WO2022000850A1 - 一种手持式呼出气采集装置 - Google Patents

一种手持式呼出气采集装置 Download PDF

Info

Publication number
WO2022000850A1
WO2022000850A1 PCT/CN2020/121092 CN2020121092W WO2022000850A1 WO 2022000850 A1 WO2022000850 A1 WO 2022000850A1 CN 2020121092 W CN2020121092 W CN 2020121092W WO 2022000850 A1 WO2022000850 A1 WO 2022000850A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
gas passage
exhaled
valve
backflushing
Prior art date
Application number
PCT/CN2020/121092
Other languages
English (en)
French (fr)
Inventor
李杭
王东鉴
Original Assignee
深圳市步锐生物科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202021256628.5U external-priority patent/CN212592219U/zh
Priority claimed from CN202010621223.5A external-priority patent/CN111671472A/zh
Application filed by 深圳市步锐生物科技有限公司 filed Critical 深圳市步锐生物科技有限公司
Priority to US18/004,113 priority Critical patent/US20230293043A1/en
Publication of WO2022000850A1 publication Critical patent/WO2022000850A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/08Detecting, measuring or recording devices for evaluating the respiratory organs
    • A61B5/097Devices for facilitating collection of breath or for directing breath into or through measuring devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B10/00Other methods or instruments for diagnosis, e.g. instruments for taking a cell sample, for biopsy, for vaccination diagnosis; Sex determination; Ovulation-period determination; Throat striking implements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/26Drying gases or vapours
    • B01D53/265Drying gases or vapours by refrigeration (condensation)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/80Water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/45Gas separation or purification devices adapted for specific applications
    • B01D2259/4533Gas separation or purification devices adapted for specific applications for medical purposes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/45Gas separation or purification devices adapted for specific applications
    • B01D2259/4541Gas separation or purification devices adapted for specific applications for portable use, e.g. gas masks

Definitions

  • the invention relates to the technical field of exhaled gas detection, in particular to a handheld exhaled gas collection device.
  • exhaled breath can be used for various medical diagnostic techniques including exhaled breath analysis.
  • Exhaled breath is mainly composed of two parts, one part is the “dead space gas” from the upper respiratory tract that has not exchanged gas with the blood, and the other part is the gas from the deep alveoli that has exchanged gas with the blood, called “alveolar gas”. , about 150ml.
  • the main target of breath gas research is alveolar gas, and dead space gas can dilute the concentration of disease markers in alveolar gas and also affect the validity of breath gas analysis.
  • CN 204218935U Alveolar Exhaled Air Collector
  • CN 204218935U Alveolar Exhaled Air Collector
  • CN205228882U An End-Expiratory Sampling Device
  • Announcement No. CN 206756525U "Gas Sampling Device for VOC Detection in Exhaled Breath" discloses its use method in the manual. Before sampling starts, the air blowing nozzle repeatedly fills the gas sampling system with nitrogen gas , to avoid residual gas pollution, but nitrogen gas supply devices are generally large in size and limited to hospital use, which is not conducive to the development of miniaturization, familyization, and mobility of sampling devices. Flow, the program is relatively complex.
  • a handheld exhaled breath collection device mainly utilizes the embedded rotary valve, which effectively reduces the overall weight of the device, and rapidly liquefies the water vapor after the subject's exhalation through the semiconductor refrigeration sheet, thereby effectively removing the water vapor in the exhalation.
  • the technical means adopted in the present invention are as follows:
  • a hand-held exhaled gas collection device comprising a gas inlet and outlet mechanism, a gas detection mechanism, a rotary valve and a gas collection mechanism connected in sequence, an exhaled gas passage can be formed between the mechanisms, a sensor, a main processor and a backflushing mechanism,
  • the sensor is arranged on the outside of the gas detection mechanism, and the sensor is used to detect the state parameters of the exhaled air and transmit the collected data to the main processor.
  • the exhaled gas is discharged from the gas inlet and outlet mechanism through the exhaled gas passage.
  • the main processor can control the rotation of the rotary valve based on the state parameters of the exhaled gas, thereby changing the on-off state of the exhaled gas passage.
  • the gas inlet and outlet mechanism is used to filter the water vapor in the exhaled breath.
  • the gas collection mechanism is used for externally connecting a gas collection container to complete the collection of exhaled breath.
  • the gas inlet and outlet mechanism includes a mouthpiece connection part, a condensation part and a gas detection mechanism connection part, and the mouthpiece connection part is used to connect an external A mouthpiece, a semiconductor refrigerating sheet for cooling is attached to the outside of the condensation part, the semiconductor refrigerating sheet is electrically connected with the main processor, and the connection part of the gas detection mechanism can be sleeved on the connection part of the gas detection mechanism.
  • the entry and exit mechanism is made of quartz.
  • semiconductor refrigerating fins are provided on both sides of the outside of the condensation part, a thermistor for measuring the temperature value of the condensation part in real time, a heat sink and a cooling fan for dissipating heat for the semiconductor refrigerating fins are also provided.
  • One side of the sheet is a cooling end and the other side is a heat dissipation end.
  • the cooling end of the semiconductor refrigeration sheet is attached to the quartz body. The cooling fan is placed, and the cooling fan can adjust the rotational speed under the control of the main processor.
  • the senor includes a CO 2 sensor and/or a flow sensor.
  • the rotary valve part includes a rigid main body part and a valve body that can be rotated in the main body part, the main body part is provided with a longitudinal gas passage and a horizontal backflushing gas passage, the backflushing gas passage is communicated with the longitudinal gas passage, and the longitudinal gas passage
  • the bottom end of the passage is the gas collection mechanism.
  • the valve body includes a first steering valve.
  • the gas collection mechanism includes a joint connected to the gas collection container.
  • the first steering valve is arranged on the upper longitudinal gas passage and the backflushing gas. Between the passages, one end of the first steering valve is connected with the first motor, and the other side is provided with a positioning hole which passes through the main body.
  • the rotary valve part includes a rigid main body part and a valve body that can be rotated in the main body part, the main body part is provided with a longitudinal gas passage and a horizontal backflushing gas passage, the backflushing gas passage is communicated with the longitudinal gas passage, and the longitudinal gas passage
  • the bottom end of the passage is the gas collection mechanism
  • the valve body includes a first steering valve and a second steering valve, wherein the first steering valve is arranged between the upper longitudinal gas passage and the backflushing gas passage, and the second steering valve The valve is arranged between the backflushing gas passage and the lower longitudinal gas passage.
  • One end of the first steering valve is connected to the first motor, the other side is provided with a positioning hole and passes through the main body, and one end of the second steering valve is connected to the first motor.
  • the second motor is connected, the other side is provided with a positioning hole and passes through the main body, and the main body of the second steering valve is in the shape of a cylinder.
  • the first diverter valve is in the shape of a cylinder longitudinally cut by at least one plane, and also includes a detection mechanism, and the main body is provided with a groove for accommodating the detection mechanism, and the detection mechanism is used under the control of the main processor.
  • the positioning hole of the first steering valve includes a first positioning hole passing through its cutting surface and having a certain distance from the air passage of the first steering valve through hole.
  • a motor support frame is provided outside the valve body and the motor, the motor support frame is fixedly connected with the main body, the outer diameter of the rotating shaft matches the inner diameter of the slot hole of the plastic valve body, and the material of the rotary valve body and the main body is the same or different.
  • the backflushing mechanism includes a micro air pump, and the exhaust port of the micro air pump is connected to the backflushing gas passage, and a filter for purifying air is also installed therebetween.
  • the exhaled gas passage, the rotary valve, the sensor, the main processor and the backflushing mechanism are all packaged in the main casing, the main casing includes a first casing and a second casing, and the second casing is detachable It is connected to the first casing, the back of the first casing is provided with a groove for accommodating the filter, and the filter is connected to the output pipe section of the micro air pump through the upper and lower joints.
  • main support frame There is a main support frame, the main body of the main support frame is used to carry the circuit board, the front of the main support frame is used to carry the display screen, and the back of the first shell is also provided with a through hole, which is used to connect the external data line,
  • a rechargeable battery is arranged inside the first casing, and a charging port corresponding to the position of the rechargeable battery is also arranged on the casing.
  • the air resistance of the gas passage of the invention is small, which ensures the comfort of the subject's exhalation process, and automatically switches the collection passage through the cooperation of the sensor, the main processor and the rotary valve, thereby effectively collecting the alveolar gas of the subject.
  • the water vapor after the subject's exhalation is quickly liquefied by the semiconductor refrigeration sheet, which effectively removes the water vapor in the exhaled breath and reduces the excess components of the collected gas.
  • the gas in the airway is quickly cleared by the backflushing mechanism to prevent the confusion of the next subject's exhalation.
  • the invention has the advantages of light overall weight, sufficient miniaturization and modularization, and is suitable for wide popularization in the technical field of exhaled gas detection.
  • FIG. 1 is a block diagram of the overall structure of the present invention.
  • FIG. 2 is a schematic diagram of a part of a host computer according to an embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of a gas inlet and outlet mechanism according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of the front view of the condensation part according to the embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of a side view of a condensation part according to an embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of a gas detection mechanism according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of the overall structure of the rotary valve in Embodiment 1 of the present invention.
  • FIG. 8 is an exploded view of the rotary valve in Embodiment 1 of the present invention.
  • FIG. 9 is a schematic diagram of a backflushing structure according to an embodiment of the present invention.
  • FIG. 10 is a circuit diagram of the present invention.
  • FIG. 11 is a schematic diagram of the overall structure of the rotary valve in Embodiment 2 of the present invention.
  • Embodiment 12 is an exploded view of the rotary valve in Embodiment 2 of the present invention.
  • FIG. 13 is a schematic diagram of the main casing of the present invention.
  • 101 connecting part of blowing nozzle; 102, condensing part; 103, connecting part of gas detection mechanism; 104, blowing nozzle; 105, semiconductor refrigeration sheet; 106, cooling fan; 107, thermistor; 108, heat sink; 109, quartz connecting pipe; 110, refrigeration module control board; 111, refrigeration module connection joint; 201, CO 2 sensor; 202, flow/velocity sensor; 203, connection corner joint; 204, sensor connection joint; 3, rotary valve; 301, optocoupler switch; 302, first steering valve; 303, main body; 304, first motor; 305, motor support frame; 306, assembly nut; 307, second steering valve; 308, second motor; 401, Sampler joint; 402 collection container joint; 501, micro air pump; 502, backflushing mechanism filter; 503, trachea connection joint; 601, first shell; 602, second shell.
  • Embodiment 1 discloses a hand-held exhaled breath collection device.
  • the main body of the exhaled breath collection device includes a gas inlet and outlet mechanism, a gas detection mechanism, a rotary valve 3 and a gas in sequence.
  • the collection mechanism which can form an exhaled gas passage between the mechanisms, also includes a sensor, a main processor and a backflushing mechanism, the sensor is provided outside the gas detection mechanism, and the sensor is used to detect the state parameters of the exhaled gas, The collected data is transmitted to the main processor.
  • the backflushing mechanism is used to inhale the outside air and discharge it from the gas inlet and outlet mechanism through the exhaled air passage.
  • the main processor can control the rotation of the rotary valve based on the state parameters of the exhaled air. , and then change the on-off state of the exhaled gas passage.
  • the gas in and out mechanism is used to filter the water vapor in the exhaled breath, and the gas collection mechanism is used to connect an external gas collection container to complete the collection of exhaled breath.
  • the gas collection container can be a gas collection bag.
  • the gas inlet and outlet mechanism includes a blowing nozzle connecting part, a condensation part and a gas detecting mechanism connecting part which are connected in sequence.
  • the blowing nozzle connecting part 101 is used for connecting an external blowing nozzle 104 .
  • This embodiment In order to reduce the air resistance, the inner diameter of the mouthpiece connecting portion 101 matches the outer diameter of the mouthpiece, and the mouthpiece can be effectively clamped on the mouthpiece connecting portion under the condition of ensuring smooth air flow.
  • a semiconductor refrigeration sheet 105 is attached to the outside of the condensation part 102 , and the connection part of the gas detection mechanism can be sleeved on the connection part 103 of the gas detection mechanism.
  • the rear section of the condensation part 102 has a preset bending angle, so that the rear section of the condensation part, the gas detection mechanism connection part, the gas detection mechanism, and the gas collection mechanism are on the same straight line, which is convenient for subjects to grasp
  • the front part of the condensation part, the connecting part of the mouthpiece, and the mouthpiece are on the same straight line.
  • the preset bending angle is an obtuse angle, which is convenient for the subjects to exhale smoothly when grasping.
  • the gas inlet and outlet mechanism is specifically a connecting pipe 109 made of quartz material.
  • the overall cross-section of the condensation part is a polygon, and furthermore, it can also be a regular polygon with the same cross-sectional area.
  • the thermistor 107 for measuring the temperature value of the condensing portion 102 in real time, and a heat sink 108 for dissipating heat for the semiconductor refrigerating fins. and the cooling fan 106.
  • the thermistor is composed of a high-precision thermistor with an accuracy of 1%, and is wrapped with an insulating material. The cooling end of the cooling sheet is attached to the quartz body, and the heat dissipation end of the semiconductor cooling sheet is attached to the heat transfer end of the heat dissipation sheet through thermal conductive silica gel.
  • the heat dissipation end of the heat sink is a grid-shaped metal sawtooth
  • the overall semiconductor cooling chip temperature control system is composed of a thermistor and The semiconductor refrigeration chip forms a closed-loop feedback network.
  • the refrigeration module control board 110 realizes the control of the device through the PID algorithm, and is connected to the main processor through the refrigeration module connection joint 111 .
  • the temperature control accuracy can reach 0.01 degrees Celsius.
  • a 5V DC cooling fan can be selected as the cooling fan, and the fan is provided with threaded holes.
  • the refrigeration temperature of the semiconductor refrigeration sheet By adjusting the refrigeration temperature of the semiconductor refrigeration sheet to the dew point temperature of water vapor at this atmospheric pressure, the water vapor after the subject's exhalation can be rapidly liquefied at the front end of the condensation part, and the water vapor in the exhalation can be effectively removed.
  • the preset percentage of water vapor dehumidification is different, and the temperature of refrigeration is also different.
  • the temperature of refrigeration is controlled at 10°C to -10°C, and the preset percentage of water vapor dehumidification is 50°C. % to 80%, or higher.
  • a heating device is also provided on the condensation part.
  • the number of each group of refrigerating chips is two reversely arranged, that is, the cooling end of one semiconductor refrigerating chip is attached to the quartz body, and the cooling end of the other semiconductor refrigerating chip is attached to the quartz body.
  • the voltage is positive
  • one of The semi-conductor refrigeration piece cools
  • a semi-conductor refrigeration piece heats.
  • grooves for accommodating the heating chip are processed on both sides of the quartz body of the condensation part, and the main processor controls the heating chip to heat.
  • the sensor includes a CO 2 sensor 201 and/or a flow sensor 202, which are respectively fixed on the main body support part of the gas detection mechanism through the connecting corner joint 203 and the sensor connecting joint 204.
  • the carbon dioxide sensor adopts the principle of non-dispersive infrared, and the model can be C500, C600; in this embodiment, the flow sensor can choose a gas pressure sensor, such as MPXV7002DP.
  • the gas detection mechanism is made of transparent material, specifically plastic material. The exhaled water vapor will generate gas when it encounters the plastic layer. Therefore, the liquefied water vapor also changes direction to enhance the detection accuracy of the sensor.
  • the contact side of the gas detection mechanism and the sensor probe is set to a light window structure, that is, a spherical/arc surface from the inside to the outside, or a convex lens surface with a thick center and a thin edge adjusted according to a preset ratio. higher.
  • the diameter of the gas passage is 4 mm, and other embodiments can be adjusted within a certain range.
  • plastic reinforcing ribs are fixed on the upper and lower sides of the light window, and the plastic reinforcing ribs are box-shaped or half-shaped. An enclosed box-shaped or other stable structure with one side fixed to the main housing or other stable mechanism of the device.
  • the rotary valve part is one of the main innovations of the present invention. According to different use conditions, it can be divided into the following two achievable structural forms, wherein one form of the rotary valve part includes The rigid main body 303 and the valve body can be rotated in the main body.
  • the main body is provided with a longitudinal gas passage and a horizontal backflushing gas passage.
  • the backflushing gas passage is connected with the longitudinal gas passage, and the bottom end of the longitudinal gas passage is A gas collection mechanism
  • the valve body includes a first steering valve 302
  • the gas collection mechanism includes a sampler joint 401
  • the gas collection mechanism includes a collection container joint 402 that can be detachably connected to it.
  • the first steering valve is arranged between the upper longitudinal gas passage and the backflushing gas passage.
  • One end of the first steering valve is connected to the first motor 304, and the other side is provided with a positioning hole which passes through the main body. .
  • the rotary valve part of another form includes a rigid main body part and a valve body that can be rotated in the main body part, and the main body part is provided with a longitudinal gas passage and a horizontal backflushing gas passage, and the backflushing gas passage and the longitudinal gas passage.
  • the bottom end of the longitudinal gas passage is the gas collection mechanism, and the gas collection mechanism is connected with the detachable sampling bag, so as to facilitate the subsequent analysis of the sampling gas in the sampling bag.
  • the valve body includes a first steering valve and a second steering valve, wherein the first steering valve is arranged between the upper longitudinal gas passage and the backflushing gas passage, and the second steering valve is arranged between the backflushing gas passage and the lower gas passage.
  • one end of the first steering valve is connected with the first motor, the other side is provided with a positioning hole and passes through the main body, one end of the second steering valve is connected with the second motor, and the other side is provided with a positioning hole.
  • a hole is positioned and passed through the body portion.
  • a gear reduction motor is used in this embodiment, and the specific reduction ratio can be selected according to the actual situation. For example, in this embodiment, two models of 1:380 and 1:1000 are selected.
  • the shape of the above-mentioned first steering valve is a cylinder that is longitudinally cut by at least one plane
  • the main body of the second steering valve is in the shape of a cylinder, and also includes a detection mechanism
  • the main body is provided with a groove for accommodating the detection mechanism.
  • the detection mechanism is used to emit light under the control of the main processor, and identify the rotation state of the steering valve based on the state of the light penetrating the positioning hole.
  • the detection mechanism selects an optocoupler switch.
  • the two cutting planes are symmetrically arranged with respect to the longitudinal section of the cylinder passing through the center of the circle, that is, in an oval shape. If it is cut by two planes, there can be one positioning hole. If it is cut by one plane, there are at least two positioning holes.
  • the second positioning hole and the first positioning hole are on the same plane and have a preset angle. In the selected embodiment, there can be more positioning holes, and the positioning is more accurate, such as the third positioning hole, the third positioning hole is vertically perpendicular to the first positioning hole, and the distance between the second positioning hole and the two is different, that is, the third positioning hole is spaced perpendicular to the first positioning hole.
  • the two positioning holes are arranged on the cylindrical body on the side close to the cutting surface or close to the non-cutting surface.
  • the motor support frame 305 is fixedly connected to the main body through the assembly nut 306.
  • the outer diameter of the rotating shaft matches the inner diameter of the slot hole of the plastic valve body.
  • the material of the rotary valve body and the main body is the same or different. . If different, the main body can be made of pk material (polyketone), as the supporting stator, the rotary valve body is made of plastic material, as the rotor, the side connected to the motor is inlaid with a metal rotating shaft, the outer diameter of the rotating shaft and the plastic valve The inner diameter of the slot holes of the body matches. In this embodiment, copper is used as the rotor.
  • the metal shaft can effectively prevent the lubricating oil of the motor from flowing into the gas passage while ensuring sufficient rigidity. If the same, other feasible materials including ceramics can be selected.
  • the backflushing mechanism includes a micro air pump 501, and the exhaust port of the micro air pump is connected to the backflushing gas passage through a gas pipe connection joint 503, and a backflushing mechanism filter for purifying air can also be installed therebetween. 502.
  • the whole device adopts a full-color LED screen with touch function to realize the display of monitorable values such as the temperature of the condensation section and the detection value of the sensor.
  • the LED screen can not only realize The display function also has a touch function. By clicking the corresponding position on the LED display, the distribution of different instructions is realized.
  • the device first completes the self-check function, that is, the rotary valve rotates for at least one week. , the rotation position is determined by the detection mechanism. After that, the semiconductor refrigeration chip operates, and the type of exhaled breath is detected by the sensor. After reaching the preset standard, the rotary valve rotates the preset angle and starts to collect.
  • the rotary valve rotates until the air path is unobstructed, the backflush air pump operates, and the heating mechanism of the condensing part operates. According to the actual situation, it can be adjusted to quick cleaning and high-intensity cleaning, etc.
  • the cleaning time of the two is different. , or set the preset blowback time yourself.
  • the above-mentioned device is integrally packaged in the main casing, and the main casing is also provided with a lithium battery for supplying power to the electrical components.
  • the integral part of the main casing is a streamlined design that is easy to grasp by human hands, which is ergonomic study principles.
  • the upper end of the main shell is the connecting part of the mouthpiece, and the diameter is a customized version designed according to the actual use situation or a general version that conforms to the output diameter of most mouthpieces on the market. As shown in FIG.
  • the main casing includes a first casing 601 and a second casing 602 , the second casing is detachably connected to the first casing, and the back of the first casing is opened to accommodate
  • the groove of the filter, the filter is connected to the output pipe section of the micro air pump through the upper and lower joints
  • the first shell is provided with a main support frame, and the above-mentioned other stabilizing mechanisms can be the main support frame.
  • the main body part of the main support frame is used to carry the circuit board, and the front side of the main support frame is used to carry the display screen. Upgrade type, the debugging personnel can upgrade the version of the device through the data cable jack, so that this product has more functions.
  • the first housing is provided with a rechargeable battery inside, and the housing is also provided with a charging port corresponding to the position of the rechargeable battery.
  • the standard of the rechargeable battery and the charger may refer to the national standard for mobile phone chargers.
  • Both the air pump and the drying air pump of the backflushing mechanism can be selected as 12V brushless motor air pumps, and the flow rate ranges from 1000mL/min to 2000mL/min.
  • the filter of the back-flushing mechanism can be selected from ZFC54 or ZFC53 of SMC Company, and the filter needs to be replaced after the instrument is used continuously for 1 month.
  • the quick connector female head includes a female head casing, the female head casing is integrally formed, the female head casing is screwed with the air bag connecting nut 404 of the sampling air bag or the drying/charging base through its external thread, and the end of the screw connection is
  • the flange part can touch the push part of the quick connector male head, the upper part of the flange part is an indentation part that can be inserted into the quick connector male head, and the indentation part is provided with a sealing ring.
  • Embodiment 1 of the present invention includes the following steps: Step 1. Before using the device, first reset the device through the LED screen, that is, the flat side of the first rotary valve is upward, the micro air pump of the backflushing mechanism is turned off, and other electrical components are in standby state. Step 2. Before the subject is ready to exhale, turn on the sensor and the semiconductor cooling chip. Step 3. Install the collection container. After the subject installs the mouthpiece, he exhales into the device. The exhalation passes through the condensation section to remove most of the water vapor.
  • the detected exhaled breath is Dead space gas or alveolar gas, if it is dead space gas, it flows out of the device along the plane of the gas passage and the first steering valve; if it is alveolar gas, the main processor controls the first rotary valve to form a passage, and conduct gas collection. Step 4. After reaching the preset index, remove the gas collection bag; Step 5. Before the next subject exhales, turn on the micro air pump, the air path of the first rotary valve is longitudinal, and at the same time, turn on the heating mechanism to remove condensation as soon as possible. liquid remaining in the segment.
  • Step 1 Before using the device, first reset the device through the LED screen, that is, the flat side of the first rotary valve is upward, and the air hole of the second rotary valve is in a vertical (or horizontal) state , the micro air pump of the blowback mechanism is turned off, and other electrical components are in a standby state.
  • Step 2. Before the subject is ready to exhale, turn on the sensor and the semiconductor cooling chip.
  • Step 3. After installing the mouthpiece, the subject exhales into the device, and the exhalation passes through the condensation section to remove most of the water vapor. Under the detection of the CO 2 sensor and/or flow sensor, it is detected that the exhaled breath is dead space gas or It is alveolar gas.
  • the main processor controls the first rotary valve and the second rotary valve to form a passageway. , for gas collection. Step 4. After reaching the preset index, remove the gas collection bag; Step 5. Before the next subject exhales, turn on the micro air pump, the air path of the first rotary valve is vertical, and the gas path of the second rotary valve is horizontal. At the same time, turn on the heating mechanism to remove the residual liquid in the condensation section as soon as possible.
  • the selected motor may also be a 5V DC motor or a stepper motor.
  • an STM32 embedded low-power consumption chip based on an ARM core can be selected as the main processor.
  • the rotary valve rotates to realize exhaled breath collection, and the concentration threshold can be set to 2%.
  • the flow rate can be collected by integrating the time and flow rate with the flow rate sensor. Set the gas flow volume to be evacuated to 500mL-1000mL
  • the rotary valve is turned on, and the exhaled air will flow into the exhaled air sampling air bag through the rotary valve. . Determined according to the air bag storage volume. Usually, the volume of the air bag is selected as 2L, and when the filling volume of the sampling air bag is 1L, the preset index is reached.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Veterinary Medicine (AREA)
  • Pathology (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Chemical & Material Sciences (AREA)
  • Pulmonology (AREA)
  • Physiology (AREA)
  • Biophysics (AREA)
  • Thermal Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

一种手持式呼出气采集装置,包括:依次相连的气体进出机构、气体检测机构、旋转阀(3)和气体采集机构,还包括传感器(201,202)、主处理器和反吹机构,气体检测机构的外侧设置传感器(201,202),传感器(201,202)用于检测呼入气的状态参数,并将采集到的数据传输至主处理器,反吹机构用于吸入外界空气并将其经过呼出气体通路从气体进出机构排出,主处理器能够基于呼入气的状态参数控制旋转阀(3)转动,进而改变呼出气体通路的通断状态,气体进出机构用于过滤呼出气中的水蒸气,气体采集机构用于外接气体采集容器,完成呼出气的采集。手持式呼出气采集装置气阻小,重量轻。

Description

一种手持式呼出气采集装置 技术领域
本发明涉及呼出气体检测技术领域,尤其涉及一种手持式呼出气采集装置。
背景技术
从人的呼吸角度来看,人吸进的是氧气,呼出的是二氧化碳,但都不是纯气体。实际吸入的空气,根据个人情况的不同,呼出气都含有水蒸气和二氧化碳,大部分人的呼出气还包括氮气、氧气、惰性气体及其他成分。人体呼吸气体作为身体健康状况的一条反映途径,能反映出一些重要病理症状,故人体呼出气可用于进行呼出气分析在内的各种医学诊断技术。
呼出气主要由两部分构成,一部分是来自上呼吸道的未与血液发生气体交换的“死腔气”,另一部分是与血液发生了气体交换的来自肺泡深处的气体,称为“肺泡气”,约150ml。呼吸气研究的主要对象是肺泡气,死腔气会稀释肺泡气中疾病标志物的浓度,也会影响呼吸气分析的有效性。
现有技术采集呼出气的装置或多或少都存在着一定的缺陷,如公告号为CN207779768U的《肺泡呼出气收集装置》能够将气体吹入气袋,通过多次吹气结果完成大样本的实验,其不能够有效区分“死腔气”和“肺泡气”,实际应用效果不佳,公告号为CN 203465233U、CN103487479A的《手持式呼气分析仪》,其将受试者的呼出气体采集至气室,通过气泵将其抽取至采集端,其间设置单向阀保证呼出气体的单一走向;CN 204218935U《肺泡呼出气收集器》采用了同样的构思,其通过对呼出气体的一部分量进行存储后开启开关,通过单向阀的控制作用,保证采集到的肺泡气不会返回;CN205228882U《一种呼气末采样装置》采用了同样的构思,不过其是通过两通阀一和两通阀二的配合作用保证采集气的定量采集,上述专利虽然能够通过传感器的作用,过滤死腔气后正常采集肺泡气, 但是在采集完第一位受试者的肺泡气之后,由于气室或管道不可避免的存在气体残留,有可能会影响下一位受试者的采集数据,不能对所有受试者的呼吸气有效分析,后续的分析结果不够准确。
公告号为CN 206756525U的《用于呼出气中VOC检测的气体采样装置》在说明书中公开了其的使用方法,其通过在采样开始前,吹气嘴反复几次向采气系统内充入氮气,避免残气污染,但是氮气供气装置一般来说规格较大,仅限于医院使用,不利于采样装置的小型化、家庭化、可移动化的发展,同时,氮气吹扫还要控制氮气的流量,程序相对复杂。
公告号为CN 110226931 A的《一种呼气分析装置及使用方法》几乎很好的避免了上述缺陷,但是由于其采用包括“三通阀门”“第一阀门”“第二阀门”等多个阀门控制,较大通径的电磁阀发热量较大,总体重量也很大,携带不便,不够轻量化、小型化,同时,阀门数量多也意味着阀体中的受试者的气体残留较多,也会导致下一位受试者的采集数据不准确。
发明内容
根据上述提出的技术问题,而提供一种手持式呼出气采集装置。本发明主要利用嵌入式旋转阀,有效减少装置的整体重量,通过半导体制冷片将受试者呼气后的水蒸气迅速液化,有效去除呼气中的水蒸气。本发明采用的技术手段如下:
一种手持式呼出气采集装置,包括依次相连的气体进出机构、气体检测机构、旋转阀和气体采集机构,各机构之间能够形成呼出气体通路,还包括传感器、主处理器和反吹机构,所述气体检测机构的外侧设置所述传感器,所述传感器用于检测呼入气的状态参数,并将采集到的数据传输至主处理器,所述反吹机构用于吸入外界空气并将其经过呼出气体通路从气体进出机构排出,主处理器能够基于呼入气的状态参数控制旋转阀转动,进而改变呼出气体通路的通断状态,所述气体进出机构用于过滤呼出气中的水蒸气,所述气体采集机构用于外接气体采集容器,完成呼出气的采集。
进一步地,通过将水蒸气液化的方式完成水蒸气的过滤,具体地,所述气体进出机构包括吹嘴连接部、冷凝部和气体检测机构连接部,所述吹嘴连 接部用于连接外接的吹嘴,所述冷凝部外部贴附有用于制冷的半导体制冷片,所述半导体制冷片与主处理器电性连接,气体检测机构连接部能够套接在气体检测机构连接部上,所述气体进出机构为石英材质。
进一步地,冷凝部外部两侧均设有半导体制冷片,还设置用于实时测量冷凝部温度值的热敏电阻,用于为所述半导体制冷片散热的散热片和散热风扇,所述半导体制冷片一面为制冷端一面为散热端,所述半导体制冷片的制冷端与石英本体贴合,半导体制冷片的散热端通过导热硅胶与散热片的传热端贴合,所述散热片的散热端放置所述散热风扇,所述散热风扇能够在主处理器的控制下调节转速。
进一步地,所述传感器包括CO 2传感器和/或流量传感器。
进一步地,旋转阀部分包括刚性的主体部和可在主体部内转动的阀体,主体部开设纵向的气体通路和横向的反吹气体通路,反吹气体通路与纵向的气体通路连通,纵向的气体通路最底端即为气体采集机构,所述阀体包括第一转向阀,所述气体采集机构包括与气体采集容器相连的接头,第一转向阀设置在上方的纵向的气体通路与反吹气体通路之间,第一转向阀的一端与第一电机相连,另一侧设有定位孔且其穿过主体部。
进一步地,旋转阀部分包括刚性的主体部和可在主体部内转动的阀体,主体部开设纵向的气体通路和横向的反吹气体通路,反吹气体通路与纵向的气体通路连通,纵向的气体通路最底端即为气体采集机构,所述阀体包括第一转向阀和第二转向阀,其中,第一转向阀设置在上方的纵向的气体通路与反吹气体通路之间,第二转向阀设置在反吹气体通路与下方的纵向的气体通路之间,第一转向阀的一端与第一电机相连,另一侧设有定位孔且其穿过主体部,第二转向阀的一端与第二电机相连,另一侧设有定位孔且其穿过主体部,第二转向阀的主体形状为圆柱体。
进一步地,第一转向阀形状为被至少一个平面纵向切割后的圆柱体,还包括检测机构,所述主体部开设容纳检测机构的凹槽,所述检测机构用于在主处理器的控制下发射光,并基于此光穿透定位孔的状态辨认转向阀的旋转状态,所述第一转向阀的定位孔包括贯穿其切割面且与第一转向阀气路通道存在一定距离的第一定位通孔。
进一步地,阀体和电机外侧还设置电机支撑架,电机支撑架与主体部固定连接,转轴的外径与塑料阀体的槽孔内径匹配,旋转阀体与主体部的材质相同或不同。
进一步地,所述反吹机构包括微型气泵,微型气泵的排气口与所述反吹气体通路相连,其间还安装用于净化空气的过滤器。
进一步地,呼出气体通路、旋转阀、传感器、主处理器和反吹机构均封装于主壳体内,所述主壳体包括第一壳体和第二壳体,所述第二壳体可拆卸地连接在第一壳体上,所述第一壳体背面开设容纳过滤器的凹槽,所述过滤器通过上、下接头连接在微型气泵的输出管段上,所述第一壳体内部设有主支撑架,所述主支撑架主体部用于承载电路板,其正面用于承载显示屏,所述第一壳体背面还设有一通孔,该通孔用于连接外置数据线,所述第一壳体内部设有可充电电池,其壳体上还设有对应充电电池位置的充电口。
本发明气体通路气阻很小,保证受试者呼气过程的舒适度,通过传感器、主处理器与旋转阀的配合,自动切换采集通路,从而有效采集受试者的肺泡气。通过半导体制冷片将受试者呼气后的水蒸气迅速液化,有效去除呼气中的水蒸气,减少收集气的多余成分。通过反吹机构快速清理气道的气体,防止下一位受试者呼气的混淆。本发明整体重量轻,足够小型化、模块化,适宜在在呼出气体检测技术领域广泛推广。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图做以简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明总体结构模块图。
图2为本发明实施例主机部分示意图。
图3为本发明实施例气体进出机构结构示意图。
图4为本发明实施例冷凝部主视图简图。
图5为本发明实施例冷凝部侧视图结构示意图。
图6为本发明实施例气体检测机构结构示意图。
图7为本发明实施例1中的旋转阀总体结构示意图。
图8为本发明实施例1中的旋转阀爆炸图。
图9为本发明实施例反吹结构示意图。
图10为本发明电路图。
图11为本发明实施例2中的旋转阀总体结构示意图。
图12为本发明实施例2中的旋转阀爆炸图。
图13为本发明主壳体示意图。
图中:101、吹嘴连接部;102、冷凝部;103、气体检测机构连接部;104、吹嘴;105、半导体制冷片;106、散热风扇;107、热敏电阻;108、散热片;109、石英连接管;110、制冷模块控制板;111、制冷模块连接接头;201、CO 2传感器;202、流量/流速传感器;203、连接转角接头;204、传感器连接接头;3、旋转阀;301、光耦开关;302、第一转向阀;303、主体部;304、第一电机;305、电机支撑架;306、装配螺母;307、第二转向阀;308、第二电机;401、采样器接头;402采集容器接头;501、微型气泵;502、反吹机构过滤器;503、气管连接接头;601、第一壳体;602、第二壳体。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1,如图1、图2所示,本发明公开了一种手持式呼出气采集装置,呼出气采集装置的主机本体包括依次相连的气体进出机构、气体检测机构、旋转阀3和气体采集机构,各机构之间能够形成呼出气体通路,还包括传感 器、主处理器和反吹机构,所述气体检测机构的外侧设置所述传感器,所述传感器用于检测呼入气的状态参数,并将采集到的数据传输至主处理器,所述反吹机构用于吸入外界空气并将其经过呼出气体通路从气体进出机构排出,主处理器能够基于呼入气的状态参数控制旋转阀转动,进而改变呼出气体通路的通断状态,所述气体进出机构用于过滤呼出气中的水蒸气,所述气体采集机构用于外接气体采集容器,完成呼出气的采集,本实施例中,所述气体采集容器可以为采气袋。
如图3、4所示,所述气体进出机构包括依次相连的吹嘴连接部、冷凝部和气体检测机构连接部,所述吹嘴连接部101用于连接外接的吹嘴104,本实施例中,为了减小气阻,吹嘴连接部101的内径与吹嘴的外径匹配,在保证气流通畅的情况下,吹嘴能够有效地卡接在吹嘴连接部上。所述冷凝部102外部贴附有半导体制冷片105,气体检测机构连接部能够套接在气体检测机构连接部103上。作为优选的实施方式,冷凝部102的后段存在预设的弯折角度,使得冷凝部的后段、气体检测机构连接部、气体检测机构、气体采集机构在同一直线上,便于受试者抓握,冷凝部的前段、吹嘴连接部、吹嘴在同一直线上,此预设的弯折角度为钝角,方便受试者抓握时能够畅通呼气。作为优选的实施方式,气体进出机构具体为石英材质的连接管109,为便于加工和半导体制冷片的贴附,冷凝部整体的横切面为多边形,进一步地还可为横截面积相同的规则多边形。本实施例中,半导体制冷片为2组且对称贴附于冷凝部两侧。
如图5所示,冷凝部外部两侧除贴附有半导体制冷片外,还包括用于实时测量冷凝部102温度值的热敏电阻107,用于为所述半导体制冷片散热的散热片108和散热风扇106,本实施例中,所述热敏电阻采用精度为1%的高精度热敏电阻构成,采用绝缘材料包裹,所述半导体制冷片一面为制冷端一面为散热端,所述半导体制冷片的制冷端与石英本体贴合,半导体制冷片的散热端通过导热硅胶与散热片的传热端贴合,所述散热片的散热端放置所述散热风扇,所述散热风扇具有转速调节功能,在主处理器的控制下,风扇的转速越大,散热的效果越明显,所述散热片的散热端为栅格状的金属锯齿,整体的半导体制冷片温度控制系统由热敏电阻与半导体制冷片组成一个闭环的反馈网络,制冷模块控制板110通过PID算法实现对这个装置的控制,其 通过制冷模块连接接头111与主处理器相连。温控精度可以达到0.01摄氏度。本实施例中,散热风扇可选择5V直流散热风扇,风扇上开设螺纹孔,通过旋紧螺栓,将两侧的风扇、半导体制冷片等机构固定在冷凝部的两侧。
通过调节半导体制冷片的制冷温度至水蒸气在此大气压下的露点温度,能够使得受试者呼气后的水蒸气在冷凝部的前端迅速液化,有效去除呼气中的水蒸气。根据具体的实验要求,水蒸气除湿预设的百分比有所不同,制冷的温度也有所不同,本实施例中,制冷的温度控制在10℃~-10℃,水蒸气除湿预设的百分比为50%~80%,或是更高。
在此受试者采集完肺泡气后,下一位受试者采集呼气之前,为快速汽化冷凝后的液态水,作为优选的实施方式,冷凝部上还设置加热装置,本实施例中,每组半导体制冷片数量为反向设置的2个,即其中一个半导体制冷片的制冷端贴附石英本体,另一个半导体制冷片的散热端贴附石英本体,当电压为正向时,其中一个半导体制冷片制冷,当电压为反向时,一个半导体制冷片制热。或是在冷凝部的石英本体两侧加工容纳加热片的凹槽,主处理器控制加热片进行加热,虽然能够使得水蒸气的汽化效果更好,但是也存在着影响半导体制冷片寿命的缺点,可根据实际情况选择合适的加热方式。
如图6所示,所述传感器包括CO 2传感器201和/或流量传感器202,二者分别通过连接转角接头203和传感器连接接头204固定在气体检测机构的主体支撑部上,本实施例中,二氧化碳传感器采用非分散红外的原理,其中型号可为C500,C600;本实施例中流量传感器可选用气体压力传感器,如MPXV7002DP。为便于传感器的监测,气体检测机构为透明材质,具体可为塑料材质,呼出的水蒸气遇到塑料层会产生哈气,故经过液化的水蒸气也变向增强了传感器的检测精度,为更进一步地增强检测的精度,气体检测机构与传感器探头接触侧设置为光窗结构,即由内至外的球面/弧面,或是根据预设比例调节成的中央厚、边缘薄的凸透镜面,透明度更高。本实施例中,气体通路的管径为4mm,其他实施例可在一定范围内调整,为了增强结构的稳定性,光窗上下侧固接有塑料加强筋,塑料加强筋为方框型或半包围的方框型或其他稳定结构,其中一侧固定在装置的主壳体或其他稳固机构上。
如图7、8所示,旋转阀部分为本发明的主要创新点之一,根据不同的使 用情况,其可分为如下两种可实现的结构形式,其中,一种形式的旋转阀部分包括刚性的主体部303和可在主体部内转动的阀体,主体部开设纵向的气体通路和横向的反吹气体通路,反吹气体通路与纵向的气体通路连通,纵向的气体通路最底端即为气体采集机构,所述阀体包括第一转向阀302,所述气体采集机构包括采样器接头401,所述气体采集机构包括能与其可拆卸连接的采集容器接头402,二者对接后,可进行呼吸气采集,第一转向阀设置在上方的纵向的气体通路与反吹气体通路之间,第一转向阀的一端与第一电机304相连,另一侧设有定位孔且其穿过主体部。
实施例2中,另一形式旋转阀部分包括刚性的主体部和可在主体部内转动的阀体,主体部开设纵向的气体通路和横向的反吹气体通路,反吹气体通路与纵向的气体通路连通,纵向的气体通路最底端即为气体采集机构,气体采集机构与可拆卸的采样袋相连,以便于后续对采样袋中的采样气体进行分析。所述阀体包括第一转向阀和第二转向阀,其中,第一转向阀设置在上方的纵向的气体通路与反吹气体通路之间,第二转向阀设置在反吹气体通路与下方的纵向的气体通路之间,第一转向阀的一端与第一电机相连,另一侧设有定位孔且其穿过主体部,第二转向阀的一端与第二电机相连,另一侧设有定位孔且其穿过主体部。为便于精调旋转阀体的旋转角度,本实施例选用齿轮减速电机,具体减速比可根据实际情况选择,例如,本实施例选择1:380,1:1000两种型号。
上述第一转向阀形状为被至少一个平面纵向切割后的圆柱体,所述第二转向阀的主体形状为圆柱体,还包括检测机构,所述主体部开设容纳检测机构的凹槽,所述检测机构用于在主处理器的控制下发射光,并基于此光穿透定位孔的状态辨认转向阀的旋转状态,所述第一转向阀的定位孔包括贯穿其切割面且与第一转向阀气路通道存在一定距离的第一定位通孔。本实施例中,所述检测机构选用光耦开关。在可选的实施方式中,所述平面为一个或是两个,若为两个,则两个切割平面关于圆柱过圆心的纵截面对称设置,即呈长圆形。若被两个平面切割,则定位孔可为一个,若被一个平面切割,则定位孔至少为两个,第二定位孔与第一定位孔在同一平面上并存在预设角度,在其他可选的实施方式中,定位孔还可以更多,定位更加准确,如第三定位孔,第三定位孔与第一定位孔空间垂直,第二定位孔与二者之间的距离不同,即 第二定位孔设置于靠近切割面一侧或是靠近于非切割面的圆柱主体上。
阀体和电机外侧还设置电机支撑架,电机支撑架305与主体部通过装配螺母306固定连接,转轴的外径与塑料阀体的槽孔内径匹配,旋转阀体与主体部的材质相同或不同。若不同,则主体部可选用pk材质(聚酮),作为支撑定子,旋转阀体选用塑料材质,作为转子,其与电机相连的一侧镶嵌有金属材质的转轴,转轴的外径与塑料阀体的槽孔内径匹配,本实施例中,选用铜作为转子,金属材质的转轴在保证足够刚性的同时,还能够有效防止电机的润滑油流入气体通路。若相同,则可选择包括陶瓷在内的其他可行材质。
如图9所示,所述反吹机构包括微型气泵501,微型气泵的排气口通过气管连接接头503与所述反吹气体通路相连,其间还可安装用于净化空气的反吹机构过滤器502。
如图10所示,为了更好的实现人机交互,整个装置采用带有触控功能的全彩LED屏实现冷凝段温度、传感器检测值等可监控数值的显示,所述LED屏幕不仅可以实现显示功能同时还具有触控功能,通过在LED显示屏点击对应的位置,实现不同指令的分发,具体地,在触碰“采集”选项时,装置先完成自检功能,即旋转阀旋转至少一周,通过检测机构判断出其转动位置,之后,半导体制冷片运作,通过传感器检测呼出气的类型,达到预设标准后,旋转阀转动预设角度,开始采集。在触碰“反吹”选项时,旋转阀旋转至气路通畅,反吹气泵运作,冷凝部的加热机构运作,可根据实际情况,调节为快速清洗和高强度清洗等,二者清洗时间不同,或是自己设定预设的反吹时间。
上述装置整体封装在主壳体中,主壳体中还设有用于为电气元件供电的锂电池,本实施例中,主壳体的整体部分为便于人手抓握的流线型设计,其符合人体工程学原理。主壳体上端为吹嘴连接部,口径为根据实际使用情况而设计的定制版或是符合市面上大多数吹嘴输出口径的通用版。如图13所示,所述主壳体包括第一壳体601和第二壳体602,所述第二壳体可拆卸地连接在第一壳体上,所述第一壳体背面开设容纳过滤器的凹槽,所述过滤器通过上、下接头连接在微型气泵的输出管段上,所述第一壳体内部设有主支撑架,上述其他稳固机构可为该主支撑架,所述主支撑架主体部用于承载电路板, 其正面用于承载显示屏,所述第一壳体背面还设有一通孔,该通孔用于连接外置数据线,内置的主处理器为可升级式,调试人员通过数据线插孔对装置进行版本的升级,从而让本产品具有更多的功能。所述第一壳体内部设有可充电电池,其壳体上还设有对应充电电池位置的充电口,本实施例中,充电电池和充电器的标准可参考手机充电器国家标准。
所述反吹机构的气泵和干燥气泵均可选用12V的无刷电机气泵,流速范围在1000mL/min-2000mL/min。反吹机构的过滤器可选用SMC公司的ZFC54或ZFC53,仪器连续使用1个月需要更换过滤器。快速接头母头包括母头外壳,母头外壳一体成型,母头外壳通过其外部的螺纹与采样气袋的气袋连接螺母404或是干燥/充电座螺接,螺接部的端部为法兰部,法兰部能够与快速接头公头的推动部触碰,法兰部上方为能够伸入于快速接头公头的伸入部,伸入部上设有密封圈,所述母头外壳内部设有同样的弹簧芯,其与快速接头公头的原理类似。
本发明实施例1具体使用包括如下步骤:步骤1、在使用装置前,首先通过LED屏将装置复位,即第一旋转阀的平侧向上,反吹机构的微型气泵关闭,其他电气组件处于待机状态。步骤2、在受试者准备呼气前,开启传感器、半导体制冷片。步骤3、安装采集容器,受试者安装吹嘴后向装置内呼气,呼气经过冷凝段脱除大部分水蒸气,在CO 2传感器和/或流量传感器的检测下,检测出呼出气为死腔气或是肺泡气,若为死腔气,则其沿着气体通路和第一转向阀的平面流出至装置外;若为肺泡气,主处理器控制第一旋转阀形成通路,进行气体采集。步骤4、到达预设指标后,移除气体采集袋;步骤5、在下一位受试者呼气前,开启微型气泵,第一旋转阀的气路纵向,同时,开启加热机构,尽快清除冷凝段内残留的液体。
本发明实施例2具体使用包括如下步骤:步骤1、在使用装置前,首先通过LED屏将装置复位,即第一旋转阀的平侧向上,第二旋转阀的气孔呈纵向(或横向)状态,反吹机构的微型气泵关闭,其他电气组件处于待机状态。步骤2、在受试者准备呼气前,开启传感器、半导体制冷片。步骤3、受试者安装吹嘴后向装置内呼气,呼气经过冷凝段脱除大部分水蒸气,在CO 2传感器和/或流量传感器的检测下,检测出呼出气为死腔气或是肺泡气,若为死腔气,则其沿着气体通路和第一转向阀的平面流出至装置外;若为肺泡气,主 处理器控制第一旋转阀、第二旋转阀之间形成通路,进行气体采集。步骤4、到达预设指标后,移除气体采集袋;步骤5、在下一位受试者呼气前,开启微型气泵,第一旋转阀的气路纵向,第二旋转阀的气路横向,同时,开启加热机构,尽快清除冷凝段内残留的液体。实施例1、2记载的方案,选用的电机还可为5V的直流电机或步进电机。
本实施例中,主处理器可选用基于ARM内核的STM32嵌入式低功耗芯片。上述步骤中,判断采集的方式有多种:
a)当二氧化碳浓度高于指定阈值,旋转阀旋转,实现呼出气采集,可以设定浓度阈值为2%。
b)利用流速传感器进行时间与流速积分,即可采集流量。设定排空的气体流量体积为500mL-1000mL
c)流速与二氧化碳浓度双指标同时判定旋转阀的旋转。即流速在3L/min-4L/min范围内,二氧化碳浓度高于2%,执行旋转阀的选择。及为执行采集程序。
执行采集程序之后,旋转阀导通,此时呼出气将经旋转阀流入呼出气采样气袋中,步骤4中,到达预设指标后,移除气体采集袋,具体可利用流速传感器进行流量判断。根据气袋容纳体积而判定。通常选择气袋体积为2L,采样气袋充入体积为1L时,到达预设指标。
利用流量传感器,进入采集模式后,当气体体积超过1L,旋转阀旋转。此时为非采集模式。呼出气无法充入气袋。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (10)

  1. 一种手持式呼出气采集装置,其特征在于,包括依次相连的气体进出机构、气体检测机构、旋转阀和气体采集机构,各机构之间能够形成呼出气体通路,还包括传感器、主处理器和反吹机构,所述气体检测机构的外侧设置所述传感器,所述传感器用于检测呼入气的状态参数,并将采集到的数据传输至主处理器,所述反吹机构用于吸入外界空气并将其经过呼出气体通路从气体进出机构排出,主处理器能够基于呼入气的状态参数控制旋转阀转动,进而改变呼出气体通路的通断状态,所述气体进出机构用于过滤呼出气中的水蒸气,所述气体采集机构用于外接气体采集容器,完成呼出气的采集。
  2. 根据权利要求1所述的手持式呼出气采集装置,其特征在于,通过将水蒸气液化的方式完成水蒸气的过滤,具体地,所述气体进出机构包括吹嘴连接部、冷凝部和气体检测机构连接部,所述吹嘴连接部用于连接外接的吹嘴,所述冷凝部外部贴附有用于制冷的半导体制冷片,所述半导体制冷片与主处理器电性连接,气体检测机构连接部能够套接在气体检测机构连接部上,所述气体进出机构为石英材质。
  3. 根据权利要求2所述的手持式呼出气采集装置,其特征在于,冷凝部外部两侧均设有半导体制冷片,还设置用于实时测量冷凝部温度值的热敏电阻,用于为所述半导体制冷片散热的散热片和散热风扇,所述半导体制冷片一面为制冷端一面为散热端,所述半导体制冷片的制冷端与石英本体贴合,半导体制冷片的散热端通过导热硅胶与散热片的传热端贴合,所述散热片的散热端放置所述散热风扇,所述散热风扇能够在主处理器的控制下调节转速。
  4. 根据权利要求1所述的手持式呼出气采集装置,其特征在于,所述传感器包括CO 2传感器和/或流量传感器。
  5. 根据权利要求1所述的手持式呼出气采集装置,其特征在于,旋转阀部分包括刚性的主体部和可在主体部内转动的阀体,主体部开设纵向的气体 通路和横向的反吹气体通路,反吹气体通路与纵向的气体通路连通,纵向的气体通路最底端即为气体采集机构,所述阀体包括第一转向阀,所述气体采集机构包括与气体采集容器相连的接头,第一转向阀设置在上方的纵向的气体通路与反吹气体通路之间,第一转向阀的一端与第一电机相连,另一侧设有定位孔且其穿过主体部。
  6. 根据权利要求1所述的手持式呼出气采集装置,其特征在于,旋转阀部分包括刚性的主体部和可在主体部内转动的阀体,主体部开设纵向的气体通路和横向的反吹气体通路,反吹气体通路与纵向的气体通路连通,纵向的气体通路最底端即为气体采集机构,所述阀体包括第一转向阀和第二转向阀,其中,第一转向阀设置在上方的纵向的气体通路与反吹气体通路之间,第二转向阀设置在反吹气体通路与下方的纵向的气体通路之间,第一转向阀的一端与第一电机相连,另一侧设有定位孔且其穿过主体部,第二转向阀的一端与第二电机相连,另一侧设有定位孔且其穿过主体部,第二转向阀的主体形状为圆柱体。
  7. 根据权利要求5或6所述的手持式呼出气采集装置,其特征在于,第一转向阀形状为被至少一个平面纵向切割后的圆柱体,还包括检测机构,所述主体部开设容纳检测机构的凹槽,所述检测机构用于在主处理器的控制下发射光,并基于此光穿透定位孔的状态辨认转向阀的旋转状态,所述第一转向阀的定位孔包括贯穿其切割面且与第一转向阀气路通道存在一定距离的第一定位通孔。
  8. 根据权利要求5或6所述的手持式呼出气采集装置,其特征在于,阀体和电机外侧还设置电机支撑架,电机支撑架与主体部固定连接,转轴的外径与塑料阀体的槽孔内径匹配,旋转阀体与主体部的材质相同或不同。
  9. 根据权利要求1~6任一项所述的手持式呼出气采集装置,其特征在于,所述反吹机构包括微型气泵,微型气泵的排气口与所述反吹气体通路相连,其间还安装用于净化空气的过滤器。
  10. 根据权利要求9所述的手持式呼出气采集装置,其特征在于,呼出气体通路、旋转阀、传感器、主处理器和反吹机构均封装于主壳体内,所述主壳体包括第一壳体和第二壳体,所述第二壳体可拆卸地连接在第一壳体上,所述第一壳体背面开设容纳过滤器的凹槽,所述过滤器通过上、下接头连接在微型气泵的输出管段上,所述第一壳体内部设有主支撑架,所述主支撑架主体部用于承载电路板,其正面用于承载显示屏,所述第一壳体背面还设有一通孔,该通孔用于连接外置数据线,所述第一壳体内部设有可充电电池,其壳体上还设有对应充电电池位置的充电口。
PCT/CN2020/121092 2020-07-01 2020-10-15 一种手持式呼出气采集装置 WO2022000850A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/004,113 US20230293043A1 (en) 2020-07-01 2020-10-15 Handheld exhaled gas collection device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202021256628.5U CN212592219U (zh) 2020-07-01 2020-07-01 一种手持式呼出气采集装置
CN202010621223.5 2020-07-01
CN202010621223.5A CN111671472A (zh) 2020-07-01 2020-07-01 一种手持式呼出气采集装置
CN202021256628.5 2020-07-01

Publications (1)

Publication Number Publication Date
WO2022000850A1 true WO2022000850A1 (zh) 2022-01-06

Family

ID=79317341

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/121092 WO2022000850A1 (zh) 2020-07-01 2020-10-15 一种手持式呼出气采集装置

Country Status (2)

Country Link
US (1) US20230293043A1 (zh)
WO (1) WO2022000850A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116784888A (zh) * 2023-08-28 2023-09-22 成都艾立本科技有限公司 一种离线式呼出气体采集器

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2167680Y (zh) * 1993-03-19 1994-06-08 李志学 呼气氢检测法胃肠疾病诊断仪
CN102498381A (zh) * 2009-07-31 2012-06-13 创控生技股份有限公司 具有前端及后端预浓缩器与除湿的气体收集及分析系统
CN205483711U (zh) * 2016-03-15 2016-08-17 深圳市先亚生物科技有限公司 一种全自动呼气采集装置
CN107961042A (zh) * 2017-12-01 2018-04-27 无锡市尚沃医疗电子股份有限公司 智能化呼气采样方法和装置
WO2019072947A1 (de) * 2017-10-11 2019-04-18 Robert Bosch Gmbh System und verfahren zum sammeln von atemluftaerosolen und atemluftkondensaten
CN209595789U (zh) * 2018-12-28 2019-11-08 无锡市尚沃医疗电子股份有限公司 一种手持式呼气末采样装置
CN110596310A (zh) * 2019-08-05 2019-12-20 苏州迈优医疗科技有限公司 一种呼出气体分析仪及操作方法
CN111671472A (zh) * 2020-07-01 2020-09-18 深圳市步锐生物科技有限公司 一种手持式呼出气采集装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2167680Y (zh) * 1993-03-19 1994-06-08 李志学 呼气氢检测法胃肠疾病诊断仪
CN102498381A (zh) * 2009-07-31 2012-06-13 创控生技股份有限公司 具有前端及后端预浓缩器与除湿的气体收集及分析系统
CN205483711U (zh) * 2016-03-15 2016-08-17 深圳市先亚生物科技有限公司 一种全自动呼气采集装置
WO2019072947A1 (de) * 2017-10-11 2019-04-18 Robert Bosch Gmbh System und verfahren zum sammeln von atemluftaerosolen und atemluftkondensaten
CN107961042A (zh) * 2017-12-01 2018-04-27 无锡市尚沃医疗电子股份有限公司 智能化呼气采样方法和装置
CN209595789U (zh) * 2018-12-28 2019-11-08 无锡市尚沃医疗电子股份有限公司 一种手持式呼气末采样装置
CN110596310A (zh) * 2019-08-05 2019-12-20 苏州迈优医疗科技有限公司 一种呼出气体分析仪及操作方法
CN111671472A (zh) * 2020-07-01 2020-09-18 深圳市步锐生物科技有限公司 一种手持式呼出气采集装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116784888A (zh) * 2023-08-28 2023-09-22 成都艾立本科技有限公司 一种离线式呼出气体采集器
CN116784888B (zh) * 2023-08-28 2023-10-24 成都艾立本科技有限公司 一种离线式呼出气体采集器

Also Published As

Publication number Publication date
US20230293043A1 (en) 2023-09-21

Similar Documents

Publication Publication Date Title
CN111671472A (zh) 一种手持式呼出气采集装置
JP3938933B2 (ja) 呼気収集装置
RU2666590C2 (ru) Мундштук для точного обнаружения выдыхаемого no
RU2653793C2 (ru) Устройство и способ отбора проб газа
CA3115674C (en) Ndir sensor, sampling method and system for breath analysis
AU2012275453A1 (en) End-tidal gas monitoring apparatus
WO2008014412A2 (en) Modular sidestream gas sampling assembly
JP2000507462A (ja) 凝縮物比色酸化窒素分析計
WO2011104567A1 (en) Apparatus and method for detection of ammonia in exhaled air
WO2022000850A1 (zh) 一种手持式呼出气采集装置
CN111772681A (zh) 一种手持式呼出气采集装置的清洗反吹机构
CN205263092U (zh) 一种呼气一氧化氮和一氧化碳浓度的测量装置
CN110996790A (zh) 用于离线收集呼吸样品以用于一氧化氮测量的设备和方法
CN212592219U (zh) 一种手持式呼出气采集装置
CN111912679B (zh) 一种呼出气冷凝液采集器
CN111157480A (zh) 一种人体呼出气体二氧化碳实时动态定量检测装置
CN213249277U (zh) 一种便携式呼出气采集装置
CN114113283A (zh) 一种呼出气体采集装置和质谱分析装置
CN111781303B (zh) 一种手持式呼出气采集多参数分类采集机构
WO2017107598A1 (zh) 糖尿病患者呼吸气中的丙酮检测装置
CN208693320U (zh) 一种便携式管式呼咳气体冷凝收集装置及其系统
CN212059899U (zh) 一种人体呼出气体二氧化碳实时动态定量检测装置
CN210673313U (zh) 一种呼气分析装置
CN103487479A (zh) 手持式呼气分析仪
CN113397605A (zh) 一种上、下呼吸道双用的气体冷凝液收集装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20942866

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20942866

Country of ref document: EP

Kind code of ref document: A1