度 T, 计算得到油水气三相流中各相的流量和相比。
优选地,该流量计还包括一个计量结果显示装置,与所述智能化二次仪表 相连,接收由智能化二次仪表计算得到的油水气三相流中各相的流量和相比数 据并显示。 附图说明
图 1是本发明的多相流质量流量计的结构示意图;
图 2是本发明的多相流质量流量计的原理示意图;
图 3是本发明的多相流质量流量计的工作流程示意图。 图中标号说明
10-均匀直圆管
1-上游孔板流量计
11-第一孔板
2-下游孔板流量计
21-第二孔板
3-第一差压变送器
4-第二差压变送器
5-超声多普勒流量计
6-压力传感器
7-温度传感器
8-二次仪表
9-计量结果显示装置
X-流动方向 具体实施方式
下面根据图 1至图 3, 给出本发明的较佳实施例, 并予以详细描述, 使能 更好地理解本发明的功能、 特点。
本发明的差压式多相流质量流量计的结构示意图表示在图 1中,相应的原 理示意图表示在图 2中。
本发明的差压式质量流量计, 其特征是在一根内直径为 D的圆管 10内, 安装一定间距的两个孔板流量计 1和 2, 其中上游孔板 11的内直径为 dl, 下 游孔板 21的内直径为 d2。 在孔板 11和 21之间安装超声多普勒流量计 5。 压 力及温度传感器 6和 7在同一管线上的安装位置可随意。
当油水气三相流体在圆管 10内以箭头 X所指方向流动, 在孔板 11处由 于管截面局部狭窄, 产生压力降, 经差压变送器 3检测为压差 dpi。 同样, 在 孔板 21处, 局部狭窄产生压力降经差压变送器 4检测为压差 dp2。 与此同时, 超声多普勒流量计 5将检测到相应流量 Qs以及压力和温度传感器 6和 7将检 测到三相流的压力 P和温度 T,下面将给出如何通过上述直接检测的参数计算 三相流中的相比 (含水率和气液比等)和各相流量的方法和相应数学表达式。
油水气三相流体经孔板 11和 21的质量流量分别为
Figure imgf000006_0001
Figure imgf000006_0002
Qx = 和 ¾ = ^分别表示经孔板 11和 21的体积流量。
i
现在若以下标 o W和 g表示油、 水和气, 即
Figure imgf000007_0001
从孔板 11到孔板 21, 三相流中油、 水和气的体积流量之间分别成线性关 系,
Q。2 =aQol Qw2 =bQwl Qg2 =cQgl
由式(3)得
G = k2dp2 = Qoi +cQgi (5) 记经孔板 11后的含水率 w 和气液比 ni
WR = Qwl Qgi (6) 则由式 (5)进一步得
Q _ k2dp2― (1 -WRx) + b WR} + cnx (7) kxdpx 1 + n,
显然上式中的系数 a b和 c可分别由纯油、 纯水和纯气态的 G值表示为
a=G 纯油态 b=G
另一方面, 超声多普勒流量计检测体积流量 Qs与液相流量 Qu之间关系为 因而
Figure imgf000007_0002
联合关系式(7)和(9), 可确定气液比 ^和含水率 WI^分别用超声多普 勒流量计检测流量 Qs和不同相态所对应的 G值表示出来。
特别地, 对于纯液态(油水两相)流, Qgl=0, 或气液比 , 由式(7) 可直接得到含水率 W 用 G值表出的关系式
G = ^^-=^(b-a)WRi+a (11) kldp1
最后, 由式(8)确定液相体积流量 Qu后, 气、 水和油各相的体积流量 可分别表为
Q^WR, .QU (12) 图 3给出差压式三相流质量流量计的工作流程示意图。 将差压变送器 3 和 4检测的压差(1 和 dp2以及超声多普勒流量计测得体积流量 QL (=SQS) , 输入智能化二次仪表 8, 由式(10)和 (7) 的相应软件可算得气液比 ηι和含 水率 W 。 最后, 由式(12) 的相应软件可算得气、 水、 油各相流量。 表示 图 3中的传感器 6和 7检测压力 P和温度 T可对上述检测的气相流量变换为 标准状态下的气相流量。图 3中的计量结果由显示装置 9显示结果,包括相比 (含水率、 气液比)和各相流流量等。
本发明与现有相关技术相比有如下优点:
( 1 )本发明提供的多相流质量流量计既无需气液相预先分离, 也无需对 三相流中的相比(如气液比和含水率等)另外添加专门技术单独检测, 结构简 单、 轻巧, 安装和维修方便。
(2)本发明提供的多相流质量流量计主要部件是孔板流量计 (2个)和 超声多普勒流量计, 原理成熟, 工艺规范, 造价低廉。无需象其他多相流检测 中需要采用价格昂贵的伽马射线或其他电磁影象技术,或者采用分离器对气液 相预先分离处理。
(3)本发明提供差压式质量流量计精度高, 重复性好, 操作方便, 易于 推广应用。
(4)本发明提供的多相流质量计在油田 (特别是对海上油田) 的采油计 量中更显示其独特的优越性, 因为对于油田特别是海上油田釆油平台,计量装 置的小型化和轻巧化是至关重要的。
前面提供了对较佳实施例的描述,以使本领域内的任何技术人员可使用或 利用本发明。对该较佳实施例,本领域内的技术人员在不脱离本发明原理的基 础上, 可以作出各种修改或者变换。应当理解, 这些修改或者变换都不脱离本 发明的保护范围。

Claims

权 利 要 求 书
1、 一种多相流计量方法, 包括如下步骤- 在内直径为 D的均匀直管内的三相流体的流动方向上间隔设置两个内直 径分别为 dl和 d2的孔板;
检测两个孔板处的压差 dPl, dp2;
检测两孔板之间的液相流量 Qu ;
根据以下公式计算含水率 和气液比 ηι: kldp1 G = k2dp2 = (1 - WR,) + bWRx + cn,
kldpl l + «!
其中 G表示两个孔板对应压差比 dp2/dpl和几何尺寸 dl、 d2及均匀管直 径 D的函数; 系数 a、 b、 c分别表示纯油、 纯水、 纯气态 G值; 其中的
Figure imgf000009_0001
根据下式得到气、 水、 油三相的体积流量
Q0l = (\ - WRl )QL1
其中 Qgl为气相体积流量, Qwl为水相体积流量, 为油相体积流量。
2、 如权利要求 1所述的多相流计量方法, 其特征在于, 还包括检测管内 三相流体的压力 P和温度 T的步骤,并根据压力 P和温度 T,将算得的三相体 积流量变换为标准状态下的气相流量后显示。
3、 一种釆用如权利要求 1或 2所述的多相流计量方法的多相流质量流量 计, 包括:
两个孔板流量计, 安装在均匀直圆管内的两孔板处;
超声多普勒流量计,安装在均匀直圆管上,且位于所述两个孔板流量计之 间;
分别与两个孔板流量计对应的差压变送器,安装在均匀直圆管内的两孔板 处; 以及在均匀直圆管的管壁上安装压力传感器和温度传感器各一个。
4、 如权利要求 3所述的多相流质量流量计, 其特征在于, 该流量计还包 括一个智能化二次仪表, 接收来自差压变送器检测的差压 dpl、 dp2, 超声多 普勒流量计检测的流量 Qs, 以及传感器所检测的压力 P和温度 T, 计算得到 油 7j气三相流中各相的流量和相比。
5、 如权利要求 4所述的多相流质量流量计, 其特征在于, 该流量计还包 括一个计量结果显示装置,与所述智能化二次仪表相连,接收由智能化二次仪 表计算得到的油水气三相流中各相的流量和相比数据并显示。
PCT/CN2007/003068 2007-08-07 2007-10-29 多相流计量方法以及采用该多相流计量方法的多相流质量流量计 WO2009018694A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/670,669 US7963172B2 (en) 2007-08-07 2007-10-29 Multiphase flowmeter using a combination of pressure differentials and ultrasound doppler readings

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2007100446258A CN101363745B (zh) 2007-08-07 2007-08-07 多相流计量方法及多相流质量流量计
CN200710044625.8 2007-08-07

Publications (2)

Publication Number Publication Date
WO2009018694A1 true WO2009018694A1 (zh) 2009-02-12
WO2009018694A8 WO2009018694A8 (zh) 2009-06-25

Family

ID=40340934

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2007/003068 WO2009018694A1 (zh) 2007-08-07 2007-10-29 多相流计量方法以及采用该多相流计量方法的多相流质量流量计

Country Status (3)

Country Link
US (1) US7963172B2 (zh)
CN (1) CN101363745B (zh)
WO (1) WO2009018694A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7963172B2 (en) 2007-08-07 2011-06-21 Shanghai Medeng Electronic Equipment Co. Ltd. Multiphase flowmeter using a combination of pressure differentials and ultrasound doppler readings
US8429985B2 (en) 2010-08-24 2013-04-30 General Electric Company Apparatus for use in determining a plurality of characteristics of a multiphase flow within a pipe
GB2538610A (en) * 2015-05-19 2016-11-23 Medeng Res Inst Ltd Inline multiphase densitometer
US11591880B2 (en) 2020-07-30 2023-02-28 Saudi Arabian Oil Company Methods for deployment of expandable packers through slim production tubing

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2497321B (en) * 2011-12-06 2014-06-18 Senico Ltd Multi-phase metering of fluid flows
CN103670368A (zh) * 2012-09-18 2014-03-26 中国石油天然气股份有限公司 气液两相计量装置
CN104568375B (zh) * 2014-03-03 2015-12-30 中国石油大学(华东) 一种段塞流参数非介入测量装置及方法
CN103884393A (zh) * 2014-03-27 2014-06-25 辽宁石油化工大学 一种测量高温高压湿蒸汽流量的方法与装置
CN103925946B (zh) * 2014-04-16 2016-06-15 淮南矿业(集团)有限责任公司 管道瓦斯气体抽采计量装置及系统
US20160341585A1 (en) * 2015-05-19 2016-11-24 Medeng Research Institute Ltd. Multiphase Flow Meter
WO2017053978A1 (en) 2015-09-25 2017-03-30 Kovscek Mark Fluid monitoring system
US9964533B2 (en) 2015-11-12 2018-05-08 King Fahd University Of Petroleum And Minerals System for measuring multi-phase fluid flow characteristics
WO2018106758A1 (en) 2016-12-06 2018-06-14 Ysi, Inc. Method for compensating for venturi effects on pressure sensors in moving water
CN106979808B (zh) * 2017-03-31 2020-06-16 中国计量大学 一种超声与靶式流量计组合式湿天然气流量测量方法
CN109506729B (zh) * 2018-12-27 2023-12-26 西安安森智能仪器股份有限公司 一种气液两相流参数在线检测方法及装置
CN109682775A (zh) * 2019-01-11 2019-04-26 大连四方佳特流体设备有限公司 原油多相流红外智能计量系统
CN110174146A (zh) * 2019-05-21 2019-08-27 长江大学 基于动力旋转离心压差法和液体流量计组合的油水两相流测量装置及方法
US11231311B2 (en) 2019-05-31 2022-01-25 Perceptive Sensor Technologies Llc Non-linear ultrasound method and apparatus for quantitative detection of materials
CA3140008C (en) * 2019-05-31 2022-10-04 James M. Heim Non-linear ultrasound method and apparatus for quantitative detection of materials (liquids, gas, plasma)
CN110411521B (zh) * 2019-06-28 2020-07-31 中国石油大学(北京) 一种基于双喷嘴的油井多相流分相含率在线计量方法
US11729537B2 (en) 2020-12-02 2023-08-15 Perceptive Sensor Technologies, Inc. Variable angle transducer interface block
EP4256296A1 (en) 2020-12-04 2023-10-11 Perceptive Sensor Technologies, Inc. Acoustic temperature measurement in layered environments
WO2022120265A1 (en) 2020-12-04 2022-06-09 Perceptive Sensor Technologies, Inc. In-wall multi-bounce material property detection and acoustic signal amplification
US11604294B2 (en) 2020-12-04 2023-03-14 Perceptive Sensor Technologies, Inc. Determining layer characteristics in multi-layered environments
US11788904B2 (en) 2020-12-04 2023-10-17 Perceptive Sensor Technologies, Inc. Acoustic temperature measurement in layered environments
US11549839B2 (en) 2020-12-04 2023-01-10 Perceptive Sensor Technologies, Inc. Systems and methods for determining floating roof level tilt and characterizing runoff
CA3201086A1 (en) 2020-12-04 2022-06-09 Lazar Bivolarsky Apparatus, system, and method for the detection of objects and activity within a container
US11585690B2 (en) 2020-12-04 2023-02-21 Perceptive Sensor Technologies, Inc. Multi-path acoustic signal improvement for material detection
CN116888468A (zh) 2020-12-30 2023-10-13 感知传感器技术股份有限公司 用信号评估流体质量
WO2023154514A1 (en) 2022-02-11 2023-08-17 Perceptive Sensor Technologies, Inc. Acoustic signal detection of material composition in static and dynamic conditions
US11940420B2 (en) 2022-07-19 2024-03-26 Perceptive Sensor Technologies, Inc. Acoustic signal material identification with nanotube couplant

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5591922A (en) * 1994-05-27 1997-01-07 Schlumberger Technology Corporation Method and apparatus for measuring multiphase flows
CN1182873A (zh) * 1996-11-19 1998-05-27 窦剑文 油气水三相流量测量装置及测量方法
US6345536B1 (en) * 1998-09-10 2002-02-12 The Texas A&M University System Multiple-phase flow meter
WO2002044664A1 (en) * 2000-11-29 2002-06-06 Expro North Sea Limited Multiphase flow meter using multiple pressure differentials
US20070089609A1 (en) * 2003-05-16 2007-04-26 Haimo Technologies, Inc. Oil-gas-water multi-phase flow adjusting apparatus and oil-gas-water multi-phase flow rate measuring apparatus and measuring method

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1023952C (zh) * 1988-02-15 1994-03-09 胜利油田采油工艺研究院 汽(气)液双相流量和干度的测量方法
JPH0652213B2 (ja) * 1988-09-02 1994-07-06 株式会社日立製作所 差圧伝送路
US4852395A (en) * 1988-12-08 1989-08-01 Atlantic Richfield Company Three phase fluid flow measuring system
WO1995010028A1 (en) * 1993-10-05 1995-04-13 Atlantic Richfield Company Multiphase flowmeter for measuring flow rates and densities
CA2251926C (en) * 1996-04-16 2001-12-11 Mobil Oil Corporation Method of monitoring three phase fluid flow in tubulars
CN2277514Y (zh) * 1996-11-19 1998-04-01 窦剑文 油气水三相流量测量装置
FR2772915B1 (fr) 1997-12-22 2000-01-28 Inst Francais Du Petrole Methode et dispositif de debitmetrie polyphasique
US6422092B1 (en) * 1998-09-10 2002-07-23 The Texas A&M University System Multiple-phase flow meter
NO310322B1 (no) * 1999-01-11 2001-06-18 Flowsys As Maling av flerfasestromning i ror
CN1120981C (zh) * 1999-12-29 2003-09-10 西安交通大学 原油气水多相流量测量方法及其装置
CN100340843C (zh) * 2004-05-10 2007-10-03 浙江大学 油气水三相流量连续计量系统
CN100406856C (zh) * 2006-08-08 2008-07-30 寿焕根 油井三相流自动计量装置
CN101363745B (zh) 2007-08-07 2011-09-21 上海麦登电子设备有限公司 多相流计量方法及多相流质量流量计

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5591922A (en) * 1994-05-27 1997-01-07 Schlumberger Technology Corporation Method and apparatus for measuring multiphase flows
CN1182873A (zh) * 1996-11-19 1998-05-27 窦剑文 油气水三相流量测量装置及测量方法
US6345536B1 (en) * 1998-09-10 2002-02-12 The Texas A&M University System Multiple-phase flow meter
WO2002044664A1 (en) * 2000-11-29 2002-06-06 Expro North Sea Limited Multiphase flow meter using multiple pressure differentials
US20070089609A1 (en) * 2003-05-16 2007-04-26 Haimo Technologies, Inc. Oil-gas-water multi-phase flow adjusting apparatus and oil-gas-water multi-phase flow rate measuring apparatus and measuring method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7963172B2 (en) 2007-08-07 2011-06-21 Shanghai Medeng Electronic Equipment Co. Ltd. Multiphase flowmeter using a combination of pressure differentials and ultrasound doppler readings
US8429985B2 (en) 2010-08-24 2013-04-30 General Electric Company Apparatus for use in determining a plurality of characteristics of a multiphase flow within a pipe
GB2538610A (en) * 2015-05-19 2016-11-23 Medeng Res Inst Ltd Inline multiphase densitometer
US11591880B2 (en) 2020-07-30 2023-02-28 Saudi Arabian Oil Company Methods for deployment of expandable packers through slim production tubing

Also Published As

Publication number Publication date
US7963172B2 (en) 2011-06-21
CN101363745B (zh) 2011-09-21
US20100199779A1 (en) 2010-08-12
WO2009018694A8 (zh) 2009-06-25
CN101363745A (zh) 2009-02-11

Similar Documents

Publication Publication Date Title
WO2009018694A1 (zh) 多相流计量方法以及采用该多相流计量方法的多相流质量流量计
CA2760930C (en) Multi-phase fluid measurement apparatus and method
WO2013102312A1 (zh) 一种蒸汽流量计量装置及计量方法
US6957586B2 (en) System to measure density, specific gravity, and flow rate of fluids, meter, and related methods
JP3283524B2 (ja) バイパス型流量計
EP2386834B1 (en) Multiphase flow measurement using a swirl inducer followed by a flow constriction
CN102759383B (zh) 基于单节流元件的气液两相流气相流量在线测量方法及装置
CN100434870C (zh) 气液多相流分离整流装置及其测量装置
CA2343021A1 (en) Multi stage multiple-phase flow meter
US20160341585A1 (en) Multiphase Flow Meter
WO2000006974A1 (fr) Dispositif de mesure de l'ecoulement polyphasique de fluides gazeux
CN102147385A (zh) 基于单截面阻抗式长腰内锥传感器的多相流测量方法
CN106840294A (zh) 一种多相流计量检测系统
RU2754656C1 (ru) Способ и система измерения расходов многофазного и/или многокомпонентного флюида, добываемого из нефтегазовой скважины
Zheng et al. Flow rate measurement of low GVF gas-liquid two-phase flow with a V-Cone meter
CN204514402U (zh) 一种差压涡街质量流量计
CN115307693B (zh) 一种多量程可调节式mems差压流量计
WO2014015802A1 (zh) 湿气流量测量方法及其装置
CN103868627A (zh) 压力式热量表
Han et al. Measurement of velocity of sand-containing Oil–Water two-phase flow with super high water holdup in horizontal small pipe based on thermal tracers
CN210798947U (zh) 单井原油三相流量计量装置
CN204514403U (zh) 一种差压涡街质量流量计
CN105841756A (zh) 一种差压流量探测头及其应用
WO1998022783A1 (fr) Dispositif et procede pour mesurer le debit pour un fluide a trois phases
CN115597672A (zh) 一种不对称回字形两相计量系统及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07816681

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12670669

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 22/06/2010)

122 Ep: pct application non-entry in european phase

Ref document number: 07816681

Country of ref document: EP

Kind code of ref document: A1