WO2022000700A1 - 一种气热惯性备用参与园区综合能源系统备用配置方法 - Google Patents
一种气热惯性备用参与园区综合能源系统备用配置方法 Download PDFInfo
- Publication number
- WO2022000700A1 WO2022000700A1 PCT/CN2020/107349 CN2020107349W WO2022000700A1 WO 2022000700 A1 WO2022000700 A1 WO 2022000700A1 CN 2020107349 W CN2020107349 W CN 2020107349W WO 2022000700 A1 WO2022000700 A1 WO 2022000700A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- backup
- time
- heat
- thermal
- gas
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 20
- 230000004044 response Effects 0.000 claims abstract description 21
- 238000010248 power generation Methods 0.000 claims abstract description 10
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 88
- 239000003345 natural gas Substances 0.000 claims description 44
- 239000007789 gas Substances 0.000 claims description 32
- 230000005540 biological transmission Effects 0.000 claims description 19
- 230000008859 change Effects 0.000 claims description 17
- 238000010438 heat treatment Methods 0.000 claims description 11
- 230000001052 transient effect Effects 0.000 claims description 11
- 238000013178 mathematical model Methods 0.000 claims description 9
- 230000005611 electricity Effects 0.000 claims description 8
- 230000017525 heat dissipation Effects 0.000 claims description 6
- 230000008569 process Effects 0.000 claims description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 5
- 230000001133 acceleration Effects 0.000 claims description 3
- 230000005484 gravity Effects 0.000 claims description 3
- 230000009466 transformation Effects 0.000 claims description 3
- 238000010586 diagram Methods 0.000 description 5
- 230000010485 coping Effects 0.000 description 2
- 230000006735 deficit Effects 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 241000220317 Rosa Species 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000009795 derivation Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000008595 infiltration Effects 0.000 description 1
- 238000001764 infiltration Methods 0.000 description 1
- 230000009125 negative feedback regulation Effects 0.000 description 1
- 238000009423 ventilation Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/20—Design optimisation, verification or simulation
- G06F30/23—Design optimisation, verification or simulation using finite element methods [FEM] or finite difference methods [FDM]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/20—Design optimisation, verification or simulation
- G06F30/28—Design optimisation, verification or simulation using fluid dynamics, e.g. using Navier-Stokes equations or computational fluid dynamics [CFD]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/04—Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2111/00—Details relating to CAD techniques
- G06F2111/04—Constraint-based CAD
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2111/00—Details relating to CAD techniques
- G06F2111/10—Numerical modelling
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2113/00—Details relating to the application field
- G06F2113/14—Pipes
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2119/00—Details relating to the type or aim of the analysis or the optimisation
- G06F2119/08—Thermal analysis or thermal optimisation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/10—Geometric CAD
- G06F30/13—Architectural design, e.g. computer-aided architectural design [CAAD] related to design of buildings, bridges, landscapes, production plants or roads
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/06—Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
- G06Q10/063—Operations research, analysis or management
- G06Q10/0631—Resource planning, allocation, distributing or scheduling for enterprises or organisations
- G06Q10/06315—Needs-based resource requirements planning or analysis
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q50/00—Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
- G06Q50/06—Energy or water supply
Definitions
- the invention relates to a backup configuration method for a gas-heat inertial backup participating in a comprehensive energy system in a park, and belongs to the technical field of comprehensive energy.
- the power system backup ensures the safe operation of the system and reserves a certain margin.
- the backup is mainly used to deal with the problem of system power shortage caused by uncertain factors such as the uncertainty of new energy output forecast, the uncertainty of load forecast, and the failure and shutdown of units.
- uncertain factors such as the uncertainty of new energy output forecast, the uncertainty of load forecast, and the failure and shutdown of units.
- the reliability and economy of the integrated energy system are equally important. It is necessary to abandon the traditional conservative backup configuration method and study the backup configuration of the integrated energy system that integrates various backup forms.
- the present invention proposes a method for the standby configuration of the gas-heat inertial reserve to participate in the comprehensive energy system of the park.
- the present invention can make full use of the gas-heat inertial reserve in the comprehensive energy system of the park to participate in the optimal configuration of the backup, so as to cope with the problem of system power shortage, On the premise of ensuring the reliability of the system, improve the economy of system operation.
- a method for the backup configuration of a gas-thermal inertial reserve participating in a comprehensive energy system of a park comprising the following steps:
- a thermal system model is established by comprehensively considering the thermal time delay, thermal loss, and thermal inertia characteristics of the thermal system;
- step (1) is specifically:
- ⁇ , v, P are the density, flow rate, and pressure of natural gas, respectively, ⁇ , D, and ⁇ are the friction coefficient, inner diameter, and inclination angle of the pipeline and the horizontal plane, respectively, g is the acceleration of gravity, and x and t are time variables, respectively and spatial variables;
- A, L and T are the cross-sectional area, length and temperature of the natural gas pipeline, respectively
- R M is the natural gas gas constant
- P out (t) are the pressure at the end of the natural gas pipeline and its first and second derivatives with time t, respectively
- f out (t) are the flow rate at the end of the natural gas pipeline and its first derivative with time t, respectively;
- t 1 t 2 are inertial backup gas supply and start and end time
- G M is the heat value of natural gas, f 1, f 2, respectively, at time t 1 as conduit, t Terminal flow at time 2.
- step (2) is specifically:
- thermodynamic system model is:
- ⁇ n (t) is the thermal time delay of the transmission pipe n corresponding to the heat load building m with time t
- l n is the length of the transmission pipe n
- v n (t) is the change of the transmission pipe n with time t.
- the mathematical model of gas-heat inertia backup is as follows: a t and b t are the gas inertia and thermal inertia reserve capacity prices that change with time t, respectively, is the reserve capacity of gas inertia and thermal inertia input with time t; the backup mathematical model of power generation side is c t , d t are the reserve capacity price and electricity price that change with time t after the reserve market is cleared, R S , are the reserve transaction capacity of the power generation side and the reserve capacity actually invested with time t, respectively; the demand side reserve mathematical model is are the reserve capacity price and electricity compensation price of demand-side user i changing with time t, respectively, R D,i , are the demand-side user i’s demand-response transaction capacity and the actually invested spare capacity, which change with time t, respectively, and k is the number of demand-side users.
- the present invention adopts the above technical scheme, and has the following technical effects:
- the invention utilizes the gas-heat inertial reserve to participate in the backup configuration of the comprehensive energy system in the park, and integrates various backup forms to realize the complementarity of the gas-heat inertial reserve, the demand-side reserve, and the power-generation-side reserve. It can be configured to deal with the problem of system power shortage, and improve the economy of system operation on the premise of ensuring the reliability of the system.
- Fig. 1 is the general flow chart of the inventive method
- Figure 2 is a schematic diagram of a gas inertial system
- Figure 3 is a schematic diagram of the gas inertial backup coping with the power shortage of the system, wherein (a) is the terminal flow, (b) is the terminal air pressure, and (c) is the gas backup power;
- Figure 4 is a schematic diagram of a thermal inertial system
- Figure 5 is a schematic diagram of the thermal inertia backup coping with the power shortage of the system, where (a) is the input power of the heat source, (b) is the power supplied by the heating network, (c) is the actual indoor temperature, and (d) is the output of the hot backup power.
- a method for the standby configuration of gas-thermal inertial standby participating in the comprehensive energy system of the park includes the following steps:
- the natural gas pipeline reserve has the characteristics of negative feedback regulation: when the power demand of the system increases, the flow at the end of the pipeline can be increased, and part of the pipeline reserve can be released to the gas unit, so as to alleviate the problem of system power shortage. , the flow at the end of the pipeline is restored, the transmission pipeline stores part of the natural gas supplied by the gas source, the pipeline pressure rises again, and the pipe storage returns to the normal value, as shown in Figure 2. Considering the inertia adjustment characteristics of natural gas pipeline storage, it can be regarded as a dynamic reserve for system power shortage.
- ⁇ , v, P are the density, flow rate, and pressure of natural gas, respectively
- ⁇ , D, and ⁇ are the friction coefficient, inner diameter, and inclination angle of the pipeline and the horizontal plane, respectively
- g is the acceleration of gravity
- x and t are time variables, respectively and spatial variables.
- f out and f in are the outlet flow and inlet flow (kg/s) of the pipeline, respectively, and P out and P in are the outlet pressure and inlet pressure (Pa) of the pipeline, respectively.
- A, L and T are the cross-sectional area, length and temperature of the natural gas pipeline, respectively
- R M is the natural gas gas constant
- P out (t) are the pressure at the end of the natural gas pipeline and its first and second derivatives with time t, respectively
- f out (t) are the flow rate at the end of the natural gas pipeline and its first derivative with time t, respectively.
- Time t 1 is provided a power system transient increase in vacancy, from the rose pipe ends instantaneous flow f 1 to f 2.
- the pressure response process at the end of the natural gas pipeline is the linear superposition result of the step response and the impulse response, which can be solved by using Laplace transform. the release.
- the gas pressure at the end of the natural gas pipeline shall not exceed its upper and lower operating limits:
- the longest supply time of gas inertia backup can be defined as:
- the gas backup power model R G (t) can be obtained as follows:
- t 1 t 2 are inertial backup gas supply and start and end time
- G M is the heat value of natural gas, f 1, f 2, respectively, at time t 1 as conduit, t Terminal flow at time 2.
- the thermal system model is established by comprehensively considering the thermal time delay, thermal loss, and thermal inertia characteristics of the thermal system.
- the transmission pipeline corresponding to the heat load building m is the n pipeline
- the thermal time delay ⁇ n (t) of the transmission pipeline n with time t is proportional to the length l n of the transmission pipeline n, and is proportional to the hot water velocity v n (t ) is inversely proportional; the heat loss power in the transmission pipeline n during the heat transmission process vs.
- Pipeline Heat Loss Rate is proportional to the pipe length l n ; considering the thermal inertia of the building itself, T m (t) represents the indoor temperature of the thermal load building m changing with time t, is the first derivative of T m (t), H m (t) is the heating power of the heat network to the heat load building m as a function of time t, and L m (t) is the heat load of the building m as a function of time t.
- T out (t) represents the outdoor temperature of the heat-loaded building that changes with time t
- m 1,2,. ..,z
- z is the number of buildings with total heat load of the integrated energy system in the park.
- T m,c is the normal comfortable temperature
- T m,l is the minimum comfortable temperature
- the indoor temperature of the heat load building m is a first-order step response, and the temperature decreases according to a negative exponential curve.
- the heat load building has a limited time to input the hot standby power. If the maximum supply time of the thermal inertial standby is Defines i.e. time t 4, the thermal inertia of the system is stopped to fill the spare power shortage and building heat load will gradually rise to a comfortable temperature optimum heat after a certain time lag process.
- t 5 represents the time when the building power of the heating network supply heat load changes considering the thermal time lag.
- t 3 and t 4 are the start and end times of thermal inertia backup supply, respectively.
- the thermal time delay can be calculated as:
- the thermal power H m (t) of the heating network supply load, the temperature T m (t) in the building of the thermal load, the thermal backup power Schematic diagrams are shown in (b) to (d) of FIG. 5 .
- a t and b t are the gas inertia and thermal inertia reserve capacity prices that change with time t, respectively, It is the spare capacity put in by the gas inertia and thermal inertia that change with time t.
- the backup mathematical model on the power generation side is:
- c t and d t are the reserve capacity price and electricity price that change with time t after the reserve market is cleared
- R S are the reserve transaction capacity of the power generation side and the actually invested reserve capacity, respectively, which change with time t.
- the demand-side standby mathematical model is:
- R D,i are the demand-side user i’s demand-response transaction capacity and the actually invested spare capacity, which change with time t, respectively, and k is the number of demand-side users.
- the objective function is to take the lowest total purchase cost of reserve during the study period as the objective function:
Landscapes
- Engineering & Computer Science (AREA)
- Business, Economics & Management (AREA)
- Physics & Mathematics (AREA)
- Human Resources & Organizations (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Economics (AREA)
- Strategic Management (AREA)
- General Business, Economics & Management (AREA)
- Tourism & Hospitality (AREA)
- Marketing (AREA)
- Entrepreneurship & Innovation (AREA)
- Quality & Reliability (AREA)
- Operations Research (AREA)
- Geometry (AREA)
- Evolutionary Computation (AREA)
- Development Economics (AREA)
- Computer Hardware Design (AREA)
- Game Theory and Decision Science (AREA)
- Health & Medical Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Educational Administration (AREA)
- Mathematical Analysis (AREA)
- Mathematical Physics (AREA)
- Fluid Mechanics (AREA)
- Computing Systems (AREA)
- Algebra (AREA)
- Mathematical Optimization (AREA)
- Pure & Applied Mathematics (AREA)
- Public Health (AREA)
- Water Supply & Treatment (AREA)
- General Health & Medical Sciences (AREA)
- Primary Health Care (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
Description
Claims (4)
- 一种气热惯性备用参与园区综合能源系统备用配置方法,其特征在于,包括如下步骤:(1)基于天然气管道暂态模型,建立气惯性备用应对系统功率缺额出力模型,具体包括:1)基于动态天然气流的连续性方程和动量方程,建立天然气管道暂态模型;2)基于有限元近似的思想,求解天然气管道末端压强响应模型;3)考虑天然气系统运行约束,构建气惯性备用应对系统功率缺额出力模型;(2)考虑热力系统热时滞、热损耗、热惯性特性,建立热惯性备用应对系统功率缺额出力模型,具体包括:a)综合考虑热力系统热时滞、热损耗、热惯性特性,建立热力系统模型;b)基于时频域变换,求解热负荷建筑室温响应模型;c)考虑热力系统运行约束,构建热惯性备用应对系统功率缺额出力模型;(3)综合考虑气热惯性备用、发电侧备用、需求侧备用,以最小化园区综合能源系统备用购买总成本为目标,构建园区综合能源备用模型,进行园区综合能源备用配置。
- 如权利要求1所述的一种气热惯性备用参与园区综合能源系统备用配置方法,其特征在于,步骤(1)具体为:1)天然气管道暂态模型为:式中,ρ、v、P分别为天然气的密度、流速、压强,λ、D、θ分别为管道的摩擦系数、内径、管道与水平面的倾角,g为重力加速度,x、t分别为时间变量和空间变量;2)利用拉普拉斯变换求解天然气管道末端压强响应模型:式中,A、L、T分别为天然气管道的横截面积、长度和温度,R M为天然气气体常数,P out(t)、 分别为随时间t变化的天然气管道末端压强及其一阶、二阶导数,f out(t)、 分别为随时间t变化的天然气管道末端流量及其一阶导数;3)气惯性备用应对系统功率缺额出力模型为:
- 如权利要求1所述的一种气热惯性备用参与园区综合能源系统备用配置方法,其特征在于,步骤(2)具体为:a)热力系统模型为:式中,τ n(t)为热负荷建筑m对应的传输管道n随时间t变化的热时滞,l n为传输管道n的长度,v n(t)为传输管道n随时间t变化的热水流速, 为热传输过程中传输管道n的热损耗功率, 为传输管道n的管道热损率,T m(t)和 分别为热负荷建筑m随时间t变化的室内温度和其一阶导数,H m(t)为随时间t变化的热网络对热负荷建筑m的供热功率,L m(t)为随时间t变化的热负荷建筑m的热损耗功率,C A为热负荷建筑的室内空气比热容,M A为热负荷建筑的室内空气质量, 为热负荷建筑的散热系数,T out(t)表示随时间t变化的热负荷建筑的室外温度,m=1,2,...,z,z为园区综合能源系统总热负荷建筑数目;2)利用拉普拉斯变换求解热负荷建筑室温响应模型:3)构建热惯性备用应对系统功率缺额的出力模型为:
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010637501.6 | 2020-07-03 | ||
CN202010637501.6A CN111950171B (zh) | 2020-07-03 | 2020-07-03 | 一种气热惯性备用参与园区综合能源系统备用配置方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022000700A1 true WO2022000700A1 (zh) | 2022-01-06 |
Family
ID=73339936
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/107349 WO2022000700A1 (zh) | 2020-07-03 | 2020-08-06 | 一种气热惯性备用参与园区综合能源系统备用配置方法 |
Country Status (3)
Country | Link |
---|---|
CN (1) | CN111950171B (zh) |
LU (1) | LU500360B1 (zh) |
WO (1) | WO2022000700A1 (zh) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114048928A (zh) * | 2022-01-12 | 2022-02-15 | 汉谷云智(武汉)科技有限公司 | 一种具备高度可迁移能力的建筑短期负荷预测方法 |
CN114362124A (zh) * | 2022-01-14 | 2022-04-15 | 国网(苏州)城市能源研究院有限责任公司 | 一种电热协同控制方法及光储直柔系统 |
CN114723221A (zh) * | 2022-03-11 | 2022-07-08 | 上海电力大学 | 面向整体性集中供热和需求响应的热电联合优化调度方法 |
CN114741988A (zh) * | 2022-04-26 | 2022-07-12 | 东南大学 | 一种计及综合能源系统气热惯性的调频方法 |
CN114881416A (zh) * | 2022-04-08 | 2022-08-09 | 东南大学溧阳研究院 | 一种计及热电联产机组灵活性的综合能源惯性支撑方法 |
CN114925501A (zh) * | 2022-04-26 | 2022-08-19 | 东南大学 | 一种考虑气热惯性的综合能源系统可靠性评估方法 |
CN115081247A (zh) * | 2022-07-19 | 2022-09-20 | 河北农业大学 | 一种基于贝叶斯网络的热力系统可靠性评估方法 |
CN116362478A (zh) * | 2023-02-15 | 2023-06-30 | 浙江大学 | 考虑综合能源枢纽灵活性的电-气耦合系统风险调度方法 |
CN116681545A (zh) * | 2023-01-30 | 2023-09-01 | 兰州理工大学 | 一种计及生物质-p2g耦合的设施农业园区近零碳实现方法 |
CN117669982A (zh) * | 2023-12-18 | 2024-03-08 | 山东建筑大学 | 一种考虑用户多舒适性的园区综合能源系统容量配置方法 |
CN117993896A (zh) * | 2024-04-07 | 2024-05-07 | 浙江大学 | 极端冰雪灾害下考虑热惯性的综合能源系统韧性提升方法 |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113256009B (zh) * | 2021-05-31 | 2023-11-28 | 东南大学 | 一种基于气热惯性的两阶段多备用配置方法、系统和装置 |
CN113344357B (zh) * | 2021-05-31 | 2023-10-03 | 东南大学 | 基于频域动态指标的综合能源系统的设计方法 |
CN113283107A (zh) * | 2021-06-10 | 2021-08-20 | 东南大学 | 一种综合能源系统中气热系统惯性特征的评估方法及模型 |
CN114218765A (zh) * | 2021-11-26 | 2022-03-22 | 国网江苏省电力有限公司 | 一种应对电网功率缺额的综合能源惯性支撑方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110016342A1 (en) * | 2009-07-20 | 2011-01-20 | Viridity Software, Inc. | Techniques for power analysis |
CN108808663A (zh) * | 2018-06-12 | 2018-11-13 | 浙江大学 | 一种基于多能互补的工业用户热需求响应方法 |
CN109474025A (zh) * | 2018-10-08 | 2019-03-15 | 国网能源研究院有限公司 | 一种园区级综合能源系统优化调度模型 |
CN109978625A (zh) * | 2019-03-28 | 2019-07-05 | 河海大学 | 一种计及电热气网络的综合能源系统多目标运行优化方法 |
CN110503271A (zh) * | 2019-08-30 | 2019-11-26 | 南京工业大学 | 一种综合能源系统的多类型储能配置方法 |
CN110544017A (zh) * | 2019-08-12 | 2019-12-06 | 上海交通大学 | 考虑热惯性和能源网络约束的能源系统可靠性评估方法 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9244444B2 (en) * | 2011-03-07 | 2016-01-26 | Callida Energy Llc | Systems and methods for optimizing energy and resource management for building systems |
CN109376912B (zh) * | 2018-09-29 | 2021-07-02 | 东南大学 | 基于民用建筑物热惯性的冷热电联供系统运行优化方法 |
CN109472050B (zh) * | 2018-09-30 | 2023-10-24 | 东南大学 | 基于热惯性的热电联产系统混合时间尺度调度方法 |
-
2020
- 2020-07-03 CN CN202010637501.6A patent/CN111950171B/zh active Active
- 2020-08-06 WO PCT/CN2020/107349 patent/WO2022000700A1/zh active Application Filing
- 2020-08-06 LU LU500360A patent/LU500360B1/en active IP Right Grant
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110016342A1 (en) * | 2009-07-20 | 2011-01-20 | Viridity Software, Inc. | Techniques for power analysis |
CN108808663A (zh) * | 2018-06-12 | 2018-11-13 | 浙江大学 | 一种基于多能互补的工业用户热需求响应方法 |
CN109474025A (zh) * | 2018-10-08 | 2019-03-15 | 国网能源研究院有限公司 | 一种园区级综合能源系统优化调度模型 |
CN109978625A (zh) * | 2019-03-28 | 2019-07-05 | 河海大学 | 一种计及电热气网络的综合能源系统多目标运行优化方法 |
CN110544017A (zh) * | 2019-08-12 | 2019-12-06 | 上海交通大学 | 考虑热惯性和能源网络约束的能源系统可靠性评估方法 |
CN110503271A (zh) * | 2019-08-30 | 2019-11-26 | 南京工业大学 | 一种综合能源系统的多类型储能配置方法 |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114048928A (zh) * | 2022-01-12 | 2022-02-15 | 汉谷云智(武汉)科技有限公司 | 一种具备高度可迁移能力的建筑短期负荷预测方法 |
CN114362124B (zh) * | 2022-01-14 | 2023-10-27 | 国网(苏州)城市能源研究院有限责任公司 | 一种电热协同控制方法及光储直柔系统 |
CN114362124A (zh) * | 2022-01-14 | 2022-04-15 | 国网(苏州)城市能源研究院有限责任公司 | 一种电热协同控制方法及光储直柔系统 |
CN114723221A (zh) * | 2022-03-11 | 2022-07-08 | 上海电力大学 | 面向整体性集中供热和需求响应的热电联合优化调度方法 |
CN114881416A (zh) * | 2022-04-08 | 2022-08-09 | 东南大学溧阳研究院 | 一种计及热电联产机组灵活性的综合能源惯性支撑方法 |
CN114881416B (zh) * | 2022-04-08 | 2023-05-30 | 东南大学溧阳研究院 | 一种计及热电联产机组灵活性的综合能源惯性支撑方法 |
CN114741988A (zh) * | 2022-04-26 | 2022-07-12 | 东南大学 | 一种计及综合能源系统气热惯性的调频方法 |
CN114925501A (zh) * | 2022-04-26 | 2022-08-19 | 东南大学 | 一种考虑气热惯性的综合能源系统可靠性评估方法 |
CN115081247A (zh) * | 2022-07-19 | 2022-09-20 | 河北农业大学 | 一种基于贝叶斯网络的热力系统可靠性评估方法 |
CN116681545A (zh) * | 2023-01-30 | 2023-09-01 | 兰州理工大学 | 一种计及生物质-p2g耦合的设施农业园区近零碳实现方法 |
CN116362478A (zh) * | 2023-02-15 | 2023-06-30 | 浙江大学 | 考虑综合能源枢纽灵活性的电-气耦合系统风险调度方法 |
CN116362478B (zh) * | 2023-02-15 | 2024-03-22 | 浙江大学 | 考虑综合能源枢纽灵活性的电-气耦合系统风险调度方法 |
CN117669982A (zh) * | 2023-12-18 | 2024-03-08 | 山东建筑大学 | 一种考虑用户多舒适性的园区综合能源系统容量配置方法 |
CN117669982B (zh) * | 2023-12-18 | 2024-05-17 | 山东建筑大学 | 一种考虑用户多舒适性的园区综合能源系统容量配置方法 |
CN117993896A (zh) * | 2024-04-07 | 2024-05-07 | 浙江大学 | 极端冰雪灾害下考虑热惯性的综合能源系统韧性提升方法 |
Also Published As
Publication number | Publication date |
---|---|
LU500360B1 (en) | 2022-01-10 |
CN111950171A (zh) | 2020-11-17 |
CN111950171B (zh) | 2022-03-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2022000700A1 (zh) | 一种气热惯性备用参与园区综合能源系统备用配置方法 | |
WO2018130231A1 (zh) | 一种基于热网和房屋热惯性的综合能源系统优化方法 | |
CN102865623B (zh) | 一种集中供暖公共建筑供热节能控制方法 | |
JP5553814B2 (ja) | 省エネ中央集中式暖房及び給湯システム | |
CN112529244A (zh) | 一种考虑电负荷需求响应的综合能源系统协同优化运行法 | |
CN109612171B (zh) | 一种宽温热泵联合用能系统供水温度动态调节方法 | |
CN114218765A (zh) | 一种应对电网功率缺额的综合能源惯性支撑方法 | |
CN103003636B (zh) | 用于运行太阳能设备的方法 | |
CN116308881A (zh) | 利用供热管网储热的综合能源系统多时间尺度调度方法 | |
CN110781598B (zh) | 一种区域综合能源系统运行状态计算方法 | |
CN106440902B (zh) | 一种基于冷热电联产的储热调节系统及其调节方法 | |
CN111678195A (zh) | 一种质量分泵供热机组的调控方法 | |
Rafalskaya | Investigation of failures in operation of heat networks of large heat supply systems | |
CN114723221A (zh) | 面向整体性集中供热和需求响应的热电联合优化调度方法 | |
WO2020015241A1 (zh) | 一种考虑散热系数区间的热网区间潮流计算方法 | |
CN113761727A (zh) | 一种含分布式电热泵的热电联合系统优化调度模型构建方法 | |
JP7542774B2 (ja) | 空調システムおよび空調システムの制御方法 | |
CN114741893A (zh) | 一种计及综合能源系统热惯性灵活退出的调频方法 | |
CN217464605U (zh) | 可降低蒸汽压力能损失的热电联产机组的抽汽供热系统 | |
CN208124422U (zh) | 卡槽式电加热蓄热供暖系统 | |
CN102338449B (zh) | 冷却水型无级调节冷凝热回收系统 | |
CN112050273B (zh) | 一种基于准动态时延特性的热水管网虚拟储能控制方法 | |
CN219389683U (zh) | 一种热电联产机组调控装置 | |
CN213984066U (zh) | 一种具有零冷水功能的燃气采暖热水炉 | |
CN118049687A (zh) | 一种直凝式空气源热泵系统及运行控制方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20943231 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20943231 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20943231 Country of ref document: EP Kind code of ref document: A1 |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 07.08.2023) |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20943231 Country of ref document: EP Kind code of ref document: A1 |