WO2022000816A1 - 一种视力检测系统及方法 - Google Patents

一种视力检测系统及方法 Download PDF

Info

Publication number
WO2022000816A1
WO2022000816A1 PCT/CN2020/117053 CN2020117053W WO2022000816A1 WO 2022000816 A1 WO2022000816 A1 WO 2022000816A1 CN 2020117053 W CN2020117053 W CN 2020117053W WO 2022000816 A1 WO2022000816 A1 WO 2022000816A1
Authority
WO
WIPO (PCT)
Prior art keywords
test
vision
level
optotype
visual acuity
Prior art date
Application number
PCT/CN2020/117053
Other languages
English (en)
French (fr)
Inventor
吴嘉毅
赵永军
Original Assignee
中山明易智能家居科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中山明易智能家居科技有限公司 filed Critical 中山明易智能家居科技有限公司
Publication of WO2022000816A1 publication Critical patent/WO2022000816A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S6/00Lighting devices intended to be free-standing
    • F21S6/002Table lamps, e.g. for ambient lighting
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/0016Operational features thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/02Subjective types, i.e. testing apparatus requiring the active assistance of the patient
    • A61B3/028Subjective types, i.e. testing apparatus requiring the active assistance of the patient for testing visual acuity; for determination of refraction, e.g. phoropters
    • A61B3/032Devices for presenting test symbols or characters, e.g. test chart projectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V33/00Structural combinations of lighting devices with other articles, not otherwise provided for
    • F21V33/0064Health, life-saving or fire-fighting equipment
    • F21V33/0068Medical equipment

Definitions

  • the present invention specifically relates to a vision detection system and method.
  • Vision refers to the ability to distinguish small or distant objects and subtle parts.
  • the ability of the human eye to recognize distant objects or targets is called distance vision, and the ability to recognize near small objects or targets is called near vision.
  • the distance vision is mainly checked. Under certain conditions, the smaller the object that the eye can distinguish, the greater the visual acuity.
  • the basic feature of visual acuity is to distinguish the distance between two points.
  • the traditional vision test is performed by the tested person indicating the direction of the letters on the vision test chart, and the currently used vision test charts are generally the printed vision charts. Moreover, it is also required that the lighting of the external environment where vision detection is performed must be sufficient. In addition, manual instructions are required to perform the test, so the labor cost is relatively large. It is troublesome and inconvenient to test the vision in this way, and it makes people unable to clearly understand the changes of their own vision, and cannot well prevent vision loss.
  • the present invention provides a vision detection system and method, which is convenient and accurate, saves space, and is easy to operate.
  • the present invention solves the above-mentioned problems through the following technical means:
  • the present invention provides a vision detection system, comprising:
  • the mobile device is used for the tester to trigger the test start function, edit and send the start test command data to the server according to the communication protocol; when the tester is testing, input the observed opening direction of the optotype, and edit and send the observed opening direction of the optotype Go to the server; obtain the vision test results or historical test data in the server, and generate the tester's vision change curve at different times;
  • the server is used to store all the vision test results of each tester and complete the network connection between the mobile device and the terminal device;
  • the terminal device is used to analyze and judge the data according to the server start test command data received, and start to enter the vision test algorithm, start the reminder voice before the vision test, and display the vision test start sign, and display the first number according to the received data.
  • An optotype and display the opening direction according to the vision test analyze the data according to the optotype opening direction data received from the server, use the vision test algorithm to judge whether the opening direction observed by the tester is correct, output the results to the server, and judge the test at the same time Whether it is over or not, the next optotype will be displayed; the vision test algorithm judges the vision according to the tester’s operation.
  • optotype E the system will randomly appear N optotypes in different directions.
  • the terminal equipment includes:
  • the optotype display module is used to display the vision icons to be displayed in the vision test, and the vision icons are composed of different "E" optotypes;
  • the logic processing module is used to store the icons E of different levels, and is responsible for the processing of the vision test algorithm, and is responsible for processing the data interaction with the network connection module;
  • the network connection module is used to connect the device to the WiFi network and transfer the data during the transfer test
  • the voice playback module is used to provide voice reminders during the interaction process
  • the brightness adjustment module is used to provide the vision tester with a comfortable environment that is beneficial to the tester's eyes and will not damage the eyes according to the tester's actual environment and usage time, so that the vision tester can accurately test his current vision. state.
  • vision test algorithm is specifically:
  • E is the visual acuity value
  • N the specified number of optotypes of this level
  • the system When the user starts to use the system for vision test, the system will perform data analysis and processing, and determine that when the user is using the system for the first time, the initial visual target will be set. If the system determines that the user has historical data, it will automatically The measurement result is used as the initial value of this test;
  • N ⁇ 4 when the number of user test errors is M ⁇ 2 for the first time, or if N ⁇ 4, when the number of user test errors is M ⁇ 1 for the first time, the system prompts the user to retest E.
  • the opening direction of "E" is randomly generated, and the optotype directions of the adjacent test of the same optotype level cannot be the same, and if the optotype number is greater than 4, the four consecutive optotype directions should include up, down, left and right; If the number of labels is less than 4, it will be displayed randomly.
  • the present invention also provides a vision detection method, comprising the following steps:
  • the tester triggers the test start function on the mobile device, and the mobile device edits and sends the start test command data to the server according to the communication protocol;
  • the server determines whether the system is online, and according to the network protocol with the terminal device, adopts the IOT lightweight push protocol to send the start test command data to the terminal device;
  • the terminal device receives the server start test command data for data analysis and judgment, and enters the vision test system; when the vision test starts, the system outputs a reminder voice, and displays the vision test start sign on the high-definition optotype display module.
  • the tester observes the optotype displayed by the optotype display module, inputs the observed optotype opening direction on the mobile device, and the mobile device edits and sends the input observed optotype opening direction data to the server;
  • the server transfers the data of the opening direction of the optotype to the terminal device
  • the terminal device receives the visual mark opening direction data from the server to analyze the data, uses the vision test algorithm to judge whether the opening direction observed by the tester is correct, and outputs the result to the server. , if there is no end, the next visual mark is displayed;
  • the server sends the received data to the mobile device
  • the mobile device receives a response from the terminal device to allow the tester to perform the next visual target operation
  • the visual acuity test algorithm of the terminal device judges the visual acuity according to the tester's operation.
  • the optotype E the system will randomly appear N optotypes in different directions. For the number of errors, the system will re-test, or measure to the upper level or the lower level; each level E has a corresponding number of tests N. If the number of tests is met and the test results are accurate, the level of the optotype will be improved or output. As a result, the vision test result is sent to the server;
  • the mobile device obtains the visual acuity test result or historical test data in the server, and generates the visual acuity change curve of the tester at different times.
  • the start test command data includes a vision test start mark, a vision test eye, and a vision test optotype size.
  • vision test algorithm is specifically:
  • E is the visual acuity value
  • N the specified number of optotypes of this level
  • the system When the user starts to use the system for vision test, the system will perform data analysis and processing, and determine that when the user is using the system for the first time, the initial visual target will be set. If the system determines that the user has historical data, it will automatically The measurement result is used as the initial value of this test;
  • N ⁇ 4 when the number of user test errors is M ⁇ 2 for the first time, or if N ⁇ 4, when the number of user test errors is M ⁇ 1 for the first time, the system prompts the user to retest E.
  • the opening direction of "E" is randomly generated, and the optotype directions of the adjacent test of the same optotype level cannot be the same, and if the optotype number is greater than 4, the four consecutive optotype directions should include up, down, left and right; If the number of labels is less than 4, it will be displayed randomly.
  • the beneficial effects of the present invention at least include:
  • the invention can simplify the whole vision test process, integrates various functions, greatly improves the space utilization rate, reduces the consumption of human resources, and is convenient for use in the family to perform the vision test.
  • the invention generates an accurate and effective optotype according to a scientific and effective algorithm, generates a suitable and accurate optotype size and opening direction according to the user's historical data, outputs it to a high-definition display device, and adjusts the ambient brightness of the entire space, so that the user can It is very accurate and easy to obtain your own vision.
  • the invention is suitable for most occasions where vision testing is required, and provides a vision device that can test the tester anytime and anywhere, so as to know the vision of the tested person in time and prevent the vision loss, which can be fast, simple and convenient. And accurately monitor the vision changes of teenagers, the test time is short, does not occupy additional space, the data collection is accurate, the vision data is recorded in real time, and the vision curve is formed. Works well for overall development and physical and mental health.
  • Fig. 1 is the structural representation of the vision detection system of the present invention
  • Fig. 2 is the vision test program realization algorithm flow chart of the present invention
  • Fig. 3 is the vision test vision logic algorithm diagram of the present invention.
  • FIG. 4 is a schematic diagram of the operation flow of the present invention.
  • the present invention provides a vision detection system, including a mobile device, a server and a terminal device;
  • the mobile device is used for the tester to trigger the test start function, edit and send the start test command data to the server according to the communication protocol; when the tester tests, input the observed optotype opening direction, and the input observed optotype opening direction is edited Send it to the server; obtain the vision test results or historical test data in the server, and generate the tester's vision change curve at different times; trigger the test start function including button click, voice interaction or gesture interaction.
  • the server is used to store all the vision test results of each tester, and complete the network connection between the mobile device and the terminal device; that is, the mobile device and the terminal device are connected through the server, the mobile device or the terminal device.
  • Network connection with the server, the network connection includes WIFI, Bluetooth or other communication methods.
  • the terminal device is used for analyzing and judging the data according to the received server start test command data, and starts to enter the vision test algorithm, starts to play the reminder voice before the vision test, and displays the vision test start sign, and displays according to the received data.
  • the first optotype and display the opening direction according to the vision test analyze the data according to the received server optotype opening direction data, use the vision test algorithm to determine whether the opening direction observed by the tester is correct, output the result to the server, and judge at the same time Whether the test is over, the next optotype will be displayed if it is not over; the vision test algorithm judges the vision according to the tester's operation.
  • optotype E the system will randomly appear N optotypes in different directions.
  • the terminal device provides the data collection input terminal for the tester to test alone, to view the internal data of the device, all the test history records of the tester, and to provide a curve that can fit the visual acuity of each eye of the tester at each stage, providing the tester's current vision health.
  • the objective data of the situation have a clear understanding of the tester's vision changes in each time period, find out the reasons for the fluctuation of vision, find the root cause that has the greatest impact on the tester's vision, and use it to prevent and protect the tester's vision. .
  • the terminal equipment includes:
  • the optotype display module is used to display the vision icons to be displayed in the vision test.
  • the vision icons are composed of different "E" optotypes; it provides the testers with highly accurate vision icons with a high degree of restoration, allowing the testers to Able to accurately test their own vision;
  • the logic processing module is used to store the icons E of different levels, and is responsible for the processing of the vision test algorithm, and is responsible for processing the data interaction with the network connection module; according to the efficient and intelligent regulation of the entire vision test, it provides effective and accurate intelligent logic Algorithm, providing data for generating high-definition optotypes, judging the tester's vision, summarizing and sending the data to the server;
  • the network connection module is used to connect the device to the WiFi network and transfer the data during the transfer test
  • the voice playback module is used to provide voice reminders during the interaction process; it provides a super-intelligent voice playback module to interact with the tester, instructing the vision tester to test according to strict standards and without errors;
  • the brightness adjustment module is used to provide the vision tester with a comfortable environment that is beneficial to the tester's eyes and will not damage the eyes according to the tester's actual environment and usage time, so that the vision tester can accurately test his current vision. state.
  • the entire vision test process is as follows:
  • the terminal device starts the preparation before the vision test, and displays the optotype to be tested;
  • the tester selects the opening direction of the optotype according to the optotype
  • the terminal device calculates the tester's vision according to the vision test algorithm and uploads it to the server;
  • the tester checks the vision test on the mobile device.
  • the vision test algorithm is specifically:
  • E is the visual acuity value
  • N the specified number of optotypes of this level
  • the system prompts the user to retest E.
  • the opening direction of "E" is randomly generated, and the optotype directions of adjacent tests of the same optotype level cannot be the same. If the number of optotypes is greater than 4, the four consecutive optotype directions should include up, down, left and right; If the number of labels is less than 4, it will be displayed randomly.
  • the present invention also provides a vision detection method, comprising the following steps:
  • Step 1 The tester triggers the test start function on the mobile device, and the mobile device edits and sends the start test command data to the server according to the communication protocol;
  • Step 2 The server judges whether the system is online, and according to the network protocol with the terminal device, adopts the IoT lightweight push protocol to send the start test command data to the terminal device;
  • Step 3 The terminal device receives the server start test command data to analyze and judge the data, and enters the vision test system; when starting the vision test, the system outputs a reminder voice, and displays the vision test start sign on the high-definition optotype display module.
  • the system performs logical calculation according to the received data, and obtains the number of optotype series E to be tested and displayed at present, and according to the system logic algorithm, obtains the number N of optotypes to be displayed at the current optotype, and the number of times M that can be fault-tolerant; The above results are randomly displayed on the optotype display module to be tested;
  • Step 4 The tester observes the optotype displayed by the optotype display module, inputs the observed optotype opening direction on the mobile device, and the mobile device edits and sends the input and observed optotype opening direction data to the server;
  • Step 5 The server transfers the visual mark opening direction data to the terminal device
  • Step 6 The terminal device receives the visual mark opening direction data from the server to analyze the data, uses the vision test algorithm to judge whether the opening direction observed by the tester is correct, and outputs the result to the server.
  • the system uses the logic algorithm to judge according to the user's interaction data. Whether the test is over, if not, the next visual mark will be displayed;
  • Step 7 The server sends the received data to the mobile device
  • Step 8 The mobile device receives a response from the terminal device to allow the tester to perform the next visual target operation
  • Step 9 The visual acuity test algorithm of the terminal device judges the visual acuity according to the operation of the tester.
  • the optotype E the system will randomly appear N optotypes in different directions. The number of occurrences and the number of errors, the system re-tests, or measures to the upper level or the lower level; each level E has a corresponding number of tests N, if the number of tests is met and the test results are accurate, the visual target level will be tested. Improve or output the results, and send the vision test results to the server;
  • Step 10 The mobile device obtains the visual acuity test result or historical test data in the server, and generates the visual acuity change curve of the tester at different times.
  • the mobile device After configuring the network, the mobile device obtains the device information and associates the device with the user's personal information. Then the tester enters the vision test interface on the mobile device and clicks to start the vision test.
  • the historical data in the tester's account sends the last visual acuity result of the eye selected by the tester to the terminal device.
  • the whole test result is divided into thirteen grades. If the tester does not have a historical test record, the data of the tenth level will be issued.
  • the whole delivery agreement includes the start mark of the vision test, the eyes of the vision test, and the size of the visual mark of the vision test.
  • the data is first sent to the server, and the server classifies, stores and distributes the data.
  • the network connection module of the terminal device receives the data and transmits the data to the logic processing module.
  • the logic processing module parses the data and obtains the relevant content sent by the mobile device.
  • the system enters the vision test system according to the data processing results and the user interaction results, and calls the vision test algorithm program to display the stored optotype "E" of the corresponding size to the optotype display module according to the size of the optotype of the vision test, where "E"
  • the opening direction of the 2 is randomly generated, and the adjacent test directions of the same optotype cannot be the same. If the number of optotypes is greater than 4, the four consecutive optotype directions should include up, down, left, and right. If the number of optotypes is less than 4, it will be displayed randomly.
  • the system prompts "the tester retreats 1 meter away from the terminal device", and selects the test eye according to the voice prompt while covering the other eye.
  • the tester judges the opening direction of the optotype "E" of the optotype display module, and assists the tester to select the corresponding opening button on the mobile device.
  • the application on the mobile device sends the results selected by the tester to the server, and the server sends the data to the terminal device.
  • the terminal device parses the received data packet, obtains the opening direction selected by the tester, and compares the opening direction randomly generated internally. , the comparison result is recorded, and a message selected by the tester is sent to the mobile device.
  • the terminal device is a smart home-style desk lamp device.
  • the vision test algorithm is specifically:
  • E is the visual acuity value
  • N the specified number of optotypes of this level
  • the system prompts the user to retest E.
  • the terminal device After the test is completed, the terminal device will exit the vision test algorithm and give a voice to remind the tester that the vision test has been completed. Then the terminal device will encapsulate the results of the vision test according to the protocol, upload the data to the server through the network connection module, and the server will send the data to On the mobile device side, the tester can see the results of this test on the mobile device side, and can choose to save the test results, the data will be saved to the server, and then the tester can choose to continue testing the other eye or end the test.
  • the mobile device When the tester queries the historical test results, the mobile device will obtain the visual acuity data in the server according to the tester's account, and generate a list of historical data for the tester to view. curve.
  • the implementation of the present invention may also not require a mobile device, the function of the mobile device is correspondingly replaced by the terminal device, the data interaction between the tester and the terminal device is through gesture interaction or voice interaction, and the function of voice interaction is performed by the voice interaction module on the terminal device.
  • the function of gesture interaction can be realized by adding a camera or sensor on the terminal device.
  • the implementation of the present invention may also not require a server, the function of the server is correspondingly implemented by the terminal device or the mobile device, and the terminal device and the mobile device are directly connected to the network, and the network connection includes WIFI, Bluetooth or other communication methods.
  • the invention can simplify the whole vision test process, integrates various functions, greatly improves the space utilization rate, reduces the consumption of human resources, and is convenient for use in various occasions for vision test.
  • the invention generates an accurate and effective optotype according to a scientific and effective algorithm, generates a suitable and accurate optotype size and opening direction according to the user's historical data, outputs it to a high-definition display device, and adjusts the ambient brightness of the entire space, so that the user can It is very accurate and easy to obtain your own vision.
  • the invention is suitable for most occasions where vision testing is required, and provides a vision device that can test the tester anytime and anywhere, so as to know the vision of the tested person in time and prevent the vision loss, which can be fast, simple and convenient. And accurately monitor the vision changes of teenagers, the test time is short, does not occupy additional space, the data collection is accurate, the vision data is recorded in real time, and the vision curve is formed. Works well for overall development and physical and mental health.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biophysics (AREA)
  • Ophthalmology & Optometry (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Eye Examination Apparatus (AREA)

Abstract

一种视力检测系统及方法,方法包括:测试者在移动设备上触发测试开始功能,移动设备发送开始测试命令数据到服务器;服务器发送开始测试命令数据至终端设备;终端设备的视力测试算法根据测试者的操作判断视力,连续两次测试错误,将再次在当前的视力等级重新测试,连续两次测试都失败的情况下,视标当前等级退减一个等级,重新测试,每个等级有对应的测试次数,满足测试次数且测试的结果都准确的情况下进行视标等级的提升或者输出结果,视力测试结果发送到服务器;移动设备获取服务器内的视力测试结果或历史测试数据,生成测试者不同时间的视力变化曲线。使用户能十分准确的轻松的获取自己的视力。

Description

一种视力检测系统及方法 技术领域
本发明具体涉及一种视力检测系统及方法。
背景技术
视力是指分辨细小的或遥远的物体及细微部分的能力,人眼识别远方物体或目标的能力称为远视力,识别近处细小对象或目标的能力称为近视力。在健康检查时,主要是检查远视力。在一定条件下,眼睛能分辨的物体越小,视觉的敏锐度越大,视力的基本特征在于辨别两点之间距离的大小。
传统的视力检测都是通过被检测者指示视力检测表上的字母的方向来进行的,现有的使用的视力检测表一般都是印刷的那种视力表。而且,还要求进行视力检测的外界环境的照明必须足够。另外需要人工指示来进行测试,这样人工成本较大。这样测试视力比较麻烦和很不方便,而且使得人们不能很清楚自己视力的变化,不能很好的预防视力下降。
发明内容
有鉴于此,为了解决现有技术中的上述问题,本发明提出一种视力检测系统及方法,方便精准,节省空间,操作简易。
本发明通过以下技术手段解决上述问题:
一方面,本发明提供一种视力检测系统,包括:
移动设备,用于测试者触发测试开始功能,按照通讯协议编辑并发送开始测试命令数据到服务器;测试者测试时,输入观察到的视标开口方向,将输入观察到的视标开口方向编辑发送到服务器;获取服务器内的视力测试结果或历史测试数据,生成测试者不同时间的视力变化曲线;
服务器,用于存储每一个测试者的所有视力测试结果,并完成在移动设备与终端设备的网络连接;
终端设备,用于根据接收到服务器开始测试命令数据进行数据的解析、判断,并开始进入视力测试算法,开始视力测试前的提醒语音播放,并显示视力测试开始标志,根据接收的数据显示出第一个视标并根据视力测试显示开口方向;根据接收到服务器视标开口方向数据进行数据的解析,运用视力测试算法,判断测试者观察的开口方向是否正确,将结果输出到服务器,同时判断测试是否结束,没有结束则显示下一个视标;视力测试算法根据测试者的操作判断视力,根据视标E,系统会随机出现N个不同方向的视标,系统根据用户操作结果,对容错次数M逻辑判断,根据M的出现次数及错误个数,系统作出重新测试,或者向上级或向下一级测量;每个等级E有对应的测试次数N,满足测试次数N且测试的结果M都准确的情况下,进行视标等级的提升或者输出结果,视力测试结果发送到服务器。
进一步地,所述终端设备包括:
视标显示模块,用于显示视力测试所要显示的视力图标,视力图标由不同的“E”视标组成;
逻辑处理模块,用于存储不同级别的图标E,以及负责视力测试算法的处理,并且负责处理与网络连接模块的数据交互;
网络连接模块,用于设备连上WiFi网络和中转测试过程中来往的数据;
语音播放模块,用于提供交互过程中的语音提醒;
亮度调节模块,用于根据测试者的实际环境、使用时间,为视力测试者提供一个舒适的对测试者眼睛有利不会损害眼睛的环境,让视力测试者能十分准确的测试出自己当前的视力状态。
进一步地,所述视力测试算法具体为:
设:
E:为视力值;
N:为该级视标的规定个数;
M:为用户测试同一视力级别,视标错误次数;
视力及视标出现规则的标准为:
E=0.1:N=2;
E=0.12:N=2;
E=0.15:N=2;
E=0.2:N=3;
E=0.25:N=3;
E=0.3:N=4;
E=0.4:N=4;
E=0.5:N=5;
E=0.6:N=6;
E=0.8:N=7;
E=1.0:N=8;
E=1.2:N=8;
E=1.5:N=8;
上述规格完全模拟眼科医生的视力测试方法;
用户开始使用系统进行视力测试时,系统会进行数据分析处理,并判断出当用户为第一次使用时,设定初始视标,如果系统判断出用户已有历史数据,则自动将上次的测量结果作为本次测试的初始值;
对应的本系统的判断逻辑为:
系统根据E的初始值,按前述视标出现标准,随机出现N个方向各异的视标;
同一级别E中,若N≥4时,当用户测试错误次数当第一次M≥2,或者若N<4时,当用户测试错误次数当第一次M≥1,则系统提示用户重测E,重测时,如果N≥4且M≤1,或者N<4且M=0则系统会判断本级视力正常,进入E+1级视力继续测量;重测时,如果N≥4且M≥1,或者N<4且M≥1,则系统会判断本级视力不正常系统,系统进入E-1级视力继续测量;
上述测量中,当第一次测量N≥4且M≤1,或者N<4且M=0,则系统会判断本级视力正常,系统进入E+1级视力继续测量;后续循环对M进行判,确认视力是上升通道进行测量,还是下降通道测量;直到判断出最终的视力;
本逻辑中,当视力上升通道测量时,E只升不降;
本逻辑中,当视力下降通道测量时,E只降不升;
本逻辑中,当N≥4时,M≥2为本级别正确与否的标准;当N<4时,M≥1为本级别正确与否的标准。
进一步地,设定初始视标为E=0.8。
进一步地,其中“E”的开口方向随机生成,并同一个视标级别相邻测试的视标方向不能相同,视标个数大于4的,连续四个的视标方向要含上下左右;视标个数小于4的,随机显示。
另一方面,本发明还提供一种视力检测方法,包括如下步骤:
测试者在移动设备上触发测试开始功能,移动设备按照通讯协议编辑并发送开始测试命令数据到服务器;
服务器判断系统是否在线,并按照与终端设备的网络协议,采取物联轻便的推送协议发送开始测试命令数据至终端设备;
终端设备接收到服务器开始测试命令数据进行数据的解析、判断,并进入视力测试系统;开始视力测试时,系统输出提醒语音,并在高清的视标显示模块上显示视力测试开始标志,系统根据接收的数据进行逻辑计算,得出当前要测试显示的视标级数E,并根据系统逻辑算法,得出当前视标要显示的视标个数 N,和可以容错的次数M;系统将上述结果,随机将要测试的视标显示在视标显示模块上;
测试者观察视标显示模块显示的视标,在移动设备上输入观察到的视标开口方向,移动设备将输入观察到的视标开口方向数据编辑发送到服务器;
服务器把视标开口方向数据中转到终端设备;
终端设备接收到服务器视标开口方向数据进行数据的解析,运用视力测试算法,判断测试者观察的开口方向是否正确,将结果输出到服务器,系统根据用户的交互数据,运用逻辑算法判断测试是否结束,没有结束则显示下一个视标;
服务器将接收到的数据发送至移动设备;
移动设备收到终端设备回应允许测试者进行下一个视标的操作;
终端设备的视力测试算法根据测试者的操作判断视力,根据视标E,系统会随机出现N个不同方向的视标,系统根据用户操作结果,对容错次数M逻辑判断,根据M的出现次数及错误个数,系统作出重新测试,或者向上级或向下一级测量;每个等级E有对应的测试次数N,满足测试次数且测试的结果都准确的情况下进行视标等级的提升或者输出结果,视力测试结果发送到服务器;
移动设备获取服务器内的视力测试结果或历史测试数据,生成测试者不同时间的视力变化曲线。
进一步地,所述开始测试命令数据包括视力测试开始标志、视力测试眼睛和视力测试视标大小。
进一步地,所述视力测试算法具体为:
设:
E:为视力值;
N:为该级视标的规定个数;
M:为用户测试同一视力级别,视标错误次数;
视力及视标出现规则的标准为:
E=0.1:N=2;
E=0.12:N=2;
E=0.15:N=2;
E=0.2:N=3;
E=0.25:N=3;
E=0.3:N=4;
E=0.4:N=4;
E=0.5:N=5;
E=0.6:N=6;
E=0.8:N=7;
E=1.0:N=8;
E=1.2:N=8;
E=1.5:N=8;
上述规格完全模拟眼科医生的视力测试方法;
用户开始使用系统进行视力测试时,系统会进行数据分析处理,并判断出当用户为第一次使用时,设定初始视标,如果系统判断出用户已有历史数据,则自动将上次的测量结果作为本次测试的初始值;
对应的本系统的判断逻辑为:
系统根据E的初始值,按前述视标出现标准,随机出现N个方向各异的视标;
同一级别E中,若N≥4时,当用户测试错误次数当第一次M≥2,或者若N<4时,当用户测试错误次数当第一次M≥1,则系统提示用户重测E,重测时,如果N≥4且M≤1,或者N<4且M=0则系统会判断本级视力正常,进入E+1 级视力继续测量;重测时,如果N≥4且M≥1,或者N<4且M≥1,则系统会判断本级视力不正常系统,系统进入E-1级视力继续测量;
上述测量中,当第一次测量N≥4且M≤1,或者N<4且M=0,则系统会判断本级视力正常,系统进入E+1级视力继续测量;后续循环对M进行判,确认视力是上升通道进行测量,还是下降通道测量;直到判断出最终的视力;
本逻辑中,当视力上升通道测量时,E只升不降;
本逻辑中,当视力下降通道测量时,E只降不升;
本逻辑中,当N≥4时,M≥2为本级别正确与否的标准;当N<4时,M≥1为本级别正确与否的标准。
进一步地,设定初始视标为E=0.8。
进一步地,其中“E”的开口方向随机生成,并同一个视标级别相邻测试的视标方向不能相同,视标个数大于4的,连续四个的视标方向要含上下左右;视标个数小于4的,随机显示。
与现有技术相比,本发明的有益效果至少包括:
本发明可简化整个视力测试过程,集多种功能于一体,极大的提升了空间利用率,减少了人力资源的损耗,便于家庭中使用进行视力测试。
本发明根据科学有效的算法生成精确有效的视标,根据用户历史的数据产生合适的准确的视标大小和开口方向,将之输出到高清晰显示设备,并调节整个空间的环境亮度,使用户能十分准确的轻松的获取自己的视力。
本发明适用于绝大多数需要进行视力测试的场合,提供了一个能随时随地的测试测试者的视力装置,对于被测试者的视力及时的了解和预防视力下降,能够做到快速、简易、方便且精确的监控青少年的视力变化,测试时间短,不占用额外的使用空间,采集数据准确,视力数据实时记录,形成视力曲线,有利于监测用户的视力,提前预防视力下降,能效的对青少年的整个发育和身心健康起到良好的作用。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明视力检测系统的结构示意图;
图2为本发明视力测试程序实现算法流程图;
图3为本发明视力测试视力逻辑算法图;
图4为本发明操作流程示意图。
具体实施方式
为使本发明的上述目的、特征和优点能够更加明显易懂,下面将结合附图和具体的实施例对本发明的技术方案进行详细说明。需要指出的是,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例,基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
如图1所示,本发明提供一种视力检测系统,包括移动设备、服务器以及终端设备;
所述移动设备用于测试者触发测试开始功能,按照通讯协议编辑并发送开始测试命令数据到服务器;测试者测试时,输入观察到的视标开口方向,将输入观察到的视标开口方向编辑发送到服务器;获取服务器内的视力测试结果或历史测试数据,生成测试者不同时间的视力变化曲线;触发测试开始功能包括点击按钮、语音交互或手势交互。
所述服务器用于存储每一个测试者的所有视力测试结果,并完成在移动设备与终端设备的网络连接;也就是说,移动设备与终端设备是通过服务器进行中转连接的,移动设备或终端设备与服务器进行网络连接,网络连接包括WIFI、蓝牙或其他通信方式。
所述终端设备用于根据接收到服务器开始测试命令数据进行数据的解析、判断,并开始进入视力测试算法,开始视力测试前的提醒语音播放,并显示视力测试开始标志,根据接收的数据显示出第一个视标并根据视力测试显示开口方向;根据接收到服务器视标开口方向数据进行数据的解析,运用视力测试算法,判断测试者观察的开口方向是否正确,将结果输出到服务器,同时判断测试是否结束,没有结束则显示下一个视标;视力测试算法根据测试者的操作判断视力,根据视标E,系统会随机出现N个不同方向的视标,系统根据用户操作结果,对容错次数M逻辑判断,根据M的出现次数及错误个数,系统作出重新测试,或者向上级或向下一级测量;每个等级E有对应的测试次数N,满足测试次数N且测试的结果M,都准确的情况下,进行视标等级的提升或者输出结果,视力测试结果发送到服务器。终端设备提供测试者独自测试的数据采集输入端,查看设备内部数据,测试者的所有测试历史记录,并提供一个可以拟合了测试者各个阶段各眼视力变化曲线,提供测试者对当前视力健康情况的客观数据,对测试者对各时间段的视力变化有一个清晰的了解,深入查找到视力波动变化的原因,找到对测试者视力影响最大的根本性原因,用于预防和保护测试者视力。
具体地,所述终端设备包括:
视标显示模块,用于显示视力测试所要显示的视力图标,视力图标由不同的“E”视标组成;为测试者提供了高度清晰且还原度极高的十分精准的视力图标,让测试者能够准确的测试出自己的视力;
逻辑处理模块,用于存储不同级别的图标E,以及负责视力测试算法的处理,并且负责处理与网络连接模块的数据交互;根据高效智能的提供整个视力测试的调控,提供有效且精确的智能逻辑算法,提供生成高清视标的数据,并判断测试者的视力情况,汇总并将数据发送到服务器;
网络连接模块,用于设备连上WiFi网络和中转测试过程中来往的数据;
语音播放模块,用于提供交互过程中的语音提醒;提供了超级智能的语音播放模块与测试者互动,指示视力测试者按照严格的标准,没有误差的测试;
亮度调节模块,用于根据测试者的实际环境、使用时间,为视力测试者提供一个舒适的对测试者眼睛有利不会损害眼睛的环境,让视力测试者能十分准确的测试出自己当前的视力状态。
整个视力测试流程如下:
1、为系统配置网络;
2、在移动设备端注册账号;
3、开始视力测试,终端设备开始视力测试前的准备,并显示出要测试的视标;
4、测试者根据视标选择视标开口方向;
5、终端设备根据视力测试算法计算出测试者的视力,并上传到服务器;
6、测试者在移动设备端查看视力测试情况。
具体地,所述视力测试算法具体为:
设:
E:为视力值;
N:为该级视标的规定个数;
M:为用户测试同一视力级别,视标错误次数;
视力及视标出现规则的标准为:
E=0.1:N=2;
E=0.12:N=2;
E=0.15:N=2;
E=0.2:N=3;
E=0.25:N=3;
E=0.3:N=4;
E=0.4:N=4;
E=0.5:N=5;
E=0.6:N=6;
E=0.8:N=7;
E=1.0:N=8;
E=1.2:N=8;
E=1.5:N=8;
上述规格完全模拟眼科医生的视力测试方法;
用户开始使用系统进行视力测试时,系统会进行数据分析处理,并判断出当用户为第一次使用时,初始视标为E=0.8(此值用户可以自己设定),如果系统判断出用户已有历史数据,则自动将上次的测量结果作为本次测试的初始值;
对应的本系统的判断逻辑为:
系统根据E的初始值,按前述视标出现标准,随机出现N个方向各异的视标;
同一级别E中,若N≥4时,当用户测试错误次数当第一次M≥2,或者若N<4时,当用户测试错误次数当第一次M≥1,则系统提示用户重测E,重测时,如果N≥4且M≤1,或者N<4且M=0则系统会判断本级视力正常,进入E+1级视力继续测量;重测时,如果N≥4且M≥1,或者N<4且M≥1,则系统会判断本级视力不正常系统,系统进入E-1级视力继续测量;
上述测量中,当第一次测量N≥4且M≤1,或者N<4且M=0,则系统会判断本级视力正常,系统进入E+1级视力继续测量;后续循环对M进行判,确认视力是上升通道进行测量,还是下降通道测量;直到判断出最终的视力;
本逻辑中,当视力上升通道测量时,E只升不降;
本逻辑中,当视力下降通道测量时,E只降不升;
本逻辑中,当N≥4时,M≥2为本级别正确与否的标准;当N<4时,M≥1为本级别正确与否的标准。
具体地,其中“E”的开口方向随机生成,并同一个视标级别相邻测试的视标方向不能相同,视标个数大于4的,连续四个的视标方向要含上下左右;视标个数小于4的,随机显示。
实施例2
如图2-4所示,本发明还提供一种视力检测方法,包括如下步骤:
步骤一:测试者在移动设备上触发测试开始功能,移动设备按照通讯协议编辑并发送开始测试命令数据到服务器;
步骤二:服务器判断系统是否在线,并按照与终端设备的网络协议,采取物联轻便的推送协议发送开始测试命令数据至终端设备;
步骤三:终端设备接收到服务器开始测试命令数据进行数据的解析、判断,并进入视力测试系统;开始视力测试时,系统输出提醒语音,并在高清的视标显示模块上显示视力测试开始标志,系统根据接收的数据进行逻辑计算,得出当前要测试显示的视标级数E,并根据系统逻辑算法,得出当前视标要显示的视标个数N,和可以容错的次数M;系统将上述结果,随机将要测试的视标显示在视标显示模块上;
步骤四:测试者观察视标显示模块显示的视标,在移动设备上输入观察到的视标开口方向,移动设备将输入观察到的视标开口方向数据编辑发送到服务器;
步骤五:服务器把视标开口方向数据中转到终端设备;
步骤六:终端设备接收到服务器视标开口方向数据进行数据的解析,运用视力测试算法,判断测试者观察的开口方向是否正确,将结果输出到服务器,系统根据用户的交互数据,运用逻辑算法判断测试是否结束,没有结束则显示下一个视标;
步骤七:服务器将接收到的数据发送至移动设备;
步骤八:移动设备收到终端设备回应允许测试者进行下一个视标的操作;
步骤九:终端设备的视力测试算法根据测试者的操作判断视力,根据视标E,系统会随机出现N个不同方向的视标,系统根据用户操作结果,对容错次数M逻辑判断,根据M的出现次数及错误个数,系统作出重新测试,或者向上级或向下一级测量;每个等级E有对应的测试次数N,满足测试次数且测试的结果都准确的情况下进行视标等级的提升或者输出结果,视力测试结果发送到服务器;
步骤十:移动设备获取服务器内的视力测试结果或历史测试数据,生成测试者不同时间的视力变化曲线。
具体流程如下:
首先为终端设备配置WiFi网络,配置网络后,移动设备获取到设备信息,同时把设备与用户个人信息关联起来,接着测试者在移动设备端进入视力测试界面,点击开始视力测试,移动设备会根据测试者的账号内的历史数据将测试者选择的眼睛的最后一次视力结果发送给终端设备。整个测试结果一共分为十三级。如果测试者没有历史测试记录,将会将第十等级的数据下发。整个下发协议包括视力测试开始标志、视力测试眼睛、视力测试视标大小。数据先是发送到服务器,服务器做数据的分类存储和下发,终端设备的网络连接模块接收到数据,将数据传送到逻辑处理模块,逻辑处理模块将数据解析,获得移动设备发送的相关内容。系统根据数据处理结果与用户交互结果,进入视力测试系统,并调用视力测试算法程序,根据视力测试视标大小将存储的对应大小的视 标“E”显示到视标显示模块,其中“E”的开口方向随机生成,并同一个视标级别相邻测试的视标方向不能相同,视标个数大于4的,连续四个的视标方向要含上下左右。视标个数小于4的,随机显示。
测试开始时,系统提示“测试者退离到终端设备1米远”,并根据语音提示选择测试眼睛同时遮蔽另一只眼睛。测试者判断视标显示模块的视标“E”的开口方向,辅助测试人员在移动设备上选择对应的开口按钮,若是看不清的情况可以选择看不清按钮。移动设备上的应用将测试者选择的结果发送到服务器,服务器再将数据下发到终端设备,终端设备解析接收的数据包,获取测试者选择的开口方向,对比内部随机产生的开口方向进行比较,将比较结果记录,并将受到测试者的选择的消息发送给移动设备。
本实施例中,终端设备是一个智能家居式的台灯设备。
具体地,所述视力测试算法具体为:
设:
E:为视力值;
N:为该级视标的规定个数;
M:为用户测试同一视力级别,视标错误次数;
视力及视标出现规则的标准为:
E=0.1:N=2;
E=0.12:N=2;
E=0.15:N=2;
E=0.2:N=3;
E=0.25:N=3;
E=0.3:N=4;
E=0.4:N=4;
E=0.5:N=5;
E=0.6:N=6;
E=0.8:N=7;
E=1.0:N=8;
E=1.2:N=8;
E=1.5:N=8;
上述规格完全模拟眼科医生的视力测试方法;
用户开始使用系统进行视力测试时,系统会进行数据分析处理,并判断出当用户为第一次使用时,初始视标为E=0.8(此值用户可以自己设定),如果系统判断出用户已有历史数据,则自动将上次的测量结果作为本次测试的初始值;
对应的本系统的判断逻辑为:
系统根据E的初始值,按前述视标出现标准,随机出现N个方向各异的视标;
同一级别E中,若N≥4时,当用户测试错误次数当第一次M≥2,或者若N<4时,当用户测试错误次数当第一次M≥1,则系统提示用户重测E,重测时,如果N≥4且M≤1,或者N<4且M=0则系统会判断本级视力正常,进入E+1级视力继续测量;重测时,如果N≥4且M≥1,或者N<4且M≥1,则系统会判断本级视力不正常系统,系统进入E-1级视力继续测量;
上述测量中,当第一次测量N≥4且M≤1,或者N<4且M=0,则系统会判断本级视力正常,系统进入E+1级视力继续测量;后续循环对M进行判,确认视力是上升通道进行测量,还是下降通道测量;直到判断出最终的视力;
本逻辑中,当视力上升通道测量时,E只升不降;
本逻辑中,当视力下降通道测量时,E只降不升;
本逻辑中,当N≥4时,M≥2为本级别正确与否的标准;当N<4时,M≥1为本级别正确与否的标准。
测试完成后终端设备会退出视力测试算法,并进行语音提醒测试者视力测试已完成,接着终端设备将视力测试的结果按照协议封装好,将数据通过网络连接模块上传到服务器,服务器将数据发送到移动设备端,测试者可以在移动设备端看到本次测试的结果,可以选择将测试结果保存,数据将会保存到服务器,接着测试者可以选着继续测试另一只眼睛或者结束测试。
测试者查询历史测试结果时,移动设备将会根据测试者的账号获取服务器内的视力数据,生成历史数据列表供测试者查看,测试者也可以查看一周,一个月,半年,一年的视力变化曲线。
本发明的实现还可以不需要移动设备,移动设备的功能相应的由终端设备替代,测试者与终端设备的数据交互通过手势交互或者语音交互,语音交互的功能由终端设备上的语音交互模块进行实现,手势交互的功能可以在终端设备上增加摄像头或者传感器进行实现。
本发明的实现还可以不需要服务器,服务器的功能相应的由终端设备或移动设备进行实现,终端设备和移动设备直接进行网络连接,网络连接包括WIFI、蓝牙或其他通信方式。
本发明可简化整个视力测试过程,集多种功能于一体,极大的提升了空间利用率,减少了人力资源的损耗,便于在多种场合使用进行视力测试。
本发明根据科学有效的算法生成精确有效的视标,根据用户历史的数据产生合适的准确的视标大小和开口方向,将之输出到高清晰显示设备,并调节整个空间的环境亮度,使用户能十分准确的轻松的获取自己的视力。
本发明适用于绝大多数需要进行视力测试的场合,提供了一个能随时随地的测试测试者的视力装置,对于被测试者的视力及时的了解和预防视力下降,能够做到快速、简易、方便且精确的监控青少年的视力变化,测试时间短,不占用额外的使用空间,采集数据准确,视力数据实时记录,形成视力曲线,有 利于监测用户的视力,提前预防视力下降,能效的对青少年的整个发育和身心健康起到良好的作用。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (10)

  1. 一种视力检测系统,其特征在于,包括:
    移动设备,用于测试者触发测试开始功能,按照通讯协议编辑并发送开始测试命令数据到服务器;测试者测试时,输入观察到的视标开口方向,将输入观察到的视标开口方向编辑发送到服务器;获取服务器内的视力测试结果或历史测试数据,生成测试者不同时间的视力变化曲线;
    服务器,用于存储每一个测试者的所有视力测试结果,并完成在移动设备与终端设备的网络连接;
    终端设备,用于根据接收到服务器开始测试命令数据进行数据的解析、判断,并开始进入视力测试算法,开始视力测试前的提醒语音播放,并显示视力测试开始标志,根据接收的数据显示出第一个视标并根据视力测试显示开口方向;根据接收到服务器视标开口方向数据进行数据的解析,运用视力测试算法,判断测试者观察的开口方向是否正确,将结果输出到服务器,同时判断测试是否结束,没有结束则显示下一个视标;视力测试算法根据测试者的操作判断视力,根据视标E,系统会随机出现N个不同方向的视标,系统根据用户操作结果,对容错次数M逻辑判断,根据M的出现次数及错误个数,系统作出重新测试,或者向上级或向下一级测量;每个等级E有对应的测试次数N,满足测试次数N且测试的结果M都准确的情况下,进行视标等级的提升或者输出结果,视力测试结果发送到服务器。
  2. 根据权利要求1所述的视力检测系统,其特征在于,所述终端设备包括:
    视标显示模块,用于显示视力测试所要显示的视力图标,视力图标由不同的“E”视标组成;
    逻辑处理模块,用于存储不同级别的图标E,以及负责视力测试算法的处理,并且负责处理与网络连接模块的数据交互;
    网络连接模块,用于设备连上WiFi网络和中转测试过程中来往的数据;
    语音播放模块,用于提供交互过程中的语音提醒;
    亮度调节模块,用于根据测试者的实际环境、使用时间,为视力测试者提供一个舒适的对测试者眼睛有利不会损害眼睛的环境,让视力测试者能十分准确的测试出自己当前的视力状态。
  3. 根据权利要求1所述的视力检测系统,其特征在于,所述视力测试算法具体为:
    设:
    E:为视力值;
    N:为该级视标的规定个数;
    M:为用户测试同一视力级别,视标错误次数;
    视力及视标出现规则的标准为:
    E=0.1:N=2;
    E=0.12:N=2;
    E=0.15:N=2;
    E=0.2:N=3;
    E=0.25:N=3;
    E=0.3:N=4;
    E=0.4:N=4;
    E=0.5:N=5;
    E=0.6:N=6;
    E=0.8:N=7;
    E=1.0:N=8;
    E=1.2:N=8;
    E=1.5:N=8;
    上述规格完全模拟眼科医生的视力测试方法;
    用户开始使用系统进行视力测试时,系统会进行数据分析处理,并判断出当用户为第一次使用时,设定初始视标,如果系统判断出用户已有历史数据,则自动将上次的测量结果作为本次测试的初始值;
    对应的本系统的判断逻辑为:
    系统根据E的初始值,按前述视标出现标准,随机出现N个方向各异的视标;
    同一级别E中,若N≥4时,当用户测试错误次数当第一次M≥2,或者若N<4时,当用户测试错误次数当第一次M≥1,则系统提示用户重测E,重测时,如果N≥4且M≤1,或者N<4且M=0则系统会判断本级视力正常,进入E+1级视力继续测量;重测时,如果N≥4且M≥1,或者N<4且M≥1,则系统会判断本级视力不正常系统,系统进入E-1级视力继续测量;
    上述测量中,当第一次测量N≥4且M≤1,或者N<4且M=0,则系统会判断本级视力正常,系统进入E+1级视力继续测量;后续循环对M进行判,确认视力是上升通道进行测量,还是下降通道测量;直到判断出最终的视力;
    本逻辑中,当视力上升通道测量时,E只升不降;
    本逻辑中,当视力下降通道测量时,E只降不升;
    本逻辑中,当N≥4时,M≥2为本级别正确与否的标准;当N<4时,M≥1为本级别正确与否的标准。
  4. 根据权利要求3所述的视力检测系统,其特征在于,设定初始视标为E=0.8。
  5. 根据权利要求3所述的视力检测系统,其特征在于,其中“E”的开口方向随机生成,并同一个视标级别相邻测试的视标方向不能相同,视标个数大于4的,连续四个的视标方向要含上下左右;视标个数小于4的,随机显示。
  6. 一种视力检测方法,其特征在于,包括如下步骤:
    测试者在移动设备上触发测试开始功能,移动设备按照通讯协议编辑并发送开始测试命令数据到服务器;
    服务器判断系统是否在线,并按照与终端设备的网络协议,采取物联轻便的推送协议发送开始测试命令数据至终端设备;
    终端设备接收到服务器开始测试命令数据进行数据的解析、判断,并进入视力测试系统;开始视力测试时,系统输出提醒语音,并在高清的视标显示模块上显示视力测试开始标志,系统根据接收的数据进行逻辑计算,得出当前要测试显示的视标级数E,并根据系统逻辑算法,得出当前视标要显示的视标个数N,和可以容错的次数M;系统将上述结果,随机将要测试的视标显示在视标显示模块上;
    测试者观察视标显示模块显示的视标,在移动设备上输入观察到的视标开口方向,移动设备将输入观察到的视标开口方向数据编辑发送到服务器;
    服务器把视标开口方向数据中转到终端设备;
    终端设备接收到服务器视标开口方向数据进行数据的解析,运用视力测试算法,判断测试者观察的开口方向是否正确,将结果输出到服务器,系统根据用户的交互数据,运用逻辑算法判断测试是否结束,没有结束则显示下一个视标;
    服务器将接收到的数据发送至移动设备;
    移动设备收到终端设备回应允许测试者进行下一个视标的操作;
    终端设备的视力测试算法根据测试者的操作判断视力,根据视标E,系统会随机出现N个不同方向的视标,系统根据用户操作结果,对容错次数M逻辑判断,根据M的出现次数及错误个数,系统作出重新测试,或者向上级或向下一级测量;每个等级E有对应的测试次数N,满足测试次数且测试的结果都准确的情况下进行视标等级的提升或者输出结果,视力测试结果发送到服务器;
    移动设备获取服务器内的视力测试结果或历史测试数据,生成测试者不同时间的视力变化曲线。
  7. 根据权利要求6所述的视力检测方法,其特征在于,所述开始测试命令数据包括视力测试开始标志、视力测试眼睛和视力测试视标大小。
  8. 根据权利要求6所述的视力检测方法,其特征在于,所述视力测试算法具体为:
    设:
    E:为视力值;
    N:为该级视标的规定个数;
    M:为用户测试同一视力级别,视标错误次数;
    视力及视标出现规则的标准为:
    E=0.1:N=2;
    E=0.12:N=2;
    E=0.15:N=2;
    E=0.2:N=3;
    E=0.25:N=3;
    E=0.3:N=4;
    E=0.4:N=4;
    E=0.5:N=5;
    E=0.6:N=6;
    E=0.8:N=7;
    E=1.0:N=8;
    E=1.2:N=8;
    E=1.5:N=8;
    上述规格完全模拟眼科医生的视力测试方法;
    用户开始使用系统进行视力测试时,系统会进行数据分析处理,并判断出当用户为第一次使用时,设定初始视标,如果系统判断出用户已有历史数据,则自动将上次的测量结果作为本次测试的初始值;
    对应的本系统的判断逻辑为:
    系统根据E的初始值,按前述视标出现标准,随机出现N个方向各异的视标;
    同一级别E中,若N≥4时,当用户测试错误次数当第一次M≥2,或者若N<4时,当用户测试错误次数当第一次M≥1,则系统提示用户重测E,重测时,如果N≥4且M≤1,或者N<4且M=0则系统会判断本级视力正常,进入E+1级视力继续测量;重测时,如果N≥4且M≥1,或者N<4且M≥1,则系统会判断本级视力不正常系统,系统进入E-1级视力继续测量;
    上述测量中,当第一次测量N≥4且M≤1,或者N<4且M=0,则系统会判断本级视力正常,系统进入E+1级视力继续测量;后续循环对M进行判,确认视力是上升通道进行测量,还是下降通道测量;直到判断出最终的视力;
    本逻辑中,当视力上升通道测量时,E只升不降;
    本逻辑中,当视力下降通道测量时,E只降不升;
    本逻辑中,当N≥4时,M≥2为本级别正确与否的标准;当N<4时,M≥1为本级别正确与否的标准。
  9. 根据权利要求8所述的视力检测方法,其特征在于,设定初始视标为E=0.8。
  10. 根据权利要求8所述的视力检测方法,其特征在于,其中“E”的开口方向随机生成,并同一个视标级别相邻测试的视标方向不能相同,视标个数大于4的,连续四个的视标方向要含上下左右;视标个数小于4的,随机显示。
PCT/CN2020/117053 2020-01-22 2020-09-23 一种视力检测系统及方法 WO2022000816A1 (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN202010074152 2020-01-22
CN202010598926.0A CN111828858A (zh) 2020-01-22 2020-06-28 一种具有视力检测功能的智能台灯及系统
CN202010598926.0 2020-06-28

Publications (1)

Publication Number Publication Date
WO2022000816A1 true WO2022000816A1 (zh) 2022-01-06

Family

ID=72899431

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/117053 WO2022000816A1 (zh) 2020-01-22 2020-09-23 一种视力检测系统及方法

Country Status (2)

Country Link
CN (1) CN111828858A (zh)
WO (1) WO2022000816A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103976706A (zh) * 2014-05-20 2014-08-13 科云(上海)信息技术有限公司 一种智能视力检查装置
CN104116491A (zh) * 2013-04-28 2014-10-29 谢骅 视力检测装置及其方法
CN104905762A (zh) * 2015-05-28 2015-09-16 苏州市职业大学 一种视力自动检测装置
US20190183330A1 (en) * 2017-12-19 2019-06-20 Neuro-Eye Diagnostic Systems, LLC Smart phone vision testing system
CN110353622A (zh) * 2018-10-16 2019-10-22 武汉交通职业学院 一种视力检测方法及视力检测器

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1843285A (zh) * 2005-04-06 2006-10-11 上海迪比特实业有限公司 视力测试方法
CN103032768B (zh) * 2012-12-14 2016-06-15 深圳市多氟多新能源科技有限公司 Led路灯及其散热器
CN203421559U (zh) * 2013-09-05 2014-02-05 祝井全 智能学习台灯
CN206191356U (zh) * 2016-07-19 2017-05-24 中山市目明视光视力科技有限公司 一种视力测试台灯与视力测试系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104116491A (zh) * 2013-04-28 2014-10-29 谢骅 视力检测装置及其方法
CN103976706A (zh) * 2014-05-20 2014-08-13 科云(上海)信息技术有限公司 一种智能视力检查装置
CN104905762A (zh) * 2015-05-28 2015-09-16 苏州市职业大学 一种视力自动检测装置
US20190183330A1 (en) * 2017-12-19 2019-06-20 Neuro-Eye Diagnostic Systems, LLC Smart phone vision testing system
CN110353622A (zh) * 2018-10-16 2019-10-22 武汉交通职业学院 一种视力检测方法及视力检测器

Also Published As

Publication number Publication date
CN111828858A (zh) 2020-10-27

Similar Documents

Publication Publication Date Title
CN108618747A (zh) 视力测试方法及智能终端
US20190008441A1 (en) Diagnosing brain injury using a virtual reality system
CN102631186A (zh) 电子视力检测装置及其方法
CN111325127A (zh) 一种异常对象判断方法、系统、机器可读介质及设备
US20120218404A1 (en) Medical Monitor Data Collection System And Method
CN105147304A (zh) 一种人格特质值测验的刺激信息编制方法
KR20000008900A (ko) 화면을 이용한 시각 검사 방법
CN109620124A (zh) 一种校园视力监测系统
CN113244594A (zh) 一种大学生体质测试智能化系统
WO2022000816A1 (zh) 一种视力检测系统及方法
CN114052654A (zh) 动态眼睛健康管理系统
CN105832283A (zh) 一种智能视力检测系统及方法
CN109411092A (zh) 基于深度学习的睑板腺共聚焦显微镜智能分析评估系统及方法
CN107049227A (zh) 闪光融合频率临界值快捷测试装置及方法
CN106108887A (zh) 一种人体生理参数测量方法及终端
EP3664101A1 (en) A computer-implemented method and an apparatus for use in detecting malingering by a first subject in one or more physical and/or mental function tests
CN205866732U (zh) 生理检测装置
CN108201450B (zh) 一种基于电子设备确定排卵检测时间的方法和装置
CN104027093A (zh) 脉搏测试仪及脉搏测试方法
US20030176796A1 (en) Blood pressure monitor and a method for determining a risk rate for a disease
CN114098732A (zh) 基于cff的人员疲劳快速测量装置及方法
US8131662B2 (en) Remote vision testing data collection
JP3721980B2 (ja) 脳機能検査装置
Kim et al. A Smartphone-Based Near-Vision Testing System: Design, Accuracy, and Reproducibility Compared With Standard Clinical Measures
CN102657511A (zh) 一种具有数码视标和语音识别特征的视觉测量系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20942510

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20942510

Country of ref document: EP

Kind code of ref document: A1