WO2022000764A1 - 放大器电路结构和电路控制方法 - Google Patents

放大器电路结构和电路控制方法 Download PDF

Info

Publication number
WO2022000764A1
WO2022000764A1 PCT/CN2020/113093 CN2020113093W WO2022000764A1 WO 2022000764 A1 WO2022000764 A1 WO 2022000764A1 CN 2020113093 W CN2020113093 W CN 2020113093W WO 2022000764 A1 WO2022000764 A1 WO 2022000764A1
Authority
WO
WIPO (PCT)
Prior art keywords
amplifier
switch
circuit structure
phase compensation
amplifier circuit
Prior art date
Application number
PCT/CN2020/113093
Other languages
English (en)
French (fr)
Inventor
郑耀华
李平
何敏君
Original Assignee
广州慧智微电子有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州慧智微电子有限公司 filed Critical 广州慧智微电子有限公司
Priority to US17/120,151 priority Critical patent/US11482977B2/en
Publication of WO2022000764A1 publication Critical patent/WO2022000764A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/26Modifications of amplifiers to reduce influence of noise generated by amplifying elements
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/52Circuit arrangements for protecting such amplifiers

Definitions

  • the present application relates to circuit structure design technology, and in particular, to an amplifier circuit structure and a circuit control method.
  • the receiver In wireless communication equipment, the receiver needs to meet a certain dynamic range. When there is a large interference signal in the signal received by the receiver, it may cause the analog-to-digital converter (Analog-to-Digital Converter, ADC) to produce overflow phenomenon , the useful signal cannot be accurately demodulated, so the gain of the entire receiving chain needs to be lowered, so that the large signal cannot reach the overflow threshold when entering the ADC, so that the useful signal can be demodulated normally.
  • ADC Analog-to-Digital Converter
  • the bypass amplifier method can usually be used on the basis of the main channel of the signal receiving circuit, so that the gain of the signal receiving circuit is reduced; the method of using the bypass amplifier needs to increase Single pole double throw (Single Pole Double Throw, SPDT) switch is used to realize the switching of the main channel and the bypass; however, adding a single pole double throw switch will introduce insertion loss and increase the noise figure of the signal receiving circuit.
  • SPDT Single Pole Double Throw
  • embodiments of the present application provide an amplifier circuit structure and a circuit control method.
  • An embodiment of the present application provides an amplifier circuit structure, including: an amplifier, a first switch and a second switch; wherein the amplifier is located in a main channel, and an input end of the amplifier is a signal input end of the amplifier circuit structure, so The first switch is located in the bypass; one end of the second switch is the signal output end of the amplifier circuit structure, and the other end is used to selectively connect the signal output end of the bypass or the signal output of the main channel end;
  • the first switch and the second switch are used to respectively control the working state when receiving the first instruction, so that the main path is connected to the signal input end of the amplifier circuit structure and the signal of the amplifier circuit structure
  • the amplifier circuit structure further includes at least one phase compensation circuit, and the at least one phase compensation circuit is configured to perform phase correction on the phase difference caused when the main channel and the bypass receive the input signal. compensate.
  • the at least one phase compensation circuit is located between the output terminal of the amplifier and the signal output terminal of the main path.
  • the at least one phase compensation circuit is located between the first switch and the signal output terminal of the bypass.
  • the at least one phase compensation circuit includes a first phase compensation circuit and a second phase compensation circuit; wherein,
  • the first phase compensation circuit is located between the output end of the amplifier and the signal output end of the main channel, and the second phase compensation circuit is located between the first switch and the signal output end of the bypass .
  • one of the first phase compensation circuit and the second phase compensation circuit is used to perform phase lead compensation, and the first phase compensation circuit and the second phase compensation circuit Another phase compensation circuit in the compensation circuit is used for phase lag compensation.
  • the phase shift amount of the at least one phase compensation circuit is determined according to the center frequency of the input signal.
  • the at least one phase compensation circuit when the number of phase compensation circuits in the at least one phase compensation circuit is greater than 1, the at least one phase compensation circuit includes two phase compensation circuits with different phase shift change parameters.
  • the quantity change parameter represents the corresponding relationship between the phase shift quantity and the frequency.
  • the first switch is a single-pole single-throw switch.
  • the embodiment of the present application also proposes a circuit control method, which is applied to an amplifier circuit structure, where the amplifier circuit structure includes: an amplifier, a first switch and a second switch; wherein the amplifier is located in the main channel, and the input of the amplifier One end of the second switch is the signal input end of the amplifier circuit structure, and the first switch is located in the bypass; one end of the second switch is the signal output end of the amplifier circuit structure, and the other end is used to selectively connect the bypass The signal output end of the main channel or the signal output end of the main channel;
  • the method includes:
  • the first switch and the second switch are used to respectively control the working state when receiving the first instruction, so that the main path is connected to the signal input end of the amplifier circuit structure and the signal of the amplifier circuit structure
  • the amplifier circuit structure includes: an amplifier, a first switch and a second switch; wherein the amplifier is located in the main channel, and the input end of the amplifier is the The signal input end of the amplifier circuit structure, the first switch is located in the bypass; one end of the second switch is the signal output end of the amplifier circuit structure, and the other end is used to selectively connect the signal output of the bypass terminal or the signal output terminal of the main channel; the first switch and the second switch are used to control the working state respectively when receiving the first command, so that the main channel is connected to the amplifier circuit structure a signal input end and a signal output end of the amplifier circuit structure; when receiving the second command, each controls the working state, so that the bypass is connected to the signal input end of the amplifier circuit structure and the signal of the amplifier circuit structure output.
  • FIG. 1 is a schematic structural diagram of a signal receiving circuit in the related art
  • FIG. 2 is a schematic diagram of an amplifier circuit structure according to an embodiment of the application.
  • FIG. 3 is a schematic diagram of another amplifier circuit structure according to an embodiment of the present application.
  • FIG. 6 is a flowchart of a circuit control method according to an embodiment of the present application.
  • FIG. 1 is a schematic structural diagram of a signal receiving circuit in the related art.
  • a bypass amplifier method can be used to reduce the gain of the signal receiving circuit.
  • one end of the first SPDT switch SW1_SPDT is connected to the input Signal, the other end is selectively connected to the input end of the signal amplifier device A or the input end of the bypass, the branch where the amplifier is located is the main channel, and the bypass is a circuit direct connection; one end of the second SPDT switch SW2_SPDT is selected
  • the output end of the signal amplifying device A or the output end of the bypass is connected stably, and the other end is the output end of the signal receiving circuit; here, the signal amplifying device may be a low noise amplifier (Low Noise Amplifier, LNA) or other types of amplifier.
  • LNA Low Noise Amplifier
  • a single-pole double-throw switch SW1_SPDT and a second single-pole double-throw switch SW2_SPDT are connected to the main channel, and the input signal can be output after being processed by the signal amplifying device A; when the input signal is large, by controlling the first SPDT switch SW1_SPDT and the third Two single-pole double-throw switches SW2_SPDT, turn on the bypass, and the input signal is output through the bypass.
  • the output signal is bypassed to reduce the gain of the input signal, so that the subsequent ADC processes the signal. There will be no overflow phenomenon, so that the signal can be demodulated normally.
  • the above-mentioned method of using a bypass amplifier requires adding a SPDT switch to realize the switching between the main channel and the bypass; however, adding a SPDT switch will introduce insertion loss, and the signal receiving circuit is used as a cascade circuit
  • the increased insertion loss at the input end of the signal amplifying device will significantly increase the noise figure of the cascaded circuit.
  • an embodiment of the present application proposes an amplifier circuit structure.
  • FIG. 2 is a schematic diagram of an amplifier circuit structure according to an embodiment of the present application.
  • the amplifier circuit structure may include: an amplifier 21, a first switch S1 and a second switch S2; wherein the amplifier 21 is located in the main channel, and the amplifier The input end of 21 is the signal input end of the amplifier circuit structure, the first switch S1 is located in the bypass; one end of the second switch S2 is the signal output end of the amplifier circuit structure, and the other end is used to selectively connect the signal output end of the bypass Or the signal output terminal of the main channel.
  • the amplifier 21 is used for signal amplification, and the amplifier 21 may be a low-noise amplifier or other types of amplifiers; here, parameters such as the gain of the amplifier are not limited.
  • both ends of the first switch S1 are on bypass, the first switch S1 may be a single-pole single-throw switch, and the second switch S2 may be a single-pole double-throw switch.
  • the first switch S1 and the second switch S2 are used to control the working state respectively when receiving the first command, so that the main channel is connected to the signal input end of the amplifier circuit structure and the signal output end of the amplifier circuit structure ;
  • each control the working state so that the bypass is connected to the signal input end of the amplifier circuit structure and the signal output end of the amplifier circuit structure.
  • the first command represents a command to select the main path
  • the second command represents a command to select a bypass.
  • both the first switch S1 and the second switch S2 can control their own working states according to the received external commands.
  • Switch S2 sends the command.
  • the first switch S1 is used to disconnect the first connection when receiving the first command; turn on the first connection when receiving the second command; the first connection indicates that the input end of the amplifier 21 is connected to the bypass The connection of the signal input terminal of the circuit.
  • the second switch S2 is used to turn on the second connection when receiving the first command; turn on the third connection when receiving the second command; the second connection represents the signal output end of the main channel and the amplifier circuit structure.
  • the connection of the signal output terminal, the third connection represents the connection between the signal output terminal of the bypass and the signal output terminal of the amplifier circuit structure.
  • the amplifier circuit structure of the embodiment of the present application only needs to set a switch on the bypass, which has the characteristics of simple circuit structure and convenient integration, and does not increase additional power consumption.
  • the above amplifier circuit structure further includes at least one phase compensation circuit, and the at least one phase compensation circuit is configured to perform phase compensation for the phase difference caused when the main channel and the bypass receive the input signal.
  • the phase compensation circuit may be a phase shifter, a passive phase shift network, or other types of phase compensation circuits; the phase compensation circuit may perform phase lead compensation or phase lag compensation, which may be determined according to actual application requirements; In practical applications, the phase difference caused when the main channel and the bypass receive the input signal can be measured in advance, and then the phase difference can determine whether the phase compensation circuit needs to perform phase lead compensation or phase lag compensation, and, according to the phase difference, Determine the phase shift amount of the phase compensation circuit, and the phase shift amount represents the magnitude of the phase compensation.
  • the phase shift amount of the phase compensation circuit may be a parameter related to the frequency of the signal, that is, the phase shift amount of the phase compensation circuit is a parameter with a frequency response, and the phase shift amounts corresponding to different signal frequencies are different, for example , when the frequency of the signal varies from 4GHz to 5GHz, the phase shift amount of the phase compensation circuit can vary from 45° to 50°.
  • the working parameter of at least one phase compensation circuit is determined according to the center frequency of the input signal.
  • the above-mentioned operating parameters include a phase shift amount.
  • phase compensation circuit it is beneficial to perform phase compensation for the phase difference brought by the switching of the main channel and the bypass, which can meet the communication system with high time delay requirements.
  • At least one phase compensation circuit is located between the output of the amplifier and the signal output of the main path. In a second example, at least one phase compensation circuit is located between the first switch and the signal output of the bypass.
  • At least one phase compensation circuit includes a first phase compensation circuit 22 and a second phase compensation circuit 23 ; wherein the first phase compensation circuit 22 is located between the output end of the amplifier 21 and the main path
  • the second phase compensation circuit 23 is located between the first switch S1 and the bypass signal output terminal; the second switch S2 is used to selectively connect the first phase compensation circuit 22 or the Hill phase compensation circuit twenty three.
  • one phase compensation circuit in the first phase compensation circuit 22 and the second phase compensation circuit 23 is used for phase advance compensation
  • the other phase compensation circuit in the first phase compensation circuit 22 and the second phase compensation circuit 23 Used for phase lag compensation
  • phase compensation circuit When the phase shift amount of the phase compensation circuit is a parameter with frequency response, the phase shift amount corresponding to the frequency of different signals is different, and it is difficult to accurately realize the phase compensation by using a phase compensation circuit alone. However, whether it is used for phase advance compensation
  • the phase compensation circuit is also a phase compensation circuit for phase lag compensation, and the phase shift amount changes monotonically with frequency. Using this feature, the embodiment of the present application can add a phase compensation circuit to the main channel and the bypass at the same time.
  • a phase compensation circuit for phase lead compensation can be added to the main path, and a phase compensation circuit for phase lag compensation can be added to the bypass; in a specific example, when the main path is turned on, the The phase compensation circuit added in the main path compensates the phase angle of P1 in advance. When the bypass is turned on, the phase compensation circuit added by the bypass lags and compensates the phase angle of P2, and both P1 and P2 follow the signal. In this way, the phase difference caused by switching between the main channel and the bypass in a wide frequency band can be compensated, and the compensated phase angle is P1+P2.
  • a phase compensation circuit for phase lag compensation may be added to the main channel, and a phase compensation circuit for phase overrun compensation may be added to the bypass; in a specific example, when the main channel is turned on, The phase angle of P3 is compensated by the phase compensation circuit added in the main path. When the bypass is turned on, the phase angle of P4 is compensated in advance by the phase compensation circuit added by the bypass. The frequency of the signal changes monotonically, so that the phase difference caused by switching between the main channel and the bypass can be compensated in a wide frequency band, and the compensated phase angle is P3+P4.
  • FIG. 4 is a schematic diagram of phase compensation in a specific embodiment of the present application.
  • the horizontal axis represents frequency in GHz
  • the vertical axis represents phase in degrees.
  • Line 1 represents the change curve of the compensated phase of the phase compensation circuit of the main channel with the signal frequency
  • line 2 represents the change curve of the compensated phase of the phase compensation circuit of the bypass with the signal frequency
  • line 3 represents the change of the main channel and the bypass when switching , the change curve of the phase compensated by the amplifier circuit structure with the signal frequency; when the frequency band of the amplifier circuit structure is 4GHz to 5GHz, when the main channel and the bypass switch, the phase difference introduced in the band is 140°.
  • a passive phase shift network (corresponding to line 1 in Figure 4) can be introduced at the output end of the main channel with a center frequency of 4.5GHz and a phase shift of 70° ahead, and the center of the bypass is introduced.
  • the frequency point is 4.5GHz
  • the phase shift amount is a passive phase shift network with a lag of 70° (corresponding to line 2 in Figure 4), so that the phase difference introduced by the overall amplifier circuit structure in the wide band from 4GHz to 5GHz is 140°, that is, When switching between the main channel and the bypass, the amplifier circuit structure can compensate for the phase difference introduced by 4GHz to 5GHz in the wideband as 140°.
  • the at least one phase compensation circuit when the number of phase compensation circuits in the at least one phase compensation circuit is greater than 1, the at least one phase compensation circuit includes two phase compensation circuits with different phase shift change parameters.
  • the change parameter represents the corresponding relationship between the phase shift amount and the frequency.
  • the phase difference introduced in the wide frequency band may not be fixed.
  • the embodiment of the present application can also deal with the problem of phase difference in the wide frequency band.
  • the lag or lead phase angle at the center frequency point is ⁇ -/+ ⁇ , because the two change monotonically with the frequency, and the phase shift parameters of the phase compensation circuit of the main channel and the bypass are different, for example, for the main channel
  • the phase compensation circuit of the channel and the bypass has different slopes of the phase shift with the frequency change, so that the phase difference caused by the switching of the main channel and the bypass can be compensated in a wide frequency band, and the phase difference in the wide band can be compensated at the same time.
  • FIG. 5 is a schematic diagram of phase compensation in another specific embodiment of the present application
  • the horizontal axis represents frequency in GHz
  • the vertical axis represents phase in degrees
  • Line 4 represents the variation curve of the compensated phase of the phase compensation circuit of the main channel with the signal frequency
  • line 5 represents the variation curve of the compensated phase of the phase compensation circuit of the bypass with the signal frequency
  • line 6 represents the switching of the main channel and the bypass.
  • the change curve of the phase compensated by the amplifier circuit structure with the signal frequency when the frequency band of the amplifier circuit structure is 4GHz to 5GHz, when the main channel and the bypass switch, the phase difference introduced in the band is 135° to 150°.
  • a passive phase shift network (corresponding to line 4 in FIG. 5 ) with a center frequency of 4.5 GHz and a phase shift of 50° ahead may be introduced at the output end of the main channel, and a passive phase shift network (corresponding to line 4 in FIG.
  • the channel introduces a passive phase shift network with a center frequency of 4.5GHz and a phase shift of 90° lag (corresponding to line 5 in Figure 5).
  • phase difference introduced by the circuit structure from 4GHz to 5GHz in the broadband is 135° to 150°, that is, when the main channel and bypass are switched, the phase difference introduced by the amplifier circuit structure to 4GHz to 5GHz in the broadband is 135° to 150° to compensate.
  • the embodiment of the present application also proposes a circuit control method.
  • the circuit control method is applied to an amplifier circuit structure.
  • the amplifier circuit structure includes: an amplifier, a first switch, and a second switch; wherein the amplifier is located in the main channel, so The input end of the amplifier is the signal input end of the amplifier circuit structure, the first switch is located in the bypass; one end of the second switch is the signal output end of the amplifier circuit structure, and the other end is used to selectively Connect to the signal output end of the bypass or the signal output end of the main channel.
  • FIG. 6 is a flowchart of a circuit control method according to an embodiment of the present application. As shown in FIG. 6 , the flowchart may include:
  • Step 601 The first switch and the second switch, when receiving the first command, control the working states respectively, so that the main path is connected to the signal input end of the amplifier circuit structure and the signal input end of the amplifier circuit structure.
  • a signal output end when receiving the second instruction, each controls the working state, so that the bypass is connected to the signal input end of the amplifier circuit structure and the signal output end of the amplifier circuit structure.
  • the amplifier circuit structure further includes at least one phase compensation circuit, and the at least one phase compensation circuit is configured to perform phase correction on the phase difference caused when the main channel and the bypass receive the input signal. compensate.
  • the at least one phase compensation circuit is located between the output terminal of the amplifier and the signal output terminal of the main path.
  • the at least one phase compensation circuit is located between the first switch and the signal output terminal of the bypass.
  • the at least one phase compensation circuit includes a first phase compensation circuit and a second phase compensation circuit; wherein,
  • the first phase compensation circuit is located between the output end of the amplifier and the signal output end of the main channel, and the second phase compensation circuit is located between the first switch and the signal output end of the bypass .
  • one of the first phase compensation circuit and the second phase compensation circuit is used to perform phase lead compensation, and the first phase compensation circuit and the second phase compensation circuit Another phase compensation circuit in the compensation circuit is used for phase lag compensation.
  • the phase shift amount of the at least one phase compensation circuit is determined according to the center frequency of the input signal.
  • the at least one phase compensation circuit when the number of phase compensation circuits in the at least one phase compensation circuit is greater than 1, the at least one phase compensation circuit includes two phase compensation circuits with different phase shift change parameters.
  • the quantity change parameter represents the corresponding relationship between the phase shift quantity and the frequency.
  • the first switch is a single-pole single-throw switch.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Amplifiers (AREA)

Abstract

一种放大器电路结构和电路控制方法,该放大器电路结构中,放大器(21)位于主通路,第一开关(S1)位于旁路;第二开关(S2)的一端为放大器电路结构的信号输出端,另一端用于选择性地连接旁路的信号输出端或主通路的信号输出端;第一开关(S1)和第二开关(S2),用于在接收到第一指令时,各自控制工作状态,使主通路连接放大器电路结构的信号输入端和放大器电路结构的信号输出端;在接收到第二指令时,各自控制工作状态,使旁路连接放大器电路结构的信号输入端和放大器电路结构的信号输出端。

Description

放大器电路结构和电路控制方法
相关申请的交叉引用
本申请要求在2020年06月28日提交中国专利局、申请号为202010600187.4的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及电路结构设计技术,尤其涉及一种放大器电路结构和电路控制方法。
背景技术
在无线通信设备中,接收机需要满足一定的动态范围,当接收机接收的信号中存在较大的干扰信号时,可能导致模-数转换器(Analog-to-Digital Converter,ADC)产生溢出现象,有用信号不能准确解调,这样需要将整个接收链路的增益降下来,使得大信号进入ADC时达不到溢出门限,进而使有用信号能正常解调。为了使无线通信设备的接收机达到更大的动态范围,通常可以在信号接收电路的主通路的基础上使用旁路放大器的方法,使得信号接收电路的增益下降;使用旁路放大器的方法需要增加单刀双掷(Single Pole Double Throw,SPDT)开关,以实现主通路和旁路的切换;然而,增加单刀双掷开关会引入插入损耗,增大信号接收电路的噪声系数。
发明内容
为解决现有存在的技术问题,本申请实施例提供一种放大器电路结构和电路控制方法。
为达到上述目的,本申请实施例的技术方案是这样实现的:
本申请实施例提供一种放大器电路结构,包括:放大器、第一开关和第二开关;其中,所述放大器位于主通路,所述放大器的输入端为所述放大器电路结构的信号输入端,所述第一开关位于旁路;所述第二开关的一端为所述放大器电路结构的信号输出端,另一端用于选择性地连接所述旁路的信号输出端或所述主通路的信号输出端;
所述第一开关和所述第二开关,用于在接收到第一指令时,各自控制工作状态,使所述主通路连接所述放大器电路结构的信号输入端和所述放大器电路结构的信号输出端;在接收到第二指令时,各自控制工作状态,使所述旁路连接所述放大器电路结构的信号输入端和所述放大器电路结构的信号输出端。
在本申请的一些实施例中,所述放大器电路结构还包括至少一个相位补偿电路,所述至少一个相位补偿电路用于对所述主通路和旁路接收输入信号时带来的相位差进行相位补偿。
在本申请的一些实施例中,所述至少一个相位补偿电路位于所述放大器的输出端与所述主通路的信号输出端之间。
在本申请的一些实施例中,所述至少一个相位补偿电路位于所述第一开关与所述旁路的信号输出端之间。
在本申请的一些实施例中,所述至少一个相位补偿电路包括第一相位补偿电路和第二相位补偿电路;其中,
所述第一相位补偿电路位于所述放大器的输出端与所述主通路的信号输出端之间,所述第二相位补偿电路位于所述第一开关与所述旁路的信号输出端之间。
在本申请的一些实施例中,所述第一相位补偿电路和所述第二相位补偿电路中的一个相位补偿电路用于进行相位超前补偿,所述第一相位补偿电路和所述第二相位补偿电路中的另一个相位补偿电路用于进行相位滞后补偿。
在本申请的一些实施例中,所述至少一个相位补偿电路的相移量根据所述输入信号的中心频点进行确定。
在本申请的一些实施例中,所述至少一个相位补偿电路中相位补偿电路的个数大于1时,所述至少一个相位补偿电路包括两个相移量变化参数不同的相位补偿电路,相移量变化参数表示相移量与频率的对应关系。
在本申请的一些实施例中,所述第一开关为单刀单掷开关。
本申请实施例还提出了一种电路控制方法,应用于放大器电路结构,所述放大器电路结构包括:放大器、第一开关和第二开关;其中,所述放大器位于主通路,所述放大器的输入端为所述放大器电路结构的信号输入端,所述第一开关位于旁路;所述第二开关的一端为所述放大器电路结构的信号输出端,另一端用于选择性地连接所述旁路的信号输出端或所述主通路的信号输出端;
所述方法包括:
所述第一开关和所述第二开关,用于在接收到第一指令时,各自控制工作状态,使所述主通路连接所述放大器电路结构的信号输入端和所述放大器电路结构的信号输出端;在接收到第二指令时,各自控制工作状态,使所述旁路连接所述放大器电路结构的信号输入端和所述放大器电路结构的信号输出端。
本申请实施例提供的一种放大器电路结构和电路控制方法中,放大器电路结构包括:放大器、第一开关和第二开关;其中,所述放大器位于主通路,所述放大器的输入端为所述放大器电路结构的信号输入端,所述第一开关位于旁路;所述第二开关的一端为所述放大器电路结构的信号输出端,另一端用于选择性地连接所述旁路的信号输出端或所述主通路的信号输出端;所述第一开关和所述第二开关,用于在接收到第一指令时,各自控制工作状态,使所述主通路连接所述放大器电路结构的信号输入端和所述放大器电路结构的信号输出端;在接收到第二指令时,各自控制工作状态,使所述旁路连接所述放大器电路结构的信号输入端和所述放大器电路结构的信号输出端。如此,本申请实施例通过在旁路增加第一开关,可以提供主通路与旁路之间的信号高隔离;当输入信号经过主通路进行信号放大时,输入信号不经过旁路的第一开关,减小了第一开关断开时的开启电阻(Ron),使得放大器电路结构的插入损坏比较低;当输入信号经过旁路输出是,第一开关接通,旁路处于直通状态,而主通路上的放大器停止工作,这样可以提供与主通路之间的高隔离,总体来说,有利于降低主通路的放大器的输入端的插入损坏,有利于降低包括放大器电路结构的级联链路的噪声系数。
附图说明
图1为相关技术中一种信号接收电路的结构示意图;
图2为本申请实施例的一个放大器电路结构的示意图;
图3为本申请实施例的另一个放大器电路结构的示意图;
图4为本申请的一个具体实施例中相位补偿的示意图;
图5为本申请的另一个具体实施例中相位补偿的示意图;
图6为本申请实施例的电路控制方法的流程图。
具体实施方式
以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
图1为相关技术中一种信号接收电路的结构示意图,如图1所示,可以使用旁路放大器的方法降低信号接收电路的增益,具体地,第一单刀双掷开关SW1_SPDT的一端接入输入信号,另一端选择性地连接信号放大装置A的输入端或旁路的输入端,放大器所在的支路为主通路,旁路为一条电路直连线;第二单刀双掷开关SW2_SPDT的一端选择性地连接信号放大装置A的输出端或所述旁路的输出端,另一端为信号接收电路的输出端;这里,信号放大装置可以是低噪声放大器(Low Noise Amplifier,LNA)或其它类型的放大器。
可以看出,通过控制第一单刀双掷开关SW1_SPDT和第二单刀双掷开关SW2_SPDT,可以实现对主通路或旁路的选择,具体地,在输入信号的幅度较小的情况下,通过控制第一单刀双掷开关SW1_SPDT和第二单刀双掷开关SW2_SPDT,接通主通路,输入信号可以经信号放大装置A处理后输出;当输入信号较大时,通过控制第一单刀双掷开关SW1_SPDT和第二单刀双掷开关SW2_SPDT,接通旁路,输入信号经过旁路输出,这样在输入信号中存在幅度较大的干扰信号时,通过旁路输出信号,降低输入信号的增益,使得后续ADC处理信号时不会产生溢出现象,从而使得信号能够正常解调。
参照图1,上述使用旁路放大器的方法需要增加单刀双掷开关,以实现主通路和旁路的切换;然而,增加单刀双掷开关会引入插入损耗,并且,将信号接收电路作为级联电路的一部分的情况下,从级联电路的噪声系数的角度来考虑,在信号放大装置的输入端增加的插入损耗,会使级联电路的噪声系数较为明显地增大。
另外,在主通路和旁路之间切换时,由于信号放大装置不工作,输入信号只经过两个开关便会输出,这样会引入非常大的相位差,这不能满足时延要求较高(时延较低)的通信系统。
针对上述技术问题,本申请实施例提出了一种放大器电路结构。
图2为本申请实施例的一个放大器电路结构的示意图,如图2所示,该放大器电路结构可以包括:放大器21、第一开关S1和第二开关S2;其 中,放大器21位于主通路,放大器21的输入端为放大器电路结构的信号输入端,第一开关S1位于旁路;第二开关S2的一端为放大器电路结构的信号输出端,另一端用于选择性地连接旁路的信号输出端或主通路的信号输出端。
本申请实施例中,放大器21用于进行信号放大,放大器21可以是低噪声放大器或其它类型的放大器;这里,并不对放大器的增益等参数进行限定。
示例性地,第一开关S1的两端均处于旁路上,第一开关S1可以是单刀单掷开关,第二开关S2可以是单刀双掷开关。
本申请实施例中,第一开关S1和第二开关S2,用于在接收到第一指令时,各自控制工作状态,使主通路连接放大器电路结构的信号输入端和放大器电路结构的信号输出端;在接收到第二指令时,各自控制工作状态,使旁路连接放大器电路结构的信号输入端和放大器电路结构的信号输出端。
这里,第一指令表示选择主通路的指令,第二指令表示选择旁路的指令。在实际应用中,第一开关S1和第二开关S2均可以根据接收到的外部指令,控制自身的工作状态,在实际应用中,可以由处理器等器件向第一开关S1和/或第二开关S2发送指令。
具体地说,第一开关S1,用于在接收到第一指令时,断开第一连接;在接收到第二指令时,接通第一连接;第一连接表示放大器21的输入端与旁路的信号输入端的连接。
第二开关S2,用于在接收到第一指令时,接通第二连接;在接收到第二指令时,接通第三连接;第二连接表示主通路的信号输出端与放大器电路结构的信号输出端的连接,第三连接表示旁路的信号输出端与放大器电路结构的信号输出端的连接。
可以看出,本申请实施例通过在旁路增加第一开关,可以提供主通路与旁路之间的信号高隔离;当输入信号经过主通路进行信号放大时,输入信号不经过旁路的第一开关,减小了第一开关断开时的开启电阻(Ron),使得放大器电路结构的插入损坏比较低;当输入信号经过旁路输出是,第一开关接通,旁路处于直通状态,而主通路上的放大器停止工作,这样可以提供与主通路之间的高隔离,总体来说,有利于降低主通路的放大器的 输入端的插入损坏,有利于降低包括放大器电路结构的级联链路的噪声系数。
另外,本申请实施例的放大器电路结构,只需要在旁路上设置一个开关,具有电路结构简单和利于集成的特点,并不增加额外的功耗。
在一实施方式中,上述放大器电路结构还包括至少一个相位补偿电路,所述至少一个相位补偿电路用于对所述主通路和旁路接收输入信号时带来的相位差进行相位补偿。
本申请实施例中,相位补偿电路可以是移相器、无源相移网络或其它类型的相位补偿电路;相位补偿电路可以进行相位超前补偿或相位滞后补偿,具体可以根据实际应用需求确定;在实际应用中,可以预先测量主通路和旁路接收输入信号时带来的相位差,然后该相位差,确定相位补偿电路需要进行相位超前补偿还是进行相位滞后补偿,并且,可以根据该相位差,确定相位补偿电路的相移量,相移量表示相位补偿的幅度。
示例性地,相位补偿电路的相移量可以是与信号的频率相关的参数,即,相位补偿电路的相移量是具有频率响应的参数,不同信号频率对应的相移量是不同的,例如,信号的频率在4GHz至5GHz内变化时,相位补偿电路的相移量可以在45°至50°之间变化。
在本申请的一些实施例中,至少一个相位补偿电路的工作参数根据所述输入信号的中心频点进行确定。在本申请的一些实施例中,上述工作参数包括相移量。
可以看出,通过设置相位补偿电路,有利于对主通路和旁路切换时带来的相位差进行相位补偿,可以满足时延要求较高的通信系统。
在第一个示例中,至少一个相位补偿电路位于所述放大器的输出端与所述主通路的信号输出端之间。在第二个示例中,至少一个相位补偿电路位于所述第一开关与所述旁路的信号输出端之间。
在第三个示例中,参照图3,至少一个相位补偿电路包括第一相位补偿电路22和第二相位补偿电路23;其中,第一相位补偿电路22位于放大器21的输出端与所述主通路的信号输出端之间,第二相位补偿电路23位于第一开关S1与旁路的信号输出端之间;第二开关S2用于选择性地连接第一相位补偿电路22或希尔相位补偿电路23。
示例性地,第一相位补偿电路22和第二相位补偿电路23中的一个相 位补偿电路用于进行相位超前补偿,第一相位补偿电路22和第二相位补偿电路23中的另一个相位补偿电路用于进行相位滞后补偿。
在相位补偿电路的相移量是有频率响应的参数时,不同信号的频率对应的相移量是不同的,单独使用一个相位补偿电路难以准确地实现相位补偿,但是,无论用于相位超前补偿的相位补偿电路,还是用于相位滞后补偿的相位补偿电路,相移量均是随着频率单调变化的,利用该特点,本申请实施例可以同时在主通路和旁路增加相位补偿电路。
在一个示例中,可以在主通路增加用于相位超前补偿的相位补偿电路的同时,在旁路增加用于进行相位滞后补偿的相位补偿电路;在具体的示例中,当主通路接通时,利用主通路增加的相位补偿电路超前补偿了大小为P1的相位角,在旁路接通时,利用旁路增加的相位补偿电路滞后补偿了大小为P2的相位角,且P1和P2均随着信号的频率单调变化,这样,可以对于宽频带内实现主通路和旁路切换时引起的相位差进行补偿,补偿的相位角为P1+P2。
在另一个示例中,可以在主通路增加用于相位滞后补偿的相位补偿电路的同时,在旁路增加用于进行相位超期补偿的相位补偿电路;在具体的示例中,当主通路接通时,利用主通路增加的相位补偿电路滞后补偿了大小为P3的相位角,在旁路接通时,利用旁路增加的相位补偿电路超前补偿了大小为P4的相位角,且P1和P2均随着信号的频率单调变化,这样,可以对于宽频带内实现主通路和旁路切换时引起的相位差进行补偿,补偿的相位角为P3+P4。
图4为本申请的一个具体实施例中相位补偿的示意图,如图4所示,横轴表示频率,单位为GHz,纵轴表示相位,单位为度。线1表示主通路的相位补偿电路的补偿的相位随信号频率的变化曲线,线2表示旁路的相位补偿电路的补偿的相位随信号频率的变化曲线,线3表示主通路和旁路切换时,放大器电路结构补偿的相位随信号频率的变化曲线;当放大器电路结构工作的频段为4GHz至5GHz时,在主通路和旁路切换时,带内引入的相位差为140°,利用本申请实施例的放大器电路结构,可以先在主通路输出端引入中心频点为4.5GHz,相移量为超前70°的无源相移网络(对应图4中的线1),而在旁路引入中心频点为4.5GHz,相移量为滞后70°的无源相移网络(对应图4中的线2),这样整体放大器电路结构在宽带内4GHz~5GHz引入的相位差为140°,即,在主通路和旁路切换时,放大器 电路结构可以对宽带内4GHz至5GHz引入的相位差为140°进行补偿。
在本申请的一些实施例中,上述至少一个相位补偿电路中相位补偿电路的个数大于1时,所述至少一个相位补偿电路包括两个相移量变化参数不同的相位补偿电路,相移量变化参数表示相移量与频率的对应关系。
在实际的电路结构中,放大器工作在宽频带时,在宽频带内引入的相位差可能是不固定的,本申请实施例还可以处理宽频带内有相位差异的问题,当主通路接通时,可以先利用主通路的相位补偿电路在工作频段内的中心频点处超前或者滞后大小为Φ+/-ΔΦ的相位角,而在旁路接通时,利用旁路的相位补偿电路在工作频段内的中心频点处滞后或者超前大小为Φ-/+ΔΦ的相位角,由于两者随频率单调变化,且主通路和旁路的相位补偿电路的相移量变化参数不同,例如,对于主通路和旁路的相位补偿电路,相移量随频率变化的斜率不同,这样可以在宽频带内对主通路和旁路切换时引起的相位差进行补偿,同时补偿宽带内相位的差异。
在一个具体的示例中,参照图5,为本申请的另一个具体实施例中相位补偿的示意图,如图5所示,横轴表示频率,单位为GHz,纵轴表示相位,单位为度。线4表示主通路的相位补偿电路的补偿的相位随信号频率的变化曲线,线5表示旁路的相位补偿电路的补偿的相位随信号频率的变化曲线,线6表示主通路和旁路切换时,放大器电路结构补偿的相位随信号频率的变化曲线;当放大器电路结构工作的频段为4GHz至5GHz时,在主通路和旁路切换时,带内引入的相位差为135°至150°,利用本申请实施例的放大器电路结构,可以先在主通路输出端引入中心频点为4.5GHz,相移量为超前50°的无源相移网络(对应图5中的线4),而在旁路引入中心频点为4.5GHz,相移量为滞后90°的无源相移网络(对应图5中的线5),由于两个无源相移网络的相移量不相等,这样整体放大器电路结构在宽带内4GHz~5GHz引入的相位差为135°至150°,即,在主通路和旁路切换时,放大器电路结构可以对宽带内4GHz至5GHz引入的相位差为135°至150°进行补偿。
本申请实施例还提出了一种电路控制方法,该电路控制方法应用于放大器电路结构,所述放大器电路结构包括:放大器、第一开关和第二开关;其中,所述放大器位于主通路,所述放大器的输入端为所述放大器电路结构的信号输入端,所述第一开关位于旁路;所述第二开关的一端为所述放大器电路结构的信号输出端,另一端用于选择性地连接所述旁路的信号输 出端或所述主通路的信号输出端。
图6为本申请实施例的电路控制方法的流程图,如图6所示,该流程可以包括:
步骤601:所述第一开关和所述第二开关,在接收到第一指令时,各自控制工作状态,使所述主通路连接所述放大器电路结构的信号输入端和所述放大器电路结构的信号输出端;在接收到第二指令时,各自控制工作状态,使所述旁路连接所述放大器电路结构的信号输入端和所述放大器电路结构的信号输出端。
在本申请的一些实施例中,所述放大器电路结构还包括至少一个相位补偿电路,所述至少一个相位补偿电路用于对所述主通路和旁路接收输入信号时带来的相位差进行相位补偿。
在本申请的一些实施例中,所述至少一个相位补偿电路位于所述放大器的输出端与所述主通路的信号输出端之间。
在本申请的一些实施例中,所述至少一个相位补偿电路位于所述第一开关与所述旁路的信号输出端之间。
在本申请的一些实施例中,所述至少一个相位补偿电路包括第一相位补偿电路和第二相位补偿电路;其中,
所述第一相位补偿电路位于所述放大器的输出端与所述主通路的信号输出端之间,所述第二相位补偿电路位于所述第一开关与所述旁路的信号输出端之间。
在本申请的一些实施例中,所述第一相位补偿电路和所述第二相位补偿电路中的一个相位补偿电路用于进行相位超前补偿,所述第一相位补偿电路和所述第二相位补偿电路中的另一个相位补偿电路用于进行相位滞后补偿。
在本申请的一些实施例中,所述至少一个相位补偿电路的相移量根据所述输入信号的中心频点进行确定。
在本申请的一些实施例中,所述至少一个相位补偿电路中相位补偿电路的个数大于1时,所述至少一个相位补偿电路包括两个相移量变化参数不同的相位补偿电路,相移量变化参数表示相移量与频率的对应关系。
在本申请的一些实施例中,所述第一开关为单刀单掷开关。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (10)

  1. 一种放大器电路结构,包括:放大器、第一开关和第二开关;其中,所述放大器位于主通路,所述放大器的输入端为所述放大器电路结构的信号输入端,所述第一开关位于旁路;所述第二开关的一端为所述放大器电路结构的信号输出端,另一端用于选择性地连接所述旁路的信号输出端或所述主通路的信号输出端;
    所述第一开关和所述第二开关,用于在接收到第一指令时,各自控制工作状态,使所述主通路连接所述放大器电路结构的信号输入端和所述放大器电路结构的信号输出端;在接收到第二指令时,各自控制工作状态,使所述旁路连接所述放大器电路结构的信号输入端和所述放大器电路结构的信号输出端。
  2. 根据权利要求1所述的放大器电路结构,其中,还包括至少一个相位补偿电路,所述至少一个相位补偿电路用于对所述主通路和旁路接收输入信号时带来的相位差进行相位补偿。
  3. 根据权利要求2所述的放大器电路结构,其中,所述至少一个相位补偿电路位于所述放大器的输出端与所述主通路的信号输出端之间。
  4. 根据权利要求2所述的放大器电路结构,其中,所述至少一个相位补偿电路位于所述第一开关与所述旁路的信号输出端之间。
  5. 根据权利要求2所述的放大器电路结构,其中,所述至少一个相位补偿电路包括第一相位补偿电路和第二相位补偿电路;其中,
    所述第一相位补偿电路位于所述放大器的输出端与所述主通路的信号输出端之间,所述第二相位补偿电路位于所述第一开关与所述旁路的信号输出端之间。
  6. 根据权利要求5所述的放大器电路结构,其中,所述第一相位补偿电路和所述第二相位补偿电路中的一个相位补偿电路用于进行相位超前补偿,所述第一相位补偿电路和所述第二相位补偿电路中的另一个相位补偿电路用于进行相位滞后补偿。
  7. 根据权利要求2至6任一项所述的放大器电路结构,其中,所述至少一个相位补偿电路的相移量根据所述输入信号的中心频点进行确定。
  8. 根据权利要求7所述的放大器电路结构,其中,所述至少一个相位补偿电路中相位补偿电路的个数大于1时,所述至少一个相位补偿电路包括两个相移量变化参数不同的相位补偿电路,相移量变化参数表示相移量与频率的对应关系。
  9. 根据权利要求1所述的放大器电路结构,其中,所述第一开关为单刀单掷开关。
  10. 一种电路控制方法,应用于放大器电路结构,所述放大器电路结构包括:放大器、第一开关和第二开关;其中,所述放大器位于主通路,所述放大器的输入端为所述放大器电路结构的信号输入端,所述第一开关位于旁路;所述第二开关的一端为所述放大器电路结构的信号输出端,另一端用于选择性地连接所述旁路的信号输出端或所述主通路的信号输出端;
    所述方法包括:
    所述第一开关和所述第二开关,在接收到第一指令时,各自控制工作状态,使所述主通路连接所述放大器电路结构的信号输入端和所述放大器电路结构的信号输出端;在接收到第二指令时,各自控制工作状态,使所述旁路连接所述放大器电路结构的信号输入端和所述放大器电路结构的信号输出端。
PCT/CN2020/113093 2020-06-28 2020-09-02 放大器电路结构和电路控制方法 WO2022000764A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/120,151 US11482977B2 (en) 2020-06-28 2020-12-12 Amplifier circuit structure and method for controlling circuit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010600187.4 2020-06-28
CN202010600187.4A CN111682854A (zh) 2020-06-28 2020-06-28 一种放大器电路结构和电路控制方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/120,151 Continuation US11482977B2 (en) 2020-06-28 2020-12-12 Amplifier circuit structure and method for controlling circuit

Publications (1)

Publication Number Publication Date
WO2022000764A1 true WO2022000764A1 (zh) 2022-01-06

Family

ID=72437332

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/113093 WO2022000764A1 (zh) 2020-06-28 2020-09-02 放大器电路结构和电路控制方法

Country Status (2)

Country Link
CN (1) CN111682854A (zh)
WO (1) WO2022000764A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101674052A (zh) * 2009-09-23 2010-03-17 京信通信系统(中国)有限公司 用于塔顶放大器的分级旁路电路及其控制方法
CN102394573A (zh) * 2011-09-16 2012-03-28 摩比天线技术(深圳)有限公司 低噪声放大器的旁路电路
CN105375885A (zh) * 2014-08-19 2016-03-02 英飞凌科技股份有限公司 用于低噪声放大器的系统和方法
US10432238B1 (en) * 2018-06-11 2019-10-01 Psemi Corporation Detuning multiband tunable matching networks
CN110311630A (zh) * 2018-03-27 2019-10-08 英飞凌科技股份有限公司 用于旁路低噪声放大器的系统和方法
CN110729973A (zh) * 2019-09-16 2020-01-24 广东工业大学 一种hemt低噪声放大器旁路结构

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6255903B1 (en) * 1999-12-06 2001-07-03 Motorola Linear power amplifier with configurable feedforward error correction circuits
CN201523361U (zh) * 2009-09-23 2010-07-07 京信通信系统(中国)有限公司 用于塔顶放大器的分级旁路电路
CN106330121A (zh) * 2015-07-02 2017-01-11 株式会社村田制作所 放大电路
US10205425B2 (en) * 2016-05-27 2019-02-12 Qorvo Us, Inc. Variable gain low noise amplifier
CN109327194A (zh) * 2018-09-06 2019-02-12 南京国博电子有限公司 一种宽带高线性带旁路功能的单片式低噪声放大器
CN111010092B (zh) * 2019-11-23 2023-06-02 杭州电子科技大学 一种新型Doherty功率放大器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101674052A (zh) * 2009-09-23 2010-03-17 京信通信系统(中国)有限公司 用于塔顶放大器的分级旁路电路及其控制方法
CN102394573A (zh) * 2011-09-16 2012-03-28 摩比天线技术(深圳)有限公司 低噪声放大器的旁路电路
CN105375885A (zh) * 2014-08-19 2016-03-02 英飞凌科技股份有限公司 用于低噪声放大器的系统和方法
CN110311630A (zh) * 2018-03-27 2019-10-08 英飞凌科技股份有限公司 用于旁路低噪声放大器的系统和方法
US10432238B1 (en) * 2018-06-11 2019-10-01 Psemi Corporation Detuning multiband tunable matching networks
CN110729973A (zh) * 2019-09-16 2020-01-24 广东工业大学 一种hemt低噪声放大器旁路结构

Also Published As

Publication number Publication date
CN111682854A (zh) 2020-09-18

Similar Documents

Publication Publication Date Title
WO2020192426A1 (zh) 射频前端电路及移动终端
US7345535B2 (en) Power amplification apparatus of portable terminal
US9083402B2 (en) High frequency circuit and high frequency module including the same
CA2139005C (en) Feedforward amplifier for detecting distortion of an input signal
WO2020192427A1 (zh) 射频前端电路及移动终端
US7149487B2 (en) Mobile communication terminal device and variable gain circuit
Li et al. An X-band full-360 reflection type phase shifter with low insertion loss
WO2022000764A1 (zh) 放大器电路结构和电路控制方法
US7505743B2 (en) Dual band transmitter having filtering coupler
US11750153B2 (en) High-frequency circuit
US11482977B2 (en) Amplifier circuit structure and method for controlling circuit
US12088259B2 (en) Balanced amplifiers with wideband linearization
CN113659998B (zh) 一种宽动态抗饱和低噪声电路及控制方法
US20090203328A1 (en) Method and apparatus for rf communication system signal to noise ratio improvement
WO2015022031A1 (en) Radio receiver circuit, communication apparatus, and adaptation method
JPH0715397A (ja) フィードフォワード増幅器
EP0720284B1 (en) Feedforward amplifier
WO2024187955A1 (zh) 功率放大电路、功率放大芯片、射频前端装置及通信设备
US6977554B2 (en) Variable gain amplifier for high frequency band using microstrip hybrid
CN220626646U (zh) 一种耐大功率的高线性动态的接收机
CN219960533U (zh) 一种超短波多通道变频信道组件
Wang et al. A Fully Integrated X-Band Phased-Array Transceiver in 0.13-μm CMOS Technology
JP3978919B2 (ja) リミッタ回路
KR101684469B1 (ko) 변환 매칭 회로를 이용한 c-밴드 cmos 양방향 증폭기
JPH1168596A (ja) Dab受信機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20943238

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 17/05/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20943238

Country of ref document: EP

Kind code of ref document: A1